开关电源设计报告

合集下载

开关电源毕业设计

开关电源毕业设计

开关电源毕业设计开关电源毕业设计引言开关电源是现代电子设备中常见的一种电源供应方式。

它具有高效率、小体积、轻重量等优点,因此被广泛应用于各个领域。

作为一名电子工程专业的毕业生,我选择了开关电源作为我的毕业设计课题。

在这篇文章中,我将分享我在开关电源毕业设计过程中的学习和经验。

理论基础在开始设计之前,我首先深入研究了开关电源的理论基础。

开关电源的核心是开关器件,如MOSFET和二极管。

了解它们的工作原理和特性对于设计一个稳定和高效的开关电源至关重要。

此外,我还学习了开关电源的拓扑结构,如Buck、Boost和Buck-Boost等。

每种拓扑结构都有其适用的场景和特点,因此选择适合项目需求的拓扑结构也是一个重要的决策。

电路设计在理论基础的基础上,我开始进行电路设计。

首先,我绘制了整个开关电源的框图,明确了各个模块之间的关系和功能。

然后,我进行了详细的元器件选型和电路设计。

在选型过程中,我考虑了功率需求、效率要求、可靠性等因素。

在电路设计中,我注意到了一些关键问题,如输出滤波电容的选择、反馈控制电路的设计等。

通过仔细的设计和仿真,我确保了电路的稳定性和性能。

PCB设计完成电路设计后,我转向了PCB(Printed Circuit Board)设计。

PCB设计是将电路设计转化为实际的电路板的过程。

我使用专业的PCB设计软件,将电路布局在电路板上,并进行布线。

在布局过程中,我注意到了信号和功率之间的隔离,以及元器件之间的距离和位置。

在布线过程中,我遵循了最佳实践,如减少信号线的长度、避免信号线的交叉等。

通过精心的PCB设计,我确保了电路的可靠性和稳定性。

实验验证完成PCB设计后,我开始进行实验验证。

我首先搭建了实验平台,将开关电源连接到负载上,并通过示波器和多用表等仪器进行测量和分析。

我测试了开关电源的输出电压、输出电流、效率等参数,并与设计要求进行对比。

在实验过程中,我遇到了一些问题,如电磁干扰、温升等。

毕业设计开关电源

毕业设计开关电源

毕业设计开关电源毕业设计开关电源随着科技的不断发展,电子产品已经成为人们生活中不可或缺的一部分。

而这些电子产品的正常运行离不开电源的供应。

在电源中,开关电源作为一种高效、稳定的供电方式,被广泛应用于各类电子设备中。

本文将从开关电源的原理、设计要点以及应用领域等方面进行论述。

一、开关电源的原理开关电源是一种将交流电转换为直流电供应给电子设备的电源。

其工作原理是通过开关管的开关动作来控制电源的输出电压。

开关电源的核心部件是开关管和变压器。

当交流电输入时,变压器将交流电转换为一定频率的高频交流电。

随后,开关管通过不断地开关动作,将高频交流电转换为直流电输出。

通过这样的方式,开关电源能够提供稳定且高效的电源供应。

二、开关电源的设计要点1. 输入电压范围:开关电源的输入电压范围是设计时需要考虑的重要因素。

一般来说,输入电压范围越宽,适用性就越广。

因此,在设计开关电源时,需要选择合适的电压范围,并采取相应的电路设计措施,以确保电源能够在不同电压条件下正常工作。

2. 输出电压稳定性:开关电源的输出电压稳定性是影响其性能的重要指标之一。

在设计过程中,需要通过合理的电路设计和控制手段,保证输出电压的稳定性。

常见的控制手段包括反馈控制和电压调节电路等。

3. 效率和功率因数:开关电源的效率和功率因数也是设计过程中需要考虑的重要因素。

高效率的开关电源能够减少能量的损耗,提高能源利用率。

而高功率因数则能够减少对电网的污染。

因此,在设计开关电源时,需要采取相应的措施,提高其效率和功率因数。

4. 过载和短路保护:开关电源在使用过程中,可能会遇到过载和短路等异常情况。

为了保护电源和电子设备的安全,需要在设计中考虑相应的过载和短路保护措施。

常见的保护措施包括过载保护、短路保护和过压保护等。

三、开关电源的应用领域开关电源由于其高效、稳定的特点,被广泛应用于各类电子设备中。

其中,常见的应用领域包括计算机、通信设备、工业自动化设备等。

开关电源设计(精通型)

开关电源设计(精通型)

开关电源设计(精通型)一、开关电源基本原理及分类1. 基本原理开关电源的工作原理是通过控制开关器件的导通与关断,实现电能的高效转换。

它主要由输入整流滤波电路、开关变压器、输出整流滤波电路和控制电路组成。

在开关电源中,开关器件将输入的交流电压转换为高频脉冲电压,通过开关变压器实现电压的升降,经过输出整流滤波电路,得到稳定的直流电压。

2. 分类(1)PWM(脉冲宽度调制)型开关电源:通过调节脉冲宽度来控制输出电压,具有高效、高精度等特点。

(2)PFM(脉冲频率调制)型开关电源:通过调节脉冲频率来控制输出电压,适用于负载变化较大的场合。

二、开关电源关键技术与设计要点1. 高频变压器设计(1)选用合适的磁芯材料,保证变压器在高频工作时的磁通密度不超过饱和磁通密度。

(2)合理设计变压器的绕组匝数比,以满足输出电压和电流的要求。

(3)考虑变压器损耗,包括铜损、铁损和杂散损耗,确保变压器具有较高的效率。

2. 开关器件的选择与应用(1)开关频率:根据开关电源的设计要求,选择合适的开关频率。

(2)电压和电流等级:确保开关器件能承受最大电压和电流。

(3)功率损耗:选择低损耗的开关器件,提高开关电源的效率。

(4)驱动方式:根据开关器件的特点,选择合适的驱动电路。

3. 控制电路设计(1)稳定性:确保控制电路在各种工况下都能稳定工作。

(2)精度:提高控制电路的采样精度,降低输出电压的波动。

(3)保护功能:设置过压、过流、短路等保护功能,提高开关电源的可靠性。

三、开关电源设计实例分析1. 确定设计指标输入电压:AC 85265V输出电压:DC 24V输出电流:4.17A效率:≥90%2. 高频变压器设计选用EE型磁芯,计算磁芯尺寸、绕组匝数和线径。

3. 开关器件选择根据设计指标,选择一款适合的MOSFET作为开关器件。

4. 控制电路设计采用UC3842作为控制芯片,设计控制电路,实现开关电源的稳压输出。

5. 实验验证搭建实验平台,对设计的开关电源进行测试,验证其性能指标是否符合要求。

开关电源课程设计报告

开关电源课程设计报告

电力电子课程设计报告题目:开关电源课程设计专业:电气自动化班级:电气1012姓名学号:日期: 2011 年11月 16日一、设计要求(1)输入电压:AC220±10%V(2)输出电压: 12V(3)输出功率:12W(4)开关频率: 80kHz二、反激稳压电源的工作原理图2-1 反激稳压电源的电路图三、反激电路主电路设计(1)(1)NpVdc Ton Vo TrNsm-=+(3-1)1.反激变压器主电路工作原理反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计.1)工作过程:S 开通后,VD 处于断态,W1绕组的电流线性增长,电感储能增加;S 关断后,W1绕组的电流被切断,变压器中的磁场能量通过W2绕组和VD 向输出端释放。

反激电路的工作模式:反激电路的理想化波形S i S i t o t oft t t tU i OO O O 反激电路原理图电流连续模式:当S 开通时,W2绕组中的电流尚未下降到零。

输出电压关系: 电流断续模式:S 开通前,W2绕组中的电流已经下降到零。

输出电压高于式(8-3)的计算值,并随负载减小而升高,在负载为零的极限情况下,….因此反激电路不应工作于负载开路状态。

B R B SB HO图 8-18 磁心复位过2. 设计原则和设计步骤变压器设计步骤:1)计算原边绕组流过的峰值电流。

开关电源稳压电源设计报告

开关电源稳压电源设计报告

开关稳压电源摘要:本系统以直流电压源为核心,MSP430F149单片机为主控制器,通过键盘来设置直流电源的输出电压,设置步进。

并可由LED显示实际输出电压值。

本系统由单片机程控输出数字信号,经过D/A转换器输出,实现数字给定。

实现数控可调稳压。

单片机系统还兼顾对恒压源进行实时监控,输出电压经过采样后,通过A/D转换芯片,实时把模拟量转化为数据量,再经单片机分析处理,通过数据形式的反馈环节,使电压更加稳定,这样构成稳定的电压源。

关键词:数控恒压源闭环控制一.设计任务及要求1.设计任务: 设计制作具有一定电压范围和功能的数控电源.2.设计要求在电阻负载条件下,使电源满足下述要求:1.基本要求(1)输出电压U O可调范围:30V~36V;(2)最大输出电流I Omax:2A;(3)U2从15V变到21V时,电压调整率S U≤2%(I O=2A);(4)I O从0变到2A时,负载调整率S I≤5%(U2=18V);(5)输出噪声纹波电压峰-峰值U OPP≤1V(U2=18V,U O=36V,I O=2A);(6)D C-DC变换器的效率η≥70%(U2=18V,U O=36V,I O=2A);(7)具有过流保护功能,动作电流I O(th)=2.5±0.2A;2.发挥部分(1)进一步提高电压调整率,使S U≤0.2%(I O=2A);(2)进一步提高负载调整率,使S I≤0.5%(U2=18V);(3)进一步提高效率,使η≥85%(U2=18V,U O=36V,I O=2A);(4)排除过流故障后,电源能自动恢复为正常状态;(5)能对输出电压进行键盘设定和步进调整,步进值1V,同时具有输出电压、电流的测量和数字显示功能。

(6)其他。

二、总体方案论证与比较方案一:采用51系列单片机作为整机的控制单元,通过改变输入数字量来改变给定信号间接地改变输出电压的大小。

为了能够使系统具备检测实际输出电压值的大小,可以经过ADC进行模数转换,间接用单片机实时对电压进行采样,然后进行数据处理及显示。

开关电源设计 开题报告

开关电源设计 开题报告

开关电源设计开题报告开关电源设计开题报告一、选题背景和意义开关电源是一种常见的电源供应方式,具有高效率、体积小、重量轻、稳定性好等优点,被广泛应用于各种电子设备中。

随着科技的不断发展,对于开关电源的需求也越来越高。

因此,深入研究开关电源的设计原理和方法,对于提高电子设备的性能和可靠性具有重要意义。

二、研究目标和内容本次开题报告的研究目标是设计一种高效、稳定的开关电源,并对其进行性能测试和优化。

具体内容包括:1. 开关电源的基本原理和工作方式;2. 开关电源的设计流程和关键技术;3. 开关电源的性能测试方法和指标;4. 开关电源的优化方法和策略。

三、研究方法和步骤本次研究将采用以下方法和步骤:1. 文献综述:对于开关电源的相关理论和技术进行深入了解和梳理,了解目前的研究状况和存在的问题。

2. 设计方案确定:根据文献综述的结果,确定一种适合的开关电源设计方案,并进行初步仿真和优化。

3. 实验搭建:根据设计方案,搭建开关电源的实验平台,包括电路板的设计和制作。

4. 性能测试:对搭建好的开关电源进行性能测试,包括输出电压稳定性、效率、负载能力等指标的测量。

5. 优化改进:根据性能测试结果,对开关电源进行优化改进,提高其性能和可靠性。

6. 结果分析和总结:对优化后的开关电源进行测试和分析,总结研究结果并提出进一步改进的建议。

四、预期成果和创新点本次研究的预期成果包括:1. 设计出一种高效、稳定的开关电源原型;2. 提出一种有效的开关电源设计方法和优化策略;3. 对开关电源的性能测试结果进行分析和总结,为后续研究提供参考。

本次研究的创新点主要体现在以下几个方面:1. 对于开关电源的设计原理和方法进行深入研究,提出一种新的设计方案;2. 对开关电源的性能测试方法和指标进行探索和改进,提高测试的准确性和可靠性;3. 提出一种有效的开关电源优化方法和策略,提高其性能和可靠性。

五、研究计划安排本次研究计划按照以下时间安排进行:1. 第一阶段(一个月):进行文献综述,了解开关电源的相关理论和技术;2. 第二阶段(两个月):确定设计方案,进行初步仿真和优化;3. 第三阶段(一个月):搭建实验平台,进行性能测试;4. 第四阶段(两个月):对性能测试结果进行分析和优化改进;5. 第五阶段(一个月):撰写研究报告和总结。

开关电源设计报告

开关电源设计报告

1开关电源主电路设计1.1主电路拓扑结构选择由于本设计的要求为输入电压176-264V交流电,输出为24V直流电,因此中间需要将输入侧的交流电转换为直流电,考虑采用两级电路。

前级电路可以选用含电容滤波的单相不可控整流电路对电能进行转换,后级由隔离型全桥Buck电路构成。

总体要求是先将AC176-264V整流滤波,然后再经过BUCK电路稳压到24V。

考虑到变换器最大负输出功率为1000W,因此需采用功率级较高的Buck电路类型,且必须保证工作在CCM工作状态下,因此综合考虑,本文采用全桥隔离型Buck变换器。

其主电路拓扑结构如下图所示:下面将对全桥隔离型BUCK变换器进行稳态分析,主要是推导前级输出电压V与后级输g 出电压V之间的关系,为主电路参数的设计提供参考。

将前级输出电压V代替前级电路,作g 为后级电路的输入,且后级BUCK变换器工作在CCM模式,BUCK电路中的变压器可以用等效电路代替。

由于全桥隔离型BUCK变换器中变压器二次侧存在两个引出端,使得后级BUCK电路的工作频率等同于前级二倍的工作频率,如图1-1所示。

在2T的工作时间内,总共可分为四种S 开关阶段,其具体分析过程如下:1)当0<t<DT时,此时Q、Q和D导通,其等效电路图如图1-2所示。

S145/?1-1) 1-2) 1-3)3) du.•川L i (t )m 严+仃(t )c 二二v (t )R图1-3在DT<t<T 时等效电路SSv=0sv=-v Li=i -v /R C当TS <t<a+D )TS 时,此时Q2、1-4) 1-5)1-6)Q 和D 导通,其等效电路图如图1-2所示。

36图1-2在0<t<DT 时等效电路Sv=nvs gv=nv -vL gi=i -v /RC2)当DT<t<T 时,此时Q ~Q 全部关断,D 和D 导通,其等效电路图如图1-3SS 1465所示。

开关电源设计开题报告

开关电源设计开题报告

开关电源设计开题报告一、项目背景和目标开关电源是一种常用的电源转换器,其工作原理是通过将输入电源以开关的方式进行开关操作,使得输出电压和电流可以按照要求进行调整。

开关电源具有高效率、稳定性好、体积小等优点,广泛应用于各个领域。

本项目的目标是设计一个开关电源,以满足特定的输出电压和电流需求,并具备较高的效率和稳定性。

二、项目计划1. 确定需求和规格在项目开始之前,需要明确开关电源的输出电压和电流需求,以及其他相关的规格要求,如输入电压范围、效率要求等。

2. 选型和设计根据需求和规格,选择合适的开关电源芯片和其他相关元件,进行电路设计。

设计包括电路原理图和PCB布局。

3. 制作样板根据设计,制作一个开关电源的样板,用于测试和验证电路的性能和稳定性。

4. 调试和优化通过对样板的测试和调试,发现并解决问题,优化电路的性能和稳定性。

可能需要进行多次的调试和优化。

5. 批量生产当样板的性能和稳定性达到要求后,可以进行批量生产。

生产过程中需要注意质量控制和测试。

6. 测试和验证对生产出的开关电源进行测试和验证,确保其满足设计要求和规格要求。

7. 最终交付最终交付开关电源给客户或使用方,提供技术支持和售后服务。

三、预期成果和效益通过本项目的实施,预期将获得以下成果和效益:1.设计出满足特定需求和规格要求的开关电源,提供稳定的输出电压和电流。

2.提高电源转换效率,减少能量损耗,节约能源。

3.降低开关电源的体积和重量,提高其适用性和可携带性。

4.提供更加稳定和可靠的电源供应,保障设备的正常运行。

5.降低生产成本,提高生产效率。

四、项目进度和风险管理项目进度将按照以下计划进行:1.第一周:确定需求和规格。

2.第二周:选型和设计。

3.第三周:制作样板。

4.第四周:调试和优化。

5.第五周:批量生产。

6.第六周:测试和验证。

7.第七周:最终交付。

项目风险主要包括以下几个方面:1.技术风险:设计和制作过程中可能遇到技术问题,导致项目进度延迟或无法实现预期效果。

DCDC开关电源毕业设计开题报告

DCDC开关电源毕业设计开题报告
通过本次的毕业设计,巩固电路和模拟电子技术和学习有关开关电源的基础知识,并能够学以致用,同时拥有分析和解决问题的能力,以及一定的基于模拟电子技术的研究设计能力。为了以且能够独立完成任何一种相关设计做下铺垫。
二、国内外研究综述
国内开关电源技术的发展基本上起源于20世纪70年代末和80年代初。20世纪80年代中期开关电源产品开始推广和应用。目前,DC-DC开关电源的功率密度可达到7.3W/cm3(每立方英寸120W)。当今的软开关技术在DC-DC开关电源中的应用使得DC-DC开关电源发生了质的飞跃。
国外自20世纪90年代以来,开关电源的发展更是日新月异。许多新的领域和新的要求又对开关电源提出了更新更高的挑战。如果从一个开尖电源的输入和输出端口观察,可以发现输入的要求变得更严了,不符合IEC1000-3-2标准的产品将陆续被淘汰。如今美国和日本的某些公司设计制造的多种ECI软开关DC-DC变换器和高频RM技术使整个DC-DC开关电源电路的效率提高了80%-90%。
三、毕业设计(论文)所用的方法
DC-DC开关电源的具体电路有单端正励式和反励式,推挽式,半桥式,全桥式,降压式,升压式及升降压式。其中升降压式又分有电感传输和电容传输。这应该根据设计要求选择合适的电路。本次设计采用了软开关在DC-DC开关电源的应用,使得DC-DC开关电源的工作频率更理想。功率器件采用了电容元件耦合的功率元件。控制电路采用的是PWM控制的集成芯片。设计中的拓扑结构采用非隔离型。其中有4种基本拓扑结构适用于DC-DC开关电源。
参考文献主要是从图书馆中借得和学校上课发的专业书。资料都是网上查询得到的。
五、指导教师审批意见
年月日
四、主要参考文献与资料获得情况
(1)中国电力出版社何希才《稳压电源电路的设计与应用》2006

开关电源设计报告

开关电源设计报告

开关电源设计报告目录•引言•开关电源基本原理•开关电源设计流程•开关电源关键技术•开关电源设计实例•开关电源发展趋势与展望01引言Part报告目的和背景目的本报告旨在介绍开关电源的基本原理、设计方法、性能指标以及应用领域,为读者提供关于开关电源的全面了解和指导。

背景随着电子设备的快速发展,开关电源作为一种高效、可靠的电源供应方式,在各个领域得到了广泛应用。

了解和掌握开关电源的相关知识对于电子工程师和相关从业人员具有重要意义。

开关电源简介定义开关电源是一种通过控制开关管开通和关断的时间比率,将输入电压转换成稳定输出电压的电源供应方式。

工作原理开关电源通过将输入电压整流成直流电压,然后通过开关管和高频变压器进行能量转换,最终输出稳定的直流电压。

特点开关电源具有效率高、体积小、重量轻、稳定性好等优点,广泛应用于计算机、通信、工业控制等领域。

02开关电源基本原理Part开关电源工作原理开关电源的基本原理是通过控制开关管的工作状态,将输入的直流电压转换成高频的矩形波电压,再通过整流滤波电路将高频的矩形波电压转换成直流电压输出。

开关电源主要由输入电路、输出电路、控制电路和开关管组成。

输入电路的作用是隔离和保护输入电压,输出电路的作用是稳定输出电压和滤波,控制电路的作用是调节开关管的工作状态,开关管的作用是控制能量转换。

根据输出电压是否可调,开关电源可分为定压式和稳压式。

定压式开关电源的输出电压是固定的,而稳压式开关电源的输出电压可以通过调节控制电路来改变。

根据输入电压是否可变,开关电源可分为单输入式和多输入式。

单输入式开关电源只能接收一种输入电压,而多输入式开关电源可以接收多种输入电压。

效率高开关电源的效率一般可达到80%以上,比传统的线性电源高出很多。

可靠性高开关电源的电路设计简单,元器件数量少,因此其可靠性相对较高。

体积小由于采用了高频变压器,开关电源的体积可以做得非常小,有利于设备的紧凑设计。

重量轻由于体积小,重量也相对较轻,便于携带和移动。

开关电源设计实验报告

开关电源设计实验报告

开关电源设计实验报告实验名称:DC/DC升压电路班级:机小组成员:学号:时间:2010-12-22目录一、实验要求………………………………………二、实验器材清单…………………………………三、电路原理图……………………………………四、电路工作原理…………………………………五、PCB图…………………………………………六、实验中出现的问题以及解决方法……………七、实验心得………………………………………一、实验要求:(1)掌握简单开关电源工作原理。

(2)掌握脉宽调制PWM控制模式。

(3)进一步掌握制版、电路调制等技能。

二、实验器材清单:三、电路原理图四、电路工作原理电路各元件设计过程1、技术指标:输入电压DC+12V 输出电压DC+100V 最大电流IMAX=0.1A 输出电压纹波峰值+50Mv2、“黑箱”预估:Pout=Uout*Imax=150*0.1W=15WPin=Pout/YED=15/0.8=18.75W3、输入电流:Pin/DC=18.75/12=1.5625A4、损耗功率:P耗=Pin-Pout=18.75-15W=3.75W 开关器件损耗P开=3.75*0.4W=1.5W续流二级管损耗P续=3.75*0.6W=2.25W5、估计峰值电流:I=1.4*0.1=0.14A6、主电路电感设计:Lmin=(Uin-Uout)(1-Uout/Uin)/1.4*Iout*Fsw=(12-150)(1-150/12)/(1.4*0.5*100)uH=22uH 所选的电感值只需大与22uH即可, 100uH的电感符合所选要求7、开关器件:(1)Rds=P’耗/I2max=1.5/0.142=76欧;(2)芯片产生的脉冲类型属于PWM型;(3)开关器件选择电压类型;综合以上,选择9012作为开关器件8、芯片的选择电路工作频率为100Hz,TL494的工作频率范围为1~300Hz,符合所选要求9、主电路续流二级管的选择:UVD(max)=P’耗/Imax=2.25/0.1V=22.5V 选择UVD<22.5V,I>0.1A的二级管,FR157符合所选要求TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。

开关电源设计报告

开关电源设计报告

开关电源设计报告摘要:本文旨在介绍开关电源的基本概念和设计过程。

开关电源是一种高效率、轻便和可靠性较高的电源设计方案,可用于各种应用场合。

本文首先介绍了开关电源的基本工作原理,包括开关管、整流电路、滤波电路和稳压电路等重要组成部分。

然后,将详细讨论开关电源的设计过程和关键技术要点,包括输入滤波、波形整形、环路稳定和电源效率等。

最后,通过一个实际案例说明了开关电源设计的具体步骤和方法。

1.引言开关电源是一种主动电器元件控制工作周期的电源系统。

相较于传统的线性电源,开关电源具有更高的效率、更小的体积和更好的稳定性。

由于其优越性能,开关电源在电子设备、通信系统、工业自动化和医疗器械等领域得到了广泛的应用。

2.开关电源工作原理2.1开关管2.2整流电路2.3滤波电路2.4稳压电路3.开关电源设计过程3.1输入滤波3.2波形整形3.3环路稳定3.4电源效率4.开关电源设计案例以一个10W的开关电源设计为例,介绍设计步骤和方法。

4.1设计需求分析4.2电源参数选择4.3输入滤波设计4.4输出整形设计4.5稳压控制设计4.6环路稳定设计4.7效率分析和改进5.结果和讨论通过模拟和实验结果,验证开关电源设计的正确性和可行性。

6.结论本文详细介绍了开关电源的基本工作原理、设计过程和关键技术要点。

通过一个10W开关电源设计案例,验证了设计方法的可靠性和实用性。

开关电源设计是一项综合的工程技术,需要对电力、电子器件和线路特性等方面的知识进行综合应用。

开关电源设计报告

开关电源设计报告

开关电源设计报告一、设计背景开关电源是一种高效率、小体积和重量轻的电源。

因此,在现代电子设备中被广泛使用。

开关电源以开关方式来传递能量,通过周期性开关的方式将直流电源转换为高频脉冲电流,然后经过二次整流滤波得到所需的直流电压。

二、设计目标本设计旨在设计出一种高效率、稳定性好、噪声低的开关电源,满足现代电子设备对电源的需求。

三、设计原理开关电源设计主要包括输入滤波、整流、滤波、功率转换等模块。

其中,输入滤波模块主要是为了滤除输入电流中的高频噪声,保证电源的输入电流纯净;整流模块主要是通过整流器将输入电压转换为脉冲电流;滤波模块则是为了过滤掉脉冲电流带来的高频噪声;功率转换模块是通过开关管和能量存储元件来实现电能的传递和转换。

四、设计步骤1.确定需求:根据电子设备的工作电压和电流要求,确定所需的输出电压和电流。

2.选择元器件:选择合适的变压器、电容、电感以及其他电子元器件,根据设计需求确定元件参数。

3. 确定拓扑结构:根据设计要求选择合适的拓扑结构,如Boost、Buck、Buck-Boost等,并进行相应的计算和仿真验证。

4.进行电路设计:根据所选拓扑结构,设计输入滤波电路、整流电路、滤波电路和功率转换电路。

根据设计要求确定元器件的电压、电流和功率等参数。

5.进行仿真验证:通过软件仿真工具,验证设计电路的性能和稳定性,分析电路设计中的问题和不足。

6.PCB设计:根据电路设计结果进行PCB布局设计和线路连接设计。

7.组装和调试:将设计好的电路进行组装,并进行电气性能的实际测试和调试。

8.优化改进:根据实际测试结果进行电路的优化改进,以提高电路的性能和稳定性。

9.总结报告:总结开关电源设计的过程和结果,分析优缺点,并提出进一步改进的建议。

五、设计结果通过以上步骤,完成了一种满足设计要求的开关电源设计。

该电源具有高效率、稳定性好、噪声低等特点,能够满足电子设备对电源的要求。

六、设计总结本设计通过选择合适的拓扑结构和元器件,经过仿真验证和实际调试,成功设计了一款高效率、稳定性好、噪声低的开关电源。

输出可调开关电源设计报告

输出可调开关电源设计报告

输出可调开关电源设计报告1. 引言可调开关电源是一种广泛应用于各种电子设备中的稳定电压电源。

本设计报告旨在介绍可调开关电源的设计原理、工作原理、参数计算和具体电路图等内容,以供读者参考和学习。

2. 设计原理可调开关电源的设计原理是基于开关电源的工作原理,通过控制开关管的导通和截止状态,使得输入电压通过变压器变换,并经过滤波电路和稳压电路等模块,最终输出稳定的调节电压。

3. 工作原理可调开关电源的工作原理如下:1. 输入交流电压经整流电路转换为直流电压。

2. 直流电压经过滤波电路,去除交流成分,得到纯净的直流电压。

3. 直流电压经过开关管控制模块,通过开关管的导通和截止状态,改变输入电压的有效值。

4. 经过变压器的变换,输出经过滤波的调节电压。

5. 调节电压经过稳压电路,得到最终稳定的输出电压。

4. 参数计算在设计可调开关电源时,需要计算一些参数,以确定电路的工作规格。

主要参数包括:1. 输入电压范围:通常为交流220V的输入电压。

2. 输出电压范围:根据实际需求确定。

3. 输出电流:根据实际负载要求确定。

4. 开关频率:一般为几十kHz至几百kHz。

5. 开关管的参数:根据负载要求和开关频率确定。

6. 变压器参数:根据输入输出电压比和功率确定。

5. 具体电路图以下是一种简化的可调开关电源电路图:![可调开关电源电路图](电路图链接)其中包括输入整流滤波电路、开关管控制模块、变压器、滤波电路和稳压电路等模块。

具体电路图可以根据实际需求进行调整和扩展。

6. 结论可调开关电源是一种常用的稳定电压电源,在各类电子设备中得到广泛应用。

本设计报告介绍了可调开关电源的设计原理、工作原理、参数计算和具体电路图等内容,希望能对读者有所帮助。

在实际设计中,还需要考虑负载特性、过载保护、过温保护等因素,以确保电源的可靠性和稳定性。

开关电源设计报告

开关电源设计报告

开关电源设计报告一、引言开关电源是一种能将交流电转换为稳定直流电的电源系统,其重要性在于它可以提供各种电子设备所需的不同电压和电流。

本设计报告旨在介绍一种基于开关电源的设计方案,以满足特定要求的电子设备的电源需求。

二、设计目标本设计的目标是设计一种能够提供稳定电压和电流输出的开关电源,以满足特定要求的电子设备的供电需求。

具体要求如下:1.输出电压范围:12V-24V可调;2.输出电流范围:0.5A-2A可调;3.输出电压稳定度:小于1%;4.输出电流稳定度:小于1%;5.效率:大于80%。

三、设计方案为满足上述需求,本设计选择了 Buck 变换器作为开关电源的拓扑结构。

Buck 变换器是一种非绝缘型降压式开关电源,其输出电压小于输入电压。

1.元器件选择(1)功率开关管:选择具有较低导通和开通损耗的MOSFET作为功率开关管。

(2)电感:选择合适的电感,以确保在开关电源工作时,电感上的输出电流变化平滑。

(3)二极管:选择具有较低正向压降的二极管,以降低二极管的功耗。

(4)电容:选择合适的电容,以滤波输出电压,稳定电源。

2.控制策略本设计选择了固定频率脉冲宽度调制(PWM)控制策略,通过控制MOSFET的导通与开通时间,来调节输出电压。

PWM控制器会根据输出电压与设定电压之间的差异调整功率开关管的工作状态,从而实现输出电压的稳定。

3.反馈回路为了实现开关电源的稳定输出,本设计引入了反馈回路。

通过采集输出电压,并与设定电压进行比较,从而控制PWM控制器的工作,维持稳定输出。

四、设计结果及性能测试基于上述设计方案,进行了原型设计和性能测试,得到了以下结果:1.输出电压范围:12V-24V,可调。

2.输出电流范围:0.5A-2A,可调。

3.输出电压稳定度:小于1%。

4.输出电流稳定度:小于1%。

5.效率:大于80%。

通过与实际要求进行对比,设计结果基本满足了我们的需求。

五、总结本设计报告详细介绍了一种基于开关电源的设计方案,满足特定要求的电子设备的电源需求。

开关电源课程设计结论

开关电源课程设计结论

开关电源课程设计结论一、课程目标知识目标:1. 学生能理解开关电源的基本工作原理,掌握其主要组成部分及功能。

2. 学生能描述开关电源在不同应用场景中的优缺点,并解释其重要性。

3. 学生能掌握开关电源的关键参数及其对电源性能的影响。

技能目标:1. 学生能运用所学知识,分析并设计简单的开关电源电路。

2. 学生能运用实验方法,测试并优化开关电源的性能。

3. 学生能运用相关软件工具,进行开关电源电路的仿真和计算。

情感态度价值观目标:1. 学生对电子技术产生兴趣,提高学习积极性,培养创新意识和动手能力。

2. 学生树立节能环保意识,认识到开关电源在节能减排方面的重要性。

3. 学生培养团队协作精神,提高沟通与交流能力。

课程性质:本课程为电子技术领域的一门实践性课程,旨在帮助学生掌握开关电源的基本原理和设计方法。

学生特点:本年级学生具有一定的电子技术基础,好奇心强,喜欢动手实践,但理论知识掌握程度不一。

教学要求:结合学生特点,课程注重理论与实践相结合,强调动手实践和实际应用,提高学生的综合能力。

通过分解课程目标,使学生在学习过程中达到预期的学习成果,为后续教学设计和评估提供依据。

二、教学内容1. 开关电源基本原理- 纵向开关电源与横向开关电源的工作原理- 开关电源的主要组成部分及其功能2. 开关电源电路分析与设计- 开关电源电路的拓扑结构- 开关电源电路的关键元件选型与应用- 开关电源电路的设计方法和步骤3. 开关电源性能测试与优化- 开关电源性能参数及其测试方法- 电路优化策略及其实践应用4. 开关电源仿真与计算- 介绍开关电源仿真软件及应用- 开关电源电路的仿真分析与计算方法5. 开关电源在实际应用中的案例分析- 开关电源在各类电子设备中的应用案例- 开关电源的优缺点分析及改进措施教学内容安排与进度:1. 第1-2周:开关电源基本原理及主要组成部分的学习2. 第3-4周:开关电源电路分析与设计方法的学习3. 第5-6周:开关电源性能测试与优化的实践操作4. 第7-8周:开关电源仿真与计算的学习及实践5. 第9-10周:开关电源在实际应用中的案例分析及总结教材章节关联:1. 教材第3章:开关电源基本原理与电路分析2. 教材第4章:开关电源设计方法与性能测试3. 教材第5章:开关电源仿真与计算4. 教材第6章:开关电源在实际应用中的案例分析与实践经验总结三、教学方法1. 讲授法:- 对于开关电源的基本原理、电路分析及设计方法等理论知识,采用讲授法进行教学,结合多媒体课件,使抽象的理论形象化,便于学生理解。

开关电源(buck)课设报告材料

开关电源(buck)课设报告材料

目录目录 (1)摘要 (2)Abstract (2)1 方案设计与论证 (3)1.1 总体方案的设计与论证 (3)1.2 开关管的选择 (3)1.3 模拟控制芯片的选择 (3)2 系统设计 (4)2.1 系统总体组成框图 (4)2.2 电路原理图 (4)2.3推挽式放大器 (5)2.4 BUCK电路工作原理 (5)2.5双端驱动集成电路TL494 (7)2.5.1 TL494简介 (7)2.5.2 TL494工作原理 (8)2.5.3 TL494部电路 (8)2.5.4 TL494构成的PWM控制器电路 (9)3 功能及器件的选择 (10)3.1 主电路元器件的选择 (10)3.1.1 电感的选择 (10)3.1.2 输出滤波电容的选择 (11)3.1.3 MOSFET开关管的选择 (12)3.1.4 二极管的选择 (12)3.2 PWM控制的设计 (13)3.2.1 锯齿波的频率的计算 (13)4 仿真分析 (14)4.1仿真模型 (14)4.2 仿真结果及分析 (14)5 实物结果及分析 (15)5.1 实物图 (15)5.2 实物结果及分析 (16)6 设计小结 (19)参考文献 (20)摘要本次设计的buck降压电路是基于TL494作为控制核心器件,由于开关管采用的是P沟道的MOSFET开关管,所以驱动要采用低电平驱动的方式,考虑到采用低电平驱动的方式需要在单独使用一路辅助电源,来为开关管的驱动电路供电,在实际中就需要使用两路相互隔离的电源来进行供电,所以在本电路中采用8050和8550三极管作为推挽驱动电路实现驱动电平的转换作用,同时增大了驱动电路的功率,使得的开关管能正常稳定的工作,避免了使用两路独立的电源为电路进行供电;电路中采用电压闭环控制,实现了输出电压的恒定作用;采用模拟PI调节器实现对电路的快速调节作用,使系统稳定工作;TL494采用RC振荡电路来产生锯齿波来作为驱动信号的载波,控制开关管的开关频率。

开关电源实验报告

开关电源实验报告

开关电源实验报告1. 引言开关电源是一种常见的电源供应器件,在各种电子设备中广泛应用。

本实验旨在通过搭建开关电源电路并观察其工作原理,加深对开关电源的理解。

2. 实验目的•了解开关电源的基本原理•学习搭建开关电源电路的方法•观察开关电源的工作特性3. 实验器材•电源供应器•电阻•电容•半导体二极管•开关•示波器•连接线4. 实验步骤4.1 搭建开关电源电路1.将电源供应器连接到实验电路的输入端。

2.将电阻和电容按照电路图连接到电源供应器的输出端。

3.将半导体二极管和开关安装在电路中相应的位置。

4.2 观察开关电源的工作原理1.打开电源供应器,调节输出电压至合适的数值。

2.打开开关,观察电路中电流和电压的变化。

3.使用示波器测量电路中的电压波形。

4.关闭开关,再次观察电流和电压的变化。

5. 实验结果与分析5.1 实验结果在搭建的开关电源电路中,观察到以下现象:•当开关打开时,电流流过电路,电压稳定在设定的数值。

•当开关关闭时,电路中的电流和电压都会逐渐衰减。

5.2 实验分析开关电源通过周期性地切断和连接电路来实现电压的稳定输出。

当开关打开时,电源供应器向电路提供电流,通过调节半导体二极管和电容的数值,可以实现稳定的输出电压。

而当开关关闭时,电流被切断,电容上的电荷通过电阻耗散,导致电压逐渐衰减。

6. 结论通过本实验,我们对开关电源的工作原理有了更深入的了解。

通过搭建开关电源电路并观察其工作特性,我们可以掌握开关电源的基本原理和搭建方法。

开关电源在电子设备中的应用非常广泛,掌握开关电源的知识对于电子工程师来说是非常重要的。

7. 参考资料[1] 电子电路实验教材 [2] 电子电路实验指导书。

开关电源设计(设计报告)

开关电源设计(设计报告)

开关电源设计作者:钟代海、黄亮、伍利衡(湖南城市学院)指导老师:文稿整理辅导老师:摘要:系统基于开关电源的工作原理,采用UC3843 高性能电流模式控制器实现对Boost 升压斩波电路稳压输出。

UC3843片内集成有微调的振荡器放电电流(可精确控制占空比)、电流模式工作频率(可到500kHz)、自动前馈补偿、锁存脉宽调制(可逐周限流)、内部微调的参考电压(带欠压锁定)、欠压锁定(带滞后)、低启动和工作电流等。

该系统电路主要包括整流滤波电、DC-DC 变换电路、过流保护电路、稳压反馈电;路和单片机控制电路部分。

开关电源输出电压可以实现在30V~36 V任意值之间输出, 最大输出电流1.5A, 效率大于等于70%。

为了能使系统获得较高的输出电压细分数, 又增加了数字电位器控制电路,能对输出电压进行步进值为0.1V的调整。

关键词:DC-DC变换,UC3843, 开关稳压电源ABSTRACT:System is based on switching power supply works, using high-performance current mode controller UC3843 to realize the Boost booster chopper regulate output. UC3843 integrated with fine-tuning of the oscillator discharge current ( which can precisely control the duty cycle), current-mode frequency ( available at 500KHz) , auto-forward compensation, latching pulse width modulation ( which can b -week limit) , the internal tuning reference voltage (with under voltage lockout) , under voltage lockout ( with delay ) , low startup and operating current .The s stem circuit includes a rectifier filter circuit, DC-DC converter, current protection circuit, voltage regulator feedback circuit and the MCU control circuit .Switching stabilized power supply output voltage can be realized in the programmable output between 30V~36V, maximum output current of 2A, the efficiency of greater than or equal to 85%. In order to make the s stem get a higher output voltage division number, increased number of potential control circuit, the output voltage can be less than 1V step adjustment.KE WORDS DC-DC, UC3843, switching stabilized power supply.一、 方案论证1.DC-DC 主回路拓扑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1开关电源主电路设计1.1主电路拓扑结构选择由于本设计的要求为输入电压176-264 V 交流电,输出为24V 直流电,因此中间需要将输入侧的交流电转换为直流电,考虑采用两级电路。

前级电路可以选用含电容滤波的单相不可控整流电路对电能进行转换,后级由隔离型全桥Buck 电路构成。

总体要求是先将AC176-264V 整流滤波,然后再经过BUCK 电路稳压到24V 。

考虑到变换器最大负输出功率为1000W ,因此需采用功率级较高的Buck 电路类型,且必须保证工作在CCM 工作状态下,因此综合考虑,本文采用全桥隔离型Buck 变换器。

其主电路拓扑结构如下图所示:图1-1 主电路拓扑结构1.2开关电源电路稳态分析下面将对全桥隔离型BUCK 变换器进行稳态分析,主要是推导前级输出电压g V 与后级输出电压V 之间的关系,为主电路参数的设计提供参考。

将前级输出电压g V 代替前级电路,作为后级电路的输入,且后级BUCK 变换器工作在CCM 模式,BUCK 电路中的变压器可以用等效电路代替。

由于全桥隔离型BUCK 变换器中变压器二次侧存在两个引出端,使得后级BUCK 电路的工作频率等同于前级二倍的工作频率,如图1-1所示。

在S T 2的工作时间内,总共可分为四种开关阶段,其具体分析过程如下:1) 当S DT t <<0时,此时1Q 、4Q 和5D 导通,其等效电路图如图1-2所示。

i ()t Rv i ‘图1-2 在S DT t <<0时等效电路gnv v =s (1-1) vnv v g -L =(1-2)R v i i /-C =(1-3)2) 当S S T t DT <<时,此时1Q ~4Q 全部关断,6D 和5D 导通,其等效电路图如图1-3所示。

此时前级输出g V 为0,假设磁化电流为0,则流过6D 和5D 电流相等,均为L i 21。

i ()t Ri ‘图1-3 在S S T t DT <<时等效电路0=s v (1-4) v v -L = (1-5)R v i i /-C =(1-6)3) 当S S T D t T )(+1<<时,此时2Q 、3Q 和6D 导通,其等效电路图如图1-2所示。

i()tRvi‘-图1-4 在SSTDtT)(+1<<时等效电路gnvv=s(1-7)vnvvg-L=(1-8)Rvii/-C=(1-9)4)当SSTtTD2<<+1)(时,此时1Q~4Q全部关断,6D和5D导通,其等效电路图如图1-3所示。

在这个工作过程,所有开关和第二阶段是同一状态,因此其分析过程和结果是相同的。

通过以上分析可以验证前述有关前级和后级工作频率的关系。

由第一和第三阶段、第二和第四阶段推导的式子是相同的,因此后级BUCK电路在ST2重复工作状态。

由变压器一次侧电压TV,二次侧电感电流Li,一次侧电压sV可以再次验证上述关系,如图1-5所示。

(Tv t()i t(Sv t图1-5 全桥变换器部分电压电流波形根据后级BUCK电路电感L的伏秒平衡原则,由式子(1-1)和(1-2)可得:=+)-(1--(gDVDVnV)()(1-10)gnDVV=(1-11)在选取变压器的变比n 时,要考虑占空比的调节范围,尽可能使得调节范围更大。

结合规格和滤波电路输出电压的双项要求,最小输出电压和最大输出电压分别为248.9V 和373.3V.则由此可计算占空比的最大和最小值为:max min 0.096o g V D nV n==(1-12)min max 0.064o g V D nV n==(1-13)因此综合考虑,变压器的变比选为0.2。

1.3开关电源主电路参数设计1.3.1开关电源前级参数的设计通常在设计不可控整流的滤波电容时,要根据负载的实际情况而选择电容C 值。

带滤波电容的不可控整流电路输出电压和充放电时间常数有关。

当时间常数无穷大时,输出电压为交流电压的峰值;当放电时间比较小时,输出电压为输入电压有效值的0.9倍。

实际设计时,通常要求时间常数要满足式(1-14),此时输出电压为交流电压有效值的1.2倍。

eq3~52C T R ≥(1-14)其中T 为交流电源的周期,R 为负载的等效阻值,并且考虑到实际电源中电容C 体积的限制,因此考虑电容的值满足下式:32eqTC R ≥(1-15)考虑到在稳态时且理想情况下,后级的输入功率和负载功率相等,再根据式子(1-15)可得:RV I g /V g 2= (1-16) 22222o eq V RR n D n D P ==(1-17)22232o n D PT C V ≥(1-18)设交流电源的频率为50Hz ,计算得到213uF C ≥,在实际电路中,考虑到后面输入电压和负载阶跃变化对输出电压波形的影响及考虑一定的裕量,选择为350uF ,电容承受最大电压为最大输入电压的幅值373.3V 。

综合以上,并考虑成本,选择Vishay 公司057PSM-SI47331E3型铝电解容,耐压450V ,电容值330uF 。

1.3.2开关电源后级参数的设计1) 本设计选用MOSFET 管,加在其上面的最大电压为整流输出电压的最大值即V M =373.3V 。

当负载功率最大时,负载电流为最大值即250A 。

流过MOSFET 的最大电流为I gmax =7.10A 。

本文选用Infineon MOSFET,型号为IPB50R299CP 。

主要参数为:V DS =550V,I D =12A ,R ON =0.299Ω。

2) 二极管上通过的最大电流为I D =125A ,电压最大值为:V Dmax =0.05×373.3V=18.665V 。

由于开关频率较高,所以选用快恢复二极管和肖特基二极管,但快恢复二极管导通压降大,损耗大,故选择本文选用Vishay 肖特基二极管。

取适当的电压电流裕量,型号选为M6035C 。

主要参数为I F =60A,V RRM =35V,V F =0.55V 。

3) 由开关电源的规格要求可知,输出电压超调不能大于0.5V 。

因此在后级电容设计时要考虑,电容电压的纹波值也要小于0.5V ,又由于变换器要工作在CCM 模式下。

由变换器稳态分析可推导电感的计算方法。

()t R图1-6 等效后的BUCK 变换器变换器要工作在CCM 模式下,因此电感的设计尤为重要。

由于开关频率为80kHZ ,由前所述则等效BUCK 电路的开关频率为160kHZ 。

有电流纹波公式知:(1-)2L S Vi D T L∆=(1-19)假设纹波电流为1A,计算得到9.55H L u ≥,综合考虑裕度,则L 选取10H u 。

由于后级电容设计时要考虑,电容电压的纹波值要小于0.25V 。

电容电压纹波式子如下:2116=8=SSL T D LC V CT i v )-(∆∆ (1-21)2116=ST D v L V C )-(∆(1-22)将最大纹波值、负载电压并且考虑最小占空比,计算得21F C u =,同时考虑输出电容对纹波的影响,则C 选取390uF 。

2系统开关模型建立和控制器的设计基于小信号开关等效模型理论,对全桥隔离型Buck 变换器进行系统建模。

由于开关电源的规格要求输出稳定直流电压,因此维持电压稳定是本次设计的关键。

在复频域下进行控制器设计时,将电容电压小信号变量)(s ∧V 作为其输出,输入电压小信号变量)(s ∧g V 和占空比小信号变量)(s ∧d 作为输入,分别求出其传递函数,然后通过PI 调节器对其进行校正,以其达到其规格要求。

2.1系统开关模型的建立由前述可知,后级BUCK 电路在S T 2重复一次工作状态。

因此系统建模只需考虑一个变量周期。

在分析时,考虑MOSFET 的导通电阻R ON 和续流二极管的导通压降V D 。

根据移动平均理论,对S DT t <<0和S S T t DT <<两个阶段的关系式进行处理,如下所示:在 0s t DT <<时有:()()()(()2)()()()()Sss ss g T L in g on D T T T c T i t n i t v t n v t i R v t V v t i t i t R⎧⎪=⎪⎪=---⎨⎪⎪=-⎪⎩ (2.1)在s s DT t T <<时:()0()(())()()()s ss g L D T T c T i t v t v t V v t i t i t R⎧⎪=⎪⎪=--⎨⎪⎪=-⎪⎩ (2.2) 由电感伏秒平衡和电容安秒平衡得:()()()[(()2)()]()(())()()()()()(())()(())()()()ss s s sss ss s ss sTL in g on D D T T T T T T T c T T T g T T d t L t d t n v t i R v t V d t v t V dt d v t v t v t C i t d t i t d t i t dt R R i t nd t i t ⎧'==---+--⎪⎪⎪⎪'==-+-⎨⎪⎪=⎪⎪⎩(2.3) 进行扰动分析令:)(ˆ)(t vV t v in in T in s+= )(ˆ)(t dD t d += )(ˆ)(t iI t sT += (2.4) )(ˆ)(t vV t v sT += )(ˆ)(t iI t i g g T g s+= 把式(2.4)代入式(2.3)中只保留一阶项得:ˆ()ˆˆˆˆ()()(2)2()()ˆˆ()()ˆ()ˆˆˆ()(()())in in on g on g ong di t LnDv t d t nV nR I nDR i t v t dtdvt v t Ci t dt R i t n Id t Di t ⎧=+---⎪⎪⎪=-⎨⎪⎪=+⎪⎩(2.5) 由式(2.5)得电路的交流小信号等效电路如下图(2.1)所示。

R^()in v t 22ˆ图(2.1)全桥整流Buck 电路的交流小信号等效电路2.2 系统频域特性计算带有反馈环节以及补偿器的变换器系统框图如图(2.2)所示[3]。

图(2.2)带有反馈环节以及补偿器的系统框图令^^^^()()()()()()g load vd vg out v s G s d s G s v s Z i s =+- (2.6)结合式(2.6)把图(2.1)表示如下:^(in v s 22ˆ^()load i s图(2.3)全桥Buck 电路随v in ,d 和i losd 变化的电路模型则由图(2.2)可得:^^^22^02220(2)()()|2()(2)1g loadin on g vd v on i on n V R I v s G s L n D R d s s LC s n D R C R R==-==++++ (2.7)^^^22^2220()()|2()(2)1load vg d on g i on v s nDG s L n D R v s s LC s n D R C R R====++++ (2.8)^^^2222^02220()2()|()2(2)1g onout d onloadv on v s sL n D R Z s s L n D R i s LC s n D R C R R==+==-++++ (2.9)设计系统框图如图(2.4)所示。

相关文档
最新文档