信号的统计检测理论
信号状态的统计检测理论
二元信号和
元信号。
信号状态的统计检测理论研究噪声干扰背景下,观测(接收)的随机信 号中(有用)信号是属于哪个状态的最佳判决的概念、方法和性能等问 题。
该理论的数字基础是统计学中的统计判决理论,又称假设检验理论 (Hypothesis Testing Theory)。确知信号状态的统计检测称为简 单假设检验;随机(或未知)参数信号状态的统计检测称为复合假设 检验。
第3章 信号状态的统计检测理论
§3.2
二元信号的贝叶斯检测准则
§3.2 随机过程的分布函数
➢ 信号状态统计检测理论的模型
信源 概率转移机构
观测空间 判决规则
某一时刻产生、输出两种信号状态中的一种。
将信源输出(假设)为真的信号以概率映射到观测 空间。
观测信号可能取值的整个空间。
将观测空间划分为两个子空间 ,使每个观测量 对应一个假设判断的方法。
将二元信号贝叶斯检测准则的代价因子约束为:
拉克 函数为
,平均代价为
其中,狄
使 最小的信号状态检测准则,称为最小平均错误概率检测准则 (Minimum Mean Probability of Error Detection Criterion)。
§3.3.1 最小平均错误概率检测准则
➢ 最佳判决式 二元信号最小平均错误概率检测准则下的似然比检验判决式为
时,得到的
是统计的判决结果,所以式(3-3-10)的平均代价
是先验概率的上凸函数
§3.3.3 极小化极大检测准则
➢ 未知先验概率的合理选定 当二元信号状态检测的先验概率未知时,若图3-3-1中选定 此值计算判决概率,则平均代价可表示为
为先验概率,并据
§3.3.3 极小化极大检测准则
统计信号处理基础估计与检测理论课程设计
统计信号处理基础估计与检测理论课程设计概述本次课程设计旨在帮助学生深入理解统计信号处理中的基础概念、方法和技术,掌握估计和检测信号的理论原理和实现方法,提高学生的理论水平和实践能力。
设计目标•掌握统计信号处理中的基本概念、方法和技术;•了解估计和检测信号的理论原理和实现方法;•学会应用Matlab等工具软件实现课程中的算法;•提高学生的理论水平和实践能力。
设计内容课程设计分为两个主要部分:基础理论和实验实现。
基础理论在基础理论部分,将介绍一些基本的概念、方法和技术,包括:•随机变量、随机过程、功率谱密度等基本概念;•基于极大似然估计、最小二乘估计等方法的信号估计;•假设检验、最小二乘检测等基本检测方法。
同时,还将介绍一些常用的信号处理算法和技术,包括:•自相关函数和互相关函数的计算方法;•快速傅里叶变换及其相关算法;•矩阵分解及其应用。
实验实现在实验实现部分,将使用Matlab等工具软件实现上述理论算法,包括:•信噪比、功率谱密度等基本信号处理方法;•基于极大似然估计、最小二乘估计的信号估计算法;•假设检验、最小二乘检测等基本检测算法。
此外,还将使用Matlab等工具软件实现一些常见的信号处理算法和技术,比如:•自相关函数和互相关函数的计算方法;•快速傅里叶变换及其相关算法;•矩阵分解及其应用。
设计要求•学生需要自己独立完成课程设计,并提交完整的课程设计报告;•学生需要遵守课程设计要求和任务,按时提交各项任务,并参加相关的实验课程;•学生需要掌握Matlab等工具软件的使用,具备一定的编程能力;•学生需要认真阅读课程设计材料和参考文献,独立撰写课程设计报告;•学生需要遵守学术规范,不得剽窃、抄袭他人作品。
参考文献•Steven M. Kay. Modern Spectral Estimation: Theory and Application. Prentice Hall, 1998.•Simon Haykin. Adaptive Filter Theory. Prentice Hall, 2002.•周志中. 数字信号处理. 清华大学出版社, 2004.•谢金星. 现代数字信号处理. 北京航空航天大学出版社, 2008.•高学民, 陈中慎. Matlab在信号处理中的应用. 电子工业出版社, 2006.。
信号检测与估计理论
平方检测算法是一种简单而有效的信 号检测算法,它通过比较输入信号的 平方和与阈值来判断是否存在信号。
信号估计理论
02
信号估计的基本概念
信号估计
利用观测数据对未知信号或系统状态进行推断或预测 的过程。
信号估计的目的
通过对信号的处理和分析,提取有用的信息,并对未 知量进行估计和预测。
信号估计的应用
在通信、雷达、声呐、图像处理、语音识别等领域有 广泛应用。
阈值设置
03
在信号检测中,阈值是一个关键参数,用于区分信号和噪声。
通过调整阈值,可以控制错误判断的概率。
信号检测的算法
最大后验概率算法
最大后验概率算法是一种常用的信号 检测算法,它基于贝叶斯决策准则, 通过计算后验概率来判断是否存在信 号。
平方检测算法
多重假设检验算法
多重假设检验算法是一种处理多个假 设的信号检测算法,它通过比较不同 假设下的似然比来确定最佳假设。
医学影像信号处理
X光影像处理
通过对X光影像进行去噪、增强、分割等处理,可以提取出 病变组织和器官的形态特征,为医生提供诊断依据。
MRI影像处理
磁共振成像(MRI)是一种无创的医学影像技术,通过对MRI 影像进行三维重建、分割、特征提取等技术处理,可以更准确
地诊断疾病。
超声影像处理
超声影像是一种实时、无创的医学影像技术,通过对超声影像 进行实时采集、动态分析、目标检测等技术处理,可以为临床
03
估计的精度和效率。
深度学习在信号检测与估计中的应用
01
深度学习是人工智能领域的一种重要技术,在信号检
测与估计中信号进行高效的特征
提取和分类,提高信号检测的准确性和稳定性。
信号检测工作原理
信号检测工作原理引言:信号检测是指在电子通信系统中,接收端对传输过程中的信号进行检测和解析的过程。
它是保证信息传输质量和可靠性的关键步骤之一。
本文将从信号检测的定义、原理和实际应用三个方面进行阐述。
一、信号检测的定义信号检测是指接收端根据接收到的信号来判断是否存在目标信号,并进行相应的解析和处理的过程。
在数字通信系统中,信号通常以二进制形式表示,即通过0和1的编码来传输信息。
信号检测的目标是在存在噪声的情况下,准确地判断接收到的信号是0还是1,从而实现正确的信息传输。
二、信号检测的原理信号检测的原理主要基于统计理论和概率论。
在信号传输过程中,信号会受到各种干扰和噪声的影响,使得接收到的信号与发送的信号存在一定的差异。
信号检测的关键是通过合适的算法和技术,将接收到的信号与各种干扰和噪声进行区分,从而准确地判断信号的状态。
在数字通信系统中,常用的信号检测技术包括匹配滤波、决策反馈等。
其中,匹配滤波是一种常用的信号检测技术,它通过与已知信号进行相关运算,得到相关输出来判断接收到的信号是否是目标信号。
决策反馈则是根据接收到的信号的幅值来进行判断,如果幅值大于一定阈值,则判定为1,否则判定为0。
三、信号检测的实际应用信号检测在现实生活中有广泛的应用,特别是在无线通信系统中。
无线通信系统中,由于信号传输过程中存在多径效应、多普勒频移等问题,导致信号的失真和衰减,因此需要进行信号检测来恢复原始信号。
在手机通信中,信号检测被广泛应用于移动通信系统中。
移动通信系统中,手机通过基站与网络进行通信,基站接收到手机发送的信号后,需要进行信号检测来判断接收到的信号是0还是1,并进行解码和解析,最终实现通信的目的。
信号检测还被应用于雷达系统中。
雷达系统中,通过发送一定频率和波形的信号,接收目标物体反射回来的信号,通过信号检测来判断目标物体的位置和速度,并进行跟踪和识别。
总结:信号检测是保证电子通信系统传输质量和可靠性的关键步骤。
信号检测论
信号检测论(Signal Detection Theory,简称SDT),是一种心理物理法,是关于人们在不确定的情况下如何作出决定的理论。
它是信息论的一个重要分支。
在SDT实验中通常把刺激变量看作是信号,把刺激中的随机物理变化或感知处理信息中的随机变化看作是噪音。
常以SN(信号加噪音)表示信号,以N表示噪音。
信号检测了最初是信息论在通讯工程中的应用成果,专门处理噪音背景下对信号进行有效分离的问题,其过程本质上是一种统计决策程序。
在信号检测论引入心理学研究领域后,一些原先的基本概念、思想和假设被移植到心理物理学情境中来。
信号和噪音是信号检测论中最基本的两个概念。
在心理学中,信号可以理解为刺激,噪音就是信号所伴随的背景。
编辑本段信号检测论是一种把通讯系统中雷达探测信号的原理用于人的感知觉研究的理论。
它是特纳和斯威茨在1954年引入心理学的。
信号检测论的提出改变了传统上人们对感觉阈限的理解。
20世纪50年代,实验心理学受行为主义思想的支配,以刺激一反应(S—R)为核心,认为所有的行为都是机体对刺激的反应,心理学只能研究那些能够直接观察和记录的外显反应,心理科学的任务就是把刺激与特定刺激有关的行为鉴别出来,发现对S—R联结可能有影响的各种因素。
起先,行为主义原则似乎很管用,在感觉阈限、语词学习、比较心理等研究领域取得了一系列重要成果。
可是,心理学家们渐渐意识到,人类行为是一系列复杂事件的最终表现,远不是用简单的S—R就能说清楚的。
这一改变很大程度上要归因于信号检测论的发展。
信号检测论把外部世界的刺激能量作为主体探测的对象,把人的内部表征看作是外部刺激与以前经验共同作用的结果。
它的引入为假设刺激能量与内部表征间的关系提供了必要的联系环节。
编辑本段信号检测论发展起来是从电子工程学和统计决策论中发展起来的。
第二次世界大战期间,工程师们创立了一种用来说明雷达设备搜寻探测飞行物过程的信号检测理论。
特纳和斯威茨认为,雷达系统搜索目标的过程和人类寻找信号进行反应的过程是类似的。
信号的统计检测理论
C c10P H0 c11P H1 R0 PH1 c01 c11 p x H1 PH0 c10 c00 p x H0 dx
c00c11 0
c01c10 1
C PH0 R0 PH1 px H1 PH0 px H0 dx
把使被积函数取负值的观察值x值划分给R0区域,而把其余的观察值x值划分给R1, 即可保证平均代价最小。
C c10 P H0 c11P H1 R0 PH1 c01 c11 p x H1 PH0 c10 c00 p x H0 dx
把使被积函数取负值的观察值x值划分给R0区域,而把其余的观察值x值划分给R1, 即可保证平均代价最小。
贝叶斯检测小结 C c10 P H0 c11PH1 R0 PH1 c01 c11 p x H1 PH0 c10 c00 p x H0 dx
c11 c00 0
c01PM P1*g c10PF P1*g
c11 c00 0 c10 c01 1
PM P1*g PF P1*g
奈曼-皮尔逊准则 (Neyman-Pearson criterion)
假设的先验概率未知,判决代价未知(雷达信号检测)
➢目标
PH1 H0 尽可能小,
c00c11 0
c01c10 1
C P H0 c00P H0 H0 c10P H1 H0 P H1 c01P H0 H1 c11P H1 H1
C PH0 PH1 H0 PH1PH0 H1
平均错误概率此时,平均代价最小即转化为平均错误概率最小
3.4.1 最小平均错误概率准则
,使得平均P1*g代价
C P1, P1*g
c11 c00 c01 c11 PM P1*g c10 c00 PF P1*g 0
传统心理物理学方法与信号检测论
传统心理物理学方法与信号检测论一、本文概述本文旨在深入探讨传统心理物理学方法与信号检测论的核心原理和应用。
心理物理学,作为心理学与物理学的交叉学科,研究物理刺激与心理感知之间的关系,揭示人类感知世界的机制。
而信号检测论,作为一种统计决策理论,在心理物理学中发挥着重要作用,帮助我们理解人类在接收和处理信息时的决策过程。
我们将首先对传统心理物理学方法进行概述,包括其基本原理、发展历程以及主要的研究方法和技术。
随后,我们将深入探讨信号检测论的基本概念、理论框架和关键应用。
我们将重点关注信号检测论在心理物理学中的应用,如感知阈值的测定、信号识别与决策等。
通过本文的阐述,我们期望读者能够全面了解传统心理物理学方法与信号检测论的基本知识和应用,为相关领域的研究和实践提供有益的参考。
我们也希望激发读者对这些领域进一步探索的兴趣,推动心理物理学和信号检测论的发展。
二、传统心理物理学方法概述传统心理物理学方法,也称心理物理学实验法,是一种探究人类感知和认知过程的重要手段。
心理物理学旨在通过定量的方式理解和描述心理现象与物理刺激之间的关系。
这种方法的历史可以追溯到19世纪末,由德国物理学家和心理学家费希纳(Gustav Fechner)提出的心理物理定律为心理物理学奠定了理论基础。
传统心理物理学方法主要包括极限法、平均差误法、恒定刺激法、梯度法等。
这些方法的核心思想是通过控制物理刺激变量,观察并测量个体的心理反应,从而揭示心理与物理刺激之间的数量关系。
极限法是一种测量感觉阈限的经典方法,通过递增或递减刺激强度,观察个体能够感知到的最小或最大刺激强度。
平均差误法则通过让被试者对一系列已知强度的刺激进行估计,然后计算估计值与真实值之间的平均差异,以评估感知的准确性和精度。
恒定刺激法则通过呈现一系列固定强度的刺激,并测量被试者的反应时间和准确性,以研究感知过程的动力学特性。
梯度法则通过呈现一系列不同强度的刺激,让被试者判断刺激强度的变化,从而探究感知的分辨能力和敏感性。
信号检测论的原理
信号检测论的原理信号检测理论是一种用于统计决策问题的数学方法,用于判断未知信号在噪声背景下的存在与否。
在通信、雷达、生物医学等领域,信号检测理论被广泛应用来帮助我们识别和判别信号。
信号检测理论的基本原理可以归结为两个假设:有和无。
有假设表示待检测信号存在,无假设则表示不存在。
在判断信号是否存在时,我们根据信号的特征和信噪比来做出决策。
在信号检测理论中,我们用到了四个重要概念:信号、噪声、信噪比和决策准则。
信号是我们要检测的对象,可以是一些特定的事件或现象的表现。
噪声是存在于信号之外的其他无关的干扰或背景。
信噪比是衡量信号与噪声之间的比例,它反映了待检测信号在噪声中的强度。
决策准则是我们根据信号的特征和信噪比来做出的决策。
在信号检测理论中,最基本的问题是如何确定决策准则。
通常,我们使用两个统计量来判断信号是否存在:接收到的信号幅度和信号的功率。
通过对这两个统计量进行假设检验,我们可以得到一个关于信号存在与否的决策。
在信号检测理论中,我们使用了两种基本的假设检验:一是简单假设检验,即有无信号的二分类问题;二是复合假设检验,即有多个可能有信号的类别。
对于简单假设检验,我们使用了两个统计量来评估决策准则:检测概率和虚警概率。
检测概率是指在有信号的情况下,正确地判别出信号存在的概率;虚警概率是指在无信号的情况下,错误地判断出信号存在的概率。
信号检测理论中的一个重要概念是最佳决策准则。
最佳决策准则是指在给定限制条件下,能够最大化检测概率同时最小化虚警概率的决策准则。
最佳决策准则可以通过最大似然比测试来得到。
最大似然比测试是根据接收到的信号与噪声的概率分布,计算出信号存在和不存在的似然比,然后将似然比与一个事先设定的阈值进行比较,决定信号的存在与否。
除了最佳决策准则外,信号检测理论还涉及到几个重要的概念和技术。
其中包括缺失检测、虚警概率、检测门限、信道容量等。
这些概念和技术都是为了在实际应用中提高检测性能而设计的。
信号的统计检测与估计理论
信号的统计检测与估计理论华侨大学信息科学与工程学院电子工程系电子程系E-mail:************.cnTel: 22692477T l22692477课程教学目的和方法目的通过本课程学习,使学生掌握信号的检测和估计的基本概念、基本理论和分析问题的基本方法,培养学生运用这些方法去解基本和分析问题的基本方法,培养学用这些方法去解决实际问题的能力。
方法本课程将通过重点讲授检测和估计的基本概念、基本原理和分析问题的基本方法入手,使同学们学会信号的检测与估计理论,析问题的基本方法入手使同学们学会信号的检测与估计理论将为进一步学习、研究随机信号统计处理打下坚实的理论基础,同时它的基本概念、理论和解决问题的方法也为解决实际应用,如信号处理系统设计等问题打下良好的基础。
2课程内容简介信号的统计检测与估计理论已成为现代信息理论的一个重要组成部分,它是现代通信、雷达、声纳以及自动控制技术的理论基础,它在许多领域或技术中有广泛的应用。
其主要内容有:信号的矢量与复数表示、噪声和干扰、假设检验、确知信号的检测、具有随机参量信号的检测、信号的参量估计、信号参量的最佳线性估计。
3教学基本内容及学时分配概论(0.5学时)第一章信号的矢量与复数表示(3.5学时)第二章噪声和干扰(2学时)第三章假设检验(4学时)第四章确知信号的检测(6学时)第五章具有随机参量信号的检测(6学时)第八章信号的参量估计(8学时)第九章信号参量的最佳线性估计(4学时)4教材教材¾《信号的统计检测与估计理论》(第二版),李道本著,科学出版社,2004年9月参考书《信号检测与估计理论》赵树杰赵建勋编著清华大¾《信号检测与估计理论》,赵树杰、赵建勋编著,清华大学出版社,2005年11月张明友吕明编著电子工业出版¾《信号检测与估计》张明友、吕明编著,电子工业出版社,2005年2月¾其他相关参考书籍5考试与要求选修课平时:60%-70%作业¾¾上课考勤期末考试40%30%期末考试:40%-30%6目录概论第一章信号的矢量与复数表示第二章噪声和干扰第三章假设检验第章第四章确知信号的检测第五章具有随机参量信号的检测第八章信号的参量估计第九章信号参量的最佳线性估计7信号的检测与估计理论的起源和发展检测与估计理论的基本概念检测与估计的分类8信号的统计检测与估计理论起源¾第二次世界大战( 20世纪40年代)¾战争对雷达和声纳技术的需求理论基础¾信息论(Information Theory)¾通信理论(Comm. Theory)数学工具¾概率论( Probability Theory)¾随机过程(Stochastic (random) Process)¾数理统计(Statistics)9信号的统计检测与估计理论发展¾现代信息理论的重要组成部分随机信号统计处论基¾随机信号统计处理的理论基础10检测与估计理论的应用现代通信雷达、声纳自动控制模式识别自动控制、模式识别射电天文学、航空航天工程遥感遥测资源探测天气预报精神物理学生物物理学精神物理学、生物物理学系统识别11无线通信系统无线通信系统原理框图12信息系统信息系统的主要工作¾信号的产生、发射、传输、接收、处理¾实现信息的传输最主要的要求¾高速率¾高准确性13信号的随机性 确知信号)(0s t t T ≤≤确信号 随机参量信号()()12(;)(0;[,,...,])T M s t t T θθθ≤≤=θθ 噪声加性噪声¾¾乘性噪声()n t 干扰¾一般干扰¾人为干扰 信号在信道传输中畸变14噪声和干扰噪声¾与有用信号无关的一些破坏性因素;如:通信中的各种工业噪声交流声脉冲噪声银河系¾如:通信中的各种工业噪声、交流声、脉冲噪声、银河系噪声、大气噪声、太阳系噪声、热噪声等;干扰与有用信号有关的些破坏性因素¾与有用信号有关的一些破坏性因素;¾如通信中的符号间干扰、共信道干扰、邻信道干扰、人为干扰等干扰等;15信号的随机性 处理的信号:()(0)v t t T ≤≤)0()()(),v t s t n t t T =+≤≤)()(;)(),0v t s t n t t T =+≤≤θ 接收信号或观测信号16信号的统计处理方法对信号的随机性进行统计描述概率密度函数、各阶矩、相关函数、协方差函数、功率谱密度等来描述随机信号的统计特性;基于随机信号统计特性所进行的各种处理和选择的相应准则均是在统计意义上进行的,并且是最佳的,如应准则均是在统计意义上进行的并且是最佳的如信号状态的统计判决、信号参量的最佳估计等;处理结果的评价即性能用相应的统计平均量来度量,如判决误差、平均代价、平均错误概率、均值、方差、均方误差等;17检测和估计理论检测估计¾参量估计¾波形估计(滤波理论)滤波理论:现代Wiener滤波理论和Kalman滤波理论18检测¾有限观测“最佳”区分一个物理系统不同状态的理论。
信号检测论的原理
.
▪ 主试呈现的刺激,有时只呈现“噪音”刺激(以N表 示);有时在信号刺激加噪音刺激同时呈现(以SN表 示),让被上述情况可以看出:虚报率与报准率都随着反 应水平的变化而变化。
▪ 乍看起来,似乎在这些情况下,电子侦察系统对 信号的辨别力发生了改变,但实际上不是这样, 因为在这些情况下,传感器在接受和提供信息的 性能上并没有发生变化,没有因反应水平的变化 而有所不同,所不同的是侦察反应器对传感器提 供的信息进行处理的方式发生了变化。
.
➢ 但是在传输过程中不可避免地会遇到:
✓ ①外界干扰和内部干扰; ✓ ②电磁波传播过程中无线电信号畸变; ✓ ③设备技术的不完善等因素的影响。
➢ 信号中混入了很多噪音,使信息传输的可靠性降低, 这是信息传输过程中的不利因素。如何同这种不利 的外界和内部的随机因素作斗争,使对噪音背景上 的信号分辨率达到最好,提高信息传输的可靠性, 这就是信号检测论所要解决的问题。
.
➢ 3.漏报 当有信号出现时,被试报告为“无”, 这称为漏报(或失察)(miss),以n/SN表示。 把这种判定概率称为漏报条件概率,以P(M)或 P(n/SN)表示。
➢ 4.正确否定 当无信号而只有噪音出现时,被试 报告为“无”,称为正确否定(correct rejection)或正确(correct),以n/N表示。 我们把这个判定的条件概率称为正确否定的条件 概率,以P(CR)或P(n/N)来表示。
.
▪ 在噪音背景下,无论将Xc确定在哪一位置,都存在有 错误的可能,即虚惊错误FA和漏检错误M。如上图所 示,曲线P0(X)在Xc右面部分所包含面积为虚惊率 QFA,曲线P1(X)在Xc左面部分所包面积为漏检率QM。
第二节 信号检测论
根据计算结果,被试甲对学习项目的辨别力指 数大于被试乙的辨别力指数,说明被试甲在相 同条件下对项目学习效果好于被试乙,因此可 以认为被试甲的记忆力好于被试乙。 被试乙的判断标准高于被试甲,相对而言,被 试乙在作出“是”学过的判断时更为谨慎。
(二)评价法 在有无法实验中,当定下判断标准刺激之后, 凡是等于或大于标准刺激的感觉都说是由信号 引起的。有无法只是把感觉连续体分为两部分, 所以它从被试的反应中所能知道的就只是某一 感觉在标准以上或以下,至于这种感觉离开标 准多远则不清楚,因而也就丧失了许多重要信 息。
击中率P(y/SN)+漏报率P(n/SN)=100% 虚报率P(y/N)+正确否定率P(n/N)=100%
被试在信号检测实验中的击中概率和虚报概率, 是由被试的分辨能力和辨别标准决定的,那么我们 是否根据其信号检测判断的结果反过来计算或推断 出被试的辨别能力与判断标准呢?
第一类错误: 第一类错误:虚报率 第二类错误: 第二类错误:漏报率
判断标准变化情况
⒈当奖惩办法固定时,信号出现的概率将会直接影响 判断标准的变化。以下将假定信号出现概率分别为: 0.20、0.50和0.80,考察其相应的判断标准的变化。
判断标准变化情况
⑴假定信号出现概率为0.20时,概率较低,被试不轻易报告有信号,被试倾 向于少说有信号,多说无信号,意味着原来说有信号的部分将为说无信号部 分所替代,XC点将右移,相应地标准线也将右移,可以得到判断标准β>1。 ⑵假定信号出现概率为0.80时,概率较高,被试倾向于多说有信号,少说无 信号,意味着原来说无信号的部分将为说有信号部分所替代,XC点将左移, 相应地标准线也将左移,β<1。 ⑶假定信号出现概率为0.50时,概率中等。
辨别力指数
当信号和噪音在信号检测 系统中引起的效应强度分 布之峰值距离越大,信号 检测系统对信号的分辨能 力越强,反之越弱。 在信号检测理论中,就以 上式计算得到的d’作为信号 检测系统对信号分辨能力 的测量量数,称为辨别力 指数。
第三章信号检测的基本理论
1
1
R0
R1
C 00 P ( H 0 ) C 01 P ( H 1 )
固定 平均代价
R0
P x | H 0 dx C10 P ( H 0 ) P x | H 0 dx
R1
P x | H 1 dx C11 P ( H 1 ) P x | H 1 dx
H1: x A n +A、-A均为确定信号,n为随机信号,因此x也为随机信 号,仅仅是均值发生偏移,即有:
x H ~ A, x H ~ A,
0 2 n 1 2 n
5/83
第三章
信号检测的基本理论 3.2 假设检测的基本概念
P(n)
主讲:刘颖 2009年 秋
H 0 或H 1
概率 转移 机构
观测空间R 基本检测理论模型
判决 准则
H 0或H 1
观测空间R:在信源不同输出下,观测空间R是由概率转移机构 所形成的可能观测的集合。观测量可以是一维的,也可以是N 维矢量。
8/83
主讲:刘颖 2009年 秋
信 源
H0或H1
概率 转移 机构
观测空间R 基本检测理论模型
3.2.2 统计检测的结果和判决概率
信号统计检测就是统计学中的假设检验。
给信号的每种可能状态一个假设 Hj(j=0,1,2,…,M),检 验就是信号检测系统对信号属于哪个状态的统计判决。 一维观测信号是N维观测矢量信号的特例,因此下面 按N维观测矢量信号来讨论信号的统计检测问题,也就 是假设检验结果和判决概率问题。
12/83
第三章
信号检测的基本理论 3.2 假设检测的基本概念
主讲:刘颖 2009年 秋
信号检测论的三种实验方法
信号检测论的三种实验方法信号检测论是一种用于研究人类感知和决策过程的统计理论。
它主要关注的是如何在存在不确定性的情况下,有效地检测和区分信号和噪声。
在信号检测论中,有三种常见的实验方法用于研究信号检测:信号检测理论实验、信号检测平均实验和信号检测模型实验。
第一种方法是信号检测理论实验。
这种实验方法旨在测量被试者在不同情境下的信号检测能力。
实验中,被试者需要根据提示,判断一个刺激是否存在,然后进行反应,通常是按下一个按钮或给出一个回答。
通过测量正确率和错误率,可以计算出被试者的灵敏度(即能够准确检测到信号的能力)和响应偏差(即对信号的判断偏向)。
这种实验方法可以帮助研究者了解被试者的感知能力和决策倾向。
第二种方法是信号检测平均实验。
这种实验方法旨在测量信号与噪声之间的区别。
实验中,研究者会对具有不同信噪比的刺激进行呈现,然后被试者需要判断刺激中是否存在信号。
通过分析被试者在不同信噪比下的判断准确率,可以计算出信号与噪声的可分辨度。
这种实验方法可以帮助研究者了解信号检测的效能以及信号和噪声在感知中的相对重要性。
第三种方法是信号检测模型实验。
这种实验方法旨在使用数学模型来描述信号检测过程。
实验中,研究者会根据信号检测理论建立一个数学模型,并使用实验数据来验证模型的适应性和准确性。
通过比较模型的预测结果与实际实验结果,可以进一步了解信号检测过程中的加工机制和决策策略。
通过这三种实验方法,研究者可以深入研究信号检测的基本原理和机制。
这些研究对于优化和改进人类感知和决策过程具有重要意义,例如在医学影像诊断、安全监控和交通管理等领域中的应用。
信号检测与估计理论-PPT
x)
x
2
2
x
6
2
例3 随机变量 X 的分布函数为
0 x0
F
(
x)
x
2
0 x 1
1 x 1
(1)求 P(0.3 X 0.7)
(2)X得密度函数
解
(1) P(0.3 X 0.7) F (0.7) F (0.3) 0.72 0.32 0.4
(2)密度函数为
f
(x)
F ( x)
,简bx记 为
。
b
3 条件平均代价
利用概率论中得贝叶斯公式
p ,x p | xpx
26
平均代价C 可表示为
C
p
x
c
p
|
x
d
dx
式中, p | 就x 是后验概率密度函数。
由于 px与内积分都就是非负得,所以,使 C最小,等
价为使条件平均代价
C
|
x
c
p
|
x
d
最小,左边表示条件平均代价。
取 p | x 得自然对数,等价得估计量构造公式为
35
ln p | x
| 0
map
5.2.18
称为最大后验方程。利用 p | x px | p px,则有估
计量构造公式
ln p x | ln p
| 0
map
5.2.19
以上三个构造公式就是等价得,但(5、2、19)就是最方 便得。
为
mse
x
def
mse
。
为求得使 C | x 最小得估计量
mse
,令
28
Байду номын сангаас
信号检测论 正态曲线
信号检测论正态曲线
信号检测论是一种统计决策理论,用于研究在噪声背景下检测信号的最佳策略。
正态曲线是信号检测论中的一个重要概念,它描述了在给定噪声水平下,信号强度与观察者判断为信号的概率之间的关系。
正态曲线的形状类似于一个钟形,也被称为正态分布曲线。
在信号检测论中,正态曲线的横轴表示信号强度,纵轴表示观察者判断为信号的概率。
当信号强度增加时,观察者判断为信号的概率也随之增加。
当信号强度达到一定阈值时,观察者判断为信号的概率趋近于1。
正态曲线的参数包括均值、标准差和阈值。
均值决定了正态曲线的位置,标准差决定了正态曲线的宽度,阈值则决定了观察者判断为信号的最小信号强度。
在信号检测论中,最优的检测策略是在给定噪声水平下选择一个合适的阈值,使得观察者判断为信号的概率最大而误判的概率最小。
在心理物理学和感知研究中,正态曲线也被用来描述感觉刺激的强度与感觉判断之间的关系。
在这些研究中,正态曲线的形状和参数也具有重要意义,可以帮助人们了解感觉系统的性质和特征。
信号的统计检测理论
1
H1
H
0
H1
c00
c10
c11
c01
cij 表示假设Hj为真时,判决假设Hi成立所付出的代价
注:一般假设
c10 c00 c01 c11
国家重点实验室
3.3.1 平均代价的概念和贝叶斯准则
2. 平均代价的计算
平均代价C将由两部分构成,一是信源发送H0假设时,判决所付出的代价C(H0 ) 二是信源发送H1假设时,判决所付出的代价C(H1 )
3.2 .2 统计检测的结果和判决概率
四种判决概率的计算:
根据通信原理的结果,若信源两个假设等概发送,最佳判决门限为 A/2,即若接 收信号大于A/2,判决信源发送A;若接收信号小于A/2,则判决信源发送0 。
A R0 : , 2
A R1 : , 2
12
根据通信原理的结果,若信源两个假设等概发送,最佳判决门限 为 A/2,即若接收信号大于A/2,判决信源发送A;若接收信号小于 A/2,则判决信源发送0。
1 x2 exp px H 0 2 2 2 2
12
国家重点实验室
合并
C c10 PH 0 c11PH1 PH1 c01 c11 px H1 PH 0 c10 c00 px H 0 dx R 0
国家重点实验室
3.3.1 平均代价的概念和贝叶斯准则
3. 平均代价取到最小值的条件
贝叶斯准则的基本原理:在划分观察空间时,使平均风险最小
国家重点实验室
3.3.1 平均代价的概念和贝叶斯准则
通信系统中,二元信号的平均解调错误概率:
Pe P0P1 0 P1P0 1
信号检测与估计理论
信号检测与估计理论介绍信号检测与估计理论是数字通信和统计信号处理中的一个重要领域。
它研究的是如何准确地检测到信号的存在以及对信号进行估计。
该理论在许多实际应用中具有重要意义,包括雷达系统、通信系统、生物医学信号处理等。
信号检测在信号检测中,我们的目标是从观测到的信号中确定是否存在某个特定的信号。
通常情况下,我们将信号检测问题建模为一个假设检验问题,其中有两个假设:零假设H0表示没有信号存在,备择假设H1表示信号存在。
在信号检测中,我们通过设计一个检测器来根据观测到的信号样本进行决策。
常用的检测器包括最大似然检测器、贝叶斯检测器等。
这些检测器利用观测到的信号样本的统计特性,通过最大化某个准则函数(如似然比)来做出决策。
信号估计信号估计是根据观测到的信号样本,估计出信号的参数或者信号本身的过程。
信号估计有多种方法,包括参数估计和非参数估计。
在参数估计中,我们假设信号遵循某个已知的参数化模型,并通过观测到的信号样本去估计这些参数。
常用的参数估计方法有极大似然估计、最小二乘估计等。
这些方法基于最优准则来选择最优参数估计。
非参数估计不需要对信号满足某个特定的参数化模型的假设,它们通常利用样本的统计特性来进行估计。
常用的非参数估计方法有最小二乘法、核方法等。
检测与估计的性能评价在信号检测与估计中,我们需要对检测与估计的性能进行评价。
通常情况下,我们使用概率误差、均方误差等作为评价指标。
在信号检测中,我们常用的评价指标有误报概率和漏报概率。
误报概率指当信号不存在时,检测器判定信号存在的概率;漏报概率指当信号存在时,检测器未能正确判定信号存在的概率。
在信号估计中,我们常用的评价指标有均方误差和偏差方差平衡等。
均方误差指估计值和真实值之间的平均平方误差;偏差方差平衡则是指在估计和真实值之间平衡偏差和方差。
应用领域信号检测与估计理论在许多领域都有广泛的应用。
其中,雷达系统是一个重要的应用领域。
在雷达系统中,我们需要通过检测和估计来实现目标检测、目标定位等功能。
信号检测的基本理论
固定阈值
固定阈值是指设定一个固定的值作为信号检测的阈值。这种方法简单易行,但可能不适用于所有情况,因为不同情况下信号和噪声的分布可能会有所不同。
自适应阈值
自适应阈值是指根据信号和噪声的分布自动调整阈值。这种方法能够更好地适应不同情况,提高信号检测的准确性和可靠性。
信号检测的阈值
灵敏度是指信号检测器能够正确识别有效信号的能力。高灵敏度意味着检测器能够准确地捕捉到较弱的信号。
在信号检测过程中,似然比是指对于给定的观察结果,某个假设(例如信号存在或不存在)成立的概率。通过比较不同假设下的似然比,可以判断哪个假设更有可能为真。
详细描述
信号检测的似然比原理
总结词
贝叶斯决策理论基于贝叶斯定理,通过计算信号存在的先验概率和观察结果的概率,来决定是否接受或拒绝信号存在的假设。
详细描述
信号检测的基本理论
目 录
CONTENCT
信号检测理论概述 信号检测理论的基本概念 信号检测理论的基本原理 信号检测理论的参数估计 信号检测理论的性能评价 信号检测理论的应用实例
01
信号检测理论概述
信号检测理论是一种统计决策理论,用于描述和预测观察者对信号的检测行为。它基于观察者对信号的存在与否做出判断,并考虑了观察者的判断标准和心理因素对判断结果的影响。
通信工程
03
在通信工程领域,信号检测理论用于研究信号处理和通信系统中的噪声抑制和信号提取问题,以提高通信系统的性能和可靠性。
信号检测理论的应用领域
20世纪40年代
20世纪50年代
20世纪60年代至今
信号检测理论最初由美国心理学家J.A.Swets等人提出,旨在解决军事侦察和雷达探测中的信号检测问题。
通信信号检测
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号的统计检测理论
信号的统计检测理论是随机信号处理的基础理论之一。
在随机信号特性统计描述的基础上,研究信号状态的最佳判决及其检测性能,是信号统计检测理论的主要任务。
本章概述了信号统计检测的基本概念、合理判决方法、判决结果和判决概率;重点讨论了信号统计检测各种最佳的概念、最佳判决式和检测性能的分析方法及参量信号的最佳检测理论和方法;还讨论了信号的序列检测,一般高斯信号的检测及复信号的检测等问题。
1.贝叶斯准则
在二元信号情况下,考虑判决概率P(H i |H j ),各假设H j 的先验概率P(H j )和各种判决所付出代价的代价因子c ij (i,j =0,1;c ij,i ≠j >c jj ),其平均代价为
C = c ij P(H j )P(H i |H j )1
i=0
1j=0 (.2)
所谓贝叶斯准则,就是在假设H j 的先验概率P(H j )已知,各种判决代价因子c ij 给定的情况下,使平均大家C 最小的准则。
贝叶斯准则的最佳判决式,其似然比检验形式为
λ(x )≝p (x |H 1)p (x |H 0) H 1≷H 0
P H 0 (c 10−c 00)P H 1 (c 01−c 11)≝η
式中,λ(x)是似然比函数,决定于观测信号(x|H j )的统计特性,与P(H j ),c ij 无关;η是似然比门限,决定于P(H j )和c ij ,与(x|H j )的统计特性无关。
这样,能够实现任意(x|H j )统计特性下和任意P(H j ),c ij 下使平均代价C 最小的最佳信号检测。
2.最小平均错误概率准则
如果假设H j 的先验概率P H j (j =0,1)已知,各种判决的代价因子c ij =1−δij ,则平均错误概率
P e = P H j P H i H j 1
i=0 i ≠j
1j=0=P H 0 P H 1 H 0 +P H 1 P H 0 H 1 .7 使平均错误概率P e 最小的准则,称为最小平均错误概率准则。
最小平局错概率准则的似然比检验形式为
λ(x)≝p(x|H 1)p(x|H 0)H 1≷H 0
P H 0 P H 1 ≝η 如果假设H j 的先验概率相等,即P H 0 =P H 1 ,则η=1,称为最大似然比准则。
3.奈曼—皮尔逊准则
在错误判决概率P H 1 H 0 =α约束下,使正确判决概率P H 1 H 1 最大的准则,称为奈曼—皮尔逊准则。
奈曼—皮尔逊准则的似然比检验形式为
λ(x)≝p(x|H1)
p(x|H0)
H1
≷
H0
η
式中,似然比检测门限η根据约束条件P H1H0=α求得。