2013中考数学50个知识点专练26 圆的基本性质
2013年浙教版九年级中考数学辅导(圆的基本性质)
2013年浙教版九年级中考数学辅导(圆的基本性质)一、选择题1、下列说法中,正确的个数有()(1)直径是弦,但弦不一定是直径;(2)半圆是弧,但弧不一定是半圆;(3)半径相等的两个半圆是等弧;(4)一条弦把圆分成两段弧中,至少有一段优弧。
A. 1个B. 2个C. 3个D. 4个2、有下列四个命题:(1)直径相等的两个圆是等圆;(2)长度相等的两条弧是等弧;(3)圆中最大的弦是通过圆心的弦;(4)一条弦把圆分成两条弧,这两条弧不可能是等弧,其中真命题是()A. (1)(3)B. (1)(3)(4)C. (1)(4)D. (1)3、下列命题中,正确的是()A.三角形的外心是三角形的三条高线的交点B.等腰三角形的外心一定在它的内部C.任何一个三角形有且仅有一个外接圆D.任何一个四边形都有一个外接圆4.过任意四边形ABCD 的三个顶点能画圆的个数最多为()A. 0 个B. 1 个C. 3 个D. 4 个5.下列命题正确的个数有( )①矩形的四个顶点在同一个圆上;②梯形的四个顶点在同一个圆上;③菱形的四边中点在同一个圆上;④平行四边形的四边中点在同一个圆上.A. 1个B. 2个C. 3个D. 4个6. 下列命题中,正确的是()A.任意三点确定一个圆B.平分弦的直径垂直于弦C.圆既是轴对称图形又是中心对称图形D.垂直弦的直线必过圆心7. 下列说法正确的是()A.直径是圆的对称轴B.经过圆心的直线是圆的对称轴C.与圆相交的直线是圆的对称轴D.与半径垂直的直线是圆的对称轴8. 给出下列命题:(l )垂直于弦的直线平分弦;(2 )平分弦的直径必垂直于弦,并且平分弦所对的两条弧;(3 )平分弦的直线必过圆心;(4 )弦所对的两条弧的中点连线垂直平分弦。
其中正确的命题有()A . 1个 B. 2个 C. 3个 D. 4个9. 下列命题中,真命题是()A.相等的圆心角所对的弧相等B.相等的弦所对的弧相等C.度数相等的弧是等弧D.在同心圆中,同一圆心角所对的两条弧的度数相等10. 如果两条弦相等,那么()A.这两条弦所对的弧相等B.这两条弦所对的圆心角相等C.这两条弦的弦心距相等D.以上答案都不对11. 下列命题中,真命题的个数为()①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③900的圆周角所对的弦是直径;④直径所对的角是直角;⑤圆周角相等,则它们所对的弧也相等;⑥同弧或等弧所对的圆周角相等.A. 1 个B. 2 个C. 3 个D. 4 个14. (兰州)如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )A.5米 B.8米 C.7米 D.53米15.如图,圆上有A、B、C、D四点,其中∠BAD=80︒。
圆中考 知识点总结
圆中考知识点总结圆是中学数学中的一个重要知识点,在中考数学中起着重要的作用。
因此,掌握圆的相关知识对于中考数学是非常重要的。
本文将对中考数学中关于圆的知识点进行总结,帮助学生更好地复习和掌握圆的相关知识。
知识点总结一、基本概念1. 圆的定义:圆是由平面上距离一个确定点一定距离的点的全体组成的集合。
2. 圆的要素:圆心、半径、直径、弧、圆周。
3. 圆的性质:圆的直径是圆周的两倍,圆周上任意两点与圆心的距离相等。
二、圆的相关公式1. 圆的周长公式:C=2πr。
2. 圆的面积公式:S=πr²。
三、圆的相关定理1. 直径定理:直径所对应的两个锐角为直角。
2. 圆的切线定理:过圆外一点引圆的切线与过该点作圆的半径垂直。
3. 圆的切线与弦的性质:相交弦定理、弦切定理。
4. 圆的内切与外切定理:内切定理、外切定理。
四、圆的相关应用1. 圆的面积和周长的应用:计算圆的面积、周长和扇形面积等。
2. 圆的几何关系:切线与圆的位置关系、相交弦的性质等。
3. 圆的倒影与旋转:圆的旋转变换、圆的倒影变换。
五、解题技巧1. 熟练掌握圆的相关公式和定理,能够正确应用公式和定理解题。
2. 多做练习,培养解决问题的能力,提高解题技巧。
3. 注意细节,正确理解题目的意思和要求,避免因理解错误而导致错误答案。
六、经典例题1. 已知AB是∠O的平分线,且AC⊥BC,求证:AC=BC。
2. 已知AB与CD是两条相交的直径,P是与AB、CD相交的一点,求证:PA²+PB²=PC²+PD²。
3. 如图,ΔABC是等边三角形,M、N分别是BC、AB的中点,P为AM的垂足,若PA=2,则求BP的长。
4. 四通五达服装公司要在正方形草坪内竖立一些旗杆,使得每个旗杆都最多不见这块草坪中心的五分之一。
那么最多可以竖立几个旗杆?结语通过对圆的相关知识点进行总结,我们可以更好地掌握圆的相关概念、公式、定理和应用。
中考数学知识点归纳:圆的基础性质
中考数学知识点归纳:圆的基础性质面对中考,考生对待数学这一科目需保持平常心态,复习数学时仍要按知识点、题型、易混易错的问题进行梳理,不断总结,不断反思,从中提炼最佳的解题方法,进一步提高解题能力。
下文为中考数学知识点归纳。
⑴垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
⑵有关圆周角和圆心角的性质和定理① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②一条弧所对的圆周角等于它所对的圆心角的一半。
直径所对的圆周角是直角。
90度的圆周角所对的弦是直径。
圆心角计算公式: =(L/2r)360=180r=L/r(弧度)即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
⑶有关外接圆和内切圆的性质和定理①一个三角形有唯一确定的外接圆和内切圆。
外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△L(R:内切圆半径,S:三角形面积,L:三角形周长)④两相切圆的连心线过切点(连心线:两个圆心相连的直线)⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD 与BC分别交PQ于X,Y,则M为XY之中点。
(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
(5)弦切角的度数等于它所夹的弧的度数的一半。
(6)圆内角的度数等于这个角所对的弧的度数之和的一半。
(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
(8)周长相等,圆面积比长方形、正方形、三角形的面积大。
圆的知识要领不仅常考公式,又是也会直接出一些关于定理的试题。
提供的中考数学知识点归纳,是我们精心为大家准备的,希望大家能够合理的使用!。
圆的基本性质
圆的基本性质1.圆的有关性质:(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.(2)垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.(3)弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;900的圆周角所对的弦是直径.2.三角形的内心和外心:(1)确定圆的条件:不在同一直线上的三个点确定一个圆.(2)三角形的外心: (3)三角形的内心:3. 圆心角的度数等于它所对弧的度数.圆周角的度数等于它所对弧的度数一半. 同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半.【例题精讲】例1. AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 的半径为cm 3,则弦CD 的长为( )A .3cm 2B .3cm C. D .9cm 例2、BC 是以线段AB 为直径的O ⊙的切线,AC 交O ⊙于点D ,过点D 作弦DE AB ⊥,垂足为点F ,连接BD BE 、..(1)仔细观察图形并写出四个不同的正确结论:①___ ___,②___ _____ ,③_____ _,④________(不添加其它字母和辅助线) (2)A ∠=30°,CDO ⊙的半径r .例3、如图,半圆的直径10AB =,点C 在半圆上,6BC =.(1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 长.P B CEA 例3题图直线与圆、圆与圆的位置关系【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°练习、1.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O •的位置关系是____2.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.3、如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是 。
圆的基本性质练习(含答案)
圆的基本性质练习(含答案)圆的基本性质考点1 对称性圆既是__________ ①______ 对称图形,又是 _________ ②____ 对称图形。
任何一条直径所在的直线都是它的 _____ ③。
它的对称中心是_ ④ _____________________ 。
同时圆又具有旋转不变性。
温馨提示:轴对称图形的对称轴是一条直线,因此在谈及圆的对称轴时不能说圆的对称轴是直径。
考点2 垂径定理定理:垂直于弦的直径平分_________ ⑤______ 并且平分弦所对的两条__⑥ __________ 。
常用推论:平分弦(不是直径)的直径垂直于__________ ⑦ _______ ,并且平分弦所对的两条 _______ ⑧ ___________ 。
温馨提示:垂径定理是中考中的重点考查内容,每年基本上都以选择或填空的形式出现,一般分值都在3分左右,这个题目难度不大,只要在平时的练习中,多注意总结它所用的数学方法或数学思想等,以及常用的辅助线的作法。
在这里总结一下:(1)垂径定理和勾股定理的有机结合是计算弦长、半径等问题的有效方法,其关键是构造直角三角形;(2)常用的辅助线:连接半径;过顶点作垂线;(3)另外要注意答案不唯一的情况,若点的位置不确定,则要考虑优弧、劣弧的区别;(4)为了更好理解垂径定理,一条直线只要满足:①过圆心;②垂直于弦;③平分弦;④ 平分弦所对的优弧;⑤平分弦所对的劣弧;考点3 圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧___________ ⑨ _____ ,所对的弦也______ ⑩_________ o常用的还有:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角—a ______________ ,所对的弦____ J2 __________ o(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角 _______ 13 _____________ ,所对的弧 __________ 14方法点拨:为了便于理解和记忆,圆心角、弧、弦之间的关系定理,可以归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应地其余各组量也都相等。
初中数学圆的知识点总结
初中数学圆的知识点总结圆是初中数学中重要的几何图形之一。
掌握圆的知识点对于正确理解和运用几何知识具有重要意义。
本文将对圆的相关知识进行总结,包括定义、性质、定理及相关应用。
一、定义圆是由平面上到一个定点的距离恒定的点的集合。
这个定点叫做圆心,到圆心距离相等的点的集合叫做圆。
圆通常用字母O 表示圆心,用字母r表示圆的半径。
二、性质1. 圆心角:圆内任意两点与圆心构成的角叫做圆心角,圆心角的度数是其所对弧的度数的两倍。
2. 弧:圆内两点间的弧是连接这两点的圆上的一段曲线。
3. 圆周角:圆上的两条弧所对的角叫做圆周角,圆周角的度数是其所对弧的度数的一半。
4. 弦:在同一个圆上的两个点间连线叫做弦。
5. 直径:包含圆心的一条弦叫做直径,直径的长度是半径的两倍。
6. 切线:只与圆相交于圆上一点的直线叫做切线。
7. 弧长:弧所对的圆心角度数的比值乘以圆的周长得到的值叫做弧长。
三、定理1. 弧长定理:弧所对的圆心角的度数是弧长与圆的周长的比值。
2. 切线定理:切线与半径的垂直定理,切线与切线的夹角平分弧度。
3. 弦切角定理:弦上的角等于它所对的弧所对的角的一半。
4. 切割线定理1:相交于圆上的两条弦,它们所对的弧的和相等的两个角相等。
5. 切割线定理2:相交于圆内的两条割线,它们所对的弧的和相等的两个角相等。
6. 等分弧定理:等长的弧所对的圆心角的度数相等。
7. 直径定理:直径上的任何点与圆心,所成的角都是直角。
8. 同弧定理:在圆上,或在圆内同一直径两侧的两个角,它们所对的弧相等。
四、相关应用1. 计算圆的面积与周长:圆的面积公式为πr²,其中r表示半径;圆的周长公式为2πr。
2. 圆的切线问题:求解切线的斜率、方程或长度等。
3. 相似圆问题:判断两个圆是否相似,计算相似圆的比例等。
4. 圆与直线的位置关系问题:圆与直线的位置关系有相离、相切和相交三种情况,根据题目给出的信息进行判断和计算。
5. 圆与三角形的关系问题:判断三角形是否可以内切于一个圆、外切于一个圆或不与圆相交等。
初中数学知识点:圆的基本性质与定理
初中数学知识点:圆的基本性质与定理
1。
点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):
P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。
2。
圆是轴对称图形,其对称轴是任意一条过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
3。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4。
在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
5。
一条弧所对的圆周角等于它所对的圆心角的一半。
6。
直径所对的圆周角是直角。
90度的圆周角所对的弦是直径。
7。
不在同一直线上的3个点确定一个圆。
8。
一个三角形有唯一确定的外接圆和内切圆。
外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。
9。
直线AB与圆O的位置关系(设OPAB于P,则PO 是AB到圆心的距离):
AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。
10。
圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
11。
圆与圆的位置关系(设两圆的半径分别为R和r,且Rr,圆心距为P):
外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。
初三辅导6《圆的基本性质》的知识点及典型例题
《圆的基本性质》的知识点及典型例题知识框图1、过一点可作个圆。
过两点可作个圆,以这两点之间的线段的上任意一点为圆心即可。
过三点可作个圆。
过四点可作个圆。
2、垂径定理:垂直于弦的直径,并且平分垂径定理的逆定理1:平分弦()的直径垂直于弦,并且平分垂径定理的逆定理2:平分弧的直径3、圆心角定理:在同圆或等圆中,相等的圆心角所对的,所对的圆心角定理的逆定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么都相等。
注解:在由“弦相等,得出弧相等”或由“弦心距相等,得出弧相等”时,这里的“弧相等”是指对应的劣弧与A B,那么所求的是弧长劣弧相等,优弧与优弧相等。
在题目中,若让你求⌒4.圆周角性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.练习一、 填空题:1、 如图,在⊙O 中,弦AB ∥OC ,115AOC ∠=︒,则BOC ∠=_________2、如图,在⊙O 中,AB 是直径,15C ∠=︒,则BAD ∠=__________3、如图,点O 是ABC ∆的外心,已知40OAB ∠=︒,则ACB ∠=___________(1题图) (2题图) (3题图) (4题图) 4、如图,AB 是⊙O 的直径,弧BC=弧BD ,25A ∠=︒,则BOD ∠= .(5题图) (6题图) (7题图) 5、如图,⊙O 的直径为8,弦CD 垂直平分半径OA ,则弦CD = .6、已知⊙O 的半径为2cm ,弦AB =2cm ,P 点为弦AB 上一动点,则线段OP 的范围是 .7、如图,在⊙O 中,∠B=50º,∠C=20º,则∠BOC 的=____________8、在半径为5cm 的圆中,两条平行弦的长度分别为6cm 和8cm ,则这两条弦之间的距离为 9、在半径为1的⊙O 中,弦AB 、AC 分别是3和2,则∠BAC 的度数为__________________10、如图,某花园小区一圆形管道破裂,修理工准备更换一段新管道,现在量得污水水面宽度为80cm ,水面到管道顶部距离为20cm ,则修理工应准备内直径是_________cm 的管道..半径为5cm 的圆O中有一点P ,OP=4,则过P 的最短弦长_________,最长弦是__________,二、 选择题:12.如图,矩形与⊙O 相交,若AB=4,BC=5,DE=3,则EF 的长为( )A . 3.5B . 6.5C . 7D . 813、如图,AB 是⊙O 的直径,AD=DE ,AE 与BD 交于点C ,则图中与∠BCE 相等的角有( )A.2个B.3个C.4个D.5个B OCAO ABCDOABCD BOACDBOACOABPABCON M OFEDC B A1、已知如图,AB 为⊙O 的弦,半径OE 、OF 分别交AB 于点C 、D ,且AC=BD 。
2013年中考数学二轮综合训练26圆的基本性质
中考数学二轮综合训练26 圆的基本性质一、选择题1.(2011·上海)矩形ABCD 中,AB =8,BC =3 5,点P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( )A. 点B 、C 均在圆P 外B. 点B 在圆P 外、点C 在圆P 内C. 点B 在圆P 内、点C 在圆P 外 D .点B 、C 均在圆P 内 答案 C解析 如图,AB =8,BP =3AP ,得BP =6,AP =2.在Rt △APD 中,PD = 3 52+22=7>BP ,所以点B 在圆P 内;在Rt △BPC 中,PC = 3 52+62=9>PD ,所以点C 在圆P 外.2.(2011·凉山)如图,∠AOB =100°,点C 在⊙O 上,且点C 不与A 、B 重合,则∠ACB 的度数为( )A .50°B .80°或50°C .130°D .50°或130° 答案 D解析 当点C 在优弧上,∠ACB =12∠AOB =50°;当点C 在劣弧上,∠ACB =180°-50°=130°. 综上,∠ACB =50°或130°.3.(2011·重庆)如图,⊙O 是△ABC 的外接圆,∠OCB =40°,则∠A 的度数等于( )A .60°B .50°C .40°D .30° 答案 B解析 在△OBC 中,OB =OC ,∠OCB =40°, ∴∠BOC =180°-2×40°=100°.∴∠A =12∠BOC =12×100°=50°.4.(2011·绍兴)一条排水管的截面如图所示.已知排水管的截面圆半径OB =10,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( )A .16B .10C .8D .6 答案 A解析 在Rt △OBC 中,OB =10,OC =6, ∴BC =102-62=8. ∵OC ⊥AB , ∴AC =BC.∴AB =2BC =2×8=16.5.(2011·嘉兴)如图,半径为10的⊙O 中,弦AB 的长为16,则这条弦的弦心距为( ) A .6 B .8 C .10 D .12 答案 A解析 作弦心距OC ,得AC =BC =12×16=8.连接AO ,在Rt △AOC 中,OC =102-82=6. 二、填空题6.(2011·扬州)如图,⊙O 的弦CD 与直径AB 相交,若∠BAD =50°, 则∠ACD =__________度.答案 40解析 ∵AB 是⊙O 的直径, ∴∠ADB =90°.∴∠B =90°-∠BAD =90°-50°=40°. ∴∠ACD =∠B =40°.7.(2011·安徽)如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD , 已知CE =1,ED =3,则⊙O 的半径是________________.答案 5解析 画OM ⊥AB ,ON ⊥CD ,垂足分别为M 、N ,连接OD.∵AB =CD , ∴OM =ON.易证四边形OMEN 是正方形.∵CN =DN =12CD =12×(1+3)=2,∴EN =CN -CE =2-1=1. ∴ON =1.∴在Rt △DON 中,OD =12+22= 5.8.(2011·杭州)如图,点A 、B 、C 、D 都在⊙O 上,弧CD 的度数等于84°,CA 是∠OCD 的平分线,则∠ABD +∠CAO =________.答案 48°解析 ∵OA =OC , ∴∠CAO =∠ACO. 又∵∠ABD =∠ACD ,∴∠ABD +∠CAO =∠ACD +∠ACO =∠DCO.在△CDO 中,OC =OD ,∠COD=====m弧CD =84°,∴∠DCO =180°-84°2=48°,即∠ABD +∠CAO =48°.9.(2011·威海)如图,⊙O 的直径AB 与弦CD 相交于点E ,若AE =5,BE =1,CD =4 2,则∠AED =___________.答案 30°解析 连接DO ,画OF ⊥CD ,垂足是F.∴CF =DF =12CD =12×4 2=2 2.∵AB =AE +BE =5+1=6,∴DO =12AB =3.在Rt △DFO 中,OF =32- 2 22=1,在Rt △OFE 中,OE =3-1=2,OF =1.∴∠AED =30°.10.(2011·舟山)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连接CD 、OD ,给出以下四个结论:①AC ∥OD ;②CE =OE ;③△ODE ∽△ADO ;④2CD 2=CE·AB.其中正确结论的序号是_______. 答案 ①④解析 ∵OC ⊥AB ,∴ A C = BC=90°. ∵AD 平分∠CAD ,∴∠CAD =∠BAD , CD = BD =45°. ∴∠CAB=====m 12BC =45°,∠DOB=====mBD =45°, ∴∠CAD =∠DOB ,AC ∥OD ;在△ACO 中,AC>AO ,AE 平分∠CAO ,∴CE≠EO;由AC ∥OD ,得△ODE ∽△CAE ,而∠CAD =∠BAO ,∠ACE≠∠AOD ,∠AEC≠∠AOD. ∴△ACE 与△ADO 不相似,即△ODE 与△ADO 不相似;连接BD ,有BD =CD ,可求得∠B =67.5°,又∵∠CED =∠AEO =67.5°, ∴∠B =∠CED.又∵∠CDE =∠DOB =45°,∴△CDE ∽△DOB ,CD DO =CE DB ,CD·DB=CE·DO,∴CD 2=CE·⎝⎛⎭⎫12AB ,即2CD 2=CE·AB.故结论①、④正确. 三、解答题11.(2011·上海)如图,点C 、D 分别在扇形AOB 的半径OA 、OB 的延长线上,且OA =3,AC =2,CD 平行于AB ,并与 AB 相交于点M 、N.(1)求线段OD 的长;(2)若tan ∠C =12,求弦MN 的长.解 (1)∵CD ∥AB ,∴∠OAB =∠C ,∠OBA =∠D. ∵OA =OB ,∴∠OAB =∠OBA. ∴∠C =∠D. ∴OC =OD.∵OA =3,AC =2, ∴OC =5. ∴OD =5.(2)过点O 作OE ⊥CD ,E 为垂足,连接OM.在Rt △OCE 中,OC =5,tan ∠C =12,设OE =x ,则CE =2x.由勾股定理得x 2+(2x)2=52,解得x 1=5,x 2=-5(舍去).∴OE = 5.在Rt △OME 中,OM =OA =3, ∴ME =OM 2-OE 2=32-52=2.∴MN =2ME =4.12.(2011·江西)如图,已知⊙O 的半径为2,弦BC 的长为2 3,点A 为弦BC 所对优弧上任意一点(B 、C 两点除外).(1)求∠BAC 的度数;(2)求△ABC 面积的最大值. (参考数据:sin60°=32,cos30°=32,tan30°=33.) 解 (1) 解法一:连接OB 、OC ,过O 作OE ⊥BC 于点E(如图).∵OE ⊥BC ,BC =2 3, ∴BE =EC = 3.在Rt △OBE 中,OB =2, ∵sin ∠BOE =BE OB =32, ∴∠BOE =60°, ∴∠BOC =120°,∴∠BAC =12∠BOC =60°.解法二:连接BO 并延长,交⊙O 于点D ,连接CD.(如图)∵BD 是直径,∴BD =4,∠DCB =90°. 在Rt △DBC 中,sin ∠BDC =BC BD =2 34=32,∴∠BDC =60°,∴∠BAC =∠BDC =60°.(2)因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处.如图,过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB 、AC ,则AB =AC ,∠BAE =12∠BAC =30°.在Rt △ABE 中,∵BE =3,∠BAE =30°,∴AE =BEtan 30°=3,∴S △ABC =12×2 3×3=3 3.答:△ABC 面积的最大值是3 3. 13.(2011·德州) ●观察计算当a =5,b =3时, a +b2与ab 的大小关系是__________________;当a =4,b =4时, a +b2与ab 的大小关系是__________________.●探究证明如图所示,△ABC 为圆O 的内接三角形,AB 为直径,过C 作CD ⊥AB 于D ,设AD =a ,BD =b.(1)分别用a 、b 表示线段OC 、CD ;(2)探求OC 与CD 表达式之间存在的关系(用含a 、b 的式子表示). ●归纳结论根据上面的观察计算、探究证明,你能得出a +b2与ab 的大小关系是:________________________.●实践应用要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.解 观察计算: a +b 2>ab ;a +b2=ab. 探究证明:(1)∵AB =AD +BD =2OC ,∴OC =a +b2.∵AB 为⊙O 直径, ∴∠ACB =90°.∵∠A +∠ACD =90°,∠ACD +∠BCD =90°, ∴∠A =∠BCD. ∴△ACD ∽△CBD. ∴AD CD =CD BD. 即CD 2=AD·BD=ab , ∴CD =ab.(2)当a =b 时,OC =CD, a +b2=ab ;a≠b 时,OC>CD, a +b2>ab.结论归纳: a +b2≥ab.实践应用:设长方形一边长为x 米,则另一边长为1x米,设镜框周长为l 米,则l =2(x +1x ) ≥4 x·1x =4 .当x =1x,即x =1(米)时,镜框周长最小.此时四边形为正方形时,周长最小为4 米.14.(2011·肇庆)已知:如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连接AD.(1)求证:∠DAC =∠DBA ; (2)求证:P 是线段AF 的中点;(3)若⊙O 的半径为5,AF =152,求tan ∠ABF 的值.解 (1)证明:∵BD 平分∠CBA ,∴∠CBD =∠DBA.∵∠DAC 与∠CBD 都是弧CD 所对的圆周角, ∴∠DAC =∠CBD. ∴∠DAC =∠DBA.(2)证明:∵AB 为直径,∴∠ADB =90°. 又∵DE ⊥AB 于点E ,∴∠DEB =90°.∴∠ADE +∠EDB =∠ABD +∠EDB =90°. ∴∠ADE =∠ABD =∠DAP.∴PD =PA.又∵∠DFP +∠DAC =∠ADE +∠PDF =90°, 且∠ADE =∠DAC ,∴∠PDF =∠PFD ,∴PD =PF.∴PA =PF ,即P 是线段AF 的中点.(3)解:∵∠DAF =∠DBA ,∠ADB =∠FDA =90°, ∴△FDA ∽△ADB , ∴AD DB =AF AB. ∴在Rt △ABD 中,tan ∠ABD =AD DB =AF AB =15210=34,即tan ∠ABF =34.15.(2011·广州)如图1,⊙O 中AB 是直径,C 是⊙O 上一点,∠ABC =45°,等腰直角三角形DCE 中∠DCE 是直角,点D 在线段AC 上.(1)证明:B 、C 、E 三点共线;(2)若M 是线段BE 的中点,N 是线段AD 的中点,证明:MN =2OM ;(3)将△DCE 绕点C 逆时针旋转α(00<α<900)后,记为△D 1CE 1(图2),若M 1是线段BE 1的中点,N 1是线段AD 1的中点,M 1N 1=2OM 1是否成立?若成立,请证明;若不成立,说明理由.解 (1)证明:∵ AB 是⊙O 的直径, ∴∠ACB=90°. ∵ ∠DCE =90°,∴∠ACB +∠DCE =180°, ∴ B 、C 、E 三点共线.(2)证明:如图,连接ON 、AE 、BD ,延长BD 交AE 于点F.∵ ∠ABC =45°,∠ACB =90°,∴ BC =AC. 又∠ACB =∠DCE =90°,DC =EC , ∴ △BCD ≌△ACE.∴ BD =AE ,∠DBC =∠CAE.∴∠DBC+∠AEC=∠CAE+∠AEC=90°.∴ BF⊥AE.∵ AO=OB,AN=ND,∴ ON=12BD,ON∥BD.∵ AO=OB,EM=MB,∴ OM=12AE,OM∥AE.∴ OM=ON,OM⊥ON. ∴∠OMN=45°.又 cos∠OMN=OMMN,∴ MN=2OM.(3) M1N1=2OM1成立,证明同(2).。
初中数学圆的基本性质公式定理
初中数学圆的基本性质公式定理初中数学圆的基本性质公式定理大全大家都知道:圆是定点的距离等于定长的点的集合,那么圆的半径、圆心等性质大家熟知了吗。
以下是小编为你整理的内容,欢迎阅读。
圆的基本性质1圆是定点的距离等于定长的点的集合2圆的内部可以看作是圆心的距离小于半径的点的集合3圆的外部可以看作是圆心的距离大于半径的点的集合4同圆或等圆的半径相等5到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆6和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线7到已知角的两边距离相等的点的轨迹,是这个角的平分线8到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线9定理不在同一直线上的三点确定一个圆。
上面为大家带来的是初中数学公式定理大全之圆的公式定理,热爱数学的同学们应该熟记于心了吧。
初中数学正方形定理公式关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。
正方形定理公式正方形的特征:①正方形的四边相等;②正方形的四个角都是直角;③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;正方形的判定:①有一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形。
希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。
初中数学平行四边形定理公式同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。
平行四边形平行四边形的性质:①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线互相平分;平行四边形的判定:①两组对角分别相等的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③对角线互相平分的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形。
上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。
初中数学直角三角形定理公式下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。
九年级数学中考一轮复习 微专题二讲义:圆的基本性质
微专题二:圆的基本性质【知识点扫描】1. 圆上各点到圆心的距离都等于.2. 圆是轴对称图形,任何一条直径所在的直线都是它的;圆又是对称图形,是它的对称中心.3. 垂直于弦的直径平分,并且平分;平分弦(不是直径)的垂直于弦,并且平分.4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量,那么它们所对应的其余各组量都分别.5. 同弧或等弧所对的圆周角,都等于它所对的圆心角的.6. 半圆(或直径)所对的圆周角是,90°的圆周角所对的弦是.7.圆内接四边形的对角.8.圆的周长为,1°的圆心角所对的弧长为,n°的圆心角所对的弧长为,弧长公式为 .9.圆的面积为,1°的圆心角所在的扇形面积为,n°的圆心角所在的扇形面积为S= ×πr2 = = .10.圆锥的侧面积公式:S=rlπ.(其中为的半径,为的长);圆锥的全面积:S全=S侧+S底=πrl+πr2.【难点突破】重难点1垂径定理及其应用一.选择题:1.如图,AB是⊙O的直径,弦CD⊙AB于点G,点F是CD上一点,且满足CF:FD =3:7,连接AF并延长交⊙O于点E,连接AD、DE,若CF=3,AF=3,给出下列结论:⊙FG=2;⊙5 tanE;⊙495DEFS=;其中正确的是( )A. ⊙⊙B. ⊙⊙C. ⊙⊙D.⊙⊙⊙二、填空题:1.在半径为1的⊙O中,两条弦AB,AC的长分别为3和2,则弧BC的长度为.三、解答题:1.已知:如图,AB是圆O的直径,CD是圆O的弦,AB⊙CD,E为垂足,AE=CD=8,F是CD延长线上一点,连接AF交圆O于G,连接AD、DG.(1)求圆O的半径;(2)求证:⊙ADG⊙⊙AFD;(3)当点G是弧AD的中点时,求⊙ADG得面积与⊙AFD的面积比.重难点2圆周角定理及其推论一、选择题1. 如图,抛物线与x轴交于A、B两点,以线段AB为直径的半圆与抛物线在第二象限的交点为C,与y轴交于D点,设⊙BCD=α,则的值为()A.sin2α B.cos2α C.tan2α D.tan﹣2α2.如图,点C为⊙ABD外接圆上的一点(点C不在上,且不与点B,D重合),且⊙ACB=⊙ABD=45°,若BC=8,CD=4,则AC的长为()A.8.5B.5C.4D.二、填空题1.如图,⊙O是⊙AB C的外接圆,AD⊙B C于D,CE⊙AB于E,AD交CE于H点,交⊙O于N,OM⊙B C于M,BF为⊙O的直径,下列结论:⊙四边形AH CF为平行四边形;⊙AH=2OM,⊙BF=2F C;⊙DN=DH;其中正确的有______(第1题) (第2题)2.如图,在平面直角坐标系中,已知点A (0,2)、B(0,2+m)、C(0,2-m)(m>0),点P 在以D(4,6)为圆心,1 为半径的圆上运动,且始终满足⊙BPC=90°,则m的最大值是3.如图,AB,BC是⊙O的弦,⊙B=60°,点O在⊙B内,点D为上的动点,点M,N,P 分别是AD,DC,CB的中点.若⊙O的半径为2,则PN+MN的长度的最大值是三.解答题1.请完成以下问题:(1)如图1,=,弦AC与半径OD平行,求证:AB是⊙O的直径;(2)如图2,AB是⊙O的直径,弦AC与半径OD平行.已知圆的半径为r,AC=y,CD=x,求y与x的函数关系式.2.如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是⊙ABP 的外接圆⊙O 的直径.(1)求证:⊙APE 是等腰直角三角形; (2)若⊙O 的直径为2,求PC 2+PB 2的值.3.如图1,已知四边形ABCD 内接于圆0,AD=BC ,延长AB 到E ,使BE=AB ,连接EC ,F 是EC 的中点,连接BF(1)若圆0的半径为3,⊙DAB=120°,求劣弧BD 的长; (2)如图2,连接BD ,求证:BF=21BD ; (3)如图3,G 是BD 的中点,过B 作AE 的垂线交圆0于点P ,连接PG ,PF ,求证:PG=PF图1 图2 图34.如图1,圆O的两条弦AC、BD交于点E,两条弦所成的锐角或者直角记为⊙α(1)点点同学通过画图和测量得到以下近似数据:的度数30.2°40.4°50.0°61.6°的度数55.7°60.4°80.2°100.3°⊙α的度数43.0°50.2°65.0°81.0°猜想:、、⊙α的度数之间的等量关系,并说明理由﹒(2)如图2,若⊙α=60°,AB=2,CD=1,将以圆心为中心顺时针旋转,直至点A与点D 重合,同时B落在圆O上的点,连接CG﹒⊙求弦CG的长;⊙求圆O的半径.重难点3 三角形的外接圆及圆内接四边形 一、选择题1.如图,点A 的坐标为A (8,0),点B 在y 轴正半轴上,且AB=10,点P 是⊙AOB 外接圆上一点,且⊙BOP=45°,则点P 的坐标为( )A .(7,7)B .(7,7)C .(5,5)D .(5,5)2.如图所示,四边形ABCD 中,DC⊙AB ,BC=2,AB=AC=AD=3.则BD 的长为( ) A.13 B.5 C.23 D.243.如图,⊙ABC 内接于圆O ,延长AO 交BC 于点P ,交圆O 于点D ,连结OB ,OC ,BD ,DC ( )A .若AB=AC ,则BC 平分ODB .若OCBD ,则CD :AB=:3C .若⊙ABO=30°,则OC BDD .若BC 平分OD ,则AB=AC二.填空题1.在⊙ABC 中,45AB =5AC =,11BC =,则⊙ABC 的外接圆半径为____________2、如图,⊙ABC内接于⊙O,其外角平分线AD交⊙O于D,DM⊙AC于M,下列结论中正确的是.⊙DB=DC;⊙AC+AB=2CM;⊙AC﹣AB=2AM;⊙S⊙ABD=S⊙ABC.重难点4弧长及扇形面积的有关计算一.选择题1.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1B.2π﹣1C.2π﹣2D.π﹣2二.填空题1、如图,一根长为a的竹竿AB斜靠在墙上,竹竿AB的倾斜角为α,当竹竿的顶端A下滑到点A'时,竹竿的另一端B向右滑到了点B',此时倾斜角为β.(1)线段AA'的长为.(2)当竹竿AB滑到A'B'位置时,AB的中点P滑到了P',位置,则点P所经过的路线长为(两小题均用含a,α,β的代数式表示)2、如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为_ __3、如图,AB为半圆O的直径,C为AO的中点,CD⊙AB交半圆与点D,以C为圆心,CD为半径画弧DE交AB于E点,若AB=4cm,则图中阴影部分面积为cm2.三、简答题1、在⊙O中,己知弦BC所对的圆周角⊙BAC与圆心角⊙BOC互补.(1)求⊙BOC的度数.(2)若⊙O的半径为4,求弦BC和劣弧BC组成的弓形面积.。
九年级数学圆的基础知识点
九年级数学圆的基础知识点圆是几何学中非常重要的基本图形之一,具有广泛的应用价值。
在九年级的数学学习中,学生将会接触到与圆相关的许多基础知识点。
本文将以深度和广度的角度,来介绍九年级数学中与圆相关的一些重要概念和应用。
一、圆的定义和性质圆是由平面上任意一点到另一点的距离恒定的所有点的集合。
这个恒定的距离叫做圆的半径。
我们可以用数学符号R表示。
圆的中心即距离任意一点距离恒定的那个点。
圆的中心通常用字母O表示。
圆的周长则等于圆的直径与圆周率π的乘积,用数学公式表示为C = 2πR。
二、圆的直径、弦和弧圆的直径是穿过圆心并且两端点同时在圆上的线段。
直径的长度等于半径的两倍。
弦是圆上任意两点间的线段。
弧是圆上的一段弯曲部分,可以用一条弦的两个端点来确定。
三、圆的正弦、余弦和切线在学习三角函数时,我们会接触到圆的正弦、余弦和切线。
正弦是一个角的对边与斜边的比值,余弦是一个角的邻边与斜边的比值,而切线则是角的对边与邻边的比值。
四、圆的内切与外切内切是指一个图形恰好与圆的内部相切,而外切则是指一个图形恰好与圆的外部相切。
在九年级数学中,学习过程中可能会遇到这两种情况,并需要用到相应的计算方法。
五、圆的面积和体积圆的面积是一个圆所占据的平面空间大小。
圆的面积等于半径的平方乘以圆周率π。
用数学公式表示为A = πR²。
在学习中,我们会用到圆的面积来解决与圆相关的问题。
而体积则是指球体所占据的空间大小。
球体的体积等于半径的立方乘以4π/3。
用数学公式表示为V = (4/3)πR³。
六、圆的应用圆不仅仅是数学中的一个抽象概念,它在现实生活和各个学科中都有广泛的应用。
例如,数学中的圆的运动学概念被应用于物理学中的运动轨迹分析;圆的几何特性被应用于建筑设计中的弧形美学;圆的轨迹则可以用于机器人技术中的路径规划等等。
在科学和工程学领域,应用圆的知识可以解决很多实际问题。
总结:通过学习九年级数学中与圆相关的基础知识点,我们可以更好地理解圆的定义和性质,掌握圆的直径、弦和弧的概念,熟悉圆的正弦、余弦和切线的计算方法,在应用问题中灵活运用圆的内切与外切的原理,掌握圆的面积和体积的计算方法。
初中数学重点梳理:圆的基本性质
圆的基本性质知识定位圆在初中几何或者竞赛中占据非常大的地位,它的有关知识如圆与正多边形的关系,圆心角、三角形外接圆、弧、弦、弦心距间的关系,垂径定理是今后我们学习综合题目的重要基础。
圆的基本性质以及应用,必须熟练掌握。
本节我们通过一些实例的求解,旨在介绍数学竞赛中圆相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。
知识梳理1、圆的定义:(1)描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A 随之转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径.(2)集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,顶点叫做圆心,定长叫做半径.⊙”,(3)圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作“O读作“圆O”。
(4)同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.注意:同圆或等圆的半径相等.2、弦和弧:(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍.(3)弦心距:从圆心到弦的距离叫做弦心距.、为端点的圆弧记作AB,读作(4)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B弧AB.(5)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.(6)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(7)优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(8)弓形:由弦及其所对的弧组成的图形叫做弓形.3、垂径定理:(1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.推论2:圆的两条平行弦所夹的弧相等.4、圆心角和圆周角:(1)圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.(2)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.(3)圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(4)圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.5、正多边形:各边相等,各角也相等的多边形是正多边形。
初中数学圆的基本性质定理知识点
初中数学圆的基本性质定理知识点
一、圆的定义
圆,是一种平面图形,其中所有点距离一定点(叫做圆心)的距离都相等,这个距离称之为圆的半径,用一个带下标的R来表示(R),即在同一平面内,所有点到圆心的距离都相等,记作:
O为圆心,OP恒等于R,即OP=R(R为正实数)
二、圆的性质
(1)圆周的概念
(2)圆半径的概念
圆半径,是指圆的半径,也就是圆心到任意一点的距离,记作:OP=R (R为正实数)
(3)圆心角的定义
圆心角,是指圆心以及两点之间所组成的扇形(或者说是弧形),记作:∠PO1O2=O1O2C(C为一定几何形)
(4)圆周长的定义
圆周长,是指圆上任意一点到圆心所组成线段的和,记作:
C=P1P2+P2P3+…+Pn-1Pn(C为实数)
(5)圆周长的公式
C=2πR,其中π代表圆周率,它的值是3.14,R代表圆的半径。
(6)圆的面积
圆的面积,是指圆形区域内的任意点到圆心的距离都等于R的区域,记作:S=πR2(S为实数)。
九年级圆的有关性质知识点
九年级圆的有关性质知识点圆是我们数学中的重要概念,它具有独特的性质和特点。
在九年级的学习中,我们需要了解和掌握圆的相关性质知识点,下面将对圆的性质进行详细介绍。
一、圆的定义与基本构造圆是指平面上与给定点距离相等的所有点的集合。
在平面几何中,可以通过以下两种方法进行圆的构造:1. 已知圆心和半径:以给定点为圆心,以给定长度为半径画弧,使弧上所有点与给定点的距离相等,连接弧两端与给定点,即可得到一个圆。
2. 已知三点:以任意三个不共线的点为顶点,画出它们之间的三条线段,这三条线段对应的圆唯一,称之为“三点确定一圆”的性质。
二、弧与圆心角弧的定义:圆上任意两点之间的弧是连接这两点的曲线部分。
圆心角的定义:以圆心为端点的两条射线所夹的角称为圆心角。
基本性质:1. 圆心角的度数等于所对弧的度数。
2. 同样对应于圆上的两个弧,其圆心角的度数相等,则这两个弧的长度也相等。
三、相交弧与相交线段相交弧:两条弧在圆上的交点之间的部分称为相交弧。
相交线段:在圆上连接两个相交点得到的线段称为相交线段。
性质:1. 相交弧所对的圆心角相等。
2. 相交线段所对的圆心角相等。
四、弦与切线弦的定义:在圆内连接圆上的任意两点,所得的线段称为弦。
切线的定义:与圆相切于一个点的直线称为切线。
弦的性质:1. 圆心角所对的弦相等。
2. 等长的弦所对的圆心角相等。
切线的性质:1. 切线与半径垂直于切点。
2. 作为一个线段,切线的长度等于半径的长度。
五、正多边形内接圆与外接圆正多边形是指所有边相等,所有内角相等的多边形。
对于正多边形,有两个特殊的圆与之相关联:内接圆和外接圆。
内接圆:可以在正多边形的内部找到一个圆,使这个圆与多边形内的每条边都相切,这个圆被称为内接圆。
外接圆:可以在正多边形的外部找到一个圆,使这个圆与多边形的每条边都相切,这个圆被称为外接圆。
性质:1. 正多边形的内接圆的圆心与外接圆的圆心都与多边形的重心重合。
2. 内接圆的半径小于等于外接圆的半径,且内接圆的半径与外接圆的半径成反比。
专题30 圆的基本性质-中考数学一轮复习精讲+热考题型(解析版)
专题30 圆的基本性质【知识要点】知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑴圆心;⑵半径,⑶其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,并且直径是同一圆中最长的弦.⏜,读作弧AB.在同圆或弧的概念:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作AB等圆中,能够重合的弧叫做等弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.弦心距概念:从圆心到弦的距离叫做弦心距.弦心距、半径、弦长的关系:(考点)知识点二垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;常见辅助线做法(考点):1)过圆心,作垂线,连半径,造RT△,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分.知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑷圆心;⑸半径,⑹其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。
中考数学圆的基本性质专题复习学案设计
中考数学圆的基本性质专题复习一、知识点讲解1.圆的概念圆是平面上到一个定点的距离等于定长的点的集合.定点就是圆心,定长就是半径的长,通常也称为半径.以定点O 为圆心的圆称为圆O ,记作O Θ. 2.点和圆的位置关系设圆的半径为R ,点P 到圆心的距离为d ,则(1)点P 在圆外⇔R d >; (2)点P 在圆上⇔;(3)点P 在圆内⇔R d <≤0. 3.圆的确定不在同一条直线上的三点确定一个圆.经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆.外接圆的圆心叫三 角形的外心,这个三角形叫这个圆的内接三角形.三角形的外心就是三角形三边垂直平分线的交点.4.圆心角、弧、弦、弦心距之间的关系定理及其推论(“知一推三”,强调特殊情况不成立) 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距 也相等;推论:在同圆或等圆中,如果两个圆心角、两条劣弧(或优弧)、两条弦、两条弦的弦心 距得到的四组量中有一组量相等,那么它们所对应的其余三组量也分别相等. 5.垂径定理及其推论(“知二推二”, 强调特殊情况不成立)如果圆的一条直径垂直于圆的一条弦,那么这条直径平分这条弦,并平分弦所对的两条弧.二、知识点相关练习例1.在平面上,经过给定的两点的圆有____个,这些圆的圆心一定在连结这两点的线段的_______上.例2.平面上有一个点到⊙O 的圆周上的最小距离为6cm ,最大距离为8cm ,则⊙O 的半径为_______.例3.在矩形ABCD 中,AB =8,AD =6,以点A 为圆心,若B ,C ,D 三点中至少有一点在圆内,且至少有一点在圆外,则圆A 的半径R 的取值范围为 __________.例4.下列说法:①直径是弦;②弦是直径;③半圆是弧,但弧不一定是半圆;④长度相等的两条弧是等弧,其中正确的命题有( )个.A. 1B. 2C. 3D. 4例5.已知,如图,在⊙O 中,AB OE ⊥于E ,CD OF ⊥于F ,OE=OF . 求证:弧AC=弧BD .例6.如图,OB ,OC 的⊙O 上一点,且∠B=200,∠C=300,求∠A 的度数.OBCA例7.下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③相等的圆心角所对的弧相等.其中是真命题的是( ). A. ①②③ B. ②③ C. ①③ D. ①②③例8.已知⊙O 的半径是5cm ,点P 满足PO=3cm ,则过P 的最大弦长为_________ 最小弦长为_________例9.已知⊙O 的半径是5㎝,圆心到弦AB 的距离是3㎝,则弦AB= ㎝.例10.等腰ABC ∆内接于半径为10cm 的圆内,其底边BC 的长为16cm ,则ABC S ∆( )A .322cmB .1282cmC .322cm 或802cmD .322cm 或1282cm例11.⊙O 的半径为13 cm ,弦AB ∥CD ,AB=24cm ,CD=10cm ,求AB 和CD 的距离.专项练习1.下列四边形:①平行四边形,②菱形;③矩形;④正方形.其中四个顶点一定能在同一个圆上的有( ).A .①②③④B .②③④C .②③D .③④2.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( ). A .第①块 B .第②块 C .第③块 D .第④块3.下列命题中,正确的是( ) A. 平分一条直径的弦必垂直于这条直径 B. 平分一条弧的直线垂直于这条弧所对的弦 C. 弦的垂线必经过这条弦所在圆的圆心D. 在一个圆内平分一条弧和弧所对弦的直线必经过这个圆的圆心4.已知ABC ∆,090C ∠=,AC=3,BC=4,以点C 为圆心作圆C ,半径为r . (1) 当r 取什么值时,点A 、B 在圆C 外;(2) 当r 在什么范围时,点A 在圆C 内,点B 在圆C 外.5.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧,其中正确的命题有( )个.A. 4B. 3C. 2D. 16.下列命题中的假命题是( )A. 在等圆中,如果弦相等,那么它们所对的优弧也相等B.在等圆中,如果弧相等,那么它所对的弦的弦心距也相等 C .在等圆中,如果弦心距相等,那么它们所对的弦也相等 D .相等的圆心角所对的两条弦相等7.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于CD 两点,若AB =12cm, CD =8cm, 则AC 的长为( )A. 1cmB. 1.5cmC. 2cmD. 2.5cm8.下列命题中,正确的是( ).A .平分一条弧的直径垂直平分这条弧所对的弦;B .平分弦的直径垂直于弦,并且平分弦所对的弧;C .AB ,CD 是⊙O 的弦,若»»AB CD ,则AB ∥CD ; D .圆是轴对称图形,对称轴是圆的每一条直径.9.在△ABC 中,∠C =90°,AC =2,BC =4,CD 是高,CM 是中线,以C 为圆心,以5长为半径画圆,那么A 、B 、C 、D 、M 五个点中,在圆外的点是 __________;在圆上的点是 __________;在圆内的点是 __________.10.如图,一圆拱桥跨度为AB =8米,拱高CD =2米,则圆拱半径为 __________ 米.11.在ABC ∆中,090C ∠=,AC=4,BC=3,以点B 为圆心,以3.5为半径作圆,那么:(1)点C 在圆B____;(2)点A 在圆B____;(3)当半径=_____时,点A 在圆B 上. 12.AB 是圆O 的直径,2=AB ,弦3=AC ,若D 为圆上一点,且1=AD , 则=∠DAC 度.13. 已知等腰三角形的底边长为6,它内接于半径为5的o e 中,那么这个三角形的腰长 为 .14. P 是⊙O 外一点,过点P 的两条直线分别交⊙O 于A 、B 和C 、D ,又E 、F 分别是AB 弧、CD 弧的中点,联结EF ,交AB 、CD 于点M 、N ,请判断△PMN 的形状,并证明你的结论.P15.△ABC 内接于⊙O,AB=AC.已知⊙O的半径为7,且圆心O到BC的距离为3.求腰AB的长.16.⊙O的半径为13 cm,弦AB∥CD,AB=24cm,CD=10cm,求AB和CD的距离.17.在△ABC中,∠ACB=90°,CD⊥AB,D是垂足,∠A=30°,AC=3cm,以C为圆心,3cm为半径作圆C.(1)指出A、B、D与⊙C的位置关系;(2)如果要使⊙C经过点D,那么这个圆的半径应为多长?(3)设⊙C的半径为R,要使点B在⊙C内,点A在⊙C外,求出⊙C的半径R的取值范围.18.机器人“海宝”在某圆形区域表演“按指令行走”,如图所示,“海宝”从圆心O出发,先沿北偏西67.4°方向行走13米至点A处,再沿正南方向行走14米至点B处,最后沿正东方向行走至点C处,点B、C都在圆O上.(1)求弦BC的长;(2)求圆O的半径长.(本题参考数据:sin 67.4° = 1213,cos 67.4° =513,tan 67.4° =125)BD。
初中圆的知识点总结
初中圆的知识点总结在初中数学中,圆是一个非常重要的几何图形。
我们学习圆的性质和计算方法,能够帮助我们更好地理解几何学的基本概念和问题。
下面将对初中圆的一些重要知识点进行总结。
一、圆的定义和基本性质1. 圆的定义:圆是平面上所有到圆心的距离都相等的点的集合。
2. 圆的要素:圆心、半径、直径。
3. 圆的基本性质:圆的任意两点与圆心的距离相等;圆的半径相等;圆的半径是直径的一半。
二、圆的计算1. 圆的周长计算:圆的周长(C)等于圆的直径(D)乘以π(约等于3.14),即C = D × π。
2. 圆的面积计算:圆的面积(A)等于圆的半径(r)平方乘以π,即A = r² × π。
三、弧长和扇形1. 弧长的计算:弧长等于圆的半径乘以所对的圆心角的弧度。
2. 扇形的面积计算:扇形的面积等于圆心角所对的弧长除以圆周长再乘以圆的面积。
四、切线和切点1. 切线的定义:切线是与圆交于一点,且与圆的半径垂直的直线。
2. 切点的性质:切点与圆心之间的连线是切线的垂线。
五、相交弦和交叉切线1. 相交弦的性质:两条相交的弦所对的弧等于这两条弦所对的弧之和。
2. 交叉切线的性质:两条交叉的切线所夹的角等于这两条切线所对的弧之差的一半。
六、圆的位置关系1. 同心圆:具有相同圆心但半径不同的圆。
2. 内切和外切:如果一个圆正好与另一个圆相切,那么这两个圆是内切圆和外切圆。
3. 相似圆:如果两个圆的半径成比例,那么这两个圆是相似圆。
七、圆的应用1. 圆和菱形的关系:圆内接四边形是菱形。
2. 圆和角的关系:圆上的两条弦所对的弧所对的角相等。
3. 圆和三角形的关系:如果一个三角形的边是圆的直径,那么这个三角形是直角三角形。
总结起来,初中圆的知识点包括圆的定义和基本性质、圆的计算、弧长和扇形、切线和切点、相交弦和交叉切线、圆的位置关系以及圆的应用等内容。
通过深入学习和理解这些知识点,我们能够更好地应用数学知识解决问题,同时也能够为高中数学的学习打下坚实的基础。
《圆的基本性质》各节知识点及典型例题
圆的基本性质第一节 圆 第二节 圆的轴对称性 第三节 圆心角 第四节 圆周角 第五节 弧长及扇形的面积 第六节 侧面积及全面积 六大知识点:1、圆的概念及点与圆的位置关系2、三角形的外接圆3、垂径定理4、垂径定理的逆定理及其应用5、圆心角的概念及其性质6、圆心角、弧、弦、弦心距之间的关系 【课本相关知识点】1、圆的定义:在同一平面内,线段OP 绕它固定的一个端点O ,另一端点P 所经过的 叫做圆,定点O 叫做 ,线段OP 叫做圆的 ,以点O 为圆心的圆记作 ,读作圆O 。
2、弦和直径:连接圆上任意 叫做弦,其中经过圆心的弦叫做 , 是圆中最长的弦。
3、弧:圆上任意 叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成的两条弧,每一条弧都叫做 。
小于半圆的弧叫做 ,用弧两端的字母上加上“⌒”就可表示出来,大于半圆的弧叫做 ,用弧两端的字母和中间的字母,再加上“⌒”就可表示出来。
4、等圆:半径相等的两个圆叫做等圆;也可以说能够完全重合的两个圆叫做等圆5、点与圆的三种位置关系:若点P 到圆心O 的距离为d ,⊙O 的半径为R ,则:点P 在⊙O 外 ;点P 在⊙O 上 ; 点P 在⊙O 内 。
6、线段垂直平分线上的点 距离相等;到线段两端点距离相等的点在 上7、过一点可作 个圆。
过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。
8、过 的三点确定一个圆。
9、经过三角形三个顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做圆的 。
三角形的外心是三角形三条边的【典型例题】【题型一】证明多点共圆例1、已知矩形ABCD ,如图所示,试说明:矩形ABCD 的四个顶点A 、B 、C 、D 在同一个圆上【题型二】相关概念说法的正误判断例1、(甘肃兰州中考数学)有下列四个命题:① 直径是弦;② 经过三个点一定可以作圆;③ 三角形的外心到三角形各顶点的距离都相等;④ 半径相等的两个半圆是等弧。
2013中考数学----圆的基本性质_课件
图 5-1-2 A.16 B.10 C.8 D.6 小结与反思:用垂径定理进行证明或计算时,常需作出圆 心到弦的垂线段(即弦心距),则垂足为弦的中点,再利用半径、
弦心距和半弦组成的直角三角形来达到求解的目的.
圆周角、圆心角之间的关系
3.(2011 年浙江绍兴)如图 5-1-3,AB 为⊙O 的直径,点
任意两点 (3)弦:连接圆上__________的线段叫弦,经过圆心的弦叫 直径 做_____. 平分 (4)垂径定理及其推论:垂直于弦的直径_____这条弦,并 垂直 平分 且_____弦所对的弧;平分弦(不是直径)的直径_____于弦,并 弧 且平分弦所对的____. (5)圆心角、弧、弦、弦心距的关系定理:在同圆或等圆中, 圆心角 相等的______所对的弧相等,所对的弦相等. 两条弧 推论:在同圆或等圆中,如果两个圆心角、_______、两条 弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余 各组量都分别相等.
垂径定理 1.(2011 年浙江嘉兴)如图 5-1-1,半径为 10 的⊙O 中, 弦 AB 的长为 16,则这条弦的弦心距为( A )
图 5-1-1
A.6 B.8 C.10 D.12
2.(2011 年浙江绍兴)一条排水管的截面如图 5-1-2.已知
排水管的截面圆半径 OB=10,截面圆圆心 O 到水面的距离 OC
C 在⊙O 上,若∠C=16°,则∠BOC 的度数是( C )
图 5-1-3
A.74°
B.48°
C.32°
D.16°
4.(2011 年重庆)如图 5-1-4,⊙O 是△ABC 的外接圆, ∠OCB=40°则∠A 的度数等于(
B)
图 5-1-4 A.60° B.50° C.40° D.30° 小结与反思:此题组考察了圆中弧与圆心角、圆周角数量 间的关系,即在同圆或等圆中,同弧或等弧所对的圆周角相等, 等于它所对的圆心角的一半.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013中考数学50个知识点专练26 圆的基本性质
一、选择题
1.(2011·上海)矩形ABCD中,AB=8,BC=3 5,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是( )
A. 点B、C均在圆P外
B. 点B在圆P外、点C在圆P内
C. 点B在圆P内、点C在圆P外
D.点B、C均在圆P内
2.(2011·凉山)如图,∠AOB=100°,点C在⊙O上,且点C不与A、B重合,则∠ACB 的度数为( )
A.50° B.80°或50°
C.130° D.50° 或130°
3.(2011·重庆)如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于( )
A.60° B.50°
C.40° D.30°
4.(2011·绍兴)一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是( )
A.16 B.10
C.8 D.6
5.(2011·嘉兴)如图,半径为10的⊙O中,弦AB的长为16,则这条弦的弦心距为( ) A.6 B.8
C.10 D.12
二、填空题
6.(2011·扬州)如图,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD=__________度.
7.(2011·安徽)如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是________________.
8.(2011·杭州)如图,点A 、B 、C 、D 都在⊙O 上,CD 的度数等于84°,CA 是∠OCD 的平分线,则∠ABD +∠CAO =________.
9.(2011·威海)如图,⊙O 的直径AB 与弦CD 相交于点E ,若AE =5,BE =1,CD =4 2,则∠AED =___________.
三、解答题
11.(2011·上海)如图,点C 、D 分别在扇形AOB 的半径OA 、OB 的延长线上,且OA =3,AC =2,CD 平行于AB ,并与A B 相交于点M 、N.
(1)求线段OD 的长;
(2)若tan ∠C =1
2
,求弦MN 的长.
12.(2011·江西)如图,已知⊙O 的半径为2,弦BC 的长为2 3,点A 为弦BC 所对优
弧上任意一点(B 、C 两点除外).
(1)求∠BAC 的度数;
(2)求△ABC 面积的最大值. (参考数据:sin60°=32,cos30°=32,tan30°=33
.)
13.(2011·德州) ●观察计算
当a =5,b =3时, a +b
2与ab 的大小关系是__________________;
当a =4,b =4时, a +b
2
与ab 的大小关系是__________________.
●探究证明
如图所示,△ABC 为圆O 的内接三角形,AB 为直径,过C 作CD ⊥AB 于D ,设AD =a ,BD =b.
(1)分别用a 、b 表示线段OC 、CD ;
(2)探求OC 与CD 表达式之间存在的关系(用含a 、b 的式子表示). ●归纳结论
根据上面的观察计算、探究证明,你能得出a +b
2
与ab 的大小关系是:
________________________.
●实践应用
要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.
14.(2011·肇庆)已知:如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连接AD.
(1)求证:∠DAC =∠DBA;
(2)求证:P是线段AF的中点;
(3)若⊙O 的半径为5,AF =15
2
,求tan∠ABF的值.
15.(2011·广州)如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.
(1)证明:B、C、E三点共线;
(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=2OM;
(3)将△DCE绕点C逆时针旋转α(00<α<900)后,记为△D
1CE
1
(图2),若M
1
是线段BE
1
的中点,N
1是线段AD
1
的中点,M
1
N
1
=2OM
1
是否成立?若成立,请证明;若不成立,说明理
由.。