高考物理带电粒子在复合场中的运动解题技巧(超强)及练习题

合集下载

(物理)带电粒子在复合场中的运动练习题含答案及解析

(物理)带电粒子在复合场中的运动练习题含答案及解析

解得: <0.63%
5.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为
d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为 m 、带电量 q 、重力不计的 带电粒子,以初速度 v1 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然
后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中 运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:
由题知 vm=kym
若 E=0 时,粒子以初速度 v0 沿 y 轴正向入射,有 qv0B=m v02 R0
在最高处有 v0=kR0
联立解得 vm
E B
(
E B
)2
v02
考点:带电粒子在符合场中的运动;动能定理.
2.在 xOy 平面的第一象限有一匀强电磁,电场的方向平行于 y 轴向下,在 x 轴和第四象限 的射线 OC 之间有一匀强电场,磁感应强度为 B,方向垂直于纸面向里,有一质量为 m,带 有电荷量+q 的质点由电场左侧平行于 x 轴射入电场,质点到达 x 轴上 A 点,速度方向与 x 轴的夹角为 φ,A 点与原点 O 的距离为 d,接着,质点进入磁场,并垂直与 OC 飞离磁场, 不计重力影响,若 OC 与 x 轴的夹角为 φ.求:
(3)由以上分析可得:R = 设 m/为铀 238 离子质量,由于电压在 U±ΔU 之间有微小变化,铀 235 离子在磁场中最大半 径为:Rmax=
铀 238 离子在磁场中最小半径为:Rmin=
这两种离子在磁场中运动的轨迹不发生交叠的条件为:Rmax<Rmin
即:
<
得:
<
< 其中铀 235 离子的质量 m = 235u(u 为原子质量单位),铀 238 离子的质量 m,= 238u 则: <

2020年高考物理专题精准突破 带电粒子在复合场中的运动问题(解析版)

2020年高考物理专题精准突破  带电粒子在复合场中的运动问题(解析版)

2020年高考物理专题精准突破 专题 带电粒子在复合场中的运动问题【专题诠释】1.带电粒子在叠加场中无约束情况下的运动 (1)洛伦兹力、重力并存①若重力和洛伦兹力平衡,则带电粒子做匀速直线运动.②若重力和洛伦兹力不平衡,则带电粒子将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、洛伦兹力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电粒子做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电粒子将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、洛伦兹力、重力并存 ①若三力平衡,一定做匀速直线运动. ②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒定律或动能定理求解问题.2.带电粒子在叠加场中有约束情况下的运动带电粒子在叠加场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求解. 【高考领航】【2019·新课标全国Ⅲ卷】空间存在一方向竖直向下的匀强电场,O 、P 是电场中的两点。

从O 点沿水平方向 以不同速度先后发射两个质量均为m 的小球A 、B 。

A 不带电,B 的电荷量为q (q >0)。

A 从O 点发射时的速度 大小为v 0,到达P 点所用时间为t ;B 从O 点到达P 点所用时间为2t 。

重力加速度为g ,求 (1)电场强度的大小; (2)B 运动到P 点时的动能。

【答案】(1)3mgE q = (2)222k 0=2()E m v g t +【解析】(1)设电场强度的大小为E ,小球B 运动的加速度为a 。

根据牛顿定律、运动学公式和题给条件,有mg +qE =ma ①2211()222t a gt =② 解得3mgE q =③(2)设B 从O 点发射时的速度为v 1,到达P 点时的动能为E k ,O 、P 两点的高度差为h ,根据动能定理有2k 112E mv mgh qEh -=+④且有102t v v t =⑤212h gt =⑥ 联立③④⑤⑥式得222k 0=2()E m v g t +⑦【2017·全国卷Ⅰ·16】如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c ,已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动.下列选项正确的是( )A.m a >m b >m cB.m b >m a >m cC.m c >m a >m bD.m c >m b >m a 【答案】 B【解析】 设三个微粒的电荷量均为q ,a 在纸面内做匀速圆周运动,说明洛伦兹力提供向心力,重力与电场力平衡,则 m a g =qE ①b 在纸面内向右做匀速直线运动,三力平衡,则 m b g =qE +qvB ②c 在纸面内向左做匀速直线运动,三力平衡,则 m c g +qvB =qE ③比较①②③式得:m b >m a >m c ,选项B 正确.【2016·天津理综·11】如图所示,空间中存在着水平向右的匀强电场,电场强度大小E =5 3 N/C ,同时存在着垂直纸面向里的匀强磁场,其方向与电场方向垂直,磁感应强度大小B=0.5 T.有一带正电的小球,质量m=1×10-6 kg,电荷量q=2×10-6 C,正以速度v在图示的竖直面内做匀速直线运动,当经过P点时撤掉磁场(不考虑磁场消失引起的电磁感应现象),取g=10 m/s2,求:(1)小球做匀速直线运动的速度v的大小和方向;(2)从撤掉磁场到小球再次穿过P点所在的这条电场线经历的时间t.【答案】(1)20 m/s方向与电场方向成60°角斜向上(2)2 3 s【解析】(1)小球做匀速直线运动时受力如图甲,其所受的三个力在同一平面内,合力为零,有qvB=q2E2+m2g2①代入数据解得v=20 m/s②速度v的方向与电场E的方向之间的夹角满足tan θ=qEmg③代入数据解得tan θ=3θ=60°④(2)解法一撤去磁场,小球在重力与电场力的合力作用下做类平抛运动,如图乙所示,设其加速度为a,有a=q2E2+m2g2m⑤设撤去磁场后小球在初速度方向上的分位移为x,有x=vt⑥设小球在重力与电场力的合力方向上的分位移为y,有y =12at 2⑦ tan θ=y x⑧联立④⑤⑥⑦⑧式,代入数据解得 t =2 3 s ⑨解法二 撤去磁场后,由于电场力垂直于竖直方向,它对竖直方向的分运动没有影响,以P 点为坐标原点,竖直向上为正方向,小球在竖直方向上做匀减速运动,其初速度为 v y =v sin θ⑤若使小球再次穿过P 点所在的电场线,仅需小球的竖直方向上分位移为零,则有v y t -12gt 2=0⑥联立⑤⑥式,代入数据解得t =2 3 s. 【方法技巧】带电粒子在叠加场中运动的分析方法【最新考向解码】【例1】(2019·兰州高三诊断考试)水平面上有一个竖直放置的部分圆弧轨道,A 为轨道的最低点,半径OA 竖直,圆心角AOB 为60°,半径R =0.8 m ,空间有竖直向下的匀强电场,场强E =1×104 N/C 。

带电粒子在复合场中的运动(高考真题)

带电粒子在复合场中的运动(高考真题)

带电粒子在复合场中的运动(2007年全国卷2)25。

(20分)如图所示,在坐标系Oxy 的第一象限中在在沿y 轴正方向的匀强电场,场强大小为E 。

在其它象限中在在匀强磁场,磁场方向垂直于纸面向里,A 是y 轴上的一点,它到坐标原点O 的距离为h ;C 是x 轴上的一点,到O 点的距离为l ,一质量为m 、电荷量为q 的带负电的粒子以某一初速度沿x 轴方向从A 点进入电场区域,继而通过C 点进入磁场区域,并再次通过A 点,此时速度方向与y 轴正方向成锐角.不计重力作用。

试求: (1)粒子经过C 点时速度的大小和方向; (2)磁感应强度的大小B 。

(2008年全国卷1)25.(22分)如图所示,在坐标系xOy 中,过原点的直线OC 与x 轴正向的夹角φ=120º。

在OC 右侧有一匀强电场;在第二、三象限内有一匀强磁场,其上边界与电场边界重叠、右边界为y 轴、左边界为图中平行于y 轴的虚线,磁场的磁感应强度大小为B ,方向垂直纸面向里。

一带正电荷q 、质量为m 的粒子以某一速度自磁场左边界上的A 点射入磁场区域,并从O 点射出.粒子射出磁场的速度方向与x 轴的夹角θ=30º,大小为v 。

粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的两倍。

粒子进入电场后,在电场力的作用下又由O 点返回磁场区域,经过一段时间后再次离开磁场。

已知粒子从A 点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期.忽略重力的影响.求:⑴粒子经过A 点时速度的方向和A 点到x 轴的距离; ⑵匀强电场的大小和方向;⑶粒子从第二次离开磁场到再次进入电场时所用的时间.(2009年全国卷2)25。

(18分)如图,在宽度分别为1l 和2l 的Ov ABCyθφ两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。

一带正电荷的粒子以速率v 从磁场区域上边界的P 点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q 点射出。

高考复习(物理)专项练习:带电粒子在复合场中的运动【含答案及解析】

高考复习(物理)专项练习:带电粒子在复合场中的运动【含答案及解析】

专题分层突破练9带电粒子在复合场中的运动A组1.(2021湖南邵阳高三一模)如图所示,有一混合正离子束从静止通过同一加速电场后,进入相互正交的匀强电场和匀强磁场区域Ⅰ。

如果这束正离子束在区域Ⅰ中不偏转,不计离子的重力,则说明这些正离子在区域Ⅰ中运动时一定相同的物理量是()A.动能B.质量C.电荷D.比荷2.(多选)(2021辽宁高三一模)劳伦斯和利文斯设计的回旋加速器如图所示,真空中的两个D形金属盒间留有平行的狭缝,粒子通过狭缝的时间可忽略。

匀强磁场与盒面垂直,加速器接在交流电源上,A处粒子源产生的质子可在盒间被正常加速。

下列说法正确的是()A.虽然逐渐被加速,质子每运动半周的时间不变B.只增大交流电压,质子在盒中运行总时间变短C.只增大磁感应强度,仍可能使质子被正常加速D.只增大交流电压,质子可获得更大的出口速度3.(2021四川成都高三二模)如图所示,在第一、第四象限的y≤0.8 m区域内存在沿y轴正方向的匀强电场,电场强度大小E=4×103 N/C;在第一象限的0.8 m<y≤1.0 m区域内存在垂直于坐标平面向外的匀强磁场。

一个质量m=1×10-10 kg、电荷量q=1×10-6 C的带正电粒子,以v0=6×103 m/s的速率从坐标原点O沿x轴正方向进入电场。

不计粒子的重力。

(1)求粒子第一次离开电场时的速度。

(2)为使粒子能再次进入电场,求磁感应强度B的最小值。

4.(2021河南高三二模)如图所示,在平面直角坐标系xOy内有一直角三角形,其顶点坐标分别为d),(d,0),三角形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B,x轴下方有沿(0,0),(0,√33着y轴负方向的匀强电场,电场强度大小为E。

一质量为m、电荷量为-q的粒子从y轴上的某点M 由静止释放,粒子第一次进入磁场后恰好不能从直角三角形的斜边射出,不计粒子重力。

(1)求M点到O点的距离。

高考物理一轮复习考点规范练30带电粒子在复合场中的运动(含解析)新人教版

高考物理一轮复习考点规范练30带电粒子在复合场中的运动(含解析)新人教版

考点规范练30带电粒子在复合场中的运动一、单项选择题1.如图所示,虚线区域空间内存在由匀强电场E和匀强磁场B组成的正交或平行的电场和磁场,有一个带正电小球(电荷量为+q,质量为m)从正交或平行的电磁复合场上方的某一高度自由落下,那么带电小球可能沿直线通过的是()A.①②B.③④C.①③D.②④答案:B解析:①图中小球受重力、向左的电场力、向右的洛伦兹力,下降过程中速度一定变大,故洛伦兹力一定变化,不可能一直与电场力平衡,故合力不可能一直向下,故一定做曲线运动;②图中小球受重力、向上的电场力、垂直向外的洛伦兹力,合力与速度一定不共线,故一定做曲线运动;③图中小球受重力、向左上方的电场力、水平向右的洛伦兹力,若三力平衡,则小球做匀速直线运动;④图中小球受向下的重力和向上的电场力,合力一定与速度共线,故小球一定做直线运动。

故选项B正确。

2.如图所示,一束质量、速度和电荷量不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A、B两束,下列说法正确的是()A.组成A束和B束的离子都带负电B.组成A束和B束的离子质量一定不同C.A束离子的比荷大于B束离子的比荷D.速度选择器中的磁场方向垂直于纸面向外答案:C解析:由左手定则知,A、B离子均带正电,A错误;两束离子经过同一速度选择器后的速度相同,在偏转磁场可知,半径大的离子对应的比荷小,但离子的质量不一定相同,故选项B错误,C正确;速度选择中,由R=mmmm器中的磁场方向应垂直纸面向里,D错误。

3.右图是医用回旋加速器示意图,其核心部分是两个D 形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连。

现分别加速氘核(12H)和氦核(24He)。

下列说法正确的是( )A.它们的最大速度相同B.它们的最大动能相同C.两次所接高频电源的频率可能不相同D.仅增大高频电源的频率可增大粒子的最大动能 答案:A 解析:根据qvB=m m 2m ,得v=mmm m 。

带电粒子在复合场中的运动解题技巧

带电粒子在复合场中的运动解题技巧

带电粒子在复合场中的运动解题技巧带电粒子在电场力作用下的运动和在洛伦兹力作用下的运动,有着不同的运动规律。

带电粒子在复合场中的运动是高考的重点考点,那么掌握答题技巧是关键。

接下来店铺为你整理了带电粒子在复合场中的运动解题技巧,一起来看看吧。

带电粒子在复合场中的运动解题技巧:分离的电场与磁场带电粒子在电场中的加速运动可以利用牛顿第二定律结合匀变速直线运动规律,或者从电场力做功角度出发求出粒子进入下一个场的速度。

对于带电粒子在电场中的偏转,要利用类平抛运动的规律,根据运动的合成与分解,结合牛顿定律和能量关系,求出粒子进入下一个场的速度大小,再结合速度合成与分解之间的关系,速度偏转角正切值与位移偏转角正切值的关系求出速度方向。

带电粒子垂直进入匀强磁场,其运动情况一般是匀速圆周运动的一部分,解决粒子在磁场中的运动情况,关键是确定粒子飞入点和飞出点的位置以及速度方向,再利用几何关系确定圆心和半径。

值得注意的是,若带电粒子从磁场中某个位置飞出后,再经电场的作用在同一个位置以相同的速度大小再次飞入磁场中时,由于飞出和飞入速度方向相反,洛伦兹力的方向相反,粒子两次在磁场中的运动轨迹并不重合!需要强调的是,带电粒子从一个场进入另外一个场,两场之间的连接点是这类问题的中枢,其速度是粒子在前一个场的某速度,是后一个场的初速度,再解决问题时要充分利用这个位置信息。

带电粒子在复合场中的运动解题技巧:多场并存的无约束运动多场并存的无约束运动在解决复合场问题时应首先弄清楚是哪些场共存,注意电场和磁场的方向以及强弱,以便确定带电粒子在场中的受力情况。

带电粒子在复合场中运动时如果没有受到绳子,杆,环等的约束,则带电粒子在空间中可以自由移动,只受场力的作用。

根据空间存在的场的不同,一般带电粒子的运动规律不同,通常可以分为以下几类:1、静止或匀速直线运动如果是重力场与电场共存,说明电场力等于重力。

如果是重力场与磁场共存,说明重力与洛伦兹力平衡。

高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)含解析

高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)含解析

(1)求电子进入圆形区域时的速度大小和匀强电场场强 E 的大小; (2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂 直于 x 轴.求所加磁场磁感应强度 B 的大小和电子刚穿出圆形区域时的位置坐标; (3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面 向外为磁场正方向),最后电子从 N 点处飞出,速度方向与进入磁场时的速度方向相 同.请写出磁感应强度 B0 的大小、磁场变化周期 T 各应满足的关系表达式.
【解析】 【详解】 (1)电子在电场 E1 中做初速度为零的匀加速直线运动,设加速度为 a1,到达 MN 的速度
为 v,则: 解得
a1= eE1 = eE mm
2a1
L 2
v2
v eEL m
(2)设电子射出电场 E2 时沿平行电场线方向的速度为 vy,
a2= eE2 = 2eE mm t= L v
MN 板的距离为 L.假设太空中漂浮着质量为 m,电量为 q 的带正电粒子,它们能均匀地吸 附到 AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对 粒子的影响,不考虑过边界 ACDB 的粒子再次返回.
(1)求粒子到达 O 点时速度的大小; (2)如图 2 所示,在 PQ(与 ACDB 重合且足够长)和收集板 MN 之间区域加一个匀强磁
在磁场变化的前三分之一个周期内,电子的偏转角为 60°,设电子运动的轨道半径为 r, 运动的 T0,粒子在 x 轴方向上的位移恰好等于 r1; 在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期 T′=2T0,故粒子的
偏转角度仍为 60°,电子运动的轨道半径变为 2r,粒子在 x 轴方向上的位移恰好等于 2r. 综合上述分析,则电子能到达 N 点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)

高考物理带电粒子在复合场中的运动解题技巧(超强)及练习题

高考物理带电粒子在复合场中的运动解题技巧(超强)及练习题

一、带电粒子在复合场中的运动专项训练1.如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。

两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m 、电量为+q 的粒子由小孔下方2d处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场。

不计粒子的重力。

(1)求极板间电场强度的大小;(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小; (3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为2mv qD 、4mvqD,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.【来源】2015年全国普通高等学校招生统一考试物理(山东卷带解析)【答案】(1)2mv qd(2)4mv qD 或43mv qD (3)5.5πD【解析】 【分析】 【详解】(1)粒子在电场中,根据动能定理2122d Eq mv ⋅=,解得2mv E qd =(2)若粒子的运动轨迹与小圆相切,则当内切时,半径为/2E R 由211v qvB m r =,解得4mv B qD = 则当外切时,半径为e R由212v qvB m r =,解得43mv B qD =(2)若Ⅰ区域的磁感应强度为220932qB L m U =,则粒子运动的半径为0010016819U U U ≤≤;Ⅱ区域的磁感应强度为2012qU mv =,则粒子运动的半径为2v qvB m r=;设粒子在Ⅰ区和Ⅱ区做圆周运动的周期分别为T 1、T 2,由运动公式可得:1112R T v π=;034r L =据题意分析,粒子两次与大圆相切的时间间隔内,运动轨迹如图所示,根据对称性可知,Ⅰ区两段圆弧所对的圆心角相同,设为1θ,Ⅱ区内圆弧所对圆心角为2θ,圆弧和大圆的两个切点与圆心O 连线间的夹角设为α,由几何关系可得:1120θ=o;2180θ=o ;60α=o粒子重复上述交替运动回到H 点,轨迹如图所示,设粒子在Ⅰ区和Ⅱ区做圆周运动的时间分别为t 1、t 2,可得:r U ∝;1056U L U L=设粒子运动的路程为s ,由运动公式可知:s=v(t 1+t 2) 联立上述各式可得:s=5.5πD2.如图所示,在坐标系Oxy 的第一象限中存在沿y 轴正方向的匀强电场,场强大小为E .在其它象限中存在匀强磁场,磁场方向垂直于纸面向里.A 是y 轴上的一点,它到坐标原点O 的距离为h ;C 是x 轴上的一点,到O 的距离为L .一质量为m ,电荷量为q 的带负电的粒子以某一初速度沿x 轴方向从A 点进入电场区域,继而通过C 点进入磁场区域.并再次通过A 点,此时速度方向与y 轴正方向成锐角.不计重力作用.试求: (1)粒子经过C 点速度的大小和方向; (2)磁感应强度的大小B .【来源】2007普通高等学校招生全国统一考试(全国卷Ⅱ)理综物理部分 【答案】(1)α=arctan2h l(2)B 2212mhEh l q+【解析】 【分析】 【详解】试题分析:(1)以a 表示粒子在电场作用下的加速度,有qE ma =①加速度沿y 轴负方向.设粒子从A 点进入电场时的初速度为0v ,由A 点运动到C 点经历的时间为t , 则有:212h at =② 0l v t =③由②③式得02a v h= 设粒子从C 点进入磁场时的速度为v ,v 垂直于x 轴的分量12v ah =⑤ 由①④⑤式得:22101v v v +=()2242qE h l mh+⑥设粒子经过C 点时的速度方向与x 轴的夹角为α,则有1v tan v α=⑦ 由④⑤⑦式得2h arctanlα=⑧(2)粒子从C 点进入磁场后在磁场中作速率为v 的圆周运动.若圆周的半径为R ,则有qvB =m 2v R⑨设圆心为P ,则PC 必与过C 点的速度垂直,且有PC uuu r =PA R u u u r =.用β表示PA u u u r与y 轴的夹角,由几何关系得:Rcos Rcos h βα=+⑩Rsin l Rsin βα=-解得222242h l R h l hl++=由⑥⑨式得:B =2212mhEh l q+3.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量q +、重力不计的带电粒子,以初速度1v 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W =(2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以221211122W mv mv =-, (2)=,,所以.(3),,所以.(4)4.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (x =0,y =h )点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点.不计重力.求: (1)粒子到达x =R 0平面时速度方向与x 轴的夹角以及粒子到x 轴的距离; (2)M 点的横坐标x M .【来源】磁场 【答案】(1)20122R H h at h =+=+;(2)22000724M x R R R h h =++- 【解析】 【详解】(1)做直线运动有,根据平衡条件有:0qE qB =v ①做圆周运动有:200qB m R =v v ②只有电场时,粒子做类平抛,有:qE ma =③00R t =v ④ y v at =⑤解得:0y v v =⑥ 粒子速度大小为:22002y v v v v =+=⑦速度方向与x 轴夹角为:π4θ=⑧ 粒子与x 轴的距离为:20122R H h at h =+=+⑨(2)撤电场加上磁场后,有:2v qBv m R=⑩解得:02R R =⑾. 粒子运动轨迹如图所示圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4π,有几何关系得C 点坐标为:02C x R =⑿02C R y H R h =-=-⒀ 过C 作x 轴的垂线,在ΔCDM 中:02CM R R ==⒁2C R CD y h ==-⒂) 解得:22220074DM CM CD R R h h =-=+-⒃ M 点横坐标为:22000724M x R R R h h =++-⒄5.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。

高考物理带电粒子在复合场中的运动解题技巧(超强)及练习题

高考物理带电粒子在复合场中的运动解题技巧(超强)及练习题

一、带电粒子在复合场中的运动专项训练1.压力波测量仪可将待测压力波转换成电压信号,其原理如图1所示,压力波p (t )进入弹性盒后,通过与铰链O 相连的“”型轻杆L ,驱动杆端头A 处的微型霍尔片在磁场中沿x 轴方向做微小振动,其位移x 与压力p 成正比(,0x p αα=>).霍尔片的放大图如图2所示,它由长×宽×厚=a×b×d ,单位体积内自由电子数为n 的N 型半导体制成,磁场方向垂直于x 轴向上,磁感应强度大小为0(1)0B B x ββ=->,.无压力波输入时,霍尔片静止在x=0处,此时给霍尔片通以沿12C C 方向的电流I ,则在侧面上D 1、D 2两点间产生霍尔电压U 0.(1)指出D 1、D 2两点那点电势高;(2)推导出U 0与I 、B 0之间的关系式(提示:电流I 与自由电子定向移动速率v 之间关系为I=nevbd ,其中e 为电子电荷量);(3)弹性盒中输入压力波p (t ),霍尔片中通以相同的电流,测得霍尔电压U H 随时间t 变化图像如图3,忽略霍尔片在磁场中运动场所的电动势和阻尼,求压力波的振幅和频率.(结果用U 0、U 1、t 0、α、及β)【来源】浙江新高考2018年4月选考科目物理试题【答案】(1) D 1点电势高 (2) 001IB U ne d= (3) 101(1)U A U αβ=- ,012f t =【解析】【分析】由左手定则可判定电子偏向D 2边,所以D 1边电势高;当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力,根据电流I 与自由电子定向移动速率v 之间关系为I=nevbd 求出U 0与I 、B 0之间的关系式;图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则可知轻杆的运动周期,当杆运动至最远点时,电压最小,结合U 0与I 、B 0之间的关系式求出压力波的振幅.解:(1)电流方向为C 1C 2,则电子运动方向为C2C1,由左手定则可判定电子偏向D 2边,所以D 1边电势高;(2)当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力0U qvB qb= ① 由电流I nevbd =得:Iv nebd=② 将②带入①得00IB U ned=(3)图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则轻杆的运动周期为T=2t 0 所以,频率为: 012f t =当杆运动至最远点时,电压最小,即取U 1,此时0(1)B B x β=- 取x 正向最远处为振幅A ,有:01(1?)IB U A nedβ=- 所以:00011(1)1IB U ned IB A U Aned ββ==-- 解得:01U U A U β-=根据压力与唯一关系x p α=可得xp α=因此压力最大振幅为:01m U U p U αβ-=2.如图所示,在无限长的竖直边界NS 和MT 间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM 平面向外和向内的匀强磁场,磁感应强度大小分别为B 和2B ,KL 为上下磁场的水平分界线,在NS 和MT 边界上,距KL 高h 处分别有P 、Q 两点,NS 和MT 间距为1.8h ,质量为m ,带电荷量为+q 的粒子从P 点垂直于NS 边界射入该区域,在两边界之间做圆周运动,重力加速度为g .(1)求电场强度的大小和方向;(2)要使粒子不从NS 边界飞出,求粒子入射速度的最小值;(3)若粒子能经过Q 点从MT 边界飞出,求粒子入射速度的所有可能值.【来源】【全国百强校】2017届浙江省温州中学高三3月高考模拟物理试卷(带解析)【答案】(1)mgqE=,方向竖直向上(2)min(962)qBhvm-=(3)0.68qBhvm=;0.545qBhvm=;0.52qBhvm=【解析】【分析】(1)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,电场力与重力合力为零;(2)作出粒子的运动轨迹,由牛顿第二定律与数学知识求出粒子的速度;(3)作出粒子运动轨迹,应用几何知识求出粒子的速度.【详解】(1)粒子在磁场中做匀速圆周运动,电场力与重力合力为零,即mg=qE,解得:mgqE=,电场力方向竖直向上,电场方向竖直向上;(2)粒子运动轨迹如图所示:设粒子不从NS边飞出的入射速度最小值为v min,对应的粒子在上、下区域的轨道半径分别为r1、r2,圆心的连线与NS的夹角为φ,粒子在磁场中做匀速圆周运动,由牛顿第二定律得:2vqvB mr=,解得,粒子轨道半径:vrqBπ=,min1vrqBπ=,2112r r=,由几何知识得:(r1+r2)sinφ=r2,r1+r1cosφ=h,解得:min 962)qBhv m=(﹣; (3)粒子运动轨迹如图所示,设粒子入射速度为v ,粒子在上、下区域的轨道半径分别为r 1、r 2, 粒子第一次通过KL 时距离K 点为x , 由题意可知:3nx =1.8h (n =1、2、3…)3(92)22h x -≥,()2211x r h r =-- 解得:120.361)2hr n =+(,n <3.5, 即:n =1时, 0.68qBhv m=, n =2时,0.545qBhv m =, n =3时,0.52qBhv m=; 答:(1)电场强度的大小为mg qE =,电场方向竖直向上;(2)要使粒子不从NS 边界飞出,粒子入射速度的最小值为min 962)qBhv m=. (3)若粒子经过Q 点从MT 边界飞出,粒子入射速度的所有可能值为:0.68qBhv m=、或0.545qBh v m =、或0.52qBhv m=.【点睛】本题考查了粒子在磁场中的运动,分析清楚粒子运动过程、作出粒子运动轨迹是正确解题的前提与关键,应用平衡条件、牛顿第二定律即可正确解题,解题时注意数学知识的应用.3.如图所示,待测区域中存在匀强电场和匀强磁场,根据带电粒子射入时的受力情况可推测其电场和磁场. 图中装置由加速器和平移器组成,平移器由两对水平放置、相距为l 的相同平行金属板构成,极板长度为l 、间距为d,两对极板间偏转电压大小相等、电场方向相反. 质量为m 、电荷量为+q 的粒子经加速电压U0 加速后,水平射入偏转电压为U1 的平移器,最终从A 点水平射入待测区域. 不考虑粒子受到的重力.(1)求粒子射出平移器时的速度大小v1;(2)当加速电压变为4U0 时,欲使粒子仍从A 点射入待测区域,求此时的偏转电压U; (3)已知粒子以不同速度水平向右射入待测区域,刚进入时的受力大小均为F. 现取水平向右为x 轴正方向,建立如图所示的直角坐标系Oxyz. 保持加速电压为U0 不变,移动装置使粒子沿不同的坐标轴方向射入待测区域,粒子刚射入时的受力大小如下表所示.请推测该区域中电场强度和磁感应强度的大小及可能的方向. 【来源】2012年普通高等学校招生全国统一考试理综物理(江苏卷) 【答案】(1)012qU v m=1U?4U = (3)E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°,若B 沿-x 轴方向,E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°. 【解析】(1)设粒子射出加速器的速度为0v 动能定理20012qU mv =由题意得10v v =,即012qU v m=(2)在第一个偏转电场中,设粒子的运动时间为t加速度的大小1qU a md=在离开时,竖直分速度yv at = 竖直位移2112y at =水平位移1l v t = 粒子在两偏转电场间做匀速直线运动,经历时间也为t 竖直位移2y y v t =由题意知,粒子竖直总位移12y?2y y =+ 解得210U l y U d=则当加速电压为04U 时,1U?4U =(3)(a)由沿x 轴方向射入时的受力情况可知:B 平行于x 轴. 且FE q= (b)由沿y +-轴方向射入时的受力情况可知:E 与Oxy 平面平行.222F f (5F)+=,则f?2F =且1f?qv B =解得02F mB BqU =(c)设电场方向与x 轴方向夹角为.若B 沿x 轴方向,由沿z 轴方向射入时的受力情况得222sin )(cos )(7)f F F F αα++=( 解得=30°,或=150°即E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°. 同理,若B 沿-x 轴方向E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°.4.利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示的矩形区域ACDG(AC 边足够长)中存在垂直于纸面的匀强磁场,A 处有一狭缝.离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA 边且垂直于磁场的方向射入磁场,运动到GA 边,被相应的收集器收集.整个装置内部为真空.已知被加速的两种正离子的质量分别是m 1和m 2(m 1>m 2),电荷量均为q .加速电场的电势差为U ,离子进入电场时的初速度可以忽略.不计重力,也不考虑离子间的相互作用.(1)求质量为m 1的离子进入磁场时的速率v 1;(2)当磁感应强度的大小为B 时,求两种离子在GA 边落点的间距s ;(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度.若狭缝过宽,可能使两束离子在GA 边上的落点区域交叠,导致两种离子无法完全分离.设磁感应强度大小可调,GA 边长为定值L ,狭缝宽度为d ,狭缝右边缘在A 处.离子可以从狭缝各处射入磁场,入射方向仍垂直于GA 边且垂直于磁场.为保证上述两种离子能落在GA 边上并被完全分离,求狭缝的最大宽度.【来源】2011年普通高等学校招生全国统一考试物理卷(北京) 【答案】(1)12qU m (2)()1228Um m qB - (3)d m =12122m m m m --L【解析】(1)动能定理 Uq =12m 1v 12 得:v 1=12qUm …① (2)由牛顿第二定律和轨道半径有:qvB =2mv R,R = mv qB 利用①式得离子在磁场中的轨道半径为别为(如图一所示):R 1=122mU qB,R 2=222 m U qB ②两种离子在GA 上落点的间距s =2(R 1−R 2)=1228()Um m qB - …③ (3)质量为m 1的离子,在GA 边上的落点都在其入射点左侧2R 1处,由于狭缝的宽度为d ,因此落点区域的宽度也是d (如图二中的粗线所示).同理,质量为m 2的离子在GA 边上落点区域的宽度也是d (如图二中的细线所示).为保证两种离子能完全分离,两个区域应无交叠,条件为2(R 1-R 2)>d…④ 利用②式,代入④式得:2R 1(1−21m m )>d R 1的最大值满足:2R 1m =L-d 得:(L −d )(1−21m m )>d 求得最大值:d m =12122m m m m --L5.如图为一种质谱仪工作原理示意图.在以O 为圆心,OH 为对称轴,夹角为2α的扇形区域内分布着方向垂直于纸面的匀强磁场.对称于OH 轴的C 和D 分别是离子发射点和收集点.CM 垂直磁场左边界于M ,且OM =d .现有一正离子束以小发散角(纸面内)从C 射出,这些离子在CM 方向上的分速度均为v 0.若该离子束中比荷为qm的离子都能汇聚到D ,试求:(1)磁感应强度的大小和方向(提示:可考虑沿CM 方向运动的离子为研究对象); (2)离子沿与CM 成θ角的直线CN 进入磁场,其轨道半径和在磁场中的运动时间; (3)线段CM 的长度.【来源】电粒子在磁场中的运动【答案】(1)0mv Bqd =,磁场方向垂直纸面向外;(2)cos dR θ'=,()02t d v θα+=;(3)cos CM d t α=。

重难点08 带电粒子在复合场中的运动(解析版)

重难点08 带电粒子在复合场中的运动(解析版)

2022年高考物理【热点·重点·难点】专练(全国通用)重难点08 带电粒子在复合场中的运动【知识梳理】考点带电粒子在组合场中的运动1.带电粒子在组合场中的运动是力电综合的重点和高考热点.这类问题的特点是电场、磁场或重力场依次出现,包含空间上先后出现和时间上先后出现,磁场或电场与无场区交替出现相组合的场等.其运动形式包含匀速直线运动、匀变速直线运动、类平抛运动、圆周运动等,涉及牛顿运动定律、功能关系等知识的应用.复习指导:1.理解掌握带电粒子的电偏转和磁偏转的条件、运动性质,会应用牛顿运动定律进行分析研究,掌握研究带电粒子的电偏转和磁偏转的方法,能够熟练处理类平抛运动和圆周运动.2.学会按照时间先后或空间先后顺序对运动进行分析,分析运动速度的承前启后关联、空间位置的距离关系、运动时间的分配组合等信息将各个运动联系起来.2.解题时要弄清楚场的性质、场的方向、强弱、范围等.3.要进行正确的受力分析,确定带电粒子的运动状态.4.分析带电粒子的运动过程,画出运动轨迹是解题的关键【重点归纳】1、求解带电粒子在组合复合场中运动问题的分析方法(1)正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析.(2)确定带电粒子的运动状态,注意运动情况和受力情况的结合.(3)对于粒子连续通过几个不同区域、不同种类的场时,要分阶段进行处理.(4)画出粒子运动轨迹,灵活选择不同的运动规律.2、带电粒子在复合场中运动的应用实例(1)质谱仪(2)回旋加速器(3)速度选择器(4)磁流体发电机(5)电磁流量计工作原理【限时检测】(建议用时:30分钟)一、单选题1.如图所示,两个平行金属板水平放置,要使一个电荷量为-q、质量为m的微粒,以速度v沿两板中心轴线S1S2向右运动,可在两板间施加匀强电场或匀强磁场。

设电场强度为E,磁感应强度为B,不计空气阻力,已知重力加速度为g。

下列选项可行的是()A.只施加垂直向里的磁场,且满足mg Bqv =B.同时施加竖直向下的电场和垂直纸面向里的磁场,且满足mg Bv Eq=+C.同时施加竖直向下的电场和水平向右的磁场,且满足mgq E=D.同时施加竖直向上的电场和垂直纸面向外的磁场,且满足mg E Bvq =+【答案】 C【解析】A.只施加垂直向里的磁场,根据左手定则,洛伦兹力竖直向下,无法跟重力平衡。

高二物理专题练习-带电粒子在复合场中的运动大题专题(详细解答)

高二物理专题练习-带电粒子在复合场中的运动大题专题(详细解答)

专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=6.64×10-27㎏、电荷量为q=+3.2×10-19C的α粒子(不计α粒子重力),由静止开始经加速电压为U=1205V的电场(图中未画出)加速后,从坐标点M(-4,2)处平行于x轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N/c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N 点.(g=10m /s 2),求: (1)小球运动到O 点时的速度大小;(2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度; (3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.专题二:带电粒子在复合场中的运动——参考答案(1)1、解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L=3×2R即 R=L/2n,(n=1、2、3……)……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE (n=l、2、3……)2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB 又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v 3、解析:(1)粒子在电场中被加速,由动能定理得221mvqU=α粒子在磁场中偏转,则牛顿第二定律得rvmqvB2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--qmUBr(m)(2)由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为(3)带电粒子在磁场中的运动周期qBmvrTππ22==α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qBmTtπ(s)OM2-22-4 4 x/my/m-2vBB (4,2-)(4) 1、解:(1)小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② (2)小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ (3)绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧2、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB =在磁场中运动半径d l r AB 23431==∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401= 方向垂直纸面向里⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ………( 2分 ) 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 0422(12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。

带电粒子在复合场中的运动(含知识目标、五套练习、详细解答)

带电粒子在复合场中的运动(含知识目标、五套练习、详细解答)

专题二:带电粒子在复合场中的运动一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场.带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要.二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.三、电场力和洛仑兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、对于重力的考虑重力考虑与否分三种情况.(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.(3)对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.五、复合场中的特殊物理模型1.粒子速度选择器如图所示,粒子经加速电场后得到一定的速度v0,进入正交的电场和磁场,受到的电场力与洛仑兹力方向相反,若使粒子沿直线从右边孔中出去,则有qv0B=qE,v0=E/B,若v= v0=E/B,粒子做直线运动,与粒子电量、电性、质量无关若v<E/B,电场力大,粒子向电场力方向偏,电场力做正功,动能增加.若v>E/B,洛仑兹力大,粒子向磁场力方向偏,电场力做负功,动能减少.2.磁流体发电机如图所示,由燃烧室O燃烧电离成的正、负离子(等离子体)以高速.喷入偏转磁场B中.在洛仑兹力作用下,正、负离子分别向上、下极板偏转、积累,从而在板间形成一个向下的电场.两板间形成一定的电势差.当qvB=qU/d时电势差稳定U=dvB,这就相当于一个可以对外供电的电源.3.电磁流量计.电磁流量计原理可解释为:如图所示,一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体向左流动.导电液体中的自由电荷(正负离子)在洛仑兹力作用下纵向偏转,a,b间出现电势差.当自由电荷所受电场力和洛仑兹力平衡时,a、b间的电势差就保持稳定.由Bqv=Eq=Uq/d,可得v=U/Bd.流量Q=Sv=πUd/4B4.质谱仪如图所示组成:离子源O,加速场U,速度选择器(E,B),偏转场B2,胶片.原理:加速场中qU=½mv2选择器中:v=E/B1偏转场中:d=2r,qvB2=mv2/r比荷:122q Em B B d=质量122B B dqmE=作用:主要用于测量粒子的质量、比荷、研究同位素.5.回旋加速器如图所示.组成:两个D形盒,大型电磁铁,高频振荡交变电压,两缝间可形成电压U作用:电场用来对粒子(质子、氛核,a粒子等)加速,磁场用来使粒子回旋从而能反复加速.高能粒子是研究微观物理的重要手段.要求:粒子在磁场中做圆周运动的周期等于交变电源的变化周期.关于回旋加速器的几个问题:(1)回旋加速器中的D形盒,它的作用是静电屏蔽,使带电粒子在圆周运动过程中只处在磁场中而不受电场的干扰,以保证粒子做匀速圆周运动.(2)回旋加速器中所加交变电压的频率f,与带电粒子做匀速圆周运动的频率相等:12qBfT mπ==(3)回旋加速器最后使粒子得到的能量,可由公式2222122Kq B RE mvm==来计算,在粒子电量,、质量m和磁感应强度B一定的情况下,回旋加速器的半径R越大,粒子的能量就越大.专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M 点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.初速为零的离子经过电势差为U的电场加速后,从离子枪T中水平射出,经过一段路程后进入水平放置的两平行金属板MN和PQ之间.离子所经空间存在一磁感强度为B的匀强磁场,如图所示.(不考虑重力作用),离子荷质比q/m(q、m分别是离子的电量与质量)在什么范围内,离子才能打在金属板上?4.如图,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c 和d,外筒的半径为r0.在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B.在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场.一质量为m、带电量为+q 的粒子,从紧靠内筒且正对狭缝a的s点出发,初速为零.如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中).ac专题二:带电粒子在复合场中的运动(2)姓名______________1.如图所示,从正离子源发射的正离子经加速电压U加速后进入相互垂直的匀强电场E(方向竖直向上)和匀强磁场B(方向垂直于纸面向外)中,发现离子向上偏转,要使此离子沿直线穿过电场?A.增大电场强度E,减小磁感强度BB.减小加速电压U ,增大电场强度EC.适当地加大加速电压UD.适当地减小电场强度E2.汤姆生用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示,真空管内加速后,穿过A'中心的小孔沿中心轴010的方向进入到两块水平正对放置的平行极板P和P/,间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心0点处,形成了一个亮点;加上偏转电压U后,亮点偏离到0'点,(O'与0点的竖直间距为d,水平间距可忽略不计).此时,在P和P/间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B时,亮点重新回到0点.已知极板水平方向的长度为L1,极板间距为b,极板右端到荧光屏的距离为L2(如图所示).(1)求打在荧光屏0点的电子速度的大小.(2)推导出电子的比荷的表达式.3.如图所示,M、N为两块带等量异种电荷的平行金属板,S1、S2为板上正对的小孔,N板右侧有两个宽度均为d的匀强磁场区域,磁感应强度大小均为B,方向分别垂直于纸面向里和向外,磁场区域右侧有一个荧光屏,取屏上与S1、S2共线的O点为原点,向下为正方向建立x轴.板左侧电子枪发射出的热电子经小孔S1进入两板间,电子的质量为m,电荷量为e,初速度可以忽略.求:(1)当两板间电势差为U0时,求从小孔S2射出的电子的速度v0;(2)两金属板间电势差U在什么范围内,电子不能穿过磁场区域而打到荧光屏上;(3)电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系.专题二:带电粒子在复合场中的运动(3)姓名______________1.回旋加速器是用来加速带电粒子的装置,如图所示.它的核心部分是两个D 形金属盒,两盒相距很近,分别和高频交流电源相连接,两盒间的窄缝中形成匀强电场,使带电粒子每次通过窄缝都得到加速.两盒放在匀强磁场中,磁场方向垂直于盒底面,带电粒子在磁场中做圆周运动,通过两盒间的窄缝时反复被加速,直到达到最大圆周半径时通过特殊装置被引出.如果用同一回旋加速器分别加速氚核(H 31)和α粒子(e H 42)比较它们所加的高频交流电源的周期和获得的最大动能的大小,有( )A .加速氚核的交流电源的周期较大,氚核获得的最大动能也较大B .加速氚核的交流电源的周期较大,氚核获得的最大动能较小C .加速氚核的交流电源的周期较小,氚核获得的最大动能也较小D .加速氚核的交流电源的周期较小,氚核获得的最大动能较大2.如图所示为一种获得高能粒子的装置,环形区域内存在垂直纸面向外.大小可调节的均匀磁场,质量为m ,电量+q 的粒子在环中作半径为R 的圆周运动,A 、B 为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A 板时,A 板电势升高为U ,B 板电势仍保持为零,粒子在两板间电场中得到加速,每当粒子离开B 板时,A 板电势又降为零,粒子在电场一次次加速下动能不断增大,而绕行半径不变. (l )设t=0时粒子静止在A 板小孔处,在电场作用下加速,并绕行第一圈,求粒子绕行n 圈回到A 板时获得的总动能E n .(2)为使粒子始终保持在半径为R 的圆轨道上运动,磁场必须周期性递增,求粒子绕行第n 圈时的磁感应强度B n .(3)求粒子绕行n 圈所需的总时间t n (设极板间距远小于R ).(4)在(2)图中画出A 板电势U 与时间t 的关系(从t =0起画到粒子第四次离开B 板时即可). (5)在粒子绕行的整个过程中,A 板电势是否可始终保持为+U ?为什么?3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T 的匀强磁场,方向分别垂直纸面向外和向里.质量为m =6.64×10-27㎏、电荷量为q =+3.2×10-19C 的α粒子(不计α粒子重力),由静止开始经加速电压为U =1205V 的电场(图中未画出)加速后,从坐标点M (-4,2)处平行于x 轴向右运动,并先后通过两个匀强磁场区域. (1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x =-4到直线x =4之间的运动轨迹,并在图中标明轨迹与直线x =4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N /c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N点.(g=10m /s 2),求:(1)小球运动到O 点时的速度大小; (2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度;(3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.3.如图甲所示,竖直挡板MN 左侧空间有方向竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,电场和磁场的范围足够大,电场强度E =40N/C ,磁感应强度B 随时间t 变化的关系图象如图乙所示,选定磁场垂直纸面向里为正方向.t =0时刻,一质量m =8×10-4kg 、电荷量q =+2×10-4C 的微粒在O 点具有竖直向下的速度v =0.12m/s ,O ´是挡板MN 上一点,直线OO´与挡板MN 垂直,取g =10m/s 2.求: (1)微粒再次经过直线OO´时与O 点的距离; (2)微粒在运动过程中离开直线OO ´的最大高度;(3)水平移动挡板,使微粒能垂直射到挡板上,挡板与O 点间的距离应满足的条件.图甲图乙-专题二:带电粒子在复合场中的运动(5)姓名______________1.如图所示,在倾角为30°的斜面OA的左侧有一竖直档板,其上有一小孔P,OP=0.5m.现有一质量m=4×10-20kg,带电量q=+2×10-14C的粒子,从小孔以速度v0=3×104m/s水平射向磁感应强度B=0.2T、方向垂直纸面向外的一圆形磁场区域.且在飞出磁场区域后能垂直打在OA面上,粒子重力不计.求:(1)粒子在磁场中做圆周运动的半径;(2)粒子在磁场中运动的时间;(3)圆形磁场区域的最小半径;(4)若磁场区域为正三角形且磁场方向垂直向里,粒子运动过程中始终不碰到挡板,其他条件不变,求:此正三角形磁场区域的最小边长.2.如图所示,在同时存在匀强电场和匀强磁场的空间中取正交坐标系Oxyz(x轴正方向水平向右,y 轴正方向竖直向上).匀强磁场方向与Oxy平面平行,且与x轴的夹角为︒45,重力加速度为g.(1)一质量为m、电荷量为q+的带电质点沿平行于z轴正方向以速度v0做匀速直线运动,求满足条件的电场强度的最小值minE及对应的磁感应强度B;(2)在满足(1)的条件下,当带电质点通过y轴上的点(0,,0)P h时,撤去匀强磁场,求带电质点落在Oxz平面内的位置;(3)当带电质点沿平行于z轴负方向以速度v0通过y轴上的点(0,,0)P h时,改变电场强度大小和方向,同时改变磁感应强度的大小,要使带点质点做匀速圆周运动且能够经过x轴,问电场强度E和磁感应强度B大小满足什么条件?zB专题二:带电粒子在复合场中的运动——参考答案(1) 1、解析:由于此带电粒子是从静止开始释放的,要能经过M 点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y 轴上,受电场力作用而加速,以速度v 进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x 轴偏转.回转半周期过x 轴重新进入电场,在电场中经减速、加速后仍以原速率从距O 点2R 处再次超过x 轴,在磁场回转半周后又从距O 点4R 处飞越x 轴如图所示(图中电场与磁场均未画出)故有L =2R ,L =2×2R ,L =3×2R 即 R =L /2n ,(n=1、2、3……)…………… ①设粒子静止于y 轴正半轴上,和原点距离为h ,由能量守恒得mv 2/2=qEh ……② 对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R =mv /qB ………③解①②③式得:h =B 2qL 2/8n 2mE (n =l 、2、3……)2、解析:粒子在电场中运行的时间t = l /v ;加速度 a =qE /m ;它作类平抛的运动.有tg θ=at/v=qEl/mv 2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv 2/r ,所以r=mv/qB 又:sin θ=l/r=lqB/mv ………② 由①②两式得:B=Ecos θ/v3、解析:离子在磁场中做匀速圆周运动,作出两条边界轨迹TP 和TQ ,分别作出离子在 T 、P 、Q 三点所受的洛仑兹力,分别延长之后相交于O 1、O 2点,如图所示,O 1和O 2分别是TP 和TQ 的圆心,设 R 1和 R 2分别为相应的半径.离子经电压U 加速,由动能定理得.qU =½mv 2………①由洛仑兹力充当向心力得qvB=mv 2/R ………② 由①②式得q/m=2U/B 2R 2由图直角三角形O 1CP 和O 2CQ 可得 R 12=d 2+(R 1一d/2)2,R 1=5d/4……④ R 22=(2d )2+(R 2一d/2)2,R 2=17d/4……⑤依题意R 1≤R ≤R 2 ……⑥ 由③④⑤⑥可解得2228932d B U ≤m q ≤222532d B U. 4、解析:如图所示,带电粒子从S 出发,在两筒之间的电场力作用下加速,沿径向穿出a 而进入磁场区,在洛仑兹力作用下做匀速圆周运动。

高中物理每日一点十题之带电粒子在复合场中的一般曲线运动

高中物理每日一点十题之带电粒子在复合场中的一般曲线运动

高中物理每日一点十题之带电粒子在复合场中的一般曲线运动一知识点带电粒子在复合场中一般的曲线运动处理带电粒子在复合场中一般曲线运动的方法1.明确研究对象并对其进行受力分析.2.利用运动的合成与分解把曲线运动转化为直线运动,然后利用牛顿运动定律、运动学公式进行处理.3.涉及到功和能量的问题时常用能量守恒定律、功能关系等处理.带电粒子在复合场中圆周运动的临界问题处理带电体在复合场中圆周运动的临界问题的一般方法1.首先分析带电体的受力情况进而确定向心力的来源.2.用“等效法”的思想找出带电体在复合场中的等效“最高点”和“最低点”.(1)等效重力法将重力与静电力进行合成,如图所示,则F合为等效重力场中的“等效重力”,F合的方向为“等效重力”的方向,即等效重力场中的“竖直向下”方向.a=F合m视为等效重力场中的“等效重力加速度”(2)物理最高点与几何最高点①物理最高点:是指“等效重力F合”的反向延长线过圆心且与圆轨道的交点,即物体在圆周运动过程中速度最小的点.②几何最高点:是指图形中所画圆的最上端,是符合人视觉习惯的最高点.3.在等效重力场中做圆周运动的小球,小球能做完整圆周运动的条件是能过物理最高点.十道练习题(含答案)1. 如图带电小颗粒质量为m,电荷量为q,以竖直向上的初速度v0自A处进入方向水平向右的匀强电场中.当小颗粒到达B处时速度变成水平向右,大小为2v0,那么,该处的场强E为________,A、B 间的电势差是________.2. 如图所示的装置是在竖直平面内放置的光滑绝缘轨道,处于水平向右的匀强电场中,带负电荷的小球从高为h的A处由静止开始下滑,沿轨道ABC运动并进入圆环内做圆周运动。

已知小球所受电场力是其重力的,圆环半径为R,斜面倾角为θ=60°,s BC=2R。

若使小球在圆环内能做完整的圆周运动,h至少为多少?(sin 37°=0.6,cos 37°=0.8)3. 如图所示,绝缘光滑轨道AB部分是倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切。

带电粒子在复合场中的运动-高中物理专题(含解析)

带电粒子在复合场中的运动-高中物理专题(含解析)

带电粒子在复合场中的运动目标:1. 掌握带电粒子在电场、磁场中运动的特点2. 理解复合场、组合场对带电粒子受力的分析。

重难点:重点: 带电粒子在电场、磁场中运动的特点;带电粒子在复合场中受力分析 难点: 带电粒子在复合场中运动受力与运动结合。

知识:知识点1 带电粒子在复合场中的运动 1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存. (2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现. 2.带电粒子在复合场中的运动形式(1)静止或匀速直线运动:当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.(2)匀速圆周运动:当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.(3)较复杂的曲线运动:当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线. 易错判断(1)带电粒子在复合场中不可能处于静止状态.(×) (2)带电粒子在复合场中可能做匀速圆周运动.(√) (3)带电粒子在复合场中一定能做匀变速直线运动.(×) 知识点2 带电粒子在复合场中的运动实例 1.质谱仪(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等构成.(2)原理:粒子由静止被加速电场加速,qU =12mv 2.粒子在磁场中做匀速圆周运动,有qvB =m v 2r .由以上两式可得r =1B2mUq , m =qr 2B 22U , q m =2UB 2r 2.2.回旋加速器(1)构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子经电场加速,经磁场回旋,由qvB =mv 2r ,得E km =q 2B 2r 22m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒半径r 决定,与加速电压无关.3.速度选择器(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器(如图所示).(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =qvB ,即v =E/B. 4.磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,图中的B 是发电机正极. (3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =qU/L =qvB 得两极板间能达到的最大电势差U =BLv . 易错判断(1)电荷在速度选择器中做匀速直线运动的速度与电荷的电性有关.(×) (2)不同比荷的粒子在质谱仪磁场中做匀速圆周运动的半径不同.(√)(3)粒子在回旋加速器中做圆周运动的半径、周期都随粒子速度的增大而增大.(×)题型分类:题型一 带电粒子在组合场中的运动题型分析:1.带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零 做初速度为零的匀加速直线运动 保持静止 初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点 受恒力作用,做匀变速运动洛伦兹力不做功,动能不变2.“电偏转”和“磁偏转”的比较垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力 运动规律匀速圆周运动r =mv 0Bq ,T =2πmBq类平抛运动v x =v 0,v y =Eqm t x =v 0t ,y =Eq2m t 2运动时间 t =θ2πT =θmBqt =Lv 0,具有等时性动能不变变化3.常见模型(1)从电场进入磁场(2)从磁场进入电场考向1 先电场后磁场【例1】.(2018·哈尔滨模拟)如图所示,将某正粒子放射源置于原点O ,其向各个方向射出的粒子速度大小均为v 0,质量均为m 、电荷量均为q ;在0≤y ≤d 的一、二象限范围内分布着一个匀强电场,方向与y 轴正向相同,在d <y ≤2d 的一、二象限范围内分布着一个匀强磁场,方向垂直于xOy 平面向里.粒子第一次离开电场上边缘y =d 时,能够到达的位置x 轴坐标范围为-1.5d ≤x ≤1.5d, 而且最终恰好没有粒子从y =2d 的边界离开磁场.已知sin 37°=0.6,cos 37°=0.8,不计粒子重力以及粒子间的相互作用,求: (1)电场强度E ; (2)磁感应强度B ;(3)粒子在磁场中运动的最长时间.(只考虑粒子第一次在磁场中的运动时间) [解析](1)沿x 轴正方向发射的粒子有:由类平抛运动基本规律得1.5d =v 0t, d =12at 2a =qE m ,联立可得:E =8mv 209qd .(2)沿x 轴正方向发射的粒子射入磁场时有:d =v y 2t,联立可得:v y =43v 0,电场中:加速直线运动⇓磁场中:匀速圆周运动 电场中:类平抛运动⇓磁场中:匀速圆周运动磁场中:匀速圆周运动 ⇓v 与E 同向或反向 电场中:匀变速直线运动磁场中:匀速圆周运动⇓v 与E 垂直 电场中:类平抛运动v =v 2x+v 2y=53v 0 方向与水平成53°,斜向右上方,据题意知该粒子轨迹恰与上边缘相切,则其余粒子均达不到y =2d 边界,由几何关系可知:d =R +35R根据牛顿第二定律得:Bqv =m v 2R 联立可得:B =8mv 03qd .(3)粒子运动的最长时间对应最大的圆心角,经过(1.5d ,d)恰与上边界相切的粒子轨迹对应的圆心角最大,由几何关系可知圆心角为:θ=254°粒子运动周期为:T =2πR v =3πd4v 0则时间为:t =θ360°T =127πd240v 0.考向2 先磁场后电场 【例2】.(2018·潍坊模拟)在如图所示的坐标系中,第一和第二象限(包括y 轴的正半轴)内存在磁感应强度大小为B 、方向垂直xOy 平面向里的匀强磁场;第三和第四象限内存在平行于y 轴正方向、大小未知的匀强电场.p 点为y 轴正半轴上的一点,坐标为(0,l );n 点为y 轴负半轴上的一点,坐标未知.现有一带正电的粒子由p 点沿y 轴正方向以一定的速度射入匀强磁场,该粒子经磁场偏转后以与x 轴正半轴成45°角的方向进入匀强电场,在电场中运动一段时间后,该粒子恰好垂直于y 轴经过n 点.粒子的重力忽略不计.求: (1)粒子在p 点的速度大小;(2)第三和第四象限内的电场强度的大小;(3)带电粒子从由p 点进入磁场到第三次通过x 轴的总时间.[解析] 粒子在复合场中的运动轨迹如图所示(1)由几何关系可知rsin 45°=l 解得r =2l 又因为qv 0B =m v 20r ,可解得v 0=2Bql m .(2)粒子进入电场在第三象限内的运动可视为平抛运动的逆过程,设粒子射入电场坐标为(-x 1,0),从粒子射入电场到粒子经过n 点的时间为t 2,由几何关系知x 1=(2+1)l ,在n 点有v 2=22v 1=22v 0由类平抛运动规律有(2+1)l =22v 0t 2;22v 0=at 2=Eqm t 2 联立以上方程解得t 2=2+1m qB ,E =2-1qlB 2m. (3)粒子在磁场中的运动周期为T =2πmqB粒子第一次在磁场中运动的时间为t 1=58T =5πm4qB 粒子在电场中运动的时间为2t 2=22+1mqB粒子第二次在磁场中运动的时间为t 3=34T =3πm2qB故粒子从开始到第三次通过x 轴所用时间为t =t 1+2t 2+t 3=(11π4+22+2)mqB .[反思总结] 规律运用及思路①带电粒子经过电场区域时利用动能定理或类平抛的知识分析; ②带电粒子经过磁场区域时利用圆周运动规律结合几何关系来处理; ③注意带电粒子从一种场进入另一种场时的衔接速度.【巩固】如图所示,在第Ⅱ象限内有水平向右的匀强电场,电场强度为E ,在第Ⅰ、Ⅳ象限内分别存在如图所示的匀强磁场,磁感应强度大小相等.有一个带电粒子以垂直于x 轴的初速度v 0从x 轴上的P 点进入匀强电场中,并且恰好与y 轴的正方向成45°角进入磁场,又恰好垂直于x 轴进入第Ⅳ象限的磁场.已知OP 之间的距离为d ,则带电粒子在磁场中第二次经过x 轴时,在电场和磁场中运动的总时间为( ) A.7πd 2v 0B.dv 0(2+5π) C.d v 0⎝ ⎛⎭⎪⎫2+3π2D.d v 0⎝ ⎛⎭⎪⎫2+7π2D [带电粒子的运动轨迹如图所示.由题意知,带电粒子到达y 轴时的速度v =2v 0,这一过程的时间t 1=d v 02=2dv 0.又由题意知,带电粒子在磁场中的偏转轨道半径r =22d.故知带电粒子在第Ⅰ象限中的运动时间为:t 2=38×2πr v =32πd 2v =3πd2v 0带电粒子在第Ⅳ象限中运动的时间为:t 3=12×2πr v =22πd v =2πd v 0故t 总=d v 0⎝ ⎛⎭⎪⎫2+7π2.故D 正确.] 题型二 带电粒子在叠加场中的运动考向1 电场、磁场叠加【例3】(多选)(2018·临川模拟)向下的匀强电场和水平方向的匀强磁场正交的区域里, 一带电粒子从a 点由静止开始沿曲线abc 运动到c 点时速度变为零, b 点是运动中能够到达的最高点, 如图所示,若不计重力,下列说法中正确的是( ) A .粒子肯定带负电, 磁场方向垂直于纸面向里 B .a 、c 点处于同一水平线上 C .粒子通过b 点时速率最大D. 粒子达到c 点后将沿原路径返回到a 点ABC [粒子开始受到电场力作用而向上运动,受到向右的洛伦兹力作用,则知电场力方向向上,故粒子带负电;根据左手定则判断磁场方向垂直于纸面向里,故A 正确.将粒子在c 点的状态与a 点进行比较,c 点的速率为零,动能为零,根据能量守恒可知,粒子在c 与a 两点的电势能相等,电势相等,则a 、c 两点应在同一条水平线上;由于在a 、c 两点粒子的状态(速度为零,电势能相等)相同,粒子将在c 点右侧重现前面的曲线运动,因此,粒子是不可能沿原曲线返回a 点的,故B 正确,D 错误.根据动能定理得,粒子从a 运动到b 点的过程电场力做功最大,则b 点速度最大,故C 正确.考向2 电场、磁场、重力场的叠加【例4】(2017·全国Ⅰ卷)如图所示,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里.三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c .已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动.下列选项正确的是( ) A .m a >m b >m c B .m b >m a >m c C .m c >m a >m b D .m c >m b >m aB [设三个微粒的电荷量均为q ,a 在纸面内做匀速圆周运动,说明洛伦兹力提供向心力,重力与电场力平衡,即 m a g =qE ①b 在纸面内向右做匀速直线运动,三力平衡,则m b g =qE +qvB ②c 在纸面内向左做匀速直线运动,三力平衡,则m c g +qvB =qE ③ 比较①②③式得:m b >m a >m c ,选项B 正确.]考向3 复合场中的动量、能量综合问题【例5】(2018·南昌模拟)如图所示,带负电的金属小球A 质量为m A =0.2 kg ,电量为q =0.1 C ,小球B 是绝缘体不带电,质量为m B =2 kg ,静止在水平放置的绝缘桌子边缘,桌面离地面的高h =0.05 m ,桌子置于电、磁场同时存在的空间中,匀强磁场的磁感应强度B =2.5 T ,方向沿水平方向且垂直纸面向里,匀强电场电场强度E =10 N/C ,方向沿水平方向向左且与磁场方向垂直,小球A 与桌面间的动摩擦因数为μ=0.4,A 以某一速度沿桌面做匀速直线运动,并与B 球发生正碰,设碰撞时间极短,B 碰后落地的水平位移为0.03 m ,g 取10 m/s 2,求: (1)碰前A 球的速度? (2)碰后A 球的速度?(3)若碰后电场方向反向(桌面足够长),小球A 在碰撞结束后,到刚离开桌面运动的整个过程中,合力对A 球所做的功.[答案](1)2 m/s (2)1 m/s ,方向与原速度方向相反 (3)6.3 J 【例5-2】 (1)上题中,A 与B 的碰撞是弹性碰撞吗?为什么?(2)在第(3)问中,根据现有知识和条件,能否求出电场力对A 球做的功?提示:A 、B 碰前,只有A 有动能E kA =12m A v 2A1=12×0.2×22 J =0.4 JA 、B 碰后,E kA ′=12m A v 2A2=12×0.2×12 J =0.1 JE kB =12m B v 2B =12×2×0.32=0.09 J 因E kA >E kA ′+E kB故A 、B 间的碰撞不是弹性碰撞.提示:不能.因无法求出A 球的位移.【巩固1】(多选)(2017·济南模拟)如图所示,在正交坐标系O ­xyz 中,分布着电场和磁场(图中未画出).在Oyz 平面的左方空间内存在沿y 轴负方向、磁感应强度大小为B 的匀强磁场;在Oyz 平面右方、Oxz 平面上方的空间内分布着沿z 轴负方向、磁感应强度大小也为B 的匀强磁场;在Oyz 平面右方、Oxz 平面下方分布着沿y 轴正方向的匀强电场,电场强度大小为aqB 24m .在t =0时刻,一个质量为m 、电荷量为+q 的微粒从P 点静止释放,已知P 点的坐标为(5a ,-2a,0),不计微粒的重力.则( )A .微粒第一次到达x 轴的速度大小为aqb mB .微粒第一次到达x 轴的时刻为4mqBC .微粒第一次到达y 轴的位置为y =2aD .微粒第一次到达y 轴的时刻为⎝ ⎛⎭⎪⎫40+5π2mqBBD [微粒从P 点由静止释放至第一次到达y 轴的运动轨迹如图所示.释放后,微粒在电场中做匀加速直线运动,由E =aqB 24m ,根据动能定理有Eq ·2a =12mv 2,解得微粒第一次到达x 轴的速度v =aqB m ,又Eq m t 1=v ,解得微粒第一次到达x 轴的时刻t 1=4mqB ,故选项A 错误,B 正确;微粒进入磁场后开始做匀速圆周运动,假设运动的轨道半径为R ,则有qvB =m v 2R ,可得:R =a ,所以微粒到达y 轴的位置为y =a ,选项C 错误;微粒在磁场中运动的周期T =2πR v =2πm qB ,则运动到达y 轴的时刻:t 2=5t 1+54T ,代入得:t 2=⎝ ⎛⎭⎪⎫40+5π2m qB ,选项D 正确.]【巩固2】 (多选)(2018·兰州模拟)如图所示,空间中存在一水平方向的匀强电场和一水平方向的匀强磁场,磁感应强度大小为B ,电场强度大小为E =3mgq ,且电场方向和磁场方向相互垂直,在正交的电磁场空间中有一足够长的固定粗糙绝缘杆,与电场正方向成60°夹角且处于竖直平面内,一质量为m ,带电量为q (q >0)的小球套在绝缘杆上,若小球沿杆向下的初速度为v 0时,小球恰好做匀速直线运动,已知重力加速度大小为g ,小球电荷量保持不变,则以下说法正确的是( )A .小球的初速度v 0=mg2qBB .若小球沿杆向下的初速度v =mgqB ,小球将沿杆做加速度不断增大的减速运动,最后停止C .若小球沿杆向下的初速度v =3mgqB ,小球将沿杆做加速度不断减小的减速运动,最后停止D. 若小球沿杆向下的初速度v =4mgqB ,则从开始运动到稳定过程中,小球克服摩擦力做功为6m 3g 2q 2B 2BD题型三 带电粒子在复合场中运动的常见实例考向1 回旋加速器的工作原理【例6】(多选)(2018·成都模拟)粒子回旋加速器的工作原理如图所示,置于真空中的D 形金属盒的半径为R ,两金属盒间的狭缝很小,磁感应强度为B 的匀强磁场与金属盒盒面垂直,高频率交流电的频率为f ,加速器的电压为U ,若中心粒子源处产生的质子质量为m ,电荷量为+e ,在加速器中被加速.不考虑相对论效应,则下列说法正确是( )A .质子被加速后的最大速度不能超过2πRfB .加速的质子获得的最大动能随加速器的电压U 增大而增大C .质子第二次和第一次经过D 形盒间狭缝后轨道半径之比为2∶1 D .不改变磁感应强度B 和交流电的频率f ,该加速器也可加速其它粒子AC [质子出回旋加速器时速度最大,此时的半径为R ,最大速度为:v =2πRT =2πRf ,故A 正确; 根据qvB =m v 2R 得,v =qBR m ,则粒子的最大动能E km =12mv 2=q 2B 2R 22m ,与加速器的电压无关,故B 错误;粒子在加速电场中做匀加速运动,在磁场中做匀速圆周运动,根据qU =12mv 2,得v =2qU m ,质子第二次和第一次经过D 形盒狭缝的速度比为2∶1,根据r =mvqB ,则半径比为2∶1,故C 正确;带电粒子在磁场中运动的周期与加速电场的周期相等,根据T =2πmqB 知,换用其它粒子,粒子的比荷变化,周期变化,回旋加速器需改变交流电的频率才能加速其它粒子,故D 错误.故选AC.]考向2 速度选择器的工作原理【例7】在如图所示的平行板器件中,电场强度E 和磁感应强度B 相互垂直.一带电粒子(重力不计)从左端以速度v 沿虚线射入后做直线运动,则该粒子( ) A .一定带正电B .速度v =EBC .若速度v >EB ,粒子一定不能从板间射出D .若此粒子从右端沿虚线方向进入,仍做直线运动B考向3 质谱仪的工作原理【例7】质谱仪是测量带电粒子的质量和分析同位素的重要工具.如图所示为质谱仪的原理示意图,现利用质谱仪对氢元素进行测量.让氢元素三种同位素的离子流从容器A 下方的小孔S 无初速度飘入电势差为U 的加速电场.加速后垂直进入磁感应强度为B 的匀强磁场中.氢的三种同位素最后打在照相底片D 上,形成a 、b 、c 三条“质谱线”.则下列判断正确的是( ) A .进入磁场时速度从大到小排列的顺序是氕、氘、氚 B .进入磁场时动能从大到小排列的顺序是氕、氘、氚 C .在磁场中运动时间由大到小排列的顺序是氕、氘、氚 D .a 、b 、c 三条“质谱线”依次排列的顺序是氕、氘、氚A [离子通过加速电场的过程,有qU =12mv 2,因为氕、氘、氚三种离子的电量相同、质量依次增大,故进入磁场时动能相同,速度依次减小,故A 项正确,B 项错误;由T =2πmqB 可知,氕、氘、氚三种离子在磁场中运动的周期依次增大,又三种离子在磁场中运动的时间均为半个周期,故在磁场中运动时间由大到小排列依次为氚、氘、氕,C 项错误;由qvB =m v 2R 及qU =12mv 2,可得R =1B 2mUq ,故氕、氘、氚三种离子在磁场中的轨道半径依次增大,所以a 、b 、c 三条“质谱线”依次对应氚、氘、氕,D 项错误.]【巩固3】(多选)如图所示,含有11H 、21H 、42He 的带电粒子束从小孔O 1处射入速度选择器,沿直线O 1O 2运动的粒子在小孔O 2处射出后垂直进入偏转磁场,最终打在P 1、P 2两点.则( ) A .打在P 1点的粒子是42HeB .打在P 2点的粒子是21H 和42He C .O 2P 2的长度是O 2P 1长度的2倍D .粒子在偏转磁场中运动的时间都相等BC [通过同一速度选择器的粒子具有相同的速度,故11H 、21H 、42He 的速度相等,由牛顿第二定律得qvB 2=m v 2R ,解得R =mv qB 2,由此可知,设质子的质量为m ,质子带电量为q ,11H 的半径R 1=mvqB 2,21H的半径R 2=2mv qB 2,42He 的半径R 3=2mvqB 2,故打在P 1点的粒子是11H ,打在P 2点的粒子是21H 和42He ,选项A 错误,B 正确;O 2P 1=2R 1=2mv qB 2,O 2P 2=2R 2=4mvqB 2,故O 2P 2=2O 2P 1,选项C 正确;粒子在磁场中运动的时间t =T 2=πmqB ,11H 运动的时间与21H 和42He 运动的时间不同,选项D 错误.故选B 、C.]基础练习:考查点:速度选择器1.如图所示,一束质量、速度和电荷不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A 、B 两束,下列说法中正确的是( ) A .组成A 束和B 束的离子都带负电 B .组成A 束和B 束的离子质量一定不同 C .A 束离子的比荷大于B 束离子的比荷D .速度选择器中的磁场方向垂直于纸面向外[答案] C考查点:磁流体发电机2.(多选)磁流体发电机是利用洛伦兹力的磁偏转作用发电的.A 、B 是两块处在磁场中互相平行的金属板,一束在高温下形成的等离子束(气体在高温下发生电离,产生大量的带等量异种电荷的粒子)射入磁场.下列说法正确的是( ) A .B 板是电源的正极 B .A 板是电源的正极C .电流从上往下流过电流表D .电流从下往上流过电流表[答案] AD考查点:电磁流量计3.如图所示,电磁流量计的主要部分是柱状非磁性管.该管横截面是边长为d 的正方形,管内有导电液体水平向左流动.在垂直于液体流动方向上加一个水平指向纸里的匀强磁场,磁感应强度为B .现测得液体上下表面a 、b 两点间的电势差为U .则管内导电液体的流量Q (流量是指流过该管的液体体积与所用时间的比值)为( )A.UdB B.Ud 2B C.U BdD.d BU[答案] A考查点:质谱仪4. A 、B 是两种同位素的原子核,它们具有相同的电荷、不同的质量.为测定它们的质量比,使它们从质谱仪的同一加速电场由静止开始加速,然后沿着与磁场垂直的方向进入同一匀强磁场,打到照相底片上.如果从底片上获知A 、B 在磁场中运动轨迹的直径之比是d 1∶d 2,则A 、B 的质量之比为( )A .d 21∶d 22B .d 1∶d 2C .d 22∶d 21D .d 2∶d 1 [答案] A分类巩固:带电粒子在组合场中的运动1.如图所示,某种带电粒子由静止开始经电压为U 1的电场加速后,射入水平放置、电势差为U 2的两导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁场的M 、N 两点间的距离d 随着U 1和U 2的变化情况为(不计重力,不考虑边缘效应)( )A .d 随U 1变化,d 与U 2无关B .d 与U 1无关,d 随U 2变化C .d 随U 1变化,d 随U 2变化D .d 与U 1无关,d 与U 2无关A [带电粒子在电场中做类平抛运动,可将射出电场的粒子速度v 分解成初速度方向与加速度方向,设出射速度与水平夹角为θ,则有:v 0v =cos θ 而在磁场中做匀速圆周运动,设运动轨迹对应的半径为R ,由几何关系得,半径与直线MN 夹角正好等于θ,则有:d2R =cos θ,所以d =2Rv 0v ,又因为半径公式R =mv Bq ,则有d =2mv 0Bq =2B 2mU 1q .故d 随U 1变化,d 与U 2无关,故A 正确,B 、C 、D 错误.]2.(多选)(2017·烟台模拟)如图所示,在x 轴上方有沿y 轴负方向的匀强电场,电场强度为E ,在x 轴下方的等腰直角三角形CDM 区域内有垂直于xOy 平面向外的匀强磁场,磁感应强度为B ,其中C 、D 在x 轴上,它们到原点O 的距离均为a .现将质量为m 、电荷量为+q 的粒子从y 轴上的P 点由静止释放,设P 点到O 点的距离为h ,不计重力作用与空气阻力的影响.下列说法正确的是( )A .若粒子垂直于CM 射出磁场,则h =B 2a 2q2mEB .若粒子垂直于CM 射出磁场,则h =B 2a 2q8mEC .若粒子平行于x 轴射出磁场,则h =B 2a 2q2mED .若粒子平行于x 轴射出磁场,则h =B 2a 2q8mEAD [粒子在电场中加速,有qEh =12mv 20.在磁场中做圆周运动,若粒子垂直于CM 射出磁场,则轨迹所对的圆心角θ=45°,半径R =a ,由洛伦兹力提供向心力,有qv 0B =mv 20R ,得R =mv 0qB ,联立以上各式得h =B 2a 2q2mE ,A 正确;若粒子平行于x 轴射出磁场,则轨迹所对的圆心有θ=90°,半径R =a 2,同理可得h =B 2a 2q8mE ,D 正确.]3.(2018·银川模拟)如图所示,AB 、CD 间的区域有竖直向上的匀强电场,在CD 的右侧有一与CD 相切于M 点的圆形有界匀强磁场,磁场方向垂直于纸面.一带正电粒子自O 点以水平初速度v 0正对P 点进入该电场后,从M 点飞离CD 边界,再经磁场偏转后又从N 点垂直于CD 边界回到电场区域,并恰能返回O 点.已知OP 间距离为d ,粒子质量为m ,电荷量为q ,电场强度大小E =3mv 20qd ,不计粒子重力.试求: (1)M 、N 两点间的距离;(2)磁感应强度的大小和圆形匀强磁场的半径;(3)粒子自O 点出发到回到O 点所用的时间.[解析](1)据题意,作出带电粒子的运动轨迹,如图所示:粒子从O 到M 的时间:t 1=d v 0;粒子在电场中加速度:a =qE m =3v 2d故PM 间的距离为:PM =12at 21=32d粒子在M 点时竖直方向的速度:v y =at 1=3v 0粒子在M 点时的速度:v =v 20+v 2y =2v 0速度偏转角正切:tan θ=v yv 0= 3 ,故θ=60°粒子从N 到O 点时间:t 2=d 2v 0,粒子从N 到O 点过程的竖直方向位移:y =12at 22故P 、N 两点间的距离为:PN =y =38d.所以MN =PN +PM =538 d.(2)由几何关系得:Rcos 60°+R =MN =538d,可得半径:R =5312d由qvB =m v 2R 解得:B =83mv 05qd ;由几何关系确定区域半径为:R ′=2Rcos 30°,即R ′=54d.(3)O 到M 的时间:t 1=d v 0;N 到O 的时间:t 2=d2v 0在磁场中运动的时间:t 3=4π3R 2v 0=53πd18v 0无场区运动的时间:t 4=Rcos 30°2v 0=5d 16v 0;t =t 1+t 2+t 3+t 4=29d 16v 0+53πd18v 0. 带电物体在叠加场中的运动4.如图所示,界面MN 与水平地面之间有足够大且正交的匀强磁场B 和匀强电场E ,磁感线和电场线都处在水平方向且互相垂直.在MN 上方有一个带正电的小球由静止开始下落,经电场和磁场到达水平地面.若不计空气阻力,小球在通过电场和磁场的过程中,下列说法中正确的是( )A .小球做匀变速曲线运动B .小球的电势能保持不变C .洛伦兹力对小球做正功D .小球的动能增量等于其电势能和重力势能减少量的总和D [带电小球在刚进入复合场时受力如图所示,则带电小球进入复合场后做曲线运动,因为速度会发生变化,洛伦兹力就会跟着变化,所以不可能是匀变速曲线运动,选项A 错误;根据电势能公式E p =q φ,知只有带电小球竖直向下做直线运动时,电势能保持不变,选项B 错误;根据洛伦兹力的方向确定方法知,洛伦兹力方向始终和速度方向垂直,所以洛伦兹力不做功,选项C 错误;从能量守恒角度知道选项D 正确.]5. (2017·桂林模拟)如图所示,空间存在互相垂直的匀强电场和匀强磁场,图中虚线为匀强电场的等势线,一不计重力的带电粒子在M 点以某一初速度垂直等势线进入正交电磁场中,运动轨迹如图所示(粒子在N 点的速度比在M 点的速度大).则下列说法正确的是( )A .粒子一定带正电B .粒子的运动轨迹一定是抛物线C .电场线方向一定垂直等势面向左D .粒子从M 点运动到N 点的过程中电势能增大C [根据粒子在电、磁场中的运动轨迹和左手定则可知,粒子一定带负电,选项A 错误;由于洛伦兹力方向始终与速度方向垂直,故粒子受到的合力是变力,而物体只有在恒力作用下做曲线运动时,轨迹才是抛物线,选项B 错误;由于空间只存在电场和磁场,粒子的速度增大,说明在此过程中电场力对带电粒子做正功,则电场线方向一定垂直等势面向左,选项C 正确;电场力做正功,电势能减小,选项D 错误.]6.如图所示,空间存在水平向左的匀强电场和垂直纸面向里的匀强磁场,电场和磁场相互垂直.在电磁场区域中,有一个光滑绝缘圆环,环上套有一个带正电的小球.O 点为圆环的圆心,a 、b 、c 为圆环上的三个点,a 点为最高点,c 点为最低点, bd 沿水平方向.已知小球所受电场力与重力大小相等.现将小球从环的顶端a 点由静止释放,下列判断正确的是( )A .当小球运动到c 点时,洛伦兹力最大B .小球恰好运动一周后回到a 点C .小球从a 点运动到b 点,重力势能减小,电势能减小D .小球从b 点运动到c 点,电势能增大,动能增大C [电场力与重力大小相等,则二者的合力指向左下方45°,由于合力是恒力,故类似于新的重力,所以ad 弧的中点相当于平时竖直平面圆环的“最高点”.关于圆心对称的位置(即bc 弧的中点)就是“最低点”,速度最大,此时洛伦兹力最大;由于a 、d 两点关于新的最高点对称,若从a 点静止释放,最高运动到d 点,故A 、B 错误.从a 到b ,重力和电场力都做正功,重力势能和电势能都减少,故C 正确.小球从b 点运动到c 点,电场力做负功,电势能增大,但由于bc 弧的中点速度最大,所以动能先增大后减小,故D 错误.所以C 正确,A 、B 、D 错误.]7.(多选)(2018·哈尔滨模拟)如图所示,空间同时存在竖直向上的匀强磁场和匀强电场,磁感应强度为B ,电场强度为E .一质量为m ,电量为q 的带正电小球恰好处于静止状态,现在将磁场方向顺时针旋转30°,同时给小球一个垂直磁场方向斜向下的速度v ,则关于小球的运动,下列说法正确的是( )A .小球做匀速圆周运动B .小球运动过程中机械能守恒C .小球运动到最低点时电势能增加了mgv 2BqD .小球第一次运动到最低点历时πm2qB。

高考物理总复习 第九单元 磁场 微专题8 带电粒子在组合场和复合场中的运动(含解析)

高考物理总复习 第九单元 磁场 微专题8 带电粒子在组合场和复合场中的运动(含解析)

微专题8 带电粒子在组合场和复合场中的运动一带电粒子在组合场中的运动组合场是指电场与磁场同时存在或者磁场与磁场同时存在,但各位于一定的区域内,并不重叠的情况。

所以弄清带电粒子在电场及磁场中的运动形式、规律和研究方法是解决此类问题的基础。

1.基本类型运动类型带电粒子在匀强电场中加速(v0与电场线平行或为零)带电粒子在匀强电场中偏转(v0⊥E)带电粒子在匀强磁场中匀速运动(v0与磁感线平行)带电粒子在匀强磁场中偏转(v0与磁感线垂直)受力特点受到恒定的电场力;电场力做功不受磁场力作用受磁场力作用;但磁场力不做功运动特征匀变速直线运动类平抛运动匀速直线运动匀速圆周运动研究方法牛顿运动定律匀变速运动学规律牛顿运动定律匀变速运动学公式正交分解法匀速直线运动公式牛顿运动定律向心力公式圆的几何知识表达方式如何求运动时间、速度和位移如何求飞行时间、偏移量和偏转角-如何求时间和偏转角用匀变速直线运动的基本公式、导出公式和推论求解飞出电场时间:t=打在极板上t=偏移量:y=偏转角:tan-时间t=T(θ是圆心角,T是周期)偏转角sin θ=(l是磁场宽度,R是粒子轨道半径)α=运动情境2.解题思路题型1电场与磁场的组合例1如图所示,在xOy直角坐标系中,第Ⅰ象限内分布着方向垂直纸面向里的匀强磁场,第Ⅱ象限内分布着沿y轴负方向的匀强电场。

初速度为零、带电荷量为q、质量为m的粒子经过电压为U的电场加速后,从x轴上的A点垂直x轴进入磁场区域,重力不计,经磁场偏转后过y轴上的P点且垂直于y轴进入电场区域,在电场中偏转并击中x轴上的C点。

已知OA=OC=d。

则磁感应强度B和电场强度E分别为多少?解析设带电粒子经电压为U的电场加速后速度为v,则qU=mv2带电粒子进入磁场后,由洛伦兹力提供向心力qBv=依题意可知r=d,联立解得B=带电粒子在电场中偏转,做类平抛运动,设经时间t从P点到达C点,由d=vt,d=t2联立解得E=。

高考物理带电粒子在复合场中的运动解题技巧(超强)及练习题

高考物理带电粒子在复合场中的运动解题技巧(超强)及练习题

一、带电粒子在复合场中的运动专项训练1.两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。

在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力),若电场强度E0、磁感应强度B0、粒子的比荷qm均已知,且2mtqBπ=,两板间距2210mEhqBπ=。

(1)求粒子在0~t0时间内的位移大小与极板间距h的比值。

(2)求粒子在板板间做圆周运动的最大半径(用h表示)。

(3)若板间电场强度E随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。

【来源】带电粒子的偏转【答案】(1)粒子在0~t0时间内的位移大小与极板间距h的比值115sh=(2)粒子在极板间做圆周运动的最大半径225hRπ=(3)粒子在板间运动的轨迹如图:【解析】【分析】【详解】(1)设粒子在0~t0时间内运动的位移大小为s121012s at =① 0qEa m=②又已知200200102,mE m t h qB qB ππ== 联立解得:115s h = (2)解法一粒子在t 0~2t 0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。

设运动速度大小为v 1,轨道半径为R 1,周期为T ,则10v at =21101mv qv B R =联立解得:15h R π= 又002mT t qB π== 即粒子在t 0~2t 0时间内恰好完成一个周期的圆周运动。

在2t 0~3t 0时间内,粒子做初速度为v 1的匀加速直线运动,设位移大小为s 22210012s v t at =+解得:235s h =由于s 1+s 2<h ,所以粒子在3t 0~4t 0时间内继续做匀速圆周运动,设速度大小为v 2,半径为R 2,有:210v v at =+22202mv qv B R =解得225h R π=由于s 1+s 2+R 2<h ,粒子恰好又完成一个周期的圆周运动。

高考物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)

高考物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)

高考物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:35l rπ=粒子在电场中沿虚线方向做匀变速直线运动,21cos22qEl r tmα-=⋅解得:220(23)9mvEqlππ-=2.如图所示,OO′为正对放置的水平金属板M、N的中线.热灯丝逸出的电子(初速度重力均不计)在电压为U的加速电场中由静止开始运动,从小孔O射入两板间正交的匀强电场、匀强磁场(图中未画出)后沿OO′做直线运动.已知两板间的电压为2U,两板长度与两板间的距离均为L,电子的质量为m、电荷量为e.(1)求板间匀强磁场的磁感应强度的大小B和方向;(2)若保留两金属板间的匀强磁场不变,使两金属板均不带电,求从小孔O射入的电子打到N板上的位置到N板左端的距离x.【答案】(1)12mUBL e=垂直纸面向外;(2)32L【解析】【分析】(1)在电场中加速度,在复合场中直线运动,根据动能定理和力的平衡求解即可;(2)洛伦兹力提供向心力同时结合几何关系求解即可;【详解】(1)电子通过加速电场的过程中,由动能定理有:212eU m v=由于电子在两板间做匀速运动,则evB eE=,其中2UEL=联立解得:12mUBL e=根据左手定则可判断磁感应强度方向垂直纸面向外;(2)洛伦兹力提供电子在磁场中做圆周运动所需要的向心力,有:2vevB mr=,其中由(1)得到2eUvm=设电子打在N板上时的速度方向与N板的夹角为θ,由几何关系有:2cosLrrθ-=由几何关系有:sin x r θ= 联立解得:32x L =. 【点睛】本题考查了带电粒子的加速问题,主要利用动能定理进行求解;在磁场中圆周运动,主要找出向心力的提供者,根据牛顿第二定律列出方程结合几何关系求解即可.3.如图所示,EF 与GH 间为一无场区.无场区左侧A 、B 为相距为d 、板长为L 的水平放置的平行金属板,两板上加某一电压从而在板间形成一匀强电场,其中A 为正极板.无场区右侧为一点电荷Q 形成的电场,点电荷的位置O 为圆弧形细圆管CD 的圆心,圆弧半径为R ,圆心角为120°,O 、C 在两板间的中心线上,D 位于GH 上.一个质量为m 、电荷量为q 的带正电粒子以初速度v 0沿两板间的中心线射入匀强电场,粒子出匀强电场经无场区后恰能进入细圆管,并做与管壁无相互挤压的匀速圆周运动.(不计粒子的重力、管的粗细)求:(1)O 处点电荷的电性和电荷量; (2)两金属板间所加的电压.【答案】(1)负电,2043mv R kq ;(2) 2033mdv qL【解析】(1)粒子进入圆管后受到点电荷Q 的库仑力作匀速圆周运动,粒子带正电,则知O 处点电荷带负电.由几何关系知,粒子在D 点速度方向与水平方向夹角为30°,进入D 点时速度为:0023303v v v cos ==︒ …①在细圆管中做与管壁无相互挤压的匀速圆周运动,故Q 带负电且满足22Qq v k mR R=…②由①②得:243mv R Qkq=(2)粒子射出电场时速度方向与水平方向成30°tan 30°=yvv…③v y=at…④qUamd=…⑤Ltv=…⑥由③④⑤⑥得:22003033mdv tan mdvUqL qL︒==4.如图甲所示,粗糙水平轨道与半径为R的竖直光滑、绝缘的半圆轨道在B点平滑连接,过半圆轨道圆心0的水平界面MN的下方分布有水平向右的匀强电场E,质量为m的带正电小滑块从水平轨道上A点由静止释放,运动中由于摩擦起电滑块电量会增加,过B 点后电量保持不变,小滑块在AB段加速度随位移变化图像如图乙.已知A、B间距离为4R,滑块与轨道间动摩擦因数为μ=0.5,重力加速度为g,不计空气阻力,求(1)小滑块释放后运动至B点过程中电荷量的变化量(2)滑块对半圆轨道的最大压力大小(3)小滑块再次进入电场时,电场大小保持不变、方向变为向左,求小滑块再次到达水平轨道时的速度大小以及距B的距离【答案】(1)mgqE∆=(2)(635NF mg=+(3)425v gR=夹角为11arctan2β=斜向左下方,位置在A点左侧6R处.【解析】【分析】【详解】试题分析:根据在A、B两点的加速度结合牛顿第二定律即可求解小滑块释放后运动至B 点过程中电荷量的变化量;利用“等效重力”的思想找到新的重力场中的电低点即压力最大点;解:(1)A 点:01·2q E mg m g μ-= B 点13·2q E mg m g μ-= 联立以上两式解得10mgq q q E∆=-=; (2) 从A 到B 过程:2113122··4022g gm R mv +=- 将电场力与重力等效为“重力G ',与竖直方向的夹角设为α,在“等效最低点”对轨道压力最大,则:'G =cos mgG α='从B 到“等效最低点”过程:222111(cos )22G R R mv mv α--'=22N v F G m R-='由以上各式解得:(6N F mg =+由牛顿第三定律得轨道所受最大压力为:(6N F mg =+;(3) 从B 到C 过程:2213111·2?22mg R q E R mv mv --=- 从C 点到再次进入电场做平抛运动:13x v t =212R gt =y gt =v13tan y v v β=21tan mgq Eβ=由以上各式解得:12ββ=则进入电场后合力与速度共线,做匀加速直线运动 12tan R x β=从C 点到水平轨道:22124311·2?22mg R q E x mv mv +=-由以上各式解得:425v gR =126x x x R ∆=+=因此滑块再次到达水平轨道的速度为425V Rg=,方向与水平方向夹角为11 arctan2β=,斜向左下方,位置在A点左侧6R处.5.如图,质量分别为m A=1kg、m B=2kg的A、B两滑块放在水平面上,处于场强大小E=3×105N/C、方向水平向右的匀强电场中,A不带电,B带正电、电荷量q=2×10-5C.零时刻,A、B用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s末细绳断开.已知A、B与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s2.求:(1)前2s内,A的位移大小;(2)6s末,电场力的瞬时功率.【答案】(1) 2m (2) 60W【解析】【分析】【详解】(1)B所受电场力为F=Eq=6N;绳断之前,对系统由牛顿第二定律:F-μ(m A+m B)g=(m A+m B)a1可得系统的加速度a1=1m/s2;由运动规律:x=12a1t12解得A在2s内的位移为x=2m;(2)设绳断瞬间,AB的速度大小为v1,t2=6s时刻,B的速度大小为v2,则v1=a1t1=2m/s;绳断后,对B由牛顿第二定律:F-μm B g=m B a2解得a2=2m/s2;由运动规律可知:v2=v1+a2(t2-t1)解得v2=10m/s电场力的功率P=Fv,解得P=60W6.如图所示,在直角坐标系x0y平面的一、四个象限内各有一个边长为L的正方向区域,二三像限区域内各有一个高L,宽2L的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L,L<y<2L的区域内,有沿y轴正方向的匀强电场.现有一质量为四电荷量为q的带负电粒子从坐标(L,3L/2)处以初速度v沿x轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL=(2)04nmv B qL =n=1、2、3......(3)02L t v π= 【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2R ,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==7.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d 的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO ’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t 0;:当在两板间加最大值为U 0、周期为2t 0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L ,电子的质量为m 、电荷量为e ,其重力不计.(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离 (2)要使所有电子都能垂直打在荧光屏上, ①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm = 又:1mv R Be=解得:00U t B dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=8.如图所示,虚线MN 为匀强电场和匀强磁场的分界线,匀强电场场强大小为E 方向竖直向下且与边界MN 成θ=45°角,匀强磁场的磁感应强度为B ,方向垂直纸面向外,在电场中有一点P ,P 点到边界MN 的竖直距离为d 。

高考物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)含解析

高考物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)含解析

高考物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)含解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL=(2)04nmv B qL =n=1、2、3......(3)02L t v π= 【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2R ,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==2.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。

高中物理带电粒子在复合场中的运动解题技巧(超强)及练习题

高中物理带电粒子在复合场中的运动解题技巧(超强)及练习题
点睛:本题主要考查了带电粒子由电场进入磁场的情况,电子在电场中做类平抛运动,分别列出竖直和水平方向的方程列式分析求解;在磁场中,关键要画出轨迹图分析,根据几何关系求解.
5.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN的下方有匀强磁场,方向垂直纸面向外 图中未画出 ,质量为m电荷量为q的粒子 不计重力 以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场 电场方向指向O点 ,已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C垂直于MN进入下方磁场.
解得: =1、2、3……
或 n=1、2、3……;
7.如图所示,A、B两水平放置的金属板板间电压为U(U的大小、板间的场强方向均可调节),在靠近A板的S点处有一粒子源能释放初速度为零的不同种带电粒子,这些粒子经A、B板间的电场加速后从B板上的小孔竖直向上飞出,进入竖直放置的C、D板间,C、D板间存在正交的匀强电场和匀强磁场,匀强电场的方向水平向右,大小为E,匀强磁场的方向水平向里,大小为B1。其中一些粒子能沿图中虚线做直线运动到达上方竖直圆上的a点,圆内存在磁感应强度大小为B2、方向水平向里的匀强磁场。其中S、a、圆心O点在同一竖直线上。不计粒子的重力和粒子之间的作用力。求:
【答案】(1) ;(2) ; ;(3) 。
【解析】
【分析】
【详解】
(1)由题可知,粒子进入静电分析器做圆周运动,则有:
解得:
(2)粒子从D到A匀速圆周运动,轨迹如图所示:
由图示三角形区域面积最小值为:
在磁场中洛伦兹力提供向心力,则有:
得:
设MN下方的磁感应强度为B1,上方的磁感应强度为B2,如图所示:
(3)粒子从出发直至到达P点经历时间的所有可能取值: k=1、2、3……或 n=1、2、3……。

高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)

高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)

高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图甲所示,粗糙水平轨道与半径为R 的竖直光滑、绝缘的半圆轨道在B 点平滑连接,过半圆轨道圆心0的水平界面MN 的下方分布有水平向右的匀强电场E ,质量为m 的带正电小滑块从水平轨道上A 点由静止释放,运动中由于摩擦起电滑块电量会增加,过B 点后电量保持不变,小滑块在AB 段加速度随位移变化图像如图乙.已知A 、B 间距离为4R ,滑块与轨道间动摩擦因数为μ=0.5,重力加速度为g ,不计空气阻力,求(1)小滑块释放后运动至B 点过程中电荷量的变化量 (2)滑块对半圆轨道的最大压力大小(3)小滑块再次进入电场时,电场大小保持不变、方向变为向左,求小滑块再次到达水平轨道时的速度大小以及距B 的距离 【答案】(1)mgq E∆=(2)(635N F mg =+(3)425v gR =夹角为11arctan 2β=斜向左下方,位置在A 点左侧6R 处. 【解析】 【分析】 【详解】试题分析:根据在A 、B 两点的加速度结合牛顿第二定律即可求解小滑块释放后运动至B 点过程中电荷量的变化量;利用“等效重力”的思想找到新的重力场中的电低点即压力最大点; 解:(1)A 点:01·2q E mg m g μ-= B 点13·2q E mg m g μ-= 联立以上两式解得10mgq q q E∆=-=; (2) 从A 到B 过程:2113122··4022g gm R mv +=- 将电场力与重力等效为“重力G ',与竖直方向的夹角设为α,在“等效最低点”对轨道压力最大,则:'G =cos mgG α='从B 到“等效最低点”过程:222111(cos )22G R R mv mv α--'=22N v F G m R-='由以上各式解得:(6N F mg =+由牛顿第三定律得轨道所受最大压力为:(6N F mg =+;(3) 从B 到C 过程:2213111·2?22mg R q E R mv mv --=- 从C 点到再次进入电场做平抛运动:13x v t =212R gt =y gt =v13tan y v v β=21tan mgq Eβ=由以上各式解得:12ββ=则进入电场后合力与速度共线,做匀加速直线运动 12tan R x β=从C 点到水平轨道:22124311·2?22mg R q E x mv mv +=-由以上各式解得:4v =126x x x R ∆=+=因此滑块再次到达水平轨道的速度为4V =方向与水平方向夹角为11arctan 2β=,斜向左下方,位置在A 点左侧6R 处.2.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s 水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=L v =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t 2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 02md qE 、R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2Eqmd-E B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα) 把R =mv qB 、v =1v sin α、12qEd v m=代入解得 12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆=== Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =R =mv qB 、v 1=vsinα、12qEdv m=代入解得2 21221 L qE nEvn md n B=-⋅++v0=4.00.821nn-⎛⎫⎪+⎝⎭×105m/s(其中n=0、1、2、3、4)第二种情况:L=n(2v0t+2Rsinα)+v0t+2Rsinα把2mdtqE=、R=mvqB、v1=vsinα、12qEdvm=代入解得2(1)21221L qE n Evn md n B+=-⋅++v0=3.20.821nn-⎛⎫⎪+⎝⎭×105m/s(其中n=0、1、2、3).3.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B,一带电量为+q、质量为m的粒子,在P点以某一初速开始运动,初速方向在图中纸面内如图中P点箭头所示.该粒子运动到图中Q点时速度方向与P点时速度方向垂直,如图中Q点箭头所示.已知P、Q间的距离为L.若保持粒子在P点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P点时速度方向垂直,在此电场作用下粒子也由P点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P运动到Q点所经历的时间之比.【答案】22B qLEm=;2BEttπ=【解析】【分析】【详解】(1)粒子在磁场中做匀速圆周运动,以v0表示粒子在P点的初速度,R表示圆周的半径,则有2vqv B mR=由于粒子在Q点的速度垂直它在p点时的速度,可知粒子由P点到Q点的轨迹为14圆周,故有2R=以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212E R at =竖直方向上:0E R v t =由以上各式,得 22B qL E m= 且E mt qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为14圆周,即142B t T m qB π==所以2B E t t π=4.如图,以竖直向上为y 轴正方向建立直角坐标系;该真空中存在方向沿x 轴正向、场强为E 的匀强电场和方向垂直xoy 平面向外、磁感应强度为B 的匀强磁场;原点O 处的离子源连续不断地发射速度大小和方向一定、质量为m 、电荷量为-q (q>0)的粒子束,粒子恰能在xoy 平面内做直线运动,重力加速度为g,不计粒子间的相互作用; (1)求粒子运动到距x 轴为h 所用的时间;(2)若在粒子束运动过程中,突然将电场变为竖直向下、场强大小变为'mgE q=,求从O 点射出的所有粒子第一次打在x 轴上的坐标范围(不考虑电场变化产生的影响); (3)若保持EB 初始状态不变,仅将粒子束的初速度变为原来的2倍,求运动过程中,粒子速度大小等于初速度λ倍(0<λ<2)的点所在的直线方程.【答案】(1)Bht E= (2)2222225m g m g x q B q B ≤≤ (3)22211528m g y x q B =-+【解析】(1)粒子恰能在xoy 平面内做直线运动,则粒子在垂直速度方向上所受合外力一定为零,又有电场力和重力为恒力,其在垂直速度方向上的分量不变,而要保证该方向上合外力为零,则洛伦兹力大小不变,因为洛伦兹力F Bqv =洛,所以受到大小不变,即粒子做匀速直线运动,重力、电场力和磁场力三个力的合力为零,设重力与电场力合力与-y 轴夹角为θ,粒子受力如图所示,()()()222Bqv qE mg =+,()()225qE mg mg v +==则v 在y 方向上分量大小sin 2y qE E mgv v vBqv B qBθ==== 因为粒子做匀速直线运动,根据运动的分解可得,粒子运动到距x 轴为h 处所用的时间2y h Bh qhB t v E mg===; (2)若在粒子束运动过程中,突然将电场变为竖直向下,电场强度大小变为'mgE q=,则电场力''F qE mg ==电,电场力方向竖直向上;所以粒子所受合外力就是洛伦兹力,则有,洛伦兹力充当向心力,即2v qvB m r =,()()22mqE mg mv R Bq+==如图所示,由几何关系可知,当粒子在O 点就改变电场时,第一次打在x 轴上的横坐标最小,()()()()22212222222sin 2mqE mg mE m gx R B q q BqE mg θ+====+ 当改变电场时粒子所在处于粒子第一次打在x 轴上的位置之间的距离为2R 时,第一次打在x 轴上的横坐标最大,()()()()()()22222222222222[]25sin mqE mg m qE mg Rm g x qEB q Eq BqE mg θ++====+ 所以从O 点射出的所有粒子第一次打在x 轴上的坐标范围为12x x x ≤≤,即2222225m g m gx q B q B≤≤ (3)粒子束的初速度变为原来的2倍,则粒子不能做匀速直线运动,粒子必发生偏转,而洛伦兹力不做功,电场力和重力对粒子所做的总功必不为零;那么设离子运动到位置坐标(x ,y )满足速率'v v =,则根据动能定理有()2211222qEx mgy mv m v --=--,3222231528m g qEx mgy mv q B --=-=-, 所以22211528m gy x q B=-+ 点睛:此题考查带电粒子在复合场中的运动问题;关键是分析受力情况及运动情况,画出受力图及轨迹图;注意当求物体运动问题时,改变条件后的问题求解需要对条件改变引起的运动变化进行分析,从变化的地方开始进行求解.5.图中是磁聚焦法测比荷的原理图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、带电粒子在复合场中的运动专项训练1.如图,绝缘粗糙的竖直平面MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E ,磁场方向垂直纸面向外,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的小滑块从A 点由静止开始沿MN 下滑,到达C 点时离开MN 做曲线运动.A 、C 两点间距离为h ,重力加速度为g .(1)求小滑块运动到C 点时的速度大小v c ;(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块继续运动到水平地面上的P 点.已知小滑块在D 点时的速度大小为v D ,从D 点运动到P 点的时间为t ,求小滑块运动到P 点时速度的大小v p .【来源】2015年全国普通高等学校招生统一考试物理(福建卷带解析) 【答案】(1)E/B (2)(3)【解析】 【分析】 【详解】小滑块到达C 点时离开MN ,此时与MN 间的作用力为零,对小滑块受力分析计算此时的速度的大小;由动能定理直接计算摩擦力做的功W f ;撤去磁场后小滑块将做类平抛运动,根据分运动计算最后的合速度的大小;(1)由题意知,根据左手定则可判断,滑块在下滑的过程中受水平向左的洛伦兹力,当洛伦兹力等于电场力qE 时滑块离开MN 开始做曲线运动,即Bqv qE = 解得:E v B=(2)从A 到C 根据动能定理:2102f mgh W mv -=- 解得:2212f E W mgh m B=-(3)设重力与电场力的合力为F ,由图意知,在D 点速度v D 的方向与F 地方向垂直,从D 到P 做类平抛运动,在F 方向做匀加速运动a=F /m ,t 时间内在F 方向的位移为212x at =从D 到P ,根据动能定理:150a a +=,其中2114mv 联立解得:()22222()P Dmg qE v t v m+=+ 【点睛】解决本题的关键是分析清楚小滑块的运动过程,在与MN 分离时,小滑块与MN 间的作用力为零,在撤去磁场后小滑块将做类平抛运动,根据滑块的不同的运动过程逐步求解即可.2.压力波测量仪可将待测压力波转换成电压信号,其原理如图1所示,压力波p (t )进入弹性盒后,通过与铰链O 相连的“”型轻杆L ,驱动杆端头A 处的微型霍尔片在磁场中沿x 轴方向做微小振动,其位移x 与压力p 成正比(,0x p αα=>).霍尔片的放大图如图2所示,它由长×宽×厚=a×b×d ,单位体积内自由电子数为n 的N 型半导体制成,磁场方向垂直于x 轴向上,磁感应强度大小为0(1)0B B x ββ=->,.无压力波输入时,霍尔片静止在x=0处,此时给霍尔片通以沿12C C 方向的电流I ,则在侧面上D 1、D 2两点间产生霍尔电压U 0.(1)指出D 1、D 2两点那点电势高;(2)推导出U 0与I 、B 0之间的关系式(提示:电流I 与自由电子定向移动速率v 之间关系为I=nevbd ,其中e 为电子电荷量);(3)弹性盒中输入压力波p (t ),霍尔片中通以相同的电流,测得霍尔电压U H 随时间t 变化图像如图3,忽略霍尔片在磁场中运动场所的电动势和阻尼,求压力波的振幅和频率.(结果用U 0、U 1、t 0、α、及β)【来源】浙江新高考2018年4月选考科目物理试题 【答案】(1) D 1点电势高 (2) 001IB U ne d= (3) 101(1)U A U αβ=- ,012f t =【解析】【分析】由左手定则可判定电子偏向D 2边,所以D 1边电势高;当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力,根据电流I 与自由电子定向移动速率v 之间关系为I=nevbd 求出U 0与I 、B 0之间的关系式;图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则可知轻杆的运动周期,当杆运动至最远点时,电压最小,结合U 0与I 、B 0之间的关系式求出压力波的振幅.解:(1)电流方向为C 1C 2,则电子运动方向为C2C1,由左手定则可判定电子偏向D 2边,所以D 1边电势高;(2)当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力0U qvB qb= ① 由电流I nevbd = 得:Iv nebd=② 将②带入①得00IB U ned=(3)图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则轻杆的运动周期为T=2t 0 所以,频率为: 012f t =当杆运动至最远点时,电压最小,即取U 1,此时0(1)B B x β=- 取x 正向最远处为振幅A ,有:01(1?)IB U A nedβ=- 所以:00011(1)1IB U ned IB A U Aned ββ==-- 解得:010U U A U β-=根据压力与唯一关系x p α=可得xp α=因此压力最大振幅为:01m U U p U αβ-=3.在场强为B 的水平匀强磁场中,一质量为m 、带正电q 的小球在O 静止释放,小球的运动曲线如图所示.已知此曲线在最低点的曲率半径为该点到z 轴距离的2倍,重力加速度为g .求:(1)小球运动到任意位置P (x ,y)的速率v ; (2)小球在运动过程中第一次下降的最大距离y m ; (3)当在上述磁场中加一竖直向上场强为E (mgE q>)的匀强电场时,小球从O 静止释放后获得的最大速率m v 。

【来源】江苏高考物理试题复习【答案】(1)2v gy =;(2)2222m m gy q B= ;(3)()2m v qE mg qB =-。

【解析】 【详解】⑴洛伦兹力不做功,由动能定理得2102mgy mv =- ① 解得2v gy = ②⑵设在最大距离m y 处的速率为m v ,根据圆周运动有2mm v qv B mg m R-= ③且由②知2m m v gy = ④由③④及2m R y =,得2222m m gy q B= ⑤⑶小球运动如图所示,由动能定理得21()2m m qE mg y mv -= ⑥由圆周运动得2mm v qv B mg qE m R+-= ⑦且由⑥⑦及2m R y =,解得:()2m v qE mg qB=-4.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。

挡板PQ 垂直MN 放置,挡板的中点置于N 点。

在挡板的右侧区域存在垂直纸面向外的匀强磁场。

在左侧虚线上紧靠M 的上方取点A ,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。

已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。

(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。

若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。

【来源】【市级联考】陕西省榆林市2019届高三第二次理科综合模拟试题(物理部分) 【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知22r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯5.如图所示,在 xOy 坐标平面的第一象限内有一沿 y 轴负方向的匀强电场,在第四象限内有一垂直于平面向里的匀强磁场,现有一质量为m 、电量为+q 的粒子(重力不计)从坐标原点 O 射入磁场,其入射方向与x 的正方向成 45°角.当粒子运动到电场中坐标为(3L ,L )的 P 点处时速度大小为 v 0,方向与 x 轴正方向相同.求: (1)粒子从 O 点射入磁场时的速度 v ;(2)匀强电场的场强 E 0 和匀强磁场的磁感应强度 B 0. (3)粒子从 O 点运动到 P 点所用的时间.【来源】海南省海口市海南中学2018-2019学年高三第十次月考物理试题【答案】(1)02v ;(2)02mv Lq;(3)0(8)4L v π+【解析】 【详解】解:(1)若粒子第一次在电场中到达最高点P ,则其运动轨迹如图所示,粒子在 O 点时的速度大小为v ,OQ 段为圆周,QP 段为抛物线,根据对称性可知,粒子在Q 点时的速度大小也为v ,方向与x 轴正方向成45︒角,可得:045v vcos =︒ 解得:02v v =(2)在粒子从Q 运动到P 的过程中,由动能定理得:2201122qEL mv mv -=- 解得:22mv E qL=又在匀强电场由Q 到P 的过程中,水平方向的位移为:01x v t = 竖直方向的位移为:012v y t L == 可得:2QP x L =,OQ L =由2cos 45OQ R =︒,故粒子在OQ 段圆周运动的半径:2R L = 及mv R qB = 解得:02mvB qL=(3)在Q 点时,0045y v v tan v =︒=设粒子从由Q 到P 所用时间为1t ,在竖直方向上有:10022L L t v v ==粒子从O 点运动到Q 所用的时间为:204Lt v π=则粒子从O 点运动到P 点所用的时间为:t 总120002(8)44L L L t t v v v ππ+=+=+=6.回旋加速器的工作原理如图甲所示,置于真空中的D 形金属盒半径为R ,两盒间有狭缝(间距d R <<),匀强磁场与盒面垂直,被加速粒子的质量为m ,电荷量为q +,加在狭缝间的交变电压如图乙所示,电压值的大小为0U ,周期为T ,与粒子在磁场中的周期相同.一束该种粒子在0~/2t T =时间内从A 处均匀地飘入狭缝,其初速度视为零.粒子在电场中的加速次数与回旋半周的次数相同,假设能够出射的粒子每次经过狭缝均做加速运动;粒子重力不计,不考虑粒子在狭缝中的运动时间,不考虑粒子间的相互作用.求:(1)匀强磁场的磁感应强度B ;(2)粒子从飘入狭缝至动能最大所需的总时间0t ;(3)实际中粒子的质量会随速度的增加而增大,加速后的质量m 与原来质量0m 的关系:21m v t =⎛⎫- ⎪⎝⎭1%后估计最多还能再加速多少次(需要简述理由)?②若粒子质量最终增加2%,那么粒子最终速度为光速的多少倍(结果保留一位有效数字)?【来源】【全国百强校】天津市实验中学2019届高三考前热身训练物理试题【答案】(1)2m qr π(2)220R mqU Tπ(3)100次;0.2【解析】 【详解】解:(1) 依据牛顿第二定律,结合洛伦兹力提供向心,则有:2v qvB m R=电压周期T 与粒子在磁场中的周期相同:2rT vπ= 可得2m T qBπ=,2mB qr π= (2)粒子运动半径为R 时:2R v r π=且2km 12E mv = 解得:22km22mR E Tπ=粒子被加速n 次达到动能km E ,则有:0km E nqU =不考虑粒子在狭缝中的运动时间,又有粒子在电场中的加速次数与回旋半周的相同,得粒子从飘入狭缝至动能最大所需的总时间:22002T R mt n qU Tπ=•=(3)粒子在磁场中的周期:2nT qBπ=,质量增加1%,周期增大1%, 再加速次数不超过221001%rT ⨯=⨯次加速后的质量m 与原来质量0m 的关系:21()m v c=-, 01.02m m = 粒子最终速度为:0.2v c = 即粒子最终速度为光速的0.2倍7.如图,平面直角坐标系中,在,y >0及y <-32L 区域存在场强大小相同,方向相反均平行于y 轴的匀强电场,在-32L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m ,电荷量为q 的带正电粒子,经过y 轴上的点P 1(0,L )时的速率为v 0,方向沿x 轴正方向,然后经过x 轴上的点P 2(32L ,0)进入磁场.在磁场中的运转半径R =52L (不计粒子重力),求:(1)粒子到达P 2点时的速度大小和方向; (2)EB; (3)粒子第一次从磁场下边界穿出位置的横坐标; (4)粒子从P 1点出发后做周期性运动的周期. 【来源】2019年内蒙古呼和浩特市高三物理二模试题 【答案】(1)53v 0,与x 成53°角;(2)043v ;(3)2L ;(4)()04053760L v π+.【解析】【详解】(1)如图,粒子从P1到P2做类平抛运动,设到达P2时的y方向的速度为v y,由运动学规律知32L=v0t1,L=2yvt1可得t1=32Lv,v y=43v0故粒子在P2的速度为v220yv v+=53v0设v与x成β角,则tanβ=yvv=43,即β=53°;(2)粒子从P1到P2,根据动能定理知qEL=12mv2-12mv02可得E=289mvqL粒子在磁场中做匀速圆周运动,根据qvB=m2vR解得:B=mvqR=5352m vq L⨯⨯=023mvqL解得:043vEB=;(3)粒子在磁场中做圆周运动的圆心为O′,在图中,过P2做v的垂线交y=-32L直线与Q′点,可得:P2O′=3253Lcos=52L=r故粒子在磁场中做圆周运动的圆心为O′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y=-32L直线从M点穿出磁场,由几何关系知M的坐标x=32L+(r-r cos37°)=2L;(4)粒子运动一个周期的轨迹如上图,粒子从P 1到P 2做类平抛运动:t 1=32Lv 在磁场中由P 2到M 动时间:t 2=372360r v π︒⨯=037120Lv π 从M 运动到N ,a =qE m =289v L则t 3=v a =0158L v则一个周期的时间T =2(t 1+t 2+t 3)=()04053760Lv π+.8.如图所示,直线y =x 与y 轴之间有垂直于xOy 平面向外的匀强磁场1B ,直线x =d 与y =x 间有沿y 轴负方向的匀强电场,电场强度41.010V/m E =⨯,另有一半径R =1.0m 的圆形匀强磁场区域,磁感应强度20.20T B =,方向垂直坐标平面向外,该圆与直线x =d 和x 轴均相切,且与x 轴相切于S 点.一带负电的粒子从S 点沿y 轴的正方形以速度0v 进入圆形磁场区域,经过一段时间进入磁场区域1B ,且第一次进入磁场1B 时的速度方向与直线y =x垂直.粒子速度大小50 1.010m/s v =⨯,粒子的比荷为5/ 5.010C/kg q m =⨯,粒子重力不计.求:(1)粒子在匀强磁场2B 中运动的半径r ; (2)坐标d 的值;(3)要使粒子无法运动到x 轴的负半轴,则磁感应强度1B 应满足的条件; (4)在(2)问的基础上,粒子从开始进入圆形磁场至第二次到达直线y =x 上的最长时间( 3.14π=,结果保留两位有效数字).【来源】天津市滨海新区2019届高三毕业班质量监测理科综合能力测试物理试题 【答案】(1)r =1m (2)4m d = (3)10.1B T ≤或10.24B T ≥ (4)56.210t s -≈⨯ 【解析】 【详解】解:(1) 由带电粒子在匀强磁场中运动可得:2020v B qv m r= 解得粒子运动的半径:1r m =(2) 粒子进入匀强电场以后,做类平抛运动,设粒子运动的水平位移为x ,竖直位移为y 水平方向:0x v t = 竖直方向:212y at =Eq a m=tan 45v at︒=联立解得:2x m =,1y m = 由图示几何关系得:d x y R =++ 解得:4d m =(3)若所加磁场的磁感应强度为1B ',粒子恰好垂直打在y 轴上,粒子在磁场运动半径为1r 由如图所示几何关系得:)12r y R =+02v v =由带电粒子在匀强磁场中运动可得:211vB qv m r '=解得:10.1B T '=若所加磁场的磁感应强度为1B '',粒子运动轨迹与轴相切,粒子在磁场中运动半径为2r 由如图所示几何关系得:)2222r r y R =+由带电粒子在匀强磁场中运动可得:212vB qv m r ''=解得1210.2410B T T ''=≈ 综上,磁感应强度应满足的条件为10.1B T ≤或10.24B T ≥(4)设粒子在磁场2B 中运动的时间为1t ,在电场中运动的时间为2t ,在磁场1B 中运动的时间为3t ,则有:1114t T =102RT v π= 20x t v =3212t T =222r T vπ=解得:()551232 1.52210 6.210t t t t s s ππ--=++=-+⨯≈⨯9.如图所示,在竖直平面内的xoy 直角坐标系中,x 轴上方存在正交的匀强电场和匀强磁场,电场强度E 1,方向沿y 轴向上,磁感应强度B ,方向垂直纸面向里.x 轴下方存在方向沿y 轴向上的匀强电场(图中未画出),场强为E 2.质量为m 、电荷量为q 的带正电小球(可视为质点),从y 轴上的A 点以速度大小v 0沿x 轴正方向抛出,经x 轴上的P 点后与x 轴正向成45°进入x 轴上方恰能做匀速圆周运动.O 、P 两点间距离0x 与O 、A 两点间距离0y 满足以下关系,200202=y x g v ,重力加速度为g ,以上物理量中m 、q 、v 0、g 为已知量,其余量大小未知.(1)电场强度E 1与E 2的比值(2)若小球可多次(大于两次)通过P 点,则磁感应强度B 为多大?(3)若小球可恰好两次通过P 点,则磁感应强度B 为多大?小球两次通过P 点时间间隔为多少?【来源】安徽省黄山市2019届高中毕业班第二次质量检测高三理综物理试题 【答案】(1)12;(2)0mg B qv = ;(3)01mg B 1n qv =+() (n=1,2,3……..);0nv 3πt 22g=+() (n=1,2,3……..) 【解析】 【分析】 【详解】解:(1)小球在x 轴上方匀速圆周,可得:1qE mg = 小球从A 到P 的过程做内平抛运动:00x v t = 201y at 2= 结合:20020g y x 2v =可得:a g =由牛顿第三定律可得:2qE mg ma -= 解得:2qE 2mg = 故:12E 1E 2= (2) 小球第一次通过P 点时与x 轴正向成45︒,可知小球在P 点时则有:y 0v v = 故P点时的速度:0v =由类平抛的位移公式可得:200v x g= 小球多次经过P 点,轨迹如图甲所示,小球在磁场中运动34个周期后,到达x 轴上的Q 点,P 、Q 关于原点O 对称,之后回到A 并不断重复这一过程,从而多次经过P 点设小球在磁场中圆周运动的半径为R,由几何关系可得:0R又由:2v qvB m R=联立解得:0mgB qv =(3)小球恰能两次经过P 点,轨迹如图乙所示 在x 轴上方,小球在磁场中的运动周期:2πmT qB= 在x轴下方,小球的运动时间:0020x 2v t 2v g== 由规律可知,小球恰能两次经过P 点满足的几何关系为:012x 2R 2R n=+⨯ (n=1,2,3……..) 解得:01(1)mgB n qv =+ (n=1,2,3……..) 两次通过P 点的时间间隔为:23(1)4t n T nt =++ (n=1,2,3……..) 解得:03(2)2nv t gπ=+(n=1,2,3……..)10.如图所示,空间有相互平行、相距和宽度也都为L 的I 、II 两区域,I 、II 区域内有垂直于纸面的匀强磁场,I 区域磁场向内、磁感应强度为0B ,II 区域磁场向外,大小待定。

相关文档
最新文档