函数极限((经济类《高等数学》)

合集下载

高等数学第一章《函数与极限》

高等数学第一章《函数与极限》

第一章 函数与极限一、内容提要(一)主要定义【定义 1.1】 函数 设数集,D R ⊂如果存在一个法则,使得对D 中每个元素x ,按法则f ,在Y 中有唯一确定的元素y 与之对应,则称:f D R →为定义在D 上的函数,记作(),y f x x D =∈.x 称为自变量,y 称为因变量,D 称为定义域.【定义1.2】 数列极限 给定数列{}x n 及常数a ,若对任意0ε>,总存在正整数N ,使得当n N >时,恒有x a n -<ε成立,则称数列{}x n 收敛于a ,记为a x n n =∞→lim .【定义1.3】 函数极限(1)对于任意0ε>,存在()0δε>,当δ<-<00x x 时,恒有()ε<-A x f .则称A 为()f x 当0x x →时的极限,记为A x f x x =→)(lim 0.(2) 对于任意0ε>,存在0X >,当x X >时,恒有f x A ()-<ε.则称A 为()f x 当x →∞时的极限,记为lim ()x f x A →∞=.(3)单侧极限左(右)极限 任意0ε>,存在()0δε>,使得当000(0)x x x x δδ-<-<<-<时,恒有()ε<-A x f .则称当00()x x x x -+→→时)(x f 有左(右)极限A ,记为00lim ()(lim ())x x x x f x A f x A -+→→== 或00(0)((0))f x A f x A -=+=.单边无穷极限 任意0ε>,存在0X >,使得当x X >(x X <-)时, 恒有f x A ()-<ε, 则lim ()x f x A →+∞=(lim ()x f x A →-∞=) .【定义1.4 】 无穷小、无穷大 若函数()f x 当0x x →(或x →∞)时的极限为零(|()|f x 无限增大),那么称函数()f x 为当0x x →(或x →∞)时的无穷小(无穷大).【定义1.5】 等价无穷小 若lim 0,lim 0,lim 1βαβα===,则α与β是等价的无穷小.【定义 1.6】 连续 若)(x f y =在点0x 附近有定义,且)()(lim 00x f x f x x =→,称()y f x =在点0x 处连续.否则0x 为()f x 的间断点.(二)主要定理【定理1.1】极限运算法则 若a x u =)(lim , b x v =)(lim ,则 (1)()lim u v ±存在,()lim lim lim u v u v a b ±=±=±且; (2)()lim u v ⋅存在,()lim lim lim u v u v a b ⋅=⋅=⋅且; (3)当0≠b 时, limu v 存在,lim lim lim u u a v v b==且 推论 ⑴ lim lim Cu C u Ca ==; ⑵ ()lim lim nnnu u a ==. 【定理1.2】极限存在的充要条件⇔=→A x f x x )(lim 0lim ()x x f x -→=0lim ()x x f x A +→=.lim ()x f x A →∞=⇔lim ()x f x →-∞=lim ()x f x A →+∞=【定理1.3】极限存在准则 (1) 单调有界数列必有极限(2) 夹逼准则: 设数列{}n x 、{}n y 及{}n z 满足① n n n y x z ≤≤, ② lim =lim n n n n y z a →∞→∞=,则lim n n x →∞存在,且lim n n x a →∞=.【定理1.4】极限与无穷小的关系 若lim (),f x A =则(),f x A α=+其中lim 0.α=【定理1.5】两个重要极限 1sin lim0=→x x x ,e x xx =⎪⎭⎫⎝⎛+∞→11lim .【定理1.6】 初等函数的连续性 初等函数在其定义区间内连续. 【定理1.7】闭区间上连续函数的性质(1)最值定理 闭区间上连续函数在该区间上一定有最大值M 和最小值m . (2)有界定理 闭区间上连续函数一定在该区间上有界.(3)介值定理 闭区间上连续函数必可取介于最大值M 与最小值m 之间的任何值. (4)零点存在定理 设函数()x f 在[]b a ,上连续,()a f ()0<⋅b f ,则至少存在一个ξ∈()b a ,,使 ()0f ξ=.二、典型题解析函数两要素:定义域,对应关系定义域:使表达式有意义的自变量的全体,方法为解不等式 对应关系:主要方法用变量替换(一)填空题【例1.1】 函数23arccos2xy x =+的定义域是 . 解 由arccos y u =的定义域知11u -≤≤,从而23112xx -≤≤+, 即 (][][),21,12,-∞--+∞.【例1.2】 设()()()2sin ,1f x x f x xφ==-,则函数()x φ的定义域为 .解 由已知()()2sin[()]1fx x xφφ==-,所以()2sin(1)x arc x φ=-,则2111,x -≤-≤即x ≤.【例1.3】设1()(0,1),()([...()])1n n f x x x f x f f f x x =≠≠=+次,试求()n f x 解 由()1xf x x =-,则21()[()]11xx f x f f x x x x -===--,显然复合两次变回原来的形式,所以,2(),211n x n k f x x n k x =⎧⎪=⎨=+⎪-⎩(二)选择题【例 1.9】设函数()f x 在(),-∞+∞上连续,又0a >且1a ≠,则函数()()()sin 2sgn sin F x f x x =-是 [ ](A) 偶函数 (B) 奇函数 (C) 非奇非偶函数 (D) 奇偶函数. 解 因为()()sgn sin sgn sin x x -=-⎡⎤⎣⎦,所以()sgn sin x 为奇函数.而()sin 2f x -为偶函数,故()()sin 2sgn sin f x x -⋅为奇函数,故选 B .【例 1.10】设()f x 是偶函数,当[]0,1x ∈时,()2f x x x =-,则当[]1,0x ∈-时,()f x = [ ](A) 2x x -+(B) 2x x + (C) 2x x - (D) 2x x --.解 因为()()f x f x -=,取[]1,0x ∈-,则[0,1]x -∈,所以()()()22f x x x x x -=---=--, 故选 D .(三)非客观题 1.函数及其性质【例1.16】 求函数()lg(1lg )f x x =-的定义域. 解 要使()f x 有意义,x 应满足0,1lg 0x x >⎧⎨->⎩ 即010x <<,所以()f x 的定义域为 (0,10).【例1.17】 设函数()f x 的定义域是[0,1],试求()f x a ++()f x a -的定义域(0a >).解 由()f x 的定义域是[0,1],则0101x a x a ≤+≤⎧⎨≤-≤⎩,故1a x a ≤≤-,则当1a a =-时,即12a =时,函数的定义域为12x =; 当1a a ->时,即12a <时,函数的定义域为[],1a a -; 当1a a -<时,即12a >时,函数的定义域为空集. 【例1.18】设()2,x f x e =()()1f x x ϕ=-并且()0x ϕ≥,求()x ϕ及其定义域.解 因为()()2[()]1,x fx e x φϕ==-且()0x ϕ≥,故()x ϕ=,为使此式有意义,ln(1)0x -≥,所以函数()x ϕ的定义域为{}0x x ≤.【例1.19】 设()2422x xf x x ++=-,求()2f x -.解( 法一)配方法 ()2(2)422(2)2x f x x +-+=-++,所以()24224.x xf x x --=-+解(法二) 变量代换法 令2x t =-,代入得()2422t f t t -=-+,即()2422xf x x -=-+,则()24224xxf x x --=-+.【例1.20】 设()22,01,12x x f x x x ≤≤⎧=⎨<≤⎩,()ln g x x =,求()f g x ⎡⎤⎣⎦. 解 ()[]ln f g x f x =⎡⎤⎣⎦ 22ln ,0ln 1ln ,1ln 2x x x x ≤≤⎧=⎨<≤⎩[]()()222ln ,1,0, ln , ,0,x x e x x e e ⎧∈+∞⎪=⎨⎡⎤∈+∞⎪⎣⎦⎩[]222ln ,1,ln , ,x x e x x e e ⎧∈⎪=⎨⎡⎤∈⎪⎣⎦⎩【例1.21】 设()1,10,1x x x ϕ⎧≤⎪=⎨>⎪⎩,()22,12,1x x x x ψ⎧-≤⎪=⎨>⎪⎩,求 ()x ϕϕ⎡⎤⎣⎦,()x ϕψ⎡⎤⎣⎦. 解 ⑴ 当(),x ∈-∞+∞时,()01x ϕ≤≤ ,所以 ()()1,,x x ϕϕ≡∈-∞+∞⎡⎤⎣⎦.⑵ 因为 ()()()1,10,1x x x ψϕψψ⎧≤⎪=⎡⎤⎨⎣⎦>⎪⎩, 且 ()()1,12,1x x x x ψψ⎧==⎪⎨<≤≠⎪⎩ 1,故 ()1,10,1x x x ϕψ⎧=⎪=⎡⎤⎨⎣⎦≠⎪⎩. 【例1.22】 求函数()2312,1,121216,2x x f x x x x x ⎧-<-⎪=-≤≤⎨⎪->⎩的反函数.解 当21121,x y x <- -<-时,=则x =, 当312=8,x y x -≤≤ ≤≤时,-1则x =当212168,x y x > =->时, 则16,12y x +=所以()f x 的反函数为 ()111816,812x y f x x x x -⎧<-⎪⎪⎪==-≤≤⎨⎪+⎪>⎪⎩.【例 1.23】设()f x 在(,)-∞+∞上有定义,且对任意,(,)x y ∈-∞+∞有()()f x f y x y -<-,讨论()()F x f x x =+在(,)-∞+∞上的单调性.解 任取12,(,)x x ∈-∞+∞,不妨设21x x >,则由条件有()()()()21212121f x f x f x f x x x x x -<-<-=-,所以()()1221f x f x x x -<-,则可变形为()()1122f x x f x x +<+,即()()12F x F x <,故()F x 在(,)-∞+∞上单调增加.【例1.24】 求c 的一个值,使()sin()()sin()0b c b c a c a c ++-++=,这里b a >,且均为常数.解 令()sin f x x x =,则()f x 是一个偶函数,则有[]()()f b c f b c +=-+要使()(),()f b c f a c a b +=+≠成立,则有1()()()2a cbc c a b +=-+⇒=-+.极限与连续:不定式,等价关系,特殊极限 极限待定系数的确定原理 连续待定系数确定的原理【例1.4】 设2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则a = . 解 因为 233lim lim lim 1x x xx x x x a x a a a x a x a x a →∞→∞→∞+-+⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭3333lim 1x a axa x aa x a e x a --→∞⎛⎫=+= ⎪-⎝⎭再由3ln83ln 28ln 2aee e a ===⇒=.【例1.5】(2004数三)若()0sin lim cos 5x x xx b e a→-=-,则a = ,b = .解 因()0sin limcos 5x x xx b e a→-=-,而()0limsin cos 0x x x b →-=,则0lim 0x x e a →-=, 所以1a =,又0x →时,sin ,1x xx e x -,则()()000sin limcos lim cos limcos51x x x x x x x b x b x b x e →→→-=-=-=-,154b b -=⇒=-. 【例 1.6】 已知当0x →时,123(1)1ax +-与1cos x -是等价无穷小,则常数a = .解 由1230(1)1lim1,1cos x ax x→+-=-而1222ln(1)3112ln(1)2333220000(1)112limlim limlim1cos 1cos 32ax ax ax x x x x ax e a xx x x ++→→→→+--====--,故3.2a = 【例1.7】 (2004数二)设()()21lim1n n x f x nx →∞-=+,则()f x 的间断点为x = .解 ()()()22111limlim ,0110,0n n n x n x x f x xnx nx x →∞→∞⎧--=⋅=≠⎪=⎨++⎪=⎩而 ()001lim lim(0)x x f x f x→→===∞≠,故()f x 的间断点(无穷)为0x =.【例1.8】 设()1sin , 02, 0x x f x x a x ⎧≠⎪=⎨⎪=⎩,在0x =处连续,则a = . 解 要使()f x 在0x =处连续,应有()()0lim 0,x f x f a →==而()0001sin1122lim lim sin lim 222x x x xx f x x x →→→===, 所以12a =.(二)选择题 【例1.11】()1, 10,01x x f x x x --<≤⎧=⎨<≤⎩ ,则()0lim x f x →= [ ](A) -1 (B) 0 (C) 不存在 (D) 1. 解 ()0lim lim 0x x f x x →+→+==, ()()0lim lim 11x x f x x →-→-=-=-.因为()()0lim lim x x f x f x →+→-≠,所以()0lim x f x →不存在,故选 C.【例1.12】 下列结论正确的是 [ ] (A) 若1lim1n n na a +→∞=,则lim n n a →∞存在;(B) 若lim n n a A →∞=,则11lim lim1lim n n n n nn n a a A a a A ++→+∞→∞→∞===; (C) 若lim n n a A →∞=,若lim n n b B →∞=,则()lim n bB n n a A →+∞=;(D) 若数列{}2n a 收敛且()2210n n a a n --→→∞,则数列{}n a 收敛.解 (A)不正确,反例{}n a n =,(B)不正确,因为只有当lim 0n n a →∞≠时,才能运用除法法则:11lim lim lim n n n n nn n a a a a ++→+∞→∞→∞= ,(C)不正确,只有0A ≠时,()lim n b B n n a A →+∞=成立.故选 D.注意无穷大与有界量的乘积关系 【例1.13】 当0x →时,变量211sin x x是 [ ] (A) 无穷小; (C) 有界的,但不是无穷小量; (B) 无穷大; (D) 无界的,但不是无穷大量. 解 M ∀,1,22n x n ππ∃=+只要,2M n π⎡⎤>⎢⎥⎣⎦则()2,2n f x n M ππ=+> 所以211sin x x 无界.再令 12x k π=,()0,1,2,k =±±,则()20lim lim(2)x k f x k π→→∞=⋅ sin 20k π≡,故()lim x f x →∞≠∞.故选 D.趋向无穷大主要是最高次项 趋向无穷小主要是最低次项【例1.14】 当0x →时,下列4个无穷小关于x 的阶最高的是 [ ](A) 24x x + (B)1 (C)sin 1xx- (D)-解 242200lim lim(1)1x x x x x x→→+=+=,所以24x x +是x 的2阶无穷小. 当0x →111sin 22x x ,故(B )是x 的同阶无穷小. 311000sin 11sin 6lim lim lim k k k x x x x x x xx x xx ++→→→---==,要使极限存在2k =,故(C )是x 的2阶无穷小.0x x →→= 3001sin (1cos )1lim lim 24cos k k x x x x x x xx →→-==, 同理(D )是x 的3阶无穷小.故选D.指数函数的极限要注意方向【例1.15】(2005数二)设函数()111xx f x e-=-,则 [ ](A) 0x =,1x =都是()f x 的第一类间断点; (B) 0x =,1x =都是()f x 的第二类间断点;(C) 0x =是()f x 的第一类间断点,1x =是()f x 的第二类间断点; (D) 0x =是()f x 的第二类间断点,1x =是()f x 的第一类间断点. 解 因为()0lim x f x →=∞,则0x =是()f x 的第二类间断点;而()()11111111lim lim 0,lim lim 111xx x xx x x x f x f x ee++--→→→→--====---, 所以1x =是()f x 的第一类(跳跃)间断点,故选 D. (三)非客观题 求极限的各种方法(1) 用N ε-定义证明数列极限定义证明的关键是利用n x A ε-<倒推找正整数N (与ε有关),这个过程常常是通过不等式适当放大来实现.【例1.25】求证lim1n n→∞=. 证明 对0ε∀>,1ε-<成立,则需1-n n =n a n n +-<a nε=<只要1an n ⎡⎤>+⎢⎥⎣⎦,取1a N n ⎡⎤=+⎢⎥⎣⎦,当n N >时,1ε<.证毕. 【例1.26】 设常数1,a >用N ε-定义证明lim 0!nn a n →∞=. 证明 对0ε∀>,要使0!na n ε-<成立,则需[]0!1[]([]1)[]1n a n a a a a a aa k n a a n a ε-⎛⎫⋅⋅⋅⋅-=<⋅< ⎪⋅⋅+⋅⋅+⎝⎭,(其中1[]a ak a ⋅⋅=⋅⋅)只要lg []lg[]1k n a a a ε>++,为保证0,N >取lg max 1,[]lg []1k N a a a ε⎧⎫⎡⎤⎪⎪⎢⎥⎪⎪⎢⎥=+⎨⎬⎢⎥⎪⎪⎢⎥+⎪⎪⎣⎦⎩⎭,当n N >时,有 0!na n ε-<,证毕. (2)通过代数变形求数列极限 逐项平方差【例1.27】求极限2421111lim(1)(1)(1)(1)2222nn →∞++++解 2421111lim(1)(1)(1)(1)2222n n →∞++++=2111(1)(1)(1)222lim n →∞-++2n 1(1+)211-22(1)12lim(1)22n n +→∞=-=平方差公式【例1.28】求极限lim )n n n →∞.解lim )nn n →∞n =limn →∞=limn =12=. 等比求和【例1.29】 求极限221112333lim 111555nn n →∞+++++++. 解 由等比数列的求和公式2(1)1n nq q q q q q-+++=-将数列变形,则221113211113213333lim lim 11111155551515n n n n n n →∞→∞-+⨯++++-=+++-⨯-112123lim 11145n x n →∞⎛⎫+- ⎪⎝⎭=⎛⎫- ⎪⎝⎭1221014+==. 分项求和【例1.30】 求[]31lim(21)2(23)3(25)n n n n n n →∞-+-+-++.解 []31lim (21)2(23)3(25)n n n n n n →∞-+-+-++()311lim 221nn k k n k n →∞==-+∑()23111lim 212n nn k k n k k n →∞==⎡⎤=+-⎢⎥⎣⎦∑∑()()()()32111211lim 226n n n n n n n n →∞++++⎡⎤=-⎢⎥⎣⎦()()312111lim63n n n n n →∞++==.拆分原理【例1.31】 求极限2111lim()31541n n →∞+++-.解 因为()()1111212122121n n n n ⎛⎫=-⎪-+-+⎝⎭,则 2111lim()31541n n →∞+++-111111lim [(1)()()]23352121n n n →∞=-+-++--+ 111lim (1)2212n n →∞=-=+. 求和后拆分【例1.32】 求极限111lim(1)1212312n n→∞+++++++++.解 111lim(1)1212312n n→∞+++++++++(由等差数列的前n 项和公式)222lim 12334(1)n n n →∞⎡⎤=++++⎢⎥⨯⨯+⎣⎦ (逐项拆分) 111111lim 12()23341n n n →∞⎡⎤=+-+-++-⎢⎥+⎣⎦2lim 221n n →∞⎛⎫=-= ⎪+⎝⎭(3)利用夹逼准则求数列极限 【例1.33】求lim n解 11111n n ≤+<+,而1lim(1)1n n→∞+=,∴ 由夹逼准则得 lim 1n →∞=. 掌握扩大和缩小的一般方法 【例1.34】 求22212lim()12n nn n n n n n n →∞+++++++++. 解212n n n n +++++2221212nn n n n n n n<+++++++++2121n n n +++<++ 且 2121lim,2n n n n n →∞+++=++ 2121lim 21n n n n →∞+++=++, 由夹逼准则得 22212lim()12n nn n n n n n n →∞+++++++++=12. 【例1.35】 求极限226n nn →∞++.解≤≤,则2221nnnk k k===≤≤且 22111limlim 3nnn nk k →∞→∞====,由夹逼准则得原式21lim3nn k→∞===.以下两题了解一下即可 【例1.36】 证明 1;1(0)n n a ==>证明 1) 1n h =+,则22(1)(1)(1)122n nn n n n n n n n n n h nh h h h --=+=+++>,即 0n h <<由夹逼准则 lim 0,n n h →∞=从而lim(1) 1.n n n h →∞=+=2)当1a >时,0<<由夹逼准则1n =;当01a <<,令11b a=>,则lim lim 1n n →∞→∞==,从而1(0).n a =>注 【例1.36】的结果以后直接作为结论使用. 【例1.37】 求极限nk n a ++.(12,,,0k a a a >,k N ∈)解 记{}12max ,,,k aa a a =,则nk a≤++≤.且,n n n a a a ==⋅=,由夹逼准则得{}12max ,,,nk k n a a a a a ++==.(4)利用单调有界准则求数列极限给出前后项的关系,证明其单调,有界,设出极限解方程数列单调性一般采用证明110,1,nn n n x x x x ---≥≥或函数的单调性;数列的有界性方法比较灵活.【例1.38】 求lim n n a a a a →∞++++个根号.解 设n x a =++,则12x x ==…,n x =,从而 1n nx x -<,数列{}n x 单调增加;又n x =,21n nx a x -=+,111n n n n x a x x x -=+<+=,数列有上界,故{}n x 有极限.不妨设lim n n x A →∞=,将21n n x ax -=+两边取极限,有2A a A =+,故12A ±=【例1.39】 求33n .(共有n 个根号)解 设33n x =,显然1n n x x ->,{}nx单调增加;且1n x x =2x =3n x <,{}n x 有上界,所以数列极限存在.不妨设lim n n x A →∞=,将213n n x x -=两边取极限,有23A A =,则()3,0A A ==舍.【例1.40】 设2110,0,,1,2,2n n nx aa x x n x ++>>==,证明数列{}n x 收敛,并求极限.解 2102nn n na x x x x +--=≤,数列{}n x 单调递减;且21122n n n n n x a a x x x x +⎛⎫+==+ ⎪⎝⎭≥=,{}n x 有界,所以数列{}n x 收敛.令lim n n x A →∞=,对212n n nx a x x ++=两边取极限,有12a A A A ⎛⎫=+ ⎪⎝⎭,则A =. (5)利用无穷小的性质求数列极限 【例1.41】 求下列极限(1)(2)题的方法化为指数形式常用,(3)要说明无穷小乘有界量为无穷小 (1) lim 1)(0)n n a →∞-> (2)1121lim (33)n n n n +→∞- (3)2lim 1n nn →∞+解 (1)当1ln 11ln a nn e a n→∞-时, ,则 1ln lim 1)lim (1)a nn n n n e→∞→∞-=-1lim ln ln n n a a n→∞=⋅=(2)当n →∞时, 1ln 331nn-(n+1)(n+1),则11112211lim (33)lim3(31)nnn n n n n n ++→∞→∞-=-(n+1)121ln 3lim 3lim ln 3n n n n n+→∞→∞⋅=⋅=(n+1)(3)因为0n →∞=,而sin 1n ≤,由于无穷小与有界函数的乘积仍为无穷小,所以2lim 01n nn →∞=+ 注 limsin n n →∞不存在,故不能写成lim sin 0n n n n →∞→∞→∞=⋅=. 综合题了解一下即可【例1.42】 求())()22211131lim arctan !22311n n nn n n n →∞⎡⎤⎛⎫+⨯-+++⎢⎥ ⎪ ⎪⨯--⎢⎥⎝⎭⎣⎦. 解()arctan !2n π≤,()221=()2limarctan !0n n →∞∴=,有界量乘无穷小()1111lim lim 112231n n n n n →∞→∞⎡⎤⎛⎫+++=-=⎢⎥ ⎪⨯-⎝⎭⎣⎦,拆分求和2231lim 31n n n →∞+=-, 则 ()2211131lim 322311n n n n n →∞⎡⎤++++=⎢⎥⨯--⎣⎦ )()222131lim arctan !lim 1lim 1n n x n n n n n →∞→∞→∞+⎛⎫⎡⎤-- ⎪⎢⎥⎣⎦-⎝⎭故原式= 033=-=-.两极限都存在用四则运算法则注利用函数极限求数列极限见第三章;利用定积分定义求数列极限见第六章; 利用级数收敛的性质求极限见第十一章. 3.函数的极限(1)用εδ-定义或X ε-定义证明极限用εδ-定义证明函数极限关键是用倒推法适当放缩找到0x x -与ε的关系,确定()δε;而X ε-定义证明函数极限关键是用倒推法适当放缩找到x 与ε的关系,确定()X ε.【例1.43】 证明 22lim 4x x →= 此题典型要搞清楚自变量的约束范围的确定证明 对于0ε∀>,不妨设21,x -<则222225,x x x +≤+<-++< 要使242252x x x x ε-=+⋅-<⋅-<,只要取min{1,}5εδ=,当02x δ<-<时,有24x ε-<.证毕.注 函数在0x 的极限只与函数在0(,)U x δ的定义有关,与函数的整个定义范围无关.因此上例作了假设2 1.x -<也可假设122x -<等. 【例1.44】 用X ε-定义证明:232lim .33x x x →∞+=证明 对于0ε∀>,要使2322321333x x x x x xε++--==<,只要1.x ε>故取11,X ε=+当x X >时,均有23233x x ε+-<,即232lim .33x x x →∞+=(2)用极限存在的充要条件研讨极限 含有,xxe e-的表达式x →∞的极限;含有[]11,,,xxe e x x -的表达式0x →的极限;分段函数在分段点的极限,一般来说用极限存在的充要条件讨论.注意指数函数的极限,一般要考虑两边趋势【例1.45】 讨论极限 lim x xx xx e e e e --→∞-+.解 221lim lim 11x x x xx x x x e e e e e e --→-∞→-∞--==-++; 221lim lim 11x x xx x x x x e e e e e e--→+∞→+∞--==++. 所以 lim x xx xx e e e e --→∞-+不存在.【例1.46】 求1402sin lim 1x x x e x x e →⎡⎤+⎢⎥+⎢⎥+⎢⎥⎣⎦. 解 1402sin lim 1x x x e x x e +→⎡⎤+⎢⎥+⎢⎥⎢⎥+⎣⎦43402sin lim 0111x xx xe e x x e +--→-⎡⎤+⎢⎥=+=+=⎢⎥⎢⎥+⎣⎦; 1402sin lim 2111x x x e x x e -→⎡⎤+⎢⎥-=-=⎢⎥⎢⎥+⎣⎦; 所以 1402sin lim 1x x x e x x e →⎡⎤+⎢⎥+⎢⎥+⎢⎥⎣⎦1=. 【例1.47】 []x 表示不超过x 的最大整数,试确定常数a 的值,使[]210ln(1)lim ln(1)x x x e a x e →⎧⎫+⎪⎪+⎨⎬⎪⎪+⎩⎭存在,并求出此极限.解 由[]x 的定义知,[][]0lim 1,lim 0,x x x x -+→→=-=故所给极限应分左、右极限讨论. []22211110000ln(1)ln(1)lim lim lim lim .ln(1)ln(1)x x x x x x x x x x xe e e a x a a e a a e e e ----→→→→⎧⎫++⎪⎪+=-=-=-=-⎨⎬⎪⎪++⎩⎭[]222211110002ln(1)ln(1)ln (1)lim lim 0lim 01ln(1)ln (1)ln(1)x xxxx x x x x x xe e e e x a x e e e e x+++--→→→--⎧⎫+++⋅+⎪⎪+=+=+⎨⎬⎪⎪+⋅+++⎩⎭212ln(1)lim 21ln(1)xx xe e +-→-++==++.所以,当2a =-时所给极限存在,且此时极限为2.【例1.48】设21,1,()23, 1.x f x x x x ⎧≥⎪=⎨⎪+<⎩试求点1x =处的极限.解 211(10)lim ()lim(23)5x x f f x x --→→-==+=; 111(10)lim ()lim 1x x f f x x++→→+===; 即(10)(10)f f -≠+,1lim ()x f x →∴不存在.(3)通过代数变形求函数极限 【例1.49】求下列极限(1)22232lim 2x x x x x →-+++- (2)422123lim 32x x x x x →+--+ (3)11lim ,()1n x x n Z x +→-∈- 解 (1)原式222(1)(2)(1)(2)limlim (1)(1)(1)(11)x x x x x x x x x x →-→-++++==-+--++211lim.13x x x →-+==-(2)原式22211(1)(3)(1)(3)limlim 8.(2)(1)2x x x x x x x x x →→-+++===---- (3)原式121(1)(1)lim1n n x x x x x x --→-++++=- (提零因子)121lim(1)n n x xx x n --→=++++=.注 分子分母都为0必有共同的0因子① 因为分母极限为零,所以不能直接用计算法则; ② 当0x x →时,0x x ≠. 【例1.50】求下列极限注意多项式商的三种形式的规律0x x x a →∞→→,,,最高项,最低项,零因子(1)247lim 52x x x x x →∞-+++ (2)()()()3020504192lim 61x x x x →∞++- (3) 3225lim 34x x x x →∞-++解(1)原式234341170lim 0.5211x x x x x x→∞-+==++(2)原式3020501249lim 16x x x x →∞⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫- ⎪⎝⎭1030205049263⋅⎛⎫== ⎪⎝⎭. (3)3225lim 34x x x x →∞-=∞++ (因为2334lim 025x x x x →∞++=-) 注 x →∞时有理函数求极限,分子、分母同时除以x 的最高幂次.即抓“大头”.综合题也可直接用结论 0101101,lim0,,m m m n n x n a n m b a x a x a n m b x b x b n m --→∞⎧=⎪⎪+++⎪=>⎨+++⎪∞<⎪⎪⎩. 【例1.51】求下列极限了解共轭因式,尤其是N 方差公式 (1))0lim 0x aa +→>. (2)0x → (3)limx解 ⑴原式0lim x a+→=limx a+→=lim x a+→==⑵ 原式=2x x →x →=32=⑶ 原式2limx=2123lim 1x --==.(4)利用两个重要极限求极限利用0sin lim 1x x x →=,1lim 1nn e n →∞⎡⎤+=⎢⎥⎣⎦求极限,则有0sin 1lim 1,lim(1)e →→∞=+=(此两式中的形式必须相同).【例1.52】 求下列极限 (1)201cos limx xx →-)(2)22sin sin lim x a x a x a→--(3)31lim sin ln(1)sin ln(1)x x x x→∞⎡⎤+-+⎢⎥⎣⎦解 (1)原式22200212sin sin1222limlim 2()2x x x xx x →→==.(2)原式()()sin sin sin sin limx ax a x a x a→-+=-()2limsin cos sin sin 22x a x a x a x a x a →-+=+-()sin2limcos sin sin 22x a x ax a x a x a →-+=⋅+-1cos 2sin sin 2a a a =⨯⨯=. (3)3lim sin ln(1)x x x →∞+ 3sin ln(1)33lim ln(1)0 limln(1)3ln(1)x x x x x x x→∞→∞++=⋅++ 33333lim ln 1ln lim[(1)]3x x x x x x⋅→∞→∞⎛⎫=+=+= ⎪⎝⎭同理 1lim sin ln(1)1x x x→∞+=,所以 31lim sin ln(1)sin ln(1)x x x x →∞⎡⎤+-+⎢⎥⎣⎦312=-=.【例1.53】 求下列极限 趋向常数的极限通常会做变量替换 (1)1lim(1)tan2x xx π→- (2)22sin lim1x xx ππ→- 解 (1)令1,t x =-则 原式02lim tan()lim cotlimlim222tan22t t t t ttt tt t ttππππππ→→→→=⋅-=⋅===(2) 令,x t π=-则原式2222200002sin()sin sin lim lim lim lim .()2(2)221t t t t t t t t t t t t t ππππππππππ→→→→-====----- 【例1.54】 求下列极限(1)32lim 22xx x x →∞-⎛⎫ ⎪-⎝⎭ (2)cot 0lim tan 4xx x π→⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦解 (1)原式1222111lim 1lim 11222222x xx x x x x --→∞→∞⎡⎤⎛⎫⎛⎫⎛⎫=+=+⋅+⎢⎥ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦1e e =⋅=(2)原式11tan t 001tan 1t lim()lim()1tan 1t x x t x x →→--==++122t 102t lim(1)1tt t t +-⋅-+→-=++02lim1122t02tlim(1)1t t ttt e →-++--→⎡⎤-=+=⎢⎥+⎣⎦.注 1∞型极限的计算还可用如下简化公式:设(),(),u u x v v x ==且lim 1,lim u v ==∞,则lim(1)lim .u vvu e-=(因为 (1)1lim(1)1lim lim [1(1)]u vu vvu u u e---⎧⎫⎪⎪=+-=⎨⎬⎪⎪⎩⎭)和ln lim lim .v v uu e=【例1.55】 求下列极限 (1)lim hx kx ax b ax c +→∞+⎛⎫⎪+⎝⎭(2)1sin sin 20cos lim cos 2x xx x x →⎛⎫⎪⎝⎭解 (1) 原式=()()lim 1lim x x ax b b c hx k hx k ax c ax c e e→∞→∞+-⎛⎫⎛⎫-++ ⎪ ⎪++⎝⎭⎝⎭=()b c hae-=(2) 原式22000cos 1cos cos 211cos cos 2lim 1lim limcos 2sin sin 2cos 2cos 222x x x x x x x xxx xx xxx eee→→→--⎛⎫⎛⎫-⋅⎪⎪⎝⎭⎝⎭===2222220011(2)1cos 21cos 322lim []lim []22224x x x x x xx x x xeee →→----===.(5)利用函数的连续性求极限① 设()f x 在x a =连续,按定义则有 lim ()()x af x f a →=.因此对连续函数求极限就是用代入法求函数值.② 一切初等函数在它的定义域上连续.因此,若()f x 是初等函数,a 属于它的定义域,则lim ()()x af x f a →=.③ 设lim ()x ag x A →=,若补充地定义()g a A =,则()g x 在x a =连续.若又有()y f u =在u A =连续,则由复合函数的连续性得 lim (())(lim ())()x ax af g x f g x f A →→==.【例1.56】 求下列极限(1)3225lim243x x x x →+++ (2)3x →解 利用函数的连续性得 (1)332252251lim243224233x x x x →+⨯+==++⨯+⨯+,(2)x →==(6)利用无穷小的性质求极限常用的几个重要等价无穷小代换(当0→x 时)有: sin arcsin tan arctan 1ln(1)x xx x x xe x -+x cos 1-~22x , 1-xa ~)0(ln >a a x , )1(log x +α~ln x a.1)1(-+αx ~x α(α为任意实数), 3tan sin ,2x x x -3sin .6x x x - 利用等价无穷小代换时,通常代换的是整个分子、分母或分子、分母的因子. 【例1.57】求下列极限(1)201lim sin 3x x e x →- (2)cos 0lim sin x x e e x x →- (3)0x →解 (1)当0x →时,212,sin 33xex x x -,∴200122limlim sin 333x x x e x x x →→-==. (2)当0x →时,1cos 0x -→,1cos 11cos xex -∴--.原式cos 1cos 1cos cos 22000(1)(1)lim lim lim x x x xx x x e e e e x x--→→→--==⋅20(1cos )1lim2x x x→-==(因为当210,1cos 2x x x →-). (3)原式0x →=0x x →→=012x →=201112lim 1222x xx x →==⋅.【例1.58】 已知()0ln 1sin lim 231x x f x x →⎡⎤+⎢⎥⎣⎦=-,求()20lim x f x x →. 解 由()0lim 310x x →-=及()0ln 1sin lim 231x x f x x →⎡⎤+⎢⎥⎣⎦=-,必有()0limln 10sin x f x x →⎡⎤+=⎢⎥⎣⎦, 所以 ()ln 1sin f x x ⎡⎤+⎢⎥⎣⎦~()sin f x xln3311x x e -=-~ln 3x 原式()0sin lim ln 3x f x x x →=()201lim ln 3sin x f x x x x →=⋅ ()201lim ln 3x f x x→==2,则 ()2lim2ln 3x f x x→=.【例1.59】 求 30sin tan limsin x x xx→- 解 原式33001sin (1)sin (cos 1)cos limlim sin cos sin x x x x x x x x x →→--==⋅23001()1lim lim cos 22x x x x x x→→⋅-=⋅=-⋅.注 3300sin tan limlim 0.sin sin x x x x x xx x→→--≠= 【例1.60】 求 213sin 2sin lim x x xx x→∞+解 213sin 2sin lim x x xx x→∞+=13sin 1lim2lim sin 1x x x x x x→∞→∞+, 1sin1lim1;lim 0,sin 1,1x x x x x x→∞→∞==≤ 则1lim sin 0x x x →∞=, ∴原式=303+=.(7)利用其它方法求极限① 利用导数定义求极限(见第二章) 利用导数定义=')(0x f 00)()(limx x x f x f x x --→可以将某些求极限问题转化为求导数;② 利用罗必达法则(详见第三章); ③ 利用微分中值定理(详见第三章); 【例1.61】 设()()00,0f f '=存在,求()limx f x x→. 解 因为()()00,0f f '=存在,所以()0limx f x x →()()()00lim 0x f x f f x→-'== *【例1.62】 求lim x→+∞解 令()f t =,显然当0x >时,()f t 在[,1]x x +上满足拉格朗日中值定理,所以有,()()()()f b f a f b a ξ'-=⋅-.所以,原式=cos ξ 其中1x x ξ≤≤+故lim lim cos 0x ξξ→+∞→+∞==4.函数的连续性(1)函数的连续性与间断点的讨论【例1.63】 设()2,0sin ,0a bx x f x bx x x⎧+≤⎪=⎨>⎪⎩在点0x =处连续,求常数a b 与的关系.解 ()00sin sin lim lim lim x x x bx bx f x b b x bx+++→→→==⋅= ()()200lim lim x x f x a bx a --→→=+=. 因为函数在点0x =连续,所以()0lim x f x +→b =()0lim x f x a -→==,故a b =. *【例1.64】 设()2122lim 1n n n x ax bxf x x +→∞++=+,当,a b 取何值时,()f x 在(),-∞+∞处连续.解 ()2,1,11,121,12a bx x x x ab f x x a b x ⎧+ <⎪>⎪⎪--=⎨=-⎪⎪++⎪=⎩,由于()f x 在()()(),1,1,1,1-∞--+∞上为初等函数,所以是连续的,只要选取适当的,a b ,使()f x 在1x =±处连续即可. 即11lim ()lim ()(1)x x f x f x f -+→→==; ()()()11lim lim 1x x f x f x f -+→-→-==-. 得 1011a b a a b b +==⎧⎧⇒⎨⎨-=-=⎩⎩. 【例1.65】 研究函数(),111,11x x f x x x -≤≤⎧=⎨<->⎩或的连续性,并画出函数的图形.解 ()f x 在(),1-∞-与()1,-+∞内连续, 在1x =-处间断,但右连续,因为在1x =-处,()()11lim lim 11x x f x x f ++→-→-==-=-,但()11lim lim 11x x f x --→-→-==,即()()11lim lim x x f x f x +-→-→-≠.【例1.66】 指出函数22132x y x x -=-+的间断点,说明这些间断点的类型.解 ()22132x f x x x -=-+在1x =、2x =点没有定义,故1x =、2x =是函数的间断点.因为 ()()()()2211111lim lim3212x x x x x x x x x →→-+-=-+--11lim 22x x x →+==--,所以1x =为第一类可去间断点.因为2lim x y →=∞,所以2x =为第二类无穷间断点.【例1.67】 讨论函数()221lim 1nnn x f x x →∞-=+的连续性,若有间断点,判别其类型.解 ()22 11lim0 1 1 1nnn x x x f x x x x x →∞⎧->⎪-===⎨+⎪<⎩, ()11lim lim 1x x f x x ++→→=-=-,()11lim lim 1x x f x x --→→==,()()11lim lim x x f x f x +-→→≠; ()11lim lim 1x x f x x ++→-→-==-,()11lim lim 1x x f x x --→-→-=-=,()()11lim lim x x f x f x +-→-→-≠.故 1x =±为第一类跳跃间断点.(2)闭区间上连续函数的性质【例1.68】 证明方程3910x x --=恰有三个实根. 证明 令()391f x x x =--,则()f x 在[]3,4-上连续,且()()310,290,f f -=-<-=> ()()010,4270f f =-<=>所以()f x 在()()()3,2,2,0,0,4---各区间内至少有一个零点,即方程3910x x --=至少有三个实根. 又它是一元三次方程,最多有三个实根.证毕【例1.69】 若n 为奇数,证明方程110n n n x a x a -+++=至少有一个实根.证 令()11n n n f x x a x a -=+++,则()1(1)nnn a a f x x xx=+++, 于是 lim (),lim ()x x f x f x →-∞→+∞=-∞=+∞,故存在1,x 使()10f x A =>;存在2,x 使()20f x B =<.所以()f x 在[]12,x x 至少有一个零点,即方程至少有一个实根.【例1.70】 设()f x 在[],a b 上连续,且()(),f a a f b b <>,试证:在(),a b 内至少有一点ξ,使得()fξξ=.证 令()()F x f x x =-,()F x 在[],a b 连续,且()0,()0,F a F b <>由介值定理得在(),a b 内至少存在一点ξ,使得()0F ξ=,即()fξξ=.【例1.71】 设()f x 在[]0,2a ()0a >上连续,且()()02f f a =,求证存在()0,a ξ∈,使()()ff a ξξ=+.证 构造辅助函数()()()g x f x a f x =+-,则()()()00g fa f =-,()()()2g a f a f a =-()()0f a f =--⎡⎤⎣⎦()0g =-,即()0g 与()g a 符号相反,由零点存在定理知存在()0,a ξ∈,使()0g ξ=,即()()ff a ξξ=+.【例1.72】 设()f x 在[],a b 上连续,且a c d b <<<,证明:在[],a b 内至少存在一点ξ,使得()()()()pf c qf d p q f ξ+=+,其中,p q 为任意正常数.证()f x 在[],a b 上连续,∴ ()f x 在[],a b 上有最大值M 和最小值m ,则()m f x M ≤≤.由于,[,]c d a b ∈,且,0p q >,于是有(),()pm pf c pM qm qf d qM ≤≤≤≤.⇒ ()()()()p q m pf c qf d p q M +≤+≤+, ⇒()()pf c qf d m M p q+≤≤+.由介值定理,在[],a b 内至少存在一点ξ,使得()()()pf c qf d f p qξ+=+,即()()()()pf c qf d p q f ξ+=+ 5.综合杂例【例1.73】 已知lim 2003,(1)ab bn n n n →∞=--求常数,a b 的值.解 lim lim lim 11(1)[1(1)](1)1aaa bbb n n n b b b n n n n n n n n-→∞→∞→∞-==------ 1lim lim 1a b a b n n n n bb n--+→∞→∞-==- 为使极限为2003,故10,a b -+=且12003,b =所以12002,.20032003b a ==- 【例1.74】 已知221lim2,sin(1)x x ax bx →++=-求常数,a b 的值. 解 由221lim 2,sin(1)x x ax bx →++=-则分子的极限必为0,即21lim()0x x ax b →++=, 从而 10a b ++=;另一方面,当1x →时,22sin(1)1x x --,因此2222221111lim lim 10lim sin(1)11x x x x ax b x ax b x ax a a b x x x →→→+++++--=++=--- 1(1)(1)lim2(1)(1)x x x a x x →-++==-+,从而11211a ++=+,即2,a =又10a b ++=, 得 3.b =【例1.75】已知lim ())0,x ax b →+∞+=求常数,a b 的值.解lim ())lim ())0,x x bax b x a x→+∞→+∞-+=+=而lim ,x x →+∞=∞要使原式极限为0,则lim()0,x ba x→+∞-+=所以 1.a =1lim )lim )lim.2x x x b ax x →+∞→+∞=-===【例1.76】 若 30sin 6()lim 0,x x xf x x →+=求206()lim .x f x x→+ 解 因为30sin 6()lim0,x x xf x x→+=由极限存在与无穷小的关系,得 3sin 6()0,x xf x x α+=+其中0lim 0.x α→=从而 2236()6sin 6,f x xx x x α+=-+ 所以 32233300006()6sin 66sin 6(6)lim lim()lim lim 366x x x x f x x x x x x x x x xα→→→→+-=-+=== 【例1.77】 已知0()lim4,1cos x f x x →=-求10()lim 1.xx f x x →⎛⎫+ ⎪⎝⎭解 因为200()2()limlim 4,1cos x x f x f x x x→→==-则20()lim 2x f x x →=.从而 221()()lim()200()()lim 1lim 1x x f x f x xf x x x x x f x f x e e x x →⋅→→⎛⎫⎛⎫+=+== ⎪ ⎪⎝⎭⎝⎭注 此题也可用极限存在与无穷小的关系求解.【例1.78】 当0x →x 的几阶无穷小量. 解3255x-=则203limx xx→→==∴x 的23阶无穷小.三、综合测试题。

01第一章 函数与极限

01第一章 函数与极限

高等数学教学备课系统与《高等数学多媒体教学系统(经济类)》配套使用教师姓名:________________________教学班级:________________________2005年9月1至2006年1月10微积分是近代数学中最伟大的成就,对它的重要性无论做怎样的估计都不会过分.冯. 诺伊曼注:冯. 诺依曼(John von Neumann,1903-1957,匈牙利人),20世纪最杰出的数学家之一,在纯粹数学、应用数学、计算数学等许多分支,从集合论、数学基础到量子理论与算子理论等作多方面,他都作出了重要贡献. 他与经济学家合著的《博弈论与经济行为》奠定了对策论的基础,他发明的“流程图”沟通了数学语言与计算机语言,制造了第一台计算机,被人称为“计算机之父”.第一章函数、极限与连续函数是现代数学的基本概念之一,是高等数学的主要研究对象. 极限概念是微积分的理论基础,极限方法是微积分的基本分析方法,因此,掌握、运用好极限方法是学好微积分的关键. 连续是函数的一个重要性态. 本章将介绍函数、极限与连续的基本知识和有关的基本方法,为今后的学习打下必要的基础.第一节函数概念在现实世界中,一切事物都在一定的空间中运动着. 17世纪初,数学首先从对运动(如天文、航海问题等)的研究中引出了函数这个基本概念. 在那以后的二百多年里,这个概念在几乎所有的科学研究工作中占据了中心位置.本节将介绍函数的概念、函数关系的构建与函数的特性.内容分布图示★集合的概念★集合的运算★区间★例1 ★邻域★函数概念★例2 ★例3 ★例4★例5 ★例6★函数的表示法★分段函数举例★例7★函数关系的建立★例8 ★例9函数的特性★有界性★例10 ★单调性★例11★奇偶性★例12 ★例13★周期性★例14 ★例15★内容小结★课堂练习★ 习题 1- 1★ 返回内容要点:一、 集合:集合的概念;集合的表示;集合之间的关系;集合的基本运算;区间;邻域; 二、 函数的概念:函数是描述变量间相互依赖关系的一种数学模型. 函数的定义、函数的图形、函数的表示法三、 函数关系的建立:为解决实际应用问题, 首先要将该问题量化, 从而建立起该问题的数学模型, 即建立函数关系;四、 函数特性:函数的有界性;函数的单调性;函数的奇偶性;函数的周期性.例题选讲:函数举例例1 解下列不等式, 并将其解用区间表示.(1) ;312<-x (2) ;323≥+x (3) ().9102<-<x例2 函数2=y . 定义域),(+∞-∞=D , 值域{}.2=f R 例3(讲义例1) 绝对值函数 ⎩⎨⎧<-≥==0,,||x x x x x y 例4判断下面函数是否相同, 并说明理由. (1) 1=y 与;cos sin 22x x y += (2) 12+=x y 与12+=y x .例5求函数 2112++-=x xy 的定义域. 例6 求函数()()245sin 3lg x x xx x f -++-=的定义域. 例7 设(),21,210,1⎩⎨⎧≤<-≤≤=x x x f求函数()3+x f 的定义域.例8(讲义例4)某工厂生产某型号车床, 年产量为a 台, 分若干批进行生产, 每批生产准备费为b 元, 设产品均匀投入市场, 且上一批用完后立即生产下一批, 即平均库存量为批量的一半. 设每年每台库存费为c 元. 显然, 生产批量大则库存费高; 生产批量少则批数增多, 因而生产准备费高. 为了选择最优批量, 试求出一年中库存费与生产准备费的和与批量的函数关系.例9(讲义例5)某运输公司规定货物的吨公里运价为: 在a 公里以内,每公里k 元, 超过部分公里为k 54元. 求运价m 和里程s 之间的函数关系.例10 证明(1)(讲义例6)函数 12+=x xy 在),(+∞-∞上是有界的; (2) 函数21xy =在()1,0上是无界的.例11(讲义例7)证明函数xxy +=1在),1(∞+-内是单调增加的函数. 例12(讲义例8)判断函数)1ln(2x x y ++=的奇偶性. 例13 判断函数()()1111ln 11<<-+-+-=x xxe e xf xx 的奇偶性. 例14(讲义例9)设函数)(x f 是周期T 的周期函数,试求函数)(b ax f +的周期,其中b a ,为常数,且0>a .例15 若)(x f 对其定义域上的一切, 恒有),2()(x a f x f -=则称)(x f 对称于.a x =证明: 若)(x f 对称于a x =及),(b a b x <= 则)(x f 是以)(2a b T -=为周期的周期函数.例6(讲义例2)符号函数 ⎪⎩⎪⎨⎧<-=>==0,1,0,0,0,1s g nx x x x y 例3(讲义例3)取整函数 ],[x y = 其中,][x 表示不超过x 的最大整数.函数的有界性: 函数的增减性: 函数的奇偶性: 函数的周期性:课堂练习1. 用分段函数表示函数 .|1|3--=x y2. 判别函数⎪⎩⎪⎨⎧<+-≥+=0,0,)(22x x x x x x x f 的奇偶性.3.设b a ,为两个函数, 且b a <. 对于任意实数x , 函数()x f 满足条件: ()(),x a f x a f +=- 及()()x b f x b f +=-证明: ()x f 以()a b T -=2周期.第二节 初等函数内容分布图示★ 反函数 ★ 例1 ★ 例2 ★ 复合函数 ★ 例3-4 ★ 例5★ 例6 ★ 例7 ★ 例8★ 幂函数、指数函数与对数函数★ 三角函数 ★ 反三角函数★ 初等函数 ★ 函数图形的迭加与变换★ 内容小结 ★ 课堂练习 ★ 习题1-2 ★ 返回内容要点:一、 反函数:反函数的概念;函数存在反函数的条件;在同一个坐标平面内, 直接函数)(x f y =和反函数)(x y ϕ=的图形关于直线x y =是对称的.二、 基本初等函数:幂函数;指数函数;对数函数;三角函数;反三角函数. 三、 复合函数的概念 四、初等函数:由常数和基本初等函数经过有限次四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数. 初等函数的基本特征: 在函数有定义的区间内初等函数的图形是不间断的.例题选讲:求反函数例1(讲义例1)求函数xx y 411411+++-=的反函数.例2 已知x x x x x sgn ,0,10,00,1sgn ⎪⎩⎪⎨⎧<-=>=为符号函数,求()x x y sgn 12+=的反函数.函数的复合例3(讲义例2)设 u u f y sin )(==,1)(2+==x x u ϕ,求)]([x f ϕ. 例4 (讲义例3) 设 u u f y arctan )(==,tt u 1)(==ϕ,)(x t φ=12-=x ,求 )]}([{x f φϕ. 例5 设(),1+=x x f (),2x x =ϕ 求()[]x f ϕ及()[],x f ϕ 并求它们的定义域. 例6(讲义例4)将下列函数分解成基本初等函数的复合. (1) ;sin ln 2x y = (2) ;2arctan x e y =(3) ).12ln(cos 22x y ++= 例7(讲义例5)设,0,10,2)(,1,1,)(2⎩⎨⎧≥-<+=⎩⎨⎧≥<=x x x x x x x x e x f x ϕ求)].([x f ϕ例8 设 ,1122xx x x f +=⎪⎭⎫ ⎝⎛+ 求().x f课堂练习1.下列函数能否复合为函数)]([x g f y =若能, 写出其解析式、定义域、值域. .1sin )(,ln )()2(;)(,)()1(2-====-====x x g u u u f y x x x g u u u f y2.分析函数 32cos arctan x e y =的复合结构.第三节 常用经济函数用数学方法解决实际问题,首先要构建该问题的数学模型,即找出该问题的函数关系. 本节将介绍几种常用的经济函数.内容分布图示★ 单利与复利 ★ 例1★ 多次付息 ★ 贴现 ★ 例2 ★ 需求函数 ★ 供给函数★ 市场均衡 ★ 例3 ★ 例4 ★ 成本函数 ★ 例5★ 收入函数与利润函数 ★ 例6 ★ 例7 ★ 例8 ★ 例9★ 内容小结 ★ 课堂练习 ★ 习题1-3 ★ 返回内容要点:一、单利与复利利息是指借款者向贷款者支付的报酬, 它是根据本金的数额按一定比例计算出来的. 利息又有存款利息、贷款利息、债券利息、贴现利息等几种主要形式.单利计算公式设初始本金为p (元), 银行年利率为r . 则第一年末本利和为 )1(1r p rp p s +=+= 第二年末本利和为 )21()1(2r p rp r p s +=++=……第n 年末的本利和为 )1(nr p s n +=. 复利计算公式设初始本金为p (元), 银行年利率为r . 则 第一年末本利和为 )1(1r p rp p s +=+=第二年末本利和为 22)1()1()1(r p r rp r p s +=+++=……第n 年末的本利和为 .)1(nn r p s +=二、多次付息单利付息情形因每次的利息都不计入本金, 故若一年分n 次付息, 则年末的本利和为)1(1r p n r n p s +=⎪⎭⎫ ⎝⎛+=即年末的本利和与支付利息的次数无关.复利付息情形因每次支付的利息都记入本金, 故年末的本利和与支付利息的次数是有关系的. 设初始本金为p (元),年利率为r , 若一年分m 次付息, 则一年末的本利和为mm r p s ⎪⎭⎫ ⎝⎛+=1易见本利和是随付息次数m 的增大而增加的.而第n 年末的本利和为mnn m r p s ⎪⎭⎫ ⎝⎛+=1.三、 贴现票据的持有人, 为在票据到期以前获得资金, 从票面金额中扣除未到期期间的利息后, 得到所余金额的现金称为贴现.钱存在银行里可以获得利息, 如果不考虑贬值因素, 那么若干年后的本利和就高于本金. 如果考虑贬值的因素, 则在若干年后使用的未来值(相当于本利和)就有一个较低的现值.考虑更一般的问题: 确定第n 年后价值为R 元钱的现值.假设在这n 年之间复利年利率r 不变.利用复利计算公式有n r p R )1(+=,得到第n 年后价值为R 元钱的现值为nr Rp )1(+=,式中R 表示第n 年后到期的票据金额, r 表示贴现率, 而p 表示现在进行票据转让时银行付给的贴现金额.若票据持有者手中持有若干张不同期限及不同面额的票据, 且每张票据的贴现率都是相同的, 则一次性向银行转让票据而得到的现金nnr R r R r R R p )1()1()1(2210+++++++=式中0R 为已到期的票据金额, n R 为n 年后到期的票据金额.nr )1(1+称为贴现因子, 它表示在贴现率r 下n 年后到期的1元钱的贴现值. 由它可给出不同年限及不同贴现率下的贴现因子表.四、需求函数需求函数是指在某一特定时期内, 市场上某种商品的各种可能的购买量和决定这些购买量的诸因素之间的数量关系.假定其它因素(如消费者的货币收入、偏好和相关商品的价格等)不变, 则决定某种商品需求量的因素就是这种商品的价格. 此时, 需求函数表示的就是商品需求量和价格这两个经济量之间的数量关系)(p f q =其中, q 表示需求量, p 表示价格.需求函数的反函数)(1q fp -=称为价格函数, 习惯上将价格函数也统称为需求函数.五、 供给函数供给函数是指在某一特定时期内, 市场上某种商品的各种可能的供给量和决定这些供给量的诸因素之间的数量关系. 六、市场均衡对一种商品而言, 如果需求量等于供给量, 则这种商品就达到了市场均衡. 以线性需求函数和线性供给函数为例, 令s d q q =d cp b ap +=+0p ca bd p ≡--=这个价格0p 称为该商品的市场均衡价格(图1-3-3).市场均衡价格就是需求函数和供给函数两条直线的交点的横坐标. 当市场价格高于均衡价格时, 将出现供过于求的现象, 而当市场价格低于均衡价格时,将出现供不应求的现象.. 当市场均衡时有,0q q q s d ==称0q 为市场均衡数量.根据市场的不同情况,需求函数与供给函数还有二次函数、多项式函数与指数函数等. 但其基本规律是相同的, 都可找到相应的市场均衡点(0p ,0q ).七、成本函数产品成本是以货币形式表现的企业生产和销售产品的全部费用支出, 成本函数表示费用总额与产量(或销售量)之间的依赖关系, 产品成本可分为固定成本和变动成本两部分. 所谓固定成本, 是指在一定时期内不随产量变化的那部分成本; 所谓变动成本, 是指随产量变化而变化的那部分成本. 一般地, 以货币计值的(总)成本C 是产量x 的函数, 即)0()(≥=x x C C称其为成本函数. 当产量0=x 时, 对应的成本函数值)0(C 就是产品的固定成本值.设)(x C 为成本函数, 称)0()(>=x xx C C 为单位成本函数或平均成本函数. 成本函数是单调增加函数, 其图象称为成本曲线.八、 收入函数与利润函数销售某种产品的收入R , 等于产品的单位价格P 乘以销售量x , 即,x P R ⋅= 称其为收入函数. 而销售利润L 等于收入R 减去成本C , 即,C R L -= 称其为利润函数.当0>-=C R L 时, 生产者盈利; 当0<-=C R L 时, 生产者亏损;当0=-=C R L 时, 生产者盈亏平衡, 使0)(=x L 的点0x 称为盈亏平衡点(又称为保本点).例题选讲:单利与复利例1(讲义例1)现有初始本金100元, 若银行年储蓄利率为7%, 问: (1) 按单利计算, 3年末的本利加为多少? (2) 按复利计算, 3年末的本利和为多少?(3) 按复利计算, 需多少年能使本利和超过初始本金的一倍?贴现例2(讲义例2)某人手中有三张票据, 其中一年后到期的票据金额是500元, 二年后到期的是800元, 五年后到期的是2000元, 已知银行的贴现率6%, 现在将三张票据向银行做一次性转让, 银行的贴现金额是多少?市场均衡例3(讲义例3)某种商品的供给函数和需求函数分别为P Q P Q s d 5200,1025-=-=求该商品的市场均衡价格和市场均衡数量.例4(讲义例4)某批发商每次以160元/台的价格将500台电扇批发给零售商, 在这个基础上零售商每次多进100台电扇, 则批发价相应降低2元, 批发商最大批发量为每次1000台, 试将电扇批发价格表示为批发量的函数, 并求零售商每次进800台电扇时的批发价格.成本函数例5(讲义例5) 某工厂生产某产品, 每日最多生产200单位. 它的日固定成本为150元, 生产一个单位产品的可变成本为16元. 求该厂日总成本函数及平均成本函数.收入函数与利润函数例6(讲义例6)某工厂生产某产品年产量为x 台, 每台售价500元, 当年产量超过800台时, 超过部分只能按9折出售. 这样可多售出200台, 如果再多生产,本年就销售不出去了. 试写出本年的收益(入)函数.例7 已知某厂单位产品时,可变成本为15元,每天的固定成本为2000元,如这种产品出厂价为20元,求(1)利润函数;(2)若不亏本,该厂每天至少生产多少单位这种产品. 例8(讲义例7)某电器厂生产一种新产品, 在定价时不单是根据生产成本而定, 还要请各销售单位来出价, 即他们愿意以什么价格来购买. 根据调查得出需求函数为.45000900+-=P x 该厂生产该产品的固定成本是270000元, 而单位产品的变动成本为10元. 为获得最大利润, 出厂价格应为多少?例9 已知该商品的成本函数与收入函数分别是xR x x C 113122=++=试求该商品的盈亏平衡点, 并说明盈亏情况.课堂练习 1.(1)设手表的价格为70元, 销售量为10000只, 若手表每只提高3元, 需求量就减少3000只, 求需求函数d Q .(2)设手表价格为70元, 手表厂可提供10000只手表, 当价格每只增加3元时, 手表厂可多提供300只, 求供应函数s Q . (3)求市场均衡价格和市场均衡数量.第四节 数列的极限极限思想是由于求某些实际问题的精确解答而产生的. 例如,我国古代数学家刘徽(公元3世纪)利用圆内接正多边形来推算圆面积的方法----割圆术(参看光盘演示), 就是极限思想在几何学上的应用. 又如,春秋战国时期的哲学家庄子(公元4世纪)在《庄子.天下篇》一书中对“截丈问题”(参看光盘演示)有一段名言:“一尺之棰, 日截其半, 万世不竭”,其中也隐含了深刻的极限思想.极限是研究变量的变化趋势的基本工具,高等数学中许多基本概念,例如连续、导数、定积分、无穷级数等都是建立在极限的基础上. 极限方法又是研究函数的一种最基本的方法. 本节将首先给出数列极限的定义.内容分布图示★ 极限概念的引入 ★ 数列的定义 ★ 数列的极限 ★ 例1★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 收敛数列的有界性★ 极限的唯一性 ★ 例7★ 收敛数列的保号性 ★ 子数列的收敛性★ 内容小结★ 习题1-4 ★ 返回内容要点:一、 数列的定义 二、 数列的极限:N -ε论证法,其论证步骤为:(1) 任意给定的正数ε, 令 ε<-||a x n ;(2) 上式开始分析倒推, 推出 )(εϕ>n ; (3) 取 )]([εϕ=N ,再用N -ε语言顺述结论. 三、 收敛数列的有界性 四、极限的唯一性五、收敛数列的保号性 六、子数列的收敛性例题选讲:数列的极限例1(讲义例1) 证明 .1)1(lim1=-+-∞→nn n n 例2 设C C x n (≡为常数), 证明C x n n =∞→lim .例3 证明 ,0lim 0=→nn q 其中.1<q例4 设,0>n x 且,0lim >=∞→a x n n 求证 .lima x n n =∞→例5 用数列极限定义证明 323125lim-=-+∞→n n n .例6(讲义例2)用数列极限定义证明 .112lim 22=++-∞→n n n n 例7(讲义例3)证明数列1)1(+-=n n x 是发散的.课堂练习 1.设,0>p 证明数列pn n x 1=的极限是0.第五节 函数的极限数列可看作自变量为正整数n 的函数: )(n f x n =, 数列{}n x 的极限为a ,即:当自变量n 取正整数且无限增大(∞→n )时,对应的函数值)(n f 无限接近数a . 若将数列极限概念中自变量n 和函数值)(n f 的特殊性撇开,可以由此引出函数极限的一般概念:在自变量x 的某个变化过程中,如果对应的函数值)(x f 无限接近于某个确定的数A ,则A 就称为x 在该变化过程中函数)(x f 的极限. 显然,极限A 是与自变量x 的变化过程紧密相关,自变量的变化过程不同,函数的极限就有不同的表现形式. 本节分下列两种情况来讨论: 1、自变量趋于无穷大时函数的极限; 2、自变量趋于有限值时函数的极限.内容分布图示★ 自变量趋向无穷大时函数的极限★ 例1 ★ 例2 ★ 例3★ 自变量趋向有限值时函数的极限★ 例4 ★ 例5 ★ 例6★ 左右极限 ★ 例7★ 例8 ★ 例9 ★ 例10★ 函数极限的性质 ★ 子序列收敛性 ★ 函数极限与数列极限的关系 ★ 内容小结 ★ 课堂练习 ★ 习题1-5 ★ 返回内容要点:一、自变量趋于无穷大时函数的极限 二、 自变量趋于有限值时函数的极限 三、 左右极限的概念四、函数极限的性质:唯一性 有界性 保号性 五、子序列的收敛性例题选讲:自变量趋于无穷大时函数的极限例1(讲义例1)用极限定义证明 .0sin lim=∞→xxx例2(讲义例2)用极限定义证明 .021lim =⎪⎭⎫⎝⎛+∞→xx例3 证明 .111lim-=+-∞→x xx自变量趋于有限值时函数的极限例4(1)(讲义例3)利用定义证明 C C x x =→0lim (C 为常数).(2) 证明 .lim 00x x x x =→例5(讲义例4)利用定义证明 211lim 21=--→x x x .例6 证明: 当00>x 时, 00lim x x x x =→.例7 验证xx x 0lim→不存在.左右极限的概念例8(讲义例5)设,0,10,)(⎩⎨⎧<+≥=x x x x x f 求 )(lim 0x f x →. 例9 设(),0,10,12⎩⎨⎧≥+<-=x x x x x f 求 ().lim 0x f x → 例10(讲义例6)设 ,2121)(11xx x f +-=求 ).(lim 0x f x →子序列的收敛性例7(讲义例7)证明 xx 1sinlim 0→ 不存在.课堂练习 1. 设函数⎪⎪⎩⎪⎪⎨⎧<+=>=0,80,20,1sin )(2x x x x x x x f ,试问函数在0=x 处的左、右极限是否存在? 当0→x 时, )(x f 的极限是否存在?2. 若,0)(>x f 且.)(lim A x f =问: 能否保证有0>A 的结论? 试举例说明.第六节 无穷小与无穷大没有任何问题可以像无穷那样深深地触动人的感情,很少有别的观念能像无穷那样激励理智 产生富有成果的思想,然而也没有任何其它的概 念能像无穷那样需要加于阐明.-------大卫. 希尔伯特对无穷小的认识问题,可以远溯到古希腊,那时,阿基米德就曾用无限小量方法得到许多重要的数学结果,但他认为无限小量方法存在着不合理的地方. 直到1821年,柯西在他的《分析教程》中才对无限小(即这里所说的无穷小)这一概念给出了明确的回答. 而有关无穷小的理论就是在柯西的理论基础上发展起来的.内容分布图示★ 无穷小★ 无穷小与函数极限的关系 ★ 例1 ★ 无穷小的运算性质 ★ 例2 ★ 无穷大★ 例3 ★ 例4 ★ 例5 ★ 无穷大与无界变量★ 无穷小与无穷大的关系 ★ 例6★ 内容小结★ 习题1-6 ★ 返回内容要点:一、 无穷小的概念二、无穷小的运算性质有限个无穷小的代数和仍是无穷小 有界函数与无穷小的乘积是无穷小. 三、无穷大的概念四、 无穷小与无穷大的关系例题选讲:无穷小的概念与无穷小的运算性质例1 根据定义证明: xx y 1sin 2=当0→x 时为无穷小. 例2(讲义例1)求 x xx sin lim ∞→.无穷大的概念例3(讲义例2)证明 ∞=-→11lim1x x .例4 证明 ()().11lim >+∞=-+∞→a a xx例5(讲义例3)当0→x 时, xx y 1sin 1=是一个无界变量, 但不是无穷大. 无穷小与无穷大的关系 例6(讲义例4)求 5lim 34+∞→x x x .课堂练习1. 求 .)1(22lim22--∞→x xx x第七节 极限运算法则本节要建立极限的四则运算法则和复合函数的极限运算法则. 在下面的讨论中,记号“lim ”下面没有表明自变量的变化过程,是指对0x x →和∞→x 以及单则极限均成立. 但在论证时,只证明了0x x →的情形.内容分布图示★ 极限运算法则 ★ 例1 ★ 例2★ 例3-4 ★ 例5 ★ 例6★ 例7 ★ 例8 ★ 例9 ★ 例 10 ★ 例 11 ★ 复合函数的极限运算法则 ★ 例 12 ★ 例 13★ 内容小结 ★ 课堂练习★ 习题1-7 ★ 返回内容要点:一、 极限的四则运算:定理1 推论1 推论2 二、复合函数的极限运算法则:定理2定理2 (复合函数的极限运算法则)设函数)]([x g f y =是由函数)(u f y =与函数)(x g u =复合而成, )]([x g f 在点0x 的某去心邻域内有定义, 若,)(lim ,)(lim 00A u f u x g u u x x ==→→且存在,00>δ 当),(00δx U x∈时, 有0)(u x g ≠, 则.)(lim )]([lim 0A u f x g f u u x x ==→→例题选讲:极限的四则运算例1(讲义例1)求 )53(lim 22+-→x x x .例2(讲义例2)求 27592lim 223---→x x x x .例3(讲义例3)求 3214lim21-+-→x x x x .例4(讲义例4)求 321lim 221-+-→x x x x .例5(讲义例5)求 147532lim 2323-+++∞→x x x x x .例6(讲义例6)计算.231568lim323-+++∞→x x x x x例7(讲义例7)求 .21lim 222⎪⎭⎫ ⎝⎛+++∞→n n n n n例8 计算 ()()()();1111lim3431x x x x x ----→例9(讲义例8)求 ).sin 1(sin lim x x x -++∞→例10 计算下列极限:(1);1!sin lim32+∞→n n n n (2).2tan lim /10x x ex+→ 例11(讲义例9)已知 ⎪⎩⎪⎨⎧≥+-+<-=0,1130,1)(32x x x x x x x f , 求 ).(lim ),(lim ),(lim 0x f x f x f x x x -∞→+∞→→复合函数的极限运算法则例12(讲义例10)求极限 ⎥⎦⎤⎢⎣⎡--→)1(21ln lim 21x x x . 例13(讲义例11)已知2)5(lim 2=+--+∞→c bx ax x x , 求b a ,之值.课堂练习1. 求极限: .231lim)2(;lim )1(31sinxx ex xx x +-++∞→→2.在某个过程中, 若)(x f 有极限, )(x g 无极限, 那么)()(x g x f +是否有极限? 为什么?第八节 极限存在准则 两个重要极限内容分布图示★ 夹逼准则★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 例7 ★ 例8★ 例9★ 单调有界准则 ★ 例10 ★ 例11 ★1sin lim0=→xxx★ 例12★ 例13 ★ 例14★ 例15 ★ 例16★ 例17★ 例18★ e n xx =⎪⎭⎫⎝⎛+∞→11lim ★ 例19 ★ 例21 ★ 例22★ 例23★ 例24 ★ 25★ 柯西极限存在准则 ★ 连续复利(例26) ★ 内容小结 ★ 课堂练习 ★ 习题 1-8★ 返回内容要点:一、准则I (夹逼准则):如果数列n n y x ,及n z 满足下列条件:a) ),3,2,1( =≤≤n z x y n n n ; b) ,lim ,lim a z a y n n n n ==∞→∞→那末数列n x 的极限存在, 且.lim a x n n =∞→注:利用夹逼准则求极限,关键是构造出n y 与n z , 并且n y 与n z 的极限相同且容易求. 二、 准则II (单调有界准则):单调有界数列必有极限. 三、 两个重要极限:1. 1sin lim 0=→x x x ; 2.e x xx =⎪⎭⎫⎝⎛+∞→11lim四、连续复利设初始本金为p (元), 年利率为r , 按复利付息, 若一年分m 次付息, 则第n 年末的本利和为mnn m r p s ⎪⎭⎫ ⎝⎛+=1如果利息按连续复利计算, 即计算复利的次数m 趋于无穷大时, t 年末的本利和可按如下公式计算rt mtm pe m r p s =⎪⎭⎫ ⎝⎛+=∞→1lim若要t 年末的本利和为s , 则初始本金rt se p -=.例题选讲:夹逼准则的应用例1(讲义例1)求 .12111lim 222⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n 例2 求.)321(lim 1n n n n ++∞→例3 求 ()().1111lim 222⎪⎪⎭⎫ ⎝⎛+++++∞→n n n n n 例4 求 ().1lim >∞→a a nn n例5 求 ().0!lim >∞→a n a nn 例6(讲义例2)求 .!limnn n n ∞→ 例7(讲义例3)求 .lim n n n ∞→例8(讲义例4)求证).0(1lim >=∞→a a n n例9(讲义例5)求极限.1lim 0⎥⎦⎤⎢⎣⎡→x x x单调有界准则的应用例10(讲义例6)设有数列31=x ,,,312 x x +=13-+=n n x x ,求 .lim n n x ∞→例11 设 0>a 为常数, 数列 n x 由下列定义: ),2,1(2111 =⎪⎪⎭⎫ ⎝⎛+=--n x a x x n n n 其中0x 为大于零的常数,求.lim n n x ∞→ 两个重要极限的应用例12(讲义例7)求 xxx tan lim0→.例13 求 .5sin 3tan lim0xxx →例14(讲义例8)求 .cos 1lim 20xxx -→ 例15 下列运算过程是否正确: 1sin lim tan lim sin .tan lim sin tan lim===→→→→xxx x x x x x x x x x x x x x x x例16 计算 .3cos cos lim 20x xx x -→例17 计算 ;cos sin 1lim2xx x x x -+→例18(讲义例9)求 3sin 2tan 2limxxx x +-+→. 例19(讲义例10)求 311lim +∞→⎪⎭⎫⎝⎛+n n n .例20(讲义例11)求 ().21lim /10xx x -→例21(讲义例12)求 xx x ⎪⎭⎫ ⎝⎛-∞→11lim 例22(讲义例13)求 .23lim 2xx x x ⎪⎭⎫⎝⎛++∞→例23 求 .1lim 22xx x x ⎪⎪⎭⎫⎝⎛-∞→ 例24 计算 ().lim /10xxx xe +→例25 求极限 ().tan lim 2tan 4/xx x π→连续复利例26(讲义例14) 一投资者欲用1000元投资5年, 设年利率为6%,试分别按单利、复利、每年按4次复利和连续复利付息方式计算, 到第5年末, 该投资者应得的本利和A .注: 连续复利的计算公式在其它许多问题中也常有应用如细胞分裂、树木增长等问题.课堂练习1. 求极限 .sin sin tan lim20xx xx x -→ 2. 求极限.)93(lim 1x x xx ++∞→第九节 无穷小的比较内容分布图示★ 无穷小的比较 ★ 例1-2 ★ 例3 ★ 常用等价无穷小 ★ 例4 ★ 等价无穷小替换定理 ★ 例5★ 例6★ 例7 ★ 例8 ★ 例9 ★ 例 10 ★ 例 11★ 例1 2 ★ 等价无穷小的充要条件★ 例13★ 内容小结 ★ 课堂练习 ★ 习题1-9 ★ 返回内容要点:一、 无穷小比较的概念:无穷小比的极限不同, 反映了无穷小趋向于零的快慢程度不同.二、 常用等价无穷小关系:)0(~1)1()0(ln ~1~1~)1ln(21~cos 1~arctan ~arcsin ~tan ~sin 2是常数≠-+>--+-αααx x a a x a xe xx x x x x x x x x x x x x三、 关于等价无穷小的两个重要结论:定理1 β与α是等价无穷小的充分必要条件是).(ααβo +=定理2 设,是同一过程中的无穷小ββαα'',,,且ββαα''~,~,αβ''lim存在, 则 .lim limαβαβ''=例题选讲:无穷小比较概念的应用:例1(讲义例1)证明: 当0→x 时, x x 3tan 4为x 的四阶无穷小. 例2(讲义例2)当0→x 时, 求x x sin tan -关于x 的阶数.例3 当1→x 时,将下列各量与无穷小量1-x 进行比较. (1);233+-x x (2);lg x (3)().11sin1--x x 例4 证明.~1x e x -例5(讲义例4) 求极限.1211lim nn n ⎪⎭⎫ ⎝⎛+-∞→例6(讲义例6)求 xxx 5sin 2tan lim0→.例7(讲义例7)求 .2sin sin tan lim30xxx x -→ 例8求 ().1cos 11lim3/120--+→x x x例9(讲义例8)求 121tan 1tan 1lim-+--+→x xx x例10计算 ().1ln lim 2cos 0x x e e xx x x +-→例11 计算 .sin cos 12lim2xxx +-→ 例12 求 ()().cos sec 1ln 1ln lim220xx x x x x x -+-+++→ 例13(讲义例9)求 xx x x 3sin 1cos 5tan lim 0+-→等价无穷小的应用:例3(讲义例3) 证明: 11lim0=-→xe x x . 例5(讲义例5)设,0≠α证明: .11)1(lim 0=-+→xx x αα无穷小等价替换定理的应用:课堂练习1. 求极限 βαβαβα--→e e lim .2. 任何两个无穷小量都可以比较吗?第十节 函数的连续性与间断点客观世界的许多现象和事物不仅是运动变化的,而且其运动变化的过程往往是连绵不断的,比如日月行空、岁月流逝、植物生长、物种变化等,这些连绵不断发展变化的事物在量的方面的反映就是函数的连续性. 本节将要引入的连续函数就是刻画变量连续变化的数学模型.16、17世纪微积分的酝酿和产生,直接肇始于对物体的连续运动的研究. 例如伽利略所研究的自由落体运动等都是连续变化的量. 但直到19世纪以前,数学家们对连续变量的研究仍停留在几何直观的层面上,即把能一笔画成的曲线所对应的函数称为连续函数. 19世纪中叶,在柯西等数学家建立起严格的极限理论之后,才对连续函数作出了严格的数学表述.连续函数不仅是微积分的研究对象,而且微积分中的主要概念、定理、公式法则等,往往都要求函数具有连续性.本节和下一节将以极限为基础,介绍连续函数的概念、连续函数的运算及连续函数的一些性质.内容分布图示★ 函数的连续性 ★ 例1 ★ 例2 ★ 左右连续 ★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 连续函数与连续区间 ★ 例7★ 函数的间断点 ★ 例8 ★ 例9 ★ 例 10 ★ 例 11 ★ 例12 ★ 例 13 ★ 例14★ 内容小结 ★ 课堂练习★ 习题1-10 ★ 返回内容要点:一、函数的连续性:函数的增量 连续性的三种定义形式二、左右连续的概念定理1 函数)(x f 在0x 处连续的充要条件是函数)(x f 在0x 处既左连续又右连续. 三、 连续函数与连续区间四、函数的间断点及其分类:第一类间断点 跳跃间断点 可去间断点;第二类间断点 无穷间断点 振荡间断点;例题选讲:函数的连续性例1(讲义例1)试证函数⎪⎩⎪⎨⎧=≠=,0,0,0,1sin )(x x xx x f 在0=x 处连续. 例2设)(x f 是定义于[a , b ]上的单调增加函数, ),,(0b a x ∈如果)(lim 0x f x x →存在, 试证明函数)(x f 在点0x 处连续.例3(讲义例4)讨论⎩⎨⎧<-≥+=,0,2,0,2)(x x x x x f 在0=x 处的连续性.。

函数的极限(高等数学课件

函数的极限(高等数学课件

极限存在的充分条件
通过研究极限存在的充分条件,我们能够判断函数极限是否存在,从而分析函数的性质。
极限不存在的充分条件
极限不存在的充分条件揭示了函数在某一点无法达到收敛状态的原因,帮助我们理解函数的特性。
极限的计算方法
通过掌握极限的计算方法,我们能够简化复杂函数的分析,快速求得函数在某一点的极限值。
无穷远处的极限研究函数在无穷远处的行为,了解函数在无穷远的趋势和特征。
函数连续的定义
函数连续的定义是描述函数在一个区间内各点之间没有突变,平滑过渡的性质。
极限的性质
通过研究极限的性质,我们能够推导出一些重要的定理和计算方法,深入理解函数的行为。
夹逼定理
夹逼定理是一种重要的判断函数极限存在与计算的方法,让我们能够找到极限或证明其不存在。
极限的唯一性
极限的唯一性告诉我们,函数在某一点的极限只可能有一个确定的值,没有 歧义性。
极限的应用:导数和积分的概念
函数极限的应用非常广泛,例如在微积分中,导数和积分的概念都是基于极限的。
中值定理
中值定理是一组重要的定理,它揭示了函数在某一区间内的行为特点,是函 数研究的重要工具。
极值和最值的定义
极限与无的行为,探讨函数的无限增长和无限减小。
极限与无穷小
极限与无穷小研究函数在某一点附近的变化,帮助我们分析函数的微小变化 和趋势。
L'Hôpital法则
L'Hôpital法则是一种处理函数极限的重要方法,适用于特定的极限计算。
渐近线的定义与分类
渐近线研究函数在无穷远处的趋势,分为水平渐近线、垂直渐近线和斜渐近 线三种。
函数的极限(高等数学课 件)
探索函数极限的奥秘,从基本的概念到应用、定理和计算方法,打开数学世 界的大门。

高等数学函数极限

高等数学函数极限

第一章函数极限与连续高等数学可以说是变量数学,它的研究对象、研究方法与初等数学相比都有相当大的差异。

它主要研究对象是函数,它的主要内容是微积分学,它的主要手段是以极限为工具,并在实数范围内研究函数的变化率及其规律性,从而产生微积分的基本概念及性质。

本章主要介绍函数的概念及其基本性质;数列与函数的极限及其基本性质;连续函数的概念及其基本性质,为进一步学好函数的微积分打下一个良好的基础。

第一节函数的概念一、几个基本概念1 常量与变量在日常生活或生产实践中,观察某一个事件的结果往往是用一个量的形式来表现的,在观察的某一个过程中始终保持不变的量称之为常量,经常变化的量称之为变量。

通常用小写字母a、b、c ……等表示常量,用小写字母x、y、z、……表示变量。

例如:圆周率 是永远不变的量,它是一个常量;某商品的价格在一定的时间段内是不变的,所以,在这段时间内它也是常量;又如一天中的气温,工厂在生产过程中的产量都是不断变化的量,这些量都是变量。

注意:1 常量和变量是相对的,它们依赖于所研究的过程和所研究的对象。

在不同的过程中常量和变量是可以转化的。

如商品的价格,某段时间是常量,另一段时间就有可能是变量了;2 从几何意义上来表示,常量对应数轴上的定点,变量对应数轴上的动点。

2 集合、区间集合是表示具有同一种属性的全体。

例如:某班的全体学生组成一个集合;长虹集团05年度的所有产品组成一个集合;所有正有理数仍组成一个集合等等。

有关集合的运算、集合的表示等方面的基本知识,中学数学已有介绍,这里就不一一赘述了下面向读者介绍高等数学中常用的数集及其简明表示符号:开区间:()b a ,={} | b x a x << ;闭区间:[]{} | , b x a x b a ≤≤=;左半开区间(或右半闭区间){} | ] , (b x a x b a ≤<=;右半开区间(或左半闭区间){} | ) , [b x a x b a <≤=;上述四个区间的长度都是有限长的,因此把它们统称为有限区间。

【精品】经济数学1(高等数学,极限与连续)

【精品】经济数学1(高等数学,极限与连续)

经济数学前言一、“高等数学”的学科定位“高等数学”,是以极限论为工具研究变量和变量关系的学科,又称为微积分,在数学专业课中又称为“数学分析”。

研究的对象是函数,基础是实数域,运用分析的工具是极限。

以下我们根据课程的特点和内容从不同角度对其进行说明。

1、高等数学初等数学,2、,其主要内容是微分学和积分学两部分。

而它们的基础是函数与极限,我们再根据其对象是一元函数和多元函数将其分为一元微积分和多元微积分。

3、同样是微积分,还有层次的高低问题。

4、在内容的系统上,其主线是运用极限论工具对函数的各特性进行讨论。

这里在内容体系展开上就有一个认识上的矛盾。

因为极限论从认识的角度看要比函数的微积分难得多。

若一开始就深入的徘徊在极限理论之中,必然偏离我们高数的学习目的。

为了解决这个矛盾,我们尽量地简化了极限论的分析,只是罗列了一些要用的必需结论(这也是与数学分析的主要区别之一)。

但是对它的简单化将使我们在运用极限这个工具时,感到有点把握不住,这是很正常的。

希望大家一定要正确对待这一难关。

我们的处理是在后继内容的一些具体问题中去逐步地完善对极限的认识,可能到后面的总结时,才能较好地体会和归纳出它的实质。

二、在学习中要注意的一些思想方法人们往往对数学有一个看法,认为数学很难,这一看法辨证地说既对又不对。

所谓难与不难是相对的,关键在认识方法上,若方法对路,相对较难的内容也能较容易地掌握。

根据高数的特点,我们列举出以下几对矛盾,希望同学们在学习的全过程中,随时多想想,找到问题的症结,对症下药,对学习会有一定的帮助。

1、常量与变量的矛盾2、内容和形式上的矛盾3、感性和理性的矛盾4、有限和无限的矛盾5、局部和整体的矛盾6、连续和离散的矛盾三、准备首先在这里先给两个数学符号,是全课程中大量运用的符号。

1)符号“∀”,即任意选取一个,或说对于每一个∀:即在区域D中任意选取一个Dx∈元素x,或说对于D中的每个x。

2)符号“∃”:至少存在一个∃:即在D中存在一个元素x。

学习《高等数学》应注意的若干问题(一)——函数的极限

学习《高等数学》应注意的若干问题(一)——函数的极限

£ 一 N , s 一 8 语言来证明, 例如: 求l i
= 1 ;

( 2 ) 利用数列的求和公式 , 例如 : 求
( 5 ) 重积分 的计算 ; ( 6 ) 两类曲面积分之间的联系 ; 教学 的实 践 证 明 : 这些 方 法 和 技巧 对 解题 和教 学是很有效果的 。这一 系列文章 的全部方法 和技 巧 已融人 了笔者近几年的教学过程 中, 希望将之整 理给学生在 自学和教师在讲解过程 中用 以参考。 《 高等数学》 是高等院校工科学生 的数学类基 础课程 。作为课 程本身 , 它有一套 “ 基本 概念 , 性 质, 定理 , 公式以及实际应用” 的体系口 。因此 , 在教 与学这 门课程时 , 应把握 其中关键定义 、 定理 的思 想 内涵 , 以及 学 会 分析 问题 和解 决 问 题 的能 力 。对
( 4 ) 多元 函数 的求 导法 则 ;
法 。在 练 习 的过 程 中要 举 一 反 三 , 达到学好《 高 等
数学》 的 目的。 此文作为系列文章的第一部分 , 阐述求 函数极 限 的常用 方 法 和解 题 技 巧 , 并 指 出在 解题 过 程 中应 注意 的 问题和解 题 的一 般思 路 。
1 引 言
为 了帮助工科 学生理解和分析《 高等数学》 中 的复 杂 而又 重 要 的 问题 , 并 为 教授 这 门课 程 的教 师 提供 一些有 用的参 考 , 笔者按 照授课 的 内容 和顺 序, 以一 个 系 列 的文 章 形式 来 阐述 该 课 程 教学 大 纲 中 的几个 重 要 知识 点 , 以及 这 些 知识 在 整 个教 学 内 容 中所起的作用和地位 。 本文所选 内容 为《 高等数学》 u ( 同济大学应用 数学 系编 , 高等教育 出版社 , 第六版 ) 的相关章节 , 以一 系列教学研究来 阐明笔 者对 《 高等数学》 中若 干 问题 的理 解 和 解 释 , 其 中部 分 涉及 新 解题 方 法 和 解题技巧。该系列的文章由如下六个部分构成: ( 1 ) 函数 的极 限 ; ( 2 ) 微 分 中值定 理 ; ( 3 ) 不 定 积分 的换元 积分 法 ;

(2021年整理)高等数学教案第一章函数与极限

(2021年整理)高等数学教案第一章函数与极限

第一章高等数学教案第一章函数与极限第二章第三章第四章编辑整理:第五章第六章第七章第八章第九章尊敬的读者朋友们:第十章这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高等数学教案第一章函数与极限)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

第十一章本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高等数学教案第一章函数与极限的全部内容。

第十二章第十三章函数与极限教学目的:1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式.2、了解函数的奇偶性、单调性、周期性和有界性.3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4、掌握基本初等函数的性质及其图形。

5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。

6、掌握极限的性质及四则运算法则。

7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。

9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

教学重点:1、复合函数及分段函数的概念;2、基本初等函数的性质及其图形;3、极限的概念极限的性质及四则运算法则;4、两个重要极限;5、无穷小及无穷小的比较;6、函数连续性及初等函数的连续性;7、区间上连续函数的性质。

教学难点:1、分段函数的建立与性质;2、左极限与右极限概念及应用;3、极限存在的两个准则的应用;4、间断点及其分类;5、闭区间上连续函数性质的应用。

《高等数学》极限的四则运算

《高等数学》极限的四则运算

(1)
lim
x2
x2 x2
5 3
(3)
lim
x0
4
x3 3x2
2x2 2x
x
(5) lim (x h)2 x2
h0
h
(2)
lim
x 3
x2 x2
3 1
(4) lim x1
x2
2x 1 x2 1
(6) lim x 1 x1 x 1
《高等数学》 1.5 极限的四则运算
【例1.5.3】 求下列极限
(1)
lim
x
x2 2x
3x 2x
5 3
(2)
lim
x
x2 3x 5 2x3 x2 3
解(1):原式
lim
x
1 2
3
x 1
x
5 式
lim x
lim x
1 x
3 x2
5 x3
2 2
1 1x x
3 x33 x3
1 x
3 x2
5 x3
0
定理1 (极限的四则运算法则)设极限 lim f (x) 与 lim g(x) 均存在 ,则
(1) lim[ f (x) g(x)] lim f (x) lim g(x) (2) lim f (x) g(x) lim f (x) lim g(x) (3) lim f (x) lim f (x) ,(lim g(x) 0)
《高等数学》
【练习2】求下列极限
(1)
lim
x
2x2 3x2
5x 2x
1 3
(2)
lim
x
4
x3 3x2
2x2 2
x
x
(3)

《高等数学教学资料》05第五节函数极限与最大值最小值.docx

《高等数学教学资料》05第五节函数极限与最大值最小值.docx

第五节函数的极值与最大值最小值在讨论函数的单调性时,曾遇到这样的情形,两数先是单调增加(或减少),到达某一点后又变为单调减少(或增加),这一类点实际上就是使函数单调性发生变化的分界点.如在上节例3的图3・4・5中,点兀=1和兀=2就是具有这样性质的点,易见,对兀=1的某个邻域内的任一点兀(2 1),恒有f(x) </(I),即曲线在点(1,/(1))处达到“峰顶”:同样,对“2 的某个邻域内的任一点X(XH2),恒有f(x) > /(2),即曲线在点(2,/(2))处达到“谷底”. 具有这种性质的点在实际应用中有着重耍的意义.由此我们引要入函数极值的概念.分布图示★函数极值的定义★函数极值的求法★例1★例2★例3笫二充分条件★例4★例5★例6最大值最小值的求法★例7★例8★例9★例10★例11★例]2内容小结★课堂练习★习题3・5 ★返回内容要点一、函数的极值极值的必要条件第一充分条件与第二充分条件求函数的极值点和极值的步骤(1)确定函数/(兀)的定义域,并求其导数;(2)解方程f\x) = 0求出于(兀)的全部驻点与不可导点;(3)讨论厂(劝在驻点和不可导点左、右两侧邻近符号变化的情况,确定函数的极值点;(4)求出各极值点的函数值,就得到函数/(兀)的全部极值.二、函数的最大值与最小值在实际应用屮,常常会遇到求最大值和最小值的问题.如用料最省、容暈最大、花钱最少、效率最高、利润最大等.此类问题在数学上往往可归结为求某一函数(通常称为目标函数)的最大值或最小值问题.求函数在创上的最大(小)值的步骤如下:(1)计算函数/(兀)在一切可能极值点的函数值,并将它们与相比较,这些值中最大的就是最大值,最小的就是最小值;(2)对于闭区间[d,b]上的连续函数/(兀),如果在这个区间内只有一个可能的极值点,并且函数在该点确有极值,则这点就是函数在所给区I'可上的最大值(或最小值)点.例题选讲求函数的极值例1 (E01)求出函数/(%) = x3 -3x2 -9x4-5的极值.解f(x) =3X2-6X-9=3(X +1)(X一3),令f(x) = 0,得驻点x1=-l,x2=3.列表讨论如下:X(―-1)-1(-1, 3)3(3, 4- °°)•厂⑴+0——0+f(x)f极大值1极小值t所以,极大值/(-!) = 10,极小值/(3) = -22.例2 (E02)求函数的极值.解⑴ 函数f(兀)在(-oo,+oo)内连续,除x = -l外处处可导,且厂(无)=孝二2;3沿+1(2)令f\x) = 0,得驻点x = l;兀=-1为/*(兀)的不可导点;(3)列表讨论如下:(-00,-1)-1(-1, 1)1(1,+呵/'(X)+不存在—0+/⑴f极大值1极小值t⑷ 极大值为/(-1) = 0,极小值为/⑴=-3^4.3例3求函数y(x) = x-jx2/3的单调增减区间和极值.解求导数= 当"1时八0) = 0,而x = 0时/©)不存在,因此,函数只可能在这两点取得极值.列表如下:X(一8,0)0(0,1)1(1, + °°) f\x)+ 不存在—0+fM/极大值0极小值-丄2/由上表可见:函数/(兀)在区间(_oo,0),(l,+oo)单调增加,在区间(0,1)单调减少.在点x =()处有极大值,在点兀=1处有极小值/(I) = 如图.例4 (E03)求出函数/(x) = x3 + 3x2一24兀- 20的极值.解f(x) = 3x2 +6x-24 = 3(x + 4)(兀—2),令f\x) = 0,得驻点册=-4,勺=2.又/'(x) = 6x + 6, ・・・/"(-4) = —18vO,故极大值于(一4) = 60, /*(2) = 18>0,故极小值/(2) = -4&注意:1./"(必)=0吋,/(X)在点勺处不一定収极值,仍用第一充分条件进行判断.2.函数的不可导点,也可能是函数的极值点.例5 (E04)求函数f(x) =(X2 -厅+ I的极值.解由/,(X)=6X(X2-I)2=0,得驻点可=一1,七=0*3=1. f\x) = 6(x2 -l)(5x2 -1).因f\x) = 6 > 0,故/(x)在x = 0处収得极小值,极小值为/(0) = 0.因厂(-1)=厂⑴=0,故用定理3无法判别.考察一阶导数f\x)在驻点册=-1及勺=1左右邻近的符号:当兀取-1左侧邻近的值时,f(x) < 0;当兀取-1右侧邻近的值吋,f(x) < 0;因厂(兀)的符号没有改变,故/(兀)在x = -l处没有极值.同理,/(兀)在x = l 处也没有极值.如图所示.例6求出函数/W=1-(X-2)2/3的极值.2 --解f'M = -一(兀-2) '("2). x = 2是函数的不可导点.当xv2时,f(x) > 0;当x>2时,.厂(兀)v0. /. /(2) = 1为/(兀)的极大值.例7 (E05)求y = 2疋+ 3兀$ _ 12x + 14的在[-3,4]上的最大值与最小值.解*«*= 6(x + 2)(兀一1),解方程f\x) = 0,得x, =-2,X2 =1.计算/(-3) = 23; /(—2) = 34; /⑴二7; /⑷二142;比较得最大值/⑷=142,最小值/(I) = 7.例8求函数)usin2x-x在-彳冷上的最大值及最小值.解函数y = sin2x- x在-巴工上连f\x) = / = 2cos2x-1, 2 2令)/ = (),得/ = 土牛.故皿¥上最大值为务最小值为号例9 (E06)设工厂4到铁路线的垂直距离为20km,垂足为3.铁路线上距离B为100km 处有一原料供应站C,如图3-5-4.现在要在铁路BC屮间某处D修建一个原料屮转车站,再由车站D 向工厂修一条公路.如果已知每km 的铁路运费与公路运费之比为3:5,那么,D 应 选在何处,才能使原料供应站C 运货到工厂A 所需运费最省?解 BD = x (km), CD = 100 — x (km), AD = ^202 + x 2 ・铁路每公里运费眈公路每公里5R,记那里目标函数(总运费)y 的函数关系式: y = 5kAD + 3k-CD 即y = 5k ・ 7400 +x 2 + 3k(l 00-x) (0<x<100).问题归结为:x 収何值时目标函数y 最小./ \ I求导得y f = k 1 =一3,令y" = 0得x = 15(km).、V400 + x~ ) 由于 y(0) = 400£, y(15) = 380£, y(100) = 100@£. 从而当BD = 15 (kmJB'J-,总运费最省.例10(E07)某房地产公司有50套公寓要出租,当租金定为每月180元时,公寓会全部 租111去.当租金每月增加10元时,就有一套公寓租不出去,而租出去的房子每月需花费20 元的整修维护费.试问房租定为多少可获得最大收入?解 设房租为每月兀元,租出去的房子有50-(犬二型]套,每月总收入为10V =70 一一,解 R\x ) = 0,得兀=350 (唯一驻点). 故每月每套租金为350元时收入最高.最大收入为/?(350) = 10890(元).求函数的最大值最小值例11敌人乘汽车从河的北岸A 处以1米/分钟的速度向正北逃窜,同时我军摩托车从 河的南岸B 处向正东追击,速度为2千米/分钟,问我军摩托车何吋射击最好(相距最近射击 最好)?解(1)建立敌我相距函数关系 设t 为我军从B 处发起追击至射击的事件(分).敌我相距函数5(/)5(f) = J(0.5 + r)2+(4-2r)2⑵求5 = 5(r)的最小值点5/-7.5 7(0.5 + z)2+(4-2r)2令= o,得唯一驻点( = 1.5.故得我军从B 处发起追击后1.5分钟设计最好. 实际问题求最值应注意:(1) 建立目标函数; (2) 求最值;若目标函数只有唯一驻点,则该点的函数值即为所求的最人(或最小)值.R(x) = U - 20) 50- x-180、10 )X = (x-20) 68——,I 10丿 + (“20)卜茁2 2例12求内接于椭圆与+务=1而面积最大的矩形的各边之长. a~ b~ 解 设M(x,y)为椭圆上第一象限内任意一点,则 以点M 为一顶点的内接矩形的面积为S(x) = 2x- 2y = — x^a 1 -x 2,0 <x<a,a且 S(0) = S(d) = 0.Qyla 2-x 2是S(x)的最人值,最大值仏=乎诗卜倍!=切课堂练习1. 下列命题正确吗?若兀()为/(X )的极小值点,则必存在旳的某邻域,在此邻域内,/(兀)在兀()的左侧下降,而 在兀()的右侧上升.2. 若/(d)是/(兀)在[d,切上的最大值或最小值,且广⑺)存在,是否一定有f(a) = 0?4b a 2 -2x 2 万需2“由 S3 = o,求得驻点尤0 =为唯一的极值可疑点.依题意,S(x)存在最大值,故对应的y 值为即当矩形的边长分别为血a, Qb 时面积最大.。

《高等数学》(经管类)教学大纲

《高等数学》(经管类)教学大纲

《高等数学》(经管类)教学大纲大纲说明课程代码:4915001总学时:128学时(讲课128学时)总学分:8分课程类别:必修适用专业:经管类本科一年级学生预修要求:初等数学一、课程性质、目的、任务本课程是本科经管类各专业的一门公共基础课,教学内容主要有一元与多元微积分;级数;常微分方程初步。

本课程教学目的是使学生获得从事经济管理和经济研究所必需的微积分方面的知识;学会应用变量数学的方法分析研究经济现象中的数量关系;培养抽象思维和逻辑推理的能力;树立辩证唯物主义的观点,同时,本课程也是后继经济应用数学(如概率统计等)的必要基础。

二、课程教学的基本要求:1、正确理解下列基本概念和它们之间的内在联系:函数、极限、无穷小、连续、导数、微分、不定积分、定积分、曲面的方程、偏导数、全微分、二重积分、常微分方程、无穷级数的收敛与发散性、边际、弹性。

2、正确理解下列基本定理和公式并能正确应用:极限的主要定理、罗尔定理、拉格朗日中值定理、柯西中值定理、定积分作为变上限的函数及其求导的定理、牛顿—莱布尼兹公式。

3、牢固掌握下列基本公式:基本初等函数的导数公式、基本积分公式、函数e x 、sinx 、cosx 、α)1(x +、ln(1+x)的幂级数展开式。

4、熟练运用下列法则和方法函数的和、差、积、商求导法则与复合函数的求导法则、隐函数的求导法、反函数的求导法、直接积分法、换元积分法、分部积分法、二重积分计算法、级数收敛性的比较判别法,达朗贝尔判别法、莱布尼兹判别法、幂级数收敛半径的求法、变量可分离的一阶微分方程的解法、一阶线性微方程的解法、二阶常系数线性微分方程的解法、拉格朗日乘数法、最小二乘法。

5、会运用微积分和常微分方程的方法解决一些简单的经济问题。

6、在学习过程中,逐步培养熟练的运算能力,抽象的思维能力,逻辑推理能力、空间想象能力。

知识的获得与能力的培养是同一过程的两个侧面,知识是发展能力的内容,能力是掌握知识的条件,我们既努力获得新知识,同时也注意不断提高分析问题和解决问题的能力。

高等数学中函数极限的求法技巧解析

高等数学中函数极限的求法技巧解析

高等数学中函数极限的求法技巧解析在高等数学中,函数的极限是一个非常重要的概念,它在微积分中有着非常重要的应用。

函数的极限求法技巧是学习高等数学的基础,因此我们需要掌握一些常用的求极限的技巧和方法。

下面就为大家详细解析一下函数极限的求法技巧。

我们需要了解函数的极限的定义。

在数学中,如果对于任意小的正数ε,存在正数δ,使得当自变量x满足0<|x-a|<δ时,对应的函数值f(x)满足|f(x)-L|<ε,那么称函数f(x)在自变量x趋向于a的时候极限为L,记作lim┬(x→a)⁡〖f(x)〗=L这就是函数极限的定义。

下面我们来看看函数极限的一些常用的求法技巧:1. 代入法代入法是最简单的求极限的方法,也是我们最为熟悉的方法。

它就是将x的值代入函数然后求得函数的极限。

但是需要注意的是,并不是所有的函数都可以使用代入法求得极限,例如当函数在极限点是无穷大或者无穷小的时候,代入法就无法求得极限。

所以在使用代入法的时候需要注意函数的性质。

2. 分式极限的化简对于一些复杂的分式极限,我们可以通过分子分母的因式分解或者有理化等方法将分式进行化简,然后再进行求极限。

这样可以简化问题,更容易求得极限的值。

3. 夹逼定理夹逼定理是求极限中非常重要的定理,它是求证函数极限的重要工具。

夹逼定理主要用来求那些难以直接求得的函数极限。

夹逼定理的原理是,如果一个函数f(x)小于等于另一个函数g(x),而又大于等于另一个函数h(x),那么这三个函数的极限都存在并且相等,即若当x趋向于a时,有f(x)≤g(x)≤h(x),而且lim┬(x→a)⁡〖f(x)〗=lim┬(x→a)⁡〖h(x)〗=L,那么lim┬(x→a)⁡〖g(x)〗也存在,并且等于L。

4. 倒代换法倒代换法是一种很常见的求极限的方法,通常用于当x趋向于无穷大或者无穷小的时候。

例如当x趋向于无穷大时,我们可以令t=1/x,然后将极限转化为t趋向于0的极限,这样就可以通过代入法或夹逼定理等方法求得极限。

(高等数学)第一章函数的极限.

(高等数学)第一章函数的极限.

(⾼等数学)第⼀章函数的极限.周世国:《微积分》讲义第⼀章周世国讲义第⼀章函数的极限第⼀节数列的极限⼀.数列的极限1.定义1:按⼀定次序排列着的⽆穷多个数:x1,x2, ,xn, 称为⼀个数列,记为{xn}或间记为xn.也称xn为数列{xn}的通项.⼆.数列的极限1.引例观察下列⼏个数列的取值规律:111 (1){xn}:1,,,...,,... 23n11?1?(2){yn}:,, , ?, 24?2?(3):{zn}1,-1,1,-1,...,(-1)(4){wn}:1,2,3, ,n,这⼏个数列的取值都有明显的规律性.但前两个数列随着n⽆限地增⼤,其取值明显地会⽆限地接近某个常数,我们就称这两个数列具有极限,并分别记为limxn=0,limyn=0.⽽后两个数列则不然,如数列{zn}的取值随着n⽆限地n→∞n→∞n-1n,...增⼤,始终在1与-1之间来回变动,⽽不会⽆限地接近某个常数,这时我们就称数列{zn}⽆极限.⼜如数列{wn}的取值随着n⽆限地增⼤也⽆限地增⼤,此时,我们也称数列{wn}⽆极限.为了体现出数列{wn}的这种取值随着n⽆限地增⼤也⽆限地增⼤的特点,形象地记limwn=∞,但我们⼀定要论清楚,数列{wn}其实n→∞是⽆极限的.问题:请同学们⾃⼰观察出下列数列的取值规律:(1){xn}:c,c, ,c,(2){yn}:-1,-2, ,-n,(3){zn}:2,,...22,23, ,2n,周世国:《微积分》讲义第⼀章(4){Wn}:1111,2,3, ,n, 2222注意:(1).刚才⼏个常见数列的结果要会背,可作为结论来使⽤;(2)如果所给的数列取值⽆任何规律可循,如何求它的极限?(⽆任何规律可循的数列,其⾃然⽆极限;另外,我们也根本不会去研究这种⽆任何规律可循的⽆穷数列.)2.数列极限的定义(1).描述性定义:设有数列{xn},如果当n⽆限地增⼤,数列{xn}的值就会⽆限地接近于同⼀个常数a,则称数列{xn}有极限a,或称数列{xn}收敛于a,记为:limxn=a或简记为:xn→a,(n→∞).如数列{xn}⽆极限,则称数列{xn}发n→∞散.问题:请同学们思考⼀下:上述我们研究过的数列中那些是收敛的;那些是发散的?n→∞其以后各项xn(n>N)都要落⼊邻域U(a,ε),即{xn}落在邻域U(a,ε)以外的项⾄多有有限多项.(画图说明).n=1 例1.试证:limn→∞n+1证明:对?ε>0,要使xn-a=1n1-1=<ε n+1n+1只须n>n?1?-1.故取N=?-1?,则当n>N时,就有xn-a=-<ε. εn+1ε??n=1 n→∞n+1故,依定义:lim3n2+n3=. 例2.按定义证明:lim2n→∞2n-1223n2+n32n+34n2n>证明:对?ε>0,要使不等式成⽴,只须.-=<=<εε2n2-124n2-22n2n3n2+n3?2?故取N=??,于是,对?ε>0,当n>N时,有-<ε 22n-12?n?周世国:《微积分》讲义第⼀章3n2+n3=. 即,lim2n→∞2n-12例3.试证:=1(其中a>1,为常数)(要会背).n1=xn≥0所以,a=(1+xn)=1+nxn+ >nxna ?0≤xnnna<ε n因此,对?ε>0,要使|1|=|xn|=xn≤n>aa.故取N=??,则当n>N时,就有|1|=xn<ε.所以,依定义:ε?ε?=1. n例4.证明:若limxn=a,则limxn=a但反之,未必成⽴. n→∞n→∞证明:(⼀).因为limxn=a,故由定义:?ε>0,?N,使当n>N时,都有n→∞xn-a≤xn-a<ε,所以limxn=a; n→∞(⼆).反之,设xn=(-1),则limxn=1,limxn不存在. n→∞n→∞n例5.设limxn=0,{yn}有界.证明:lim(xnyn)=0. n→∞n→∞注意:(1).若limxn=0则称数列{xn}为⽆穷⼩序列;n→∞(2).数列{xn}为⽆穷⼩序列的精确的数学定义:称数列{xn}为⽆穷⼩序列,如果对?ε>0,?N,使当n>N时,都有xn-0=xn<ε.(4).(定理1)⽆穷⼩序列的性质:设{αn},{βn}为两个⽆穷⼩序列,则{αn±βn},{αn.βn}均为⽆穷⼩序列.推论:有限个⽆穷⼩序列的和、差、积还是⽆穷⼩序列.1例6.设a∈R,a>1,证:xn=n, 为⽆穷⼩序列. a周世国:《微积分》讲义第⼀章证明:x1n=a=1<1.(佰努利不等式). n?1+(a-1)?nna-1对?ε>0,要使xn<1na-1<ε,只须 n>1?εa-1.所以,取N=?1?a-1??+1.于是,当n>N时,就有??ε?x1n=1ann=an为⽆穷⼩序列.例7.证明:xnn=an,n=1,2, ,(a∈R,a>1).为⽆穷⼩序列.证明:对n≥2,我们有: xnn=nan=n?=21+(a-1)n<nn-1a-12(a-1)2(n-1)()2.要使2(n-1)(a-1)2<ε, 只须n>2ε(a-1)2+1,则当n>N时,就有xn<ε. 所以,xnn=an,n=1,2, ,(a∈R,a>1)为⽆穷⼩序列.注意:此结论最好会背. 例8.(定理2)limn→∞xn=a?xn=a+εn.,其中{εn}为⼀个⽆穷⼩序列. 例9.计算limn+1 n→∞n 解:因为n+1n=1+11n且limn→∞n=0,所以,原式=1.例10.lim?n→∞??1-1?2??cosn=0三.数列极限的四则运算法则定理3.设{xn},{yn}为两数列,且(1).limn→∞(xn±yn)=limn→∞xn±limn→∞yn=a±b;(2). limn→∞(xnyn)=limn→∞xn.limn→∞yn=a.b;. 4周世国:《微积分》讲义第⼀章(3). limxnlimn→∞xnn→∞y==a.nlimn→∞ynb推论:(1)limn→∞(cxn)=climn→∞xn=ca;(2). limxkn→∞n=(limn→∞xn)k=ak;(3).lim1n→∞x=1=1.(a≠0).nlimn→∞xna.求lim3n3+2n2例11-n+1n→∞2n3-3n2+2解:233+2.1-?1??1?lim3n3+2n2-n+1 ?+ ?n→∞2n3-3n2+2=limn?n??n?3 n→∞3=.2-3.1n+2.? 1?2n注意:上题可否这样做:原式=3∞+12∞-1?例12.求下列极限(1).limn→∞n+1-n);(2).lim(1111n→∞-22)(1-32)...(1-n2);(3).limsinnn→∞n.问题:试指出下列演算错在何处: 1=lim?n→∞ ?n1?n??=limn→∞nlim1n→∞n=∞.0=0?四.收敛数列的性质2.极限的唯⼀性(定理5).若数列{xn}收敛,则其极限是唯⼀的. 证明:(反证法).假设limn→∞xn=a,且limn→∞xn=b(a≠b)不妨假设a以依定义:对ε=b-a2>0,?N1,使当n>N1时,有 5周世国:《微积分》讲义第⼀章|ε= |xn-a<n→∞b-a3a-ba+b?0,?N2,使当n>N2时,有 2b-aa+b3b-a|ε=?取N=max{N1,N2},则当n>N时,(1)、(2)式应同时成⽴,但这是不可能的. 3.保序性(定理6)若limxn=a,limyn=b.且aN 时,有n→∞n→∞xn推论1.若limxn=a,limyn=b.,且?N,n>N时,有n→∞n→∞xn≤yn,则a≤b(反证).推论2.(保号性).若limxn=a,且a<0(a>0),则?N,n>N,有xn<0(xn>0). n→∞证明:取yn≡0⽤定理6即可.五.数列极限存在的两准则1.(定理7)(夹逼准则):设有三数列:{xn},{yn},{zn}满⾜:(1).?N,n>N时,yn≤xn≤zn;(2). limyn=limzn=a. n→∞n→∞则有limxn=a. n→∞n! n→∞nnn!1.2.3...(n-1)n1.nn...n11≤=且lim=0, 解:因为0≤n=nnnn...nnnn...nnn→∞nn!=0. 所以,limn→∞nn例13.求liman例14 .证明:lim=0.(a>0,常数)n→∞n!证明:对?a,?k∈N,使k-1aa>>.... k+1k+2周世国:《微积分》讲义第⼀章所以,当n>k,有:k项 n -项k0≤anaaaaaaakan!=12.kk+1+k2-n.1n→∞k!n=0(注意到k为常数)。

微积分第一课(函数极限)

微积分第一课(函数极限)

分别讨论当 x 0及 x 1时, f ( x )的极限是否存在.
3.写出下列函数在x 1处的左极限, 右极限, 并指出函数在x 1处是否存 在极限. (1) f ( x) x 1 2 x ( 2) g ( x ) 0
( x 1) ( x 1)
x 1 4.已知f ( x ) x 1 0
但数列极限中的n只能取 正整数,其变化方式是离散 的,而且变化趋势只是 n 的情况。
1、当 x 时,函数 f ( x )的极限。
1 我们考察函数y 当x无限增大时 x 的变化趋势。为此,我们列出下表, 1 并画出函数y 的图象。 x
x 1 10 100
1000
10000 100000 ……
-1000 -0.001
-10000 -0.0001
-100000 -0.00001
… …
6
1 fx = x
4
2
-5
5
10
-2
-4
-6
当自变量x取负值并且绝对值无限 增大时,如果函数f ( x)无限趋近于一 个常数a, 就说当x趋向于负无穷大时, 函数f ( x)的极限是a, 记作: lim f ( x) a,
根据函数在一点处的极限, 左极限, 右极限的定义, 可以得出 : lim f ( x) a
x x0 x x 0
lim f ( x) lim f ( x) a
xx 0
例1.求极限 : x x lim , x 1 x 1 3 2 x x lim , x 1 x 1 3 2 x x lim x 1 x 1
高等数学
绪论
高等数学
数学是研究现实世界的空间形式和数量关系的一们科学。 十七世纪以前,由于受当时生产力的局限性,人们对于数学 的认识,停留在初等数学阶段。十七世纪初,欧洲资本主义 兴起,对物理学、力学、天文学等科学提出了新问题,需要 研究事物的运动与变化过程的数量关系,初等数学的方法是 远远不够的。逐渐产生了微分和积分。 恩格斯指出:“数学中的转折点是笛卡尔的变数 ,有了变数, 微分和积分也就成为必要的了,而它们也就立刻产生。” 马克思说过:微积分要成为每个公民都知晓的学科。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
[1
1 (1 R )
n
]
A R
高等数学 函数极限和计算(Functional limit and calculate)
advanced mathematics
故永续年金的现值计算公式为:
P A R
(1)、当奖金发放年限为10年时,所求为普通年金现值
P 10 0 . 05 [1 1 (1 0 . 05 )
advanced mathematics
定义4:
如果当 x x0 (或x x0 )趋于 x0 , 即 x x0
(或 x x )时,函数f(x)无限接近于一个确定的 0
常数A,那么A 称为函数f(x)当 xx0时的左极限(或
右极限),记作 lim f(x) A 或 lim f(x) A
10
] 77 . 217
(2)、当奖金发放年限为 n 时,所求为永续年金现值 所以
P 10 0 . 05 200
高等数学 函数极限和计算(Functional limit and calculate)
advanced mathematics
实例 如果你计划工作五年后的存款达到30万元,想
A 1 R
A (1 R )
2
A (1 R )
3
,
A (1 R )
n
则每年年金现值之和为:
P A 1 R
A (1 R )
2

A (1 R )
3

A (1 R )
n

A R
[1
1 (1 R )
n
]
ቤተ መጻሕፍቲ ባይዱ
当年金的年数永远继续,即 n 时,称为永续年金
lim A R
x x0 x x0 x x0
高等数学 函数极限和计算(Functional limit and calculate)
advanced mathematics
实例【产品价格预测】 设一产品的价格满足 P ( t ) 20 20 e
0 .5 t
(单位:元),
请你对该产品的长期价格作一预测.
根据自己当前的存款速度,预测五年后能否实现存款
计划。如何利用数学工具进行预测?
数学描述:
设x表示时间, y表示到x年末存款的总额,问x 5时, y如何变化?
高等数学 函数极限和计算(Functional limit and calculate)
advanced mathematics
二、当 x x0时,函数 f (x) 的极限 定义3: 如果当x无限接近于定值x0,即 x x0(x可以不 等于x0 )时,函数f(x)无限接近于一个确定的常数
3、 f(x) A lim f(x) lim f(x) A lim
x x x
4.当x x0 (x0 +或x0-)时,函数f(x)极限的概念 5.当x x0 (x0 +或x0-)时,应用观察法求函数f(x)的 极限
6、 lim f(x) A lim f(x) lim f(x) A
极限,记作 lim f(x) A(或 lim f(x) A ) x
x
1 例如 : lim 0 x 2
x
x
lim
1 x
0
高等数学 函数极限和计算(Functional limit and calculate)
advanced mathematics
高等数学 函数极限和计算(Functional limit and calculate)
advanced mathematics
一、当x→∞时,函数 f ( x)的极限 定义1:
如果当x趋向正(或负)无穷大时(x→+∞)(或
x→-∞) ,函数f(x)无限接近于一个确定的常数A
(y→A),那么A称为函数f(x)当x趋向正无穷大时的
实例训练 建立一项奖励基金,每年年终发放一次, 资金总额为10万元,若以年复利率5%计算,试求: (1)、奖金发放年限为10年,基金P应为多少?
(2)、若奖金发放永远继续下去,即奖金发放年数
(此时称为永续性奖金),基金P又应为多少? 解: 设P为第n年末年金现值,Sn为第n年末年金,R 为年利率,则复利基本计算公式为
例1 已知函数y= 1 ,判断当x→+∞和x→-∞时函数的极限
x
解: 作y
lim
1 x
1
x
图象
lim
1 x
x
0
x
0
x→+∞和x→-∞可以写为x→∞ 该例结论又可写成 lim
x
1 x
=0
高等数学 函数极限和计算(Functional limit and calculate)
函数极限和计算
Functional limit and calculate
高等数学 函数极限和计算(Functional limit and calculate)
advanced mathematics
知识目标
1、回顾函数的极限的概念 2、掌握函数极限的四则运算
能力目标
1、会用函数的极限概念翻译经济与趋势相关问题
x x0

x x0

注 : lim f(x) A lim f(x) lim f(x) A
xx 0 xx 0 xx 0
高等数学 函数极限和计算(Functional limit and calculate)
x 1 2 x 2 x x0 0 x 1 , 试分别讨论 1 x

x 4 x2
y
2
,当x 2时
函数值的变化情况 y
f (x) x 2 1
f ( x)
x 4
2
x2
4
x 2 1) 2
2
lim (
x2
lim
x 4
2
x2
x2
4
注意:
0
2
x
0
2
x
1、定义中“xx0”表示x从小于x0和大于x0的两个方向趋近于x0
2、函数在xx0时有无极限与函数在x0处有无定义无关
A,那么A称为函数f(x)当x x0 时的极限,记作:
x x0
lim f(x) A或当x
x 0时f(x) A
高等数学 函数极限和计算(Functional limit and calculate)
advanced mathematics
观察函数f(x)

x 2
1和函数f(x) :
x 0
不存在
解 : lim sin
x 0
1 x
不存在
高等数学 函数极限和计算(Functional limit and calculate)
advanced mathematics
三.函数在点x0的左、右极限
引例【药物总量】
一个病人每隔4小时注射一次150mg药物,图1-12显示 了病人血液中药物的总量f (t )与时间t 之间的关系,讨论 当t → 4 时,函数f (t ) 的极限。
数学描述:
设n表示结算次数, y表示一年后的本息和,问n 时, y如何变化?
高等数学 函数极限和计算(Functional limit and calculate)
advanced mathematics
这类问题有一个共同特征:当自变量逐渐增大时,
相应函数值接近于某一常数 ——极限
极限的本质:找事物的变化规律(当自变量在某 一变化过程中)
在函数极限的定义中 ,t→t0 的方 式是任意的。该函数为分段函数, 在t = 4的左、右两侧,函数f (t )的 表达式不同,此时只能先对 t = 4 的左、右两侧的变化趋势进行 讨论。
f(t)
0
4
8
t
图1-12
高等数学 函数极限和计算(Functional limit and calculate)
advanced mathematics
定义2: 当x→∞时,函数f(x)无限接近于某个确定的常数A,
那么A称为函数f(x) 当x→∞时的极限,记作
limf(x)=A或(当x→∞时f(x)→A)。
x
注 : lim f(x) A lim f(x) lim f(x) A
x x x
高等数学 函数极限和计算(Functional limit and calculate)
advanced mathematics
例2 已知函数y=arctanx,试讨论当x→∞时,y=arctanx是否
有极限,为什么?
解:作图
由图可见,x→+∞时,
y

2
1.5 1 0.5
arctan x→
x→-∞时, arctan x→ -
x 1
lim f ( x )不存在
x 0
lim f ( x ) 1
x 1
高等数学 函数极限和计算(Functional limit and calculate)
advanced mathematics
四、小结:
1.当x →∞(+∞或-∞)时,函数f(x)的极限的概念
2.当x →∞(+∞或-∞)时,应用观察法求函数f(x) 的极限
高等数学 函数极限和计算(Functional limit and calculate)
advanced mathematics
数学训练:讨论下列极限是否存在:
(1) lim 1 x
x 0
( 2 ) lim sin
x 0
相关文档
最新文档