九年级数学下学期期末考试试卷
2022-2023学年人教版九年级数学第一学期期末测试卷含答案
第1页,共4页 第2页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号2022-2023学年第一学期期末质量监测试卷九年级 数学学科(考试时间:120分钟 考试分值:150分)一、选择题(每题5分,共45分)1.(5分)下列新冠疫情防控标识图案中,中心对称图形是( )A.B.C.D.2.(5分)下列为一元二次方程的是( )A.02=+-c bx axB.0232=-+x x C.01322=+-x x D.0222=+y x3.(5分)已知关于x 的一元二次方程x m x 442=-有两个不相等的实数根,则m 的取值范围是( )A.1->mB.2<mC.0≥mD.0<m4.(5分)方程0)3)(2(=+-x x 的解是( )A.2=xB.3-=xC.3,221==x xD.3,221-==x x 5.(5分)如图,AB 是☉O 的弦,点C 在圆上,已知∠AOB=100°,则∠C=( )A.40°B.50°C.60°D.80°6.(5分)抛物线2)4(32++=x y 的顶点坐标是( ) A.(2,4) B.(2,-4) C.(4,2) D.(-4,-2)7.(5分)目前我国已建立了比较完善的经济困难学生资助体系.某校前年发放给每个经济困难学生389元,今年发放了438元.设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A.438)13892=+x (B.389)14382=+x (C.438)21389=+x (D.389)21438=+x (8.(5分)对于二次函数2)1(2+-=x y 的图像,下列说法正确的是( ) A.开口向下B.对称轴是直线1-=xC.顶点坐标是(1,2)D.当1>x 时,y 随x 的增大而减小9.(5分)当0>ab 时,2ax y =与b ax y +=的图象大致是( )A. B. C. D.二、 填空题 (每题 5 分 ,共30分 )10.(5分)点A(-2,3)关于原点对称的点的坐标是________.11.(5分)已知关于x 的方程0322=++k x x 的一个根是-1,则k=________. 12.(5分)如图,四边形ABCD 为☉O 的内接四边形,已知∠BOD=100°,则∠BCD 的度数为____.13.(5分)一个不透明袋子中装有10个球,其中有5个红球,3个白球,2个黑球,这些球除颜色外无其它差别,从袋子中随机取出个球,则它是白球的概率是________.14.(5分)若562)1(--+=m m x m y 是二次函数,则m=________.第3页,共14页第4页,共14页装订线内不许答题15.(5分)如图,抛物线与x 轴交于点A(-1,0),顶点坐标(1,n),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论正确的有________.(填编号)①03<b a +;②134-≤≤-a ;③对于任意实数m ,bm am b a +≥+2恒成立;④关于x 的方程12+=++n c bx ax 有两个相等的实数根.三、 解答题 (本题共计 8 小题 ,共计75分 )16. (8分) 解方程:(1)033(=-+-x x x ); (2)0142=--x x . 17. (7分) 关于x 的方程0232=+-m x x 的一个根为-1,求方程的另一个根及m 的值.18. (8分) 如图所示,每个小正方形的边长为1个单位长度,作出△ABC 关于原点对称的图形△A 1B 1C 1,并写出A 1,B 1,C 1的坐标.19. (10分) 如图,某小区规划在一个长为40米、宽为26米的矩形场地ABCD 上修建三条同样宽度的马路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每一块草坪的面积都是144m 2,求马路的宽.第5页,共4页 第6页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号20.(10分) 为了解长垣市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题: (1)此次调查中接受调查的人数为________人; (2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为________度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.21.(10分) 如图,在△ABC 中,点O 是AB 边上一点,OB=OC,∠B=30°,过点A 的 ☉O 切BC 于点D ,CO 平分∠ACB .(1)求证:AC 是☉O 的切线; (2)若BC=12,求☉O 的半径长;(3)在(2)的条件下,求阴影部分的面积.22. (10分) 某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件.现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价0.1元,其销售量就要减少1件,问涨价多少元时,才能使每天所赚的利润达到360元?23.(12分) 如图,在平面直角坐标系中,抛物线422++=ax ax y 与x 轴交于点 A(-4,0),B(2,0),与y 轴交于点C .经过点B 的直线b kx y +=与y 轴交于点D(0,2),与抛物线交于点E .(1)求抛物线的解析式及点C 的坐标;(2)若点P 为抛物线的对称轴上的动点,当△AEP 的周长最小时,求点P 的坐标; (3)若点M 是直线BE 上的动点,过M 作MN ∥y 轴交抛物线于点N ,判断是否存在点M ,使以点M 、N ,C ,D 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.第7页,共14页 第8页,共14页装订线内不许答题2022-2023学年第一学期期末质量监测试卷答案九年级 数学学科一、选择题(每题5分,共45分)1.A2.C3.A4.D5.B6.D7.A8.C9.D二、 填空题 (每题 5 分 ,共30分 )10.(2,-3) 11.2± 12.130° 13.10314. 7 15.①②③三、 解答题 (本题共计 8 小题 ,共计75分 )16.解:(1)0)3()3(=-+-x x x分解因式得:0)1)(3=+-x x (————————2分 可得03=-x 或01=+x解得:1,321-==x x ————————4分 (2)5142=--x x移项得:642=-x x ————————1分配方法得:10442=+-x x 即10)22=-x (————————2分 开方得:102±=-x解得:10210221-=+=x x , ————————4分 17.解:把 代入方程,得,解得,————————3分设方程的另一个根为,则,————————5分所以,即方程的另一个根为.————————7分18.解:关于原点的对称图形如图,————————5分根据图形可知:,,.————————8分19.解:设马路的宽为米 ————————1分依题意可列方程————————4分整理得 ————————6分 解得,(舍去) ————————9分答:马路的宽为2米.————————10分第9页,共4页第10页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号20.(1)∵非常满意的有18人,占,∴此次调查中接受调查的人数:(人).故答案为:50 ————————2分 (2)此次调查中结果为满意的人数为:(人)补全条形统计图如下:————————4分(3)144 ————————6分 (4)画树状图:∵共有12种等可能的结果,选择回访市民为“一男一女”的有8种情况,∴选择回访的市民为“一男一女”的概率为:. ————————10分21.(1)证明:∵∴又∵ 平分∴ ∴∴∴是的切线. ————————3分(2)解:如图,连接,设交于点,设半径为r .∵ 切于点, ∴.又∵,, ∴AC=6,,由勾股定理得AB=36∴ 在直角三角形OCD 中,由勾股定理得 r 2+62=(36-r)2解得 r=32 ————————6分 (3)解:∵, ∴————————10分第11页,共14页 第12页,共14页装订线内不许答题22.解:设涨价元时,才能使每天所赚的利润达到元. ————————1分————————4分 ,, ————————7分 解得. ————————9分答:涨价元时,才能使每天所赚的利润达到元. ————————10分23.解:(1),点的坐标为————————4分(2)如图,由,可得对称轴为.∵ 的边是定长,∴ 当的值最小时,的周长最小.点关于的对称点为点,∴ 当点是与直线的交点时,的 值最小. ∵ 直线经过点∴ ’解得∴ 直线:令,得,∴ 当的周长最小时,点的坐标为————————8分(3)存在.点的坐标为或————————12分第13页,共4页 第14页,共4页…………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………点场号名座位号。
人教版2023-2024学年九年级下学期调研考试数学考试试卷含答案
九年级数学(第1页共6页)人教版2023-2024学年九年级下学期调研考试数 学 试 卷温馨提示:1.答题前,考生务必将自己所在县(市、区)、学校、姓名、考号填写在试卷上指定的位置,并将条形码粘贴在答题卡上的指定位置.2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题的答案必须写在答题卡的指定位置,在本卷上答题无效.3.本试卷满分120分,考试时间120分钟.一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1.下列所给的方程中,是一元二次方程的是A .x 2=xB .2x +1=0C .(x -1)x =x 2D .x +1x=22.下列事件中,是必然事件的是A .一个不透明的袋子中只装有2个黑球,搅匀后从中随机摸出一个球,结果是红球B .抛掷一枚质地均匀且6个面上分别标上数字1~6的骰子,朝上一面的数字小于7C .从车间刚生产的产品中任意抽取一个是次品D .打开电视,正在播放广告3.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 的夹角为150°,弧BC 长为50πcm ,则半径AB 的长为A .50cm B .60cm C .120cmD .30cm4.如图是国旗中的一颗五角星图案,绕着它的中心旋转,要使旋转后的五角星能与自身重合,则旋转角的度数至少为A .30°B .45°C .60°D .72°5.已知电压U 、电流I 、电阻R 三者之间的关系式为:U =IR (或者U I R=),实际生活中,由于给定已知量不同,因此会有不同的可能图象,图象不可能是A .B .C .D .九年级数学(第2页共6页)6.学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字1,2,3,4表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中乙获胜的概率是A .41B .21C .43D .657.如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,点D 是⊙O 上一点,∠ADC =25°,则∠BOC的度数为A .30°B .40°C .50°D .60°8.如图,函数y =-x 与函数6y x=-的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D ,连接AD ,BC .则四边形ACBD 的面积为A .12B .8C .6D .49.己知⊙O 的半径是一元二次方程x 2-3x -4=0的一个根,圆心O 到直线l 的距离d =6,则直线l 与⊙O 的位置关系是A .相切B .相离C .相交D .相切或相交10.如图是二次函数y =ax 2+bx +c (a <0)图象的一部分,对称轴为x =12,且经过点(2,0).下列说法:①abc <0;②4a +2b +c <0;③-2b +c =0;④若(-52,y 1),(52,y 2)是抛物线上的两点,则y 1<y 2;⑤14b >m (am +b )(其中m ≠12).其中说法正确的是A .③④⑤B .①②④C .①④⑤D.①③④⑤二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.已知一元二次方程(x -2)(x +3)=0,将其化成二次项系数为正数的一般形式后,它的常数项是☆.九年级数学(第3页共6页)12.五张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、直角三角形、平行四边形图案.现把它们正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为☆.13.Rt △ABC 中,∠C =90°,AC =3,BC =4,把Rt △ABC 沿AB 所在的直线旋转一周,则所得几何体的全面积为☆.14.抛物线y =-12x 2+3x -52的顶点坐标是☆.15.在等腰直角三角形AB C 中,∠C =90°,BC =2cm .如果以AC 的中点O 为旋转中心,将△OCB 旋转180°,使点B 落在点B 1处,那么点B 1和B 的距离是☆cm .16.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点D 为对角线OB 的中点,反比例函数ky x=在第一象限内的图象经过点D ,且与AB ,BC 分别交于E ,F 两点,若四边形BEDF 的面积为9,则k 的值为☆.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17.(本题满分6分=3分+3分)用适当的方法解下列方程:(1)x 2-2x =0(2)2x 2-3x -1=018.(本题满分7分=3分+4分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1).(1)画出△ABC 绕点O 逆时针旋转90°后的△A 1B 1C 1(保留画图痕迹);(2)求线段BC 扫过的面积(结果保留π).九年级数学(第4页共6页)19.(本题满分9分=3分+6分)在一个不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,黄球有1个.(1)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(2)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小聪共摸6次小球(每次摸1个球,摸后放回)得22分,问小聪有哪几种摸法?20.(本题满分9分=5分+4分)已知直线y =-x +m +1与双曲线y =mx在第一象限交于点A ,B ,连接OA ,过点A 作AC ⊥x 轴于点C ,若S △AOC =3.(1)求两个函数解析式;(2)求直线y =-x +m +1在双曲线y =xm上方时x的取值范围.九年级数学(第5页共6页)21.(本题满分9分=4分+5分)在等腰Rt △ABC 中,∠ACB =90°,点D 为AB 的中点,E 为BC 边上一点,将线段ED 绕点E 按逆时针方向旋转90°得到EF ,连接DF ,AF .(1)如图1,若点E 与点C 重合,AF 与DC 相交于点O ,求证:BD =2DO .(2)如图2,若点G 为AF 的中点,连接DG .过点D 、F 作DN ⊥BC 于点N ,FM ⊥BC 于点M ,连结BF .若AC =BC =16,CE =2,求DG的长.22.(本题满分9分=4分+5分)已知x 1,x 2是关于x 的一元二次方程x 2+3x +k -3=0的两个实数根.(1)求k 的取值范围;(2)若x 12+2x 1+x 2+k =4,试求k 的值.23.(本题满分10分=4分+3分+3分)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD 交AD 的延长线于点E .(1)求证:∠BDC =∠A ;(2)若∠DCE =30°,DE =2.求:①AB 的长;②的长.九年级数学(第6页共6页)24.(本题满分13分=3分+5分+5分)如图1,抛物线y =ax 2+bx +c (a ≠0)与直线y =x +1相交于A (-1,0),C (4,5)两点,与x 轴交于点B (5,0).(1)则抛物线的解析式为☆;(2)如图2,点P 是抛物线上的一个动点(不与点A 、点C 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AC 于点E ,连接BC ,BE ,设点P 的横坐标为m .①当PE =2ED 时,求P 点坐标;②当点P 在抛物线上运动的过程中,存在点P 使得以点B ,E ,C 为顶点的等腰三角形,请求出此时m的值.九年级数学参考答案(第1页共4页)人教版2023-2024学年九年级下学期调研考试数学参考答案一、精心选一选,相信自己的判断!题号12345678910答案ABBDACCABD二、细心填一填,试试自己的身手!11.-612.3513.845p 14.(3,2)15.16.6三、用心做一做,显显自己的能力!17.解:(1)∵x 2-2x =0,∴x (x-2)=0,…………………………………1分x =0,x -2=0,∴x 1=0或x 2=2; (3)分(2)2x 2-3x -1=0,,…………………4分x 1,x 2…………………………………6分18.解:(1)△ABC 绕点O 逆时针旋转90°后的△A 1B 1C1如图所示;(无画图痕迹扣1分) (3)分(2)由旋转可得△OB 1C 1≌△OBC……4分∵OC 2=10,OB 2=2,∴OC,OB ……5分∴BC 扫过的面积=11OCC OBB S S -扇形扇形290360p - …………………………………6分=522p p -=2π.…………………………………7分九年级数学参考答案(第2页共4页)19.解:(1)画树状图如下:………………………2分P (两次都摸到红球)=21126=.…………………………………3分(2)设小聪摸到红球有x 次,摸到黄球有y 次,则摸到蓝球有(6-x -y )次,由题意得:5x +3y +(6-x -y )=22,即2x +y =8,∴y =8-2x ,……………4分∵x ,y ,(6-x -y )均为自然数,6-x -y =6-x -8+2x =x -2≥0,8-2x ≥0,∴2≤x ≤4…………………………………5分当x =2时,y =4,6-x -y =0;…………………………………6分当x =3时,y =2,6-x -y =1;…………………………………7分当x =4时,y =0,6-x -y =2.…………………………………8分小聪共有三种摸法:即摸到红球有2次,黄球有4次,蓝球有0次;红球有3次,黄球有2次,蓝球有1次;红球有4次,黄球有0次,蓝球有2次.……………9分20.解:(1)∵S △AOC =3,设A (a ,b ),∴21ab =3,ab =6,…………………………………1分∴m =ab =6,…………………………………2分m +1=7,…………………………………3分∴y =-x +7,y =6x.即两个函数解析式分别为y =-x +7,y =6x.…………………………………5分(2)联立y =-x +7,y =6x得x 2-7x +6=0.解得:x 1=1,x 2=6.………7分∴A 的坐标是(1,6),B 的坐标是(6,1),直线y =-x +m +1在双曲线y =xm上方时x 的取值范围是1<x <6.……………9分21.解:(1)证明:由旋转的性质得:CD =CF ,∠DCF =90°,∵△ABC 是等腰直角三角形,AD =BD ,∴∠ADO =90°,CD =BD =AD ,∴∠DCF =∠ADC ,在△ADO 和△FCO 中,∵AOD FOC ADO FCO AD FCìÐ=ÐïïÐ=Ðíï=ïî,∴△ADO ≌△FCO (AAS ),…………………………………3分∴DO =CO ,∴BD =CD =2DO .[注:证四边形ADFC 是平行四边形也正确]………………………4分九年级数学参考答案(第3页共4页)(2)∵DN ⊥BC ,FM ⊥BC ,∴∠DNE =∠EMF =90°,又∵∠NDE =∠MEF =90°-∠FEM ,ED =EF ,∴△DNE ≌△EMF (AAS ),∴DN =EM =12AC =12×16=8,∴NE =MF ,…………………………………6分又∵CE =2,∴BM =BC -ME -EC =16-8-2=6,…………………………………7分∵∠ABC =45°,∴BN =DN =8,∴NE =14-8=6,∴MF =MB =6,∴BF…………………………………8分∵点D 、G 分别是AB 、AF 的中点,∴DG =12BF…………………………………9分22.解:(1)∵一元二次方程x 2+3x +k -3=0有两个实数根,∴△=32-4(k -3)≥0,…………………………………1分∴9-4k +12≥0,-4k ≥-21,…………………………………3分∴k ≤214…………………………………4分(2)∵x 1,x 2是一元二次方程x 2+3x +k -3=0的两个实数根,∴x 12+3x 1+k -3=0,x 12+2x 1=3-k -x 1,…………………………………5分∵x 1+x 2=-3,x 1x 2=k -3,…………………………………6分且x 12+2x 1+x 2+k =4,∴3-k -x 1+x 2+k =4,x 2-x 1=1,………………………7分(x 2-x 1)2=1,(x 2+x 1)2-4x 1x 2=1,(-3)2-4(k -3)=1,∴9-4k +12=1,∴k =5.…………………………………9分23.解:(1)证明:连接OD ,∵CD 是⊙O 切线,∴∠ODC =90°,即∠ODB +∠BDC =90°,……………1分∵AB 为⊙O 的直径,∴∠ADB =90°,即∠ODB +∠ADO =90°,∴∠BDC =∠ADO ,……2分∵OA =OD ,∴∠ADO =∠A ,……………3分∴∠BDC =∠A .……………4分(2)①∵CE ⊥AE ,∴∠E =∠ADB =90°,∴DB ∥EC ,∴∠DCE =∠BDC ,……………5分∵∠BDC =∠A ,∴∠A =∠DCE ,在Rt △CDE 中,∠DCE =30°,DE =2,∴CD =2DE =4∴∠A =∠DCE =30°,∴AD =CD =4.…………………………………6分设AB =2R ,则BD =R ,∴(2R )2-R 2=42,R=AB =2R.……………7分②由①得∠BOD =2∠A =60°,R…………………………………8分则的长为=9.…………………………………10分九年级数学参考答案(第4页共4页)24.解:(1)抛物线的解析式为:y=-x2+4x+5;…………………………………3分(2)①∵点P的横坐标为m,∴点P的纵坐标为-m2+4m+5,则点E的纵坐标为m+1,………………………4分即P(m,-m2+4m+5),E(m,m+1),由题意,分以下两种情况:(ⅰ)当点P在点E的上方,即-1<m<4时,则PE=-m2+4m+5-(m+1)=-m2+3m+4,ED=m+1,∴-m2+3m+4=2(m+1),解得m=2或m=-1(不符题意,舍去),…………………………………5分则-m2+4m+5=-22+4×2+5=9,此时点P的坐标为P(2,9);……………6分(ⅱ)当点P在点E的下方,即m<-1或m>4时,则PE=m+1-(-m2+4m+5)=m2-3m-4,ED=|m+1|,∴m2-3m-4=2|m+1|,解得m=6或m=-1(不符题意,舍去),…………………………………7分则-m2+4m+5=-62+4×6+5=-7,此时点P的坐标为P(6,-7),∴当PE=2ED时,点P的坐标为P(2,9)或P(6,-7);…………………………………8分②∵B(5,0),C(4,5),E(m,m+1),如图,过C点作CH⊥x轴于点H,过C点作CG⊥PE于点G,∴BC2=26,BE2=(m-5)2+(m+1)2,CE2=2(m-4)2,…9分由等腰三角形的定义,分以下三种情况:(ⅰ)若BC=CE时,△BEC为等腰三角形,则BC2=CE2,即2(m-4)2=26,解得m=4或m=4;………………10分(ⅱ)当BC=BE时,△BEC为等腰三角形,则BC2=BE2,即(m-5)2+(m+1)2=26,解得m=0或m=4(此时点P与点C重合,不符题意,舍去);………………11分(ⅲ)当BE=CE时,△BEC为等腰三角形,则BE2=CE2,即(m-5)2+(m+1)2=2(m-4)2,解得m=34;…………………………………12分综上,m的值为4或4或0或34.…………………………………13分注意:1.按照评分标准分步评分,不得随意变更给分点;2.第17题至第24题的其它解法,只要思路清晰,解法正确,都应按步骤给予相应分数.。
北京二中教育集团2023—2024学年度第一学期初三数学期末模拟考试试卷
北京二中教育集团2023—2024学年度第一学期初三数学期末模拟考试试卷命题人:初三数学备课组审核人:初三数学备课组考查目标1.知识:人教版九年级上册《一元二次方程》、《二次函数》、《旋转》、《圆》、《概率》的全部内容.2.能力:数学运算能力,逻辑推理能力,阅读理解能力,实际应用能力,数形结合能力,分类讨论能力.A卷面成绩90% (满分90分)B过程性评价(满分10分)学业成绩总评=A+B(满分100分)考生须知1.本试卷分为第Ⅰ卷、第Ⅱ卷和答题卡,共16页;其中第Ⅰ卷2页,第Ⅱ卷6页,答题卡8页。
全卷共三大题,28道小题。
2.本试卷满分100分,考试时间120分钟。
3.在第Ⅰ卷、第Ⅱ卷指定位置和答题卡的密封线内准确填写班级、姓名、考号、座位号。
4.考试结束,将答题卡交回。
第Ⅰ卷(选择题共16分)一、选择题(共16分,每题2分,以下每题只有一个....正确的选项) 1.2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,下列航天图标是中心对称图形的是()A.B.C.D.班级姓名考号座位号密封线----------------------------------------------------------------------------------------------------------------------2.抛物线先向左平移2个单位,再向下平移1个单位长度,所得新 抛物线的解析式为( ) A . B . C . D .3.用配方法解方程时,原方程变形正确的是( ) A . B . C . D .4.下列语句所描述的事件是随机事件的是( ) A .经过任意两点画一条直线B .任意画一个五边形,其外角和为C .过平面内任意三个点画一个圆D .任意画一个平行四边形,是中心对称图形 5.已知点,、,在二次函数的图象上.若, 则与的大小关系是( ) A . B . C . D .6.刘徽在《九章算术注》中首创“割圆术”,利用圆的内接正多边形来确定 圆周率,开创了中国数学发展史上圆周率研究的新纪元.某同学在学习“割 圆术”的过程中,作了一个如图所示的圆内接正八边形.若的半径为1, 则这个圆内接正八边形的面积为( ) A . B .C .D .7.如图,将绕点逆时针旋转,旋转角为,得到, 这时点旋转后的对应点恰好在直线上,则下列结论不一定正确的是 ( )A .B .C .D .8.如果x =5是关于的一元二次方程的一个根,那么关于 的一元二次方程的解为( ) A .x 1=-4,x 2=2 B .x 1=-2,x 2=4 C .x 1=-1,x 2=3 D . x 1=-3,x 2=121y x =-+2(2)2y x =-++2(2)y x =--2(2)y x =-+2(2)2y x =--+2250x x --=2(1)6x -=2(2)9x -=2(1)6x +=2(2)9x +=360°1(A x 1)y 2(B x 2)y 224y x x =-++121x x >>1y 2y y 1!y 212y y =12y y >12y y <O !p 2p 4ABC D A (0180)a a °<<°ADE D B D BC ACD EAD Ð=ÐABC ADC Ð=ÐEAC a Ð=180EDC a Ð=°-x ()(4)x m x m n --+=x (1)(3)x m x m n +-+-=第Ⅱ卷(非选择题 共84分)二、填空题(共16分,每题2分)9.请你写出一个开口向上,且经过(1,0)的抛物线的解析式_______.10.抛物线的顶点坐标是_______.11.若是关于的方程的解,则的值为_______.12.若抛物线与轴的一个交点坐标为,则该抛物线的对称轴 为直线_______.13.如图,在中是直径,,,,那么的长 等于_______.第13题图第14题图14.如图,为的直径,,点为上一点,,则 图中阴影部分的面积为_______.(结果保留π)15.手卷是国画装裱中横幅的一种体式,以能握在手中顺序展开阅览得名,它主要由“引首”、“画心”、“拖尾”三部分组成(这三部分都是矩形 形状),分隔这三部分的其余部分统称为“隔水”.图中手卷长1000 cm , 宽40 cm ,引首和拖尾完全相同,其宽度都为100 cm ,若隔水的宽度为 x cm ,画心的面积为15200 cm 2,根据题意,可列方程是_______.2(2)1y x =--3x =x 26ax bx -=6a −2b +20232y ax bx =+x (3,0)-O !AB CD AB ^30BAC Ð=°2OD =DC AB O !4AB =C O !30ABC Ð=°16.某工厂用甲、乙两种原料制作,,三种型号的工艺品,三种型号 工艺品的重量及所含甲、乙两种原料的重量如下:工艺品型号含甲种原料的重量/kg 含乙种原料的重量/kg工艺品的重量/kg3 4 7 3 2 5235现要用甲、乙两种原料共31 kg ,制作5个工艺品,且每种型号至少 制作1个.(1)若31 kg 原料恰好全部用完,则制作型工艺品的个数为_______;(2)若使用甲种原料不超过13 kg ,同时使用乙种原料最多,则制作方案中,,三种型号工艺品的个数依次为_______.三、解答题(共68分,其中第17-21、25题每题5分,第22-24、26题每题 6分,第27-28题7分) 17.解下列方程:.18.根据江心洲地质水文条件量身打造的“新时代号”泥水平衡盾构机,是目前世界上最先进的盾构设备之一,被誉为“国之重器”.如图1,盾构 机核心部件——刀盘的形状是一个圆形.如图2,当机器暂停时,刀盘露 在地上部分的跨度AB =12米,拱高(弧的中点到弦的距离CD )3米,求 盾构机刀盘的半径.19.下面是小明设计的“过圆上一点作这个圆的切线”的尺规作图过程. 已知:⊙O 及圆上一点A .求作:直线AB ,使得AB 为⊙O 的切线,A 为切点. 小明的作法如下:① 连接OA 并延长到点C ;② 分别以点A ,C 为圆心,大于长为半径作弧,两弧交于点D(点D 在直线OA 上方);A B C A B C A A B C x (x +3)=2x +612AC密 封 线 -----------------------------------------------------------------------------------------------------------------------③ 以点D 为圆心,DA 长为半径作⊙D ;④ 连接CD 并延长,交⊙D 于点B ,作直线AB . 则直线AB 就是所求作的直线.根据小明设计的尺规作图过程,完成下列问题: (1)使用直尺和圆规,完成作图;(保留作图痕迹) (2)完成下面的证明. 证明:连接AD .∵ _______=AD ,∴ 点C 在⊙D 上,CB 是⊙D 的直径. ∴ _______=90°.(_______) ∴ AB ⊥_______. ∵ OA 是⊙O 的半径, ∴ AB 是⊙O 的切线.(_______) 20.如图,在平面直角坐标系xOy 中,△OAB 的顶点坐标分别为O (0,0),A (5,0), B (4,-3).(1)作出△OAB 关于原点O 成中心对称的图形△OA 1B 1(点A 与点A 1 对应),并写出点B 1的坐标;(2)将△OAB 绕点O 顺时针旋转90°得到△OA 2B 2,点B 旋转后的对应 点为B 2,画出旋转后的图形△OA 2B 2,并写出点B 2的坐标;(3)在(2)的条件下,求点B 经过的路径的长.21.已知关于x 的一元二次方程. (1)利用判别式判断方程实数根的情况;(2)若该方程只有一个根小于2,求m 的取值范围.BB2!x 2−(m −1)x −(3m +6)=0班级姓名 考号 座位号 密 封 线 ----------------------------------------------------------------------------------------------------------------------22.已知抛物线图象上部分点的横坐标x 与纵坐标y 的 对应值,如下表:x … -2 -1 0 1 2 3 … y…-5343…(1)求此抛物线的解析式,并画出其图象;(2)结合图象,直接写出不等式的解集;(3)结合图象,直接写出当时,y 的取值范围.23.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小明购买了“二十四节气”主题邮票,他将“立春”、 “清明”、“雨水”三张纪念邮票(除正面内容不同外,其余均相同)背 面朝上,洗匀放好.(1)小明从中随机抽取一张邮票是“立春”的概率是_______;(2)小明从中随机抽取一张邮票,记下内容后,正面向下放回,洗匀后 再从中随机抽取一张邮票.请用列举法求出小明两次抽取的邮票中 至少有一张是“雨水”的概率(这三张邮票依次分别用字母A ,B , C 表示).y =ax 2+bx +c (a ≠0)ax 2+bx +c <3x <224.已知:如图,在△ABC 中,D 是AB 边上一点,圆O 过D 、B 、C 三点, ∠DOC =2∠ACD .(1)求证:直线AC 是圆O 的切线; (2)若OD ⊥OC ,∠ACB =75°,圆O 的半径为4,求BC 的长.25.2023年4月16日,在世界泳联跳水世界杯首站比赛中,中国队共收获9金2银,位列奖牌榜第一.赛场上运动员优美的翻腾、漂亮的入水令人赞叹不已.在10米跳台跳水训练时,运动员起跳后在空中的运动路线 可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,从起跳到 入水的过程中,运动员的竖直高度y (单位:米)与水平距离x (单位: 米)近似满足函数关系. 某跳水运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x 与竖直高度y 的数据如下:水平距离x /m 0 0.2 0.4 0.6 0.8 1.6 2 竖直高度y /m10.0010.4510.6010.4510.005.201.00① 根据上述数据,直接写出该运动员竖直高度的最大值,并求出 满足的函数关系;② 运动员必须在距水面5 m 前完成规定的翻腾动作并调整好入水 姿势,否则就会出现失误.在这次训练中,测得运动员在空中 调整好入水姿势时,水平距离为1.6 m ,判断此次跳水会不会出现失误,并说明理由;(2)第二次训练时,该运动员的竖直高度y 与水平距离x 近似满足函数 关系.如图,记该运动员第一次训练的 入水点为A ,若运动员在区域AB 内(含A ,B )入水能达到压水花 的要求,则第二次训练_______达到要求(填“能”或“不能”).y =a (x −h )2+k (a <0)y =a (x −h )2+k (a <0)y =−4.16(x −0.38)2+10.60图226.在平面直角坐标系xOy 中,点,在抛物线上. (1)当,时,比较m 与n 的大小,并说明理由;(2)若存在,使得,求的取值范围.27.如图1,在Rt △ABC 中,∠ACB =90°,∠ABC =60°,D 为AB 边上一点,DE ⊥AB 于D ,连接BE ,P 为BE 中点.(1)连接PD 、PC ,判断PD 与PC 的数量关系,并直接写出∠DPC 的 度数;(2)如图2,将△ADE 绕点A 顺时针旋转α度(0°<α<180°). ① 请你依据题意补全图形; ② 在旋转过程中,∠DPC 的度数是否发生改变?若不变,写出它的 度数,并证明;若变化,请说明理由.28.对于平面内任意一点P ,过P 作PM ⊥l 1于点M ,PN ⊥l 2于点N ,连接MN ,则称MN 的长度为点P 关于l 1和l 2的垂点距离.特别地,点P 在两相交 直线l 1、l 2的交点时,记垂点距离为0.(1)已知A (1,2),则点A 关于x 轴和y 轴的垂点距离为_______; (2)若点P 在直线上运动,则点P 关于x 轴和y 轴的垂点距离 的最小值为________;(3)若点P 在以Q (0,1)为圆心,半径为1的⊙Q 上运动,求点P 关于 x 轴和直线的垂点距离h 的取值范围.A (x 0,m )B (x 0+2,n )y =x 2−2bx +1b =5x 0=4−3<x 0<1m >n >1b y =34x +3y =3x +3图1密 封 线 -----------------------------------------------------------------------------------------------------------------------。
2022-2023学年第一学期九年级数学期末数学模拟试题(03)
2022-2023学年第一学期九年级数学期末数学模拟试题(03)(考试时间:100分钟试卷满分:120分)考生注意:1.本试卷26道试题,满分120分,考试时间100分钟.2.本试卷分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号码等相关信息.一.选择题(共10小题每题3分,满分30分)1.一组数据0、﹣2、3、2、1的极差是()A.2B.3C.4D.52.Rt△ABC中,∠C=90°,AC=1,BC=2,sin A的值为()A.B.C.D.23.一元二次方程x2+2x=﹣1的根的情况是()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根4.下列实际问题中的y与x之间的函数表达式是二次函数的是()A.正方体集装箱的体积ym3,棱长xmB.高为14m的圆柱形储油罐的体积ym3,底面圆半径xmC.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤D.小莉驾车以108km/h的速度从南京出发到上海,行驶xh,距上海ykm5.在地球上同一地点,不同质量的物体从同一高度同时下落,如果除地球引力外不考虑其他外力的作用,那么它们的落地时间相同.物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=gt2.其中g取值为9.8m/s2.小莉进行自由落体实验,她从某建筑物抛下一个小球,经过4s后落地,则该建筑物的高度约为()A.98m B.78.4m C.49m D.36.2m6.如图,在△ABC中,∠BAC=45°,BD、CE分别是AC、AB边上的高,连接DE,若DE=2,则BC的长为()A.B.C.D.27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.1个B.2个C.3个D.4个8.如图,D,E分别是△ABC的边AB,AC上的点,=,DE∥BC,若△ADE的面积为6,则△ABC 的面积等于()A.12B.18C.24D.549.如图,点A、B、C都在⊙O上,若∠BOC=64°,则∠BAC的度数为()A.64°B.32°C.26°D.23°10.如图,△ABC的两条中线BE、CD交于点O,则下列结论不正确的是()A.=B.=C.S△DOE:S△BOC=1:2D.△ADE∽△ABC二.填空题(共8小题,每题4分,满分24分)11.如果,那么锐角A的度数为.12.已知2a=3b,其中b≠0,则=.13.科学家发现,蝴蝶的身体长度与它展开的双翅的长度之比是黄金比,已知蝴蝶展开的双翅的长度是4cm,则蝴蝶身体的长度约为cm(精确到0.1).14.抛掷一枚质地均匀的正方体骰子1次(骰子的六个面分别标有数字1,2,3,4,5,6),朝上的点数为6的概率为.15.如图,圆锥的母线长l为5cm,侧面积为10πcm2,则圆锥的底面圆半径r=cm.16.将二次函数y=﹣2(x+2)2的图象向右平移2个单位得到二次函数的表达式为.17.二次函数y=x2+bx的图象如图所示,对称轴为x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<6的范围内无解,则t的取值范围是.18.如图,AB是⊙O的直径,CD是⊙O的弦,∠CAB=42°,则∠D的度数是°.三.解答题(共8小题,满分66分)19.(1)计算:tan260°+4sin30℃os45°;(2)解方程:(x+3)2=2x+14.20.如图,在矩形ABCD中,AB:BC=1:2,点E在AD上,BE与对角线AC交于点F.(1)求证:△AEF∽△CBF;(2)若BE⊥AC,求AE:ED.21.在三张形状、大小、质地均相同的卡片上各写一个数字,分别为1、2、﹣1.现将三张卡片放入一只不透明的盒子中,搅匀后任意抽出一张,记下数字后放回,搅匀后再任意抽出一张记下数字.(1)第一次抽到写有负数的卡片的概率是;(2)用画树状图或列表等方法求两次抽出的卡片上数字都为正数的概率.22.如图,某旅游景区观光路线是从山脚下的地面A处出发,沿坡度为1:的斜坡AB步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.(1)求山坡B距离山脚下地面的高度;(2)求山顶D距离山脚下地面的高度;(精确到1m)(本题可参考的数据:sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)23.某工厂加工一种产品的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润y元与降价x元之间的函数关系;(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)当定价应设在什么范围之间时,可使工厂每天的利润要不低于9750元?24.如图1,C、D为半圆O上的两点,且点D是弧BC的中点.连结AC并延长,与BD的延长线相交于点E.(1)求证:CD=ED;(2)连结AD与OC、BC分别交于点F、H.①若CF=CH,如图2,求证:CH=CE;②若圆的半径为2,BD=1,如图3,求AC的值.25.已知正方形ABCD的边长为1,点E是射线BC上的动点,以AE为直角边在直线BC的上方作等腰直角三角形AEF,∠AEF=90°,设BE=m.(1)如图1,若点E在线段BC上运动,EF交CD于点P,连结CF.①当m=时,求线段CF的长;②设CP=n,请求出n与m的关系式;(2)如图2,AF交CD于点Q,在△PQE中,设边QE上的高为h,求h的最大值.26.如图,点A在抛物线上,过A作x轴的平行线交抛物线于另一点B,点C为抛物线上的任一点.(1)若点A的横坐标为﹣4,且△ABC为直角三角形时,求C点的坐标;(2)当A点变化时,是否总存在C点,使得△ABC是直角三角形,若是总存在,请说明理由;若不是总存在,请直接写出点A纵坐标m的取值范围;(3)若△ABC为直角三角形,AB边上的高为h,①h的大小是否改变,若改变,请说明理由;不改变,请求出高的长度;②若将抛物线的关系式由换成y=ax2(a≠0),其余条件不发生改变,试猜想h与a的关系,并证明.答案与解析一.选择题(共10小题每题3分,满分30分)1.一组数据0、﹣2、3、2、1的极差是()A.2B.3C.4D.5【分析】根据极差的概念求解.【解答】解:极差为:3﹣(﹣2)=5.故选:D.【点评】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.2.Rt△ABC中,∠C=90°,AC=1,BC=2,sin A的值为()A.B.C.D.2【分析】直接利用勾股定理得出AB的长,再利用锐角三角三角函数关系得出答案.【解答】解:∵Rt△ABC中,∠C=90°,AC=1,BC=2,∴AB=,∴sin A===.故选:C.【点评】此题主要考查了锐角三角函数的定义,正确把握相关定义是解题关键.3.一元二次方程x2+2x=﹣1的根的情况是()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根【分析】先把方程化为一般式,再计算根的判别式的值,然后根据根的判别式的意义判断方程根的情况.【解答】解:方程化为x2+2x+1=0,∵Δ=22﹣4×1=0,∴方程有两个相等的实数根.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系,当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.上面的结论反过来也成立.4.下列实际问题中的y与x之间的函数表达式是二次函数的是()A.正方体集装箱的体积ym3,棱长xmB.高为14m的圆柱形储油罐的体积ym3,底面圆半径xmC.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤D.小莉驾车以108km/h的速度从南京出发到上海,行驶xh,距上海ykm【分析】根据二次函数的定义逐项判断即可.【解答】解:A.正方体集装箱的体积ym3,棱长xm,则y=x3,故不是二次函数;B.高为14m的圆柱形储油罐的体积ym3,底面圆半径xm,则y=14πx2,故是二次函数;C.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤,则y=,故不是二次函数;D.小莉驾车以108km/h的速度从南京出发到上海,行驶xh,距上海ykm,则y=南京与上海之间的距离﹣108x,故不是二次函数.故选:B.【点评】本题考查二次函数的实际应用,熟练掌握二次函数的定义是解题关键.5.在地球上同一地点,不同质量的物体从同一高度同时下落,如果除地球引力外不考虑其他外力的作用,那么它们的落地时间相同.物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=gt2.其中g取值为9.8m/s2.小莉进行自由落体实验,她从某建筑物抛下一个小球,经过4s后落地,则该建筑物的高度约为()A.98m B.78.4m C.49m D.36.2m【分析】把t=4代入可得答案.【解答】解:把t=4代入得,h=9.8×42=78.4m.故选:B.【点评】本题考查二次函数的实际应用,根据题意把t=4代入是解题关键6.如图,在△ABC中,∠BAC=45°,BD、CE分别是AC、AB边上的高,连接DE,若DE=2,则BC的长为()A.B.C.D.2【分析】根据等腰直角三角形的性质得到=,=,进而得到=,得到△ADE∽△ABC,根据相似三角形的性质列出比例式,计算即可.【解答】解:在Rt△ADB中,∠BAC=45°,则=,同理:=,∴=,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴==,∵DE=2,∴BC=2,故选:D.【点评】本题考查的是相似三角形的判定与性质、等腰直角三角形的性质,证明△ADE∽△ABC是解题的关键.7.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.1个B.2个C.3个D.4个【分析】由抛物线开口方向,对称轴以及抛物线与y轴的交点,即可判断①;由对称轴改善得到b=﹣2a 代入a﹣b+c<0中得3a+c<0,即可判断②;由x=﹣1时对应的函数值y<0,可得出a﹣b+c<0,得到a+c<b,x=1时,y>0,可得出a+b+c>0,得到|a+c|<|b|,即可得到(a+c)2﹣b2<0,即可判断③;由对称轴为直线x=1,即x=1时,y有最大值,即可判断④.【解答】解:①∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴右侧,∴b>0∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,所以①正确;②当x=﹣1时,y<0,∴a﹣b+c<0,∵﹣=1,∴b=﹣2a,把b=﹣2a代入a﹣b+c<0中得3a+c<0,所以②错误;③当x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,当x=1时,y>0,∴a+b+c>0,∴a+c>﹣b,∴|a+c|<|b|∴(a+c)2<b2,即(a+c)2﹣b2<0,所以③正确;④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最大值为a+b+c,∴a+b+c≥am2+mb+c,即a+b≥m(am+b),所以④错误.故选:B.【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:Δ=b2﹣4ac>0时,抛物线与x轴有2个交点;Δ=b2﹣4ac=0时,抛物线与x轴有1个交点;Δ=b2﹣4ac<0时,抛物线与x轴没有交点.8.如图,D,E分别是△ABC的边AB,AC上的点,=,DE∥BC,若△ADE的面积为6,则△ABC 的面积等于()A.12B.18C.24D.54【分析】利用DE∥BC判定△ADE∽△ABC,再利用相似三角形的面积比等于相似比的平方,列出关系式即可求得结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC.∴.∵=,∴=.∴S△ABC=9S△ADE=54.故选:D.【点评】本题主要考查了相似三角形的判定与性质,利用相似三角形的判定方法得出△ADE∽△ABC是解题的关键.9.如图,点A、B、C都在⊙O上,若∠BOC=64°,则∠BAC的度数为()A.64°B.32°C.26°D.23°【分析】利用圆周角定理求解即可.【解答】解:∵∠BAC=BOC,∠BOC=64°,∴∠BAC=32°,故选:B.【点评】本题考查圆周角定理,解题的关键是理解圆周角定理,属于中考常考题型.10.如图,△ABC的两条中线BE、CD交于点O,则下列结论不正确的是()A.=B.=C.S△DOE:S△BOC=1:2D.△ADE∽△ABC【分析】根据中线BE、CD交于点O,可得DE是△ABC的中位线,根据三角形的中位线定理得出DE∥BC,DE=BC,根据平行线的性质得出相似,根据相似三角形的性质求出即可.【解答】解:∵BE和CD是△ABC的中线,∴DE是△ABC的中位线,∴DE=BC,DE∥BC,∴=,故A选项正确;∵DE∥BC,∴=,故B选项正确;∵DE∥BC,∴△DOE∽△COB,∴=()2=()2=,故C选项错误;∵DE∥BC,∴△ADE∽△ABC,故D选项正确;故选:C.【点评】本题主要考查了三角形中位线定理以及相似三角形的判定与性质,解题时注意:三角形的中位线平行于第三边,并且等于第三边的一半.二.填空题(共8小题,每题4分,满分24分)11.如果,那么锐角A的度数为30°.【分析】根据30°角的余弦值等于解答.【解答】解:∵cos A=,∴锐角A的度数为30°.故答案为:30°.【点评】本题考查了特殊角的三角函数值,熟记30°、45°、60°的三角函数值是解题的关键.12.已知2a=3b,其中b≠0,则=.【分析】根据比例的性质等式两边都除以2b,即可得出答案.【解答】解:∵2a=3b,b≠0,∴除以2b,得=,故答案为:.【点评】本题考查了比例的性质,能选择适当的方法求解是解此题的关键,注意:如果ad=bc,那么=.13.科学家发现,蝴蝶的身体长度与它展开的双翅的长度之比是黄金比,已知蝴蝶展开的双翅的长度是4cm,则蝴蝶身体的长度约为 2.5cm(精确到0.1).【分析】设蝴蝶身体的长度为xcm,根据黄金比为列式计算即可.【解答】解:设蝴蝶身体的长度为xcm,由题意得,x:4=,解得,x=2﹣2≈2.5,故答案为:2.5.【点评】本题考查的是黄金分割的概念和性质,掌握黄金比为是解题的关键.14.抛掷一枚质地均匀的正方体骰子1次(骰子的六个面分别标有数字1,2,3,4,5,6),朝上的点数为6的概率为.【分析】让朝上一面的数字是6的情况数除以总情况数6即为所求的概率.【解答】解:∵抛掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,其中朝上一面的数字为6的只有1种,∴朝上一面的数字为6的概率为,故答案为:.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.15.如图,圆锥的母线长l为5cm,侧面积为10πcm2,则圆锥的底面圆半径r=2cm.【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.【解答】解:∵圆锥的母线长是5cm,侧面积是10πcm2,∴圆锥的侧面展开扇形的弧长为:l===4π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r===2cm,故答案为:2.【点评】本题考查了圆锥的计算,解题的关键是正确地进行圆锥与扇形的转化.16.将二次函数y=﹣2(x+2)2的图象向右平移2个单位得到二次函数的表达式为y=﹣2x2.【分析】直接利用二次函数的平移规律进而得出答案.【解答】解:将二次函数y=﹣2(x+2)2的图象向右平移2个单位得到二次函数的表达式为:y=﹣2x2.故答案为:y=﹣2x2.【点评】此题主要考查了二次函数图象与几何变换,正确掌握平移移规律是解题关键.17.二次函数y=x2+bx的图象如图所示,对称轴为x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<6的范围内无解,则t的取值范围是t<﹣4或t≥12.【分析】根据抛物线的对称轴方程可求出抛物线的解析式,要使关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<6的范围内无解,只需直线y=t与抛物线y=x2+bx在﹣1<x<6的范围内没有交点,只需结合图象就可解决问题.【解答】解:∵抛物线y=x2+bx的对称轴为x=2,∴x=﹣=2,∴b=﹣4,∴抛物线的解析式为y=x2﹣4x.当x=﹣1时,y=5;当x=2时y=﹣4;当x=6时y=12.结合图象可得:当t<﹣4或t≥12时,直线y=t与抛物线y=x2﹣4x在﹣1<x<6的范围内没有交点,即关于x的一元二次方程x2﹣4x﹣t=0(t为实数)在﹣1<x<6的范围内无解.故答案为t<﹣4或t≥12.【点评】本题主要考查了抛物线的性质、抛物线上点的坐标特征等知识,运用数形结合的思想是解决本题的关键.18.如图,AB是⊙O的直径,CD是⊙O的弦,∠CAB=42°,则∠D的度数是48°.【分析】根据直径所对的圆周角是直角推出∠ACB=90°,再结合图形由直角三角形的性质得到∠B=90°﹣∠CAB=48°,进而根据同弧所对的圆周角相等推出∠D=∠B=48°.【解答】解:连接CB.∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=42°,∴∠B=90°﹣∠CAB=48°,∴∠D=∠B=48°.故答案为:48.【点评】本题考查圆周角定理,解题的关键是结合图形根据圆周角定理推出∠ACB=90°及∠D=∠B,注意运用数形结合的思想方法.三.解答题(共8小题,满分66分)19.(1)计算:tan260°+4sin30℃os45°;(2)解方程:(x+3)2=2x+14.【分析】(1)先代入三角函数值,再计算乘方和乘法即可;(2)先将方程整理成一般式,再利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.【解答】解:(1)原式=()2+4××=3+;(2)整理成一般式,得:x2+4x﹣5=0,∴(x+5)(x﹣1)=0,则x+5=0或x﹣1=0,解得x1=﹣5,x2=1.【点评】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.20.如图,在矩形ABCD中,AB:BC=1:2,点E在AD上,BE与对角线AC交于点F.(1)求证:△AEF∽△CBF;(2)若BE⊥AC,求AE:ED.【分析】(1)根据矩形的性质得到AD∥BC,然后根据相似三角形的判断方法可判断△AEF∽△CBF;(2)设AB=x,则BC=2x,利用矩形的性质得到AD=BC=2x,∠BAD=∠ABC=90°,接着证明△ABE ∽△BCA,利用相似比得到AE=x,则DE=x,从而可计算出AE:DE.【解答】(1)证明:∵四边形ABCD为矩形,∴AD∥BC,∴△AEF∽△CBF;(2)解:设AB=x,则BC=2x,∵四边形ABCD为矩形,∴AD=BC=2x,∠BAD=∠ABC=90°,∵BE⊥AC,∴∠AFB=90°,∵∠ABF+∠BAF=90°,∠BAC+∠ACB=90°,∴∠ABF=∠ACB,∵∠BAE=∠ABC,∠ABE=∠BCA,∴△ABE∽△BCA,∴=,即=,∴AE=x,∴DE=AD﹣AE=2x﹣x=x,∴AE:DE=x:x=1:3.【点评】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;同时利用相似三角形的性质进行几何计算.也考查了矩形的性质.21.在三张形状、大小、质地均相同的卡片上各写一个数字,分别为1、2、﹣1.现将三张卡片放入一只不透明的盒子中,搅匀后任意抽出一张,记下数字后放回,搅匀后再任意抽出一张记下数字.(1)第一次抽到写有负数的卡片的概率是;(2)用画树状图或列表等方法求两次抽出的卡片上数字都为正数的概率.【分析】(1)用负数的个数除以数字的总个数即可;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)第一次抽到写有负数的卡片的概率是,故答案为:;(2)画树状图为:共有9种等可能的结果数,其中两次抽出的卡片上数字都为正数的有4种结果,所以两次抽出的卡片上数字都为正数的概率为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.22.如图,某旅游景区观光路线是从山脚下的地面A处出发,沿坡度为1:的斜坡AB步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.(1)求山坡B距离山脚下地面的高度;(2)求山顶D距离山脚下地面的高度;(精确到1m)(本题可参考的数据:sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)【分析】(1)过点C作CE⊥DG于E,过B作BF⊥DG于F,延长CB交AG于点H,由含30°角的直角三角形的性质即可得出答案;(2)由锐角三角函数定义求出DE,即可解决问题.【解答】解:(1)如图,过点C作CE⊥DG于E,过B作BF⊥DG于F,延长CB交AG于点H,则CH⊥AG,由题意可知,∠DCE=19°30′,CD=180m,BC=EF=30m,∵i=1:=tanα=,∴α=30°,在Rt△ABH中,α=30°,AB=50m,∴BH=AB=25(m),答:山坡B距离山脚下地面的高度为25m;(2)由(1)得:FG=BH=25m,在Rt△DCE中,∠DCE=19°30′,CD=180m,∴DE=sin∠DCE•CD≈0.33×180=59.4(m),∴DG=DE+EF+FG≈59.4+30+25=114.4≈114(m),答:山顶D距离山脚下地面的的高度约为114m.【点评】本题考查了解直角三角形的应用—仰角俯角问题、坡度坡角问题,正确作出辅助线构造直角三角形是解题的关键.23.某工厂加工一种产品的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润y元与降价x元之间的函数关系;(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)当定价应设在什么范围之间时,可使工厂每天的利润要不低于9750元?【分析】(1)根据利润=销售量×(单价﹣成本),列出函数关系式即可;(2)根据(1)求得的函数关系式进一步利用配方法求出答案即可;(3)首先由(2)中的函数得出降价x元时,每天要获得9750元的利润,进一步利用函数的性质得出答案.【解答】解:(1)由题意得:y=(48﹣30﹣x)(500+50x)=﹣50x2+400x+9000,答:工厂每天的利润y元与降价x元之间的函数关系为y=﹣50x2+400x+9000;(2)由(1)得:y=﹣50x2+400x+9000=﹣50(x﹣4)2+9800,∵﹣50<0,∴x=4时,y最大为9800,即当降价4元时,工厂每天的利润最大,最大为9800元;(3)﹣50x2+400x+9000=9750,解得:x1=3,x2=5,48﹣3=45,48﹣5=43,∴定价应为43﹣45元之间(含43元和45元).【点评】此题考查二次函数的实际运用,解题的关键是求得函数解析式,进一步利用函数的性质解决问题.24.如图1,C、D为半圆O上的两点,且点D是弧BC的中点.连结AC并延长,与BD的延长线相交于点E.(1)求证:CD=ED;(2)连结AD与OC、BC分别交于点F、H.①若CF=CH,如图2,求证:CH=CE;②若圆的半径为2,BD=1,如图3,求AC的值.【分析】(1)如图1中,连接BC.想办法证明∠E=∠DCE即可;(2)①如图2中,根据等腰三角形的性质得到∠CFH=∠CHF,根据三角形外角的性质得到∠ACO=∠OBC,求得∠OCB=∠OBC,得到∠ACO=∠BCO=∠ACB=45°,推出AC=BC,根据全等三角形的性质即可得到结论;②连接OD交BC于G.设OG=x,则DG=2﹣x.利用勾股定理构建方程求解即可.【解答】(1)证明:如图1中,连接BC.∵点D是弧BC的中点.∴=,∴∠DCB=∠DBC,∵AB是直径,∴∠ACB=∠BCE=90°,∴∠E+∠DBC=90°,∠ECD+∠DCB=90°,∴∠E=∠DCE,∴CD=ED;(2)①证明:如图2中,∵CF=CH,∴∠CFH=∠CHF,∵∠CFH=∠CAF+∠ACF,∠CHA=∠BAH+∠ABH,∵∠CAD=∠BAH,∴∠ACO=∠OBC,∵OC=OB,∴∠OCB=∠OBC,∴∠ACO=∠BCO=∠ACB=45°,∴∠CAB=∠ABC=45°,∴AC=BC,∵∠ACH=∠BCE=90°,∠CAH=∠CBE,∴△ACH≌△BCE(ASA),∴CH=CE;②解:如图3中,连接OD交BC于G.设OG=x,则DG=2﹣x.∵=,∴∠COD=∠BOD,∵OC=OB,∴OD⊥BC,CG=BG,在Rt△OCG和Rt△BGD中,则有22﹣x2=12﹣(2﹣x)2,∴x=,即OG=,∵OA=OB,∴OG是△ABC的中位线,∴OG=AC,∴AC=.【点评】本题属于圆综合题,考查了圆周角定理,弧,圆心角,弦之间的关系,全等三角形的判定和性质,三角形的中位线,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.25.已知正方形ABCD的边长为1,点E是射线BC上的动点,以AE为直角边在直线BC的上方作等腰直角三角形AEF,∠AEF=90°,设BE=m.(1)如图1,若点E在线段BC上运动,EF交CD于点P,连结CF.①当m=时,求线段CF的长;②设CP=n,请求出n与m的关系式;(2)如图2,AF交CD于点Q,在△PQE中,设边QE上的高为h,求h的最大值.【分析】(1)①过点F作FG⊥BC交BC的延长线于M,利用AAS证明△ABE≌△EGF,得FM=BE=,EM=AB=BC,则CM=BE,从而求出CF的长;②利用△BAE∽△CEP,得,代入即可;(2)将△ADQ绕点A顺时针旋转90°得△ABG,首先由∠ABG=∠ABE=90°,得B,G,E三点共线,再利用SAS证明△GAE≌△EAQ,得∠AEG=∠AEQ,则有∠QEP=∠CEP,可得h=CP,利用②中结论得h=﹣m2+m=﹣(m﹣)2+.【解答】解:(1)①如图,过点F作FG⊥BC交BC的延长线于M,在等腰直角三角形AEF中,∠AEF=90°,AE=FE,在正方形ABCD中,∠B=90°,∴∠BAE+∠AEB=∠FEM+∠AEB,∴∠BAE=∠FEM,又∵∠B=∠FME,∴△ABE≌△EGF(AAS),∴FM=BE=,EM=AB=BC,∴CM=BE=∴FC==;②∵∠BAE=∠FEC,∠B=∠ECP=90°,∴△BAE∽△CEP,∴,即,∴CP=m﹣m2,即n=m﹣m2;(2)如图,将△ADQ绕点A顺时针旋转90°得△ABG,则AG=AQ,∠GAB=∠QAD,GB=DQ,∵∠EAF=45°,∴∠BAE+∠QAD=∠BAE+∠GAB=90°﹣45°=45°,即∠GAE=∠EAF=45°,∵∠ABG=∠ABE=90°,∴B,G,E三点共线,又∵AE=AE,∴△GAE≌△EAQ(SAS),∴∠AEG=∠AEQ,∴∠QEP=∠CEP,∴h=CP,∴h=﹣m2+m=﹣(m﹣)2+,即当m=时,h有最大值为.【点评】本题是四边形综合题,主要考查了正方形的性质,等腰直角三角形的性质,角平分线的判定,全等三角形的判定与性质,二次函数的性质等知识,作辅助线构造全等三角形证明∠QEP=∠CEF是解题的关键.26.如图,点A在抛物线上,过A作x轴的平行线交抛物线于另一点B,点C为抛物线上的任一点.(1)若点A的横坐标为﹣4,且△ABC为直角三角形时,求C点的坐标;(2)当A点变化时,是否总存在C点,使得△ABC是直角三角形,若是总存在,请说明理由;若不是总存在,请直接写出点A纵坐标m的取值范围;(3)若△ABC为直角三角形,AB边上的高为h,①h的大小是否改变,若改变,请说明理由;不改变,请求出高的长度;②若将抛物线的关系式由换成y=ax2(a≠0),其余条件不发生改变,试猜想h与a的关系,并证明.【分析】(1)设C(t,t2),求出A、B点的坐标,利用勾股定理求t的值即可;(2)设A(﹣,m),C(t,t2),则B(,m),由勾股定理求得t2=2m﹣4,则当2m﹣4≥0时,此时△ABC是直角三角形;(3)①由(2)可得h=m﹣(m﹣2)=2;②设A(﹣m,am2),C(t,at2),则B(m,am2),由勾股定理求得t2=,可确定点A(﹣m,am2),C(t,),则h=.【解答】解:(1)∵点A的横坐标为﹣4,∴A(﹣4,8),∵AB∥x轴,∴B(4,8),设C(t,t2),∵△ABC为直角三角形,∴AB2=AC2+BC2,即(t+4)2+(t2﹣8)2+(4﹣t)2+(t2﹣8)2=64,∴t2=16(舍)或t2=12,∴C(2,6)或C(﹣2,6);(2)不是总存在,理由如下:设A(﹣,m),C(t,t2),则B(,m),∵AB2=AC2+BC2,即(t+)2+(t2﹣m)2+(﹣t)2+(t2﹣m)2=8m,∴t2=2m(舍)或t2=2m﹣4,当2m﹣4≥0时,m≥2,此时△ABC是直角三角形;(3)①h的大小不改变,理由如下:由(2)可知,C(,m﹣2)或C(﹣,m﹣2),∴C点的纵坐标为m﹣2,∵AB边上的高为h,∴h=m﹣(m﹣2)=2;②设A(﹣m,am2),C(t,at2),则B(m,am2),∵AB2=AC2+BC2,即(t+m)2+(at2﹣am2)2+(m﹣t)2+(at2﹣am2)2=4m2,∴t2=m2(舍)或t2=,∴A(﹣m,am2),C(t,),∴h=am2﹣=.【点评】本题是二次函数的综合题,熟练掌握二次函数的图象及性质,灵活应用勾股定理,准确计算是解题的关键.。
四川省成都市武侯区2024届九年级上学期期末考试数学试卷(含答案)
2023~2024学年度上期期末考试试题九年级数学注意事项:1.全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。
2.考生使用答题卡作答。
3.在作答前,考生务必将自己的姓名、考生号和座位号填写在答题卡规定的地方。
考试结束,监考人员只将答题卡收回。
4.选择题部分请使用2B铅笔填涂;非选择题部分请使用0.5毫米黑色签字笔书写,字体工整、笔迹清楚。
5.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
6.保持答题卡清洁,不得折叠、污染、破损等。
A卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分)1.某几何体的三视图如图所示,则这个几何体是()A.圆锥B.正方体C.圆柱D.球2.若方程是关于的一元二次方程,则“□”中可以是()A.B.C.D.3.已知四条线段成比例,则下列结论正确的是()A.B.C.D.4.若表示平行四边形,表示矩形,表示菱形,表示正方形,它们之间的关系用下列图形来表示,正确的是()A.B.C.D.5.若关于的方程有实数根,则的取值范围是()A.B.C.D.6.如图,在平面直角坐标系中,矩形的顶点坐标分别是,.已知矩形与矩形位似,位似中心是原点,且矩形的面积等于矩形的面积的,则点的坐标是()A.B.C.或D.或7.王丽同学在一次用频率估计概率的试验中,统计了某一结果出现的频率,绘出的统计图如图所示,则该试验可能是()A.关于“从装有2张红桃和1张黑桃的扑克牌盒子中,随机摸出一张(这些扑克牌除花色外都相同),这张扑克牌是黑桃”的试验B.关于“50个同学中,有2个同学生日相同”的试验C.关于“抛一枚质地均匀的硬币,正面朝上”的试验D.关于“掷一枚质地均匀的正方体骰子,出现的点数是1”的试验8.已知反比例函数的图象如图所示,关于下列说法:①常数;②的值随值的增大而减小;③若点为轴上一点,点为反比例函数图象上一点,则;④若点在反比例函数的图象上,则点也在该反比例函数的图象上.其中说法正确的是()A.①②③B.③④C.①④D.②③④第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.将方程化成一元二次方程的一般形式为_________.10.一个口袋中装有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有69次摸到红球,则可估计这个口袋中红球的数量是_________.11.如图,小强自制了一个小孔成像的纸筒装置,其中纸筒的长度为,他准备了一支长为的蜡烛,想要得到高度为的像,蜡烛应放在水平距离纸筒点处_________的地方.12.在平面直角坐标系中,一次函数的图象与反比例函数的图象如图所示,则当时,自变量的取值范围是_________.13.如图,先将一张正方形纸向上对折、再向左对折,然后沿着图中的虚线剪开,得到①②两部分,将①展开后得到的平面图形是_________.三、解答题(本大题共5个小题,共48分)14.解方程(本小题满分12分,每题6分)(1);(2).15.(本小题满分8分)如图,在正方形中,延长至点,使得,连接交于点.(1)试探究的形状;(2)求的度数.16.(本小题满分8分)2023年9月21日,“天宫课堂”第四课在中国空间站开讲,“太空教师”景海鹏、朱杨柱、桂海潮为广大青少年带来一场精彩的太空科普课,航天员们演示了“球形火焰”“奇妙乒乓球”“动量守恒”和“又见陀螺”四个实验.本次授课活动分别在北京、内蒙古阿拉善盟、陕西延安、安徽桐城及浙江宁波设置了5个地面课堂。
2023—-2024学年上学期九年级期末考试数学试卷
准考证号:__________________姓名:_________(在此卷上答题无效)2023-2024学年第一学期初中毕业班期末考试数学一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确)1.掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件中,是确定性事件的是A.向上一面的点数是2B.向上一面的点数是奇数C.向上一面的点数小于3D.向上一面的点数小于72.下列方程中,有两个不相等的实数根的是A.x2=0B.x2-3x-1=0C.x2-2x+5=0D.x2+1=03.如图1,△ABC内接于⊙O,直径AD交BC于点P,连接OB.下列角中,等于12∠AOB的是A.∠OABB.∠ACBC.∠CADD.∠OPB4.关于y=(x-2)2-1(x为任意实数)的函数值,下列说法正确的是A.最小值是-1B.最小值是2C.最大值是-1D.最大值是25.某学校图书馆2023年年底有图书5万册,预计到2025年年底增加到8万册,设图书数量的年平均增长率为x,可列方程A.5(1+x)=8B.5(1+2x)=8C.5(1+x)2=8D.5(1+2x)2=86.如图2,直线l是正方形ABCD的一条对称轴,l与AB,CD分别交于点M,N.AN,BC的延长线相交于点P,连接BN.下列三角形中,与△NCP成中心对称的是A.△NCBB.△BMNC.△AMND.△NDA数学试题第1页(共6页)7.某个正六边形螺帽需要拧4圈才能拧紧,小梧用扳手的卡口卡住螺帽,通过转动扳手的手柄来转动螺帽(如图3所示).以此方式把这个螺帽拧紧,他一共需要转动扳手的次数是A.4B.16C.24D.328.某航空公司对某型号飞机进行着陆后的滑行测试.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是=−32t2+60t,则t的取值范围是A.0≤t≤600B.20≤t≤40C.0≤t≤40D.0≤t≤20二、填空题(本大题有8小题,每小题4分,共32分)9.不透明袋子中只装有2个红球和1个黄球,这些球除颜色外无其他差别.从袋子中随机摸出1个球,摸出红球的概率是_________.10.抛物线y=3(x-1)2+4的对称轴是__________.11.已知x=1是方程x2+mx-3=0的根,则m的值为____________.12.四边形ABCD内接于⊙O,E为CD延长线上一点,如图4所示,则图中与∠ADE相等的角是_________.13.如图5,在△ABC中,AB=AC=5,BC=6,AD是△ABC的角平分线.把△ABD绕点A逆时针旋转90°得到△AEF,点B的对应点是点E,则点D与点F之间的距离是___________.14.在平面直角坐标系xOy中,ABCD的对角线交于点O.若点A的坐标为(-2,3),则点C的坐标为_________.15.为了改良某种农作物的基因,培育更加优良的品种,某研究团队开展试验,对该种农作物的种子进行辐射,使其基因发生某种变异.表一记录了截至目前的试验数据.表一累计获得试验成功的种子数(单位:粒)1468101214累计试验种子数(单位:千粒)15810.512.514.516.5该团队共需要30粒基因发生该种变异的种子,请根据表一的数据,合理估计他们还需要准备用以辐射的种子数(单位:千粒):_________.16.有四组一元二次方程:①x2-4x+3=0和3x2-4x+1=0;②x2-x-6=0和6x2+x-1=0;③x2-4=0和4x2-1=0;④4x2-13x+3=0和3x2-13x+4=0.这四组方程具有共同特征,我们把具有这种特征的一组一元二次方程中的一个称为另一个的“相关方程”.请写出一个有两个不相等实数根但没有“相关方程”的一元二次方程:______________.数学试题第2页(共6页)三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程x2-5x+2=0.18.(本题满分8分)如图6,四边形ABCD是平行四边形,AC=AD,AE⊥BC,DF⊥AC,垂足分别为E,F.证明AE=DF.19.(本题满分8分)先化简,再求值:(−1)÷2−2m+1,其中=2+1.20.(本题满分8分)如图7,AB与⊙O相切于点A,OB交⊙O于点C,OC=8,AC的长为2π,求BC 的长.数学试题第3页(共6页)某公交公司有一栋4层的立体停车场,第一层供车辆进出使用,第二至四层停车.每层的层高为6m,横向排列30个车位,每个车位宽为3m,各车位有相应号码,如:201表示二层第1个车位.第二至四层每层各有一个升降台,分别在211,316,421,为便于升降台垂直升降,升降台正下方各层对应的车位都留空.每个升降台前方有可在轨道上滑行的转运板(以第三层为例,如图9所示).该系统取车的工作流程如下(以取停在311的车子为例):①转运板接收指令,从升降台316前空载滑行至311前;②转运板进311,托起车,载车出311;③转运板载车滑行至316前;④转运板进316,放车,空载出316,停在316前;⑤升降台垂直送车至一层,系统完成取车.停车位301…停车位311…升降台316…留空321…停车位330转运板滑行区转运板滑行区图9停车场第三层平面示意图升降台升与降的速度相同,转运板空载时的滑行速度为1m/s,载车时的滑行速度是升降台升降速度的2倍.(1)若第四层升降台送车下降的同时,转运板接收指令从421前往401取车,升降台回到第四层40s后转运板恰好载着401的车滑行至升降台前,求转运板载车时的滑行速度;(说明:送至一层的车驶离升降台的时间、转运板进出车位所用的时间均忽略不计)(2)在(1)的条件下,若该系统显示目前第三层没有车辆停放,现该系统将某辆车随机停放在第三层的停车位上,取该车时,升降台已在316待命,求系统按上述工作流程在1分钟内完成取该车的概率.【22题得分情况】正方形的顶点T在某抛物线上,称该正方形为该抛物线的“T悬正方形”.若直线l:y =x+t与“T”是正方形“以T为端点的一边相交,且点T到直线l的距离为2(2-t),则称直线l为该正方形的“T悬割线”.已知抛物线M:y=-(x-1)2+m2-2m+4,其中12≤m<1,A(m,3),B(4-3m,3),以AB为边作正方形ABCD(点D在点A的下方).(1)证明:正方形ABCD是抛物线M的“A悬正方形”;(2)判断正方形ABCD是否还可能是抛物线M的“B悬正方形”,并说明理由;(3)若直线l是正方形ABCD的“A悬割线”,现将抛物线M及正方形ABCD进行相同的平移,是否存在直线l为平移后正方形的“C悬割线”的情形?若存在,请探究抛物线M经过了怎样的平移;若不存在,请说明理由.【23题得分情况】24.(本题满分12分)四边形ABCD是菱形,点O为对角线交点,AD边的垂直平分线交线段OD于点P (P不与O重合),连接PC,以点P为圆心,PC长为半径的圆交直线BC于点E,直线AE与直线CD交于点F,如图10所示.(1)当∠ABC=60°时,求证:直线AB与⊙P相切;(2)当AO=2,AF2+EF2=16时,求∠ABC的度数;(3)在菱形ABCD的边长与内角发生变化的过程中,若点C与E不重合,请探究∠AFC与∠CAF的数量关系.25.(本题满分14分)请阅读下面关于运用跨学科类比进行的一次研究活动的材料:[背景]小梧跟同学提到他家附近在规划开一个超市,有同学问道:“你家附近不是已经有一个A超市了吗?再开一个能吸引顾客吗?“这个问题引起了大家对超市的吸引力展开研究的兴趣. [过程]为了简化问题,同学们首先以“在楼层数相同、同样商品的品质和价格相同、售货服务的品质也大致相同的情况下,影响超市吸引力的主要因素“为主题对该市居民展开随机调查.结果显示:超市的占地面积、住处与超市的距离这两个因素的影响程度显著大于其他因素.大家根据调查进行了总结:①可以把“平均每周到超市购物次数p”作为超市吸引力指标;②占地面积越大吸引力越大;③距离越大吸引力越小.在此次调查所收集到的居民平均每周到各超市购物次数的基础上,同学们进一步调查了相应超市的占地面积s(单位:m2)及其与居民住处的距离r(单位:m),并对p,s,r之间的关系进行研究.一开始,同学们猜想p可能是的正比例函数,但经过检验,发现与实际数据相差较大.这时,小梧提出:“我联想到牛顿万有引力定律,这个定律揭示了两个物体之间的引力大小与各个物体的质量成正比,而与它们之间距离的平方成反比,可以表示为F=B122(G是引力常数),我们是不是可以作个类比,试一下看p与2的关系如何?”.按他的建议,同学们利用调查所得的数据在平面直角坐标系中绘制了p与2对应关系的散点图,如图11所示.根据阅读材料思考:(1)观察图11中散点的分布规律,请用一种函数来合理估计p与2的对应关系,直接写出它的一般形式;(2)为了清晰表示位置,同学们选A超市为原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,规定一个单位长度代表1m长,则小悟家的坐标为(400,200).A超市的占地面积为2000m2,规划中的B超市在A超市的正东方向.根据(1)中的对应关系,解决下列问题:①若B超市与A超市距离600m~800m,且对小悟家的吸引力与A超市相同,求B超市占地面积的范围;②小梧家在东西向的百花巷,百花巷横向排列着较为密集的居民楼.现规划B超市开在距A超市300m处,且占地面积最大为490m2,要想与A超市竞争百花巷的居民,该规划是否合适?请说明理由.【25题得分情况】。
九年级上学期期末考试数学试卷附答案
第一学期期末试卷初四数学一、选择题(在下列各题的四个备选答案中,只有一个是符合题意的,请将正确答案前的字母写在答题纸上;本题共32分,每小题4分)1. 已知⊙O 的直径为3cm ,点P 到圆心O 的距离OP =2cm ,则点PA. 在⊙O 外B. 在⊙O 上C. 在⊙O 内D. 不能确定 2. 已知△ABC 中,∠C=90°,AC=6,BC=8, 则cosB 的值是A .0.6B .0.75C .0.8D .34 3.如图,△ABC 中,点 M 、N 分别在两边AB 、AC 上,MN ∥BC ,则下列比例式中,不正确的是A .B . C. D.4. 下列图形中,既是中心对称图形又是轴对称图形的是A . B. C. D.5. 已知⊙O 1、⊙O 2的半径分别是1cm 、4cm ,O 1O 2=10cm ,则⊙O 1和⊙O 2的位置关系是A .外离B .外切C .内切D .相交6. 某二次函数y=ax 2+bx+c 的图象如图所示,则下列结论正确的是A. a>0, b>0, c>0B. a>0, b>0, c<0C. a>0, b<0, c>0D. a>0, b<0, c<0 7.下列命题中,正确的是A .平面上三个点确定一个圆B .等弧所对的圆周角相等C .平分弦的直径垂直于这条弦D .与某圆一条半径垂直的直线是该圆的切线8. 把抛物线y =-x 2+4x -3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是A .y =-(x +3)2-2B .y =-(x +1)2-1ACN M BC .y =-x 2+x -5D .前三个答案都不正确二、填空题(本题共16分, 每小题4分)9.已知两个相似三角形面积的比是2∶1,则它们周长的比 _____ . 10.在反比例函数y =x1k 中,当x >0时,y 随 x 的增大而增大,则k 的取值范围是_________.11. 水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是_________;甲队以2∶0战胜乙队的概率是________. 12.已知⊙O 的直径AB 为6cm ,弦CD 与AB 相交,夹角为30°,交点M 恰好为AB 的一个三等分点,则CD 的长为 _________ cm .三、解答题(本题共30分, 每小题5分)13. 计算:cos 245°-2tan45°+tan30°-3sin60°.14. 已知正方形MNPQ 内接于△ABC△ABC 的面积为9cm 2,BC =6cm ,求该正方形的边长.15. 某商场准备改善原有自动楼梯的安全性能,把倾斜角由原来的30°减至25°(如图所示),已知原楼梯坡面AB 的长为12米,调整后的楼梯所占地面CD 有多长?(结果精确到0.1米;参考数据:sin25°≈0.42,cos25°≈0.91,t an25°≈0.47)16.已知:△ABC 中,∠A 是锐角,b 、c 分别是∠B 、∠C 的对边. 求证:△ABC 的面积S △ABC =21bcsinA .17. 如图,△ABC 内接于⊙O ,弦AC 交直径BD 于点E ,AG ⊥BD 于点G ,延长AG 交BC 于点F . 求证:AB 2=BF·BC .AM QBNPCABC· D E F G O18. 已知二次函数 y =ax 2-x +25的图象经过点(-3, 1). (1)求 a 的值;(2)判断此函数的图象与x 轴是否相交?如果相交,请求出交点坐标; (3)画出这个函数的图象.(不要求列对应数值表,但要求尽可能画准确)四、解答题(本题共20分, 每小题5分)19. 如图,在由小正方形组成的12×10的网格中,点O 、M 和四边形ABCD 的顶点都在格点上.(1)画出与四边形ABCD 关于直线CD 对称的图形;(2)平移四边形ABCD ,使其顶点B 与点M 重合,画出平移后的图形; (3)把四边形ABCD 绕点O 逆时针旋转90°,画出旋转后的图形.20. 口袋里有 5枚除颜色外都相同的棋子,其中 3枚是红色的,其余为黑色. (1)从口袋中随机摸出一枚棋子,摸到黑色棋子的概率是_______ ;(2)从口袋中一次摸出两枚棋子,求颜色不同的概率.(需写出“列表”或画“树状图”的过程)21. 已知函数y 1=-31x 2 和反比例函数y 2的图象有一个交点是 A (a ,-1).(1)求函数y 2的解析式;(2)在同一直角坐标系中,画出函数y 1和y 2的图象草图;A B D C O M· ·· · · ·(3)借助图象回答:当自变量x 在什么范围内取值时,对于x 的同一个值,都有y 1<y 2 ?22. 工厂有一批长3dm 、宽2dm 的矩形铁片,为了利用这批材料,在每一块上裁下一个最大的圆铁片⊙O 1之后(如图所示),再在剩余铁片上裁下一个充分大的圆铁片⊙O 2.(1)求⊙O 1、⊙O 2的半径r 1、r 2的长;(2)能否在剩余的铁片上再裁出一个与⊙O 2 同样大小的圆铁片?为什么?五、解答题(本题共22分, 第23、24题各7分,第25题8分)23.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交AC 、BC 于点M 、N ,在AC 的延长线上取点P ,使∠CBP =21∠A . (1)判断直线BP 与⊙O 的位置关系,并证明你的结论; (2)若⊙O 的半径为1,tan ∠CBP =0.5,求BC 和BP 的长.24. 已知:如图,正方形纸片ABCD 的边长是4,点M 、N 分别在两边AB 和CD 上(其中点N 不与点C 重合),沿直线MN 折叠该纸片,点B 恰好落在AD 边上点E 处.(1)设AE =x ,四边形AMND 的面积为 S ,求 S 关于x 的函数解析式,并指明该函数的定义域;(2)当AM 为何值时,四边形AMND 的面积最大?最大值是多少? (3)点M 能是AB 边上任意一点吗?请求出AMCDABPC N M O ·25. 在直角坐标系xOy 中,已知某二次函数的图象经过A (-4,0)、B (0,-3),与x 轴的正半轴相交于点C ,若△AOB ∽△BOC (相似比不为1). (1)求这个二次函数的解析式; (2)求△ABC 的外接圆半径r ;(3)在线段AC 上是否存在点M (m ,0),使得以线段BM 为直径的圆与线段AB 交于N点,且以点O 、A 、N 为顶点的三角形是等腰三角形?若存在,求出m 的值;若不存在,请说明理由.考试评卷参考一、 ACCB DABB 二、 9.2:1 10. k< -1 11.21, 4112. 35三、13. 原式= 2)22(-2+33-3×23 =21-2 +33-23 ……………………………………4分= -3+33……………………………………………………5分 14. 作AE ⊥BC 于E ,交MQ 于F.由题意,21BC ×AE=9cm 2 , BC=6cm . ∴AE=3cm.1分 设MQ= xcm , ∵MQ ∥BC ,∴△AMQ ∽△ABC. 2分AB N E P C∴AEAF BCMQ =. ……………………3分又∵EF=MN=MQ ,∴AF=3-x. ∴3x-36x =. ……………………………………4分 解得 x=2.答:正方形的边长是2cm. …………………………5分 15. 由题意,在Rt △ABC 中,AC=21AB=6(米), …………………1分又∵在Rt △ACD 中,∠D=25°,CDAC =tan ∠D, ……………………………3分∴CD=︒tan256≈47.06≈12.8(米).答:调整后的楼梯所占地面CD 长约为12.8米. ……………………5分 16. 证明:作CD ⊥AB 于D ,则S △ABC =21AB×CD.2分 ∵ 不论点D 落在射线AB 的什么位置, 在Rt △ACD 中,都有CD=ACsinA. 4分 又∵AC=b ,AB=c , ∴ S △ABC =21AB×ACsinA =21bcsinA. …………5分17. 证明:延长AF ,交⊙O 于H. ∵直径BD ⊥AH ,∴AB ⌒ = BH ⌒ . ……………………2分 ∴∠C=∠BAF. ………………………3分 在△ABF 和△CBA 中,∵∠BAF =∠C ,∠ABF=∠CBA ,∴△ABF ∽△CBA. …………………………………………4分∴ABBFCB AB =,即AB 2=BF ×BC. …………………………………………5分 证明2:连结AD , ∵BD 是直径,∴∠BAG+∠DAG=90°. ……………………1分∵AG⊥BD,∴∠DAG+∠D=90°. ∴∠BAF =∠BAG =∠D. ……………………2分 又∵∠C =∠D ,∴∠BAF=∠C. ………………………3分 …… 18. ⑴把点(-3,1)代入,AD BC HE G O FAD BC E G O F得 9a+3+25=1, ∴a = -21. ⑵ 相交 ……………………………………………2分 由 -21x 2-x+25=0, ……………………………3分 得 x= - 1±6.∴ 交点坐标是(- 1±6,0). ……………………………4分 ⑶ 酌情给分 ……………………………………………5分19. 给第⑴小题分配1分,第⑵、⑶小题各分配2分.20. ⑴ 0.4 ……………………………………………2分 ⑵ 0.6 ……………………………………………4分 列表(或画树状图)正确 ……………………………………5分 21. ⑴把点A (a ,- 1)代入y 1= -2x 31,得 –1= -a 31,∴ a=3. ……………………………………………1分 设y 2=x k,把点A (3,- 1)代入,得 k=–3, ∴ y 2=–x3.……………………………………2分⑵画图; ……………………………………3分⑶由图象知:当x<0, 或x>3时,y 1<y 2. ……………………………………5分22. ⑴如图,矩形ABCD 中,AB= 2r 1=2dm ,即r 1=1dm. ………………………………1分 BC=3dm ,⊙O 2应与⊙O 1及BC 、CD 都相切.连结O 1 O 2,过O 1作直线O 1E ∥AB ,过O 2作直线O 2E ∥BC ,则O 1E ⊥O 2E. 在Rt △O 1 O 2E 中,O 1 O 2=r 1+ r 2,O 1E= r 1– r 2,O 2E=BC –(r 1+ r 2).由 O 1 O 22= O 1E 2+ O 2E 2,即(1+ r 2)2 = (1– r 2)2+(2– r 2)2.解得,r 2= 4±23. 又∵r 2<2,y A DB CO 1 E O 2∴r 1=1dm , r 2=(4–23)dm. ………………3分⑵不能. …………………………………………4分 ∵r 2=(4–23)> 4–2×1.75=21(dm), 即r 2>21dm.,又∵CD=2dm , ∴CD<4 r 2,故不能再裁出所要求的圆铁片. …………………………………5分23. ⑴相切. …………………………………………1分 证明:连结AN ,∵AB 是直径, ∴∠ANB=90°.∵AB=AC ,∴∠BAN=21∠A=∠CBP .又∵∠BAN+∠ABN=180°-∠ANB= 90°, ∴∠CBP+∠ABN=90°,即AB ⊥BP .∵AB 是⊙O 的直径,∴直线BP 与⊙O 相切. …………………………………………3分⑵∵在Rt △ABN 中,AB=2,tan ∠BAN= tan ∠CBP=0.5, 可求得,BN=52,∴BC=54. …………………………………………4分作CD ⊥BP 于D ,则CD ∥AB ,ABCDAP CP =. 在Rt △BCD 中,易求得CD=54,BD=58. …………………………………5分 代入上式,得 2CP CP +=52.∴CP=34. …………………………………………6分 ∴DP=1516CD CP 22=-.∴BP=BD+DP=58+1516=38. …………………………………………7分24. ⑴依题意,点B 和E 关于MN 对称,则ME=MB=4-AM.再由AM 2+AE 2=ME 2=(4-AM)2,得AM=2-2x 81. ……………………1分作MF ⊥DN 于F ,则MF=AB ,且∠BMF=90°. ∵MN ⊥BE ,∴∠ABE= 90°-∠BMN.又∵∠FMN =∠BMF -∠BMN=90°-∠BMN , ∴∠FMN=∠ABE. ∴Rt △FMN ≌Rt △ABE.∴FN=AE=x ,DN=DF+FN=AM+x=2-2x 81+x. ………………………2分 ∴S=21(AM+DN)×AD=(2-2x 81+2x )×4 = -2x 21+2x+8.……………………………3分 其中,0≤x <4. ………………………………4分⑵∵S= -2x 21+2x+8= -21(x-2)2+10,∴当x=2时,S 最大=10; …………………………………………5分 此时,AM=2-81×22=1.5 ………………………………………6分 答:当AM=1.5时,四边形AMND 的面积最大,为10.⑶不能,0<AM ≤2. …………………………………………7分25. ⑴∵△AOB ∽△BOC (相似比不为1),∴OAOBOB OC =. 又∵OA=4, OB=3, ∴OC=32×41=49. ∴点C(49, 0). …………………1分 设图象经过A 、B 、C 三点的函数解析式是y=ax 2+bx+c,则c= -3,且⎪⎩⎪⎨⎧=++=+-0.c b 49a 1681,0c 4b 16a 2分 即⎩⎨⎧=+=-16.12b 27a ,34b 16a解得,a=31, b=127. ∴这个函数的解析式是y =31x 2+1273分 ⑵∵△AOB ∽△BOC (相似比不为1), ∴∠BAO=∠CBO.又∵∠ABO+ ∠BAO =90°,∴∠ABC=∠ABO+∠CBO=∠ABO+∠BAO=90°. ………………4分 ∴AC 是△ABC 外接圆的直径. ∴ r =21AC=21×[49-(-4)]=825. ………………5分 ⑶∵点N 在以BM 为直径的圆上,∴ ∠MNB=90°. ……………………6分 ①. 当AN=ON 时,点N 在OA 的中垂线上, ∴点N 1是AB 的中点,M 1是AC 的中点. ∴AM 1= r =825,点M 1(-87, 0),即m 1= -87. ………………7分 ②. 当AN=OA 时,Rt △AM 2N 2≌Rt △ABO ,∴AM 2=AB=5,点M 2(1, 0),即m 2=1.③. 当ON=OA 时,点N 显然不能在线段AB 上. 综上,符合题意的点M (m ,0)存在,有两解: m= -87,或1. ……………………8分。
2022~2023学年九年级数学上学期期末考试卷-人教版(含答案)
2022~2023学年九年级数学上学期期末考试卷-人教版(含答案)本试卷共8页.总分120分,考试时间120分钟. 注意事项:1.仔细审题,工整作答,保持卷面整洁. 2.考生完成试卷后,务必从头到尾认真检查一遍.一、选择题.(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点(,3)a -关于原点的对称点是(2,3),则a 的值为( ) A .2-B .2C .3-D .32.抛物线223y x x =-+-与y 轴的交点坐标为( ) A .(0,3)B .(0,3)-C .(3,0)D .(3,0)-3.图1是某几何体的三视图,该几何体是( )A .长方体B .正方体C .球D .圆柱4.在Rt ABC △中,90C ∠=︒,5AB =,3BC =,则sin A 的值为( ) A .35B .45C .34D .435.如图2,在ABC △中,DE BC ∥,且23AD AB =.若6DE =,则BC 的长为( )A .8B .9C .12D .156.在如图3所示的44⨯正方形方格中,选取一个白色的小正方形涂灰,使图中阴影部分成为一个中心对称图形,这样的涂法有( )A .0种B .1种C .2种D .3种7.小明解方程2280x x --=的过程如图4所示,开始出现错误..的是( )A .第一步B .第二步C .第三步D .第四步8.不透明布袋中有3个白球,若干个黄球,这些球除颜色外无其他差别.从袋子中随机取出1个球,如果取到白球的概率最大,那么布袋中的黄球可能..有( ) A .2个B .3个C .4个D .4个以上9.已知点11(,)A x y ,22(,)B x y 在反比例函数2k y x+=的图象上,且当120x x <<时,12y y <,则k 的取值范围是( ) A .2k >-B .2k ≥-C .2k <-D .2k ≤-10.已知在矩形ABCD 中,3AB =,6BC =,若以AD 为直径作圆,则与这个圆相切的矩形ABCD 的边共有( ) A .0条B .1条C .2条D .3条11.从地面竖直向上抛出一小球,小球的高度h (米)与运动时间t (秒)之间的解析式是2530(06)h t t t =-+≤≤,则小球到达最高高度时,运动的时间是( )A .1秒B .2秒C .3秒D .4秒12.下列说法正确的是( ) A .阳光下林荫道上的树影是中心投影B .相似图形一定是位似图形C .关于x 的方程220x kx --=有实数根D .三点确定一个圆属于必然事件13.如图5,矩形ABCD 在平面直角坐标系中,点A ,D 分别在反比例函数k y x =和3y x=-的图象上,点B ,C 在x 轴上,若4ABCD S =矩形,则k 的值为( )A .12B .7C .12-D .7-14.如图6,四边形ABCD 内接于O ,135ABC =∠︒,4AC =,则O 的半径为( )A .4B .22C .23D .4215.如图7,在ABC △中,8AB AC ==,6BC =,点P 从点B 出发以每秒1个单位长度的速度向点A 运动,同时点Q 从点C 出发以每秒2个单位长度的速度向点B 运动.当以B ,P ,Q 为顶点的三角形与ABC △相似时,运动时间为( )A .2411秒 B .95秒 C .2411秒或95秒 D .以上均不对16.已知抛物线2()1y x a a =--+-(a 为常数),则下列判断正确的是( ) ①当12x -<<时,y 随x 的增大而增大,则a 的取值范围为2a ≥; ②无论a 为何值,该抛物线的顶点始终在一条直线上 A .两个都对B .两个都错C .只有①对D .只有②对二、填空题.(本大题有3个小题,每小题有2个空,每空2分,共12分.把答案写在题中横线上) 17.如图8,已知AB 是O 的直径,AB CD ⊥于点E ,120COD =∠︒.(1)BAD ∠的度数为_____________.(2)若23CD =AB 的长为_____________. 18.已知一个矩形的周长为56cm .(1)当该矩形的面积为2180cm 时,求矩形的长.设矩形的长为cm x ,则根据题意可列方程为__________________________;(2)该矩形的面积_____________.(填“能”或“不能”)为2200cm .19.如图9,已知在ABC △中,5AB AC ==,8BC =,点P 在边BC 上(点P 与点B ,C 不重合),APF B ∠=∠,射线PF 与边AC 交于点F ,过点A 作BC 的平行线,交射线PF 于点Q .(1)若2BP =,则CF 的长为_____________;(2)当AFQ △是等腰三角形时,BP 的长为_____________.三、解答题.(本大题共7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(每小题4分,共计8分) 按要求完成下列各小题.(1)解方程:2(23)5(23)x x -=-;(2)计算:22sin 30cos 30︒+︒.21.(本小题满分9分)如图10,为测量一座山峰CD 的高度,将此山的某侧山坡划分为AB 和BC 两段,每一段山坡近似是“直”的,测得坡长800AB =米,200BC =米,坡面AB 的坡度为1:3坡面BC 的坡度为1:1.过点B 作BE CD ⊥于点E .(1)求点B 到AD 的高度;(2)求山峰的高度CD .2 1.41≈3 1.73≈)22.(本小题满分9分)小明和小亮相约乘坐地铁到“市图书馆”站集合,此站有A ,B ,C ,D 四个出站口,选择每个出站口出站的机会是相同的.(1)小明到“市图书馆”站下车恰好从D 口出站的概率是____________;(2)请用列表法或画树状图法求小明和小亮到“市图书馆”站下车都从D 口出站的概率.23.(本小题满分9分)如图11,已知点(,2)A a ,(1,)B b -是直线26y x =-与反比例函数my x=图象的交点,且该直线与y 轴交于点C .(1)求该反比例函数的解析式;(2)连接OA ,OB ,求AOB △的面积; (3)根据图象,直接..写出不等式26mx x-≥的解集.如图12,已知BE ,CF 分别是ABC △的边AC ,AB 上的高. (1)求证:AE ABAF AC=; (2)连接EF .若1cos 2A =,试判断AEF S △与ABC S △之间的数量关系,并说明理由.25.(本小题满分10分)如图13-1,已知60ABC ∠=︒,点O 在射线BC 上,且4OB =.以点O 为圆心,(0)r r >为半径作O ,交直线BC 于点D ,E . (1)当O 与ABC ∠只有两个交点时,r 的取值范围是__________________;(2)当22r =BA 绕点B 按顺时针方向旋转(0180)αα︒<<︒. ①当α为多少时,射线BA 与O 相切;②如图13-2,射线BA 与O 交于M ,N 两点,若MN OB =,求阴影部分的面积.一小球M从斜坡OA上的点O处抛出,球的抛出路线是抛物线的一部分,建立如图14所示的平面直角坐标系,斜坡可以用一次函数12y x刻画.若小球到达最高点的坐标为(4,8).(1)求抛物线的函数解析式(不写自变量x的取值范围);(2)小球在斜坡上的落点A的垂直高度为___________米;(3)若要在斜坡OA上的点B处竖直立一个高4米的广告牌,点B的横坐标为2,请判断小球M能否飞过这个广告牌?通过计算说明理由;(4)求小球M在飞行的过程中离斜坡OA的最大高度.参考答案评分说明:1.本答案仅供参考,若考生答案与本答案不一致,只要正确,同样得分. 2.若答案不正确,但解题过程正确,可酌情给分. 一、(1-10题每题3分,11-16题每题2分,共计42分) 题号 1 2 3 4 5678910111213141516答案ABDABBDACDCCDBCA二、(每小题有2个空,每空2分,共计12分) 17.(1)30︒;(2)418.(1)1568202x x -⎛⎫⎪⎝=⎭(或(28)180x x -=);(2)不能 19.(1)125;(2)5或25819.(2)【精思博考:①当AF FQ =时,易证四边形ABPQ 是平行四边形,APQ ABC ∽△△,5PQ AB ∴==,AQ BP =,AQ PQ AC BC =,258BP ∴=; ②当AQ AF =时,易证BAP CPF ∽△△,AB BPCP CF∴=,5AB BP ∴==; ③当AQ QF =时,QAF QFA ∠=∠.QFA PFC ∠=∠,QAF C ∠=∠,PFC C ∴∠=∠.C B APQ ∠=∠=∠,APQ PFC ∴∠=∠,AP AC ∴∥,与已知矛盾,舍去】三、20.解:(1)方程的解为132x =,24x =;(4分)(2)原式1=.(4分)21.解:(1)过点B 作BF AD ⊥于点F . 设BF x =米.坡面AB 的坡度为1:3,30A ∴∠=︒,14002BF AB ∴==(米),即点B 到AD 的高度BF 为400米;(5分) (2)易得四边形BFDE 为矩形,ED BF ∴=.坡面BC 的坡度为1∶1,222BE CE BC ∴===(米),1002400541CD CE ED ∴=+=≈(米),即山峰的高度CD 为541米.(4分) 22.解:(1)14;(3分) (2)树状图如图,共有16种等可能的结果,小明和小亮到“市图书馆”站下车都从D 口出站的结果有1种,∴小明和小亮到“市图书馆”站下车都从D 口出站的概率为116.(6分)23.解:(1)点(,2)A a 在直线26y x =-上,226a ∴=-,解得4a =.点(4,2)A 在反比例函数m y x =的图象上,24m ∴=,解得8m =,即反比例函数的解析式为8y x=;(4分) (2)直线26y x =-与y 轴交于点C ,当0x =时,6y =-,∴点C 的坐标为(0,6)-,6OC ∴=.1161641522AOB OBC AOC S S S =+=⨯⨯+⨯⨯=△△△;(3分) (3)不等式26mx x-≥的解集为10x -≤<或4x ≥.(2分) 24.解:(1)证明:BE ,CF 分别是ABC △的边AC ,AB 上的高,90AEB AFC ∴∠=∠=︒.又BAE CAF ∠=∠,ABE ACF ∴∽△△,AE ABAF AC∴=;(4分) (2)AEF S △与ABC S △之间的数量关系为14AEF ABC S S =△△; 理由:由(1)得AE AB AF AC =,AE AFAB AC∴=.又EAF BAC ∠=∠,AEF ABC ∴∽△△. 1cos 2AF A AC ==,21124AEF ABC S S ∆∆⎛⎫∴== ⎪⎝⎭,AEF S ∴△与ABC S △之间的数量关系为14AEF ABC S S =△△.(5分) 25.解:(1)023r <<4r >;(2分) (2)①如图1,当射线BA 在射线BC 的上方与O 相切时,设切点为P ,连接OP .4OB =,22OP =2sin 2OP B OB ∴==,45B ∴∠=︒,604515α∴=︒-︒=︒. 如图2,当射线BA 在射线BC 的下方与O 相切时,设切点为P ,连接OP .同理可得6045105α=︒+︒=︒. 综上所述,当α为15︒或105︒时,射线BA 与O 相切;(4分)②如图3,连接OM ,ON ,过点O 作OQ MN ⊥于点Q ,122MQ NQ MN ∴===. 22OM =2sin 2MQ MOQ OM ∴∠==,45MOQ ∴∠=︒,290MON MOQ ∴∠=∠=︒, 2290(22)1(22)243602S ππ∴=-⨯=-阴影.(4分)26.解:(1)小球到达最高点的坐标为(4,8),∴设抛物线的解析式为2(4)8y a x =-+,把(0,0)代入2(4)8y a x =-+,解得12a =-,∴抛物线的解析式为21(4)82y x =--+(或2142y x x =-+);(3分) (2)72;(2分) (3)能;理由:当2x =时,112y x ==,21(4)862y x =--+=.614->, ∴小球M 能飞过这个广告牌;(3分)(4)小球M 在飞行的过程中离斜坡OA 的高度22111749(4)822228h x x x ⎛⎫=--+-=--+ ⎪⎝⎭,∴小球M 在飞行的过程中离斜坡OA 的最大高度为498.(4分)。
江苏省徐州市2023-2024学年九年级上学期期末数学试题(含答案)
2023-2024学年度第一学期期末抽测九年级数学试题一、选择题(每题3分,共24分)1.若⊙O的半径为8cm,点P到圆心的距离为7cm,则点P与⊙O的位置关系()A.P在⊙O内B.P在⊙O上C.P在⊙O外D.无法确定2.若△ABC∽△A’B’C’,且相似比为1:2,则△ABC与△A’B’C’的面积比为()A.1:2 B.1:4 C.2:1 D.4:13.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据为A样本的每个数据都加2,则A,B两个样本具有相同的()A.平均数B.众数C.中位数D.方差4.若关于x的一元二次方程x²-3x+c=0有两个相等的实数根,则实数c的值为()A.―94B.94C.-9 D.95.在Rt△ABC中,∠C=90°,AC=4,BC=5,那么sinB的值是()A.43B.34C.45D.356.将函数y=x²的图象向右平移1个单位长度,所得抛物线对应的函数表达式为()A.y=(x-1)² B.y=x²-1 C.y=(x+1)² D.y=x²+17.二次函数y=ax²+bx+c的图象如图所示,下列结论错误的是()A.y有最小值B.当-1<x<2时,y<0 C.a+b+c>0 D.当x<-1时,y随x的增大而减小8.如图,A,B,C为圆形纸片圆周上的点,AC为直径,将该纸片沿AB折叠,使AB与AC交于点D,若BC 的度数为35°,则AD的度数为()A.108° B.110° C.120° D.145°二、填空题:(每题4分,共32分)9.若x2=y3,则xy=.10.两次抛掷同一枚质地均匀的硬币,均出现正面向上的概率是.11.二次函数y=(x-2)²+1的图象的顶点坐标是.12.《周髀算经》中记载了“偃矩以望高”的方法.“矩”指两条边呈直角的曲尺ABC,“偃矩以望高”的意思是用仰立放的“矩”可测量物体的高度,如图点A,B,Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC交于点D,若AB=40cm,BD=20cm,AQ=12m,则树高PQ= m.13.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若母线长l为3cm,扇形的圆心角θ为120°,则圆锥的底面半径r为cm.14.某招聘考试分笔试和面试两种,小明笔试成绩90分,面试成绩为80分,若笔试成绩、面试成绩按3:2计算,则小明的平均成绩为分.15.如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD= °.16.如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC于点M,交边AB 的延长线于点G,若AF=2,FB=1,则MG= .三、解答题:(本大题共9小题,共84分)17.(10分)(1)计算:20230―(―1)2024+12―tan60°(2)解方程:3x2―2x―1=0 18.(8分)如图,将下列4张扑克牌洗匀后数字朝下放在桌面上.(1)从中随机抽取1张,抽得扑克牌上的数字为2的概率为;(2)从中随机抽取2张,用列表或画树状图的方法,求抽得2张扑克牌上的数字相同的概率.19.(8分)某校舞蹈队共16名学生,将其身高(单位:cm)数据统计如下:A.16名学生身高:162,163,163,165,166,166,166,167,167,168,169,169,171,173,173,176;B.16名学生身高的平均数、中位数、众数:平均数中位数众数167.75m n(1)m= ,n= ;(2)对于不同组的学生,如果一组学生身高的方差越小,则认为改组舞台呈现效果越好,据此推断,下列两组学生中,舞台呈现效果更好的是;(填“甲组”后“乙组”)甲组身高163166166167167乙组身高162163165166176(3)该舞蹈队计划选五名学生参加比赛,已确定三名学生参赛,他们的身高分别为169,169,173,他们身高的方差为32.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生身高的方差9,其次要求所选的两名学生与已确定的三名学生所组成的五名学生身高的平均数尽可能大,则选出的另小于329外两名学生身高分别为和.20.(10分)已知函数y=―x2+bx+c的图象经过点A(-1,0),B(0,3).(1)求该函数的表达式;(2)在所给的方格纸中,画该函数的图象;(3)该函数图象上到x轴距离等于3的点,共有个.21.(10分)如图,学校计划围一个矩形花园,它的一边是墙(长度大于10m),其余三边利用长为10m的围栏,试确定其余三边的长度,使其分别满足下列条件:(1)花园的面积为12㎡;(2)花园的面积最大.22.(8分)如图,在△ABC中,AC=4,∠B=66°,以AC为直径的⊙O与BC交于点D,E为ACD上一点,且∠EDC=40°.(1)求CE的长;(2)若∠DCE=74°,判断直线AB与⊙O的位置关系,并说明理由.23.(10分)如图,位于大同街的钟鼓楼曾是民国时期徐州的最高建筑,某校综合实践小组利用测角仪测量钟鼓楼的高度AO,测角仪的目镜距离地面1m,他们在地面B处测得钟鼓楼顶部A的仰角为30°,然后沿地面前进28m至点D处,测得点A的仰角为75°,已知BC=DE=OH=1m.(1)求AC的长(结果保留根号);(2)求钟鼓楼的高度AO(结果精确到1m).(参考数据:2≈1.41,3≈1.73)24.(8分)如图,P是⊙O外一点,用两种不同的方法过P作⊙O的一条切线.要求:(1)用无刻度的直尺和圆规作图;(2)保留作图痕迹,不写作法.25.(12分)如图,在平面直角坐标系中,抛物线y=ax²+bx经过点A(3,-3),对称轴是直线x=2.(1)求a,b的值;(2)已知点B,C在抛物线上,点B的横坐标为t,点C的横坐标为t+1,过点B作x轴的垂线交直线OA于点D,过点C作x轴的垂线交直线OA于点E,在抛物线对称轴右侧,是否存在点B,使以B,C,D,E为顶点的四边形面积为3若存在,求出t的值;若不存在,请说明理由.22023~2024学年度第一学期期末抽测九年级数学参考答案题号12345678答案A B D B C A C B 9. 10. 11. 12.613.1 14.86 15.36 1617.(1)原式(4分). 5分(2)法一:..6分(7分)(8分).即. 10分法二:,(7分)或,(8分).10分18.(1); 3分(2)列表或画树状图(略). 6分共有12种等可能的结果(7分),其中2种符合题意.. 8分19.(1)167,166;(4分)(2)甲组;(6分)(3)171,173. 8分20.(1)将和代入,得 2分解得.(3分)∴函数表达式为. 4分(2)列表(略),(6分) 函数图象如图; 8分(3)4. 10分21.(1)设其余三边的长度分别为. 1分2314(2,1)11=-+-=3,2,1a b c ==-=-224(2)43(1)16b ac -=--⨯⨯-=x =246±==1211,3x x ==-(1)(31)0x x -+=(1)0x -=(31)0x +=1211,3x x ==-1221126P ∴==()1,0-()0,32y x bx c =-++10,3.b c c --+=⎧⎨=⎩2b =223y x x =-++m,m,(102)m x x x -由题意,得.3分解得. 4分答:其余三边的长度分别为或. 5分(2)设其余三边的长度分别为.花园的面积为. 6分由题意,得. 7分整理,得. 8分∴当时,y有最大值. 9分答:其余三边的长度分别为时,花园的面积最大. 10分22.(1)连接.. 1分∵直径,∴半径. 2分∴弧的长为. 3分(2)与相切. 4分.,. 5分,. 6分,. 7分,即.与相切. 8分23.(1)如图,过点E 作于点F . 1分在中,,..(102)12x x -=121,3x x ==2m,2m,6m 3m,3m,4m m,m,(102)m x x x -2m y (102)y x x =-2525222y x ⎛⎫=--+ ⎪⎝⎭52x =25255m,m,5m 22OE 280COE EDC ∠=∠=︒4AC =2OC OE ==CE 808223609ππ⨯⨯=AB O ,OC OE OCE OEC =∴∠=∠ 80COE ∠=︒ 50OCE ∴∠=︒74DCE ∠=︒ 24ACB DCE OCE ∴∠=∠-∠=︒66B ∠=︒ 90B ACB ∴∠+∠=︒90BAC ∴∠=︒OA AB ⊥AB ∴O EF AC ⊥Rt CFE △30FCE ∠=︒28CE BD ==sin 30,cos30EFCFCE CE ︒=︒=(2分),.3分在中,. 4分. 5分. 6分(2)在中,.. 7分(8分).9分答:钟鼓楼的高度为.10分24.(两种方法,各4分)参考解法:法一:如图①,利用“直径所对的圆周角等于”法二:如图②,利用“三角形全等的性质”法三:如图③,利用“三角形中位线的性质” 图① 图② 图③25.(1)由题意,得(2分) 解得 4分(2)由(1)得抛物线为.当时,;当时,.∴点. 5分设对应的函数表达式为,把代入得;对应的函数表达式为,∴点. 6分①当时,如图①,过点D 作于点F ,则.此时. 8分sin 3014EF CE ∴=⋅︒=cos30CF CE =⋅︒=Rt AFE △753045FAE AEH ACE ∠=∠-∠=︒-︒=︒45,14ACB DCE AF EF ∴∠=∠=︒∴==14AC CF AF ∴=+=Rt ACH△30,14ACH AC ∠=︒=sin 30,sin 307AH AH AC AC︒=∴=⋅︒=+8AO AH OH ∴=+=20≈20m 90︒933,2.2a b b a+=-⎧⎪⎨-=⎪⎩1,4.a b =⎧⎨=-⎩24y x x =-x t =24y t t =-1x t =+22(1)4(1)23y t t t t =+-+=--()()22,4,1,23B t t t C t t t -+--OA y kx =(3,3)-33,1k k -=∴=-OA ∴y x =-(,),(1,1)D t t E t t -+--23t <<DF CE ⊥1DF =()()2222()43,23[(1)]2BD t t t t t CE t t t t t =---=-+=----+=--由.解得. 9分②当时,点B 与D 重合,四点B 、C 、D 、E 不构成四边形.③当时,如图②,过点D 作于点H ,则.此时.. 10分解得(舍),(舍). 11分综上所述,. 12分 图① 图②注:以上各题如有另解,请参照本评分标准给分.()22113()321222DBEC S BD CE DF t t t t =+⋅=-++--⋅=四边形52t =3t =3t >DH CE ⊥1DH =()()22224()3,23[(1)]2BD t t t t t CE t t t t t =---=-=----+=--()22113()321222BDEC S BD CE DH t t t t =+⋅=-+--⋅=四边形113t =+<213t =<52t =。
2022-2023学年人教版九年级数学第一学期期末测试题含答案
第1页,共4页 第2页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号2022-2023学年第一学期期末质量监测试卷九年级 数学学科(考试时间:120分钟 考试分值:150分)一、选择题。
(每题5分,共45分)1.在下列图形中,是中心对称图形的是( )A.B.C.D.2.下列事件属于必然事件的是( )A.打开电视,正在播放新闻B.我们班的同学将会有人成为航天员C.实数0<a ,则02<aD.新疆的冬天不下雪3.若关于x 的一元二次方程01)12=++-x x k (有两个实数根,则k 的取值范围是( ) A.45≤k B.45>kC.45<k 且1≠kD.45≤k 且1≠k4.用配方法解方程0982=++x x ,变形后的结果正确的是 A.9)4(2-=+x B.7)4(2-=+x C.25)4(2=+xD.7)4(2=+x5.二次函数3)1(2+-=x y 的图象的顶点坐标是 A.)3,1(-B.)3,1(C.)3,1(--D.)3,1(-6.如图,在圆O 中,所对的圆周角50=∠ACB ,若P 为上一点,55=∠AOP ,则=∠POB ( ) A.30B.45 C.55D.60第6题图 第7题图7.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作圆锥形生日礼帽.如图,圆锥帽底面半径为cm 9,母线长为cm 36,请你帮助他们计算制作一个这样的生日礼帽需要纸板的面积为( ) A.2648cm ΠB.2432cm ΠC.2324cm ΠD.2216cm Π8.下列各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数c ax y +=的大致图象,有且只有一个是正确的,正确的是( )A.B. C. D.9.宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x 元.则有( )A.10890)1050)(20180=--+xx ( B.10890)1018050)(20=---x x (C.180902050)108050(=⨯---x xD.108902050)1050)(180=⨯--+xx (二、 填空题。
九年级数学上学期期末考试题 试题 (2)
第51中2021-2021学年九年级数学上学期期末考试题制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日〔考试时间是是:120分钟;满分是:120分〕题号 一 二三 四合计 合计人复核人15 1617 18 19 20 21 22 23 24得分真情提示:亲爱的同学,欢送你参加本次考试,祝你答题成功! 1.请必须在规定的正确位置填写上座号,并将密封线内的工程填写上清楚.2.本试题一共有24道题.其中1—8题为选择题,请将所选答案的标号填写上在第8题后面给出表格的相应位置上;9—14题为填空题,请将做出之答案填写上在第14题后面给出表格的相应位置上;15—24题请在试卷给出的此题位置上做答.一、选择题〔此题满分是24分,一共有8道小题,每一小题3分〕以下每一小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每一小题选对得分;不选、选错或者选出的标号超过一个的不得分.请将1-8各小题所选答案的标号填写上在第8小题后面的表格内.+sin300= 〔 〕A. 2B.233+ C. 23D. 231+2. 如图,由高和直径一样的5个圆柱搭成的几何体,其左视图是〔 〕得 分 阅卷人 复核人A. B. C. D.3. 以下模拟掷硬币的试验不正确的选项是〔〕A.用计算器随机地取数,取奇数相当于正面朝上,取偶数相当于硬币正面朝下。
B.在袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上。
C.在没有大小王的扑克牌中随机地抽一张牌,抽到红色牌表示硬币正面朝上。
D.将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上。
4. 将抛物线y=x2平移得到抛物线y=(x+2)2,那么这个平移过程正确的选项是〔〕A. 向左平移2个单位 B 向下平移2个单位.C . 向上平移2个单位D. 向左平移2个单位5. 一个不透明的口袋里装有除颜色外都一样的8个白球和假设干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:现将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮一共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A. 92 B 72 .C . 80 D. 886. 如图是二次函数y=ax2+bx+c图象的一局部,且过点A〔3,0〕,二次函数图象的对称轴是x=1,以下结论正确的选项是〔〕A. b2>4ac B ac>0 .C . a﹣b+c>0 D. 4a+2b+c<07. 如图,Rt△ABC 内有边长分别有a,b,c 的三个正方形,那么a,b,c 满足的关系式是〔 〕 A 、b=a+c B 、b=ac C 、b²=a²+c² D 、b=2a=2b8. 如图,在矩形ABCD 中,AD=2AB ,AE 平分∠BAD ,DF ⊥AE 于F ,BF 交DE 、CD 于O 、H ,以下结论:①∠DEA=∠DEC ;②BF=FH ;③OE=OD ;④BC-CH=2EF .⑤AB=HF,其中正确结论的个数是〔 〕A. 2个 B 3个 .C . 4个 D. 5个请将1—8各小题所选答案的标号填写上在下面的表格内: 题号 1 2 3 4 5 6 7 8 答案二、填空题〔此题满分是18分,一共有6道小题,每一小题3分〕 请将 9—14各小题之答案填写上在第14小题后面的表格内.9.方程x 〔x —2〕=x —2的解是 。
九年级数学上学期期末检测试题卷(含答案)
九年级数学上学期期末检测试题卷(含答案)(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡...上,不得在试卷上直接作答;2.作答前认真阅读答题卡...上的注意事项; 3.作图(包括作辅助线)请一律用黑色..2B ..铅笔完成; 4.考试结束,由监考人员将试题和答题卡...一并收回. 参考公式:抛物线2y ax bx c =++(0a ≠)的顶点坐标为(2b a-,244ac b a -),对称轴为2b x a =-.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为 A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1.下列是四届冬奥会会徽的部分图案,其中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.下列关于抛物线()2143x y --=的结论,正确的是( ) A .开口方向向下B .对称轴为直线1x -=C .顶点坐标是(1,-4)D .当1x =时,函数有最大值为4-3.下列说法正确的是( )A .任意掷一枚质地均匀的硬币8次,一定有4次正面向上B .天气预报说“明天的降雨概率为60%”,表明明天有60%的时间在降雨C .“彩票中奖的概率是110”表示买10张彩票一定会有一张中奖 D .“篮球队员在罚球线上投篮一次,没有投中”为随机事件4.把抛物线221y x =+向右平移2个单位长度,再向上平移3个单位长度,得到新抛物线的解析式是( ) A. ()2224y x =++B. ()2224y x =-+C. ()2223y x =-+D. ()2223y x =++5.如图,O 是正方形ABCD 的外接圆,若O 的半径为2,则正方形ABCD 的边长为( ) A .1B 2C 2D .226.在一个不透明的口袋中装有3个红球,5个白球和若干个黑球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到白球的频率稳定在25%附近,则口袋中黑球的个数可能是( ) A .10B .11C .12D .137.如图,将ABC ∆绕点A 逆时针旋转55︒得到ADE ∆,若75E ∠=︒且AD BC ⊥于点F ,则BAC ∠的度数为( )A. 65︒B. 70︒C. 75︒D. 80︒8.奥密克戎是新冠病毒的变异毒株,传染性强,有一人感染了此病毒,未被有效隔离,经过两轮传染,共有196名感染者,在每轮传染中,设平均一个人传染了x 人,则可列方程为( ) A .1196x +=B .()21196x +=C .21196x +=D .21196x x ++=9.点(13P -,)1y ,(21P -,)2y ,(32P ,)3y 均在二次函数224y x x =--的图象上,则1y ,2y ,3y的大小关系是( ) A .123y y y >>B .312y y y >>C .231y y y >>D .213y y y >>10.如图,AB 是O 的弦,半径OC AB ⊥于点D ,26P ∠=︒,点P 在圆周上,则A ∠等于( ) A .26°B .30°C .34°D .38°11.若整数a 使得关于x 的不等式组()533213x x x a x -⎧-⎪⎨⎪+≤-⎩<有解,也使得关于x 的一元二次方程2410ax x ++=有实数根,则所有满足条件的整数a 的和为( )A .10B .9C .6D .5F EDCBAOPD BAODCBA第5题图 第7题图第10题图12.若定义一种新运算:()()3,@3,a b a b a b a b a b ⎧+-⎪=⎨-+≥⎪⎩<,例如:2@42433=+-=,2@12134=-+=,下列说法:①()()1@24--=;①若()@25x x +=,则3x =;①@23x x =的解为2x =;①函数()21@1y x =+与x 轴交于()1,0-和()1,0.其中正确的个数是( ) A .4B .3C .2D .1二、填空题:(本大题4个小题,每小题分,共16分)请将每小题的答案直接填在答题卡...中对应的横线上.13.地球上陆地与海洋面积比约为3:7,则宇宙飞来一块陨石落在陆地的概率为 . 14.若m 是方程2220220x x --=的一个实数根,则2242021m m --=__________. 15.如图,在矩形ABCD 中,2AB =,30ACB ∠=︒,以A 为圆心,AB 为半径画弧,与对角线AC 交于点E ,与AD 交于点F ,过点E 作EH BC ⊥,交BC 于点H ,则阴影部分的面积为______________(结果保留π).16.已知在Rt ABC ∆中,90B ∠=︒,4AB =,3BC =,D 点是AB 的中点,将AD 绕点A 旋转,得到线段AE ,连接EC ,则CE 的最大值是______________.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程写在答题卡...中对应的位置上.17.解方程:(1)240x x +=; (2)22350x x --=.4HBE CDFA第15题图第16题图E18.如图,ABC ∆内接于O ,AB 为O 的直径.(1)用尺规作图作出ACB ∠的平分线,交O 于点D ,连接DA 、DB (保留作图痕迹,不写作法);(2)若2AD =,1AC =,求CB 的长度.解:①AB 是圆的直径 ∴90ACB ADB ∠=∠=︒ ①CD 是ACB ∠的平分线 ∴ ∴AD BD =① ①ABD ∆是等腰直角三角形 ∵2AD = ①2BD AD ==①AB = 在Rt ABC ∆中,90ACB ∠=︒,1AC =∴CB = .四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程写在答题卡...中对应的位置上.19.劳动教育是教育的重要组成部分,某校倡议学生在家做一些力所能及的家务.现随机抽取该校部分学生进行问卷调查,问卷调查表如图所示,并根据调查结果绘制了两幅不完整的统计图.平均每周做家务的时间调查表设平均每周做家务的时间为x 小时,则最符合你的选项是______(单选) A .01x ≤< B .12x ≤< C .23x ≤< D .3x ≥OBAC第18题图(1)求共调查了多少人,并补全条形统计图.(2)该校有2000名学生,根据抽样调查结果,请你估计该校平均每周做家务的时间不少于2小时的学生人数.(3)为了增强学生的劳动意识,现需要从A 组的四位同学中抽两位同学作为志愿者参与社区服务,已知A 组由两位女生、两位男生组成,请利用树状图或列表等方法求出恰好抽到一男一女的概率.20.如图,AB 是O 的直径,C 是O 上一点,D 在BA 的延长线上,且ACD B ∠=∠. (1)求证:CD 是O 的切线;(2)若O 的半径为3,33=CD ,求BD 的长.学校部分学生平均每周做 家务时间的条形统计图选项人数(人)1042420161284016D CBA学校部分学生平均每周做 家务时间的扇形统计图D 20%ABC第20题图DOCA21.学习完二次函数后,同学们对函数242y x x =-+的图像和性质进行了探究.在经历列表、描点、连线步骤后得到其图象如图所示.请根据函数图象完成以下问题: (1)观察发现:①该函数的图像关于_______对称;①当=x _______时,该函数有最_______值为_______;①当x 在什么范围内,y 随x 的增大而增大? ; (2)分析思考:①方程2422x x -+=的解为_____________________;①关于x 的方程242x x m -+=有4个实数根时,m 的取值范围是_______.22.拉伊卜是2022年卡塔尔世界杯吉样物,代表着技艺高超的球员.随着世界杯的火热进行,吉祥物拉伊卜玩偶成为畅销商品.某经销商售卖大、小两种拉伊卜玩偶,每个大拉伊卜售价比小拉伊卜售价贵30元且销售30个小拉伊卜玩偶的销售额和21个大拉伊卜玩偶的销售额相同. (1)求每个小、大拉伊卜玩偶的售价分别为多少元?(2)世界杯开赛第一周该经销商售出小拉伊卜玩偶400个,大拉伊卜玩偶200个,世界杯开赛第二周,该经销商决定降价出售两种拉伊卜玩偶.已知:两种拉伊卜玩偶都降价a 元,小拉伊卜玩偶售出数量较世界杯开赛第一周多了10a 个;大拉伊卜玩偶售出数量与世界杯开赛第一周相同,该经销商世界杯第二周总销售额为48000元,求a 的值.第21题图23.一个各位数字均不为0的四位正整数,如果千位与个位数字相同,百位与十位数字相同,则我们称这个四位数为“半同数”.规定()11t F t =.例如1221t =,则()122111111F t ==. (1)若m 是最大的“半同数”,则()F m =_______;若n 是最小的“半同数”,则()F n =________;(2)已知“半同数”p ,p abba =.若()3F p -能被11整除,求满足条件的所有p 的值.24.已知抛物线23y ax bx =+-与x 轴交于点(1,0)A -,(3,0)B ,与y 轴交于点C .(1)求抛物线的函数解析式.(2)如图1,点D 是直线BC 下方抛物线上一点,过点D 作DF x ⊥轴,交直线BC 于点E ,交x 轴于点F ,设点D 的横坐标为m ,求线段DE 长度的最大值.(3)点M 是抛物线的顶点,在平面内确定一点N ,使得以点A 、M 、C 、N 为顶点的四边形是平行四边形,请直接写出所有符合条件的点N 的坐标.第24题图1第24题图225.如图1,在Rt ABC ∆中,90ACB ∠=︒,CA CB =,点D 是斜边上一点,连接CD ,将CD绕点C 逆时针旋转90︒,得到线段CE ,连接BE . (1)证明:DB BE ⊥;(2)若22AC =,4AB AD =,求CD 的长;(3)如图2,在四边形ABCD 中,45BCD ∠=︒,90ADB ∠=︒,AD BD =,若3CB =,6CD =,请直接写出AC 的长.第25题图1DCBA 第25题图2EDCB A参考答案一、选择题:1—6. A C D B D C 7—12.B B A D A C 二、填空题:13.310 14.2023 15.32233π- 16.7 三、解答题:17.(1)4,021-==x x .....................4分 (2)25,121=-=x x .....................8分 18.(1)如图所示.....................4分(2)ACD BCD ∠=∠,AD BD =,2422BD AD 2222==+=+)()(,312AC AB 2222=-=- .....................8分四、解答题:19.(1)102050%÷=人B 组:504161020---=人 ...................4分 答:共调查了50人,补全条形统计图如图所示。
九年级数学第二学期阶段性测试(一)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学
九年级数学第二学期阶段性测试(一)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------九年级数学第二学期阶段性测试(一)数学试卷亲爱的同学:好的开端是成功的一半,希望你们稳扎稳打,在考试中获得好成绩!请注意:全卷共三大题25小题,满分150分。
一、选择题。
(本题有12小题,每小题4分,共48分)1、下列运算正确的是()A、a+a=a2B、a2·a=2a3C、(2a)2÷a=4aD、(―ab)2=―ab22、我县经济发展步伐不断加快,综合实力显著增强,其中外向型经济发展迅速,近四年来实际利用外资1640万美元。
1640万美元用科学记数法表示为()A、1.64×103美元B、1.64×107美元C、0.164×108美元D、164×105美元3、计算的结果为()A、4B、C、D、164、若等腰三角形底角为72°,则顶角为()A、108°B、72°C、54°D、36°5、不等式2―x<1的解是()A、x>1B、x>―1C、x<1D、x<―16、夏天,一杯开水放在桌子上,杯中水的温度T(℃)随时间t变化的关系大致图象()T(℃)T(℃)T(℃)T(℃)OtOtOtOtABCD7、在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A、小明的影子比小强的影子长B、小明的影子比小强的影子短yC、小明的影子和小强的影子一样长D、无法判断谁的影子长8、已知抛物线y=―x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A、―2.5<x<B、―1.5<x<-10xC、x>或x<—2.5D、x<或x>—2.5y9、如图,AP切圆O于点P,OA交圆O于B,且AB=1,PAP=,则阴影部分的面积S等于()OBAA、B、C、D、无法确定10、如图,把一个正方形纸片三次对折后沿虚线剪下(1)、(2)两部分,则展开(2)得()ABC D11、有若干张如图所示的正方形和长方形卡片,表中所列四种方案能拼成邻边长分别是a+b 和2a+b的矩形是()a(1)b(2)b(3)aba12、已知P是线段AB的黄金分割点,点P将AB分成m、n两部分(m>n),以m为边长的正方形面积是S1,以(m+n)和n为边长的矩形的面积为S2,则S1与S2的大小关系是()A、S1>S2B、S1=S2C、S1<S2D、无法确定二、填空题。
九年级上学期期末考试数学试卷(附答案)
九年级上学期期末考试数学试卷(附答案)一.单选题。
(每小题4分,共40分)1.﹣5的相反数是()A.15B.﹣15C.5D.﹣52.如图是一根空心方管,它的左视图是()A. B. C. D.3.一个数是8600,这个数用科学计数法表示8600为()A.8.6×102B.8.6×103C.86×102D.0.86×1044.下列各式计算正确的是()A.3x+3y=6xyB.4xy2-5xy2=﹣1C.﹣2(x-3)=﹣2x+6D.2a+a=3a25.把20个除颜色外完全相同的小球,放在一个不透明的盒子中,其中有m个白球,做大量重复试验,每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子里,最终发现摸到白球的频率稳定在35%左右,则m的值大约是()A.7B.8C.9D.106.关于菱形一定具有的性质,下列说法错误的是()A.对角线互相平分B.对角线互相垂直C.邻边相等D.对角线相等7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,下列关系正确的是()A.sinA=BCAC B.tanB=ACABC.cosA=CDACD.sinB=CDBC(第7题图)(第8题图)(第9题图)8.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,AC⊥x轴于点C,BD⊥x轴于点D,连接OA ,BC ,若点C (1,0),BD=2,△BCD 面积为3,则△AOC 的面积是( ) A.2 B.3 C.4 D.59.如图,已知点C ,D 是以AB 为直径的半圆O 的三等分点,圆的半径为1,则图中阴影部分面积是( )A.16π B.316π C.124π D.112π+√3410.如图,二次函数y=ax 2+bx+c 的图象的顶点在第一象限,且过点(0,1)和(﹣1,0)下列结论:①ab >0,②b 2-4ac >0,③0<a+b+c <2,④0<b <1,⑤当y >﹣1时,x >0,其中正确结论个数是( )A.2个B.3个C.4个D.5个(第10题图)二.填空题。
2022-2023学年度贵州省贵阳市普通中学第一学期期末检测考试九年级数学试题(含答案解析)
2022-2023学年度贵州省贵阳市普通中学第一学期期末检测考试九年级数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.10︒B.40︒6.日晷是我国古代利用日影测定时刻的一种计时仪器,它由太阳光照在日晷上时,晷针的影子就会投向晷面.随着时间的推移,晷针的影子在晷面上慢慢地移动,以此来显示时刻.则晷针在晷面上形成的投影是(A.中心投影C.既是平行投影又是中心投影3A.11, 3⎛⎫ ⎪⎝⎭8.如图,小主持人舞台的长约为()A.3.82米9.小星利用表格中的数据,估算一元二次方程x 0222x x=-…-2由此可以确定,方程2A.0 1.1x<<10.如图,在ABC中,剪下的阴影三角形与原三角形不相似的是(A..C...若反比例函数1yx=图象上有两点()22,B x y,若12x x+=).1-B.01D.12.如图,某校为生物兴趣小组规划一块长15m ,宽12m 的矩形试验田.现需在试验田中修建同样宽的两条互相垂直的小路(两条小路各与矩形的一条边平行),根据学校规划,小路分成的四块小试验田的总面积为2154m .求小路的宽为多少米?若设小路的宽为m x ,根据题意所列的方程是()A .(15)(12)154x x --=B .2(15)(12)154x x x ---=C .(15)(12)77x x --=D .1512(15)(12)154x x ⨯---=二、填空题13.若关于x 的方程230x mx +=+的一个根是1x =,则m 的值为_________.14.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa )是气体体积3(m )V 的反比例函数,其图象如图所示,则反比例函数的表达式为______.15.在边长为1的小正方形网格中,ABC A B C '''∽△△.则ABC 与A B C ''' 的周长比为______.16.在矩形ABCD 中,3AB =,4BC =,点M 是平面内一动点,且满足2BM =,N 为MD 的中点,点M 运动过程中线段CN 长度的取值范围是______.三、解答题17.解下列方程:(1)230-=x x(2)2210+-=x x18.画出如图所示几何体的三种视图.19.如图,在矩形ABCD中,E,F,G,H分别是各边的中点,连接EF,FG,GH,EH.试判断四边形EFGH的形状,并说明理由.20.第24届北京冬奥会开幕式二十四节气倒计时惊艳亮相,从“雨水”开始,倒数最终行至“立春”,将中国人独有的浪漫传达给了全世界.李老师将每个节气的名称写在完全相同且不透明的小卡片上,洗匀后邀请同学随机抽取一张卡片,并向大家介绍卡片上对应节气的含义.(1)若随机抽取一张卡片,则上面写有“立夏”的概率为______;(2)老师选出写有“立春、立夏、立秋、立冬”的四张卡片洗匀后背面朝上放在桌面上,请小星从中抽取一张卡片记下节气名称不放回,再洗匀后从中随机抽取一张卡片记下节气名称.请利用列表或画树状图的方法,求两次抽到的卡片上分别写有立春、立冬节气名称的概率.21.小星测量如图所示大楼的高度MN.在距离大楼39m的点B处竖立一根长为3m的标杆AB.他调整自己的位置.站在D处时.使得他直立时眼睛C、标杆顶点A和高楼顶点M三点共线.已知BD=1m.小星的眼睛距离地面高度CD为1.7m.求大楼的高度.22.如图,在平面直角坐标系中,点垂足为点B ,若3AOB S =△,一次函数(1)求k ,m 的值;(2)有一点(1,2)P ,过点P 作x 轴的平行线,分别交M ,N .判断线段PM 与PN 的数量关系,并说明理由;23.小星和小红在学习了正方形的相关知识后,究.(1)问题解决如图①,在正方形ABCD 中,E ,F 分别是,BC CD 边上的点,连接AE BF ,求证:ABE BCF △△≌;(2)类比探究如图②,在正方形ABCD 中,E ,F ,G ,H 分别是BC AD AB CD ,,,边上的点,连接EF GH ,,且EF GH ⊥,求证:EF GH =;(3)迁移应用如图③,在Rt ABC △中,90ABC ∠=︒,AB BC =,D 是BC 的中点,E 是AC 边上的点,连接AD BE ,,且BE AD ⊥,求AECE ∶的值.参考答案:∵N为MD的中点,∴ON为DMB的中位线,∴112ON BM==,∴点N在以O为圆心,以1为半径的圆上运动,在矩形ABCD中,12 OC AC=∴CN的取值范围为512CN -≤即37 22CN≤≤,故答案为:37 22CN≤≤.【点睛】本题考查了矩形的性质,勾股定理,中位线定理,点和圆的位置关系等知识点,灵【详解】解:【点睛】本题考查作图-三视图,解题的关键是理解三视图的定义,属于中考常考题型.∵共有12种等可能的结果,其中抽中立春、立冬的结果有两种:∴P (抽中立春,立冬)21126==.【点睛】本题考查了概率的计算,熟练提取数据是解题关键.21.53.7m90AHC MGC ∠=∠=︒ ,ACH ∠=∠,CAH CMG ∴ ,AH CH MG CG ∴=即3 1.71,139MG -=+52,MG ∴=52 1.753.7MN MG GN ∴=+=+=(m)∴大楼的高度为53.7m【点睛】本题主要考查了相似三角形的应用.三角形解决问题。
第二学期期末考试九年级数学试卷及参考答案
第二学期期末考试九年级数学试卷说明:本试卷分第Ⅰ卷和第Ⅱ卷. 第Ⅰ卷为选择题,第Ⅱ卷为非选择题.全卷满分120分,考试用时120分钟.第Ⅰ卷 (选择题 共36分)一、选择题(共12小题,每小题3分,共36分)1. -2的绝对值是A .2BC .12D .-122.函数y x 的取值范围是A .x ≥﹣1B .x ≥1C .x ≤﹣1D .x ≤13.在数轴上表示不等式组⎩⎨⎧x +2>1,x -2≤0的解集,正确的是A .B .C .D .4.下列事件中,是必然事件的是A .掷两次硬币,必有一次正面朝上.B .小明参加2011年武汉市体育中考测试,“坐位体前屈”项目获得7分.C .任意买一张电影票,座位号是偶数.D .在平面内,平行四边形的两条对角线相交.5.武汉不仅是“江城”、“湖城“、“钢城”、“车城”、“诗城”,还是“桥城”喔!坐拥大小桥梁1200多座,令武汉充满诗情画意和文化魅力. 将1200这个数用科学记数法表示为 A .60.1210⨯ B .41210⨯ C .31.210⨯ D .41.210⨯6.图中几何体的俯视图是( )正面A .B .C .D .CPBC EA7.一元二次方程x 2-3x +2=0 的两根分别是x 1、x 2,则x 1+x 2的值是 A . 3B .2C .﹣3D .﹣28.如图,菱形ABCD 中,∠A =30°,若菱形FBCE 与菱形ABCD 关于BC 所在的直线对称,则∠BCE 的度数是 A .20° B .30° C .45° D .60°9.如图,填在各方格中的三个数之间均具有相同的规律,根据此规律,n 的值是 A .48 B .56C .63D .7410.如图,⊙P 的直径AB =10,点C 在半圆上,BC =6.PE ⊥AB 交AC 于点E ,则PE 的长是A .154B .4C .5D .15211.武汉素有“首义之区”的美名,2011年9月9日,武汉与台湾将共同纪念辛亥革命一百周年.某校为了了解全校学生对辛亥革命的了解程度,随机抽取了部分学生进行问卷调查,并根据收集的信息进行了统计,绘制了下面尚不完整的统计图.第16题图根据以上的信息,下列判断:①参加问卷调查的学生有50名;②参加进行问卷调查的学生中,“基本了解”的有10人;③扇形图中“基本了解”部分的扇形的圆心角的度数是108°;④在参加进行问卷调查的学生中,“了解”的学生占10%. 其中结论正确的序号是 A .①②③ B .①②④ C .①③④ D .②③④12.如图,等腰直角△ABC 中,AC =BC ,∠ACB =90°,AF 为△ABC 的角平分线,分别过点C 、B 作AF 的垂线,垂足分别为E 、D .以下结论:①CE =DE =22BD ;②AF =2BD ;③CE +EF =12 AE ;④DF AF =2-12 .其中结论正确的序号是A .①②③B .①②④C .①③④D .②③④第Ⅱ卷 (非选择题 共84分)二、填空题(共4小题,每小题3分,共12分)13.计算:cos60°= .14.武汉市2011年初中毕业生学业考试6门学科的满分值如下表:请问数据120,120,120,130,80,30中,众数是 ,极差是 ,中位数是 .15.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费,每月收取水费y (元)与用水量x (吨)之间的函数关系如图.按上述分段收费标准,小明家三、四月份分别交水费26元和18元,则四月份比三月份节约用水 吨.16.如图,点P 在双曲线y =kx (x >0)上,以P 为圆心的⊙P 与两坐标轴都相切,点E为y 轴负半轴上的一点,过点P 作PF ⊥PE 交x 轴于点F ,若OF -OE =6,则k 的值是 .三、解答题(共9小题,共72分)17.(本题满分6分)解方程:x 2-2x -1=0.18.(本题满分6分)先化简,再求值:(1+23-a )÷412-+a a ,其中a =3.19.(本题满分6分)已知:如图,E 为BC 上一点,AC ∥BD ,AC =BE ,BC =BD . 求证:AB =DE .D20.(本题满分7分)在一个不透明的口袋中有分别标有数字﹣4,﹣1,2,5的四个质地、大小相同的小球,从口袋中随机摸出一个小球,记录其标有的数字作为x ,不放回...,再从中摸出第二个小球,记录其标有的数字为y .用这两个数字确定一个点的坐标为(x ,y ). (1)请用列表法或者画树状图法表示点的坐标的所有可能结果; (2)求点(x ,y )位于平面直角坐标系中的第三象限的概率.21.(本题满分7分)在边长为1个单位长度的小正方形组成的网格中,平面直角坐标系和四边形的位置如图所示.(1)将四边形ABCD 关于y 轴作轴对称变换,得到四边形A 1B 1C 1D 1,请在网格中画出四边形A 1B 1C 1D 1;(2)将四边形ABCD 绕坐标原点O 按逆时针方向旋转90°后得到四边形A 2B 2C 2D 2,请直接写出点D2的坐标为__ _ ___,点D旋转到点D2所经过的路径长为____ __.22.(本题满分8分)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,C为BD弧的中点,AC、BD交于点E.(1)求证:△CBE∽△CAB;(2)若S△CBE∶S△CAB=1∶4,求sin∠ABD的值.23.(本题满分10分)某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x 为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)当售价的范围是是多少时,使得每件商品的利润率不超过80%且每个月的利润不低于2250元?24.(本题满分10分)如图(1),点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM.(1)判断CN 、DM 的数量关系与位置关系,并说明理由;(2)如图(2),设CN 、DM 的交点为H ,连接BH ,求证:△BCH 是等腰三角形; (3)将△ADM 沿DM 翻折得到△A ′DM ,延长MA ′交DC 的延长线于点E ,如图(3),求tan ∠DEM .MB ADMB ADMBAD图1 图2 图3 25.(本题满分12分)如图1,在平面直角坐标系中,直线l :2343--=x y 沿x 轴翻折后,与x 轴交于点A ,与y 轴交于点B ,抛物线22-h 3y x =()与y 轴交于点D ,与直线AB 交于点E 、点F (点F 在点E 的右侧). (1)求直线AB 的解析式;(2)若线段DF ∥x 轴,求抛物线的解析式;(3)如图2,在(2)的条件下,过F 作FH ⊥x 轴于点G ,与直线l 交于点H ,在抛物线上是否存在P 、Q 两点(点P 在点Q 的上方),PQ 与AF 交于点M ,与FH 交于点N ,使得直线PQ 既平分△AFH 的周长,又平分△AFH 面积,如果存在,求出P 、Q 的坐标,若不存在,请说明理由.数学试题参考答案及评分细则一、选择题(12小题,每小题3分,共36分)二、填空题(4小题,每小题3分,共12分)13.0.5 14.120;100;120. 15.3 16.9 三、解答题(9小题,共72分)17.方法1:解:∵1,2,1a b c ==-=-,………………3分 ∴2480b ac ∆=-=>………………4分∴2=12x ±=±5分 1x =2x =………6分 方法2:解:x 2﹣2x+1=2………………………………………2分 (x ﹣1)2=2………………………………………3分 x ﹣15分 1x =2x =6分18.解:(1+23-a )÷412-+a a =(2322a a a -+--)·(2)(2)1a a a -++…………3分=a+2……………………………………………4分 当a =3时,原式= a+2=5……………………………………………6分19.证明:∵AC ∥BD ,∴∠ACB =∠DBC …………………………1分在△ABC 和△EDB 中, B C AC BE BC BDAC DB =⎧⎪=⎨⎪=⎩∠∠,………3分∴△ABC ≌△EDB ……………………………………5分 ∴AB =DE ………………………………………………6分BA20.(1)①用表格表示点的坐标的所有可能结果如下:(共4分)(2)由表可知,共有12种等可能结果,其中位于第三象限的点有(﹣4,﹣1)、 (﹣1,﹣4)共有2个可能; …………………………6分 将依次摸出的两个小球所标数字为横坐标,纵坐标的点位于第三象限记为事件A ,则 ∴P (A )=212 =16 ……………………7分21. (1)A 2…………………4分(2) (﹣2,﹣4),134 π . …………………7分22.(1)证明:∵点C 为弧BD 的中点,∴∠DBC =∠BAC , 在△CBE 与△CAB 中;∠DBC =∠BAC ,∠BCE =∠ACB ,∴△CBE∽△CAB.……4分(2)解:连接OC交BD于F点,则OC垂直平分BD ∵S△CBE:S△CAB=1:4,△CBE∽△CAB∴AC:BC=BC:EC=2:1,∴AC=4EC∴AE:EC=3:1∵AB为⊙O的直径,∴∠ADB=90°∴AD∥OC,则AD:FC=AE:EC=3:1设FC=a,则AD=3a,∵F为BD的中点,O为AB的中点,∴OF是△ABD的中位线,则OF=12AD=1.5a,∴OC=OF+FC=1.5a+a=2.5a,则AB=2OC=5a,在Rt△ABD中,sin∠ABD=ADAB=3a3=5a5…………………………8分(本题方法众多,方法不唯一,请酌情给分)23.(1)y=[100-2(x-60)](x﹣40)=—2x2+300x—8800;(60≤x≤110且x为正整数)………………………3分(2)y=—2(x—75)2+2450,当x=75时,y有最大值为2450元………………6分(3)当y=2250时,—2(x—75)2+2450=2250,解得x1=65,x2=85 ∵a=—2<0,开口向下,当y≥2250时,65≤x≤85∵每件商品的利润率不超过80%,则x-4040≤80%,则x≤72则65≤x≤72.……………………………………………………………………10分24.(1)CN=DM,CN⊥DM,证明:∵点M、N分别是正方形ABCD的边AB、AD的中点∴AM=DN.AD=DC.∠A=∠CDN∴△AMD≌△DNC,∴CN=DM.∠CND=∠AMD∴∠CND+∠NDM=∠AMD+∠NDM=900∴CN⊥DM∴CN =DM ,CN ⊥DM …………………………………………3分(2)证明:延长DM 、CB 交于点P .∵ AD ∥BC ,∴∠MPC =∠MDA ,∠A =∠MBP∵ MA =MB △AMD ≌△BMP ,∴ BP =AD =BC .∵∠CHP =900 ∴BH =BC ,即△BCH 是等腰三角形……………………6分(3)∵AB ∥DC ∴∠EDM =∠AMD =∠DME ∴EM =ED设AD =A ′D =4k ,则A ′M =AM =2k ,∴DE =EA ′+2k .在Rt △DA ′E 中,A ′D 2+A ′E 2=DE2 ∴(4k )2+A ′E 2=(E A ′+2k )2解得A ′E =3k ,∴tan ∠DEM =A ′D :A ′E =43.………………………………10分 25.解:(1)设直线AB 的解析式为b kx y +=.直线2343--=x y 与x 轴、y 轴交点分别为(-2,0),(0,23-) 沿x 轴翻折,则直线2343--=x y 、直线AB 与x 轴交于同一点(-2,0) ∴A (-2,0).与y 轴的交点(0,23-)与点B 关于x 轴对称 ∴B (0,23) ∴⎪⎩⎪⎨⎧==+-.23,02b b k 解得43=k ,23=b . ∴直线AB 的解析式为 2343+=x y .………………………………3分 (2)抛物线的顶点为P (h ,0),抛物线解析式为:2)(32h x y -==22323432h hx x +-. ∴D (0,232h ).∵DF ∥x 轴,∴点F (2h ,232h ), 又点F 在直线AB 上,∴23)2(43322+⋅=h h . 解得 31=h ,432-=h .(舍去) ∴抛物线的解析式为6432)3(3222+-=-=x x x y .……………………7分(3)过M 作MT ⊥FH 于T ,∴R t △MTF ∽R t △AGF .∴5:4:3::::==FA GA FG FM TM FT . 设FT =3k ,TM =4k ,FM =5k .则FN =)(21AF HF AH ++-FM =16-5k . ∴24)516(21k k MT FN S MNF -=⋅=∆. ∵8122121⨯⨯=⋅=∆AG FH S AFH =48, 又AFH MNF S S ∆∆=21. ∴2424)516(=-k k . 解得56=k 或2=k (舍去). ∴FM =6,FT =518,MT =524,GN =4,TG =512. ∴M (56,512)、N (6,-4). ∴直线MN 的解析式为:434+-=x y . 联立434+-=x y 与22=463y x x -+,求得P (1,83); Q (3,0)…………………12分。
2023北京海淀区九年级第二学期期末练习数学试卷
海淀区九年级第二学期期末练习数 学 2023.05学校 姓名 准考证号 考 生 须 知1.本试卷共6页,共两部分,共28道题,满分100分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 一个正五棱柱如右图摆放,光线由上到下照射此正五棱柱时的正投影是(A ) (B ) (C ) (D )2. 下列运算正确的是 (A )23a a +=25a(B )a a a ⋅⋅=3a (C )32()a =5a(D )()a m n +=am an +3. 实数a 在数轴上对应点的位置如图所示.若实数b 满足a +b <0,则b 的值可以是(A )2- (B )1-(C )0(D )14. 如图,由正六边形和正三角形组成的图形为轴对称图形,该图形的对称轴的条数为(A )1 (B )2 (C )3(D )45. 投掷两枚质地均匀的骰子,两枚骰子向上一面的点数相同的概率是 (A )112(B )16(C )13(D )126. 如果2a b -=,那么代数式221b a b a b ⎛⎫⋅+ ⎪+-⎝⎭的值是 –1–2–3123a(A )12(B )1(C )2(D )27. 如图,在正方形网格中,以点O 为位似中心,△ABC 的位似图形可以是 (A )△DEF (B )△DHF(C )△GEH(D )△GDH8.小明近期计划阅读一本总页数不低于300页的名著,他制定的阅读计划如下:星期 一 二 三 四 五 六 日 页数15201510204030若小明按照计划从星期x 开始连续阅读,10天后剩下的页数为y ,则y 与x 的图象可能为(A ) (B )(C ) (D )第二部分 非选择题二、填空题(共16题,每题2分) 9. 若代数式12x-有意义,则实数x 的取值范围是 .10. 分解因式:24ax a -= .11. 用一个x 的值说明x =”是错误..的,则x 的值可以是 . 12. 如图,正方形ABCD ,点A 在直线l 上,点B 到直线l 的距离为3,点D 到直线l 的距离为2,则正方形的边长为 .13. 在平面直角坐标系xOy 中,点1(1)A y ,和点2(3)B y ,在反比例函数k y x=的图象上.若12y y <,写出一个满足条件的k 的值 .14. 咖啡树种子的发芽能力会随着保存时间的增长而减弱.咖啡树种子保存到三个月时,发芽率约为95%;从三个月到五个月,发芽率会逐渐降到75%;从五个月到九个月,发芽率会逐渐降到25%.农科院记录了某批咖啡树种子的发芽情况,结果如下表所示:据此推测,下面三个时间段中,这批咖啡树种子的保存时间是 (填“三个月内”“三至五个月”或“五至九个月”).15.如图,AB 为☉O 的弦,C 为☉O 上一点,OC ⊥AB 于点D . 若OA =AB =6,则tan AOD ∠= .16.四个互不相等的实数a ,b ,c ,m 在数轴上的对应点分别为A ,B ,C ,M ,其中a =4,b =7,c 为整数,m =0.2(a +b +c). (1)若c =10,则A ,B ,C 中与M 距离最小的点为 ;(2)若在A ,B ,C 中,点C 与点M 的距离最小,则符合条件的点C 有 个. 三、解答题(共 68 分,第 17 - 20 题,每题 5 分,第 21 题 6 分,第 22 题 5 分,第23 - 24题,每 题 6 分,第 25 题 5 分,第 26 题 6 分,第 27 - 28 题,每题 7 分)解答应写出文字说明、演算步骤或证明过程.17.计算:011t 1an 60(π20223--++-⎛⎫ ⎪⎝⎭).18.解不等式12123x x --≥,并把它的解集在数轴上表示出来.19.如图,在△ABC 中,AB =AC .l DCBA(1)使用直尺和圆规,作AD ⊥BC 交BC 于点D (保留作图痕迹); (2)以D 为圆心,DC 的长为半径作弧,交AC 于点E ,连接BE ,DE .①∠BEC = °;②写出图中一个..与∠CBE 相等的角 .20.已知关于x 的一元二次方程220x x m -+=(0m <).(1)判断方程根的情况,并说明理由;(2)若方程一个根为1-,求m 的值和方程的另一个根.21.在平面直角坐标系xOy 中,直线1y kx =-与12y x =交于点A (2,m ) .(1)求k ,m 的值;(2)已知点P (n ,0) ,过点P 作垂直于x 轴的直线交直线1y kx =-于点M ,交直线12y x =于点N .若MN=2,直接写出n 的值.22.如图,平行四边形ABCD 的对角线AC ,BD 交于点O ,E 为OA 中点.连接DE 并延长至点F ,使得EF=DE .连接AF ,BF . (1)求证:四边形AFBO 为平行四边形;(2)若∠BDA =∠BDC ,求证:四边形AFBO 为矩形.23.某企业生产甲、乙两款红茶,为了解两款红茶的质量,请消费者和专业机构分别测评.随机抽取25名消费者对两款红茶评分,并对数据进行整理、描述和分析,下面给出了部分信息.FEODCBA CB Aa .甲款红茶分数(百分制)的频数分布表如下:b .甲款红茶分数在85≤x <90这一组的是:86 86 86 86 86 87 87 88 88 89c .甲、乙两款红茶分数的平均数、众数、中位数如下表所示:根据以上信息,回答下列问题:(1)补全甲款红茶分数的频数分布直方图; (2)表格中m 的值为_______,n 的值为_______; (3)专业机构对两款红茶的条索、色泽、整碎、净度、内质、香气、滋味醇厚度、汤色、叶底来进行综合评分如下:甲款红茶93分,乙款红茶87分.若以这25名消费者评分的平均数和专业机构的评分按照6:4的比例确定最终成绩,可以认定_______款红茶最终成绩更高(填“甲”或“乙”).24.如图,P 为☉O 外一点,P A ,PB 是☉O 的切线,A ,B 为切点,点C 在☉O 上,连接OA ,OC ,AC . (1)求证:∠AOC =2∠P AC ;(2)连接OB ,若AC ∥OB ,☉O 的半径为5,AC =6,求AP 的长.25.小明发现某乒乓球发球器有“直发式”与“间发式”两种模式.在“直发式”模式下,球从发球器出口到第一次接触台面的运动轨迹近似为一条抛物线;在“间发式”模式下,球从发球器出口到第一次接触台面的运动轨迹近似为一条直线,球第一次接CAO触台面到第二次接触台面的运动轨迹近似为一条抛物线.如图1和图2分别建立平面直角坐标系xOy .图1 直发式 图2 间发式通过测量得到球距离台面高度y (单位:dm )与球距离发球器出口的水平距离x (单位:dm )的相关数据,如下表所示:表1 直发式表2 间发式根据以上信息,回答问题:(1)表格中m =_________,n =_________;(2)求“直发式”模式下,球第一次接触台面前的运动轨迹的解析式;(3)若“直发式”模式下球第一次接触台面时距离出球点的水平距离为1d ,“间发式”模式下球第二次接触台面时距离出球点的水平距离为2d ,则1d ______2d (填“>”“ =” 或“<”) .26.在平面直角坐标系xOy 中,已知抛物线220y ax bx a a =+++>()过点(1,4a +2).(1)求该抛物线的顶点坐标;(2)过抛物线与y 轴的交点作y 轴的垂线l ,将抛物线在y 轴右侧的部分沿直线l 翻折,其余部分保持不变,得到图形G ,()11M a y --,,()21N a y -+,是图形G 上的点,设12t y y =+. ①当1a =时,求t 的值; ②若69t ≤≤,求a 的取值范围.27.如图,在△ABC中,AB=AC,∠BAC=2α(45°<α<90°),D是BC的中点,E是BD 的中点,连接AE.将射线AE绕点A逆时针旋转α得到射线AM,过点E作EF⊥AE交射线AM于点F .(1)①依题意补全图形;②求证:∠B=∠AFE;(2)连接CF,DF,用等式表示线段CF,DF之间的数量关系,并证明.28.在平面直角坐标系xOy中,对于△OAB和点P(不与点O重合)给出如下定义:若边OA,OB上分别存在点M,点N,使得点O与点P关于直线MN对称,则称点P为△OAB的“翻折点”.(1)已知A(3,0),B(0,).①若点M与点A重合,点N与点B重合,直接写出△OAB的“翻折点”的坐标;②P是线段AB上一动点,当P是△OAB的“翻折点”时,求AP长的取值范围;(2)直线34y x b=-+(b>0)与x轴,y轴分别交于A,B两点,若存在以直线AB为对称轴,且斜边长为2的等腰直角三角形,使得该三角形边上任意一点都为△OAB的“翻折点”,直接写出b的取值范围.。
2019-2020学年第二学期九年级数学期末考试试卷及答案
第1页,共8页 数学试卷 第2页, 共8页密 封 线 学校 班级 姓名 学号封 线 内 不 得 答 题2019-2020学年第二学期九年级联考数学试卷及答案题号一 二 三 四 总分人 复核人 总分 得分本试卷满分为150分,考时间为120分钟.1. 下列各数:1.414,2,-13,0,其中是无理数的为 ( ) A .1.414 B . 2 C .-13D .02. 2017年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89 000人,将89 000用科学记数法表示为 ( )A .89×103B .8.9×104C .8.9×103D .0.89×1053. 剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为 ( )A B C D4.不等式组⎩⎨⎧x ≥-1,x<2的解集在数轴上表示正确的是 ( )A BC D 5. 下列几何体中,主视图是三角形的是 ( )A B C D 6市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学筹款情况如下表:筹款(元) 5 10 15 20 25 30 人数 3 7 11 11 13 5 则该班同学筹款金额的众数和中位数分别是 ( ) A .11,20 B .25,11 C .20,25 D .25,20 7BC ⊥AE 于点C ,CD ∥AB ,∠B =55°,则∠1等于 ( ) A .55° B .45° C .35° D .25°( 第7题 ) ( 第8题 ) (第10题)8. 如图,A ,D 是⊙O 上的两个点,BC 是直径.若∠D=32°,则∠OAC 为 ( )A .64°B .58°C .72°D .55° 9. 某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是 ( )A .(a -10%)(a +15%)万元B .a(1-90%)(1+85%)万元C .a(1-10%)(1+15%)万元D .a(1-10%+15%)万元 10. 今年五一节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t(min ).所走的路程为s(m ),s 与t 之间的函数关系如图所示,下列说法错误的是 ( ) A .小明中途休息用了20 minB .小明休息前爬山的平均速度为每分钟70 mC .小明在上述过程所走的路程为6 600 mD .小明休息前爬山的平均速度大于休息后爬山的平均速度得 分 评卷人 得分 评卷人二、填空题:本大题共8小题,每小题4分,共32分.把答案写在题中横线上的.一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内.第3页,共8页数学试卷 第4页,共8页密 封 线 内 不 得 答 题11. 因式分解:x 3-4x = ___________ .12.如图,在△ABC 中,D ,E 分别是边AB ,AC 上的点,且DE ∥BC ,若△ADE 与△ABC 的周长之比为2∶3,AD =4,则DB = .13.若关于x 的一元二次方程x 2-4x -m =0有两个不相等的实数根,则实数m 的取值范围是____ .14. 已知α,β均为锐角,且满足|sin α-12|+(tan β-1)2=0,则α+β=________.(第12题 ) (第17题) 15.分式方程2x x -1-11-x=1的解是 16.函数y =1-xx +2中,自变量x 的取值范围为 . 17. 如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB=65°,则∠AED ′ .18观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,……,则81+82+83+84+……+82 015的和的个位数字是得 分 评卷人19.(6分)计算:-14+12sin 60°+-(π-5)020. (6分)先化简,再求值:(m -n)2-m(m -2n),其中m =3,n = 2.21.(8分)如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1; (2)请画出△ABC 关于原点O 成中心对称的图形△A 2B 2C 2;(3)在x 轴上找一点P ,使PA +PB 的值最小,请直接写出点P 的坐标.22. (10分) 今年“五·一”节期间,某商场举行抽奖促销活动.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明,证明过程或演算步骤.第5页,共8页 数学试卷 第6页, 共8页密 封 线 学校 班级 姓名 学号封 线 内 不 得 答 题(1)请你用树形图或列表法表示出抽奖所有可能出现的结果; (2)求抽奖人员获奖的概率23(10分)如图,大楼AB 右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B ,C ,E 在同一水平直线上),已知AB =80 m ,DE =10 m ,求障碍物B ,C 两点间的距离.(结果精确到0.1 m ,参考数据:2≈1.414,3≈1.732)得 分 评卷人24. (本题满分8分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费. 为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点). 请你根据统计图解答下列问题: (1)此次抽样调查的样本容量是__________________.(2)补全频数分布直方图,求扇形图中“15吨—20吨”部分的圆心角的度数; (3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?用户用水量频数分布直方图 用户用水量扇形统计图 户数(单位:户)吨 10-15吨 30-35 40 30 20 100 10 15 20 25 30 35 用水量(单位:吨)25.(10分)已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACB =∠DCE =90°,D 为线段AB 上一动点. (1)求证:BD =AE ;(2)当D 是线段AB 中点时,求证:四边形AECD 是正方形.四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.第7页,共8页数学试卷 第8页,共8页密 封 线 内 不 得 答 题26.(10分)如图,在平面直角坐标系中,一次函数2+=nx y 的图象与反比例函数xmy = 在第一象限内的图象交于点A ,与x 轴交于点B ,线段OA =5,C 为x 轴正半轴上一点,且sin ∠AOC =45. (1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积.27. 如图,AB 为⊙O 直径,C 、D 为⊙O 上不同于A 、B 的两点,∠ABD =2∠BAC .过点C 作CE⊥DB,垂足为E ,直线AB 与CE 相交于F 点. (1)求证:CF 为⊙O 的切线;(2)若⊙O 的半径为52,弦BD 的长为3,求CF 的长.28. 如图,已知抛物线y=x 2+bx+c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC∥x 轴,点P 时直线AC 下方抛物线上的动点. (1)求抛物线的解析式; (2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学下学期期末考试试卷
(时间90分钟 满分100分)
一、选择题(本大题共10小题,每小题4分,共40分) 1.抛物线2)2(-=x y 的顶点坐标是( A ) A .(2,0)
B .(-2,0)
C .(0,2)
D .(0,-2)
2.在Rt △ABC 中,∠C=90°,下列式子不一定成立的是( A ) A .sinA=sinB
B .cosA=sinB
C .sinA=cosB
D .∠A+∠B=90°
3.在相同时刻,物高与影长成正比。
如果高为1.5米的标杆影长为2.5米,那么影长为 30米的旗杆的高为 ( B ) A .20米
B .18米
C .16米
D .15米
4.当锐角
30>α时,则αcos 的值是( D )
A .大于
1
2
B .小于
12 C .大于2 D .小于2
5.在Rt△ABC 中,各边的长度都扩大两倍,那么锐角A 的各三角函数值( C ) A .都扩大两倍
B.都缩小两倍
C .不变
D .都扩大四倍
6. 如图,AB ∥CD ,AC 、BD 交于O ,BO=7,DO=3,AC=25,则AO 长为( D ) A .10 B .12.5 C .15 D .1
7.5
7.如图,梯子(长度不变)跟地面所成的锐角为A ,关于∠A 的三角函数值与梯子的倾斜 程度之间,叙述正确的是( A ) A .sinA 的值越大,梯子越陡 B .cosA 的值越大,梯子越陡 C .tanA 的值越小,梯子越陡 D .陡缓程度与∠A 的函数值无关
(第6题) (第7题)
8.已知△ABC∽△DEF,且△ABC 的三边长分别为4,5,6,△DEF 的一边长为2,则△DEF 的周长为( D )
A .7.5
B .6
C .5或6
D .5或6或7.5
9.已知函数y=ax 2
+bx+c 图象如图所示,则下列结论中正确的个数( C ) ① abc <0 ② a- b +c <0 ③ a+b+c >0 ④ 2c =3b A .1
B .2
C .3
D .4
10.如图所示,G 为△ABC 重心(即AD 、BE 、CF 分别为各边的中线),若已知S △EFG = 1,则
S △ABC 为( D ) A .2 B .4 C .8 D .12
(第9题) (第10题)
二、填空题(本题共4小题,每小题5分,满分20分)
11.将抛物线2
2x y =先沿x 轴方向向左平移2个单位,再沿y 轴方向向下平移3个单位,
所得抛物线的解析式是3)2(22-+=x y 。
12. 如图,有一个抛物线型拱桥,其最大高度为16m ,•跨度为•40m ,现把它的示意图放在
平面直角坐标系中•,则此抛物线的函数关系式为:16)20(25
1
2+--
=x y 。
13. 墙壁D处有一盏灯(如图),小明站在A处测得他的影长与身长相等都为1.6m ,小明向
墙壁走1m 到B处发现影子刚好落在A点,则灯泡与地面的距离CD =
15
64。
14.如图,△AOB 以O 位似中心,扩大到△COD ,各点坐标分别为:A (1,2)、B (3,0)、
D (4,0)则点C 坐标为 )3
8
,34(。
(第12题) (第13题) (第14题)
三、(本题共2小题,每小题8分,满分16分)
15. 某飞机着陆滑行的路程s 米与时间t 秒的关系式为:2
5.160t t s -=,试问飞机着陆后
滑行多远才能停止?
15. 600米。
16.在△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC 。
16.提示:证明:∠A=∠FEC ,∠ADE=∠EFC 。
四、(本题共2小题,每小题8分,满分16分) 17.画出下面实物的三视图:
17.图略。
D
B C
A
E
F
18. 已知二次函数的图象顶点是(2,-1),且经过(0,1),求这个二次函数的解析式。
18.122
1
1)2(2122+-=--=x x x y 。
五、(本题共2小题,每小题10分,满分20分)
19. 如图所示,平地上一棵树高为5米,两次观察地面上的影子,•第一次是当阳光与地面成
45°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长多少米?
19.)535(-米。
20.如图,点D 、E 分别在AC 、BC 上,如果测得CD =20m ,CE =40m ,AD=100m ,BE=20m ,DE=45m, 求A 、B 两地间的距离。
C
20.135m 。
提示:先说明△CDE ∽△CBA. 六、(本题满分12分)
21.如图,在△ABC 中∠C 是锐角,BC =a ,AC =b 。
⑴证明:C ab S ABC sin 2
1
=
∆ ⑵△ABC 是等边三角形,边长为4,求△ABC 的面积。
21.(1)作AD ⊥BC ;(2)34。
七、(本题满分12分)
22. 如图,矩形ABCD 中AB=6,DE ⊥AC 于E ,sin ∠DCA=5
4
,求矩形ABCD 的面积。
22.48。
B
A
D
E
八、(本题满分14分)
23.如图所示,∠C=90°,BC =8㎝,AC ︰AB =3︰5,点P 从点B 出发,沿BC 向点C
以2㎝/s 的速度移动,点Q 从点C 出发沿CA 向点A 以1㎝/s 的速度移动,如果P 、Q 分别从B 、C 同时出发,过多少秒时,以C 、P 、Q 为顶点的三角形恰与△ABC 相似? 23.解:∵∠C=90°,BC=8,AC:AB=3:5,
∴设AC=3x ,则AB=5x 。
根据勾股定理得2
22AB BC AC =+,
即222)5(8)3(x x =+,64162
=x 。
∵x 为正数,∴只取2=x ,∴AC=6,AB=10。
设经过y 秒后,△CPQ∽△CBA,此时BP=2y ,CQ=y 。
∵CP=BC-BP=8-2y ,CB=8,CQ=y ,CA=6。
∵△CPQ∽△C BA ,
∴CA CQ
CB CP =。
∴6
828y
y =-, ∴y=2.4。
设经过y 秒后,△CPQ∽△CAB,此时BP=2y ,CQ=y 。
∴CP=BC-BP=8-2y 。
∵△CPQ∽△CAB,
∴
CB CQ CA CP =。
∴8628y
y =-, ∴11
32=y 。
所以,经过2.4秒或者经过
11
32
后两个三角形都相似。