Deep Syntax Language Models and Statistical Machine Translation
人工智能领域中英文专有名词汇总
名词解释中英文对比<using_information_sources> social networks 社会网络abductive reasoning 溯因推理action recognition(行为识别)active learning(主动学习)adaptive systems 自适应系统adverse drugs reactions(药物不良反应)algorithm design and analysis(算法设计与分析) algorithm(算法)artificial intelligence 人工智能association rule(关联规则)attribute value taxonomy 属性分类规范automomous agent 自动代理automomous systems 自动系统background knowledge 背景知识bayes methods(贝叶斯方法)bayesian inference(贝叶斯推断)bayesian methods(bayes 方法)belief propagation(置信传播)better understanding 内涵理解big data 大数据big data(大数据)biological network(生物网络)biological sciences(生物科学)biomedical domain 生物医学领域biomedical research(生物医学研究)biomedical text(生物医学文本)boltzmann machine(玻尔兹曼机)bootstrapping method 拔靴法case based reasoning 实例推理causual models 因果模型citation matching (引文匹配)classification (分类)classification algorithms(分类算法)clistering algorithms 聚类算法cloud computing(云计算)cluster-based retrieval (聚类检索)clustering (聚类)clustering algorithms(聚类算法)clustering 聚类cognitive science 认知科学collaborative filtering (协同过滤)collaborative filtering(协同过滤)collabrative ontology development 联合本体开发collabrative ontology engineering 联合本体工程commonsense knowledge 常识communication networks(通讯网络)community detection(社区发现)complex data(复杂数据)complex dynamical networks(复杂动态网络)complex network(复杂网络)complex network(复杂网络)computational biology 计算生物学computational biology(计算生物学)computational complexity(计算复杂性) computational intelligence 智能计算computational modeling(计算模型)computer animation(计算机动画)computer networks(计算机网络)computer science 计算机科学concept clustering 概念聚类concept formation 概念形成concept learning 概念学习concept map 概念图concept model 概念模型concept modelling 概念模型conceptual model 概念模型conditional random field(条件随机场模型) conjunctive quries 合取查询constrained least squares (约束最小二乘) convex programming(凸规划)convolutional neural networks(卷积神经网络) customer relationship management(客户关系管理) data analysis(数据分析)data analysis(数据分析)data center(数据中心)data clustering (数据聚类)data compression(数据压缩)data envelopment analysis (数据包络分析)data fusion 数据融合data generation(数据生成)data handling(数据处理)data hierarchy (数据层次)data integration(数据整合)data integrity 数据完整性data intensive computing(数据密集型计算)data management 数据管理data management(数据管理)data management(数据管理)data miningdata mining 数据挖掘data model 数据模型data models(数据模型)data partitioning 数据划分data point(数据点)data privacy(数据隐私)data security(数据安全)data stream(数据流)data streams(数据流)data structure( 数据结构)data structure(数据结构)data visualisation(数据可视化)data visualization 数据可视化data visualization(数据可视化)data warehouse(数据仓库)data warehouses(数据仓库)data warehousing(数据仓库)database management systems(数据库管理系统)database management(数据库管理)date interlinking 日期互联date linking 日期链接Decision analysis(决策分析)decision maker 决策者decision making (决策)decision models 决策模型decision models 决策模型decision rule 决策规则decision support system 决策支持系统decision support systems (决策支持系统) decision tree(决策树)decission tree 决策树deep belief network(深度信念网络)deep learning(深度学习)defult reasoning 默认推理density estimation(密度估计)design methodology 设计方法论dimension reduction(降维) dimensionality reduction(降维)directed graph(有向图)disaster management 灾害管理disastrous event(灾难性事件)discovery(知识发现)dissimilarity (相异性)distributed databases 分布式数据库distributed databases(分布式数据库) distributed query 分布式查询document clustering (文档聚类)domain experts 领域专家domain knowledge 领域知识domain specific language 领域专用语言dynamic databases(动态数据库)dynamic logic 动态逻辑dynamic network(动态网络)dynamic system(动态系统)earth mover's distance(EMD 距离) education 教育efficient algorithm(有效算法)electric commerce 电子商务electronic health records(电子健康档案) entity disambiguation 实体消歧entity recognition 实体识别entity recognition(实体识别)entity resolution 实体解析event detection 事件检测event detection(事件检测)event extraction 事件抽取event identificaton 事件识别exhaustive indexing 完整索引expert system 专家系统expert systems(专家系统)explanation based learning 解释学习factor graph(因子图)feature extraction 特征提取feature extraction(特征提取)feature extraction(特征提取)feature selection (特征选择)feature selection 特征选择feature selection(特征选择)feature space 特征空间first order logic 一阶逻辑formal logic 形式逻辑formal meaning prepresentation 形式意义表示formal semantics 形式语义formal specification 形式描述frame based system 框为本的系统frequent itemsets(频繁项目集)frequent pattern(频繁模式)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy data mining(模糊数据挖掘)fuzzy logic 模糊逻辑fuzzy set theory(模糊集合论)fuzzy set(模糊集)fuzzy sets 模糊集合fuzzy systems 模糊系统gaussian processes(高斯过程)gene expression data 基因表达数据gene expression(基因表达)generative model(生成模型)generative model(生成模型)genetic algorithm 遗传算法genome wide association study(全基因组关联分析) graph classification(图分类)graph classification(图分类)graph clustering(图聚类)graph data(图数据)graph data(图形数据)graph database 图数据库graph database(图数据库)graph mining(图挖掘)graph mining(图挖掘)graph partitioning 图划分graph query 图查询graph structure(图结构)graph theory(图论)graph theory(图论)graph theory(图论)graph theroy 图论graph visualization(图形可视化)graphical user interface 图形用户界面graphical user interfaces(图形用户界面)health care 卫生保健health care(卫生保健)heterogeneous data source 异构数据源heterogeneous data(异构数据)heterogeneous database 异构数据库heterogeneous information network(异构信息网络) heterogeneous network(异构网络)heterogenous ontology 异构本体heuristic rule 启发式规则hidden markov model(隐马尔可夫模型)hidden markov model(隐马尔可夫模型)hidden markov models(隐马尔可夫模型) hierarchical clustering (层次聚类) homogeneous network(同构网络)human centered computing 人机交互技术human computer interaction 人机交互human interaction 人机交互human robot interaction 人机交互image classification(图像分类)image clustering (图像聚类)image mining( 图像挖掘)image reconstruction(图像重建)image retrieval (图像检索)image segmentation(图像分割)inconsistent ontology 本体不一致incremental learning(增量学习)inductive learning (归纳学习)inference mechanisms 推理机制inference mechanisms(推理机制)inference rule 推理规则information cascades(信息追随)information diffusion(信息扩散)information extraction 信息提取information filtering(信息过滤)information filtering(信息过滤)information integration(信息集成)information network analysis(信息网络分析) information network mining(信息网络挖掘) information network(信息网络)information processing 信息处理information processing 信息处理information resource management (信息资源管理) information retrieval models(信息检索模型) information retrieval 信息检索information retrieval(信息检索)information retrieval(信息检索)information science 情报科学information sources 信息源information system( 信息系统)information system(信息系统)information technology(信息技术)information visualization(信息可视化)instance matching 实例匹配intelligent assistant 智能辅助intelligent systems 智能系统interaction network(交互网络)interactive visualization(交互式可视化)kernel function(核函数)kernel operator (核算子)keyword search(关键字检索)knowledege reuse 知识再利用knowledgeknowledgeknowledge acquisitionknowledge base 知识库knowledge based system 知识系统knowledge building 知识建构knowledge capture 知识获取knowledge construction 知识建构knowledge discovery(知识发现)knowledge extraction 知识提取knowledge fusion 知识融合knowledge integrationknowledge management systems 知识管理系统knowledge management 知识管理knowledge management(知识管理)knowledge model 知识模型knowledge reasoningknowledge representationknowledge representation(知识表达) knowledge sharing 知识共享knowledge storageknowledge technology 知识技术knowledge verification 知识验证language model(语言模型)language modeling approach(语言模型方法) large graph(大图)large graph(大图)learning(无监督学习)life science 生命科学linear programming(线性规划)link analysis (链接分析)link prediction(链接预测)link prediction(链接预测)link prediction(链接预测)linked data(关联数据)location based service(基于位置的服务) loclation based services(基于位置的服务) logic programming 逻辑编程logical implication 逻辑蕴涵logistic regression(logistic 回归)machine learning 机器学习machine translation(机器翻译)management system(管理系统)management( 知识管理)manifold learning(流形学习)markov chains 马尔可夫链markov processes(马尔可夫过程)matching function 匹配函数matrix decomposition(矩阵分解)matrix decomposition(矩阵分解)maximum likelihood estimation(最大似然估计)medical research(医学研究)mixture of gaussians(混合高斯模型)mobile computing(移动计算)multi agnet systems 多智能体系统multiagent systems 多智能体系统multimedia 多媒体natural language processing 自然语言处理natural language processing(自然语言处理) nearest neighbor (近邻)network analysis( 网络分析)network analysis(网络分析)network analysis(网络分析)network formation(组网)network structure(网络结构)network theory(网络理论)network topology(网络拓扑)network visualization(网络可视化)neural network(神经网络)neural networks (神经网络)neural networks(神经网络)nonlinear dynamics(非线性动力学)nonmonotonic reasoning 非单调推理nonnegative matrix factorization (非负矩阵分解) nonnegative matrix factorization(非负矩阵分解) object detection(目标检测)object oriented 面向对象object recognition(目标识别)object recognition(目标识别)online community(网络社区)online social network(在线社交网络)online social networks(在线社交网络)ontology alignment 本体映射ontology development 本体开发ontology engineering 本体工程ontology evolution 本体演化ontology extraction 本体抽取ontology interoperablity 互用性本体ontology language 本体语言ontology mapping 本体映射ontology matching 本体匹配ontology versioning 本体版本ontology 本体论open government data 政府公开数据opinion analysis(舆情分析)opinion mining(意见挖掘)opinion mining(意见挖掘)outlier detection(孤立点检测)parallel processing(并行处理)patient care(病人医疗护理)pattern classification(模式分类)pattern matching(模式匹配)pattern mining(模式挖掘)pattern recognition 模式识别pattern recognition(模式识别)pattern recognition(模式识别)personal data(个人数据)prediction algorithms(预测算法)predictive model 预测模型predictive models(预测模型)privacy preservation(隐私保护)probabilistic logic(概率逻辑)probabilistic logic(概率逻辑)probabilistic model(概率模型)probabilistic model(概率模型)probability distribution(概率分布)probability distribution(概率分布)project management(项目管理)pruning technique(修剪技术)quality management 质量管理query expansion(查询扩展)query language 查询语言query language(查询语言)query processing(查询处理)query rewrite 查询重写question answering system 问答系统random forest(随机森林)random graph(随机图)random processes(随机过程)random walk(随机游走)range query(范围查询)RDF database 资源描述框架数据库RDF query 资源描述框架查询RDF repository 资源描述框架存储库RDF storge 资源描述框架存储real time(实时)recommender system(推荐系统)recommender system(推荐系统)recommender systems 推荐系统recommender systems(推荐系统)record linkage 记录链接recurrent neural network(递归神经网络) regression(回归)reinforcement learning 强化学习reinforcement learning(强化学习)relation extraction 关系抽取relational database 关系数据库relational learning 关系学习relevance feedback (相关反馈)resource description framework 资源描述框架restricted boltzmann machines(受限玻尔兹曼机) retrieval models(检索模型)rough set theroy 粗糙集理论rough set 粗糙集rule based system 基于规则系统rule based 基于规则rule induction (规则归纳)rule learning (规则学习)rule learning 规则学习schema mapping 模式映射schema matching 模式匹配scientific domain 科学域search problems(搜索问题)semantic (web) technology 语义技术semantic analysis 语义分析semantic annotation 语义标注semantic computing 语义计算semantic integration 语义集成semantic interpretation 语义解释semantic model 语义模型semantic network 语义网络semantic relatedness 语义相关性semantic relation learning 语义关系学习semantic search 语义检索semantic similarity 语义相似度semantic similarity(语义相似度)semantic web rule language 语义网规则语言semantic web 语义网semantic web(语义网)semantic workflow 语义工作流semi supervised learning(半监督学习)sensor data(传感器数据)sensor networks(传感器网络)sentiment analysis(情感分析)sentiment analysis(情感分析)sequential pattern(序列模式)service oriented architecture 面向服务的体系结构shortest path(最短路径)similar kernel function(相似核函数)similarity measure(相似性度量)similarity relationship (相似关系)similarity search(相似搜索)similarity(相似性)situation aware 情境感知social behavior(社交行为)social influence(社会影响)social interaction(社交互动)social interaction(社交互动)social learning(社会学习)social life networks(社交生活网络)social machine 社交机器social media(社交媒体)social media(社交媒体)social media(社交媒体)social network analysis 社会网络分析social network analysis(社交网络分析)social network(社交网络)social network(社交网络)social science(社会科学)social tagging system(社交标签系统)social tagging(社交标签)social web(社交网页)sparse coding(稀疏编码)sparse matrices(稀疏矩阵)sparse representation(稀疏表示)spatial database(空间数据库)spatial reasoning 空间推理statistical analysis(统计分析)statistical model 统计模型string matching(串匹配)structural risk minimization (结构风险最小化) structured data 结构化数据subgraph matching 子图匹配subspace clustering(子空间聚类)supervised learning( 有support vector machine 支持向量机support vector machines(支持向量机)system dynamics(系统动力学)tag recommendation(标签推荐)taxonmy induction 感应规范temporal logic 时态逻辑temporal reasoning 时序推理text analysis(文本分析)text anaylsis 文本分析text classification (文本分类)text data(文本数据)text mining technique(文本挖掘技术)text mining 文本挖掘text mining(文本挖掘)text summarization(文本摘要)thesaurus alignment 同义对齐time frequency analysis(时频分析)time series analysis( 时time series data(时间序列数据)time series data(时间序列数据)time series(时间序列)topic model(主题模型)topic modeling(主题模型)transfer learning 迁移学习triple store 三元组存储uncertainty reasoning 不精确推理undirected graph(无向图)unified modeling language 统一建模语言unsupervisedupper bound(上界)user behavior(用户行为)user generated content(用户生成内容)utility mining(效用挖掘)visual analytics(可视化分析)visual content(视觉内容)visual representation(视觉表征)visualisation(可视化)visualization technique(可视化技术) visualization tool(可视化工具)web 2.0(网络2.0)web forum(web 论坛)web mining(网络挖掘)web of data 数据网web ontology lanuage 网络本体语言web pages(web 页面)web resource 网络资源web science 万维科学web search (网络检索)web usage mining(web 使用挖掘)wireless networks 无线网络world knowledge 世界知识world wide web 万维网world wide web(万维网)xml database 可扩展标志语言数据库附录 2 Data Mining 知识图谱(共包含二级节点15 个,三级节点93 个)间序列分析)监督学习)领域 二级分类 三级分类。
中科院自动化所的中英文新闻语料库
中科院自动化所的中英文新闻语料库中科院自动化所(Institute of Automation, Chinese Academy of Sciences)是中国科学院下属的一家研究机构,致力于开展自动化科学及其应用的研究。
该所的研究涵盖了从理论基础到技术创新的广泛领域,包括人工智能、机器人技术、自动控制、模式识别等。
下面将分别从中文和英文角度介绍该所的相关新闻语料。
[中文新闻语料]1. 中国科学院自动化所在人脸识别领域取得重大突破中国科学院自动化所的研究团队在人脸识别技术方面取得了重大突破。
通过深度学习算法和大规模数据集的训练,该研究团队成功地提高了人脸识别的准确性和稳定性,使其在安防、金融等领域得到广泛应用。
2. 中科院自动化所发布最新研究成果:基于机器学习的智能交通系统中科院自动化所发布了一项基于机器学习的智能交通系统研究成果。
通过对交通数据的收集和分析,研究团队开发了智能交通控制算法,能够优化交通流量,减少交通拥堵和时间浪费,提高交通效率。
3. 中国科学院自动化所举办国际学术研讨会中国科学院自动化所举办了一场国际学术研讨会,邀请了来自不同国家的自动化领域专家参加。
研讨会涵盖了人工智能、机器人技术、自动化控制等多个研究方向,旨在促进国际间的学术交流和合作。
4. 中科院自动化所签署合作协议,推动机器人技术的产业化发展中科院自动化所与一家著名机器人企业签署了合作协议,共同推动机器人技术的产业化发展。
合作内容包括技术研发、人才培养、市场推广等方面,旨在加强学界与工业界的合作,加速机器人技术的应用和推广。
5. 中国科学院自动化所获得国家科技进步一等奖中国科学院自动化所凭借在人工智能领域的重要研究成果荣获国家科技进步一等奖。
该研究成果在自动驾驶、物联网等领域具有重要应用价值,并对相关行业的创新和发展起到了积极推动作用。
[英文新闻语料]1. Institute of Automation, Chinese Academy of Sciences achievesa major breakthrough in face recognitionThe research team at the Institute of Automation, Chinese Academy of Sciences has made a major breakthrough in face recognition technology. Through training with deep learning algorithms and large-scale datasets, the research team has successfully improved the accuracy and stability of face recognition, which has been widely applied in areas such as security and finance.2. Institute of Automation, Chinese Academy of Sciences releases latest research on machine learning-based intelligent transportationsystemThe Institute of Automation, Chinese Academy of Sciences has released a research paper on a machine learning-based intelligent transportation system. By collecting and analyzing traffic data, the research team has developed intelligent traffic control algorithms that optimize traffic flow, reduce congestion, and minimize time wastage, thereby enhancing overall traffic efficiency.3. Institute of Automation, Chinese Academy of Sciences hosts international academic symposiumThe Institute of Automation, Chinese Academy of Sciences recently held an international academic symposium, inviting automation experts from different countries to participate. The symposium covered various research areas, including artificial intelligence, robotics, and automatic control, aiming to facilitate academic exchanges and collaborations on an international level.4. Institute of Automation, Chinese Academy of Sciences signs cooperation agreement to promote the industrialization of robotics technologyThe Institute of Automation, Chinese Academy of Sciences has signed a cooperation agreement with a renowned robotics company to jointly promote the industrialization of robotics technology. The cooperation includes areas such as technology research and development, talent cultivation, and market promotion, aiming to strengthen the collaboration between academia and industry and accelerate the application and popularization of robotics technology.5. Institute of Automation, Chinese Academy of Sciences receivesNational Science and Technology Progress Award (First Class) The Institute of Automation, Chinese Academy of Sciences has been awarded the National Science and Technology Progress Award (First Class) for its important research achievements in the field of artificial intelligence. The research outcomes have significant application value in areas such as autonomous driving and the Internet of Things, playing a proactive role in promoting innovation and development in related industries.。
chatgpt 浓缩文献综述的指令
文献综述是科学研究中非常重要的一环,通过对已有学术文献的整理、归纳和总结,可以为后续研究提供重要的参考和指导。
在计算机科学领域,自然语言处理是一个备受关注的研究方向,而chatgpt作为一种经典的人工智能模型,其在自然语言处理领域的应用备受关注。
chatgpt是由Open本人开发的一种基于深度学习的对话生成模型,其可以生成接近人类水平的自然语言对话。
下面将通过浓缩文献综述的形式,对chatgpt在自然语言处理领域的相关研究进行梳理和总结。
1. chatgpt的基本原理chatgpt是基于Transformer模型的改进版本,其核心原理是通过对大规模文本语料进行预训练,学习文本中的语言模式和语义信息,从而达到生成流畅、连贯对话的目的。
模型的训练采用了自监督学习的方法,通过最大化文本序列的联合概率来优化模型参数,使得模型可以对输入的自然语言进行理解和生成。
在具体的应用中,chatgpt可以用于对话生成、文本摘要、问答系统等多种自然语言处理任务。
2. chatgpt的发展历程chatgpt的发展经历了多个版本的迭代,从最初的GPT-1到目前比较成熟的GPT-3,模型的规模和性能都得到了显著的提升。
随着模型规模的不断扩大和训练数据的不断增加,chatgpt在自然语言处理领域的表现也逐渐趋近甚至超越了人类水平,成为了当前最受关注的人工智能模型之一。
3. chatgpt在对话生成领域的应用chatgpt在对话生成方面具有非常广泛的应用,包括智能客服、聊天机器人、虚拟助手等。
通过与用户进行对话交互,chatgpt可以实现智能问答、情感分析、任务指导等多种功能,极大地丰富了人机交互的方式,改变了人们日常生活和工作中的沟通方式。
4. chatgpt在文本摘要领域的应用文本摘要是自然语言处理领域的一个重要任务,其旨在从文本中提取出最重要的信息,生成简洁、精炼的摘要内容。
chatgpt可以通过对输入文本进行理解和归纳,自动生成符合人类习惯的文本摘要,极大地提高了文本处理效率和用户体验。
汉英“深”与“浅”概念隐语的对比研究
汉英“深”与“浅”概念隐语的对比研究本文在概念隐语视角下,通过定性与定量的分析,探讨汉英“深”与“浅”概念隐语的共性与差异。
研究表明:1.“深”/“浅”与DEEP/SHALLOW 的投射域总体相似,主要包括:情感域,知识/心智域,性格域,颜色域,味觉域,程度域等;2.“深”与DEEP 隐喻投射的应用频率明显高于“浅”与SHALLOW,这主要是由于前者为标记性词汇,且语义相对积极,而后者则为非标记性词汇,且语义相对消极,这反映了人类在隐喻思维上存在的共性与差异。
标签:深/ DEEP 浅/ SHALLOW 概念隐语文化共性文化差异一、引言认知语言学认为,隐喻是我们对抽象事物进行概念化的有力认知工具。
人类基于自身体验,由近及远,由简单到复杂,由具体到抽象来认知世界。
Lakoff 和Johnson的体验哲学观告诉我们,人们的生活经验包括身体体验和文化体验,并且这两种体验都会对认知过程产生重要影响。
本文以认知语言学为框架,以北京大学汉英双语语料库为主要语料来源,研究“深”/“浅”与“DEEP”/“SHALLOW”概念隐喻的共性与个性,并采取定性与定量分析相结合的方法对“深”与“浅”概念隐喻的翻译现象进行考察,旨在通过分析语料,结合概念隐喻理论,探讨“深”/“浅”与DEEP/SHALLOW在不同的语言系统中的投射情况;对比二者在隐喻投射中反映出的特点及其深层动因,从而进一步认识汉、英语言系统的发展机制的相似与差异性。
二、概念隐喻理论认知语言学家认为,人类对大多数概念的理解往往要依赖于其他概念[1]。
我们的概念系统,我们的思想方式和行动习惯等各个方面,从本质上说都具有隐喻性[2]。
换言之,我们每天思考,体验,以及其他行为都具有隐喻性。
我们的身体体验与概念结构密不可分,它既能帮助概念的形成,又能帮助人类进一步理解概念[3]。
莱考夫指出,隐喻已经不再被认为是一种表达方式,而是一种概念化的方法,而metaphor(隐喻)这一词汇意味着概念系统的跨域投射[4]。
黑龙江国家开放大学学位英语考试真题及答案
黑龙江国家开放大学学位英语考试真题及答案全文共3篇示例,供读者参考篇1Black Dragon National Open University Degree English Exam Questions and AnswersSection A: Reading ComprehensionRead the following passage and answer the questions that follow:In recent years, the importance of education has been the topic of many debates. While some argue that a degree is essential for success, others believe that experience and skills are more important. In my opinion, both education and experience play crucial roles in achieving success.Firstly, acquiring a degree provides individuals with a solid foundation of knowledge in their chosen field. This knowledge can be invaluable when entering the job market, as employers often look for candidates who possess specific qualifications. In addition, a degree can open doors to opportunities that may not be available to those without one.However, experience is also vital in today's competitive job market. Employers value candidates who have practical experience in their field, as it demonstrates their ability to apply knowledge in real-world situations. Furthermore, experience can help individuals develop important skills such asproblem-solving, communication, and teamwork.In conclusion, both education and experience are important factors in achieving success. While a degree may provide individuals with a strong foundation of knowledge, experience is essential for applying that knowledge in practical situations. By combining the two, individuals can maximize their potential for success.1. What is the main topic of the passage?A. The importance of educationB. The benefits of experienceC. The role of qualifications in the job marketD. The relationship between education and experience2. According to the passage, why is a degree important in the job market?A. It provides individuals with practical experience.B. It demonstrates an individual's problem-solving skills.C. It gives individuals a solid foundation of knowledge.D. It opens doors to opportunities in different fields.3. Why is experience important for success in the job market?A. It helps individuals develop important skills.B. It allows individuals to apply knowledge in real-world situations.C. It provides individuals with a strong foundation of knowledge.D. It demonstrates an individual's ability to communicate effectively.Section B: VocabularyChoose the correct word to complete each sentence:1. I had to ___________ my presentation because I lost my notes.A. postponeB. precedeC. proceedD. progress2. Sarah is a very ___________ person, she always looks on the bright side of things.A. pessimisticB. optimisticC. realisticD. practical3. The teacher asked the students to ___________ the text and answer the questions.A. comprehendB. compileC. calculateD. converseSection C: WritingWrite an essay on the following topic:"The benefits of online education."In recent years, online education has become increasingly popular among students seeking flexible learning options. This mode of learning offers many benefits, such as convenience, affordability, and access to a wide range of courses. In this essay, we will explore the advantages of online education and why it is a viable option for students today.Firstly, online education provides students with the flexibility to study at their own pace and convenience. Unlike traditional classroom settings, online courses allow students to access course materials and lectures at any time, making it easier for those with busy schedules to balance work and study commitments.Additionally, online education is often more affordable than traditional brick-and-mortar institutions. With lower tuition fees and reduced transportation costs, students can save money while still receiving quality education. This makes online education an attractive option for those looking to obtain a degree without breaking the bank.Furthermore, online education offers access to a wide range of courses and programs that may not be available in traditional institutions. Students can choose from a variety of subjects and specializations, allowing them to tailor their education to theirspecific interests and career goals. This diversity of options ensures that students receive a well-rounded education that prepares them for success in today's competitive job market.In conclusion, online education offers many benefits that make it an attractive option for students seeking flexible learning options. With its convenience, affordability, and access to a wide range of courses, online education is a viable alternative to traditional brick-and-mortar institutions. By exploring the advantages of online education, students can make informed decisions about their educational journey and achieve success in their chosen field.Answers:Section A:1. A. The importance of education2. C. It gives individuals a solid foundation of knowledge.3. B. It allows individuals to apply knowledge in real-world situations.Section B:1. A. postpone2. B. optimistic3. A. comprehendSection C: (Sample essay - actual length may vary)篇2黑龙江国家开放大学学位英语考试真题及答案Part I Reading Comprehension (30%)Directions:There are three passages in this part. Each passage is followed by some questions or unfinished statements. For each of them there are four choices marked A,B,C and D. Choose the one that best completes the statement or answers the question. Choose the best answer (marked A,B,C or D) to each question.June 6, 2020 marked a milestone in the field of artificial intelligence (AI). It was the day Google released LaMDA, a language model designed to sound more like humans and less like computers. Google said LaMDA will make the internet more talkative and more like having a conversation.Scientists at Google hope that LaMDA will help to make searching the internet easier and more satisfying. Today, if you search “elephants,” for instance, yo u get a page full of information, and you have to sort through everything to findwhat you are looking for. With LaMDA, you could ask questions like you would ask a person who knows about elephants, and the model would answer in more natural, conversational sentences.The new model is different from other language models because it can hold a conversation from the start of the sentence to the end, rather than in a single response. By incorporating this feature, LaMDA can respond to questions and comments, and understand the context of the conversation.The developers say LaMDA has already demonstrated its benefit to a widely known Google program called Meena. Meena can respond to instructions from the user with a limited amount of information. LaMDA, though, can give much broader explanations and speak on a wide variety of subjects.It remains to be seen how the introduction of LaMDA will affect how humans use the internet, but the developers at Google are hopeful that it will make the searching experience more enjoyable and almost like chatting with a friend.1. What is Google’s LaMDA supposed to help internet users do?A. Talk like a computer.B. Find more information.C. Search for elephants.D. Sort through pages of information.【Answer】B. Find more information.2. According to the passage, what can the new language model LaMDA do during a conversation?A. Respond to questions.B. Understand search terms.C. Show pages of information.D. Analyze internet use.【Answer】A. Respond to questions.3. Why is LaMDA unique among language models?A. It can talk like a person.B. It can hold a conversation.C. It can respond instantly.D. It can search for information.【Answer】B. It can hold a conversation.4. How does LaMDA benefit Google’s Meena program?A. It provides limited information.B. It responds to commands.C. It speaks broadly about topics.D. It explains a wide variety of subjects.【Answer】C. It speaks broadly about topics.5. What is Google optimistic about with the introduction of LaMDA?A. Improved searching experience.B. Decreased internet use.C. New language models.D. Better computer conversations.【Answer】A. Improved searching experience.Part II Vocabulary & Structure (30%)Directions: There are thirty multiple-choice questions in this part. For each question, there are four choices marked A,B,C and D. Choose the one that best complete the sentence. Choose the best answer (marked A, B, C or D) to each question.6. I’ve ____ English for five years and now I can speak quite fluently.A. studiedB. been studyingC. have studiedD. will study【Answer】B. been studying7. Your cough sounds terrible. You ____ see a doctor.A. have toB. oughtC. mightD. should【Answer】D. should8. I’d prefer to go by train; it’s ____.A. more cheapB. much cheaperC. cheaper muchD. a cheapest【Answer】B. much cheaper9. His father returned home from work, as he always ____ at six each evening.A. doneB. doesC. doD. is done【Answer】B. does10. I’m thinking of buying a new car, but the problem ____ money.A. hasB. hadC. is havingD. is【Answer】D. is11. He was ____ tired that he couldn’t spe ak.A. soB. suchC. asD. that【Answer】A. so12. Not until recently ____ how important it was.A. they realizeB. did they realizeC. they did realizeD. realize they【Answer】B. did they realize13. If you don’t listen to your parents, you’ll ____ trouble.A. run intoB. find outC. get toD. come over【Answer】A. run into14. He was arrested for selling ____ cigarettes.A. harmful, illegalB. health, dangerousC. dangerous, unhealthyD. harmful, unhealthy【Answer】D. harmful, unhealthy15. On weekends, there’s not much work to do, so I try to ____.A. peacefulB. relaxedlyC. relaxingD. feel relax【Answer】C. relaxingPart III Translation (10%)Directions: In this part, there are five sentences and one paragraph to translate into Chinese. Write your answer in the corresponding space.16. "China’s economy has been growing rapidly in recent years."【Answer】中国的经济近年来增长迅速。
大型语言模型概念
大型语言模型概念大型语言模型(LargeLanguageModels)是指具有大量参数的深度学习模型,能够自动学习自然语言的语法和语义规则,进而生成自然语言文本。
近年来,随着深度学习技术的不断发展,大型语言模型在自然语言处理领域中得到了广泛应用,如机器翻译、语音识别、文本生成、问答系统等。
一、大型语言模型的发展历程大型语言模型的发展历程可以追溯到上世纪80年代,当时研究人员提出了基于统计语言模型的方法,即利用大规模语料库中的统计信息来估计语言模型的参数,从而实现语言模型的自动学习。
这种方法主要依赖于n-gram模型,即将文本分成n个连续的词或字符序列,然后利用贝叶斯公式计算出下一个词或字符的概率分布。
这种方法虽然简单有效,但是它只能考虑局部上下文,无法捕捉长距离的依赖关系,因此在生成长篇文本时表现不佳。
随着神经网络技术的发展,研究人员开始尝试使用神经网络来构建大型语言模型。
最早的神经网络语言模型是基于单层的前馈神经网络(Feedforward Neural Network)实现的,但是由于这种模型无法处理变长的输入序列,因此表现并不理想。
随后,研究人员提出了基于循环神经网络(Recurrent Neural Network,RNN)的语言模型,该模型可以处理任意长度的输入序列,并且能够捕捉长距离的依赖关系,因此在自然语言处理领域中得到了广泛应用。
然而,由于RNN模型存在梯度消失和梯度爆炸等问题,导致在训练过程中难以捕捉长期依赖关系,从而限制了模型的性能。
为了解决这一问题,研究人员提出了一种新的循环神经网络模型,即长短时记忆网络(Long Short-Term Memory,LSTM),该模型通过引入门控机制来控制信息的流动,从而有效地捕捉长期依赖关系,提高了模型的性能。
二、大型语言模型的应用领域1. 机器翻译机器翻译是指利用计算机程序将一种语言的文本自动翻译成另一种语言的文本。
大型语言模型在机器翻译中的应用主要是基于编码-解码框架,即将源语言文本编码为一个向量,然后将该向量解码为目标语言文本。
语种识别深度学习方法研究共3篇
语种识别深度学习方法研究共3篇语种识别深度学习方法研究1语种识别深度学习方法研究语言是人类交流的工具,不同的语言代表着不同的文化和思想。
随着经济的全球化和科技的快速发展,人们越来越需要在不同的语境中相互交流,并且需要一种准确快速的语种识别技术来帮助他们实现这一目标。
语种识别技术是当前自然语言处理领域中的一个重要研究方向,它在商业、政治、文化等众多领域中都有着广泛应用。
传统的语种识别方法主要采用统计学习算法,例如朴素贝叶斯、支持向量机、决策树等,这些算法需要手动设计特征,然后训练模型进行分类。
虽然这些方法在一定程度上能够实现语种识别的任务,但是它们依赖于人工特征设计的经验,无法捕捉到语言之间的深层次的关系和特征,而且在训练样本不足或者数据分布不均衡的情况下,性能会受到严重影响。
近年来,随着深度学习技术的发展,语种识别的性能得到了显著提高。
深度学习算法是一种对人工神经网络进行层次化抽象和学习的方法。
它能够自动从数据中学习到更高层次的特征表示,并且在较小的数据集上也能够获得良好的泛化能力。
具体来说,卷积神经网络(Convolutional Neural Networks,CNN)和循环神经网络(Recurrent Neural Networks,RNN)是目前应用最广泛的深度学习模型。
CNN可以自适应地从原始信号中提取出不同层次的语言特征。
在语种识别中,通常采用的是一维卷积,它能够自动地提取出音频信号中的语音特征,例如频谱、梅尔频率倒谱系数等。
卷积层可以对每个频率上的信号进行相应的卷积操作,从而获得卷积特征,之后通过池化层将每个时间步长上的卷积特征进行降维从而得到更高级别的特征表示,最后通过全连接层进行分类。
RNN则是一种能够有效处理序列数据的模型,它可以自动地记忆并回溯历史状态,通过学习特征序列之间的关系进行分类。
在语种识别中,通常采用的是长时间短时记忆网络(Long Short-Term Memory,LSTM)和门控循环单元(Gated Recurrent Unit,GRU)等常见的RNN变种。
基于深度学习的中文自动分词与词性标注模型研究
基于深度学习的中文自动分词与词性标注模型研究1. 引言中文自动分词与词性标注是中文文本处理和语义分析的重要基础任务。
传统方法在处理中文自动分词和词性标注时,通常采用基于规则或统计的方法,并且需要大量的特征工程。
然而,这些传统方法在处理复杂语境、歧义和未知词汇等问题时存在一定的局限性。
随着深度学习的发展,基于神经网络的自然语言处理方法在中文自动分词和词性标注任务上取得了显著的成果。
深度学习方法通过利用大规模的文本数据和端到端的学习方式,避免了传统方法中需要手动设计特征的问题,能够更好地解决复杂语境和未知词汇等挑战。
本文将重点研究基于深度学习的中文自动分词与词性标注模型,探讨这些模型在中文文本处理中的应用和效果,并对未来的研究方向进行展望。
2. 相关工作在深度学习方法应用于中文自动分词和词性标注之前,传统的方法主要基于规则或统计模型。
其中,基于规则的方法采用人工定义的规则来处理中文分词和词性标注任务,但这种方法需要大量人力投入且难以适应不同语境。
另一方面,基于统计模型的方法则依赖于大规模的语料库,通过统计和建模的方式进行分词和词性标注。
然而,这些方法在处理复杂语境和未知词汇时效果有限。
近年来,随着深度学习的兴起,基于神经网络的中文自动分词和词性标注模型逐渐成为研究热点。
其中,基于循环神经网络(RNN)的模型如BiLSTM-CRF(双向长短时记忆网络-条件随机场)模型被广泛使用并取得了令人瞩目的效果。
该模型利用LSTM单元来捕捉输入序列的上下文信息,并利用条件随机场模型来建模序列标注问题。
此外,基于注意力机制的模型如Transformer也在中文自动分词和词性标注任务中取得了优异的表现。
3. 深度学习方法在中文自动分词中的应用中文自动分词是将连续的汉字序列划分为具有独立语义的词组的任务。
传统的基于规则或统计的方法在处理未知词汇和复杂语境时存在一定的限制。
而基于深度学习的方法通过端到端的学习方式,可以更好地捕捉上下文信息,并通过大规模的语料库进行训练,从而提高分词的准确性和鲁棒性。
基于深度学习的唇语识别数据库构建和算法研究
硕士学位论文
基于深度学习的唇语识别 数据库构建和算法研究
A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree for the Master of Engineering
Database Construction and Algorithm Research of Visual Speech Recognition Based on Deep Learning
在仅使用图像信息的基础上,本课题提出的方法在目前主流唇语识别数据库 LRW 和 GRID 都取得了最好结果:在 LRW 上的分类准确率为 82.73,超过当前最好 的结果 1.43%;在 GRID 上的 wer 为 12.8%,超过当前最好的结果 9.2%。同时,对 于自建的中文数据集 LRW-1000,本课题提出的算法在性能上也要优于当前的主流模 型。
混合词汇特征和lda的语义相关度计算方法
混合词汇特征和LDA的语义相关度计算方法一、背景简介在自然语言处理和文本挖掘领域,语义相关度计算是一个重要而复杂的问题。
传统的基于词袋模型的相似度计算往往无法很好地捕捉词语之间的语义关联,因此引入了深度学习和主题模型等方法来提高语义相关度的计算精度。
混合词汇特征和LDA的语义相关度计算方法就是其中之一,它结合了词汇特征和主题模型的优势,能够更准确地评估文本之间的语义相关性。
二、混合词汇特征和LDA的基本原理混合词汇特征和LDA的语义相关度计算方法的基本原理是将词汇特征和LDA主题模型结合起来,利用它们各自的优势来计算文本之间的语义相关度。
通过词袋模型和词嵌入模型等方法提取文本的词汇特征,将文本表示为向量;利用LDA主题模型来挖掘文本的主题分布,将文本表示为主题分布的向量;将词汇特征向量和主题分布向量进行融合,通过一定的计算方法得到文本之间的语义相关度。
三、混合词汇特征和LDA的计算方法1. 词汇特征提取词汇特征提取是语义相关度计算的基础,包括词袋模型、TF-IDF、词嵌入等方法。
在混合词汇特征和LDA的计算方法中,可以使用词袋模型将文本表示为词频向量,也可以利用词嵌入模型将词语转换为稠密的向量表示。
这些词汇特征能够捕捉文本中词语的语义信息,为后续的语义相关度计算奠定了基础。
2. LDA主题模型LDA主题模型是一种用于挖掘文本主题分布的概率生成模型,能够将文本表示为主题分布的向量。
在混合词汇特征和LDA的计算方法中,利用LDA主题模型可以发现文本隐含的语义主题,从而更好地表征文本的语义信息。
3. 混合计算方法混合词汇特征和LDA的计算方法采用了词汇特征向量和主题分布向量的融合策略,常见的计算方法包括余弦相似度、欧氏距离等。
这些方法能够将词汇特征和主题信息进行有效地整合,得到文本之间的语义相关度。
四、实际应用与案例分析混合词汇特征和LDA的语义相关度计算方法在文本相似度计算、信息检索、推荐系统等领域有着广泛的应用。
基于深度学习的地图线性要素走向判定方法
深度学习方法是对复杂图像场景识别解析的重要方法之一,已被广泛应用于计算机视觉任务。
尽管基于深度学习在地图要素提取方面取得了一些成果,但是在比例尺有差异的地图中,比对地图的几何特征研究时,还没有更加全面的智能化算法及技术[1-8]。
本文以深度学习为技术手段,以人工标注的地图的线性要素走向数据为依据,分析判定待审地图的线性要素走向的正确性。
在以宁夏回族自治区行政地图的线状要素提取为实际案例,其中包括行政边界和河流,来验证算法的有效性,期望为地图审查中各类要素的地理位置确定提供参考。
1方法原理与实现地图审图依据的参考是标准地图集,为实现待审地图中线性要素走向的正确性,具体流程如图1所示。
图1线性要素走向判定流程图1.1地图地理特征点目标识别通常我们将标准地图集作为参考地图,它的尺寸和分辨率往往与待审地图不同,因此首先需要对2幅地图进行配准对齐。
本文利用地图中重要的地理目标基于深度学习的地图线性要素走向判定方法蒋巍1,张淑霞1,马小燕1,薛青2*(1.宁夏回族自治区自然资源成果质量检验中心,宁夏银川750004;2.西安锐思数智科技股份有限公司,陕西西安710000)摘要:地图审图作为问题地图发现的手段,目前仍基于人工目视审查,审图人员专业要求高、劳动强度大、审图效率低和审图规则种类缺失的突出问题亟待解决。
采用基于深度学习的地图线性要素提取与走向判定方法,提取并审查了宁夏回族自治区行政区划图中宁夏自治区界和清水河的走向,并利用模型评价指标对判定结果做精度评价。
其中,准确率(Pixel Accuracy ,PA )最小值91.86%出现在宁夏回族自治区界线性要素走向判定,召回率(Recall )最小值85.42%出现在清水河线性要素走向判定。
实验结果表明该方法支持可定制的线性要素走向审图规则,为人工目视审图中线性要素走向存在的上述问题提供了准确且高效的解决方法。
关键词:地图审图;地图线性要素;深度学习;目标识别;语义分割中图分类号:P285文献标志码:B文章编号:1672-4623(2024)04-0026-04Orientation Determination Method of Map Linear Element Based on Deep LearningJIANG Wei 1,ZHANG Shuxia 1,MA Xiaoyan 1,XUE Qing 2(1.Ningxia Results Quality Inspection Center of Natural Resources,Yinchuan 750004,China;2.Xi ’an RaySmart Technology Co.,Ltd.,Xi ’an 710000,China)Abstract:Map inspection,as a means of erroneous map discovery,is still based on labor-intensive visual inspection.The prominent issues by this means,such as high professional requirements for inspectors,high labor intensity,low efficiency of map inspection,and lacking of diverse in-spection rules,should be solved properly.In this paper,we used a map linear element extraction and direction determination method based on deep learning to inspect the direction of Ningxia Hui Autonomous Region boundary and that of Qingshui River in the administrative map of Ningxia Hui Autonomous Region,and used metrics to evaluate the accuracy of inspection results.According to the results,the minimum value of pixel accuracy (PA)is 91.86%for the determination of boundary elements of Ningxia Hui Autonomous Region,and the minimum value of Recall is 85.42%for the determination of linear elements of Qingshui River.The experimental results show that this method can support customizable linear element orientation rules,and provide a solution with high accuracy and efficiency to the issues mentioned above in the labor-intensive map inspection.Key words:map inspection,map linear element,deep learning,object detection,semantic segmentation收稿日期:2023-11-16。
语义三元组提取-概述说明以及解释
语义三元组提取-概述说明以及解释1.引言1.1 概述概述:语义三元组提取是一种自然语言处理技术,旨在从文本中自动抽取出具有主谓宾结构的语义信息。
通过将句子中的实体与它们之间的关系抽取出来,形成三元组(subject-predicate-object)的形式,从而获得更加结构化和可理解的语义信息。
这项技术在信息检索、知识图谱构建、语义分析等领域具有广泛的应用前景。
概述部分将介绍语义三元组提取的基本概念、意义以及本文所要探讨的重点内容。
通过对语义三元组提取技术的介绍,读者可以更好地理解本文后续内容的研究意义和应用场景。
1.2 文章结构本文将分为三个主要部分,分别是引言、正文和结论。
在引言部分,将从概述、文章结构和目的三个方面介绍本文的主题内容。
首先,我们将简要介绍语义三元组提取的背景和意义,引出本文的研究对象。
接着,我们将介绍文章的整体结构,明确各个部分的内容安排和逻辑关系。
最后,我们将阐明本文的研究目的,明确本文要解决的问题和所带来的意义。
在正文部分,将主要分为三个小节。
首先,我们将介绍语义三元组的概念,包括其定义、特点和构成要素。
接着,我们将系统梳理语义三元组提取的方法,包括基于规则的方法、基于统计的方法和基于深度学习的方法等。
最后,我们将探讨语义三元组在实际应用中的场景,包括知识图谱构建、搜索引擎优化和自然语言处理等方面。
在结论部分,将对前文所述内容进行总结和展望。
首先,我们将概括本文的研究成果和亮点,指出语义三元组提取的重要性和必要性。
接着,我们将展望未来研究方向和发展趋势,探索语义三元组在智能技术领域的潜在应用价值。
最后,我们将用简洁的语言作出结束语,强调语义三元组提取对于推动智能化发展的意义和价值。
1.3 目的本文的目的是介绍语义三元组提取这一技术,并探讨其在自然语言处理、知识图谱构建、语义分析等领域的重要性和应用价值。
通过对语义三元组概念和提取方法的讨论,希望能够帮助读者更好地理解和应用这一技术,提高对文本语义信息的理解和利用能力。
人工智能英文课件
Unsupervised learning
Key components of unsupervised learning include the input data and a learning algorithm that iteratively updates its parameters to discover patterns or groups within the unlabeled data
03
Natural language processing
Speech recognition
• Speech recognition is the process of converting audio signals of human speech into machine ready formats This technology allows computers to understand and interpret human voice commands, enabling voice activated commands and guidance
02
Machine learning
Supervised learning
• Supervised learning is a type of machine learning where the algorithm is provided with labeled training data The goal is to learn a function that maps input data to desired outputs based on the provided labels Common examples include classification and regression tasks
新编实用英语PE1-U5-T
Verb
动词是用来表示动作、状态或
•·
行为的词。
01
02
行为动词:表示具体的动作,
如“run”、“write”、 “jump”。
03
系动词:表示状态,如“be”
、“feel”、“look”。
04
助动词:帮助主要动词表达意
思,如“do”、“have”、
“will”。
05
情态动词:表示可能性、必要
性等,如“can”、 “should”、“must”。
06
Adjectives and Adverbs
形容词和副词用来修饰名词 或动词,表示性质、状态或
程度。
•·
01
02
03
形容词:描述名词的性质, 如“big”、“beautiful”
、“red”。
副词:描述动词的状态或程 度,如“quickly”、
The ability to use English grammar correctly, including the use of tenses, voice, and moods.
Listening materials and oral practice
• Authentic materials: Using real-world listening materials, such as podcasts, news reports, or conversations, to provide a context for listening and speaking practice.
The knowledge and understanding of the world that readers
参考文献(人工智能)
参考文献(人工智能)曹晖目的:对参考文献整理(包括摘要、读书笔记等),方便以后的使用。
分类:粗分为论文(paper)、教程(tutorial)和文摘(digest)。
0介绍 (1)1系统与综述 (1)2神经网络 (2)3机器学习 (2)3.1联合训练的有效性和可用性分析 (2)3.2文本学习工作的引导 (2)3.3★采用机器学习技术来构造受限领域搜索引擎 (3)3.4联合训练来合并标识数据与未标识数据 (5)3.5在超文本学习中应用统计和关系方法 (5)3.6在关系领域发现测试集合规律性 (6)3.7网页挖掘的一阶学习 (6)3.8从多语种文本数据库中学习单语种语言模型 (6)3.9从因特网中学习以构造知识库 (7)3.10未标识数据在有指导学习中的角色 (8)3.11使用增强学习来有效爬行网页 (8)3.12★文本学习和相关智能A GENTS:综述 (9)3.13★新事件检测和跟踪的学习方法 (15)3.14★信息检索中的机器学习——神经网络,符号学习和遗传算法 (15)3.15用NLP来对用户特征进行机器学习 (15)4模式识别 (16)4.1JA VA中的模式处理 (16)0介绍1系统与综述2神经网络3机器学习3.1 联合训练的有效性和可用性分析标题:Analyzing the Effectiveness and Applicability of Co-training链接:Papers 论文集\AI 人工智能\Machine Learning 机器学习\Analyzing the Effectiveness and Applicability of Co-training.ps作者:Kamal Nigam, Rayid Ghani备注:Kamal Nigam (School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, knigam@)Rayid Ghani (School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 rayid@)摘要:Recently there has been significant interest in supervised learning algorithms that combine labeled and unlabeled data for text learning tasks. The co-training setting [1] applies todatasets that have a natural separation of their features into two disjoint sets. We demonstrate that when learning from labeled and unlabeled data, algorithms explicitly leveraging a natural independent split of the features outperform algorithms that do not. When a natural split does not exist, co-training algorithms that manufacture a feature split may out-perform algorithms not using a split. These results help explain why co-training algorithms are both discriminativein nature and robust to the assumptions of their embedded classifiers.3.2 文本学习工作的引导标题:Bootstrapping for Text Learning Tasks链接:Papers 论文集\AI 人工智能\Machine Learning 机器学习\Bootstrap for Text Learning Tasks.ps作者:Rosie Jones, Andrew McCallum, Kamal Nigam, Ellen Riloff备注:Rosie Jones (rosie@, 1 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213)Andrew McCallum (mccallum@, 2 Just Research, 4616 Henry Street, Pittsburgh, PA 15213)Kamal Nigam (knigam@)Ellen Riloff (riloff@, Department of Computer Science, University of Utah, Salt Lake City, UT 84112)摘要:When applying text learning algorithms to complex tasks, it is tedious and expensive to hand-label the large amounts of training data necessary for good performance. This paper presents bootstrapping as an alternative approach to learning from large sets of labeled data. Instead of a large quantity of labeled data, this paper advocates using a small amount of seed information and alarge collection of easily-obtained unlabeled data. Bootstrapping initializes a learner with the seed information; it then iterates, applying the learner to calculate labels for the unlabeled data, and incorporating some of these labels into the training input for the learner. Two case studies of this approach are presented. Bootstrapping for information extraction provides 76% precision for a 250-word dictionary for extracting locations from web pages, when starting with just a few seed locations. Bootstrapping a text classifier from a few keywords per class and a class hierarchy provides accuracy of 66%, a level close to human agreement, when placing computer science research papers into a topic hierarchy. The success of these two examples argues for the strength of the general bootstrapping approach for text learning tasks.3.3 ★采用机器学习技术来构造受限领域搜索引擎标题:Building Domain-specific Search Engines with Machine Learning Techniques链接:Papers 论文集\AI 人工智能\Machine Learning 机器学习\Building Domain-Specific Search Engines with Machine Learning Techniques.ps作者:Andrew McCallum, Kamal Nigam, Jason Rennie, Kristie Seymore备注:Andrew McCallum (mccallum@ , Just Research, 4616 Henry Street Pittsburgh, PA 15213)Kamal Nigam (knigam@ , School of Computer Science, Carnegie Mellon University Pittsburgh, PA 15213)Jason Rennie (jr6b@)Kristie Seymore (kseymore@)摘要:Domain-specific search engines are growing in popularity because they offer increased accuracy and extra functionality not possible with the general, Web-wide search engines. For example, allows complex queries by age-group, size, location and cost over summer camps. Unfortunately these domain-specific search engines are difficult and time-consuming to maintain. This paper proposes the use of machine learning techniques to greatly automate the creation and maintenance of domain-specific search engines. We describe new research in reinforcement learning, information extraction and text classification that enables efficient spidering, identifying informative text segments, and populating topic hierarchies. Using these techniques, we have built a demonstration system: a search engine forcomputer science research papers. It already contains over 50,000 papers and is publicly available at ....采用多项Naive Bayes 文本分类模型。
基于神经网络的多特征轻度认知功能障碍检测模型
第 62 卷第 6 期2023 年11 月Vol.62 No.6Nov.2023中山大学学报(自然科学版)(中英文)ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS SUNYATSENI基于神经网络的多特征轻度认知功能障碍检测模型*王欣1,陈泽森21. 中山大学外国语学院,广东广州 5102752. 中山大学航空航天学院,广东深圳 518107摘要:轻度认知功能障是介于正常衰老和老年痴呆之间的一种中间状态,是老年痴呆诊疗的关键阶段。
因此,针对潜在MCI老年人群进行早期检测和干预,有望延缓语言认知障碍及老年痴呆的发生。
本文利用患者在语言学表现变化明显的特点,提出了一种基于神经网络的多特征轻度认知障碍检测模型。
在提取自然会话中的语言学特征的基础上,融合LDA模型的T-W矩阵与受试者资料等多特征信息,形成TextCNN网络的输入张量,构建基于语言学特征的神经网络检测模型。
该模型在DementiaBank数据集上达到了0.93的准确率、1.00的灵敏度、0.8的特异度和0.9的精度,有效提高了利用自然会话对老年语言认知障碍检测的准确率。
关键词:轻度认知功能障碍;自然会话;神经网络模型;多特征分析;会话分析中图分类号:H030 文献标志码:A 文章编号:2097 - 0137(2023)06 - 0107 - 09A neural network-based multi-feature detection model formild cognitive impairmentWANG Xin1, CHEN Zesen21. School of Foreign Languages, Sun Yat-sen University, Guangzhou 510275, China2. School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 518107, ChinaAbstract:Mild cognitive impairment (MCI) is both an intermediate state between normal aging and Alzheimer's disease and the key stage in the diagnosis of Alzheimer's disease. Therefore, early detec‐tion and treatment for potential elderly can delay the occurrence of dementia. In this study, a neural net‐work-based multi-feature detection model for mild cognitive impairment was proposed, which exploits the characteristics of patients with obvious changes in linguistic performance. The model is based on ex‐tracting the linguistic features in natural speech and integrating the T-W matrix of the LDA model with the subject data and other multi-feature information as the input tensor of the TextCNN network. It achieved an accuracy of 0.93, a sensitivity of 1.00, a specificity of 0.8, and a precision of 0.9 on the DementiaBank dataset, which effectively improved the accuracy of cognitive impairment detection in the elderly by using natural speech.Key words:mild cognitive impairment; natural speech; neural network model; multi-feature detec‐tion; speech analysisDOI:10.13471/ki.acta.snus.2023B049*收稿日期:2023 − 07 − 18 录用日期:2023 − 07 − 30 网络首发日期:2023 − 09 − 21基金项目:教育部人文社会科学基金(22YJCZH179);中国科协科技智库青年人才计划(20220615ZZ07110400);中央高校基本科研业务费重点培育项目(23ptpy32)作者简介:王欣(1991年生),女;研究方向:应用语言学;E-mail:******************第 62 卷中山大学学报(自然科学版)(中英文)轻度认知障碍(MCI,mild cognitive impair‐ment)是一种神经系统慢性退行性疾病,也是阿尔茨海默病(AD,Alzheimer's disease)的早期关键阶段。
语义文本相似度计算方法研究综述
语义文本相似度计算方法研究综述目录一、内容概括 (2)1.1 研究背景 (3)1.2 研究意义 (3)1.3 文献综述目的与结构 (5)二、基于词向量的语义文本相似度计算 (5)2.1 词向量表示方法 (7)2.2 基于词向量的相似度计算方法 (8)2.3 词向量模型优化 (9)三、基于深度学习的语义文本相似度计算 (10)3.1 循环神经网络 (11)3.2 卷积神经网络 (13)3.3 自注意力机制 (14)四、基于图的方法 (15)4.1 图表示方法 (16)4.2 图上采样与聚类 (18)4.3 图匹配算法 (19)五、混合方法 (21)5.1 结合多种表示方法的混合策略 (22)5.2 不同任务间的知识迁移 (23)六、评估与优化 (24)6.1 评估指标 (25)6.2 算法优化策略 (26)七、应用领域 (28)7.1 自然语言处理 (29)7.2 信息检索 (30)7.3 问答系统 (32)7.4 多模态语义理解 (33)八、结论与展望 (34)8.1 研究成果总结 (35)8.2 现有方法的局限性 (37)8.3 未来发展方向 (38)8.4 对研究者的建议 (39)一、内容概括语义文本表示与相似度计算方法:首先介绍了语义文本表示的基本概念和方法,包括词向量、句子向量、文档向量等,以及这些表示方法在相似度计算中的应用。
基于统计的方法:介绍了一些基于统计的文本相似度计算方法,如余弦相似度、Jaccard相似度、欧几里得距离等,分析了它们的优缺点及应用场景。
基于机器学习的方法:介绍了一些基于机器学习的文本相似度计算方法,如支持向量机(SVM)、朴素贝叶斯(NB)、最大熵模型(ME)等,讨论了它们的原理、优缺点及适用性。
深度学习方法:重点介绍了近年来兴起的深度学习方法在语义文本相似度计算中的应用,如循环神经网络(RNN)、长短时记忆网络(LSTM)、门控循环单元(GRU)等,分析了它们在文本相似度计算中的性能及局限性。
ai大语言模型在医学文本提取结构化信息中的应用
随着人工智能技术的不断发展,本人大语言模型在医学领域的应用越来越广泛。
医学文本提取结构化信息是医学研究中非常重要的一环,而本人大语言模型的出现为医学文本提取结构化信息提供了全新的解决方案。
本文将就本人大语言模型在医学文本提取结构化信息中的应用进行探讨,并分析其优势和挑战。
一、本人大语言模型简介本人大语言模型是指基于人工智能技术开发的模型,能够理解和生成自然语言。
该模型通过大量的语料库训练得到,能够自动生成具有语法正确性和语义连贯性的文本。
当前,本人大语言模型已经在多个领域有所应用,如自然语言处理、智能掌柜、智能翻译等。
二、本人大语言模型在医学文本中提取结构化信息的优势1. 自动化提取:本人大语言模型能够自动识别医学文本中的关键信息,并将其提取出来。
相比人工提取,本人大语言模型能够大大提高提取效率,并且能够降低人工提取的错误率。
2. 大规模处理:本人大语言模型能够处理大规模的医学文本数据,能够在短时间内完成对大量文本信息的提取和整理工作。
3. 多样化处理:本人大语言模型能够处理包括病历、医学论文、研究报告等多种形式的医学文本,具有较强的适应性和通用性。
4. 高质量提取:本人大语言模型通过深度学习技术进行训练,能够准确地提取医学文本中的结构化信息,保证提取结果的质量和准确性。
三、本人大语言模型在医学文本中提取结构化信息的应用目前,本人大语言模型在医学文本提取结构化信息方面已经取得了一些研究成果,并有一些应用案例。
1. 病历信息提取:本人大语言模型能够从病历中提取出患者的基本信息、病情描述、医嘱等关键信息,并进行结构化整理。
这对于医院的信息化建设和医生的诊疗工作具有重要意义。
2. 医学论文分析:本人大语言模型能够从医学论文中提取出疾病的发病率、病因、治疗方法等关键信息,并进行结构化分析。
这有利于医学研究人员进行数据挖掘和科学研究。
3. 药物信息提取:本人大语言模型能够从医学文本中提取出药物的名称、用途、剂量等信息,并进行结构化整理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Deep Syntax Language Models and Statistical Machine TranslationYvette GrahamNCLTDublin City Universityygraham@computing.dcu.iejosef@computing.dcu.ieJosef van GenabithCNGLDublin City UniversityAbstractHierarchical Models increase the re-ordering capabilities of MT systems by introducing non-terminal symbols to phrases that map source language (SL)words/phrases to the correct position in the target language (TL)translation.Building translations via discontiguous TL phrases increases the difficulty of lan-guage modeling,however,introducing the need for heuristic techniques such as cube pruning (Chiang,2005),for example.An additional possibility to aid language modeling in hierarchical systems is to use a language model that models fluency of words not using their local context in the string,as in traditional language models,but instead using the deeper context of a word.In this paper,we explore the potential of deep syntax language mod-els providing an interesting comparison with the traditional string-based language model.We include an experimental evalu-ation that compares the two kinds of mod-els independently of any MT system to in-vestigate the possible potential of integrat-ing a deep syntax language model into Hi-erarchical SMT systems.1IntroductionIn Phrase-Based Models of Machine Translation all phrases consistent with the word alignment are extracted (Koehn et al.,2003),with shorter phrases needed for high coverage of unseen data and longer phrases providing improved fluency intarget language translations.Hierarchical Mod-els (Chiang,2007;Chiang,2005)build on Phrase-Based Models by relaxing the constraint that phrases must be contiguous sequences of words and allow a short phrase (or phrases)nested within a longer phrase to be replaced by a non-terminal symbol forming a new hierarchical phrase.Tra-ditional language models use the local context of words to estimate the probability of the sentence and introducing hierarchical phrases that generate discontiguous sequences of TL words increases the difficulty of computing language model proba-bilities during decoding and require sophisticated heuristic language modeling techniques (Chiang,2007;Chiang,2005).Leaving aside heuristic language modeling for a moment,the difficulty of integrating a tradi-tional string-based language model into the de-coding process in a hierarchical system,highlights a slight incongruity between the translation model and language model in Hierarchical Models.Ac-cording to the translation model,the best way to build a fluent TL translation is via discontiguous phrases,while the language model can only pro-vide information about the fluency of contiguous sequences of words.Intuitively,a language model that models fluency between discontiguous words may be well-suited to hierarchical models.Deep syntax language models condition the probability of a word on its deep context,i.e.words linked to it via dependency relations,as opposed to preced-ing words in the string.During decoding in Hi-erarchical Models,words missing a context in the string due to being preceded by a non-terminal,might however be in a dependency relation with a word that is already present in the string andthis context could add useful information about thefluency of the hypothesis as its constructed. In addition,using the deep context of a word provides a deeper notion offluency than the lo-cal context provides on its own and this might be useful to improve such things as lexical choice in SMT systems.Good lexical choice is very im-portant and the deeper context of a word,if avail-able,may provide more meaningful information and result in better lexical choice.Integrating such a model into a Hierarchical SMT system is not straightforward,however,and we believe be-fore embarking on this its worthwhile to evalu-ate the model independently of any MT system. We therefore provide an experimental evaluation of the model and in order to provide an interesting comparison,we evaluate a traditional string-based language model on the same data.2Related WorkThe idea of using a language model based on deep syntax is not new to SMT.Shen et al.(2008)use a dependency-based language model in a string to dependency tree SMT system for Chinese-English translation,using information from the deeper structure about dependency relations be-tween words,in addition to the position of the words in the string,including information about whether context words were positioned on the left or right of a word.Bojar and Hajiˇc(2008)use a deep syntax language model in an English-Czech dependency tree-to-tree transfer system,and in-clude three separate bigram language models:a reverse,direct and joint model.The model in our evaluation is similar to their direct bigram model, but is not restricted to bigrams.Riezler and Maxwell(2006)use a trigram deep syntax language model in German-English depen-dency tree-to-tree transfer to re-rank decoder out-put.The language model of Riezler and Maxwell (2006)is similar to the model in our evaluation, but differs in that it is restricted to a trigram model trained on LFG f-structures.In addition,as lan-guage modeling is not the main focus of their work,they provide little detail on the language model they use,except to say that it is based on “log-probability of strings of predicates from root to frontier of target f-structure,estimated from predicate trigrams in English f-structures”(Rie-zler and Maxwell,2006).An important prop-erty of LFG f-structures(and deep syntactic struc-tures in general)was possibly overlooked here. F-structures can contain more than one path of predicates from the root to a frontier that in-clude the same ngram,and this occurs when the underlying graph includes unary branching fol-lowed by branching with arity greater than one. In such cases,the language model probability as described in Riezler and Maxwell(2006)is incor-rect as the probability of these ngrams will be in-cluded multiple times.In our definition of a deep syntax language model,we ensure that such du-plicate ngrams are omitted in training and testing. In addition,Wu(1998)use a bigram deep syntax language model in a stochastic inversion transduc-tion grammar for English to Chinese.None of the related research we discuss here has included an evaluation of the deep syntax language model they employ in isolation from the MT system,however. 3Deep SyntaxThe deep syntax language model we describe is not restricted to any individual theory of deep syntax.For clarity,however,we restrict our ex-amples to LFG,which is also the deep syntax theory we use for our evaluation.The Lexical Functional Grammar(LFG)(Kaplan and Bres-nan,1982;Kaplan,1995;Bresnan,2001;Dalrym-ple,2001)functional structure(f-structure)is an attribute-value encoding of bi-lexical labeled de-pendencies,such as subject,object and adjunct for example,with morpho-syntactic atomic at-tributes encoding information such as mood and tense of verbs,and person,number and case for nouns.Figure1shows the LFG f-structure for En-glish sentence“Today congress passed Obama’s health care bill.”1Encoded within the f-structure is a directed graph and our language model uses a simplified acyclic unlabeled version of this graph.Figure 1(b)shows the graph structure encoded within the f-structure of Figure1(a).We discuss the simpli-fication procedure later in Section5.(a)PRED passSUBJPRED congressOBJPRED billSPECPOSS PRED Obama MODPRED careMODPRED health ADJPRED today2We refer to the lexicalized nodes in the dependency structure as words ,alternatively the term predicate can be used.word in the structure.For example,a trigram deepsyntax language model conditions the probability of each word on the sequence of words consisting of the head of the head of the word followed by the head of the word as follows:p (d e )=li =1P (w i |w m (m (i )),w m (i ))(3)In addition,similar to string-based languagemodeling,we add a start symbol,<s >,at the root of the structure and end symbols,</s >,at the leaves to include the probability of a word be-ing the head of the sentence and the probability of words occurring as leaf nodes in the structure.Figure 2(a)shows an example of how a trigram deep syntax language model probability is com-puted for the example sentence in Figure 1(a).5Simplified Approximation of the Deep Syntactic RepresentationWe describe the deep syntactic structure,d e ,as an approximation since a parser is employed to automatically produce it and there is therefore no certainty that we use the actual/correct deep syn-tactic representation for the sentence.In addi-tion,the function m requires that each node in the structure has exactly one head,however,structure-sharing can occur within deep syntactic structures resulting in a single word legitimately having two heads.In such cases we use a simplification of the graph in the deep syntactic structure.Fig-ure 3shows an f-structure in which the subject(a)Deep Syntax LM(b)Traditional LMp(e)≈p(pass|<s>)∗p(today|<s>)∗p(</s>|pass today)∗p(congress|<s>today)∗p(</s>|pass congress)∗p(bill|health care)∗p(obama|pass bill)∗p(care|pass bill)∗p(health|’s)∗p(</s>|care health)p(’|passed Obama)∗p(.|care bill)∗PRED agree SUBJ PRED nobodyXCOMP PRED with OBJ PRED point ADJ COORD and PRED two , PRED three<s >agreewith </s >point andtwo three </s ></s >Figure 4:“Nobody agreed with points two and three.”at the leaves and then extract the required order ngrams from each path.As mentioned earlier,some ngrams can belong to more than one path.Figure 4shows an example structure containing unary branching followed by binary branching in which the sequence of symbols and words “<s >agree with point and”belong to the path ending in two </s >and three </s >.In order to ensure that only distinct ngrams are extracted we assign each word in the structure a unique id number and include this in the extracted ngrams.Paths are split into ngrams and duplicate ngrams result-ing from their occurrence in more than one path are discarded.Its also possible for ngrams to le-gitimately be repeated in a deep structure,and in such cases we do not discard these ngrams.Legit-imately repeating ngrams are easily identified as the id numbers attached to words will be differ-ent.7Deep Syntax and Lexical Choice in SMTCorrect lexical choice in machine translation is extremely important and PB-SMT systems relyon the language model to ensure,that when two phrases are combined with each other,that the model can rank combined phrases that are flu-ent higher than less fluent combinations.Con-ditioning the probability of each word on its deep context has the potential to provide a more meaningful context than the local context within the string.A comparison of the proba-bilities of individual words in the deep syntax model and traditional language model in Figure 2clearly shows this.For instance,let us con-sider how the language model in a German to English SMT system is used to help rank the following two translations today congress passed ...and today convention passed ...(the word Kongress in German can be translated into ei-ther congress or convention in English).In the deep syntax model,the important compet-ing probabilities are (i)p (congress |<s >pass )and (ii)p (convention |<s >pass ),where (i)can be interpreted as the probability of the word congress modifying pass when pass is the head of the entire sentence and,simi-larly (ii)the probability of the word conven-tion modifying pass when pass is the head of the entire sentence.In the traditional string-based language model,the equivalent compet-ing probabilities are (i)p (congress |<s >today ),the probability of congress following today when today is the start of the sentence and (ii)p (convention |<s >today ),probability of con-vention following today when today is the start of the sentence,showing that the deep syntax language model is able to use more meaningful context for good lexical choice when estimating the probability of words congress and convention compared to the traditional language model.In addition,the deep syntax language model will encounter less data sparseness problems for some words than a string-based language model.In many languages words occur that can legiti-mately be moved to different positions within the string without any change to dependencies be-tween words.For example,sentential adverbs in English,can legitimately change position in a sentence,without affecting the underlying de-pendencies between words.The word today in “Today congress passed Obama’s health bill”can appear as“Congress passed Obama’s health bill today”and“Congress today passed Obama’s health bill”.Any sentence in the training cor-pus in which the word pass is modified by today will result in a bigram being counted for the two words,regardless of the position of today within each sentence.In addition,some surface form words such as auxiliary verbs for example,are not represented as predicates in the deep syntactic structure.For lexical choice,its not really the choice of auxiliary verbs that is most important,but rather the choice of an appropriate lexical item for the main verb (that belongs to the auxiliary verb).Omitting aux-iliary verbs during language modeling could aid good lexical choice,by focusing on the choice of a main verb without the effect of what auxiliary verb is used with it.For some words,however,the probability in the string-based language model provides as good if not better context than the deep syntax model,but only for the few words that happen to be preceded by words that are important to its lexical choice, and this reinforces the idea that SMT systems can benefit from using both a deep syntax and string-based language model.For example,the proba-bility of bill in Figures2(a)and2(b)is computed in the deep syntax model as p(bill|<s>pass) and in the string-based model using p(bill|health care),and for this word the local context seems to provide more important information than the deep context when it comes to lexical choice.The deep model nevertheless adds some useful information, as it includes the probability of bill being an argu-ment of pass when pass is the head of a sentence. In traditional language modeling,the special start symbol is added at the beginning of a sen-tence so that the probability of thefirst word ap-pearing as thefirst word of a sentence can be included when estimating the probability.With similar motivation,we add a start symbol to the deep syntactic representation so that the probabil-ity of the head of the sentence occurring as the head of a sentence can be included.For exam-ple,p(be|<s>)will have a high probability as the verb be is the head of many sentences of En-glish,whereas p(colorless|<s>)will have a low probability since it is unlikely to occur as the head.We also add end symbols at the leaf nodes in the structure to include the probability of these words appearing at that position in a structure.For in-stance,a noun followed by its determiner such as p(</s>|attorney a)would have a high probabil-ity compared to a conjunction followed by a verb p(</s>|and be).8EvaluationWe carry out an experimental evaluation to inves-tigate the potential of the deep syntax language model we describe in this paper independently of any machine translation system.We train a5-gram deep syntax language model on7M English f-structures,and evaluate it by computing the per-plexity and ngram coverage statistics on a held-out test set of parsedfluent English sentences.In order to provide an interesting comparison,we also train a traditional string-based5-gram lan-guage model on the same training data and test it on the same held-out test set of English sen-tences.A deep syntax language model comes with the obvious disadvantage that any data it is trained on must be in-coverage of the parser,whereas a string-based language model can be trained on any available data of the appropriate language.Since parser coverage is not the focus of our work,we eliminate its effects from the evaluation by select-ing the training and test data for both the string-based and deep syntax language models on the ba-sis that they are in fact in-coverage of the parser.8.1Language Model TrainingOur training data consists of English sentences from the WMT09monolingual training corpus with sentence length range of5-20words that are in coverage of the parsing resources(Kaplan et al., 2004;Riezler et al.,2002)resulting in approxi-mately7M sentences.Preparation of training and test data for the traditional language model con-sisted of tokenization and lower casing.Parsing was carried out with XLE(Kaplan et al.,2002) and an English LFG grammar(Kaplan et al., 2004;Riezler et al.,2002).The parser produces a packed representation of all possible parses ac-cording to the LFG grammar and we select only the single best parse for language model training by means of a disambiguation model(Kaplan etCorpus Ave.Tokens138.6M345K118.4M280KTable1:Language model statistics for string-based and deep syntax language models,statistics are for string tokens and LFG lemmas for the same set of7.29M English sentencesal.,2004;Riezler et al.,2002).Ngrams were auto-matically extracted from the f-structures and low-ercased.SRILM(Stolcke,2002)was used to com-pute both language models.Table1shows statis-tics on the number of words and lemmas used totrain each model.8.2TestingThe test set consisted of789sentences selectedfrom WMT09additional development sets3con-taining English Europarl text and again was se-lected on the basis of sentences being in-coverageof the parsing resources.SRILM(Stolcke,2002)was used to compute test set perplexity and ngramcoverage statistics for each order model.Since the deep syntax language model adds endof sentence markers to leaf nodes in the structures,the number of(so-called)end of sentence markersin the test set for the deep syntax model is muchhigher than in the string-based model.We there-fore also compute statistics for each model whenend of sentence markers are omitted from trainingand testing.4In addition,since the vast majorityof punctuation is not represented as predicates inLFG f-structures,we also test the string-based lan-guage model when punctuation has been removed.8.3ResultsTable2shows perplexity scores and ngram cover-age statistics for each order and type of languagemodel.Note that perplexity scores for the string-based and deep syntax language models are notdirectly comparable because each model has a dif-ferent vocabulary.Although both models train onan identical set of sentences,the data is in a dif-ferent format for each model,as the string-based5-gram ppl cov.ppl cov.ppl 104592.83%25123.32%279 135791.57%32720.24%360 100592.44%41217.17%453 90093.09%19425.48%215 21194.71%7329.86%79No.Occ.42<s>be this0.011019<s>would i0.041417<s>be that0.012213<s>be debate0.000312<s>and president0.000211<s>would be0.0835103-gram Prob.mr president,0.538525by the european0.001418<s>it is0.181515would like to0.494415<s>that is0.109414and gentlemen,0.100513<s>we must0.012012i should like0.008911,it is0.1090 Table4:Most frequent trigrams in test set for string-based modelshop on Statistical Machine Translation,Columbus, Ohio.Bresnan,Joan.2001.Lexical-Functional Syntax., Blackwell Oxford.Chiang,David.2007.Hierarchical Phrase-based Models of Translation In Computational Linguis-tics,No.33:2.Chiang,David.2005.A Hierarchical Phrase-Based Model for Statistical Machine Translation In Pro-ceedings of the43rd Annual Meeting of the Associa-tion for Computational Linguistics,pages263-270, Ann Arbor,Michigan.Dalrymple,Mary.2001.Lexical Functional Gram-mar,Academic Press,San Diego,CA;London. Kaplan,Ronald,Stefan Riezler,Tracy H.King,John T.Maxwell,Alexander Vasserman.2004.Speed and Accuracy in Shallow and Deep Stochastic Pars-ing.In Proceedings of Human Language Tech-nology Conference/North American Chapter of the Association for Computational Linguistics Meeting, Boston,MA.Kaplan,Ronald M.,Tracy H.King,John T.Maxwell.2002.Adapting Existing Grammars:the XLE Ex-perience.In Proceedings of the19th International Conference on Computational Linguistics(COL-ING)2002,Taipei,Taiwan.Kaplan,Ronald M.1995.The Formal Architecture of Lexical Functional Grammar.In Formal Issues in Lexical Functional Grammar,ed.Mary Dalrymple, pages7-28,CSLI Publications,Stanford,CA. Kaplan,Ronald M.,Joan Bresnan.1982.Lexical Functional Grammar,a Formal System for Gram-matical Represenation.In J.Bresnan,editor,The Mental Representation of Grammatical Relations, 173-281,MIT Press,Cambridge,MA.Koehn,Philipp,Hieu Hoang.2007.Factored Trans-lation Models.Proceedings of the2007Joint Con-ference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning,868-876.Koehn,Philipp,Hieu Hoang,Alexandra Birch,Chris Callison-Burch,Marcello Federico,Nicoli Bertoldi, Brooke Cowan,Wade Shen,Christine Moran, Richard Zens,Chris Dyer,Ondrej Bojar,Alexan-dra Constantin,Evan Herbst.2007.Moses:Open Source Toolkit for Statistical Machine Translation.Annual Meeting of the Association for Computa-tional Linguistics,demonstration session Koehn,Philipp2005.Europarl:A Parallel Corpus for Statistical Machine Translation.In Proceedings of the tenth Machine Translation Summit.Koehn,Philipp,Franz Josef Och,Daniel Marcu.2003.Statistical Phrase-based Translation.In Proceed-ings of Human Language Technology and North American Chapter of the Association for Computa-tional Linguistics Conference,48-54.Riezler,Stefan,John T.Maxwell III.2006.Grammat-ical Machine Translation.In Proceedings of HLT-ACL,pages248-255,New York.Riezler,Stefan,Tracy H.King,Ronald M.Kaplan, Richard Crouch,John T.Maxwell,Mark Johnson.2002.Parsing the Wall Street Journal using Lexical Functional Grammar and Discriminitive Estimation Techniques.(grammar version2005)In Proceed-ings of the40th ACL,Philadelphia.Shen,Libin,Jinxi Xu,Ralph Weischedel.2008.A New String-to-Dependency Machine TranslationAlgorithm with a Target Dependency Language Model.Proceedings of ACL-08:HLT,pages577-585.Stolcke,Andreas.2002.SRILM-An Extensible Lan-guage Modeling Toolkit.In Proceedings of the In-ternational Conference on Spoken Language Pro-cessing,Denver,Colorado.Dekai,Wu,Hongsing Wong.1998.Machine Trans-lation with a Stochastic Grammatical Channel.In Proceedings of the36th ACL and17th COLING, Montreal,Quebec.。