2018版高考一轮总复习数学文科模拟演练解答题专项训练5和答案

合集下载

[精品]2018版高考一轮总复习数学文科模拟演练第5章数列53和答案

[精品]2018版高考一轮总复习数学文科模拟演练第5章数列53和答案

(时间:40分钟)1.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n=( )A .4×⎝ ⎛⎭⎪⎫32nB .4×⎝ ⎛⎭⎪⎫32n -1C .4×⎝ ⎛⎭⎪⎫23nD .4×⎝ ⎛⎭⎪⎫23n -1答案 B解析 由题意得(a +1)2=(a -1)(a +4),解得a =5,故a 1=4,a 2=6,所以a n =4×⎝ ⎛⎭⎪⎫64n -1=4×⎝ ⎛⎭⎪⎫32n -1.2.在等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值为( )A .1B .-12C .1或-12D .-1或12答案 C解析 根据已知条件得⎩⎪⎨⎪⎧a 1q 2=7,a 1+a 1q +a 1q 2=21,∴1+q +q 2q 2=3,即2q 2-q -1=0,解得q =1或q =-12.3.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则S 9的值是( )A .255B .256C .511D .512 答案 C解析 解法一:依题意,设等比数列{a n }的首项为a 1,公比为q ,∵S 3=7,S 6=63,∴⎩⎪⎨⎪⎧a 1-q 31-q =7,a1-q 61-q=63,解得⎩⎪⎨⎪⎧a 1=1,q =2,∴S 9=511,选C.解法二:∵等比数列{a n }的前n 项和为S n ,∴S 3,S 6-S 3,S 9-S 6成等比数列,∵S 3=7,S 6=63,∴S 9-S 6=448,∴S 9=448+S 6=448+63=511,选C.4.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5 D .-7答案 D解析 设数列{a n }的公比为q ,由⎩⎪⎨⎪⎧ a 4+a 7=2,a 5·a 6=a 4·a 7=-8,得⎩⎪⎨⎪⎧a 4=4,a 7=-2或⎩⎪⎨⎪⎧a 4=-2,a 7=4,所以⎩⎪⎨⎪⎧a 1=-8,q 3=-12或⎩⎪⎨⎪⎧a 1=1,q 3=-2,所以⎩⎪⎨⎪⎧a 1=-8,a 10=1或⎩⎪⎨⎪⎧a 1=1,a 10=-8,所以a 1+a 10=-7.5.已知{a n }为等比数列,S n 是它的前n 项和.若a 3a 5=14a 1,且a 4与a 7的等差中项为98,则S 5等于( )A .35B .33C .31D .29 答案 C解析 设等比数列{a n }的公比是q ,所以a 3a 5=a 21q 6=14a 1,得a 1q 6=14,即a 7=14.又a 4+a 7=2×98,解得a 4=2,所以q 3=a 7a 4=18,所以q =12,a 1=16,故S 5=a 1-q 51-q=16⎝⎛⎭⎪⎫1-1321-12=31,故选C.6.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________.答案 32解析 由题意得⎩⎪⎨⎪⎧a 1+a 1q =3a 1q +2,a 1+a 1q +a 1q 2+a 1q 3=3a 1q 3+2,两式作差,得a 1q 2+a 1q 3=3a 1q (q 2-1),即2q 2-q -3=0,解得q =32或q =-1(舍去). 7.等比数列{a n }满足:对任意n ∈N *,2(a n +2-a n )=3a n +1,a n +1>a n ,则公比q =________.答案 2解析 由题知2(a n q 2-a n )=3a n q ,即2q 2-3q -2=0,解得q =2或q =-12,又a n +1>a n ,故q =2.8.已知{a n }是等差数列,a 1=1,公差d ≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8=________.答案 64解析 由a 1、a 2、a 5成等比数列,得(a 1+d )2=a 1(a 1+4d ),即(1+d )2=1+4d ,解得d =2(d =0舍去),S 8=1+152×8=64.9.已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a nb n +1+b n +1=nb n .(1)求{a n }的通项公式; (2)求{b n }的前n 项和.解 (1)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2.所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n -1.(2)由(1)和a n b n +1+b n +1=nb n ,得b n +1=b n3,因此数列{b n }是首项为1,公比为13的等比数列.记{b n }的前n 项和为S n ,则S n =1-⎝ ⎛⎭⎪⎫13n 1-13=32-12×3n -1. 10.已知正项数列{a n }的前n 项和为S n ,且a 1=1,a 2n +1=S n +1+S n .(1)求{a n }的通项公式;(2)设b n =a 2n -1·2an ,求数列{b n }的前n 项和T n . 解 (1)因为a 2n +1=S n +1+S n ,① 所以当n ≥2时,a 2n =S n +S n -1,②①-②得a 2n +1-a 2n =a n +1+a n ,即(a n +1+a n )(a n +1-a n )=a n +1+a n , 因为a n >0,所以a n +1-a n =1,所以数列{a n }从第二项起,是公差为1的等差数列. 由①知a 22=S 2+S 1,因为a 1=1,所以a 2=2, 所以当n ≥2时,a n =2+(n -2)×1,即a n =n .③ 又因为a 1=1也满足③式,所以a n =n (n ∈N *). (2)由(1)得b n =a 2n -1·2an =(2n -1)·2n ,T n =2+3·22+5·23+…+(2n -1)·2n ,④2T n =22+3·23+…+(2n -3)·2n +(2n -1)·2n +1,⑤ ④-⑤得-T n =2+2×22+…+2×2n -(2n -1)·2n +1, 所以-T n =2+23-2n -11-2-(2n -1)·2n +1,故T n =(2n -3)·2n +1+6.(时间:20分钟)11.设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件答案 C解析 若对任意的正整数n ,a 2n -1+a 2n <0,则a 1+a 2<0,又a 1>0,所以a 2<0,所以q =a 2a 1<0;若q <0,可取q =-1,a 1=1,则a 1+a 2=1-1=0,不满足对任意的正整数n ,a 2n -1+a 2n <0.所以“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的必要而不充分条件.故选C.12.在各项均为正数的等比数列{a n }中,a 2,a 4+2,a 5成等差数列,a 1=2,S n 是数列{a n }的前n 项的和,则S 10-S 4=( )A .1008B .2016C .2032D .4032 答案 B解析 由题意知2(a 4+2)=a 2+a 5,即2(2q 3+2)=2q +2q 4=q (2q 3+2),得q =2,所以a n =2n ,S 10=-2101-2=211-2=2046,S 4=-241-2=25-2=30,所以S 10-S 4=2016,故选B.13.已知数列{a n }的首项为1,数列{b n }为等比数列且b n =a n +1a n,若b 10·b 11=2,则a 21=________.答案 1024解析 ∵b 1=a 2a 1=a 2,b 2=a 3a 2,∴a 3=b 2a 2=b 1b 2.∵b 3=a 4a 3,∴a 4=b 1b 2b 3,…,a n =b 1b 2b 3·…·b n -1,∴a 21=b 1b 2b 3·…·b 20=(b 10b 11)10=210=1024.14.设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1. (1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列;(3)求数列{a n }的通项公式. 解 (1)∵4S n +2+5S n =8S n +1+S n -1, ∴n =2时,4S 4+5S 2=8S 3+S 1,∴4(a 1+a 2+a 3+a 4)+5(a 1+a 2)=8(a 1+a 2+a 3)+a 1,∴4×⎝ ⎛⎭⎪⎫1+32+54+a 4+5×⎝⎛⎭⎪⎫1+32=8×( 1+32+54 )+1,解得a 4=78.(2)证明:∵n ≥2时,4S n +2+5S n =8S n +1+S n -1,∴4(S n +2-S n +1)-2(S n +1-S n )=2⎣⎢⎡⎦⎥⎤S n +1-S n-12S n -S n -1, ∴(S n +2-S n +1)-12(S n +1-S n )=12⎣⎢⎡⎦⎥⎤S n +1-S n-12S n -S n -1, ∴a n +2-12a n +1=12⎝ ⎛⎭⎪⎫a n +1-12a n .又a 3-12a 2=12⎝⎛⎭⎪⎫a 2-12a 1,∴⎩⎨⎧⎭⎬⎫a n +1-12a n 是首项为1,公比为12的等比数列.(3)由(2)知⎩⎨⎧⎭⎬⎫a n +1-12a n 是首项为1,公比为12的等比数列,∴a n +1-12a n =⎝ ⎛⎭⎪⎫12n -1, 两边同乘以2n +1,得a n +1·2n +1-a n ·2n =4. 又a 2·22-a 1·21=4,∴{a n ·2n }是首项为2,公差为4的等差数列, ∴a n ·2n =2+4(n -1)=2(2n -1), ∴a n =n -2n=2n -12n -1.。

2018年数学模拟试卷(文科)带答案详解

2018年数学模拟试卷(文科)带答案详解

2018年数学模拟试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={﹣1,1},B={x|mx=1},且A∪B=A,则m的值为()A.1 B.﹣1 C.1或﹣1 D.1或﹣1或02.(5分)定义运算=ad﹣bc,若z=,则复数对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知d为常数,p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,则¬p是¬q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为8,12,则输出的a=()A.4 B.2 C.0 D.145.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.3 B.C.D.6.(5分)已知函数f(x)=sinx+λcosx的图象的一个对称中心是点(,0),则函数g(x)=λsinxcosx+sin2x的图象的一条对称轴是直线()A.x=B.x=C.x=D.x=﹣7.(5分)已知A,B,C是平面上不共线的三点,O是△ABC的重心,动点P满足,则P一定为△ABC的()A.AB边中线的三等分点(非重心)B.AB边的中点C.AB边中线的中点D.重心8.(5分)设,b=cos50°•cos128°+cos40°•cos38°,,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>a>b D.a>c>b9.(5分)一个几何体的三视图如图所示,其中俯视图是一个腰长为2的等腰直角三角形,侧视图是一个直角边长为1的直角三角形,则该几何体外接球的体积是()A.36πB.9πC.D.10.(5分)设m>1,在约束条件下,目标函数z=x+my的最大值小于2,则m的取值范围为()A.(1,)B.(,+∞)C.(1,3) D.(3,+∞)11.(5分)己知O为坐标原点,双曲线﹣=1(a>0,b>0)的两条渐近线分别为l1,l2,右焦点为F,以OF为直径作圆交l1于异于原点O的点A,若点B在l2上,且=2,则双曲线的离心率等于()A.B.C.2 D.312.(5分)已知定义在(0,+∞)上的单调函数f(x),对∀x∈(0,+∞),都有f[f(x)﹣log2x]=3,则方程f(x)﹣f′(x)=2的解所在的区间是()A.(0,)B.(1,2) C.(,1)D.(2,3)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)某工厂经过技术改造后,生产某种产品的产量(吨)与相应的生产能耗(吨标准煤)有如下几组样本数据,据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得回归直线的斜率为0.7,那么这组数据的回归直线方程是.(参考公式:)14.(5分)已知a,b表示两条不同直线,α,β,γ表示三个不同平面,给出下列命题:①若α∩β=a,b⊂α,a⊥b,则α⊥β;②若a⊂α,a垂直于β内的任意一条直线,则α⊥β;③若α⊥β,α∩β=a,α∩γ=b,则a⊥b;④若a不垂直于平面α,则a不可能垂直于平面α内的无数条直线;⑤若a⊥α,a⊥β,则α∥β.上述五个命题中,正确命题的序号是.15.(5分)已知函数g(x)=a﹣x2(≤x≤e,e为自然对数的底数)与h(x)=2lnx的图象上存在关于x轴对称的点,则实数a的取值范围是.16.(5分)在平面直角坐标系xOy中,已知直线l:x+y+a=0与点A(2,0),若直线l上存在点M满足|MA|=2|MO|(O为坐标原点),则实数a的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知a、b、c分别是△ABC的三个内角∠A、∠B、∠C的对边,acosB+b=c.(1)求∠A的大小;(2)若等差数列{a n}中,a1=2cosA,a5=9,设数列{}的前n项和为S n,求证:S n<.18.(12分)某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强).(1)根据茎叶图中的数据完成2×2列联表,并判断能否有95%的把握认为孩子的幸福感强与是否是留守儿童有关?(2)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.参考公式:.附表:19.(12分)已知矩形ABCD中,AB=2,AD=5,E,F分别在AD,BC上,且AE=1,BF=3,沿EF将四边形AEFB折成四边形A′EFB′,使点B′在平面CDEF上的射影H 在直线DE上,且EH=1.(1)求证:A′D∥平面B′FC;(2)求C到平面B′HF的距离.20.(12分)已知椭圆,斜率为的动直线l与椭圆C交于不同的两点A,B.(1)设M为弦AB的中点,求动点M的轨迹方程;(2)设F1,F2为椭圆C在左、右焦点,P是椭圆在第一象限上一点,满足,求△PAB面积的最大值.21.(12分)已知函数.(1)若g(x)在点(1,g(1))处的切线方程为8x﹣2y﹣3=0,求a,b的值;(2)若b=a+1,x1,x2是函数g(x)的两个极值点,试比较﹣4与g(x1)+g(x2)的大小.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程](共1小题,满分10分)22.(10分)已知曲线C1的极坐标方程为ρcosθ﹣ρsinθ+2=0,曲线C2的参数方程为(α为参数),将曲线C2上的所有点的横坐标变为原来的3倍,纵坐标变为原来的倍,得到曲线C3.(1)写出曲线C1的参数方程和曲线C3的普通方程;(2)已知点P(0,2),曲线C1与曲线C3相交于A,B,求|PA|+|PB|.[选修4-5:不等式选讲]23.已知a,b∈(0,+∞),且2a4b=2.(Ⅰ)求的最小值;(Ⅱ)若存在a,b∈(0,+∞),使得不等式成立,求实数x的取值范围.参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={﹣1,1},B={x|mx=1},且A∪B=A,则m的值为()A.1 B.﹣1 C.1或﹣1 D.1或﹣1或0【分析】利用A∪B=A⇒B⊆A,写出A的子集,求出各个子集对应的m的值.【解答】解:∵A∪B=A∴B⊆A∴B=∅;B={﹣1};B={1}当B=∅时,m=0当B={﹣1}时,m=﹣1当B={1}时,m=1故m的值是0;1;﹣1故选:D【点评】本题考查等价转化的数学思想方法、分类讨论的数学思想方法、写出集合的子集.2.(5分)定义运算=ad﹣bc,若z=,则复数对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】利用已知定义结合虚数单位i的运算性质求得z,进一步得到,求得的坐标得答案.【解答】解:由已知可得,z==1×i2﹣2i=﹣1﹣2i,∴,则复数对应的点的坐标为(﹣1,2),在第二象限,故选:B.【点评】本题考查复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.3.(5分)已知d 为常数,p :对于任意n ∈N *,a n +2﹣a n +1=d ;q :数列 {a n }是公差为d 的等差数列,则¬p 是¬q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【分析】先根据命题的否定,得到¬p 和¬q ,再根据充分条件和必要的条件的定义判断即可.【解答】解:p :对于任意n ∈N *,a n +2﹣a n +1=d ;q :数列 {a n }是公差为d 的等差数列,则¬p :∃n ∈N *,a n +2﹣a n +1≠d ;¬q :数列 {a n }不是公差为d 的等差数列, 由¬p ⇒¬q ,即a n +2﹣a n +1不是常数,则数列 {a n }就不是等差数列,若数列 {a n }不是公差为d 的等差数列,则不存在n ∈N *,使得a n +2﹣a n +1≠d , 即前者可以推出后者,前者是后者的充分条件, 即后者可以推不出前者, 故选:A .【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立.4.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为8,12,则输出的a=( )A .4B .2C .0D .14【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a ,b 的值,即可得到结论.【解答】解:由a=8,b=12,不满足a>b,则b变为12﹣8=4,由b<a,则a变为8﹣4=4,由a=b=4,则输出的a=4.故选:A.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.5.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.3 B.C.D.【分析】如图所示,由抛物线C:y2=8x,可得焦点为F,准线l方程,准线l与x 轴相交于点M,|FM|=4.经过点Q作QN⊥l,垂足为N则|QN|=|QF|.由QN∥MF,可得=,即可得出.【解答】解:如图所示由抛物线C:y2=8x,可得焦点为F(2,0),准线l方程为:x=﹣2,准线l与x轴相交于点M,|FM|=4.经过点Q作QN⊥l,垂足为N则|QN|=|QF|.∵QN∥MF,∴==,∴|QN|=3=|QF|.故选:A.【点评】本题考查了抛物线的定义标准方程及其性质、直线与抛物线相交弦长问题、平行线分线段成比例,考查了推理能力与计算能力,属于中档题.6.(5分)已知函数f(x)=sinx+λcosx的图象的一个对称中心是点(,0),则函数g(x)=λsinxcosx+sin2x的图象的一条对称轴是直线()A.x=B.x=C.x=D.x=﹣【分析】由对称中心可得λ=﹣,代入g(x)由三角函数公式化简可得g(x)=﹣sin(2x+),令2x+=kπ+解x可得对称轴,对照选项可得.【解答】解:∵f(x)=sinx+λcosx的图象的一个对称中心是点(,0),∴f()=sin+λcos=+λ=0,解得λ=﹣,∴g(x)=﹣sinxcosx+sin2x=sin2x+=﹣sin(2x+),令2x+=kπ+可得x=+,k∈Z,∴函数的对称轴为x=+,k∈Z,结合四个选项可知,当k=﹣1时x=﹣符合题意,故选:D【点评】本题考查两角和与差的三角函数,涉及三角函数对称性,属中档题.7.(5分)已知A,B,C是平面上不共线的三点,O是△ABC的重心,动点P满足,则P一定为△ABC的()A.AB边中线的三等分点(非重心)B.AB边的中点C.AB边中线的中点D.重心【分析】根据题意,画出图形,结合图形,利用向量加法的平行四边形法则以及共线的向量的加法法则,即可得出正确的结论.【解答】解:如图所示:设AB 的中点是E,∵O是三角形ABC的重心,∵=(+2),∵2=,∴=×(4+)=∴P在AB边的中线上,是中线的三等分点,不是重心.故选:A【点评】本题考查了平面向量的应用问题,也考查了三角形的重心的应用问题,是综合性题目.8.(5分)设,b=cos50°•cos128°+cos40°•cos38°,,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>a>b D.a>c>b【分析】运用两角和差的正弦和余弦公式,化简整理,再由余弦函数的单调性,即可得到所求大小关系.【解答】解:=×sin(56°﹣45°)=sin11°=cos79°,b=cos50°•cos128°+cos40°•cos38°=﹣cos50°•cos52°+sin50°•sin52°=﹣cos102°=cos78°,=(cos80°﹣cos100°)=cos80°,由cos78°>cos79°>cos80°,即b>a>c.故选:B.【点评】本题考查三角函数的化简和求值,注意运用两角和差公式和二倍角公式,同时考查余弦函数的单调性,属于中档题.9.(5分)一个几何体的三视图如图所示,其中俯视图是一个腰长为2的等腰直角三角形,侧视图是一个直角边长为1的直角三角形,则该几何体外接球的体积是()A.36πB.9πC.D.【分析】由已知中的三视图可得该几何体是一个三棱锥,求出底面外接圆半径和棱锥的高,进而利用勾股定理,求出其外接球的半径,代入球的体积公式,可得答案.【解答】解:∵俯视图是一个腰长为2的等腰直角三角形,故底面外接圆半径r=,由主视图中棱锥的高h=1,故棱锥的外接球半径R满足:R==,故该几何体外接球的体积V=πR3=π,故选:C.【点评】解决三视图的题目,关键是由三视图判断出几何体的形状及度量长度,进而求出外接球半径,是解答的关键.10.(5分)设m>1,在约束条件下,目标函数z=x+my的最大值小于2,则m的取值范围为()A.(1,)B.(,+∞)C.(1,3) D.(3,+∞)【分析】根据m>1,我们可以判断直线y=mx的倾斜角位于区间(,)上,由此我们不难判断出满足约束条件的平面区域的形状,再根据目标函数Z=X+my对应的直线与直线y=mx垂直,且在直线y=mx与直线x+y=1交点处取得最大值,由此构造出关于m的不等式组,解不等式组即可求出m 的取值范围.【解答】解:∵m>1故直线y=mx与直线x+y=1交于点,目标函数Z=X+my对应的直线与直线y=mx垂直,且在点,取得最大值其关系如下图所示:即,解得1﹣<m<又∵m>1解得m∈(1,)故选:A.【点评】本题考查的知识点是简单线性规划的应用,其中根据平面直线方程判断出目标函数Z=X+my对应的直线与直线y=mx垂直,且在点取得最大值,并由此构造出关于m的不等式组是解答本题的关键.11.(5分)己知O为坐标原点,双曲线﹣=1(a>0,b>0)的两条渐近线分别为l1,l2,右焦点为F,以OF为直径作圆交l1于异于原点O的点A,若点B在l2上,且=2,则双曲线的离心率等于()A.B.C.2 D.3【分析】求出双曲线的渐近线的方程和圆的方程,联立方程求出A,B的坐标,结合点B在渐近线y=﹣x上,建立方程关系进行求解即可.【解答】解:双曲线的渐近线方程l1,y=x,l2,y=﹣x,F(c,0),圆的方程为(x﹣)2+y2=,将y=x代入(x﹣)2+y2=,得(x﹣)2+(x)2=,即x2=cx,则x=0或x=,当x=时,y═•=,即A(,),设B(m,n),则n=﹣•m,则=(m﹣,n﹣),=(﹣c,),∵=2,∴(m﹣,n﹣)=2(﹣c,)则m﹣=2(﹣c),n﹣=2•,即m=﹣2c,n=,即=﹣•(﹣2c)=﹣+,即=,则c2=3a2,则=,故选:B.【点评】本题主要考查双曲线离心率的计算,根据条件建立方程组关系,求出交点坐标,转化为a,c的关系是解决本题的关键.考查学生的计算能力.12.(5分)已知定义在(0,+∞)上的单调函数f(x),对∀x∈(0,+∞),都有f[f(x)﹣log2x]=3,则方程f(x)﹣f′(x)=2的解所在的区间是()A.(0,)B.(1,2) C.(,1)D.(2,3)【分析】设t=f(x)﹣log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得t的值,可得f(x)的解析式,由二分法分析可得h(x)的零点所在的区间为(1,2),结合函数的零点与方程的根的关系,即可得答案.【解答】解:根据题意,对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)﹣log2x为定值,设t=f(x)﹣log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得,t=2;则f(x)=log2x+2,f′(x)=,将f(x)=log2x+2,f′(x)=代入f(x)﹣f′(x)=2,可得log2x+2﹣=2,即log2x﹣=0,令h(x)=log2x﹣,分析易得h(1)=﹣<0,h(2)=1﹣>0,则h(x)=log2x﹣的零点在(1,2)之间,则方程log2x﹣=0,即f(x)﹣f′(x)=2的根在(1,2)上,故选:B.【点评】本题考查二分法求函数的零点与函数零点与方程根的关系的应用,关键点和难点是求出f(x)的解析式.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)某工厂经过技术改造后,生产某种产品的产量(吨)与相应的生产能耗(吨标准煤)有如下几组样本数据,据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得回归直线的斜率为0.7,那么这组数据的回归直线方程是=0.7x+0.35.(参考公式:)【分析】求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程即可.【解答】解:∵∴这组数据的样本中心点是(4.5,3.5)把样本中心点代入回归直线方程=0.7x+a∴3.5=4.5×0.7+a,∴a=0.35那么这组数据的回归直线方程是=0.7x+0.35故答案为:=0.7x+0.35.【点评】本题考查线性回归方程,解题的关键是线性回归直线一定过样本中心点,这是求解线性回归方程的步骤之一.14.(5分)已知a,b表示两条不同直线,α,β,γ表示三个不同平面,给出下列命题:①若α∩β=a,b⊂α,a⊥b,则α⊥β;②若a⊂α,a垂直于β内的任意一条直线,则α⊥β;③若α⊥β,α∩β=a,α∩γ=b,则a⊥b;④若a不垂直于平面α,则a不可能垂直于平面α内的无数条直线;⑤若a⊥α,a⊥β,则α∥β.上述五个命题中,正确命题的序号是②⑤.【分析】对于①③,根据线面垂直的判断定理,对于②④⑤线面垂直的性质定理,判断即可.【解答】解:对于①,根据线面垂直的判定定理,需要一条直线垂直于两条相交的直线,故不正确,对于②a⊂α,a垂直于β内的任意一条直线,满足线面垂直的定理,即可得到a ⊥β,又a⊂α,则α⊥β,故正确,对于③α⊥β,α∩β=a,α∩γ=b,则a⊥b或a∥b,或相交,故不正确,对于④若a不垂直于平面α,则a可能垂直于平面α内的无数条直线,故不正确,对于⑤根据线面垂直的性质,若a⊥α,a⊥β,则α∥β,故正确故答案为:②⑤【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.15.(5分)已知函数g(x)=a﹣x2(≤x≤e,e为自然对数的底数)与h(x)=2lnx的图象上存在关于x轴对称的点,则实数a的取值范围是[1,e2﹣2] .【分析】由已知,得到方程a﹣x2=﹣2lnx⇔﹣a=2lnx﹣x2在[,e]上有解,构造函数f(x)=2lnx﹣x2,求出它的值域,得到﹣a的范围即可.【解答】解:由已知,得到方程a﹣x2=﹣2lnx⇔﹣a=2lnx﹣x2在[,e]上有解.设f(x)=2lnx﹣x2,求导得:f′(x)=﹣2x=,∵≤x≤e,∴f′(x)=0在x=1有唯一的极值点,=f(1)=﹣1,且知f(e)<f(),∵f()=﹣2﹣,f(e)=2﹣e2,f(x)极大值故方程﹣a=2lnx﹣x2在[,e]上有解等价于2﹣e2≤﹣a≤﹣1.从而a的取值范围为[1,e2﹣2].故答案为:[1,e2﹣2]【点评】本题考查了构造函数法求方程的解及参数范围;关键是将已知转化为方程a﹣x2=﹣2lnx⇔﹣a=2lnx﹣x2在[,e]上有解.16.(5分)在平面直角坐标系xOy中,已知直线l:x+y+a=0与点A(2,0),若直线l上存在点M满足|MA|=2|MO|(O为坐标原点),则实数a的取值范围是[,] .【分析】设M(x,﹣x﹣a),由已知条件利用两点间距离公式得(x﹣2)2+(﹣x﹣a)2=4x2+4(﹣x﹣a)2,由此利用根的判别式能求出实数a的取值范围.【解答】解:设M(x,﹣x﹣a),∵直线l:x+y+a=0,点A(2,0),直线l上存在点M,满足|MA|=2|MO|,∴(x﹣2)2+(﹣x﹣a)2=4x2+4(﹣x﹣a)2,整理,得6x2+(6a+4)x+a2+3a2﹣4=0①,∵直线l上存在点M满足|MA|=2|MO|(O为坐标原点),∴方程①有解,∴△=(6a+4)2﹣24(3a2+﹣4)≥0,整理得9a2﹣12a﹣28≤0,解得≤a≤,故a的取值范围为[,],故答案为:[,]【点评】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意两点间距离公式和一元二次方程式根的判别式的合理运用.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知a、b、c分别是△ABC的三个内角∠A、∠B、∠C的对边,acosB+b=c.(1)求∠A的大小;(2)若等差数列{a n}中,a1=2cosA,a5=9,设数列{}的前n项和为S n,求证:S n<.【分析】(1)过点C作AB边上的高交AB与D,通过acosB+b=c,可知∠A=60°;(2)通过(1)及a1=2cosA、a5=9可知公差d=2,进而可得通项a n=2n﹣1,分离分母得=(﹣),并项相加即可.【解答】(1)解:过点C作AB边上的高交AB与D,则△ACD、△BCD均为直角三角形,∵acosB+b=c.∴AD=AB﹣BD=c﹣acosB=b,∴∠A=60°;(2)证明:由(1)知a1=2cosA=2cos60°=1,设等差数列{a n}的公差为d,∵a5=a1+(5﹣1)d=9,∴d=2,∴a n=1+2(n﹣1)=2n﹣1,∴==(﹣),∴S n=(++…+﹣)=(1﹣)<.【点评】本题考查等差数列的性质,考查三角形的角的大小,利用并项法是解决本题的关键,属于中档题.18.(12分)某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强).(1)根据茎叶图中的数据完成2×2列联表,并判断能否有95%的把握认为孩子的幸福感强与是否是留守儿童有关?(2)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.参考公式:.附表:【分析】(1)根据题意,填写2×2列联表,计算观测值,对照临界值表得出结论;(2)按分层抽样方法抽出幸福感强的孩子,利用列举法得出基本事件数,求出对应的概率值.【解答】解:(1)根据题意,填写2×2列联表如下:计算,对照临界值表得,有95%的把握认为孩子的幸福感强与是否留守儿童有关;…(6分)(2)按分层抽样的方法可抽出幸福感强的孩子2人,记作:a1,a2;幸福感弱的孩子3人,记作:b1,b2,b3;“抽取2人”包含的基本事件有(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3)共10个;…(8分)事件A:“恰有一人幸福感强”包含的基本事件有(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3)共6个;…(10分)故所求的概率为.…(12分)【点评】本题考查了对立性检验与分层抽样方法和列举法求古典概型的概率问题,是综合性题目.19.(12分)已知矩形ABCD中,AB=2,AD=5,E,F分别在AD,BC上,且AE=1,BF=3,沿EF将四边形AEFB折成四边形A′EFB′,使点B′在平面CDEF上的射影H 在直线DE上,且EH=1.(1)求证:A′D∥平面B′FC;(2)求C到平面B′HF的距离.【分析】(1)证明A′E∥B′F,即可证明B′F∥平面A′ED,然后证明CF∥平面A′ED,推出平面A′ED∥平面B′FC,然后证明A′D∥平面B′FC.(2)求出B′H,求出S,利用求解即可.△HFC【解答】(1)证明:∵AE∥BF,∴A′E∥B′F,又A′E⊂平面A′ED,B′F⊄平面A′ED ∴B′F∥平面A′ED同理又CF∥ED,CF∥平面A′ED且B′F∩CF=F,∴平面A′ED∥平面B′FC又A′D⊂平面A′ED,∴A′D∥平面B′FC(2)解:由题可知,,EH=1,∵B′H⊥底面EFCD,∴,又B′F=3,∴,FC=AD﹣BF=2S=FC•CD=2,△HFC,,∴,∴.【点评】本题考查直线与平面平行的判定定理以及性质定理的应用,几何体的体积的求法,考查转化思想以及计算能力.20.(12分)已知椭圆,斜率为的动直线l与椭圆C交于不同的两点A,B.(1)设M为弦AB的中点,求动点M的轨迹方程;(2)设F1,F2为椭圆C在左、右焦点,P是椭圆在第一象限上一点,满足,求△PAB面积的最大值.【分析】(1)由由①,②;①﹣②得:,,即,由M在椭圆内部,则,即可求得动点M 的轨迹方程;(2)由向量数量积的坐标运算,求得P点坐标,求得直线l的方程,代入椭圆方程,利用韦达定理,点到直线的距离公式及三角形的面积公式,根据基本不等式的性质,即可求得△PAB面积的最大值.【解答】解:(1)设M(x,y),A(x1,y1),B(x2,y2),由①,②;①﹣②得:,,即.…(4分)又由中点在椭圆内部得,∴M点的轨迹方程为,;…(5分)(2)由椭圆的方程可知:F1(﹣,0)F2(,0),P(x,y)(x>0,y>0),=(﹣﹣x,﹣y),=(﹣x,﹣y),由•=(﹣﹣x,﹣y)•(﹣x,﹣y)=x2﹣3+y2=﹣,即x2+y2=,由,解得:,则P点坐标为,…(6分)设直线l的方程为,,整理得:,由△>0得﹣2<m<2,则,,…(8分),,∴.…(9分),当且仅当m2=4﹣m2,即时,取等号,∴△PAB面积的最大值1.…(12分)【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,向量的坐标运算三角形的面积公式与基本不等式的应用,考查计算能力,属于中档题.21.(12分)已知函数.(1)若g(x)在点(1,g(1))处的切线方程为8x﹣2y﹣3=0,求a,b的值;(2)若b=a+1,x1,x2是函数g(x)的两个极值点,试比较﹣4与g(x1)+g(x2)的大小.【分析】(1)求出函数的导数,得到关于a,b的方程组,解出即可;(2)求出a>4,且x1+x2=a,x1x2=a,令,则f'(x)=lnx+1﹣x﹣1=lnx﹣x,根据函数的单调性判断即可.【解答】(1)根据题意可求得切点,由题意可得,,∴,即,解得a=1,b=﹣1.…(3分)(2)证明:∵b=a+1,∴,则.根据题意可得x2﹣ax+a=0在(0,+∞)上有两个不同的根x1,x2.即,解得a>4,且x1+x2=a,x1x2=a.…(5分)∴.…(6分)令,则f'(x)=lnx+1﹣x﹣1=lnx﹣x,令h(x)=lnx﹣x,则当x>4时,,∴h(x)在(4,+∞)上为减函数,即h(x)<h(4)=ln4﹣4<0,f'(x)<0,∴f(x)在(4,+∞)上为减函数,即f(x)<f(4)=8lnx﹣12,∴g(x1)+g(x2)<8ln2﹣12,…(10分)又∵,,∴,即,∴g(x1)+g(x2)<﹣4.…(12分)【点评】本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及代数式的大小比较,是一道综合题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程](共1小题,满分10分)22.(10分)已知曲线C1的极坐标方程为ρcosθ﹣ρsinθ+2=0,曲线C2的参数方程为(α为参数),将曲线C2上的所有点的横坐标变为原来的3倍,纵坐标变为原来的倍,得到曲线C3.(1)写出曲线C1的参数方程和曲线C3的普通方程;(2)已知点P(0,2),曲线C1与曲线C3相交于A,B,求|PA|+|PB|.【分析】(1)由x=ρcosθ,y=ρsinθ化直线方程为普通方程,写出过P(0,2)的直线参数方程,由题意可得,运用同角平方关系化为普通方程;(2)将直线的参数方程代入曲线C3的普通方程,可得t的方程,运用韦达定理和参数的几何意义,即可得到所求和.【解答】解:(1)曲线C1的极坐标方程为ρcosθ﹣ρsinθ+2=0,可得普通方程为x﹣y+2=0,则C1的参数方程为(t为参数),由曲线C2的参数方程为(α为参数),可得,即有C3的普通方程为x2+y2=9.…(5分)(2)C1的标准参数方程为(t为参数),与C3联立可得t2+2t﹣5=0,令|PA|=|t1|,|PB|=|t2|,由韦达定理,则有t1+t2=﹣2,t1t2=﹣5,则|PA|+|PB|=|t1|+|t2|=|t1﹣t2|===2…(10分)【点评】本题考查极坐标方程、参数方程和普通方程的互化,考查直线的参数方程的运用,考查运算能力,属于中档题.[选修4-5:不等式选讲]23.已知a,b∈(0,+∞),且2a4b=2.(Ⅰ)求的最小值;(Ⅱ)若存在a,b∈(0,+∞),使得不等式成立,求实数x的取值范围.【分析】(Ⅰ)由2a4b=2可知a+2b=1,利用“1”的代换,即可求的最小值;(Ⅱ)分类讨论,解不等式,即可求实数x的取值范围.【解答】解:(Ⅰ)由2a4b=2可知a+2b=1,又因为,由a,b∈(0,+∞)可知,当且仅当a=2b时取等,所以的最小值为8.…(5分)(Ⅱ)由题意可知即解不等式|x﹣1|+|2x﹣3|≥8,①,∴.②,∴x∈∅,③,∴x≥4.综上,.…(10分)【点评】本题考查基本不等式的运用,考查分类讨论的数学思想,属于中档题.。

2018高三大一轮复习数学文高考模拟试题精编答案 精品

2018高三大一轮复习数学文高考模拟试题精编答案 精品

详 解 答 案高考模拟试题精编(一)1.解析:选B.由题可得A ∩B ={-1,0,1}. 2.解析:选D.因为2z -z =21+i -1+i =-+--1+i =1-i -1+i =0,故选D.3.解析:选C.由已知,a 1=1,a 2=3,且a n +1a n -1=a n (n ≥2),则a 1a 3=a 2,从而a 3=3,又a 2a 4=a 3,∴a 4=1,同理a 5=13,a 6=13,a 7=1,a 8=3,那么数列{a n }为周期数列,且周期为6,∴a 2 016=a 6=13,故选C.4.解析:选D.因为x 2=4y 的焦点为(0,1),所以双曲线的焦点在y 轴上.因为双曲线的一条渐近线为y =-2x ,所以设双曲线的方程为y 2-4x 2=λ(λ>0),即y 2λ-x 2λ4=1,则λ+λ4=1,λ=45,所以双曲线的方程为5y 24-5x 2=1,故选D.5.解析:选A.由三视图知,该几何体是棱长为2的正方体截去两个角后得到的,几何体的直视图是多面体PABCDEF ,如图所示.易知其最长棱为正方体的一条面对角线,其长为2 2.其体积为2×2×2-13×2×1×2×2×12=203.故选A.6.解析:选A.法一:当x >0时,f (x )=x -e x ln x ,所以f ′(x )=1-e x×1x-e x ln x=1-e x ⎝ ⎛⎭⎪⎫1x +ln x .记g (x )=1x +ln x ,则g ′(x )=-1x 2+1x =x -1x2.显然当x ∈(0,1)时,g ′(x )<0,函数g (x )单调递减;当x ∈(1,+∞)时,g ′(x )>0,函数g (x )单调递增,所以g (x )≥g (1)=1,所以f ′(x )=1-e x ⎝ ⎛⎭⎪⎫1x+ln x ≤1-e x ,又e x >e 0=1,所以f ′(x )≤1-e x<0,所以函数f (x )在(0,+∞)上单调递减.故排除B 、D 两项;而f (-3)=-3-e -3ln 3<0,故排除C ,选A.法二:f (1)=1-eln 1=1,而f (3)=3-e 3ln 3<0,故排除B 、D 选项,又f (-3)=-3-e -3ln 3<0,故排除C ,选A.7.解析:选D.由程序框图可知,p =9,n =3;p =15,n =7;p =23,n =15;p =31,n =31;p =31,n =63,则log 3163>1,循环结束,故n =63,选D.8.解析:选D.设2个红球分别为a 、b,3个白球分别为A 、B 、C ,从中随机抽取2个,则有(a ,b ),(a ,A ),(a ,B ),(a ,C ),(b ,A ),(b ,B ),(b ,C ),(A ,B ),(A ,C ),(B ,C ),共10个基本事件,其中既有红球也有白球的基本事件有6个,则所求概率为P =610=35.9.解析:选C.在正方体ABCD ­A 1B 1C 1D 1中,依题意知EF ∥AD ,所以异面直线AC 1与EF 所成角为∠C 1AD .连接C 1D ,因为AD ⊥平面C 1CDD 1,所以AD ⊥DC 1.设正方体的棱长为1,则tan ∠C 1AD =C 1D AD =21=2, 所以异面直线AC 1与EF 所成角的正切值为 2.故选C.10.解析:选A.由题意知f (x )min ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤12,1≥g (x )min (x ∈),因为f (x )min =5,g (x )min =4+a ,所以5≥4+a ,即a ≤1,故选A.11.解析:选B.由已知得函数f (x )的最小正周期为π, 则ω=2.当x ∈⎝ ⎛⎭⎪⎫-π12,π3时,2x +φ∈⎝ ⎛⎭⎪⎫-π6+φ,2π3+φ,∵f (x )>1,即sin(2x +φ)>0,|φ|≤π2,∴⎩⎪⎨⎪⎧-π6+φ≥02π3+φ≤π,解得π6≤φ≤π3.12.解析:选D.设|F 1F 2|=2c ,|AF 1|=m ,若△ABF 1是以A 为直角顶点的等腰直角三角形,则|AB |=|AF 1|=m ,|BF 1|=2m .由椭圆的定义可得△ABF 1的周长为4a ,即有4a =2m +2m ,即m =(4-22)a ,则|AF 2|=2a -m =(22-2)a ,在Rt △AF 1F 2中,|F 1F 2|2=|AF 1|2+|AF 2|2,即4c 2=4(2-2)2a 2+4(2-1)2a 2,即有c 2=(9-62)a 2,即c =(6-3)a ,即e =ca=6-3,故选D.13.解析:∵a ∥b ,∴a =λb ,即m e 1+2e 2=λ(n e 1-e 2),则⎩⎪⎨⎪⎧λn =m -λ=2,解得m n=-2.答案:-214.解析:3cos A +sin A 3sin A -cos A =2sin ⎝ ⎛⎭⎪⎫A +π32sin ⎝ ⎛⎭⎪⎫A -π6=-sin ⎝⎛⎭⎪⎫A +π3cos ⎝⎛⎭⎪⎫A +π3=-tan ⎝ ⎛⎭⎪⎫A +π3=tan ⎝ ⎛⎭⎪⎫-A -π3=tan ⎝ ⎛⎭⎪⎫-7π12,所以-A -π3=-7π12,所以A =7π12-π3=3π12=π4,所以tan A =tan π4=1.答案:115.解析:作出不等式组与不等式表示的可行域如图所示,平面区域N 的面积为12×3×(6+2)=12,区域M 在区域N 内的面积为14π(2)2=π2,故所求概率P =π212=π24.答案:π2416.解析:当n =2k (k ∈N *)时,a 2k -a 2k -1=2k ,① 当n =2k -1(k ≥2,k ∈N *)时,即a 2k -1+a 2k -2=2k -1,②当n =2k +1(k ∈N *)时,即a 2k +1+a 2k =2k +1,③①+②得,a 2k +a 2k -2=4k -1,③-①得,a 2k +1+a 2k -1=1,∴S 40=(a 1+a 3+a 5+…+a 39)+(a 2+a 4+a 6+a 8+…+a 40)=1×10+(7+15+23+…+79)=10+7×10+-2×8=440.答案:44017.解:∵⎝ ⎛⎭⎪⎫54c -a cos B =b cos A ,∴由正弦定理得⎝ ⎛⎭⎪⎫54sin C -sin A ·cos B =sin B cos A ,即有54sin C cos B =sin A cos B +cos A sin B , 则54sin C cos B =sin C .∵sin C >0,∴cos B =45. (1)由cos B =45,得sin B =35,∵sin A =25,∴a b =sin A sin B =23, 又a +b =10,∴a =4.(2)∵b 2=a 2+c 2-2ac cos B ,b =35,a =5, ∴45=25+c 2-8c ,即c 2-8c -20=0, 解得c =10或c =-2(舍去), ∴S =12ac sin B =15.18.解:(1)设EC 与DF 交于点N ,连接MN , 在矩形CDEF 中,点N 为EC 的中点, 因为M 为EA 的中点,所以MN ∥AC , 又因为AC ⊄平面MDF ,MN ⊂平面MDF , 所以AC ∥平面MDF .(2)取CD 中点为G ,连接BG ,EG ,平面CDEF ⊥平面ABCD ,平面CDEF ∩平面ABCD =CD ,AD ⊂平面ABCD ,AD ⊥CD ,所以AD ⊥平面CDEF ,同理ED ⊥平面ABCD .所以ED 的长即为四棱锥E ­ABCD 的高. 在梯形ABCD 中AB =12CD =DG ,AB ∥DG ,所以四边形ABGD 是平行四边形,BG ∥AD ,所以BG ⊥平面CDEF , 又DF ⊂平面CDEF ,所以BG ⊥DF ,又BE ⊥DF ,BE ∩BG =B , 所以DF ⊥平面BEG ,DF ⊥EG .注意到Rt △DEG ∽Rt △EFD ,所以DE 2=DG ·EF =8,DE =22, 所以V E ­ABCD =13S 梯形ABCD ·ED =4 2.19.解:(1)由题意可知,样本容量n =80.016×10=50,y =250×10=0.004,x =0.100-0.004-0.010-0.016-0.040=0.030.(2)由题意可知,高度在内的株数为2,记这2株分别为b 1,b 2. 抽取2株的所有情况有21种,分别为:(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 1,a 5),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,a 4),(a 2,a 5),(a 2,b 1),(a 2,b 2),(a 3,a 4),(a 3,a 5),(a 3,b 1),(a 3,b 2),(a 4,a 5),(a 4,b 1),(a 4,b 2),(a 5,b 1),(a 5,b 2),(b 1,b 2).其中2株的高度都不在内的情况有10种,分别为:(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 1,a 5),(a 2,a 3),(a 2,a 4),(a 2,a 5),(a 3,a 4),(a 3,a 5),(a 4,a 5).∴所抽取的2株中至少有一株高度在内的概率P =1-1021=1121.20.解:(1)由题设可知直线l 的方程为y =kx +1. 因为直线l 与圆C 交于两点,所以|2k -3+1|1+k 2<1, 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1, 整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=+k 1+k 2,x 1x 2=71+k2.OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k+k1+k2+8. 由题设可得4k+k1+k2+8=12,解得k =1, 所以直线l 的方程为y =x +1. 故圆心C 在直线l 上,所以|MN |=2.21.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=x +mx -mx,当0<x <m 时,f ′(x )<0,函数f (x )单调递减, 当x >m 时,f ′(x )>0,函数f (x )单调递增.综上,函数f (x )的单调递增区间是(m ,+∞),单调递减区间是(0,m ). (2)令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,问题等价于求函数F (x )的零点个数,F ′(x )=-x -x -mx,当m =1时,F ′(x )≤0,函数F (x )为减函数,注意到F (1)=32>0,F (4)=-ln 4<0,所以F (x )有唯一零点;当m >1时,0<x <1或x >m 时,F ′(x )<0,1<x <m 时,F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增,注意到F (1)=m +12>0,F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即两函数图象总有一个交点. 22.解:(1)ρ=22cos ⎝ ⎛⎭⎪⎫θ-π4=2(cos θ+sin θ), 即ρ2=2(ρcos θ+ρsin θ),可得x 2+y 2-2x -2y =0, 故C 2的直角坐标方程为(x -1)2+(y -1)2=2.(2)C 1的普通方程为x +3y +2=0,由(1)知曲线C 2是以(1,1)为圆心的圆, 且圆心到直线C 1的距离d =|1+3+2|12+32=3+32, 所以动点M 到曲线C 1的距离的最大值为3+32+ 2.23.解:(1)函数f (x )可化为f (x )=⎩⎪⎨⎪⎧-3,x ≤-22x +1,-2<x <1,3,x ≥1当x ≤-2时,f (x )=-3<0,不合题意;当-2<x <1时,f (x )=2x +1>1,得x >0,即0<x <1; 当x ≥1时,f (x )=3>1,即x ≥1.综上,不等式f (x )>1的解集为(0,+∞).(2)关于x 的不等式f (x )+4≥|1-2m |有解等价于(f (x )+4)max ≥|1-2m |,由(1)可知f (x )max =3(也可由|f (x )|=||x +2|-|x -1||≤|(x +2)-(x -1)|=3,得f (x )max =3),即|1-2m |≤7,解得-3≤m ≤4.高考模拟试题精编(二)1.解析:选D.∵12+i =2-i +-=25-15i ,∴其所对应的点在第四象限,故选D.2.解析:选A.因为U ={1,2,3,4},A ∩B ={4},所以∁U (A ∩B )={1,2,3},故选A. 3.解析:选D.sin 18°·sin 78°-cos 162°·cos 78°=sin 18°·sin 78°+cos 18°·cos 78°=cos(78°-18°)=cos 60°=12,故选D.4.解析:选B.由题意得直线与圆相切,∴d =|-1-m |1+m 2=1,解得m =0,故选B. 5.解析:选D.由题意得,72+77+80+x +86+905=81⇒x =0,易知y =3,∴x -y =-3,故选D.6.解析:选C.分析三视图可知,该几何体为一个正方体截去一个三棱锥所得(如图),故其体积V =23-13×12×1×1×2=233,故选C.7.解析:选D.由图可知A =1,T 2=π3-⎝ ⎛⎭⎪⎫-π6=π2,∴T =π,ω=2,∵函数f (x )=sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象过点⎝ ⎛⎭⎪⎫π3,0,则f ⎝ ⎛⎭⎪⎫π3=sin ⎝⎛⎭⎪⎫2π3+φ=0,∴2π3+φ=k π(k ∈Z ),∴φ=k π-2π3(k ∈Z ),又|φ|<π2, ∴φ=π3,则f (x )=sin ⎝⎛⎭⎪⎫2x +π3,其图象的一条对称轴方程是x =π12.当x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3时,f (x 1)=f (x 2)(x 1≠x 2),∴x 1+x 2=π12×2=π6,f (x 1+x 2)=sin ⎝ ⎛⎭⎪⎫2×π6+π3=sin 2π3=32,故选D.8.解析:选D.由程序框图可知,k =2,S =0+12=12,满足循环条件;k =4,S =12+14=34,满足循环条件;k =6,S =34+16=2224,满足循环条件;k =8,S =2224+18=2524,符合题目条件,结束循环,故填k <8,选D.9.解析:选A.由余弦定理可知,a 2=b 2+c 2-2bc cos A ⇒a 2=9+(a +2)2-2·3·(a +2)·78⇒a =2,故选A.10.解析:选B.点P 到点O 的距离大于1的点位于以O 为球心,以1为半径的半球的外部.记点P 到点O 的距离大于1为事件A ,则P (A )=23-12×4π3×132=1-π12. 11.解析:选C.由双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点坐标为(2,0),可知双曲线的焦点在x 轴上,且c =2,∵渐近线方程为y =3x ,∴b a =3,∴b 2a 2=c 2-a 2a 2=3,∴a =1,b =3,双曲线的方程为x 2-y 23=1,故选C.12.解析:选C.由题意得,|AB |=|e x +1-(2x -1)|=|e x -2x +2|,令h (x )=e x-2x +2,则h ′(x )=e x-2,∴h (x )在(-∞,ln 2)上单调递减,在(ln 2,+∞)上单调递增,∴h (x )min =h (ln 2)=eln 2-2ln 2+2=4-2ln 2>0,即|AB |的最小值是4-2ln 2,故选C.13.解析:如图所示,BD →·AE →=(AD →-AB →)·(AB →+BE →)=⎝ ⎛⎭⎪⎫12AC →-AB →·⎝ ⎛⎭⎪⎫AB →+13AC →-13AB →= ⎝ ⎛⎭⎪⎫12AC→-AB →·⎝ ⎛⎭⎪⎫13AC →+23AB → =16AC →2-23AB →2=16×4-23×4=-2. 答案:-214.解析:如图所示,作出不等式组所表示的平面区域,即可行域,作直线l :y =x ,平移l ,从而可知当x =2,y =-2时,z max =2-(-2)=4.答案:415.解析:根据等式中的规律可知,等式右侧为15×4×3×2×1n (n +1)(n +2)(n +3)(n+4)=1120n (n +1)(n +2)(n +3)(n +4). 答案:1120n (n +1)(n +2)(n +3)(n +4) 16.解析:根据球的截面的性质可知两圆锥的高必过球心O ,且AB ⊥O 1C ,所以OO 1=R 2-1,因此体积较小的圆锥的高AO 1=R -R 2-1,体积较大的圆锥的高BO 1=R +R 2-1,故AO 1BO 1=R -R 2-1R +R 2-1=13,化简得R =2R 2-1,即3R 2=4,得R =233. 答案:23317.解:(1)证明:由a n +1=n +12n a n 知a n +1n +1=12·a nn, ∴{a n n }是以12为首项,12为公比的等比数列.(2)由(1)知{a n n }是首项为12,公比为12的等比数列,∴a n n =⎝ ⎛⎭⎪⎫12n ,∴a n =n 2n , ∴S n =121+222+…+n2n ,①则12S n =122+223+…+n2n +1,② ①-②得:12S n =12+122+123+…+12n -n 2n +1=1-n +22n +1,∴S n =2-n +22n.18.解:(1)由题意可得n =0.26×50=13, ∴m =50-5-12-13=20. (2)设“从重量在.22.解:(1)由ρ2-23ρsin θ=a 知其直角坐标方程为x 2+y 2-23y =a , 即x 2+(y -3)2=a +3(a >-3). (2)将l :⎩⎪⎨⎪⎧x =1+12t y =3+32t 代入曲线C 的直角坐标方程得⎝ ⎛⎭⎪⎫1+12t 2+⎝ ⎛⎭⎪⎫32t 2=a +3,化简得t 2+t -a -2=0.∵曲线C 与直线l 仅有唯一公共点,∴Δ=1-4(-a -2)=0, 解得a =-94.23.解:(1)由||x -1|+2|<5,得-5<|x -1|+2<5,所以-7<|x -1|<3, 解不等式得-2<x <4,所以原不等式的解集是{x |-2<x <4}. (2)因为对任意的x 1∈R ,都有x 2∈R ,使得f (x 1)=g (x 2)成立, 所以{y |y =f (x )}⊆{y |y =g (x )},又f (x )=|2x -a |+|2x +3|≥|(2x -a )-(2x +3)|=|a +3|,g (x )=|x -1|+2≥2,所以|a +3|≥2,解得a ≥-1或a ≤-5,所以实数a 的取值范围是{a |a ≥-1,或a ≤-5}.高考模拟试题精编(三)1.解析:选C.由x 2-5x -6<0,解得-1<x <6,所以A ={x |-1<x <6}.由2x<1,解得x <0,所以B ={x |x <0}.又图中阴影部分表示的集合为(∁U B )∩A ,因为∁U B ={x |x ≥0},所以(∁U B )∩A ={x |0≤x <6},故选C.2.解析:选A.z =2-ix -i=-x +x 2+1=2x +1+-x x 2+1,因为复数z =2-ix -i 为纯虚数,所以⎩⎪⎨⎪⎧2x +1=02-x ≠0,即x =-12,故选A.3.解析:选 B.由茎叶图可知全部数据为10,11,20,21,22,24,31,33,35,35,37,38,43,43,43,45,46,47,48,49,50,51,52,52,55,56,58,62,66,67,中位数为43+452=44,众数为43,极差为67-10=57.选B.4.解析:选D.因为f ′(x )=cos x +sin x =12sin x -12cos x ,所以tan x =-3,所以tan 2x =2tan x 1-tan 2x =-61-9=34,故选D. 5.解析:选B.因为AB →=-2CD →,所以AB →=2DC →.又M 是BC 的中点,所以AM →=12(AB →+AC →)=12(AB →+AD →+DC →)=12(AB →+AD →+12AB →)=34AB →+12AD →,故选B. 6.解析:选A.因为a =413>1,0<b =log 1413=log 1414=1,c =log 314<0,所以a >b >c ,故选A.7.解析:选D.第一次循环,得t =2×1-2=0,i =2;第二次循环,得t =0+3=3,i =3;第三次循环,得t =2×3-1=5,i =4;第四次循环,得t =2×5+4=14,i =5,不满足循环条件,退出循环,输出的t =14,故选D.8.解析:选C.因为S △ABC =12ac sin B =12×4×6×sin B =63,所以sin B =32,且△ABC 为锐角三角形,所以B =π3,所以b 2=16+36-2×4×6×cos π3=28,故b =27,选C.9.解析:选D.由三视图知,该几何体为一个底面半径为1,高为1的圆柱体,与底面半径为1,高为2的半圆柱体构成,所以该三视图的体积为π×12×1+12π×12×2=2π,故选D.10.解析:选C.由题意得,此三棱锥外接球即为以△ABC 为底面、以PA 为高的正三棱柱的外接球,因为△ABC 的外接圆半径r =32×3×23=1,外接球球心到△ABC 的外接圆圆心的距离d =1,所以外接球的半径R =r 2+d 2=2,所以三棱锥外接球的表面积S =4πR 2=8π,故选C.11.解析:选B.设AB 的中点为G ,则由椭圆的对称性知,O 为平行四边形ABCD 的对角线的交点,则GO ∥AD .设A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧x 214+y 212=1x 224+y222=1,两式相减得x 1-x 2x 1+x24=-y 1-y 2y 1+y 22,整理得x 1+x 2y 1+y 2=-y 1-y 2x 1-x 2=-k 1=-1,即y 1+y 2x 1+x 2=-12. 又G ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,所以k OG=y 1+y 22-0x 1+x 22-0=-12,即k 2=-12,故选B.12.解析:选B.在等差数列{a n }中,由a 3=-2,a 5=4,得公差d =3,所以a n =a 3+(n -3)d =3n -11.因为a m +1a m +2a m=a m +a m +a m=a m +9+18a m,且a n =3n -11=3(n -4)+1,所以要使a m +1a m +2a m 为数列{a n }中的项,18a m必须是3的倍数,于是a m 在±1,±2,±3,±6中取值,但由于a m -1是3的倍数,所以a m =1或a m =-2.由a m =1得m =4;由a m =-2得m =3.由m =4时,a m +1a m +2a m =4×71=a 13;当m =3时,a m +1a m +2a m =1×4-2=a 3.所以所求m 的值的和为7.13.解析:作出x ,y 满足约束条件下的平面区域,如图阴影部分所示,由图知,当直线z =3x +y 经过点A (2,2)时z 取得最大值,即z max =3×2+2=8.答案:814.解析:因为f (x )=3cos x -sin x =2cos ⎝⎛⎭⎪⎫x +π6,将其图象向右平移θ个单位后得y =2cos ⎝⎛⎭⎪⎫x -θ+π6的图象,因为所得函数图象关于直线x =π6对称,则有π6-θ+π6=k π(k ∈Z ),即θ=-k π+π3(k ∈Z ),所以θ的最小正值为π3.答案:π315.解析:圆C 的标准方程为x 2+(y +1)2=4,其圆心为(0,-1),半径r =2,设直线l 1的方程为3x +4y +c =0,则|3×0+-+c |32+42=2,解得c =14或c =-6,故l 1的方程为3x +4y +14=0或3x +4y -6=0.答案:3x +4y +14=0或3x +4y -6=016.解析:令f (t )≤3,若t ≤0,则2-t-1≤3,2-t≤4,解得-2≤t ≤0;若t >0,则-t 2+t ≤3,t 2-t +3≥0,解得t >0,∴t ≥-2,即原不等式等价于⎩⎪⎨⎪⎧2-x-1≥-2x ≤0或⎩⎪⎨⎪⎧-x 2+x ≥-2x >0,解得x ≤2.答案:{x |x ≤2}17.解:(1)设等比数列{a n }的公比为q (q >0),由题意,得⎩⎪⎨⎪⎧a 1q 5=64a 1q 3+a 1q 4=6a 1q 2,解得⎩⎪⎨⎪⎧a 1=2q =2或q =-舍,所以a n =2n. (2)因为b n =na 2n -1=n22n -1,所以T n =12+223+325+427+…+n22n -1,14T n =12+22+32+…+n -12+n2, 所以34T n =12+123+125+127+…+122n -1-n 22n +1=12⎝ ⎛⎭⎪⎫1-14n 1-14-n 22n +1=23-4+3n3×22n +1,故T n =89-16+12n 9×22n +1=89-4+3n 9×22n -1.18.解:(1)x =3,y =5,∑i =15x i =15,∑i =15y i =25,∑i =15x i y i =62.7,∑i =15x 2i =55, 解得b ^=-1.23,a ^=8.69, 所以y ^=8.69-1.23x .(2)年利润z =x (8.69-1.23x )-2x =-1.23x 2+6.69x , 所以当x =2.72时,年利润z 最大.19.解:(1)因为DG =GC ,AB =CD =2EF ,AB ∥EF ∥CD , 所以EF ∥DG ,EF =DG .所以四边形DEFG 为平行四边形, 所以FG ∥ED .又因为FG ⊄平面AED ,ED ⊂平面AED . 所以FG ∥平面AED .(2)因为平面ABFE ⊥平面ABCD ,平面ABFE ∩平面ABCD =AB ,AD ⊥AB ,AD ⊂平面ABCD ,所以AD ⊥平面BAF , 又AD ⊂平面DAF , 所以平面DAF ⊥平面BAF .20.解:(1)由已知得圆心为C (2,0),半径r = 3.设P (x ,y ),依题意可得|x +1|=x -2+y 2-3,整理得y 2=6x .故曲线E 的方程为y 2=6x . (2)设直线AB 的方程为my =x -2,则直线CQ 的方程为y =-m (x -2),可得Q (-1,3m ). 设A (x 1,y 1),B (x 2,y 2).将my =x -2代入y 2=6x 并整理得y 2-6my -12=0,那么y 1y 2=-12,则|AC |·|BC |=(1+m 2)|y 1y 2|=12(1+m 2),|QC |2=9(1+m 2),即|AC |·|BC |=43|QC |2,所以存在λ=43.21.解:(1)f ′(x )=e x-a ,若a <0,则f ′(x )>0,f (x )在R 上单调递增;若a >0,当x =ln a 时,f ′(x )=0;当x <ln a 时,f ′(x )<0; 当x >ln a ,时f ′(x )>0.故在(-∞,ln a )上,f (x )单调递减;在(ln a ,+∞)上,f (x )单调递增.(2)由(1)知若a >0,只需f (ln a )>a 2-a ,即-a ln a >a 2-a ,即ln a +a -1<0. 令g (a )=ln a +a -1,当a >0时,g (a )单调递增,又g (1)=0,则0<a <1. 若a <0,则f =-a -a =-a ln(-a )-2a ,f -(a 2-a )=-a ln(-a )-a 2-a =-a . 因为ln(-a )+a +1≤0,所以-a ≤0, 则f ≤a 2-a ,不合要求.(事实上,令h (x )=ln x -x +1,h ′(x )=1x-1,0<x <1时,h ′(x )>0;x >1时,h ′(x )<0,则h (x )≤h (1)=0,即ln x -x +1≤0,故ln(-a )+a +1≤0)(另解:若a <0,则f ⎝ ⎛⎭⎪⎫1a =e 1a-a ⎝ ⎛⎭⎪⎫1a+1=e 1a-1-a <a 2-a ,不合要求)综上所述,a 的取值范围是0<a <1.22.解:(1)将⎩⎪⎨⎪⎧x =6cos θy =4sin θ代入⎩⎪⎨⎪⎧x ′=13x y ′=14y,得曲线C ′的参数方程为⎩⎪⎨⎪⎧x ′=2cos θy ′=sin θ,∴曲线C ′的普通方程为x 24+y 2=1.(2)设点P (x ,y ),A (x 0,y 0),又D (1,3),且AD 的中点为P ,∴⎩⎪⎨⎪⎧x 0=2x -1y 0=2y -3,又点A 在曲线C ′上,∴代入C ′的普通方程x 24+y 2=1,得(2x -1)2+4(2y -3)2=4,∴动点P 的轨迹方程为(2x -1)2+4(2y -3)2=4. 23.解:(1)由(a +d )2>(b +c )2,4ad =4bc , 得(a -d )2>(b -c )2,即|a -d |>|b -c |.(2)因为(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2=a 2c 2+2abcd +b 2d 2=(ac +bd )2, 所以t ·a 2+b2c 2+d 2=t (ac +bd ).由于a 4+c 4≥ 2ac ,b 4+d 4≥ 2bd , 又已知t ·a 2+b2c 2+d 2=a 4+c 4+b 4+d 4,则t (ac +bd )≥ 2(ac +bd ),故t ≥ 2,当a =c ,b =d 时取等号.高考模拟试题精编(四)1.解析:选 A.因为z =4+3i2-i+1-3i =++-++1-3i =1+2i +1-3i=2-i ,所以z =2+i ,z 的虚部为1,故选A.2.解析:选C.A ={x |x -1≥0}=上单调递增,∴f (x )在.3.解析:选C.因为47-33=14,所以由系统抽样的定义可知样本中的另一个学生的编号为5+14=19.4.解析:选D.如图,在长方体ABCD ­A 1B 1C 1D 1中,还原出该三棱锥P ­BCD ,易得BD =PB =41,PD =25,∴S △PBD =12×25×412-⎝ ⎛⎭⎪⎫2522=65, 又易得S △BCD =12×4×5=10,S △BCP =12×BC ×PC =10,S △PCD =12×CD ×CC 1=10,∴该三棱锥的表面积是30+6 5.5.解析:选A.∵y =3cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π3,∴将函数图象向左平移m 个单位长度后得g (x )=2sin ⎝ ⎛⎭⎪⎫x +π3+m 的图象,∵g (x )的图象关于y 轴对称,∴g (x )为偶函数,∴π3+m =π2+k π(k ∈Z ), ∴m =π6+k π(k ∈Z ),又m >0,∴m 的最小值为π6.6.解析:选D.由于要计算30个数的和,故循环要执行30次,由于循环变量的初值为1,步长为1,故终值应为30,即①中应填写i ≤30;又由第1个数是1;第2个数比第1个数大1;第3个数比第2个数大2;第4个数比第3个数大3;……,故②中应填写p =p +i .7.解析:选B.由f (x )=0,得x 2+2ax =0,解得x =0或x =-2a ,∵a >0,∴x =-2a <0,故排除A 、C ;当x 趋向于-∞时,e x趋向于0,故f (x )趋向于0,排除D.8.解析:选A.依题意AB =2,∠OAB =45°,又CP →⊥AB →,AC →=14AB →,∴OP →·(OB →-OA →)=(OA →+14AB →+CP →)·AB →=OA →·AB →+14AB →2+CP →·AB →=-1+12=-12.9.解析:选D.因为log 0.5(4x -3)≥0,所以0<4x -3≤1,即34<x ≤1,所以所求概率P =1-341-0=14,故选D. 10.解析:选D.由tan 2θ=-22可得tan 2θ=2tan θ1-tan 2θ=-22,即2tan 2θ-tan θ-2=0,解得tan θ=2或tan θ=-22.又角θ的终边在第三象限,故tan θ=2,∴sin 2θ+sin(3π-θ)cos(2π+θ)-2cos 2θ=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-2tan 2θ+1=2+2-22+1=2311.解析:选B.由已知,显然直线PA 1的斜率存在,故可设直线PA 1的方程为y =k (x +2),由已知k >0,则由⎩⎪⎨⎪⎧y =k x +x 24-y29=1得(9-4k 2)y 2-36ky =0,易知9-4k 2≠0,因而P ⎝ ⎛⎭⎪⎫18+8k29-4k 2,36k 9-4k 2,所以kPA 2=94k ,则直线PA 2的方程为y =94k (x -2),直线PA 1,PA 2与直线l 分别交于B 1(1,3k ),B 2⎝⎛⎭⎪⎫1,-94k ,因而12×3×3k =12×1×94k ,得k =12,故选B. 12.解析:选C.∵函数g (x )的图象关于直线x =2对称,∴g (0)=g (4)=1,设f (x )=g xex,∴f ′(x )=g xx-g xxx2=g x -g xe x,又g ′(x )-g (x )<0,∴f ′(x )<0,∴f (x )在R 上单调递减,又f (0)=ge=1,∴f (x )>f (0),∴x <0.13.解析:作出可行域如图阴影部分所示,当z =3x +y 向上平移经过点A 时z 取得最大值,由⎩⎪⎨⎪⎧x +y -2=0x -2y +1=0,得A (1,1),∴z max =3×1+1=4. 答案:414.解析:由a cos B -b cos A =12c 及正弦定理,得sin A cos B -sin B cos A =12sin C=12sin(A +B )=12(sin A cos B +cos A ·sin B ),整理得sin A cos B =3cos A sin B ,即tan A =3tan B ,易得tan A >0,tan B >0,∴tan(A -B )=tan A -tan B 1+tan A tan B =2tan B1+3tan 2B=21tan B+3tan B ≤223=33,当且仅当1tan B= 3tan B ,即tan B =33时,tan(A -B )取得最大值,∴B =π6. 答案:π615.解析:如图,根据题意,可把该三棱锥补形成长方体,则该三棱锥的外接球即为该长方体的外接球,易得PA =2,∴三棱棱的外接球的体积V =43×π×13=43π.答案:43π16.解析:由题意可知点M 在直线y =x +2上运动,设直线y =x +2与圆x 2+y 2=1相切于点M 1⎝ ⎛⎭⎪⎫-22,22.当x 0=-22即点M 与点M 1重合时,显然圆上存在点N ⎝ ⎛⎭⎪⎫22,22或⎝ ⎛⎭⎪⎫-22,-22符合要求;当x 0≠-22时,过点M 作圆的切线,切点之一为M 1,此时对于圆上任意一点N ,都有∠OMN ≤∠OMM 1,故要使得∠OMN =45°,只需∠OMM 1≥45°.特别地,当∠OMM 1=45°时,有|OM |=2即x 20+(x 0+2)2=(2)2∴有X 0=-2或X 0=0,结合图形可知,符合条件的X 0的取值范围为. 答案:17.解:(1)f (x )=x 2+sin x ,令f ′(x )=12+cos x =0,得x =2k π±2π3(k ∈Z ).由f ′(x )>0⇒2k π-2π3<x <2k π+2π3(k ∈Z ),由f ′(x )<0⇒2k π+2π3<x <2k π+4π3(k ∈Z ),当x =2k π-2π3(k ∈Z )时,f (x )取得极小值,∴x n =2n π-2π3(n ∈N *).(2)∵b n =x n 2π=n -13=3n -13,∴1b n ·b n +1=33n -1·33n +2=3⎝ ⎛⎭⎪⎫13n -1-13n +2, ∴S n =3⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-15+⎝ ⎛⎭⎪⎫15-18+…+⎝ ⎛⎭⎪⎫13n -1-13n +2=3⎝ ⎛⎭⎪⎫12-13n +2=32-33n +2, ∴S n <32.18.解:(1)由题意知,样本数据的平均数X =4+6+12+12+18+206=12.(2)样本中优秀服务网点有2个,频率为26=13,由此估计这90个服务网点中有90×13=30个优秀服务网点.(3)由于样本中优秀服务网点有2个,分别记为a 1,a 2,非优秀服务网点有4个,分别记为b 1,b 2,b 3,b 4,从随机抽取的6个服务网点中再任取2个的可能情况有:(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 1,b 4),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 2,b 4),(b 1,b 2),(b 1,b 3),(b 1,b 4),(b 2,b 3),(b 2,b 4),(b 3,b 4),共15种,记“恰有1个是优秀服务网点”为事件M ,则事件M 包含的可能情况有:(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 1,b 4),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 2,b 4),共8种,故所求概率P (M )=815.19.解:(1)依题意,VC ­BDC 1=VD ­BCC 1,过点D 作DH ⊥C 1B 1,垂足为H ,在直三棱柱中C 1C ⊥平面A 1B 1C 1,∴C 1C ⊥DH ,∴DH ⊥平面BCC 1,∴DH 是三棱锥D ­BCC 1在平面BCC 1上的高,∴DH =32, 又S △BCC 1=12×2×2=2,∴VC ­BDC 1=VD ­BCC 1=13×32×2=66.(2)取C 1B 1的中点E ,连接A 1E ,CE ,∵底面是正三角形,∴A 1E ⊥B 1C 1,易知A 1E ⊥BC 1, Rt △C 1CE 中,C 1C =2,C 1E =1, Rt △BCC 1中,BC =2,CC 1=2,∴C 1C BC =C 1E CC 1, ∴△CC 1E ∽△BCC 1,∴∠C 1BC =∠ECC 1,∠C 1BC +∠BC 1C =90°, ∴∠ECC 1+∠BC 1C =90°, ∴CE ⊥BC 1,又A 1E ∩CE =E , ∴BC 1⊥平面A 1CE ,∴A 1C ⊥BC 1.20.解:(1)法一:易知a =2,c =4-b 2,b 2<4,所以F 1(-4-b 2,0),F 2(4-b 2,0),设P (x ,y ),则PF 1→·PF 2→=(-4-b 2-x ,-y )·(4-b 2-x ,-y )=x 2+y 2-(4-b 2)=x 2+b 2-b 2x 24-4+b 2=⎝ ⎛⎭⎪⎫1-b 24x 2+2b 2-4.因为x ∈,故当x =±2,即点P 为椭圆长轴端点时,PF 1→·PF 2→有最大值1,即1=⎝ ⎛⎭⎪⎫1-b 24×4+2b 2-4,解得b 2=1.故所求椭圆E 的方程为x 24+y 2=1.法二:由题意知,a =2,c =4-b 2,b 2<4,所以F 1(-4-b 2,0),F 2(4-b 2,0),设P (x ,y ),则PF 1→·PF 2→=|PF 1→|·|PF 2→|·cos ∠F 1PF 2=|PF 1→|·|PF 2→|·|PF 1→|2+|PF 2→|2-|F 1F 2→|22|PF 1→|·|PF 2→|=12 =⎝⎛⎭⎪⎫1-b 24x 2+2b 2-4.因为x ∈,故当x =±2,即点P 为椭圆长轴端点时,PF 1→·PF 2→有最大值1,即1=⎝ ⎛⎭⎪⎫1-b 24×4+2b 2-4,解得b 2=1.故所求椭圆E 的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),则A ′(x 1,-y 1),由⎩⎪⎨⎪⎧x =ky -1x 24+y 2=1得(k 2+4)y 2-2ky -3=0,Δ=16k 2+48>0,故y 1+y 2=2k k 2+4,y 1·y 2=-3k 2+4. 经过点A ′(x 1,-y 1),B (x 2,y 2)的直线方程为y +y 1y 2+y 1=x -x 1x 2-x 1. 令y =0,则x =x 2-x 1y 1+y 2y 1+x 1=x 2-x 1y 1+y 1+y 2x 1y 1+y 2=x 2y 1+x 1y 2y 1+y 2, 又x 1=ky 1-1,x 2=ky 2-1, 所以x =x 2y 1+x 1y 2y 1+y 2=ky 2-y 1+ky 1-y 2y 1+y 2=2ky 1y 2-y 1+y 2y 1+y 2=-6k k 2+4-2kk 2+42k k 2+4=-4.故直线A ′B 与x 轴交于定点(-4,0). 21.解:(1)∵h (x )的定义域为(0,+∞), h ′(x )=-1x 2+3x -2=-2x 2-3x +1x2=-2x -x -x2,∴h (x )的单调递减区间是⎝ ⎛⎭⎪⎫0,12和(1,+∞).(2)问题等价于a ln x =1x有唯一的实根,显然a ≠0,则关于x 的方程x ln x =1a有唯一的实根,构造函数φ(x )=x ln x ,则φ′(x )=1+ln x ,由φ′(x )=1+ln x =0,得x =e -1,当0<x <e -1时,φ′(x )<0,φ(x )单调递减,当x >e -1时,φ′(x )>0,φ(x )单调递增,∴φ(x )的极小值为φ(e -1)=-e -1.如图,作出函数φ(x )的大致图象,则要使方程x ln x =1a有唯一的实根,只需直线y =1a 与曲线y =φ(x )有唯一的交点,则1a =-e -1或1a>0,解得a =-e 或a >0,故实数a 的取值范围是{-e}∪(0,+∞).22.解:(1)∵曲线C 的参数方程为⎩⎨⎧x =3+10cos αy =1+10sin α(α为参数),∴曲线C 的普通方程为(x -3)2+(y -1)2=10,① 曲线C 表示以(3,1)为圆心,10为半径的圆.将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ代入①并化简,得ρ=6cos θ+2sin θ,即曲线C 的极坐标方程为ρ=6cos θ+2sin θ. (2)∵直线的直角坐标方程为y -x =1, ∴圆心C 到直线的距离为d =322,∴弦长为210-92=22.23.解:(1)∵f (x )=|x +3|-m ,∴f (x -3)=|x |-m ≥0,∵m >0,∴x ≥m 或x ≤-m ,又f (x -3)≥0的解集为(-∞,-2]∪=0.7,即4.7-不等于0,因而可得y =7+(+1)×1.6=10.2,输出y 的值为10.2,故选C.7.解析:选A.通过不等式组⎩⎪⎨⎪⎧x -3y +5≥02x -y ≤0x ≥0,y ≥0作出可行域如图中三角形OAB 及其内部所示,其中A (1,2),B ⎝ ⎛⎭⎪⎫0,53,求z =⎝ ⎛⎭⎪⎫12x ×4y =22y -x的最小值,可转化为求2y -x 的最小值,当x =y =0时,2y -x 取得最小值0,则z =⎝ ⎛⎭⎪⎫12x ×4y的最小值为1,故选A.8.解析:选A.∵a 3,a 15是方程x 2-6x +8=0的根,∴a 3a 15=8,a 3+a 15=6,因而a 3,a 15均为正,由等比数列的性质知,a 1a 17=a 29=a 3a 15=8,∴a 9=22,a 1a 17a 9=a 3a 15a 9=a 29a 9=a 9=22,故选A.9.解析:选C.将y =sin 2x 的图象向左平移φ个单位长度,再向上平移1个单位长度得到y =sin 2(x +φ)+1的图象,此时y =sin 2(x +φ)+1=2cos 2x ,即sin 2(x +φ)=cos 2x ,因而2φ=π2+2k π,k ∈Z ,那么,由选项可知φ可以取的值为π4,故选C.10.解析:选B.由题意可得f (-x )=f (x ),故f (x )为偶函数,所以排除C 、D ;再考虑x 趋近于0时,f (x )趋近于正无穷大,即图形接近y 轴的正半轴,排除A ,选B.11.解析:选A.设B (x B ,y B ),C (x C ,y C ),由题意知a =1,直线l 的方程为y =x +1,分别与双曲线的渐近线方程联立解得x B =-1b +1,y B =b b +1,x C =1b -1,y C =b b -1,又点B 是AC 的中点,所以2b b +1=b b -1,解得b =3,则c =10,故双曲线M 的离心率e =ca=10. 12.解析:选A.由题意知,f ′(x )=a x-2bx ,因为函数f (x )=a ln x -bx 2的图象在x =1处与直线y =-12相切,所以⎩⎪⎨⎪⎧f =a -2b =0f =-b =-12,解得⎩⎪⎨⎪⎧a =1b =12,即函数f (x )=ln x -x 22.又当x ∈时,f ′(x )=1x -x ≤0,所以函数f (x )在上单调递减,其最大值为f (1)=-12. 13.解析:由已知的频率分布直方图,可得数据不超过10时对应的矩形的高为0.04,而组距为5,因而对应的频率为0.2,因而样本容量为100.2=50.答案:5014.解析:由题意,得△ABC 为直角三角形,斜边长为5,所以小圆半径为52,设球的半径为R ,由题意可知,R 2=R 24+254,解得R 2=253,则球的表面积为4πR 2=100π3.答案:100π315.解析:由已知得,a =1,b =c =22,所以椭圆C 的方程为x 2+y 212=1,设A (x 0,y 0)是椭圆C 的内接正方形位于第一象限内的顶点,则x 0=y 0,所以1=x 20+2y 20=3x 20,解得x 20=13,所以椭圆C 的内接正方形的面积S =(2x 0)2=4x 20=43. 答案:4316.解析:由已知S n =n 2可得,n =1时,a 1=1,n ≥2时,a n =S n -S n -1=2n -1,a 1=1适合上式,因而数列{a n }是公差为2的等差数列,a 1a 2-a 2a 3+a 3a 4-a 4a 5+…+a 2n -1a 2n -a 2n a 2n +1=a 2(a 1-a 3)+a 4(a 3-a 5)+…+a 2n (a 2n -1-a 2n +1)=-4(a 2+a 4+…+a 2n )=-4×n a 2+a 2n 2=-8n 2-4n .若对任意的n ∈N *不等式-8n 2-4n ≥t ·n 2恒成立,则t ≤-4n-8恒成立,因而t ≤-12,t 的最大值为-12.答案:-1217.解:(1)由已知,m ∥n ,则2b cos C =2a -c ,由正弦定理,得 2sin B cos C =2sin(B +C )- sin C ,即2sin B cos C =2sin B cos C +2cos B sin C -sin C , 在△ABC 中,sin C ≠0,因而2cos B =1,则B =π3.又b 2=ac ,b 2=a 2+c 2-2ac cos B ,因而ac =a 2+c 2-2ac cos π3,即(a -c )2=0,所以a =c ,△ABC 为等边三角形. (2)y =1-2cos 2A1+tan A=1-cos 2A -sin 2A1+sin A cos A=1-2cos A (cos A -sin A )=sin 2A -cos2A =2sin ⎝ ⎛⎭⎪⎫2A -π4,其中A ∈⎝⎛⎭⎪⎫0,2π3.因而所求函数的值域为(-1,2]. 18.解:(1)甲产品的合格率为P 1=40+32+8100=45.乙产品的合格率为P 2=40+24+6100=710.(2)由题意,若按合格与不合格的比例抽取5件甲产品,则其中恰有1件次品,4件合格品,因而可设这5件甲产品分别为a ,b ,c ,d ,E ,其中小写字母代表合格品,E 代表次品,从中随机抽取2件,则所有可能的情况为ab ,ac ,ad ,aE ,bc ,bd ,bE ,cd ,cE ,dE ,共10种,设“这2件产品全是合格品”为事件M ,则事件M 所包含的情况为ab ,ac ,ad ,bc ,bd ,cd ,共6种.由古典概型的概率计算公式,得P (M )=610=35.19.解:(1)证明:∵平面ADC ⊥平面ABC ,且平面ADC ∩平面ABC =AC ,AC ⊥BC , ∴BC ⊥平面ACD ,即AD ⊥BC ,又AD ⊥CD ,且CD 、BC 为平面BCD 内两相交直线,∴AD ⊥平面BCD .(2)由(1)得AD ⊥BD ,∴S △ADB =23,∵三棱锥B ­ACD 的高BC =22,S △ACD =2, ∴13×23h =13×2×22,∴可解得h =263.20.解:(1)设P (t 2,t ),t <0,切线l 的方程为y -t =k (x -t 2),其中k ≠0,联立⎩⎪⎨⎪⎧y 2=x y -t =kx -t 2,得y 2-1k y +t k -t 2=0,由Δ=1k 2-4⎝ ⎛⎭⎪⎫t k -t 2=0得k =12t ,因此直线l 的方程为y -t =12t(x -t 2),即x -2ty +t 2=0. 令y =0,得x =-t 2,所以A (-t 2,0),令x =0,得y =t2,所以B ⎝ ⎛⎭⎪⎫0,t 2.设M (a,0),因为圆M 与l 相切于点P ,|PB |=|PM |, 且PB ⊥PM ,所以|MB |2=2|PB |2,即a 2+t 24=2⎝⎛⎭⎪⎫t 4+t 24,所以a 2=t 24+2t 4①,又PM →·PB →=0,所以-t 2(a -t 2)+t 22=0,即t 2=a -12②.联立①②解得a =32或a =14(舍去),|PM |2=54,所以圆M 的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=54.(2)由(1)知A (-1,0),直线l 的斜率为-12,所以直线m 的斜率为2,故直线m 的方程为2x -y +2=0.设与直线m 平行且与抛物线C 相切的直线为2x -y +b =0(b ≠2),代入抛物线方程,得y 2=y -b 2,即2y 2-y +b =0,由Δ1=1-8b =0得b =18,此时y =14,x =116,所以点Q 的坐标为⎝ ⎛⎭⎪⎫116,14. 21.解:(1)由已知得f (x )的定义域为(0,+∞), 由f ′(x )=1-ln xx2=0,得x =e , 当x ∈(0,e)时,f ′(x )>0,f (x )为增函数,当x ∈(e ,+∞)时,f ′(x )<0,f (x )为减函数,所以f (x )有极大值f (e)=1e,无极小值.(2)设函数f (x )的图象与函数g (x )的图象相切于点M ⎝⎛⎭⎪⎫t ,ln t t ,由f ′(x )=1-ln x x 2,则f ′(t )=1-ln t t 2=a ,且ln tt=at -a , 消去a 得(2t -1)ln t -t +1=0. 设h (t )=(2t -1)ln t -t +1,则h ′(t )=2ln t +2t -1t -1=2ln t -1t+1.设φ(t )=2ln t -1t +1,则φ′(t )=2t +1t2>0,所以φ(t )=2 ln t -1t +1在其定义域上单调递增,即h ′(t )=2ln t -1t+1单调递增.又h ′(1)=0,所以当t ∈(0,1)时,h ′(t )<0,h (t )单调递减,当t ∈(1,+∞)时,h ′(t )>0,h (t )单调递增,所以h (t )的最小值为h (1)=0, 所以(2t -1)ln t -t +1=0仅有一解t =1,此时a =1-ln 112=1,切点为M (1,0). 22.解:(1)由ρ=5⇒ρ2=25,得x 2+y 2=25,即曲线C 的直角坐标方程为x 2+y 2=25.(2)设直线l 的参数方程为⎩⎪⎨⎪⎧x =-3+t cos αy =-32+t sin α(t 为参数),①将参数方程①代入圆的方程x 2+y 2=25,得4t 2-12(2cos α+sin α)t -55=0, ∴Δ=16>0,上述方程有两个相异的实数根,设为t 1、t 2,∴|AB |=|t 1-t 2|=α+sin α2+55=8,化简有3cos 2α+4sin αcos α=0,解得cos α=0或tan α=-34,从而可得直线l 的直角坐标方程为x +3=0或3x +4y +15=0.23.解:(1)证明:函数f (x )=|x -a |,a <0, 则f (x )+f ⎝ ⎛⎭⎪⎫-1x =|x -a |+|-1x-a |=|x -a |+|1x +a |≥|(x -a )+⎝ ⎛⎭⎪⎫1x +a |=|x +1x |=|x |+1|x |≥2|x |·1|x |=2(当且仅当|x |=1时取等号).(2)f (x )+f (2x )=|x -a |+|2x -a |,a <0.当x ≤a 时,f (x )+f (2x )=a -x +a -2x =2a -3x ,则f (x )+f (2x )≥-a ; 当a <x <a 2时,f (x )+f (2x )=x -a +a -2x =-x ,则-a2<f (x )+f (2x )<-a ;当x ≥a 2时,f (x )+f (2x )=x -a +2x -a =3x -2a ,则f (x )+f (2x )≥-a2,则f (x )的值。

2018年高考文科数学模拟卷(word版含答案)

2018年高考文科数学模拟卷(word版含答案)

1 / 112018年高考模拟检测数学(文科)本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2|13,|30A x x B x x x =<≤=-≥则如图所示表示阴影部分表示的集合为A.[)1,0B.(]3,0C.)3,1(D.[]3,12.设复数z 满足()3112(i z i i +=-为虚数单位),则复数z 对应的点位于复平面内( )A .第一象限B .第二象限C .第三象限D .第四象限3.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是A .215πB .320πC .2115π-D .3120π- 4. 在如图所示的框图中,若输出360S =,那么判断框中应填入的关于k 的判断条件是A .2?k >B .2?k <C .3?k >D .3?k <5.若函数()sin()12f x x πα=+-为偶函数,则cos2α的值为 A. 12-B. 12C. 32-D. 32否开始6,1k S ==S S k=⨯1k k =-输出S结束是2 / 116.已知函数是偶函数,当时,,则曲线在点处的切线斜率为A. -2B. -1C. 1D. 27.若,x y 满足约束条件0010x x y x y ≥⎧⎪-≤⎨⎪+-≥⎩,则3z x y =+的取值范围是A. (,2]-∞B. [2,3]C. [3,)+∞D. [2,)+∞ 8.将函数()=2sin(2+)3f x x π图像上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移12π个单位得到函数()g x 的图像,在()g x 图像的所有对称轴中,离原点最近的对称轴方程为 A .24x π=-B .4x π=C .524x π=D .12x π= 9.某几何体的三视图如图所示, 则该几何体的体积为A .4B .2C .43 D .2310.已知直线20x y a -+=与圆O :222x y +=相交于A ,B 两点(O 为坐标原点),则“a =”是“0OA OB ⋅=”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.已知定义域为R 的奇函数()f x ,当0x >时,则(1)(2)(3)(2020)f f f f +++⋅⋅⋅+=()f x 0x >()(21)ln f x x x =-()y f x =(1,(1))f --正视图 侧视图3 / 11A .B .C .D .012.已知函数22()()(ln 2)f x x m x m =-+-,当()f x 取最小值时,则m = A .12 B .1ln 22-- C .12ln 2105- D .2ln2-二、填空题:本大题共4个小题,每小题5分.13.已知点,若,则实数等于 14.在ABC ∆中,a b c 、、分别为内角A B C 、、的对边,若2sin sin sin ,B A C =+3cos 5B =且4ABC S ∆=,则b 的值为 ; 15.已知三棱锥A BCD -中,BC ⊥面ABD,3,1,4AB AD BD BC ====,则三棱锥A BCD -外接球的体积为 ;16.已知过抛物线22(0)y px p =>的焦点F 的直线与抛物线交于A ,B 两点,且3AF FB =,抛物线的准线l 与x 轴交于点C ,1AA l ⊥于点1A ,若四边形1AA CF的面积为p 的值为 .三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求解答. (一)必考题:共60分.17.(12分)已知各项均为正数的等比数列{}n a 的前n 项和为n S ,若4120S =,且43a 是6a ,5a -的等差中项.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足321log n n b a +=,且{}n b 的前n 项和为n T ,求12111nT T T +++.2log 52log 5-2-(2,),(1,1)a m b ==||a b a b ⋅=-m4 / 1118.(12分)《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:(1)请利用所给数据求违章人数y 与月份x 之间的回归直线方程ˆˆybx a =+; (2)预测该路口 7月份的不“礼让斑马线”违章驾驶员人数;(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让参考公式:1122211()()ˆˆˆ,()n ni iiii i nniii i x y nx y x x y y bay bx xnxx x ====---===---∑∑∑∑. 22()()()()()n ad bc K a b c d a c b d -=++++(其中n a b c d =+++)19. (12分)如图,在四棱锥中,底面,底面是直角梯形,,.是PD 上一点.(1)若平面,求的值; P ABCD -PD ⊥ABCD ABCD //,AB DC AB AD ⊥3,2,5AB CD PD AD ====E //PB ACE PEED5 / 11(2)若E 是PD 中点,过点E 作平面平面PBC ,平面与棱PA 交于F ,求三棱锥的体积20.(12分)在平面直角坐标系中,点1F 、2F 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,双曲线C 的离心率为2,点3(1,)2在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点O 对称,且四边形12PFQF 的周长为2(1)求动点P 的轨迹方程;(2)已知动直线:l y kx m =+与轨迹P 交于不同的两点M N 、, 且与圆223:2W x y +=交于不同的两点G 、H ,当m 变化时,||||MN GH 恒为定值,求常数k 的值.21.(12分)已知函数,)(a x ae x f x--= 2.71828e =⋅⋅⋅是自然对数的底数.(1)讨论函数)(x f 的单调性;(2)若)(x f 恰有2个零点,求实数a 的取值范围.//ααP CEF -6 / 11(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题记分.22.选修44-:坐标系与参数方程(10分)以直角坐标系的原点O 为极点,x 轴非负半轴为极轴,并在两种坐标系中取相同的长度单位,曲线1C 的极坐标方程为2sin 4cos 0ρθθ-=,曲线2C 的参数方程是12cos 2sin x y ϕϕ=-+⎧⎨=⎩(ϕ为参数). (1)求曲线1C 的直角坐标方程及2C 的普通方程;(2)已知点1(,0)2P ,直线l的参数方程为1222x t y t⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),设直线l 与曲线1C相交于,M N 两点,求11||||PM PN +的值.23.选修45-:不等式选讲(10分) 已知函数()|1||2|f x x x =++-. (1)求函数()f x 的最小值k ;(2)在(1)的结论下,若正实数,a b满足11a b +=,求证:22122a b+≥.2018年高考模拟检测数学(文科)参考答案及评分标准一、选择题:本大题共12小题.每小题5分,共60分. C A C D C B D A D A B C二、填空题:本大题共4小题,每小题5分,共20分.7 / 1113. 1415.1256π 16.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求解答. (一)必考题:共60分.17. (本小题满分12分) 解:(1)43a 是6a ,5a -的等差中项,4656a a a ∴=-,设数列{}n a 的公比为q ,则3541116a q a q a q =-260q q ∴--=,解得3q =或2q =-(舍);…………………………………………3分4141(1)401201a q S a q -∴===-,13a ∴=所以3nn a =…………………………………………………………………………………6分(2)由已知得213log 321n n b n +==+; 所以3521(2)n T n n n =++⋅⋅⋅⋅⋅⋅++=+,………………………………………………8分11111()(2)22n T n n n n ==-++ 1231111n T T T T +++⋅⋅⋅+1111111[()()()2132435=-+-+-1111()()]112n n n n ⋅⋅⋅+-+--++ 1231111n T T T T ∴+++⋅⋅⋅+1311()2212n n =--++………………………………………12分 18.(本小题满分12分)解:(1)由表中数据知,3,100x y ==,…………………………………………………1分∴1221ni ii ni i x y nx yb x nx==-=-∑∑141515008.55545-==--,……………………………………………4分ˆ125.5ay bx =-=, ∴所求回归直线方程为ˆ8.5125.5yx =-+ ………………………………………………6分 13-8 / 11(2)由(1)知,令7x =,则ˆ8.57125.566y=-⨯+=人. …………………………8分 (3)由表中数据得2250(221288)50302030209K ⨯⨯-⨯==⨯⨯⨯,根据统计有97.5%的把握认为“礼让斑马线”行为与驾龄有关.………………12分19. 【解析】(1)连接BD 交AC 于O ,连接OE ,OD OBED PE OE PB OEPBD ACE PBD PB ACE PB =∴=⊂,平面平面平面平面//,,// 23,~==∴∆∆CD AB OD OB COD AOB 又 23=∴ED PE (2)过E 作EM//PC 交CD 于M ,过M 作MN//BC 交AB 于N ,过N 作NF//PB 交PA 于F ,连接EF则平面EFNM 为平面α121==∴∴CD CM CD M PD E 的中点,为的中点,为23,1==∴==∴AB BN PA PE CM NB ’DCD PD PCD CD PCD PD CD AD AD PD ABCD AD ABCD PD =⊂⊂⊥⊥∴⊂⊥ ,,,,,,平面平面又平面平面1825h 31353125,,5,=⋅∆==∴==∴=∴⊥==⊥∴--PCE S V V AD h PCE F PA AD PD AD PD PCD AD PCE F CEF P 的距离到平面平面【考查方向】本题主要考查了线面平行的性质,棱锥的体积计算。

2018版高考一轮总复习数学(文)模拟演练 解答题专项训练3 Word版含答案

2018版高考一轮总复习数学(文)模拟演练 解答题专项训练3 Word版含答案

解答题专项训练三1.已知数列{a n }的首项a 1=1,前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列. (1)求数列{a n }的通项公式;(2)若b n =(-1)n a n ,求数列{b n }的前n 项和T n .解 (1)由已知条件可得S n n =1+(n -1)×2=2n -1,∴S n =2n 2-n .当n ≥2时,a n =S n -S n -1=2n 2-n -=4n -3,当n =1时,a 1=S 1=1,而4×1-3=1, ∴a n =4n -3.(2)由(1)可得b n =(-1)n a n =(-1)n (4n -3),当n 为偶数时,T n =-1+5-9+13-17+…+(4n -3)=4×n 2=2n ,当n 为奇数时,n +1为偶数,T n =T n +1-b n +1=2(n +1)-(4n +1)=-2n +1.综上,T n =⎩⎪⎨⎪⎧ 2n n =2k ,k ∈N * ,-2n +1 n =2k -1,k ∈N * .2.已知等差数列{a n }的公差不为零,其前n 项和为S n ,a 22=S 3,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式a n ;(2)记T n =a 1+a 5+a 9+…+a 4n -3,求T n .解 (1)设数列{a n }的公差为d ,由a 22=S 3,得3a 2=a 22,故a 2=0或a 2=3.由S 1,S 2,S 4成等比数列,得S 22=S 1S 4.又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d .故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,解得d =0,不符合题意.若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =2或d =0(不符合题意,舍去). 因此数列{a n }的通项公式为a n =a 2+(n -2)d =2n -1.(2)由(1)知a 4n -3=8n -7,故数列{a 4n -3}是首项为1,公差为8的等差数列.从而T n =n 2(a 1+a 4n -3)=n 2(8n -6)=4n 2-3n . 3.设S n 为数列{a n }的前n 项和,已知a 1=2,对任意n ∈N *,都有2S n =(n +1)a n .(1)求数列{a n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫4a n a n +2 的前n 项和为T n ,求证:12≤T n <1.解 (1)因为2S n =(n +1)a n ,当n ≥2时,2S n -1=na n -1,两式相减,得2a n =(n +1)a n -na n -1,即(n -1)a n =na n -1,所以当n ≥2时,a n n =a n -1n -1,a n n =a 11.因为a 1=2,所以a n =2n . (2)证明:因为a n =2n ,令b n =4a n a n +2,n ∈N *, 所以b n =42n 2n +2 =1n n +1 =1n -1n +1. 所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1. 因为1n +1>0,所以1-1n +1<1. 因为f (n )=1n +1在N *上是递减函数, 所以1-1n +1在N *上是递增的, 当n =1时,T n 取最小值12,所以12≤T n <1. 4.设数列{a n }的前n 项和为S n ,对任意的正整数n ,都有S n =2a n +n -3成立.(1)求证:数列{a n -1}为等比数列;(2)求数列{na n }的前n 项和T n .解 (1)证明:当n =1时,S 1=2a 1+1-3,得a 1=2,由S n =2a n +n -3,得S n +1=2a n +1+n +1-3,两式相减得a n +1=2a n +1-2a n +1,即a n +1=2a n -1,a n +1-1a n -1=2a n -2a n -1=2,而a 1-1=1, ∴数列{a n -1}是首项为1,公比为2的等比数列.(2)由(1)得a n -1=1·2n -1=2n -1,即a n =2n -1+1,na n =n (2n -1+1)=n ·2n -1+n ,∴T n =(1×20+1)+(2×21+2)+(3×22+3)+…+(n ·2n -1+n )=(1×20+2×21+3×22+…+n ·2n -1)+(1+2+3+…+n )=(1×20+2×21+3×22+…+n ·2n -1)+n n +1 2.令V n =1×20+2×21+3×22+…+n ·2n -1,则2V n =1×21+2×22+3×23+…+n ·2n ,两式相减得-V n =1+21+22+…+2n -1-n ·2n =1× 1-2n 1-2-n ·2n =2n -1-n ·2n , ∴V n =n ·2n -2n +1=(n -1)2n +1,∴T n =(n -1)2n +n n +1 2+1.5.设函数f (x )=x 2+sin x 的所有正的极小值点从小到大排成的数列为{x n }. (1)求数列{x n }的通项公式;(2)令b n =x n2π,设数列⎩⎨⎧⎭⎬⎫1b n ·b n +1的前n 项和为S n ,求证S n <32. 解 (1)f (x )=x 2+sin x ,令f ′(x )=12+cos x =0, 得x =2k π±2π3(k ∈Z ). 由f ′(x )>0⇒2k π-2π3<x <2k π+2π3(k ∈Z ), 由f ′(x )<0⇒2k π+2π3<x <2k π+4π3(k ∈Z ), 当x =2k π-2π3(k ∈Z )时,f (x )取得极小值, ∴x n =2n π-2π3(n ∈N *). (2)证明:∵b n =x n 2π=n -13=3n -13, ∴1b n ·b n +1=33n -1·33n +2=3⎝ ⎛⎭⎪⎫13n -1-13n +2, ∴S n =3⎝ ⎛⎭⎪⎫12-15+15-18+…+13n -1-13n +2 =3⎝ ⎛⎭⎪⎫12-13n +2=32-33n +2, ∴S n <32. 6.某乡镇引进一高科技企业,投入资金720万元建设基本设施,第一年各种运营费用120万元,以后每年增加40万元.每年企业销售收入500万元,设f (n )表示前n 年的纯收入(f (n )=前n 年的总收入-前n 年的总支出-投资额).(1)从第几年开始获取纯利润?(2)若干年后,该企业为开发新产品,有两种处理方案:①年平均利润最大时,以480万元出售该企业;②纯利润最大时,以160万元出售该企业.问哪种方案最合算?解 由题意知每年的运营费用(万元)是以120为首项,40为公差的等差数列. 则f (n )=500n -⎣⎢⎡⎦⎥⎤120n +n n -1 2×40-720=-20n 2+400n -720. (1)获取纯利润就是f (n )>0,故有-20n 2+400n -720>0,解得2<n <18.又n ∈N *,可知从第三年开始获取纯利润.(2)①年平均利润f n n =400-20⎝⎛⎭⎪⎫n +36n ≤160, 当且仅当n =6时取等号.故此方案获利6×160+480=1440(万元),此时n =6.②f (n )=-20n 2+400n -720=-20(n -10)2+1280,当n =10时,f (n )max =1280.故此方案共获利1280+160=1440(万元).比较两种方案,在同等数额获利的基础上,第①种方案只需6年,第②种方案需要10年,故选择第①种方案.7.已知递增的等比数列{a n }的前n 项和为S n ,a 6=64,且a 4,a 5的等差中项为3a 3.(1)求数列{a n }的通项公式;(2)设b n =na 2n -1,求数列{b n }的前n 项和T n .解 (1)设等比数列{a n }的公比为q (q >0),由题意,得⎩⎪⎨⎪⎧ a 1q 5=64,a 1q 3+a 1q 4=6a 1q 2,解得⎩⎪⎨⎪⎧ a 1=2,q =2或q =-3 舍 , 所以a n =2n .(2)因为b n =na 2n -1=n22n -1,所以T n =12+223+325+427+…+n 22n -1, 14T n =123+225+327+…+n -122n -1+n 22n +1, 所以34T n =12+123+125+127+…+122n -1-n 22n +1=12⎝ ⎛⎭⎪⎫1-14n 1-14-n 22n +1=23-4+3n 3×22n +1, 故T n =89-16+12n 9×22n +1=89-4+3n 9×22n -1. 8.已知数列{a n }满足:a 1=3,a n +1=n +1na n +2n +2. (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列; (2)证明:1a 1+1a 2+1a 3+…+1a n<1. 证明 (1)由a n +1=n +1n a n +2n +2,得a n +1n +1=a n n +2, 即a n +1n +1-a n n=2, ∴数列⎩⎨⎧⎭⎬⎫a n n 是首项为3,公差为2的等差数列. (2)由(1)知,a n n =3+(n -1)×2=2n +1,∴a n =n (2n +1),∴1a n =1n 2n +1 <1n n +1 =1n -1n +1, ∴1a 1+1a 2+1a 3+…+1a n <⎝ ⎛⎭⎪⎫11-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=11-1n +1<1, ∴1a 1+1a 2+1a 3+…+1a n<1.。

2018年高考文科数学模拟试题及答案

2018年高考文科数学模拟试题及答案

2018年高考文科数学模拟试题注意事项:1.本试卷分第1卷(选择题)和第II 卷(非选择题)两部分。

答题前,考生务必用黑 色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准 条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。

2.回答第1卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第1卷一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的)(1)已知i 为虚数单位,复数i z +=21,i z 212-=,则=+21z z ( ) (A)i +1 (B) i -2 (C) i -3 (D) i -(2)设平面向量3(=,)2,x (=,)4-,如果与平行,那么x 等于( ) (A) 6 (B) 3 (C) 3- (D) 6-(3)设n S 是等差数列}{n a 的前n 项和,若2:1:21=a a ,则=21:S S ( ) (A)3:1 (B) 4:1 (C) 5:1 (D) 6:1 (4)设3log 31=a ,31log 21=b , 2)31(=c ,则下列正确的是 ( )(A)c b a << (B)b c a << (C)c a b << (D)a c b <<(5)某商场在今年春节假期的促销活动中,对大年初一9时至14时的销售金额进行统计,并将销售金额按9时至10时、10时至11时、11时至12时、12时至13时、13时至14 时进行分组,绘制成下图所示的频率分布直方图,已知大年初一9时至10时的销售金额为3万元,则大年初-11时至12时的销售金额为 ( ) (A)4万元 (B)8万元 (C) 10万元 (D) 12万元(6)下图是一个空间几何体的三视图(注:正视图也称主视图,侧视图也称左视图),其中 正视图与侧视图都是边长为6的正三角形,俯视图是直径等于6的圆,则这个空间几何体的 表面积为 ( ) (A) π180.400.35 0.30 0.250.200.15 0.100.05(B) π27(C) 382π(D) 383π(7)已知函数x x x x f cos sin cos 3)(2+=,R 是实数集,若R x ∈∃1,R x ∈∃2,R x ∈∀,)()()(21x f x f x f ≤≤,则12x x -的最小值为 ( )(A)π (B)2π (C) 3π (D) 4π(8)在三棱锥ABC P -中,PA 、PB 、PC 两两互相垂直,3=PA ,5=PB ,2=PC ,若三棱锥ABC P -的顶点都在球O 的球面上,则球0的体积等于 ( ) (A) π36 (B) π25 (C) π16 (D)π34 (9)如图所示的程序框图的功能是 ( )(A)求数列}1{n 的前10项和(B)求数列}1{n 的前11项和(C)求数列}21{n 的前10项和(D)求数列}21{n的前11项和(10)下表提供了某工厂节能降耗技术改造后,一种产品的产量x (单位:吨)与相应的生根据上表提供的数据,求得y 关于x 的线性回归方程为35.07.0ˆ+=x y那么表 格中t 的值为 ( )(A) 5.3 (B) 25.3 (C) 15.3 (D) 3(11)已知0>a ,0>b ,双曲线S :12222=-bx a y 的离心率为3,k 是双曲线S 的一条俯视图渐近线的斜率,如果0>k ,那么b ak+的最小值为 ( ) (A) 2 (B) 23 (C) 24 (D) 6(12)已知23)(x x f y +=的图象关于原点对称,若3)2(=f ,函数x x f x g 3)()(-=, 则)2(-g 的值是 ( )(A) 12 (B) -12 C) -21 (D) -27第Ⅱ卷本卷包括必考题和选考题两部分。

2018年高考模拟卷数学(文)试题Word版含答案

2018年高考模拟卷数学(文)试题Word版含答案

2018年高考模拟卷数学(文)试题Word版含答案2018年高中毕业班教学质量检测高考模拟数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数z满足(1-i)z=1+3i(i为虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知全集U=Z,A={x∈Z|x^2-x-2≥0},B={-1,0,1,2},则(C∩A)∩B=()A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}3.若-1<sinα+cosα<1,则()A.sinα<cosαB.cosα<sinαC.tanα<cosαD.cos2α<14.已知点(2,3)在双曲线x^2/a^2-y^2/b^2=1(a>0)的一条渐近线上,则a=()A.3B.4C.2D.235.“a^2=1”是“函数f(x)=lg((2+x)/(1-x))+(a^2-1)/2为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.执行以下程序框架,则输出A的值是()int A=0;for(int i=1;i<=6;i++){A=A*10+i;XXX<<A<<endl;A.B.xxxxxxxxC.D.xxxxxxx7.边长为4的正三角形ABC中,点D在边AB上,AD=DB,M是BC的中点,则AM×CD=()A.16B.12√3C.-8/3D.-88.等比数列{a_n}共有2n+1项,其中a_1=1,偶数项和为170,奇数项和为341,则n=()A.3B.4C.7D.99.函数f(x)=x^2cos(x)在(-π/2,π/2)的图象大致是()A。

B。

C。

D。

10.抛物线x^2=4y的焦点为F,过F作斜率为-3的直线l 与抛物线在y轴右侧的部分相交于点A,过A作抛物线准线的垂线,垂足为H,则△AHF的面积是()A.4B.3/3C.4/3D.811.将函数f(x)=sin(ωx)(ω>0)的图象向左平移π/4个单位得到函数g(x)的图象,若函数g(x)的图象关于直线x=ω对称且在区间(-ω,ω)内单调递增,则ω的值为()A.3π/2B.2π/3C.3π/4D.π/212.若函数f(x)={-x-e^(x+1),x≤a。

(完整word版)2018年高考数学模拟试卷(文科)

(完整word版)2018年高考数学模拟试卷(文科)

2018年高考数学模拟试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. (5 分)已知集合A={X|X2W 1} , B={x|0v x v 1},则A H B=()A. [ - 1, 1)B・(0, 1) C. [ - 1, 1] D. (- 1,1)2. (5分)若i为虚数单位,则复数z= _在复平面上对应的点位于()丄*A.第一象限B.第二象限C第三象限D.第四象限3. (5分)已知等差数列{a n}前3项的和为6, a5=8,则a20=()A. 40B. 39 C 38 D . 374 . (5分)若向量的夹角为一,且|打|=4, |.・|=1,则「41-|=()A . 2B . 3 C. 4 D . 52 25. (5分)已知双曲线C: ———(a>0, b>0)的渐近线与圆(X+4)2+y2=8a2b2无交点,则双曲线离心率的取值范围是()A. (1,二)B. (一,1■'■')C. (1, 2)D. (2, +x)6. (5分)已知实数x,y满足约束条件\ i-2y+4>0,则z=x+2y的最大值为A . 6B . 7 C. 8 D . 97. (5分)函数y=log 〔(X2-4X+3)的单调递增区间为()TA. (3, +x)B. (-X, 1)C. (-X, 1)U(3, +x) D . (0, +x)8. (5分)宜宾市组织歌颂党,歌颂祖国”的歌咏比赛,有甲、乙、丙、丁四个单位进入决赛,只评一个特等奖,在评奖揭晓前,四位评委A, B, C, D对比赛预测如下:A说:是甲或乙获得特等奖”B说:丁作品获得特等奖”C说:丙、乙未获得特等奖”D说:是甲获得特等奖”比赛结果公布时,发现这四位评委有三位的话是对的,则获得特等奖的是()A .甲 B.乙 C.丙 D . 丁9. (5分)某几何组合体的三视图如图所示,则该几何组合体的体积为(A . 4 B. 5 C. 6 D . 711. (5分)分别从写标有1, 2, 3, 4, 5, 6, 7的7个小球中随机摸取两个小 球,则摸得的两个小球上的数字之和能被 3整除的概率为()A•寻B 寻C 骨D.寺10.(5分)若输入S=12 A=4, B=16, n=1,执行如图所示的程序框图,则输出的结果为(12. (5分)已知函数f(x)是定义在R上的奇函数,当x v0时,f(x)=e x(x+1), 给出下列命题:①当x>0 时,f (x)=e x(x+1);②? X I, X2€ R,都有| f (X1)— f (X2)| V2;③f (x)> 0 的解集为(—1, 0)u, (1, +x);④方程2[f (x) ]2-f (x) =0有3个根.其中正确命题的序号是( )A.①③ B •②③C•②④ D •③④二、填空题:本大题共4个小题,每小题5分,共20分.13. (5分)在等比数列{a n}中,若a2+a4丄,a3丄,且公比q V1,则该数列的通项公式a n= ______ .14. (5 分)已知y=f (x)是偶函数,且f (x) =g (x)- 2x, g (3) =3,则g (3) = ______ .15. (5分)三棱锥P- ABC中,底面△ ABC是边长为.二的等边三角形,PA=PB=PC PB丄平面PAC则三棱锥P- ABC外接球的表面积为_______ .16. (5 分)在厶ABC中,D 为AC上一点,若AB=AC AD*D, BD=4 ,则厶ABCu-n面积的最大值为_______ .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤•第17〜21题为必考题,每个试题考生都必须答•第22、23题为选考题,考生根据要求作答.(一)必做题:共60分.17. (12分)在厶ABC中,a, b, c分别为A, B, C的对边,且sinA=2sinB(1)若C^—, △ ABC的面积为「,求a的值;4 4(2)求亟竽■—沁迥嗚的值.SLED 218. (12分)每年4月15至21日是全国肿瘤防治宣传周,全国每天有超1万人确诊为癌症,其中肺癌位列发病首位,吸烟人群是不吸烟人群患肺癌的10倍•某 调查小组为了调查中学生吸烟与家庭中有无成人吸烟的关系,发放了 500份不记名调查表,据统计中学生吸烟的频率是0.08,家庭中成人吸烟人数的频率分布条 形图如图.(1) 根据题意,求出a 并完善以下2X 2列联表;家中有成人吸烟家中无成人吸烟合计学生吸烟人数 28学生不吸烟人数合计(2) 能否据此判断有97.5%的把握认为中学生吸烟与家庭中有成人吸烟有关? 附表及公式: P (K 2>k 0)0.100 0.050 0.025 0.010 0.005 k 02.7063.8415.0246.6357.879Q=Ca+b) (c+d) Ca-Fc) (b+d)'19. ( 12分)如图,四棱锥P -ABCD 的底面ABCD 是直角梯形,AD // BC, / ADC=90 ,n=a+b+c+d平面PAD丄平面ABCDQ是AD的中点,M是棱PC上的点,PA=PD=2AD=2BC=2CD=:(1)求证:平面BMQ丄平面PAD;(2)当M是PC的中点时,过B,M,Q的平面去截四棱锥P-ABCD求这个截面的面积.20. (12分)已知抛物线C的焦点在x轴上,顶点在原点且过点p (2,1),过点(2,0)的直线I交抛物线C于A,B两点,M是线段AB的中点,过点M作y 轴的垂线交C于点N.(1)求抛物线C的方程;(2)是否存在直线I,使得以AB为直径的圆M经过点N?若存在,求出直线I 的方程;若不存在,说明理由.21. (12 分)已知函数f (x) =e x+x- 2, g (x) =alnx+x.(1)函数y=g (x)有两个零点,求a的取值范围;(2)当a=1 时,证明:f (x)> g (x).(二)选做题:共10分•请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22. (10分)在直角坐标系xOy中,圆C的参数方程为—,(参数©[y=2sin$€ R).以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,(I)求圆C的极坐标方程;(II)直线I,射线OM的极坐标方程分别是旦)二还,。

2018届高三招生全国统一考试模拟数学(文)试题(五)及答案

2018届高三招生全国统一考试模拟数学(文)试题(五)及答案

2018年普通高等学校招生全国统一考试模拟试题文数(五)本试卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集U 为实数集R ,集合{|ln(32)}A x y x ==-,{|(1)(3)0}B y y y =--≤,则图中阴影部分所表示的集合为( )A .3(,1),2⎡⎫-∞+∞⎪⎢⎣⎭ B .31,2⎡⎫⎪⎢⎣⎭C .[3,)+∞D .3,[3,)2⎛⎫-∞+∞ ⎪⎝⎭ 2.已知复数z 满足3(1)(34)(2)z ai i ai =++-++(i 为虚数单位),若zi为纯虚数,则实数a 的值为( ) A .45 B .2 C .54- D .12- 3.已知命题p :x R ∀∈,210x x -+>,命题q :0x R ∃∈,002sin 2cos 3x x +=.则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D . ()p q ⌝∧4.已知函数()cos 22f x x π⎛⎫=- ⎪⎝⎭,21()1g x x =+,则下列结论中不正确是( ) A .()g x 的值域为(]0,1 B .()f x 的单调递减区间为3,()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()()f x g x ⋅为偶函数D .()f x 的最小正周期为π5.若实数x ,y 满足113x y x y ≥⎧⎪≥⎨⎪+≤⎩,则21y z x -=的取值范围是( )A .2,43⎡⎤⎢⎥⎣⎦B .1,23⎡⎤⎢⎥⎣⎦C .1,32⎡⎤⎢⎥⎣⎦D .13,42⎡⎤⎢⎥⎣⎦6.某教育局为了解“跑团”每月跑步的平均里程,收集并整理了2017年1月至2017年11月期间“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论正确的是( )A .月跑步平均里程的中位数为6月份对应的里程数B .月跑步平均里程逐月增加C .月跑步平均里程高峰期大致在8、9月D .1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳 7.执行如图所示的程序框图,则输出的结果为( ) A .25 B .26 C .24 D .238.过点(3,4)P 作圆224x y +=的两条切线,切点分别为A ,B ,则AB =( )A .5.5 D 9.已知等差数列{}n a 的前n 项和为n T ,34a =,627T =,数列{}n b 满足1123n b b b b +=++n b +⋅⋅⋅+,121b b ==,设n n n c a b =+,则数列{}n c 的前11项和为( )A .1062B .2124C .1101D .110010.已知某几何体的三视图如图所示,则该几何体的体积为( ) A .104π+ B .68π+ C .108π+D .64π+11.已知动点(,)M x y 22(1)21x y x -+=+-,设点M 的轨迹为曲线E ,A ,B 为曲线E 上两动点,N 为AB 的中点,点N 到y 轴的距离为2,则弦AB 的最大值为( )A .6B .4C .5D .5412.如图所示的四棱锥P ABCD -中,底面ABCD 与侧面PAD 垂直,且四边形ABCD 为正方形,AD PD PA ==,点E 为边AB 的中点,点F 在边BP 上,且14BF BP =,过C ,E ,F 三点的截面与平面PAD 的交线为l ,则异面直线PB 与l 所成的角为( )A .6π B .4πC .3πD .2π第Ⅱ卷本卷包括必考题和选考题两部分。

2018版高考一轮总复习数学(文)模拟演练解答题专项训练4含答案

2018版高考一轮总复习数学(文)模拟演练解答题专项训练4含答案

解答题专项训练四1.如图,在正三棱柱ABC-A1B1C1中,E,F分别为BB1,AC的中点.(1)求证:BF∥平面A1EC;(2)求证:平面A1EC⊥平面ACC1A1。

证明(1)连接AC1交A1C于点O,连接OE,OF,在正三棱柱ABC-A1B1C1中,四边形ACC1A1为平行四边形,所以OA=OC1.又因为F为AC中点,所以OF∥CC1且OF=错误!CC1.因为E为BB1中点,所以BE∥CC1且BE=12CC1。

所以BE∥OF且BE=OF,所以四边形BEOF是平行四边形,所以BF∥OE.又BF⊄平面A1EC,OE⊂平面A1EC,所以BF∥平面A1EC.(2)由(1)知BF∥OE,因为AB=CB,F为AC中点,所以BF⊥AC,所以OE⊥AC.又因为AA1⊥底面ABC,而BF⊂底面ABC,所以AA1⊥BF。

由BF∥OE,得OE⊥AA1,而AA1,AC⊂平面ACC1A1,且AA1∩AC=A,所以OE⊥平面ACC1A1.因为OE⊂平面A1EC,所以平面A1EC⊥平面ACC1A1。

2.如图,四棱锥P-ABCD的底面ABCD是平行四边形,PA⊥底面ABCD,∠PCD=90°,PA=AB=AC=2。

(1)求证:AC⊥CD;(2)点E是棱PC的中点,求点B到平面EAD的距离.解(1)证明:因为PA⊥底面ABCD,所以PA⊥CD,因为∠PCD=90°,所以PC⊥CD,所以CD⊥平面PAC,所以CD⊥AC.(2)因为PA=AB=AC=2,E为PC的中点,所以AE⊥PC,AE=错误!。

由(1)知AE⊥CD,所以AE⊥平面PCD.作CF⊥DE,交DE于点F,则CF⊥AE,CF⊥平面EAD。

因为BC∥AD,所以点B与点C到平面EAD的距离相等,CF即为点C到平面EAD的距离.在Rt△ECD中,CF=错误!=错误!=错误!。

所以,点B到平面EAD的距离为错误!.3.如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.解(1)证明:延长AD,BE,CF相交于一点K,如图所示.因为平面BCFE⊥平面ABC,且AC⊥BC,所以AC⊥平面BCK,因此BF⊥AC.又因为EF∥BC,BE=EF=FC=1,BC=2,所以△BCK 为等边三角形,且F为CK的中点,则BF⊥CK。

2018年高考文科数学仿真模拟试题(五)

2018年高考文科数学仿真模拟试题(五)

绝密★启用前2018年普通高等学校招生全国统一考试仿真卷文科数学(五)本试题卷共2页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.[2018·菏泽期末]已知集合2|5A x x x>,=1,3,7B ,则A B()A .1B .7C .1,3D .1,72.[2018·宁波期末]已知a b>,则条件“0c ≥”是条件“a c b c>”的()条件.A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件3.[2018·赣州期末]元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x,则一开始输入的x的值为()A .34B .78C .1516D .31324.[2018·商丘期末]以0,2p F (0)p >为焦点的抛物线C的准线与双曲线222xy相交于,MN两点,若M N F△为正三角形,则抛物线C的标准方程为()A .226yxB .246yxC .246xyD .226xy5.[2018·吕梁一模]已知函数sinfxA x(0,0,)A >><的部分图像如图所示,则函数co sgxA x图像的一个对称中心可能为()A .2,0B .1,0C .10,0D .14,06.[2018·云师附中]某家具厂的原材料费支出x与销售量y (单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y 与x 的线性回归方程为?8?yxb ,则?b 为()x 2 4 5 6 8 y25 356055 75A .5B .15C .12D .20班级姓名准考证号考场号座位号此卷只装订不密封。

最新整理2018年高考文科数学模拟试卷(共七套)(含答案)汇总

最新整理2018年高考文科数学模拟试卷(共七套)(含答案)汇总

的产品为优质品,与中位数误差在± 15 范围内(含± 15)的产品为合格品(不 包括优质品),与中位数误差超过± 15 的产品为次品.企业生产一件优质品可获
利润 20 元,生产一件合格品可获利润 10 元,生产一件次品要亏损 10 元 (Ⅰ)求该企业 2016 年一年生产一件产品的利润为 10 的概率;
(Ⅰ)求椭圆方程;
(Ⅱ)过点 P(0, )的动直线 l 与椭圆 E 交于的两点 M,N(不是的椭圆顶点) .求
证: ? ﹣7
是定值,并求出这个定值.
21.已知曲线 f (x)=aex﹣ x+b 在 x=1 处的切线方程为 y=(e﹣1)x﹣ 1 (Ⅰ)求 f( x)的极值;
(Ⅱ)证明: x>0 时,
A.
B.
C.
D.
3.设命题 p: ? x> 0, x﹣ lnx>0,则¬ p 为( ) A.? x> 0, x﹣lnx≤0 B.? x>0,x﹣lnx<0 C.? x0>0,x0﹣lnx0> 0 D.? x0>0,x0﹣lnx0≤0
4.已知 2sin2 α =+1cos2 α,则 tan(α+ )的值为( )
(Ⅰ)求曲线 C 在极坐标系中的方程; (Ⅱ)求直线 l 被曲线 C 截得的弦长.
[ 选修 4-5:不等式选讲 ] 23.已知函数 f (x)=| x﹣ |+| x+2a| ( a∈ R,且 a≠0) (Ⅰ)当 a=﹣1 时,求不等式 f(x)≥ 5 的解集; (Ⅱ)证明: f(x)≥ 2 .
2018 年高考文科数学模拟试卷(一)
(考试时间 120 分钟 满分 150 分) 一、选择题(本题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个 选项中,只有一项是符合题目要求的) 1.设集合 A={ x| x2﹣3x< 0} ,B={ x| x2>4} ,则 A∩B=( ) A.(﹣ 2,0) B.(﹣ 2,3) C.(0,2) D.(2,3) 2.复数 z 满足:( 3﹣ 4i)z=1+2i,则 z=( )

精编2018版高考一轮总复习数学文科模拟演练选修451和答案

精编2018版高考一轮总复习数学文科模拟演练选修451和答案

1.已知关于x 的不等式|2x +1|-|x -1|≤log 2a (其中a >0).(1)当a =4时,求不等式的解集;(2)若不等式有解,求实数a 的取值范围.解 (1)当a =4时,不等式为|2x +1|-|x -1|≤2.当x <-12时,-x -2≤2,解得-4≤x <-12; 当-12≤x ≤1时,3x ≤2,解得-12≤x ≤23; 当x >1时,x ≤0,此时x 不存在,∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -4≤x ≤23. (2)令f (x )=|2x +1|-|x -1|, 则f (x )=⎩⎪⎨⎪⎧ -x -2,x <-12,3x ,-12≤x ≤1,x +2,x >1.故f (x )∈⎣⎢⎡⎭⎪⎫-32,+∞,即f (x )的最小值为-32. 若f (x )≤log 2a 有解,则log 2a ≥-32, 解得a ≥24,即a 的取值范围是⎣⎢⎡⎭⎪⎫24,+∞. 2.设f (x )=|ax -1|.(1)若f (x )≤2的解集为,求实数a 的值;(2)当a =2时,若存在x ∈R ,使得不等式f (2x +1)-f (x -1)≤7-3m 成立,求实数m 的取值范围.解 (1)显然a ≠0,当a >0时,解集为⎣⎢⎡⎦⎥⎤-1a ,3a ,则-1a =-6,3a =2,无解;当a <0时,解集为⎣⎢⎡⎦⎥⎤3a,-1a ,令-1a =2,3a =-6,得a =-12. 综上所述,a =-12. (2)当a =2时,令h (x )=f (2x +1)-f (x -1)=|4x +1|-|2x -3|=⎩⎪⎨⎪⎧-2x -4,x ≤-14,6x -2,-14<x <32,2x +4,x ≥32, 由此可知h (x )在⎝ ⎛⎭⎪⎫-∞,-14上单调递减,在⎝ ⎛⎭⎪⎫-14,32上单调递增,在⎝ ⎛⎭⎪⎫32,+∞上单调递增,则当x =-14时,h (x )取到最小值-72, 由题意,知-72≤7-3m ,则实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,72. 3.设函数f (x )=|2x -a |+|2x +1|(a >0),g (x )=x +2. (1)当a =1时,求不等式f (x )≤g (x )的解集; (2)若f (x )≥g (x )恒成立,求实数a 的取值范围.解 (1)当a =1时,|2x -1|+|2x +1|≤x +2,所以⎩⎨⎧ x ≤-12,-4x ≤x +2或⎩⎨⎧ -12<x <12,2≤x +2或⎩⎨⎧ 12≤x ,4x ≤x +2,解得x ∈∅或0≤x <12或12≤x ≤23. 综上,不等式的解集为⎣⎢⎡⎦⎥⎤0,23. (2)|2x -a |+|2x +1|≥x +2,转化为|2x -a |+|2x +1|-x -2≥0,令h (x )=|2x -a |+|2x +1|-x -2,h (x )=⎩⎪⎨⎪⎧ -5x +a -3,x ≤-12,-x +a -1,-12<x <a 2,3x -a -1,x ≥a 2.h (x )min =h ⎝ ⎛⎭⎪⎫a 2=a 2-1,令a 2-1≥0,得a ≥2. 4.已知函数f (x )=|x -2|-|x +1|.(1)解不等式f (x )>1;(2)当x >0时,函数g (x )=ax 2-x +1x(a >0)的最小值总大于函数f (x ),试求实数a 的取值范围.解 (1)当x >2时,原不等式可化为x -2-x -1>1,此时不成立;当-1≤x ≤2时,原不等式可化为2-x -x -1>1,即-1≤x <0;当x <-1时,原不等式可化为2-x +x +1>1,即x <-1.综上,原不等式的解集是{x |x <0}.(2)因为当x >0时,g (x )=ax +1x -1≥2a -1,当且仅当x =a a时“=”成立,所以g (x )min =2a -1,当x >0时,f (x )=⎩⎪⎨⎪⎧ 1-2x ,0<x ≤2,-3,x >2, 所以f (x )∈已知函数f (x )=|x +1|,g (x )=2|x |+a .(1)当a =-1时,解不等式f (x )≤g (x );(2)若存在x 0∈R ,使得f (x 0)≥12g (x 0),求实数a 的取值范围. 解 (1)当a =-1时,不等式f (x )≤g (x ),即|x +1|≤2|x |-1,从而⎩⎪⎨⎪⎧ x ≤-1,-x -1≤-2x -1,即x ≤-1, 或⎩⎪⎨⎪⎧ -1<x ≤0,x +1≤-2x -1,即-1<x ≤-23, 或⎩⎪⎨⎪⎧ x >0,x +1≤2x -1,即x ≥2. 从而不等式f (x )≤g (x )的解集为{ x | x ≤-23或x ≥2 }. (2)存在x 0∈R ,使得f (x 0)≥12g (x 0), 即存在x 0∈R ,使得|x 0+1|≥|x 0|+a 2, 即存在x 0∈R ,使得a 2≤|x 0+1|-|x 0|. 设h (x )=|x +1|-|x |=⎩⎪⎨⎪⎧ -1,x ≤-1,2x +1,-1<x ≤0,1,x >0,则h (x ) 的最大值为1,因而a 2≤1,即a ≤2.6.已知函数f (x )=|2x -a |+|2x +3|,g (x )=|x -1|+2.(1)解不等式:|g(x)|<5;(2)若对任意的x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.解(1)由||x-1|+2|<5,得-5<|x-1|+2<5,所以-7<|x-1|<3,解不等式得-2<x<4,所以原不等式的解集是{x|-2<x<4}.(2)因为对任意的x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,所以{y|y=f(x)}⊆{y|y=g(x)},又f(x)=|2x-a|+|2x+3|≥|(2x-a)-(2x+3)|=|a+3|,g(x)=|x-1|+2≥2,所以|a+3|≥2,解得a≥-1或a≤-5,所以实数a的取值范围是{a|a≥-1或a≤-5}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解答题专项训练五1.已知抛物线C :x 2=4y 的焦点为F ,过点K (0,-1)的直线l 与C 相交于A ,B 两点,点A 关于y 轴的对称点为D .(1)证明:点F 在直线BD 上;(2)设FA →²FB →=89,求直线BD 的直线方程.解 (1)证明:设A (x 1,y 1),B (x 2,y 2),D (-x 1,y 1),l 的方程为y =kx -1,由⎩⎨⎧y =kx -1,x 2=4y ,得x 2-4kx +4=0,从而x 1+x 2=4k ,x 1x 2=4.直线BD 的方程为y -y 1=y 2-y 1x 2+x 1(x +x 1),即y -x 214=x 2-x 14(x +x 1),令x =0,得y =x 1x 24=1,所以点F 在直线BD 上.(2)因为FA →²FB →=(x 1,y 1-1)²(x 2,y 2-1)=x 1x 2+(y 1-1)(y 2-1)=8-4k 2,故8-4k 2=89,解得k =±43,所以l 的方程为4x -3y -3=0或4x +3y +3=0. 又由(1)得x 2-x 1=±16k 2-16=±437, 故直线BD 的斜率为x 2-x 14=±73,因而直线BD 的方程为7x -3y +3=0或7x +3y -3=0.2.已知动点P 到直线l :x =-1的距离等于它到圆C :x 2+y 2-4x +1=0的切线长(P 到切点的距离).记动点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)点Q 是直线l 上的动点,过圆心C 作QC 的垂线交曲线E 于A ,B 两点,设AB 的中点为D ,求|QD ||AB |的取值范围. 解 (1)由已知得,圆心为C (2,0),半径r = 3.设P (x ,y ),依题意可得|x +1|= x -2 2+y 2-3,整理得y 2=6x . 故曲线E 的方程为y 2=6x . (2)设直线AB 的方程为my =x -2, 则直线CQ 的方程为y =-m (x -2),可得Q (-1,3m ).将my =x -2代入y 2=6x 并整理,可得y 2-6my -12=0, 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=6m ,y 1y 2=-12,D (3m 2+2,3m ),|QD |=3m 2+3.|AB |=2 3 1+m 2 3m 2+4 , 所以⎝ ⎛⎭⎪⎫|QD ||AB |2=3m 2+34 3m 2+4 =14⎝ ⎛⎭⎪⎫1-13m 2+4 ∈⎣⎢⎡⎭⎪⎫316,14,故|QD ||AB |∈⎣⎢⎡⎭⎪⎫34,12.3.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过点F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为45°,AF →=2FB →.(1)求椭圆C 的离心率; (2)如果|AB |=214,求椭圆C 的方程. 解 (1)设A (x 1,y 1),B (x 2,y 2),由直线l 的倾斜角为45°及AF →=2FB →,可知y 1<0,y 2>0.直线l 的方程为y =x -c ,其中c =a 2-b 2,联立⎩⎨⎧y =x -c ,x 2a 2+y2b 2=1,得(a 2+b 2)y 2+2b 2cy -b 4=0,解得y 1=-b 2 c +2a a 2+b 2,y 2=-b 2 c -2aa 2+b 2.因为AF →=2FB →,所以-y 1=2y 2,即b 2 c +2a a 2+b 2=2³-b 2 c -2a a 2+b 2,求得离心率e =c a =23. (2)因为|AB |=2|y 2-y 1|,所以4ab 2a 2+b 2=214,由c a =23,得b =73a ,所以74a =214,得a =3,b =7, 所以椭圆C 的方程为x 29+y 27=1.4.如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1.(1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.解 (1)由题意可得,抛物线上的点A 到焦点F 的距离等于点A 到直线x =-1的距离,由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F (1,0), 可设A (t 2,2t ),t ≠0,t ≠±1.因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0),由⎩⎨⎧y 2=4x ,x =sy +1消去x ,得y 2-4sy -4=0,故y 1y 2=-4,所以B ⎝ ⎛⎭⎪⎫1t2,-2t .又直线AB 的斜率为2t t 2-1,故直线FN 的斜率为-t 2-12t.从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t ,所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t . 设M (m,0),由A ,M ,N 三点共线,得2tt 2-m=2t +2tt 2-t 2+3t 2-1,于是m =2t 2t 2-1.所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞). 5.已知动点P 到定点F (1,0)和到直线x =2的距离之比为22,设动点P 的轨迹为曲线E ,过点F 作垂直于x 轴的直线与曲线E 相交于A 、B 两点,直线l :y =mx +n 与曲线E 交于C 、D 两点,与线段AB 相交于一点(与A 、B 不重合).(1)求曲线E 的方程;(2)当直线l 与圆x 2+y 2=1相切时,四边形ABCD 的面积是否有最大值.若有,求出其最大值及对应的直线l 的方程;若没有,请说明理由.解 (1)设点P (x ,y ),由题意可得, x -1 2+y 2|x -2|=22,整理可得:x 22+y 2=1.曲线E 的方程是x 22+y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),由已知可得|AB |= 2. 当m =0时,不合题意.当m ≠0时,由直线l 与圆x 2+y 2=1相切, 可得|n |m 2+1=1,即m 2+1=n 2. 联立⎩⎨⎧y =mx +n ,x22+y 2=1,消去y 得⎝⎛⎭⎪⎫m 2+12x 2+2mnx +n 2-1=0,Δ=4m 2n 2-4⎝⎛⎭⎪⎫m 2+12(n 2-1)=2m 2>0,x 1=-2mn +Δ2m 2+1,x 2=-2mn -Δ2m 2+1, S 四边形ABCD =12|AB ||x 2-x 1|=2|m |2m 2+1=22|m |+1|m |≤22, 当且仅当2|m |=1|m |,即m =±22时等号成立,此时n =±62,经检验可知,直线y =22x -62和直线y =-22x +62符合题意. 6.设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1|OF |+1|OA |=3e |FA |,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA =∠MAO ,求直线l 的斜率.解 (1)设F (c,0),由1|OF |+1|OA |=3e |FA |,即1c +1a=3ca a -c,可得a 2-c 2=3c 2,又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4.所以,椭圆的方程为x 24+y 23=1.(2)设直线l 的斜率为k (k ≠0),则直线l 的方程为y =k (x -2).设B (x B ,y B),由方程组⎩⎨⎧x 24+y 23=1,y =k x -2消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0.解得x =2,或x =8k 2-64k 2+3,由题意得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知,F (1,0),设H (0,y H ),有F H →=(-1,y H ),B F →=⎝ ⎛⎭⎪⎫9-4k24k 2+3,12k 4k 2+3.由BF ⊥HF ,得B F →²F H →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k.因此直线MH 的方程为y =-1k x +9-4k 212k.设M (x M,y M),由方程组⎩⎨⎧y =k x -2 ,y =-1k x +9-4k212k 消去y ,解得x M =20k 2+912 k 2+1.在△MAO 中,∠MOA =∠MAO ⇔|MA |=|MO |,即(x M -2)2+y 2M =x 2M +y 2M ,化简得x M =1,即20k 2+912 k 2+1 =1,解得k =-64或k =64. 所以,直线l 的斜率为-64或64. 7.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →²PD →=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →²OB →+λPA →²PB →为定值?若存在,求λ的值;若不存在,请说明理由.解 (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ).又点P 的坐标为(0,1),且PC →²PD →=-1,于是⎩⎨⎧1-b 2=-1,c a =22,a 2-b 2=c 2.解得a =2,b = 2.所以椭圆E 的方程为x 24+y 22=1.(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).联立⎩⎨⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0.其判别式Δ=(4k )2+8(2k 2+1)>0, 所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1.从而,OA →²OB →+λPA →²PB →=x 1x 2+y 1y 2+λ=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 = -2λ-4 k 2+ -2λ-12k 2+1=-λ-12k 2+1-λ-2. 所以,当λ=1时,-λ-12k 2+1-λ-2=-3. 此时,OA →²OB →+λPA →²PB →=-3为定值. 当直线AB 的斜率不存在时,直线AB 即为直线CD .此时,OA →²OB →+λPA →²PB →=OC →²OD →+PC →²PD →=-2-1=-3.故存在常数λ=1,使得OA →²OB →+λPA →²PB →为定值-3.8.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的长轴长为4,焦距为2 2.(1)求椭圆C 的方程;(2)过动点M (0,m )(m >0)的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B .①设直线PM ,QM 的斜率分别为k ,k ′,证明:k ′k为定值; ②求直线AB 的斜率的最小值. 解 (1)设椭圆的半焦距为c , 由题意知2a =4,2c =22, 所以a =2,b =a 2-c 2=2, 所以椭圆C 的方程为x 24+y 22=1.(2)①证明:设P (x 0,y 0)(x 0>0,y 0>0). 由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ). 所以直线PM 的斜率k =2m -mx 0=m x 0. 直线QM 的斜率k ′=-2m -mx 0=-3m x 0.此时k ′k =-3.所以k ′k为定值-3. ②设A (x 1,y 1),B (x 2,y 2). 直线PA 的方程为y =kx +m , 直线QB 的方程为y =-3kx +m .联立⎩⎨⎧y =kx +m ,x 24+y22=1,整理得(2k 2+1)x 2+4mkx +2m 2-4=0. 由x 0x 1=2m 2-42k 2+1,可得x 1=2 m 2-22k 2+1 x 0.所以y 1=kx 1+m =2k m 2-22k 2+1 x 0+m .同理x 2=2 m 2-2 18k 2+1 x 0,y 2=-6k m 2-218k 2+1 x 0+m .所以x 2-x 1=2 m 2-2 18k 2+1 x 0-2 m 2-22k 2+1 x 0=-32k 2m 2-2 18k 2+1 2k 2+1 x 0, y 2-y 1=-6k m 2-2 18k 2+1 x 0+m -2k m 2-22k 2+1 x 0-m=-8k 6k 2+1 m 2-218k 2+1 2k 2+1 x 0, 所以k AB =y 2-y 1x 2-x 1=6k 2+14k =14⎝ ⎛⎭⎪⎫6k +1k .由m >0,x 0>0,可知k >0,所以6k +1k ≥26,等号当且仅当k =66时取得.此时m 4-8m2=66,即m =147,符合题意. 所以直线AB 的斜率的最小值为62.。

相关文档
最新文档