数列综合题1
数列综合训练题1
数列综合训练题班级 姓名1、已知{}n a ,{}n b 都是等比数列,那么( )A .{}{}n n n n b a b a ∙+,都一定是等比数列。
B .{}n n b a +一定是等比数列,但{}n n b a ∙不一定是等比数列C .{}n n b a +不一定是等比数列,但{}n n b a ∙一定是等比数列D .{}n n b a +,{}n n b a ∙都不一定是等比数列2、数列0,0,0,…,0,…( )A .是等差数列但不是等比数列B .是等比数列但不是等差数列C .既是等差数列又是等比数列D .既不是等差数列又不是等比数列3、某种细菌在培养过程中,每20min 分裂一次(一个分裂成两个),经过3h , 1个这种细菌可以繁殖成( )A .511个B .512个C .1 023个D .1 024个 4、等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项的和为( )A .130B .170C .210D .2605、在2001年到2004年期间,甲每年5月1日到银行存入a 元的一年定期储蓄,若年利率q 保持不变,且每年到期的本息均自动转为新一年定期,到2005年5月1日,甲将所有存款的本息全部取回,则取回的金额是( )A .5)1(q a +B .4)1(q a +C .[]q q q a )1()1(5+-+D .[]q q q a )1()1(4+-+ 6、等比数列{}n a 中,48,1253==a a ,那么=7a7、已知数列{}n a 满足条件:*+∈+==N n a a a a n n n (22,111),它的第四项是 。
8、数列{}n a 中,3,511+==+n n a a a ,那么这个数列的通项公式是9、等差数列{}n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 。
10、等差数列{}n a 中,=≠∈==+q p q p a q p N q p p a q a 则且),,,(,,11、已知数列{}n a 的前n 项和为1,(1)()4n n n S S a n N *=-∈ (1)求;,21a a(2)求证数列{}n a 是等比数列12、等差数列{}n a 中,前n 项和为n S(1)若n S S a 则,,1311131==为何值时,S n 最大(2)若01>a 且0,01312<>S S ,则n 为何值时,n S 最大。
高三 下2020数列综合题选讲1(1)
1.(2020·全国高三专题练习(理))数列{}n a 的前n 项和为n S ,且()()121nn a n =--,则2019=S ( )A .2019B .2019-C .4037-D .40373.(2020·陕西高三月考(文))已知数列{}n a 的前n 项和为n S ,且满足1n n a S +=,则39121239S S SS a a a a +++⋅⋅⋅+= ( ) A .1013B .1035C .2037D .20594.(2020·福建高三期末(理))执行如图所示的程序框图,则输出S 的值为 ( )A .1010-B .1009-C .1009D .10105.(2020·广东高三月考(理))数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.即:21n n n a a a ++=+.记数列{}n a 的前n 项和为n S ,则下列结论正确的是 ( ) A .201920202S a =+ B .201920212S a =+ C .201920201S a =- D .201920211S a =-6.(2020·湖北高三月考(文))已知数列{}n a 中,11a =,23122n S n n =-,设11n n n b a a +=,则数列{}n b 的前n 项和为 ( ) 7.(2019·河南高考模拟(文))已知函数()cos lnxf x x xππ=+-,若22018201920192019f f f πππ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L ()1009ln 0,0)a b a b π+>>(,则11a b +的最小值为 ( ) A .2B .4C .6D .88. (2019·全国高三专题练习)在数列{}n a 中,已知11a =,且对于任意的*,m n N ∈,都有m n m n a a a mn +=++,则201911i ia==∑( ) A .20192020B .20182019C .20191010D .202110109.(2019·浙江学军中学高三期中)已知数列{}n a 满足112a =-,2131n n n a a a +=++,若12n n b a =+,设数列{}n b 的前项和为n S ,则使得2019S k -最小的整数k 的值为 ( ) A .0B .1C .2D .310.(2020·安徽高三(文))已知数列{}n a 满足11a =,且1x =是函数()32113n n a f x x a x +=-+()n N +∈的极值点,设22log n n b a +=,记[]x 表示不超过x 的最大整数,则122320182019201820182018b b b b b b ⎡⎤++⋅⋅⋅+=⎢⎥⎣⎦ ( )A .2019B .2018C .1009D .100812.(2020·吉林高三期末(理))已知数列{}n a 的前项n 和为n S ,满足112a =-,且1222n n a a n n ++=+,则2n S =__ ,n a =__ ____.13.(2019·湖南衡阳市八中高三(文))已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,且0n a >,263n n n S a a =+,12(21)(21)nn n a n a a b +=--,若n k T >恒成立,则k 的最小值为14.(2019·全国高三专题练习)数列{}n a 满足11a =,对任意*n N ∈的都有11n n a a n +=++,则1299111a a a ++⋯⋯+= 16.(2019·全国高三专题练习)已知{}n a 是公比不为1的等比数列,数列{}n b 满足:2a ,n b a ,2n a 成等比数列,2221n n n c b b +=,若数列{}n c 的前n 项和n T λ≥对任意的*n N ∈恒成立,则λ的最大值为17.(2019·全国高三专题练习)数列{}n a 满足13a =,且对于任意的*n N ∈都有111n n a a a n +=++-,则12985111a a a +++=L ______. 18.(2019·全国高三专题练习)已知数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且0n a >,2*634()n n n S a a n N =+-∈,()()1111n n n b a a +=--,若对任意的n *∈N ,n k T >恒成立,则的最小值为19.(2019·全国高三专题练习)已知正项数列{}n a 的前n 项和为n S ,满足21n n S a =,则516810024246810011111(1)11111a a a a a S S S S S +++++-+-++-=-----L 20.(2010·福建高三月考(文))数列{}n a 的各项均为正数,n S 为其前n 项和,对于任意的*n N ∈,总有2,,n n n a S a 成等差数列,又记21231n n n b a a ++=⋅,数列{}n b 的前n 项和n T =21.(2020·山西高三(文))对于等差数列和等比数列,我国古代很早就有研究成果,北宋大科学家沈括在《梦溪笔谈》中首创的“隙积术”,就是关于高阶等差级数求和的问题.现有一货物堆,从上向下查,第一层有2个货物,第二层比第一层多3个,第三层比第二层多4个,以此类推,记第n 层货物的个数为n a ,则数列{}n a 的通项公式n a =_______,数列(2)n nn a ⎧⎫⎨⎬+⎩⎭的前n 项和n S =_______.22.(2019·全国高三专题练习)设数列{}n a 的前n 项和为n S ,已知1212a a ==,,且2123n n n a S S ++=-+,记22122log log n n n b a a -=+,则数列(){}21nn b -⋅的前10项和为______.23.(2020·重庆西南大学附中高三月考(文))已知正项数列{}n a 的前n 项和为n S ,且21122n n n S a a =+,若数列()2112nn nn b S +=-,数列{}n b 的前2020项和为 24.(2020·重庆高三(理))已知数列{}n a 满足1cos(1)3n n a a n n π+=++,则数列{}n a 的前40项和为________.25.(2019·湖北高考模拟(理))如图所示,点D 为ABC ∆的边BC 上一点,2BD DC =u u u v u u u v ,()n E n N ∈为AC上一列点,且满足:()114145nn n n n E A a E D E B a +=-+-u u u u v u u u u vu u u u v,其中数列{}n a 满足410n a -≠,且12a =,则12311111111n a a a a ++++=----L ______26.(2020·山东高三期末)设*n N ∈,向量(31,3)AB n =+u u u v ,(0,32)BC n =-u u u v ,n a AB AC =⋅u u u v u u u v .(1)试问数列{}1n n a a +-是否为等差数列?为什么?(2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 27.(2020·北京清华附中高三月考)已知数列{}n b ,满足14b =且12(2)1n n b b n n n --=≥-. (1)求证{}n b 是单增数列; (2)求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n S . 28.(2020·四川高三期末(文))已知各项均为正数的数列{}n a 的前n 项和n S 满足()241n n S a =+(*N n ∈). (1)证明:数列{}n a 是等差数列,并求其通项公式; (2)设2n an n b a =+,求数列{}n b 的前n 项和n T .29.(2020·湖北高三月考(理))已知数列{}n a 的前n 项和为n S ,且满足()*2n n S a n n N =-+∈.(Ⅰ)求证:数列12n a ⎧⎫-⎨⎬⎩⎭为等比数列; (Ⅱ)求数列{}1n a -的前n 项和n T .30.(2020·全国高三专题练习(理))已知数列{}n a 其前n 项和n S 满足:()*112(1),0n n S n a n N a+=-+∈=.(1)求数列{}n a 的通项公式;(2)当1n =时,11c =,当2n ≥且*n N ∈时,设12n n nc na +=,求{}n c 的前n 项和n T .。
一轮复习专题31 数列综合练习
专题31数列综合练习一、选择题:本题共12小题,每小题5分,共60分。
1.下列公式可作为数列}{n a :1,2,1,2,1,2,…的通项公式的是()。
A 、1=n aB 、21)1(+-=n n a C 、|2sin |2π-=n a n D 、23)1(1+-=+n n a 【答案】C【解析】由|2sin|2π-=n a n 可得11=a ,22=a ,13=a ,24=a ,…,故选C 。
2.数列}{n a 中“n a 、1+n a 、2+n a (+∈N n )成等比数列”是“221++⋅=n n n a a a ”的()。
A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件【答案】A【解析】+∈N n ,n a 、1+n a 、2+n a 成等比数列,则221++⋅=n n n a a a ,反之,则不一定成立,举反例,如数列为1、0、0、0、…故选A 。
3.如图,n 个连续自然数按规律排成下表,则从2018到2020的箭头方向依次为()。
A 、↑→B 、→↑C 、↓→D 、→↓【答案】A【解析】选取1作为起点,由图可知,位置变化规律是以4为周期,由于250442018+⨯=,可知2018在2的位置,2019在3的位置,2020在4的位置,故选A 。
4.等差数列}{n a 的前m 项和为30,前m 2项和为100,则它的前m 3项和为()。
A 、130B 、170C 、210D 、260【答案】C【解析】由已知得30=m S 、1002=m S ,则m S 、m m S S -2、m m S S 23-、…为等差数列,则30=m S 、702m m S S -、11023=-m m S S ,则2103=m S ,故选C 。
5.将含有n 项的等差数列插入4和67之间,仍构成一个等差数列,且新等差数列的所有项之和等于781,则n 值为()。
A 、20B 、21C 、22D 、23【答案】A【解析】由题意知这些数构成2+n 项的等差数列,且首末项分别为4和67,由等差数列的求和公式可得7812)2()(21=+⨯+=+n a a S n ,解得20=n ,故选A 。
数列综合题-2023届高三数学一轮复习
数列综合题一.选择题(共5小题)1已知数列{a n}的前n项和为S n,且a1=1,a n+1=2S n+1(n∈N*),在等差数列{b n}中,b2=5,且公差d=2.使得a1b1+a2b2+…+a n b n>60n成立的最小正整数n为()A.2 B.3 C.4 D.52.已知定义在[1,+∞)上的函数f(x)=,则关于x的方程2n f(x)﹣1=0(n∈N*)的所有解的和为()A.3n2+3n B.3×2n+2+9 C.3n+2+6 D.9×2n+1﹣33已知正项数列{a n}的前n项和为S n,且2S n=a n+,则S2015的值是()A. B.C.2015 D.4.在△ABC中,若角A,B,C所对的三边a,b,c成等差数列,给出下列结论:①b2≥ac;②;③;④.其中正确的结论是()A.①② B.②③ C.③④ D.①④5.设函数f(x)=2x﹣cosx,{a n}是公差为的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2﹣a1a5=()A.0 B. C.D.二.填空题(共5小题)6.设{a n}是一个公差为d(d>0)的等差数列.若,且其前6项的和S6=21,则a n= .7.已知整数数列a0,a1,a2,…,a2014中,满足关系式a0=0,|a1|=|a0+1|,|a2|=|a1+1|,…,|a2014|=|a2013+1|,则|a1+a2+a3+…+a2014|的最小值为.8.已知数列{a n}满足a1=a,a n+1=1+,若对任意的自然数n≥4,恒有<a n<2,则a 的取值范围为.9.定义数列{x n}:x1=1,x n+1=3x n3+2x n2+x n;数列{y n}:y n=;数列{z n}:z n=;若{y n}的前n项的积为P,{z n}的前n项的和为Q,那么P+Q= .10.如图,n+1个上底、两腰皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P1M1N1N2的面积为S1,四边形P2M2N2N3的面积为S2,…,四边形P n M n N n N n+1的面积为S n,通过逐一计算S1,S2,…,可得S n= .三.解答题(共11小题)11.已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).12.在数列{a n}中,a1=3,a n+1a n+λa n+1+μa n2=0(n∈N+)(Ⅰ)若λ=0,μ=﹣2,求数列{a n}的通项公式;(Ⅱ)若λ=(k0∈N+,k0≥2),μ=﹣1,证明:2+<<2+.13.已知数列{a n}的各项均为正数,b n=n(1+)n a n(n∈N+),e为自然对数的底数.(1)求函数f(x)=1+x﹣e x的单调区间,并比较(1+)n与e的大小;(2)计算,,,由此推测计算的公式,并给出证明;(3)令c n=(a1a2…a n),数列{a n},{c n}的前n项和分别记为S n,T n,证明:T n<eS n.14.数列{a n}满足:a1+2a2+…na n=4﹣,n∈N+.(1)求a3的值;(2)求数列{a n}的前 n项和T n;(3)令b1=a1,b n=+(1+++…+)a n(n≥2),证明:数列{b n}的前n项和S n满足S n<2+2lnn.15.已知数列{a n}(n∈N*,1≤n≤46)满足a1=a,a n+1﹣a n=其中d≠0,n∈N*.(1)当a=1时,求a46关于d的表达式,并求a46的取值范围;(2)设集合M={b|b=a i+a j+a k,i,j,k∈N*,1≤i<j<k≤16}.①若a=,d=,求证:2∈M;②是否存在实数a,d,使,1,都属于M?若存在,请求出实数a,d;若不存在,请说明理由.16.已知{a n},{b n},{c n}都是各项不为零的数列,且满足a1b1+a2b2+…+a n b n=c n S n,n∈N*,其中S n是数列{a n}的前n项和,{c n}是公差为d(d≠0)的等差数列.(1)若数列{a n}是常数列,d=2,c2=3,求数列{b n}的通项公式;(2)若a n=λn(λ是不为零的常数),求证:数列{b n}是等差数列;(3)若a1=c1=d=k(k为常数,k∈N*),b n=c n+k(n≥2,n∈N*),求证:对任意的n≥2,n∈N*,数列单调递减.17.已知数列{a n}的前n项和为S n,a1=0,a1+a2+a3+…+a n+n=a n+1,n∈N*.(Ⅰ)求证:数列{a n+1}是等比数列;(Ⅱ)设数列{b n}的前n项和为T n,b1=1,点(T n+1,T n)在直线上,若不等式对于n∈N*恒成立,求实数m的最大值.18.数列{a n}的前n项和为S n,已知若a1=,S n=n2a n﹣n(n﹣1)(n∈N*)(Ⅰ)求a2,a3;(Ⅱ)求数列{a n}的通项;(Ⅲ)设b n=,数列{b n}的前n项的和为T n,证明:T n<(n∈N*)19.在数列 {a n}中,已知 a1=a2=1,a n+a n+2=λ+2a n+1,n∈N*,λ为常数.(1)证明:a1,a4,a5成等差数列;(2)设 c n=,求数列的前n项和 S n;(3)当λ≠0时,数列 {a n﹣1}中是否存在三项 a s+1﹣1,a t+1﹣1,a p+1﹣1成等比数列,且s,t,p也成等比数列?若存在,求出s,t,p的值;若不存在,说明理由.20.已知数列{a n}是等差数列,S n为{a n}的前n项和,且a10=19,S10=100;数列{b n}对任意n∈N*,总有b1•b2•b3…b n﹣1•b n=a n+2成立.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)记c n=(﹣1)n,求数列{c n}的前n项和T n.21.在公差不为0的等差数列{a n}中,a2,a4,a8成公比为a2的等比数列.(I)求数列{a n}的通项公式;(II)设数列{b n}满足b n=.①求数列{b n}的前n项和为T n;②令c2n﹣1=(n∈N+),求使得c2n﹣1>10成立的所有n的值.。
专题:数列试题1[学生版]
专题 数列第1讲 数列的基本概念1.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于( )A .-165B .-33C .-30D .-212.已知数列{a n }的前n 项和S n 满足S n =n 2+2n -1,则( ) A .a n =2n +1(n ∈N *) B .a n =2n -1(n ∈N *)C .a n =⎩⎪⎨⎪⎧ 2,(n =1),2n +1,(n ≥2,n ∈N *) D .a n =⎩⎪⎨⎪⎧2,(n =1),2n -1,(n ≥2,n ∈N *) 3.在数列{a n }中,已知a 1=1,且当n ≥2时,a 1a 2…a n =n 2,则a 3+a 5等于( ) A.73 B.6116 C.3115 D.1144.(2010年安徽)设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .645.(2011年江西)已知数列(a n )的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10=( )A .1B .9C .10D .556.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 009=________,a 2014=________.7.我们可以利用数列{a n }的递推公式a n =2,n n n a n ⎧⎪⎨⎪⎩,为奇数时,为偶数时,(n ∈N *)求出这个数列各项的值,使得这个数列中的每一项都是奇数.则a 24+a 25=________;研究发现,该数列中的奇数都会重复出现,那么第8个5是该数列的第________项.8.(2011年浙江)若数列⎩⎨⎧⎭⎬⎫n (n +4)(23)n 中的最大项是第k 项,则k =__________.9.(2011年广东广州)数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1),求{a n }的通项公式.第2讲等差数列1.(2011年重庆)在等差数列{a n}中,a2=2,a3=4,则a10=()A.12 B.14 C.16 D.182.(2011届广东汕头)在等差数列{a n}中,a2+a12=32,则2a3+a15的值是()A.24 B.48 C.96 D.无法确定3.(2011年广东湛江测试)等差数列{a n}前17项和S17=51,则a5-a7+a9-a11+a13=()A.3 B.6 C.17 D.514.已知S n为等差数列{a n}的前n项和,若a1+a7+a13是一确定的常数,下列各式:①a21;②a7;③S13;④S14;⑤S8-S5.其结果为确定常数的是()A.②③⑤ B.①②⑤ C.②③④ D.③④⑤5.(2010年福建)设等差数列{a n}的前n项和为S n,若a1=-11,a4+a6=-6,则当S n 取最小值时,n等于()A.6 B.7 C.8 D.96.(2011年全国)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2-S k=24,则k=()A.8 B.7 C.6 D.57.等差数列{a n},{b n}的前n项和分别为S n,T n.若S nT n=7n+14n+27(n∈N*),则a7b7=________.8.(2011年辽宁)S n为等差数列{a n}的前n项和,S2=S6,a4=1,则a5=______.9.(2011年福建)已知等差数列{a n}中,a1=1,a3=-3.(1)求数列{a n}的通项公式;(2)若数列{a n}的前k项和S k=-35,求k的值.10.已知S n为等差数列{a n}的前n项和,S n=12n-n2.求数列的通项公式。
数列综合测试题(经典)含答案
数列综合测试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A.12B .1C .2D .32.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( )A.a 5a 3B.S 5S 3C.a n +1a nD.S n +1S n3.(理)已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *)且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D.154.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为正偶数时,n 的值可以是( )A .1B .2C .5D .3或115.已知a >0,b >0,A 为a ,b 的等差中项,正数G 为a ,b 的等比中项,则ab 与AG 的大小关系是( )A .ab =AGB .ab ≥AGC .ab ≤AGD .不能确定6.各项都是正数的等比数列{a n }的公比q ≠1,且a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( )A.1-52B.5+12C.5-12D.5+12或5-127.数列{a n }的通项公式为a n =2n -49,当该数列的前n 项和S n 达到最小时,n 等于( ) A .24 B .25 C .26D .278.数列{a n }是等差数列,公差d ≠0,且a 2046+a 1978-a 22012=0,{b n }是等比数列,且b 2012=a 2012,则b 2010·b 2014=( )A .0B .1C .4D .89.已知各项均为正数的等比数列{a n }的首项a 1=3,前三项的和为21,则a 3+a 4+a 5=( )A .33B .72C .84D .18910.已知等差数列{a n }的前n 项和为S n ,若a 1=1,S 3=a 5,a m =2011,则m =( ) A .1004 B .1005 C .1006D .100711.设{a n }是由正数组成的等差数列,{b n }是由正数组成的等比数列,且a 1=b 1,a 2003=b 2003,则( )A .a 1002>b 1002B .a 1002=b 1002C .a 1002≥b 1002D .a 1002≤b 100212.已知数列{a n }的通项公式为a n =6n -4,数列{b n }的通项公式为b n =2n ,则在数列{a n }的前100项中与数列{b n }中相同的项有( )A .50项B .34项C .6项D .5项第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.已知数列{a n }满足:a n +1=1-1a n,a 1=2,记数列{a n }的前n 项之积为P n ,则P 2011=________.14.秋末冬初,流感盛行,荆门市某医院近30天每天入院治疗流感的人数依次构成数列{a n },已知a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则该医院30天入院治疗流感的人数共有________人.15.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 3+a 10a 1+a 8=________.16.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,且从上到下所有公比相等,则a +b +c 的值为________.三、解答题()17.设数列{a n }的前n 项和为n S =2n 2,{b n }为等比数列,且a 1=b 1,b 2(a 2 -a 1) =b 1。
高考数学一轮复习--数列小题综合练
第54练 数列小题综合练1.(2022·齐齐哈尔模拟)已知等比数列{a n }中,4a 1,12a 3,3a 2成等差数列,则a 2 021-a 2 023a 2 020-a 2 022等于( )A .4或-1B .4C .-1D .-4答案 B解析 设等比数列{a n }的公比为q ,因为4a 1,12a 3,3a 2成等差数列, 所以4a 1+3a 2=a 3,所以4a 1+3a 1q =a 1q 2,且a 1≠0,所以q 2-3q -4=0,解得q =4或q =-1,为保证a 2 021-a 2 023a 2 020-a 2 022有意义, 则q 2≠1,所以q =4,所以a 2 021-a 2 023a 2 020-a 2 022=q (a 2 020-a 2 022)a 2 020-a 2 022=q =4. 2.在数列{a n }中,a 1=-2,a n a n +1=a n -1,则a 2 023的值为( )A .-2B.13C.12D.32 答案 A解析 在数列{a n }中,a 1=-2,a n a n +1=a n -1,所以a n +1=1-1a n, 当n =1时,解得a 2=1+12=32, 当n =2时,解得a 3=1-23=13, 当n =3时,解得a 4=1-3=-2,当n =4时,解得a 5=32, 故数列a n 的周期为3,所以a 2 023=a 3×674+1=a 1=-2.3.若数列{a n }满足a 1=3,a n =3a n -1+3n (n ≥2),则数列{a n }的通项公式a n 等于( )A .2×3nB.3n n C .n ·3nD.n 3n 答案 C解析 由a n =3a n -1+3n (n ≥2),得n =2时,a 2=3a 1+32=18,对于A ,a 1=2×3=6≠3,故A 错;对于B ,a 1=31=3,a 2=322=92≠18,故B 错; 对于C ,a 1=1×3=3,a 2=2×32=18;对于D ,a 1=13≠3,故D 错. 4.(2022·太原模拟)已知{a n }是各项均为正数的等比数列,其前n 项和为S n ,且{S n }是等差数列,则下列结论错误的是( )A .{a n +S n }是等差数列B .{a n ·S n }是等比数列C .{a 2n }是等差数列D.⎩⎨⎧⎭⎬⎫S n n 是等比数列 答案 B解析 由{S n }是等差数列,得2S 2=S 1+S 3,即2(a 1+a 2)=a 1+a 1+a 2+a 3,∴a 2=a 3,设等比数列{a n }的公比为q ,∵{a n }是各项均为正数的等比数列,则q =a 3a 2=1, ∴a n =a 1>0.对于A 选项,a n +S n =(n +1)a 1,∴数列{a n +S n }是等差数列,A 正确;对于C 选项,a 2n =a 21,∴{a 2n }是常数列,且为等差数列,C 正确;对于D 选项,S n n =a 1>0,∴⎩⎨⎧⎭⎬⎫S n n 是等比数列,D 正确; 对于B 选项,a n S n =na 21,则a n +1S n +1a n S n =n +1n不是常数, ∴{a n ·S n }不是等比数列,B 不正确.5.(2022·安庆模拟)已知数列{a n }的前n 项和为S n ,若S n =na n ,且S 2+S 4+S 6+…+S 60=3 720,则a 1等于( )A .8B .6C .4D .2答案 C解析 S n =na n ,∴S n =n (S n -S n -1),n ≥2,∴nS n -1=(n -1)S n ,n ≥2,变形得S n -1n -1=S n n,n ≥2, ∴数列⎩⎨⎧⎭⎬⎫S n n 是每项均为S 1的常数列, ∴S n n=S 1, 即S n =nS 1=na 1,又∵S 2+S 4+S 6+…+S 60=3 720,∴2a 1+4a 1+6a 1+…+60a 1=(2+4+6+…+60)a 1=30×622a 1=3 720, 解得a 1=4.6.(2022·银川模拟)已知从1开始的连续奇数首尾相接蛇形排列形成如图三角形数表,第i 行第j 列的数记为a i ,j ,如a 3,1=7,a 4,3=15,则a i ,j =2 021时,110(3)j -log 2(i +19)等于( )15 37 9 1119 17 15 1321 23 25 27 29……………………………A .54B .18C .9D .6答案 A解析 奇数构成的数阵,令2n -1=2 021,解得n =1 011,故2 021是数阵中的第1 011个数,第1行到第i 行一共有1+2+3+…+i =i (i +1)2个奇数, 则第1行到第44行末一共有44×(44+1)2=990个奇数,第1行到第45行末一共有1 035个奇数,所以2 021位于第45行,又第45行是从左到右依次递增,且共有45个奇数, 所以2 021位于第45行,从左到右第21列,所以i =45,j =21, 则110(3)j -log 2(i +19)=21110(3)--·log 2(45+19)=(-3)2·log 264=9×6=54.7.(2022·泰安模拟)已知等差数列{a n }的前n 项和为S n ,公差为13,a n >0,1a 1a 2+1a 2a 3+…+1a 9a 10=12,当S n +10n取最小值时,n 的值为( ) A .7 B .8 C .9 D .10答案 B解析 1a 1a 2+1a 2a 3+…+1a 9a 10= 3⎣⎡ ⎝⎛⎭⎫1a 1-1a 2+ ⎦⎤⎝⎛⎭⎫1a 2-1a 3+…+⎝⎛⎭⎫1a 9-1a 10 =3⎝ ⎛⎭⎪⎫1a 1-1a 1+3=12, 整理得a 21+3a 1-18=0,解得a 1=3或a 1=-6(舍去),即S n =3n +n (n -1)2×13=n 2+17n 6, 则S n +10n =n 2+17n +606n =16⎝⎛⎭⎫n +60n +17. 当n ≤7时,数列单调递减,当n ≥8时,数列单调递增,当n =7时,S n +10n =387,当n =8时,S n +10n =6512, 故当n =8时,S n +10n取最小值. 8.(多选)已知等比数列{a n }的公比q =-23,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( )A .a 9·a 10<0B .a 9>a 10C .b 10>0D .b 9>b 10答案 AD解析 数列{a n }是首项为a 1,公比q 为-23的等比数列,{b n }是首项为12,公差设为d 的等差数列,则a 9=a 1⎝⎛⎭⎫-238,a 10=a 1⎝⎛⎭⎫-239, ∴a 9·a 10=a 21⎝⎛⎭⎫-2317<0,故A 正确; ∵a 1正负不确定,∴不能确定a 9和a 10的大小关系,故B 错误;∵a 9和a 10异号,a 9>b 9且a 10>b 10,∴b 9和b 10中至少有一个数是负数,又∵b 1=12,∴d <0,∴b 9>b 10,故D 正确.∴b 10一定是负数,即b 10<0,故C 错误.9.(多选)设数列{a n }的前n 项和为S n ,若a 2=3,S n +1=2S n +n ,则( )A .a n +1>S nB .{a n +1}是等比数列C.⎩⎨⎧⎭⎬⎫S n 2n 是单调递增数列 D .S n <2a n答案 ACD解析 对于A 选项,由S n +1=2S n +n 得a n +1=S n +n ,故a n +1>S n ,A 选项正确; 对于B 选项,将S n +1=2S n +n ,S n =2S n -1+n -1(n ≥2),两式相减得a n +1=2a n +1, 即a n +1+1=2(a n +1)(n ≥2),又令n =1,得S 2=2S 1+1⇒3+a 1=2a 1+1⇒a 1=2,a 2+1≠2(a 1+1),所以{a n +1}从第二项开始成等比数列,公比为2,故n ≥2时,a n +1=2n -2(a 2+1)=2n ,即a n =2n -1,所以a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2,故B 选项错误; 对于C 选项,因为a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2,当n =1时,S 1=2,当n ≥2时,S n =2+(22+23+…+2n )-(n -1)=2(1-2n )1-2-(n -1)=2n +1-n -1. 所以S n =⎩⎪⎨⎪⎧ 2,n =1,2n +1-n -1,n ≥2, 令c n =S n2n=⎩⎨⎧ 1,n =1,2-n +12n ,n ≥2,则n ≥2时,c n +1-c n =⎝ ⎛⎭⎪⎫2-n +22n +1-⎝⎛⎭⎪⎫2-n +12n =n +12n -n +22n +1=n 2n +1>0, 即c n +1>c n ,而c 2=54>c 1,所以数列⎩⎨⎧⎭⎬⎫S n 2n 单调递增,C 选项正确; 对于D 选项,当n ≥2时,S n -2a n =2n +1-n -1-(2n +1-2)=1-n ≤-1,S 1<2a 1显然成立,故S n <2a n 恒成立,D 选项正确.10.(多选)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( )A .a 6=8B .S 9=54C .a 1+a 3+a 5+…+a 2 023=a 2 024D.a 21+a 22+…+a 22 023a 2 023=a 2 024 答案 ACD解析 对于A ,写出数列的前6项为1,1,2,3,5,8,故A 正确;对于B ,S 9=1+1+2+3+5+8+13+21+34=88,故B 错误;对于C ,由a 1=a 2,a 3=a 4-a 2,a 5=a 6-a 4,a 7=a 8-a 6,…,a 2 023=a 2 024-a 2 022,可得a 1+a 3+a 5+a 7+…+a 2 023=a 2+a 4-a 2+a 6-a 4+a 8-a 6+…+a 2 024-a 2 022=a 2 024,故C 正确;对于D ,斐波那契数列总有a n +2=a n +1+a n ,则a 21=a 2a 1,a 22=a 2(a 3-a 1)=a 2a 3-a 2a 1,a 23=a 3(a 4-a 2)=a 3a 4-a 2a 3,…,a 22 022=a 2 022(a 2 023-a 2 021)=a 2 022a 2 023-a 2 021a 2 022,a 22 023=a 2 023a 2 024-a 2 023a 2 022,可得a 21+a 22+…+a 22 023a 2 023=a 2 023a 2 024a 2 023=a 2 024,故D 正确. 11.已知等比数列{a n }满足log 2(a 1a 2a 3a 4a 5)=5,等差数列{b n }满足b 3=a 3,则b 1+b 2+b 3+b 4+b 5=________.答案 10解析 因为等比数列{a n }中,log 2(a 1a 2a 3a 4a 5)=log 2(a 3)5=5,所以a 3=2,因为b 3=a 3=2,则由等差数列的性质得b 1+b 2+b 3+b 4+b 5=5b 3=10.12.已知数列{a n }的前n 项和满足S n =2n 2+n +3,n ∈N *,则数列{a n }的通项公式a n =________.答案 ⎩⎪⎨⎪⎧6,n =1,4n -1,n ≥2,n ∈N * 解析 ∵S n =2n 2+n +3(n ∈N *),∴当n =1时,a 1=S 1=2×12+1+3=6;当n ≥2时,a n =S n -S n -1=2n 2+n +3-[2(n -1)2+(n -1)+3]=4n -1.经检验,当n =1时,不符合上式,∴a n =⎩⎪⎨⎪⎧6,n =1,4n -1,n ≥2,n ∈N *.13.(2022·贵阳模拟)已知等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且有a 3+a 9=3,b 5+b 7=6,则S 11T 11的值为________. 答案 12解析 因为{a n },{b n }为等差数列,则有a 3+a 9=2a 6=3,b 5+b 7=2b 6=6.S 11=11a 6,T 11=11b 6,所以S 11T 11=11a 611b 6=a 6b 6=12. 14.若数列{a n }的前n 项和为S n ,b n =S n n,则称数列{b n }是数列{a n }的“均值数列”.已知数列{b n }是数列{a n }的“均值数列”且通项公式为b n =n ,设数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,若T n <12m 2-m -1对一切n ∈N *恒成立,则实数m 的取值范围为________. 答案 (-∞,-1]∪[3,+∞)解析 由题意,数列{a n }的前n 项和为S n ,由“均值数列”的定义可得S n n=n ,所以S n =n 2, 当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,a 1=1也满足a n =2n -1,所以a n =2n -1,所以1a n ·a n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, 所以T n =12⎝ ⎛1-13+13-15+…+12n -1- ⎭⎪⎫12n +1=12⎝ ⎛⎭⎪⎫1-12n +1<12, 又T n <12m 2-m -1对一切n ∈N *恒成立, 所以12m 2-m -1≥12,整理得m 2-2m -3≥0,解得m ≤-1或m ≥3. 即实数m 的取值范围为(-∞,-1]∪[3,+∞).。
等比数列综合练习题(1)
一、等比数列选择题1.在流行病学中,基本传染数R 0是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.初始感染者传染R 0个人,为第一轮传染,这R 0个人中每人再传染R 0个人,为第二轮传染,…….R 0一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设新冠肺炎的基本传染数0 3.8R =,平均感染周期为7天,设某一轮新增加的感染人数为M ,则当M >1000时需要的天数至少为( )参考数据:lg38≈1.58 A .34 B .35C .36D .372.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( )A .-3+(n +1)×2nB .3+(n +1)×2nC .1+(n +1)×2nD .1+(n -1)×2n3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里B .86里C .90里D .96里4.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于六个单音的频率为f ,则( ) A .第四个单音的频率为1122f - B .第三个单音的频率为142f - C .第五个单音的频率为162fD .第八个单音的频率为1122f5.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-B .3-C .3D .86.已知等比数列{}n a 的前n 项和为n S ,若213a a =,且数列{}13n S a -也为等比数列,则n a 的表达式为( )A .12nn a ⎛⎫= ⎪⎝⎭B .112n n a +⎛⎫= ⎪⎝⎭C .23nn a ⎛⎫= ⎪⎝⎭D .123n n a +⎛⎫= ⎪⎝⎭7.记等比数列{}n a 的前n 项和为n S ,已知5=10S ,1050S =,则15=S ( ) A .180B .160C .210D .2508.明代数学家程大位编著的《算法统宗》是中国数学史上的一座丰碑.其中有一段著述“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”.注:“倍加增”意为“从塔顶到塔底,相比于上一层,每一层灯的盏数成倍增加”,则该塔正中间一层的灯的盏数为( )A .3B .12C .24D .489.已知数列{}n a 满足112a =,*11()2n n a a n N +=∈.设2n n n b a λ-=,*n N ∈,且数列{}n b 是单调递增数列,则实数λ的取值范围是( )A .(,1)-∞B .3(1,)2-C .3(,)2-∞D .(1,2)-10.正项等比数列{}n a 满足2237610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4D .811.题目文件丢失!12.正项等比数列{}n a 满足:241a a =,313S =,则其公比是( ) A .14B .1C .12D .1313.已知数列{}n a 为等比数列,12a =,且53a a =,则10a 的值为( ) A .1或1-B .1C .2或2-D .214.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积列”.若各项均为正数的等比数列{a n }是一个“2022积数列”,且a 1>1,则当其前n 项的乘积取最大值时,n 的最大值为( ) A .1009B .1010C .1011D .202015.已知1,a 1,a 2,9四个实数成等差数列,1,b 1,b 2,b 3,9五个数成等比数列,则b 2(a 2﹣a 1)等于( ) A .8B .﹣8C .±8D .9816.设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31B .32C .63D .6417.在等比数列{}n a 中,12345634159,88a a a a a a a a +++++==-,则123456111111a a a a a a +++++=( )A .35B .35C .53D .53-18.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的中间一层共有灯( ) A .3盏B .9盏C .27盏D .81盏19.等比数列{}n a 中各项均为正数,n S 是其前n 项和,且满足312283S a a =+,416a =,则6S =( )A .32B .63C .123D .12620.已知数列{}n a ,{}n b 满足12a =,10.2b =,111233n n n a b a ++=+,11344n n n b a b +=+,则使0.01n n a b -<成立的最小正整数n 为( ) A .5B .7C .9D .11二、多选题21.一个弹性小球从100m 高处自由落下,每次着地后又跳回原来高度的23再落下.设它第n 次着地时,经过的总路程记为n S ,则当2n ≥时,下面说法正确的是( ) A .500n S < B .500n S ≤C .n S 的最小值为7003D .n S 的最大值为40022.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,135111214a a a ++=,则( ) A .{}n a 必是递减数列 B .5314S =C .公比4q =或14D .14a =或1423.已知集合{}*21,A x x n n N==-∈,{}*2,nB x x n N ==∈将AB 的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的可能取值为( ) A .25B .26C .27D .2824.已知等比数列{}n a 的公比0q <,等差数列{}n b 的首项10b >,若99a b >,且1010a b >,则下列结论一定正确的是( )A .9100a a <B .910a a >C .100b >D .910b b >25.已知等比数列{}n a 中,满足11a =,2q ,n S 是{}n a 的前n 项和,则下列说法正确的是( )A .数列{}2n a 是等比数列B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列 C .数列{}2log n a 是等差数列 D .数列{}n a 中,10S ,20S ,30S 仍成等比数列26.已知数列{}n a 是等比数列,那么下列数列一定是等比数列的是( ) A .1{}na B .22log ()n aC .1{}n n a a ++D .12{}n n n a a a ++++27.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .01q <<B .681a a >C .n S 的最大值为7SD .n T 的最大值为6T28.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,671a a >,67101a a -<-,则下列结论正确的是( ) A .01q <<B .8601a a <<C .n S 的最大值为7SD .n T 的最大值为6T29.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件1201920201,1a a a >>,20192020101a a -<-,下列结论正确的是( )A .S 2019<S 2020B .2019202010a a -<C .T 2020是数列{}n T 中的最大值D .数列{}n T 无最大值30.在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( ) A .此人第二天走了九十六里路B .此人第三天走的路程站全程的18C .此人第一天走的路程比后五天走的路程多六里D .此人后三天共走了42里路31.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S >C .若14q =-,则n n T S >D .若34q =-,则n n T S > 32.将2n 个数排成n 行n 列的一个数阵,如下图:111213212223231323331312n n n n n n nna a a a a a a a a a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .767173a =⨯C .1(31)3j ij a i -=-⨯D .()1(31)314n S n n =+- 33.已知数列{a n },{b n }均为递增数列,{a n }的前n 项和为S n ,{b n }的前n 项和为T n .且满足a n +a n +1=2n ,b n •b n +1=2n (n ∈N *),则下列说法正确的有( ) A .0<a 1<1B .1<b1C .S 2n <T 2nD .S 2n ≥T 2n34.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2{}n a 是等比数列B .若32a =,732a =,则58a =±C .若123a a a <<,则数列{}n a 是递增数列D .若数列{}n a 的前n 和13n n S r -=+,则1r =-35.已知等差数列{}n a 的首项为1,公差4d =,前n 项和为n S ,则下列结论成立的有( ) A .数列n S n ⎧⎫⎨⎬⎩⎭的前10项和为100 B .若1,a 3,a m a 成等比数列,则21m = C .若111625ni i i a a =+>∑,则n 的最小值为6 D .若210m n a a a a +=+,则116m n+的最小值为2512【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.D 【分析】假设第n 轮感染人数为n a ,根据条件构造等比数列{}n a 并写出其通项公式,根据题意列出关于n 的不等式,求解出结果,从而可确定出所需要的天数. 【详解】设第n 轮感染人数为n a ,则数列{}n a 为等比数列,其中1 3.8a =,公比为0 3.8R =,所以 3.81000nn a =>,解得 3.8333log 1000 5.17lg3.8lg3810.58n >==≈≈-, 而每轮感染周期为7天,所以需要的天数至少为5.17736.19⨯=. 故选:D . 【点睛】关键点点睛:解答本题的关键点有两个:(1)理解题意构造合适的等比数列;(2)对数的计算. 2.D 【分析】利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】设等比数列{a n }的公比为q ,易知q ≠1,所以由题设得()()3136161711631a q S q a q S q ⎧-⎪==-⎪⎨-⎪==⎪-⎩, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,两式作差得-T n =1+2+22+…+2n -1-n ×2n=1212n---n ×2n =-1+(1-n )×2n , 故T n =1+(n -1)×2n . 故选:D. 【点睛】本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 3.D 【分析】由题意得每天行走的路程成等比数列{}n a、且公比为12,由条件和等比数列的前项和公式求出1a,由等比数列的通项公式求出答案即可.【详解】由题意可知此人每天走的步数构成12为公比的等比数列,由题意和等比数列的求和公式可得611[1()]2378112a-=-,解得1192a=,∴此人第二天走1192962⨯=里,∴第二天走了96里,故选:D.4.B【分析】根据题意得该单音构成公比为四、五、八项即可得答案.【详解】解:根据题意得该单音构成公比为因为第六个单音的频率为f,141422ff-==.661122ff-==.所以第五个单音的频率为1122f=.所以第八个单音的频率为1262f f=故选:B.5.A【分析】根据等比中项的性质列方程,解方程求得公差d,由此求得{}n a的前6项的和.【详解】设等差数列{}n a的公差为d,由2a、3a、6a成等比数列可得2326a a a=,即2(12)(1)(15)d d d+=++,整理可得220d d+=,又公差不为0,则2d=-,故{}n a前6项的和为616(61)6(61)661(2)2422S a d⨯-⨯-=+=⨯+⨯-=-.故选:A【分析】设等比数列{}n a 的公比为q ,当1q =时,111133(3)n S a na a n a -=-=-,该式可以为0,不是等比数列,当1q ≠时,11113311n n a aS a q a q q-=-⋅+---,若是等比数列,则11301a a q -=-,可得23q =,利用213a a =,可以求得1a 的值,进而可得n a 的表达式 【详解】设等比数列{}n a 的公比为q当1q =时,1n S na =,所以111133(3)n S a na a n a -=-=-, 当3n =时,上式为0,所以{}13n S a -不是等比数列. 当1q ≠时,()1111111n nn a q a aq S qq q-==-⋅+---, 所以11113311n n a aS a q a q q-=-⋅+---, 要使数列{}13n S a -为等比数列,则需11301a a q -=-,解得23q =. 213a a =,2123a ⎛⎫∴= ⎪⎝⎭,故21111222333n n n n a a q -+-⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的关键点是熟记等比数列的前n 项和公式,等比数列通项公式的一般形式,由此若11113311n n a a S a q a q q -=-⋅+---是等比数列,则11301aa q-=-,即可求得q 的值,通项即可求出. 7.C 【分析】首先根据题意得到5S ,105S S -,1510S S -构成等比数列,再利用等比中项的性质即可得到答案. 【详解】因为{}n a 为等比数列,所以5S ,105S S -,1510S S -构成等比数列. 所以()()2155010=1050S --,解得15210S =. 故选:C【分析】题意说明从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为1a ,由系数前n 项和公式求得1a ,再由通项公式计算出中间项. 【详解】根据题意,可知从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为1a ,则有()7171238112a S ⋅-==-,解得13a =,中间层灯盏数34124a a q ==,故选:C. 9.C 【分析】 由*11()2n n a a n N +=∈可知数列{}n a 是公比为2的等比数列,12n n a =,得2(2)2n n nn b n a λλ-==-,结合数列{b n }是单调递增数列,可得1n n b b +>对于任意的*n N ∈*恒成立,参变分离后即可得解.【详解】 由*11()2n n a a n N +=∈可知数列{}n a 是公比为2的等比数列, 所以1111()222n n n a -==, 2(2)2n n nn b n a λλ-==- ∵数列{n b 是单调递增数列, ∴1n n b b +>对于任意的*n N ∈*恒成立, 即1(12)2(2)2n n n n λλ++->-,整理得:22n λ+<32λ∴< ,故选:C. 【点睛】本题主要考查了已知数列的单调性求参,一般研究数列的单调性的方法有: 一、利用数列单调性的定义,由1n n a a +>得数列单增,1n n a a +<得数列单减; 二、借助于函数的单调性研究数列的单调性. 10.C 【分析】利用等比数列的性质运算求解即可.【详解】根据题意,等比数列{}n a 满足2237610216a a a a a ++=, 则有222288216a a a a ++=,即()22816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=. 故选:C .11.无12.D 【分析】根据241a a =,由2243a a a =,解得31a =,再根据313S =求解.【详解】因为正项等比数列{}n a 满足241a a =,由于2243a a a =,所以231a =,31a =,211a q =.因为313S =, 所以1q ≠. 由()()31231111a q S a q q q-==++-得22131q q q =++, 即21210q q --=, 解得13q =,或14q =-(舍去). 故选:D 13.C 【分析】根据等比数列的通项公式,由题中条件,求出公比,进而可得出结果. 【详解】设等比数列{}n a 的公比为q ,因为12a =,且53a a =,所以21q =,解得1q =±, 所以91012a a q ==±.故选:C. 14.C 【分析】根据数列的新定义,得到122021...1a a a =,再由等比数列的性质得到210111a =,再利用11,01a q ><<求解即可.【详解】根据题意:2022122022...a a a a =, 所以122021...1a a a =,因为{a n }等比数列,设公比为q ,则0q >,所以212021220201011...1a a a a a ====,因为11a >,所以01q <<, 所以1010101110121,1,01a a a >=<<,所以前n 项的乘积取最大值时n 的最大值为1011. 故选:C. 【点睛】关键点睛:本题主要考查数列的新定义以及等比数列的性质,数列的最值问题,解题的关键是根据定义和等比数列性质得出210111a =以及11,01a q ><<进行判断.15.A 【分析】由已知条件求出公差和公比,即可由此求出结果. 【详解】设等差数列的公差为d ,等比数列的公比为q , 则有139d +=,419q ⋅=,解之可得83d =,23q =, ()22218183b a a q ∴-=⨯⨯=.故选:A. 16.C 【分析】根据等比数列前n 项和的性质列方程,解方程求得6S .【详解】因为n S 为等比数列{}n a 的前n 项和,所以2S ,42S S -,64S S -成等比数列, 所以()()242264S S S S S -=-,即()()62153315-=-S ,解得663S =. 故选:C 17.D 【分析】利用等比数列下标和相等的性质有162534a a a a a a ==,而目标式可化为162534162534a a a a a a a a a a a a +++++结合已知条件即可求值. 【详解】162534123456162534111111a a a a a a a a a a a a a a a a a a ++++++++=++, ∵等比数列{}n a 中3498a a =-,而162534a a a a a a ==, ∴123456111111a a a a a a +++++=12345685()93a a a a a a -+++++=-, 故选:D 18.C 【分析】根据题意,设塔的底层共有x 盏灯,分析可得每层灯的数目构成以x 为首项,13为公比的等比数列,由等比数列的前n 项和公式可得x 的值,即可得答案. 【详解】根据题意,设塔的底层共有x 盏灯,则每层灯的数目构成以x 为首项,13为公比的等比数列,则有51(1)3363113x S ⨯-==-, 解可得:243x =,所以中间一层共有灯21243()273⨯=盏. 故选:C 【点睛】思路点睛:要求中间一层的灯的数量,只需求等比数列的首项,根据等比数列的和求出数列的首项即可. 19.D 【分析】根据等比数列的通项公式建立方程,求得数列的公比和首项,代入等比数列的求和公式可得选项. 【详解】设等比数列{}n a 的公比为(0)q q >.∵312283S a a =+, ∴123122()83a a a a a ++=+,即321260a a a --=. ∴2260q q --=,∴2q或32q =-(舍去),∵416a =,∴4132a a q ==, ∴6616(1)2(12)126112a q S q --===--, 故选:D. 20.C 【分析】令n n n c a b =-,由111233n n n a b a ++=+,11344n n n b a b +=+可知数列{}n c 是首项为1.8,公比为12的等比数列,即11.812n n c -⎛⎫ ⎪⎝⎭=⨯,则110.0121.8n -⎛⎫< ⎪⎝⎭⨯,解不等式可得n 的最小值. 【详解】令n n n c a b =-,则11120.2 1.8c a b =-=-=111113131344444121233343n n n n n n n n n n nn c a b a b a b b a a a b ++++⎛⎫=-=+--=+-- ⎪⎝+⎭111222n n n a b c -== 所以数列{}n c 是首项为1.8,公比为12的等比数列,所以11.812n n c -⎛⎫ ⎪⎝⎭=⨯由0.01n n a b -<,即110.0121.8n -⎛⎫< ⎪⎝⎭⨯,整理得12180n ->由72128=,82256=,所以18n -=,即9n =故选:C. 【点睛】本题考查了等比数列及等比数列的通项公式,解题的关键是根据已知的数列递推关系式,利用等比数列的定义,得到数列{}n c 为等比数列,考查了学生的分析问题能力能力与运算求解能力,属于中档题.二、多选题21.AC 【分析】由运动轨迹分析列出总路程n S 关于n 的表达式,再由表达式分析数值特征即可 【详解】由题可知,第一次着地时,1100S =;第二次着地时,221002003S =+⨯;第三次着地时,232210020020033S ⎛⎫=+⨯+⨯ ⎪⎝⎭;……第n 次着地后,21222100200200200333n n S -⎛⎫⎛⎫=+⨯+⨯++⨯ ⎪ ⎪⎝⎭⎝⎭则211222210020010040013333n n n S --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,显然500n S <,又n S 是关于n 的增函数,2n ≥,故当2n =时,n S 的最小值为40070010033+=; 综上所述,AC 正确 故选:AC 22.BD 【分析】设设等比数列{}n a 的公比为q ,则0q >,由已知得1112114a a ++=,解方程计算即可得答案. 【详解】解:设等比数列{}n a 的公比为q ,则0q >,因为21531a a a ==,2311a a q == , 所以51115135151511111112111114a a a a a a a a a a a a a ++=++=++=+=+++=, 解得1412a q =⎧⎪⎨=⎪⎩或1142.a q ⎧=⎪⎨⎪=⎩, 当14a =,12q =时,551413121412S ⎛⎫- ⎪⎝⎭==-,数列{}n a 是递减数列; 当114a =,2q 时,5314S =,数列{}n a 是递增数列; 综上,5314S =. 故选:BD. 【点睛】本题考查数列的等比数列的性质,等比数列的基本量计算,考查运算能力.解题的关键在于结合等比数列的性质将已知条件转化为1112114a a ++=,进而解方程计算. 23.CD 【分析】由题意得到数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,结合等差数列以及等比数列的求和公式,验证即可求解. 【详解】由题意,数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,可得当25n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,2,4,8,16,32,可得52520(139)2(12)40062462212S ⨯+-=+=+=-,2641a =,所以2612492a =,不满足112n n S a +>; 当26n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,2,4,8,16,32,可得52621(141)2(12)44162503212S ⨯+-=+=+=-,2743a =,所以2612526a =,不满足112n n S a +>; 当27n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,2,4,8,16,32,可得52722(143)2(12)48462546212S ⨯+-=+=+=-,2845a =,所以2712540a =,满足112n n S a +>; 当28n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,45,2,4,8,16,32,可得52823(145)2(12)52962591212S ⨯+-=+=+=-,2947a =,所以2812564a =,满足112n n S a +>,所以使得112n n S a +>成立的n 的可能取值为27,28. 故选:CD. 【点睛】本题主要考查了等差数列和等比数列的前n 项和公式,以及“分组求和法”的应用,其中解答中正确理解题意,结合列举法求得数列的前n 项和,结合选项求解是解答的关键,着重考查推理与运算能力. 24.AD 【分析】根据等差、等比数列的性质依次判断选项即可. 【详解】对选项A ,因为0q <,所以29109990a a a a q a q =⋅=<,故A 正确;对选项B ,因为9100a a <,所以91000a a >⎧⎨<⎩或9100a a <⎧⎨>⎩,即910a a >或910a a <,故B 错误;对选项C ,D ,因为910,a a 异号,99a b >,且1010a b >,所以910,b b 中至少有一个负数, 又因为10b >,所以0d <,910b b >,故C 错误,D 正确. 故选:AD 【点睛】本题主要考查等差、等比数列的综合应用,考查学生分析问题的能力,属于中档题. 25.AC 【分析】 由已知得12n na 可得以2122n n a -=,可判断A ;又1111122n n n a --⎛⎫== ⎪⎝⎭,可判断B ;由122log log 21n n a n -==-,可判断C ;求得10S ,20S ,30S ,可判断D.【详解】等比数列{}n a 中,满足11a =,2q,所以12n n a ,所以2122n n a -=,所以数列{}2n a 是等比数列,故A 正确;又1111122n n n a --⎛⎫== ⎪⎝⎭,所以数列1n a ⎧⎫⎨⎬⎩⎭是递减数列,故B 不正确; 因为122log log 21n n a n -==-,所以{}2log n a 是等差数列,故C 正确;数列{}n a 中,101010111222S -==--,202021S =-,303021S =-,10S ,20S ,30S 不成等比数列,故D 不正确; 故选:AC . 【点睛】本题综合考查等差、等比数列的定义、通项公式、前n 项和公式,以及数列的单调性的判定,属于中档题. 26.AD 【分析】主要分析数列中的项是否可能为0,如果可能为0,则不能是等比数列,在不为0时,根据等比数列的定义确定. 【详解】1n a =时,22log ()0n a =,数列22{log ()}n a 不一定是等比数列, 1q =-时,10n n a a ++=,数列1{}n n a a ++不一定是等比数列,由等比数列的定义知1{}na 和12{}n n n a a a ++++都是等比数列. 故选AD .本题考查等比数列的定义,掌握等比数列的定义是解题基础.特别注意只要数列中有一项为0,则数列不可能是等比数列. 27.AD 【分析】分类讨论67,a a 大于1的情况,得出符合题意的一项. 【详解】①671,1a a >>, 与题设67101a a -<-矛盾. ②671,1,a a ><符合题意. ③671,1,a a <<与题设67101a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.得671,1,01a a q ><<<,则n T 的最大值为6T .∴B ,C ,错误.故选:AD. 【点睛】考查等比数列的性质及概念. 补充:等比数列的通项公式:()1*1n n a a q n N -=∈.28.ABD 【分析】先分析公比取值范围,即可判断A ,再根据等比数列性质判断B,最后根据项的性质判断C,D. 【详解】若0q <,则67670,00a a a a <>∴<与671a a >矛盾; 若1q ≥,则11a >∴671,1a a >>∴67101a a ->-与67101a a -<-矛盾; 因此01q <<,所以A 正确;667710101a a a a -<∴>>>-,因此2768(,1)0a a a =∈,即B 正确; 因为0n a >,所以n S 单调递增,即n S 的最大值不为7S ,C 错误;因为当7n ≥时,(0,1)n a ∈,当16n ≤≤时,(1,)n a ∈+∞,所以n T 的最大值为6T ,即D 正确; 故选:ABD 【点睛】本题考查等比数列相关性质,考查综合分析判断能力,属中档题. 29.AB由已知确定0q <和1q ≥均不符合题意,只有01q <<,数列{}n a 递减,从而确定20191a >,202001a <<,从可判断各选项.【详解】当0q <时,22019202020190a a a q =<,不成立;当1q ≥时,201920201,1a a >>,20192020101a a -<-不成立;故01q <<,且20191a >,202001a <<,故20202019S S >,A 正确;2201920212020110a a a -=-<,故B 正确;因为20191a >,202001a <<,所以2019T 是数列{}n T 中的最大值,C ,D 错误; 故选:AB 【点睛】本题考查等比数列的单调性,解题关键是确定20191a >,202001a <<. 30.ACD 【分析】若设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为12q =的等比数列,由6378S =求得首项,然后分析4个选项可得答案.【详解】解:设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为12q =的等比数列, 因为6378S =,所以1661(1)2=378112a S -=-,解得1192a =,对于A ,由于21192962a =⨯=,所以此人第二天走了九十六里路,所以A 正确; 对于B ,由于 3148119248,43788a =⨯=>,所以B 不正确; 对于C ,由于378192186,1921866-=-=,所以此人第一天走的路程比后五天走的路程多六里,所以C 正确; 对于D ,由于4561111924281632a a a ⎛⎫++=⨯++= ⎪⎝⎭,所以D 正确, 故选:ACD 【点睛】此题考查等比数的性质,等比数数的前项n 的和,属于基础题. 31.BD先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q-=>-,即101nq q ->-,上式等价于1010n q q ⎧->⎨->⎩①或1010n q q ⎧-<⎨-<⎩②.解②得1q >.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.综上所述,q 的取值范围是()()1,00,-+∞.2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛⎫=- ⎪⎝⎭,所以()2311222n n n n T S S q q S q q ⎛⎫⎛⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝⎭,而0n S >,且()()1,00,q ∈-⋃+∞.所以,当112q -<<-,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错误. 当12(0)2q q -<<≠时,0n n T S -<,即n n T S <. 当12q =-或2q 时,0,n n n n T S T S -==,A 选项错误.综上所述,正确的选项为BD. 故选:BD 【点睛】本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题. 32.ACD 【分析】根据题设中的数阵,结合等比数列的通项公式和等比数列的前n 项和公式,逐项求解,即可得到答案. 【详解】由题意,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,且112a =,13611a a =+,可得2213112a a m m ==,6111525a a d m =+=+,所以22251m m =++,解得3m =或12m =-(舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;又由1111111(3[((1)][2(1)3]31)3j j j j ij i a ma i m m i i a ----==+-⨯⨯==-⨯+-⨯⨯,所以选项C 是正确的; 又由这2n 个数的和为S , 则111212122212()()()n n n n nn S a a a a a a a a a =++++++++++++11121(13)(13)(13)131313n n n n a a a ---=+++---1(231)(31)22nn n +-=-⋅ 1(31)(31)4n n n =+-,所以选项D 是正确的, 故选ACD. 【点睛】本题主要考查了数表、数阵数列的求解,以及等比数列及其前n 项和公式的应用,其中解答中合理利用等比数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 33.ABC 【分析】利用代入法求出前几项的关系即可判断出a 1,b 1的取值范围,分组法求出其前2n 项和的表达式,分析,即可得解. 【详解】∵数列{a n }为递增数列;∴a 1<a 2<a 3; ∵a n +a n +1=2n ,∴122324a a a a +=⎧⎨+=⎩;∴12123212244a a a a a a a +⎧⎨+=-⎩>>∴0<a 1<1;故A 正确.∴S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n ﹣1+a 2n )=2+6+10+…+2(2n ﹣1)=2n 2; ∵数列{b n }为递增数列; ∴b 1<b 2<b 3; ∵b n •b n +1=2n∴122324b b b b =⎧⎨=⎩;∴2132b b b b ⎧⎨⎩>>;∴1<b1B 正确.∵T 2n =b 1+b 2+…+b 2n=(b 1+b 3+b 5+…+b 2n ﹣1)+(b 2+b 4+…+b 2n )()()()()121212122122nn n b b b b ⋅--=+=+-))2121n n ≥-=-;∴对于任意的n ∈N*,S 2n <T 2n ;故C 正确,D 错误.故选:ABC【点睛】本题考查了分组法求前n 项和及性质探究,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.34.AC【分析】在A 中,数列{}2n a 是等比数列;在B 中,58a =;在C 中,若123a a a <<,则1q >,数列{}n a 是递增数列;在D 中,13r =-. 【详解】由数列{}n a 是等比数列,知:在A 中,22221n n a a q -=,22221122221nn n n a a q q a a q+-∴==是常数, ∴数列{}2n a 是等比数列,故A 正确; 在B 中,若32a =,732a =,则58a =,故B 错误;在C 中,若1230a a a <<<,则1q >,数列{}n a 是递增数列;若1230a a a <<<,则01q <<,数列{}n a 是递增数列,故C 正确;在D 中,若数列{}n a 的前n 和13n n S r -=+,则111a S r ==+,()()221312a S S r r =-=+-+=,()()332936a S S r r =-=+-+=,1a ,2a ,3a 成等比数列,2213a a a ∴=,()461r ∴=+,解得13r =-,故D 错误. 故选:AC .【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.AB【分析】由已知可得:43n a n =-,22n S n n =-,=21n S n n -,则数列n S n ⎧⎫⎨⎬⎩⎭为等差数列通过公式即可求得前10项和;通过等比中项可验证B 选项;因为11111=44341i i a a n n +⎛⎫- ⎪-+⎝⎭,通过裂项求和可求得111n i i i a a =+∑;由等差的性质可知12m n +=利用基本不等式可验证选项D 错误. 【详解】由已知可得:43n a n =-,22n S n n =-,=21n S n n -,则数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,则前10项和为()10119=1002+.所以A 正确; 1,a 3,a m a 成等比数列,则231=,m a a a ⋅81m a =,即=4381m a m =-=,解得21m =故B 正确; 因为11111=44341i i a a n n +⎛⎫- ⎪-+⎝⎭所以1111111116=1=455494132451n i i i n n n a a n =+⎛⎫-+-++-> ⎪++⎝⎭-∑,解得6n >,故n 的最小值为7,故选项C 错误;等差的性质可知12m n +=,所以()()1161116116125=116172412121212n m m n m n m n m n ⎛⎫⎛⎫+++=+++≥+⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当16=n m m n 时,即48=45n m =时取等号,因为*,m n ∈N ,所以48=45n m =不成立,故选项D 错误.故选:AB.【点睛】本题考查等差数列的性质,考查裂项求和,等比中项,和基本不等式求最值,难度一般.。
数列综合练习题1
数列综合练习题一、选择题1.在等差数列{n a }中,已知42=a ,83=a ,则5a 的值为 ( )A .20B .16C .12D .102.已知 ,2,2,1为等比数列,当28=n a 时,则n 等于 ( )A . 6B . 7C .8D .93.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则3a = ( )A .–4B .–6C . –8D . –104.在等差数列{a n }中,S n 为其前n 项和,若36642=++a a a ,则S 7等于 ( )A .108B .96C .84D .485.数列1,211+,3211++, ,n++++ 3211的前n 项和为 ( ) A .122+n n B .12+n n C .12++n n D .12+n n 6.已知数列{}n a 中,1211,2a a ==,*11112(1)n n nn n a a a -++=>∈N 且,则数列{}n a 的第n 项等于( ) A .32n - B .23n - C .121-n D . 1n 7.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +是等差数列,则n S 等于 ( ) A .2n B .3n -1 C .122n +- D .31n -8、已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d =( ) A.23- B.13- C.13 D.239.已知数列}{n a满足110,n a a +==n ∈N*),则30a =( ) A .3- B .0 C .23 D .310、等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列,若a 1=1,则S 4等于( )A .7B .8C .15D .16二、填空题(本大题共6小题,每小题5分,共30分)11.在等差数列{}n a 中,S n 为其前n 项和,若0,019181=+>a a a ,则当S n 取得最大值时,n = .12.已知数列{}n a 的前n 项和为kn n S n +=25,且182=a ,则k = .13.在83和272之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为_______. 14.在数列{a n }中,若a 1=1,a n +1=2a n +1 (n≥1),则该数列的通项a n =__________.15.设{a n }是公差为1的等差数列,若a 1+a 2+a 3+…+a 30=600,则a 3+a 6+a 9+…+a 30= .16、在数列{a n }中,S n 是其前n 项和,若a 1=1,a n +1=13S n (n ≥1),则a n =________.三、解答题 17.设{a n }为等差数列,{b n }为等比数列,且a 1=b 1=1,a 3+a 5=b 4,b 2b 3=a 8.分别求出{a n }及{b n }的前10项的和S 10及T 10.18.数列{a n }的前n 项和为S n ,a 1=1,a n +1=2S n (n ∈N *).(1)求数列{a n }的通项a n ;(2)求数列{na n }的前n 项和T n .19.已知S n 是等比数列 {a n } 的前n 项和,S 3,S 9,S 6成等差数列,求证:a 2,a 8,a 5成等差数列.20.数列}{n a 的前n 项为n S ,∈-=n n a S n n (32N )*.(1)证明:数列{}3+n a 是等比数列;(2)求数列{}n a 的通项公式n a ;21.已知等差数列{a n }满足:a 3=7,a 5+a 7=26.{a n }的前n 项和为S n .(Ⅰ)求a n 及S n ;(Ⅱ)令b n =1a 2n-1(n ∈N *),求数列{b n }的前n 项和T n .22.已知数列2{log (1)}n a -(n ∈N*)为等差数列,且13a =,39a =.(1)求数列}{n a 的通项公式;(2)证明213211111n n a a a a a a ++++<---.。
高考数学一轮复习《数列的综合运用》练习题(含答案)
高考数学一轮复习《数列的综合运用》练习题(含答案)一、单选题1.某银行设立了教育助学低息贷款,其中规定一年期以上贷款月均等额还本付息(利息按月以复利计算).如果小新同学贷款10000元,一年还清,假设月利率为0.25%,那么小新同学每月应还的钱约为( )(1.002512≈1.03) A .833B .858C .883D .9022.某企业在今年年初贷款a 万元,年利率为γ,从今年年末开始每年偿还一定金额,预计五年内还清,则每年应偿还( ) A .()()5111a γγ++-万元 B .()()55111a γγγ++-万元C .()()54111a γγγ++-万元 D .()51a γγ+万元3.一种预防新冠病毒的疫苗计划投产两月后,使成本降64%,那么平均每月应降低成本( ) A .20%B .32%C .40%D .50%4.今年元旦,市民小王向朋友小李借款100万元用于购房,双方约定年利率为5%,按复利计算(即本年利息计入次年本金生息),借款分三次等额归还,从明年的元旦开始,连续三年都是在元旦还款,则每次的还款额约是( )万元.(四舍五入,精确到整数) (参考数据:()21.05 1.1025=,()31.05 1.1576=,()41.05 1.2155=) A .36B .37C .38D .395.随着新一轮科技革命和产业变革持续推进,以数字化、网络化、智能化以及融合化为主要特征的新型基础设施建设越来越受到关注.5G 基站建设就是“新基建”的众多工程之一,截至2020年底,我国已累计开通5G 基站超70万个,未来将进一步完善基础网络体系,稳步推进5G 网络建设,实现主要城区及部分重点乡镇5G 网络覆盖.2021年1月计划新建设5万个5G 基站,以后每个月比上一个月多建设1万个,预计我国累计开通500万个5G 基站时要到( ) A .2022年12月B .2023年2月C .2023年4月D .2023年6月6.我们知道,偿还银行贷款时,“等额本金还款法”是一种很常见的还款方式,其本质是将本金平均分配到每一期进行偿还,每一期的还款金额由两部分组成,一部分为每期本金,即贷款本金除以还款期数,另一部分是利息,即贷款本金与已还本金总额的差乘以利率.自主创业的大学生张华向银行贷款的本金为48万元,张华跟银行约定,按照等额本金还款法,每个月还一次款,20年还清,贷款月利率为0.4%,设张华第n 个月的还款金额为n a 元,则n a =( )A .2192B .39128n -C .39208n -D .39288n -7.高阶等差数列是数列逐项差数之差或高次差相等的数列,中国古代许多著名的数学家对推导高阶等差数列的求和公式很感兴趣,创造并发展了名为“垛积术”的算法,展现了聪明才智.如南宋数学家杨辉在《详解九章算法.商功》一书中记载的三角垛、方垛、刍甍垛等的求和都与高阶等差数列有关.如图是一个三角垛,最顶层有1个小球,第二层有3个,第三层有6个,第四层有10个,则第30层小球的个数为( )A .464B .465C .466D .4958.某单位用分期付款方式为职工购买40套住房,总房价1150万元.约定:2021年7月1日先付款150万元,以后每月1日都交付50万元,并加付此前欠款利息,月利率1%,当付清全部房款时,各次付款的总和为( ) A .1205万元B .1255万元C .1305万元D .1360万元9.小李在2022年1月1日采用分期付款的方式贷款购买一台价值a 元的家电,在购买1个月后的2月1日第一次还款,且以后每月的1日等额还款一次,一年内还清全部贷款(2022年12月1日最后一次还款),月利率为r .按复利计算,则小李每个月应还( ) A .()()1111111ar r r ++-元 B .()()1212111ar r r ++-元C .()11111a r +元D .()12111a r +元10.在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于0R 1>,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设某种传染病的基本传染数0R 3=,平均感染周期为7天(初始感染者传染0R 个人为第一轮传染,经过一个周期后这0R 个人每人再传染0R 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据:63729=,541024=)( ) A .35B .42C .49D .5611.为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.老王2020年6月1日向银行借了免息贷款10000元,用于进货.因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费1000元,余款作为资金全部用于下月再进货,如此继续,预计到2021年5月底该摊主的年所得收入为( )(取()111.27.5=,()121.29=) A .32500元B .40000元C .42500元D .50000元12.某病毒研究所为了更好地研究“新冠”病毒,计划改建十个实验室,每个实验室的改建费用分为装修费和设备费,每个实验室的装修费都一样,设备费从第一到第十实验室依次构成等比数列,已知第五实验室比第二实验室的改建费用高28万元,第七实验室比第四实验室的改建费用高112万元,并要求每个实验室改建费用不能超过1100万元.则该研究所改建这十个实验室投入的总费用最多需要( ) A .2806万元B .2906万元C .3106万元D .3206万元二、填空题13.小李向银行贷款14760元,并与银行约定:每年还一次款,分4次还清所有的欠款,且每年还款的钱数都相等,贷款的年利率为0.25,则小李每年所要还款的钱数是___________元.14.从2017年到2020年期间,某人每年6月1日都到银行存入1万元的一年定期储蓄.若年利率为20%保持不变,且每年到期的存款本息均自动转为新的一年定期储蓄,到2020年6月1日,该人去银行不再存款,而是将所有存款的本息全部取回,则取回的金额为_______万元.15.银行一年定期储蓄存款年息为r ,三年定期储蓄存款年息为q ,银行为吸收长期资金,鼓励储户存三年定期的存款,那么q 的值应略大于______.16.今年“五一”期间,北京十家重点公园举行免费游园活动,北海公园免费开放一天,早晨6时30分有2人进入公园,接下来的第一个30分钟内有4人进去1人出来,第二个30分钟内有8人进去2人出来,第三个30分钟内有16人进去3人出来,第四个30分钟内有32人进去4人出来…,按照这种规律进行下去,到上午11时30分公园内的人数是____.三、解答题17.一杯100℃的开水放在室温25℃的房间里,1分钟后水温降到85℃,假设每分钟水温变化量和水温与室温之差成正比. (1)求()*n n N ∈分钟后的水温n t ;(2)当水温在40℃到55℃之间时(包括40℃和55℃),为最适合饮用的温度,则在水烧开后哪个时间段饮用最佳.(参考数据:lg 20.3≈)18.某优秀大学生毕业团队响应国家号召,毕业后自主创业,通过银行贷款等方式筹措资金,投资72万元生产并经营共享单车,第一年维护费用为12万元,以后每年都增加4万元,每年收入租金50万元.(1)若扣除投资和维护费用,则从第几年开始获取纯利润?(2)若年平均获利最大时,该团队计划投资其它项目,问应在第几年转投其它项目?19.去年某地产生的生活垃圾为20万吨,其中14万吨垃圾以填埋方式处理,6万吨垃圾以环保方式处理.预计每年生活垃圾的总量递增5%,同时,通过环保方式处理的垃圾量每年增加1.5万吨.记从今年起每年生活垃圾的总量(单位:万吨)构成数列{}n a ,每年以环保方式处理的垃圾量(单位:万吨)构成数列{}n b . (1)求数列{}n a 和数列{}n b 的通项公式;(2)为了确定处理生活垃圾的预算,请求出从今年起n 年内通过填埋方式处理的垃圾总量的计算公式,并计算从今年起5年内通过填埋方式处理的垃圾总量(精确到0.1万吨).(参考数据41.05 1.215≈,51.05 1.276≈,61.05 1.340≈)20.2020年是充满挑战的一年,但同时也是充满机遇、蓄势待发的一年.突如其来的疫情给世界带来了巨大的冲击与改变,也在客观上使得人们更加重视科技的力量和潜能.某公司一下属企业从事某种高科技产品的生产.假设该企业第一年年初有资金5000万元,并将其全部投入生产,到当年年底资金增长了50%,预计以后每年资金年增长率与第一年相同.公司要求企业从第一年开始,每年年底上缴资金(2500)t t ≤万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为n a 万元. (1)写出1n a +与n a 的关系式,并判断{}2n a t -是否为等比数列;(2)若企业每年年底上缴资金1500t =,第*()m m N ∈年年底企业的剩余资金超过21000万元,求m 的最小值.21.流行性感冒是由流感病毒引起的急性呼吸道传染病.某市去年11月份曾发生流感,据统计,11月1日该市的新感染者有30人,以后每天的新感染者比前一天的新感染者增加50人.由于该市医疗部门采取措施,使该种病毒的传播得到控制,从11月()*1929,k k k +≤≤∈N 日起每天的新感染者比前一天的新感染者减少20人. (1)若9k =,求11月1日至11月10日新感染者总人数;(2)若到11月30日止,该市在这30天内的新感染者总人数为11940人,问11月几日,该市新感染者人数最多?并求这一天的新感染者人数.22.教育储蓄是指个人按国家有关规定在指定银行开户、存入规定数额资金、用于教育目的的专项储蓄,是一种专门为学生支付非义务教育所需教育金的专项储蓄,储蓄存款享受免征利息税的政策.若你的父母在你12岁生日当天向你的银行教育储蓄账户存入1000元,并且每年在你生日当天存入1000元,连续存6年,在你十八岁生日当天一次性取出,假设教育储蓄存款的年利率为10%.(1)在你十八岁生日当天时,一次性取出的金额总数为多少?(参考数据:71.1 1.95≈) (2)当你取出存款后,你就有了第一笔启动资金,你可以用你的这笔资金做理财投资.如果现在有三种投资理财的方案: ①方案一:每天回报40元;②方案二:第一天回报10元,以后每天比前一天多回报10元; ③方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 你会选择哪种方案?请说明你的理由.23.已知数集{}()1212,,1,2n n A a a a a a a n =≤<<≥具有性质P ;对任意的(),1i j i j n ≤≤≤,i j a a 与j ia a 两数中至少有一个属于A .(Ⅰ)分别判断数集{}1,3,4与{}1,2,3,6是否具有性质P ,并说明理由; (Ⅱ)证明:11a =,且1211112nn na a a a a a a ---+++=+++; (Ⅲ)证明:当5n =时,成等比数列。
【数列】数列综合练习题(1)--测试用
数列综合练习题一、选择题:本大题共10个小题;每小题5分,共50分1、数列 的一个通项公式是 ( )A. B . C . D . 2、若两数的等差中项为6,等比中项为10,则以这两数为根的一元二次方程是( ) A 、010062=+-x x B 、0100122=++x x C 、0100122=--x x D 、0100122=+-x x3、已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数,则b 2(a 2-a 1)=( )A.8 B.-8 C.±8 D.4、已知数列{}n a 是等比数列,若,a a a a 41813229=+则数列{}n a 的前30项的积=30T ( ) A 、154, B 、152, C 、1521⎪⎭⎫ ⎝⎛, D 、153,5、已知等比数列{a n }的公比为2, 前4项的和是1, 则前8项的和为 ( ) A .15. B .17. C .19. D .216、已知等差数列}{n a 的前n 项和为n S ,若45818,a a S =-=则 ( )(A )18 (B )36 (C )54 (D )727、已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则|m -n|=( )A .1B .43 C .21 D .83 8、等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于( ) A .-1221 B .-21.5 C .-20.5 D .-20 9、设 {a n }是由正数组成的等比数列, 且公比q = 2, 如果a 1 · a 2 · a 3 · … · a 30 = 230, 那么a 3 · a 6 · a 9 · … · a 30 = ( )A .210.B .215.C .220.D .216.10、某人从1999年9月1日起,每年这一天到银行存款一年定期a 元,且每年到期的存款将本和利再存入新一年的一年定期,若年利率r 保持不变,到2003年9月1日将所有的存款和利息全部取出,他可取回的钱数为 A 、()51r a + B 、()()[]r r r a++1-15 C 、 ()41r a + D 、()[]115-+r ra 12)1(3++-=n n n a n n 12)3()1(++-=n n n a n n 121)1()1(2--+-=n n a n n 12)2()1(++-=n n n a n n ⋯--,924,715,58,189二、 填空题:本大题共4小题;每小题4分,共16分。
考点03 期中训练之数列综合1(解析版)
考点03 期中训练之数列综合11.(2020春•嘉兴期中)等差数列{a n}中,已知a3=7,a5=13,则a7=()A.16B.17C.18D.19【解答】解:设等差数列{a n}的公差为d,∵a3=7,a5=13,∴a1+2d=7,a1+4d=13,联立解得a1=1,d=3,则a7=1+3×6=19.故选:D.【知识点】等差数列的性质2.(2020春•慈溪市期中)在正项等比数列{a n}中,a1=2,且a1•a5=64,则数列{a n}的前n项和是()A.2n﹣2B.2n﹣1C.2n+1﹣2D.2n+1﹣1【解答】解:设正项等比数列{a n}的公比为q>0,∵a1=2,且a1•a5=64,则∴22•q4=64,解得q=2,∴数列{a n}的前n项和==2n+1﹣2.故选:C.【知识点】等比数列的前n项和3.(2020春•福州期中)等比数列{a n}满足a1+a4=,S6=9S3,b n=log2a n,则数列{b n}的前10项和是()A.﹣35B.﹣25C.25D.35【解答】解:设等比数列{a n}的公比为q≠1,∵a1+a4=,S6=9S3,∴a1(1+q3)=,=9•,联立解得a1=,q=2.∴a n==2n﹣3.b n=log2a n=n﹣3.则数列{b n}的前10项和==25.故选:C.【知识点】等比数列的前n项和4.(2020春•赤峰期中)记等差数列{a n}的前n项和为S n,若2a3=5,a4+a12=9,则S10=()A.34B.35C.68D.70【解答】解:设等差数列{a n}的公差为d,∵2a3=5,a4+a12=9,∴2(a1+2d)=5,2a1+14d=9,联立解得a1=,d=.则S10=10×+=35.故选:B.【知识点】等差数列的前n项和5.(2020春•三明期中)已知数列{a n}的前项和为S n,满足2S n=3a n﹣1,则通项公式a n等于()A.B.C.D.【解答】解:2S n=3a n﹣1,可得2a1=2S1=3a1﹣1,解得a1=1;n≥2时,2S n﹣1=3a n﹣1﹣1,又2S n=3a n﹣1,两式相减可得2a n=3a n﹣3a n﹣1,即为a n=3a n﹣1,则数列{a n}为首项为1,公比为3的等比数列,可得a n=3n﹣1,故选:C.【知识点】数列的求和6.(2020春•思南县校级期中)已知数列{a n}满足a1=1,且a n+1=2a n+3,则a n=()A.2n+1+3B.2n+1﹣3C.2n﹣3D.2n+3【解答】解:a1=1,且a n+1=2a n+3,可得a n+1+3=2(a n+3),可得{a n+3}为首项为4,公差为2的等比数列,可得a n+3=4•2n﹣1=2n+1,则a n=2n+1﹣3,故选:B.【知识点】数列递推式7.(2020春•沙坪坝区校级期中)等差数列{a n}中,若a2=3,a4=7,则a6=()A.11B.7C.3D.2【解答】解:设等差数列{a n}的公差为d,∵a2=3,a4=7,∴a1+d=3,a1+3d=7,联立解得:a1=1,d=2,则a6=1+5×2=11.故选:A.【知识点】等差数列的性质8.(2020春•东安区校级期中)在等差数列{a n}中,若a3+a5+a7+a9+a11=55,S3=3,则a5等于()A.9B.7C.6D.5【解答】解:由a3+a5+a7+a9+a11=55,S3=3,∴5a7=55,即a1+6d=11,3a1+d=3,联立解得:a1=﹣1,d=2.则a5=﹣1+4×2=7.故选:B.【知识点】等差数列的前n项和9.(2020春•宿州期中)已知函数的定义域为(0,+∞),当x>1时,f(x)>0,对于任意的x,y∈(0,+∞),f(x)+f(y)=f(xy)成立,若数列{a n}满足a1=f(1),且f(a n+1)=f(2a n+1),n∈N+,则1+a2019的值是()A.22016B.22017C.22018D.22019【解答】解:当x>1时f(x)>0.在(0,+∞)上任意取两个数x1,x2,且x1<x2,令,则f(k)>0.∴f(x2)=f(kx1)=f(k)+f(x1)>f(x1),∴f(x)在(0,+∞)上是单调增函数.令x=y=1,则f(1)+f(1)=f(1),解得f(1)=0.∵数列{a n}满足a1=f(1)=0,且f(a n+1)=f(2a n+1),n∈N+,∴a n+1=2a n+1,∴a n+1+1=2(a n+1)∴数列{a n+1}是等比数列,公比为2,首项为1.∴.故选:C.【知识点】数列与函数的综合10.(2020春•福州期中)在等差数列{a n}中,a3=4,a2+a5=9,设b,数列{b n}的前n项和S n,则S2019为()A.1﹣B.1+C.D.【解答】解:等差数列{a n}的公差设为d,a3=4,a2+a5=9,a1+2d=4,2a1+5d=9,解得a1=2,d=1,可得a n=2+n﹣1=n+1,b n===(﹣),S2019=(1﹣+﹣+﹣+…+﹣+﹣)=(1+﹣﹣),故选:D.【知识点】数列的求和11.(2020秋•河南期中)设n为正整数,在n与n+1之间插入n个x,构成数列1,x,2,x,x,3,x,x,x,4,…,若该数列的前2018项的和为7881,则x=()A.3B.4C.5D.6【解答】解:在n与n+1之间插入n个x,可得n=62,最后一个数为63,共有63+×62×63=2016个数,则数列的前2018个数的和为×63×64+×62×63x+2x=7881,解得x=3,故选:A.【知识点】数列的求和12.(2020秋•河南期中)已知数列{a n}的通项公式为a n=5﹣kn(k≠0),a1,a3,a4依次为等比数列{b n},的前3项,则的最大值为()A.4B.2C.1D.0【解答】解:由数列{a n}的通项公式为a n=5﹣kn(k≠0),可得a1=5﹣k,a3=5﹣3k,a4=5﹣4k,由a1,a3,a4依次为等比数列{b n}的前3项,可得,即(5﹣3k)2=(5﹣k)(5﹣4k),解得k=1.∴a n=5﹣n,b1=a1=4,q=,则.∴=.当n=1时,,当n=2时,,当n=3时,,当n=4时,,当n≥5时,.∴的最大值为2.故选:B.【知识点】等差数列与等比数列的综合13.(2020秋•新乡期中)《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”其中“日减功迟”的具体含义是每天比前一天少织同样多的布,则每天比前一天少织布的尺数为()A.B.C.D.【解答】解:此数列为等差数列{a n},设公差为d.与题意可得:a1=5,a n=1,S n=90.∴=90,解得n=30.∴5+29d=1,解得d=﹣.∴每天比前一天少织布的尺数为.故选:C.【知识点】等差数列的前n项和14.(2020秋•岳塘区校级期中)已知△ABC中,sin A,sin B,sin C成等比数列,则的取值范围是()A.(2,]B.(0,]C.(2,+∞)D.[2,+∞)【解答】解:△ABC中,sin A,sin B,sin C成等比数列,可得sin2B=sin A sin C,由正弦定理可得b2=ac,又cos B==≥=,可得0<B≤,设t=sin B+cos B=sin(B+),t2=1+2sin B cos B=1+2sin2B,即sin2B=t2﹣1,B+∈(,],可得sin(B+)∈(,1],即有t∈(1,],由==t+∈(2,],故选:A.【知识点】数列与三角函数的综合15.(2020秋•香坊区校级期中)已知数列{a n}为等差数列,a3=3,S6=21,数列{}的前n项和为S n,若对一切n∈N*,恒有S2n﹣S n,则m能取到的最大整数是()A.6B.7C.8D.9【解答】解:数列{a n}为等差数列,a3=3,S6=21,设首项为a1,公差为d,故:,解得:d=1,所以:a n=a3+(n﹣3)=n.则:,所以:,+…+,,设,则:,所以:T n+1﹣T n==,所以:当n=1时,函数取得最小值为.故:,所以:m<8.故取得的最大整数为7.故选:B.【知识点】数列的求和16.(2020秋•丰台区期中)已知数列{a n}是公比为q的等比数列,S n是数列{a n}的前n项和.(1)如果a1==﹣4,那么q=﹣;(2)如果若干个能唯一确定一个数列的量称为该数列的“基本量”,在下列关于{a n}的三组量中,一定能成为数列{a n}的“基本量”的是.(写出所有符合要求的组号)①S1与a3;②S2与S3;③q与S3;【解答】解:(1)数列{a n}是公比为q的等比数列,a1==a1q3=﹣4,所以q3=﹣8,q=﹣2.故答案为﹣2(2)①S1=a1,因为a3=a1q2,可以确定q2,q有两个值,不唯一;②若q=1,则可唯一确定,若q不为1,S2=a1+a2=,S3=a1+a2+a3=,由,得到关于q的一元二次方程,无法具体确定q;③已知q,带入S3=可求出a1,所以唯一确定了数列.故答案为:③【知识点】数列的应用17.(2020秋•上城区校级期中)函数f(x)=cosωx(ω>0)的图象与其对称轴在y轴右侧的交点从左到右依次记为A1,A2,A3,…,A n,…在点列{A n}中存在三个不同的点A k,A t,A p,使得△A k A t A p是等腰直角三角形,将满足上述条件的ω值从小到大组成的数列记为{ωn},则ω2019=.【解答】解:设过A t的对称轴与线段A k A p交于点O,则OA t=2,依题意,△A k A t A p是等腰直角三角形,所以A k A p=4,结合f(x)=cosωx(ω>0)的周期性以及对称性可知,A k A p为整数个周期,所以A k A p=4=kT=k,(k∈N*),所以ω=(k∈N*),所以ωn=(n∈N*),所以ω2019=,故答案为:.【知识点】数列的应用18.(2020秋•闵行区校级期中)已知数列{a n}的通项公式和为,n∈N*,现从前m项:a1,a2,…,a m中抽出一项(不是a1也不是a m),余下各项的算术平均数为40,则抽出的是第项.【解答】解:设抽出的一项是第x项,由题得,,且S m=40(m﹣1)+a x,∴,∴m2﹣11m+12﹣2x=0,∴x=6时,m=11,m=0(舍去),∴抽出的是第6项.故答案为:6.【知识点】数列的概念及简单表示法19.(2020秋•闵行区期中)已知,数列{a n}满足,对于任意n∈N*都满足a n+2=f(a n),且a n>0,若a20=a18,则a2018+a2020=.【解答】解:∵,∴,同理得:∴,又:a n+2=f(a n),∴a n+4=f(a n+2),∴,从而该数列周期为4,又令a20=a18=t>0,则,t=,解得t2+2t﹣1=0,t=,且,∴,∴.故答案为:.【知识点】数列与函数的综合、数列递推式20.(2020秋•高邮市期中)设数列{a n}的前n项和为S n,{b n}的前n项和为T n,a1=2,4S n=(n+3)a n,n∈N*且a n b n=n.若对于任意的n∈N*,T n<λ恒成立,则λ的最小值为.【解答】解:数列{a n}的前n项和为S n,a1=2,4S n=(n+3)a n,①当n≥2时,4S n﹣1=(n+2)a n﹣1②所以①﹣②得(n+2)a n﹣1=(n﹣1)a n,整理得,则,,…,所有的式子相乘得,解得,由于且a n b n=n.所以=,则=,对于任意的n∈N*,T n<λ恒成立,所以λ>(T n)max,即λ的最小值为.故答案为:【知识点】数列递推式21.(2020秋•汉中期中)记数列{a n}的前n项和为S n,已知点(n,S n)在函数f(x)=x2+2x的图象上.(I)求数列{a n}的通项公式;(Ⅱ)设,求数列{b n}的前n项和.【解答】解:(Ⅰ)由题意点(n,S n)在函数f(x)=x2+2x的图象上,知.当n≥2时,a n=S n﹣S n﹣1=2n+1;当n=1时,a1=S1=3,适合上式.所以:a n=2n+1.(Ⅱ)∵,则==.【知识点】数列与函数的综合、数列的求和22.(2020秋•抚州期中)已知数列{a n}的前n项和为S n,且,数列{b n}满足.(1)求数列{a n},{b n}的通项公式;(2)若,求数列{c n}的前n项和T n.【解答】解:(1)因为,所以当n=1时,a1=S1=2,当n≥2时,又a1=2也满足上式,所以;又,所以,两式作差得,,所以,当n=1时,又b1=6满足上式,所以;(2)因为=﹣n=n•2n,所以,,两式相减,得,即,所以.【知识点】数列的求和、数列递推式23.(2020秋•泰安期中)已知各项均为正数的等比数列{a n}的前n项和为S n,且2a2+a3=a4,S4+2=a5;数列{b n}满足b1=1,.(1)求a n和b n;(2)求数列的前n项和T n.【解答】解:(1)设等比数列{a n}的公比为q(q>0),由,解得q=2或q=﹣1(舍),又S4+2=a5,∴,解得a1=2,∴;∴,∴当n≥2时,,相减可得=﹣,整理得,又b1=1,则数列是首项为1的常数列,∴,∴;(2)设,∴T n=c1+c2+…+c n===.【知识点】数列的求和24.(2020秋•西城区校级期中)数列{a n}中,a1=1,对任意n≥2且n∈N*有(n﹣1)a n=2na n﹣1.(1)设b n=,证明:数列{b n}为等比数列,并求{a n}的通项公式;(2)求{a n}的前n项和S n.【解答】(1)证明:∵对任意n≥2且n∈N*有(n﹣1)a n=2na n﹣1.∴,即b n=2b n﹣1(n≥2),又:当n=1时,a2=2×1×a1=2,∴,满足b2=2b1,从而数列{b n}是以1为首项,2为公比的等比数列.∴.∴.(2)解:S n=a1+a2+a3+……+a n=1×20+2×21+3×22+……+n•2n﹣1,……①∴2S n=1×21+2×22+3×23+……+n×2n……②∴①﹣②得:﹣S n=1×20+1×21+1×22+……+1×2n=.从而S n=1﹣2n+1.【知识点】数列递推式25.(2020秋•海林市校级期中)已知数列{a n}的通项公式为a n=n2﹣5n+4(1)数列中有多少项是负数?(2)n为何值时,a n有最小值?并求出最小值.【解答】解:(1)由n2﹣5n+4<0,得1<n<4,故数列中有两项为负数;(2)a n=n2﹣5n+4=﹣,因此当n=2或3时,a n有最小值,最小值为﹣2.【知识点】数列的函数特性26.(2020秋•溧阳市期中)已知等比数列{a n}的首项为,前n项和为,且S2,S4,S3成等差数列.(1)求数列{a n}的通项公式;(2)是否存在正整数A,使得恒成立?如果存在,写出最小的A,如果不存在请说明理由.【解答】解:(1)设等比数列{a n}的公比为q,则由S2,S4,S3成等差数列得S4﹣S2=S3﹣S4,所以a3+a4=﹣a4,即,所以,所以.(2)由(1)得,法1:,当n为奇数时,随n的增大而减小,所以,当n为偶数时,随n的增大而减小,所以,综上,对任意n∈N*,总有所以存在正整数A,使得恒成立,且最小的A为3法2:当n为奇数时,S n随n的增大而减小,所以,当n为偶数时,S n随n的增大而增大,所以,令t=S n,则,,,可得时,f'(t)<0;时,f'(t)>0,又,所以,即的最大值为,所以存在正整数A,使得恒成立,且最小的A为3.【知识点】数列与函数的综合、等差数列与等比数列的综合27.(2020秋•海淀区校级期中)已知{a n}是由非负整数组成的无穷数列,对每一个正整数n,该数列前n 项的最大值记为A n,第n项之后各项a n+1,a n+2,…的最小值记为B n,记d n=A n﹣B n.(1)若数列{a n}的通项公式为a n=,求数列{d n}的通项公式;(2)证明:“数列{a n}单调递增”是“∀n∈N*,d n<0”的充要条件;(3)若d n=a n对任意n∈N*恒成立,证明:数列{a n}的通项公式为a n=0.【解答】解:(1)当1≤n≤4,数列{a n}是递减数列,最大为a1=4,又a4=a5=…=a n=…=1,所以A n=4,B n=1,n=1,2,3,…,所以d n=A n﹣B n=4﹣1=3,(2)充分性:数列{a n}单调递增,则a1<a2<…<a n<…,则A n=a1,B n=a n+1,所以d n=A n﹣B n=a1﹣a n+1<0;必要性:数列{a n},∀n∈N*,d n<0,d n=A n﹣B n<0,d1=A1﹣B1<0,a1<B1=min{a2,…,a n+1,…},所以a1<a2,d2=A2﹣B2<0,A n=max{a1,a2}=a2,B2=min{a3,…,a n+1,…},所以a2<a3,同理a3<a4<…<a n…即数列{a n}单调递增,故“数列{a n}单调递增”是“∀n∈N*,d n<0”的充要条件.(3)反证法:若d n=a n对任意n∈N*恒成立,数列{a n}的通项a n≠0.当n=1时,d1=a1=A1﹣B1,A n=a1,所以B1=0,这说明从第二项起,至少有一个项为0,这与假设矛盾,故原命题成立.【知识点】数列的应用28.(2020秋•闵行区校级期中)已知{a n}是公差为d的等差数列,它的前n项和为S n,等比数列{b n}的前n 项和为T n,S4=2S2+4,,.(1)求公差d的值;(2)若对任意的n∈N*,都有S n≥S7成立,求a1的取值范围;(3)若a1=1,判别是否有解,并说明理由.【解答】解:(1)∵S4=2S2+4,∴4a1+,解得:d=1.(2)由于等差数列{a n}的公差d=1>0,S n要最小值S7必须有,即,解得﹣7≤a1≤﹣6,故a1的取值范围为:[﹣7,﹣6];(3)因为a1=1,d=1,所以S n=(n2+n),因为等比数列{b n}满足,.所以,解得,故T n=,设,则f(n)=2×3n﹣,f(n+1)=2×3n+1﹣[(n+1)2+(n+1)]所以f(n+1)﹣f(n)=4×3n﹣(n+1)>0,故f(n+1)>f(n),由此可得f(n)单调递增,又因为f(6)=1434,f(7)=4346,所以f(6)<2020<f(7),故不存在正整数n,使其有解.【知识点】等差数列与等比数列的综合。
数列综合基础练习1
数列综合基础练习11.已知两数的等差中项为10,等比中项为8,则以两数为根的一元二次方程是 ( ) A.x 2+10x +8=0 B.x 2-10x +64=0 C.x 2+20x +64=0 D.x 2-20x +64=0 2.等比数列{a n },a n >0,q ≠1,且a 2、12 a 3、a 1成等差数列,则a 3+a 4a 4+a 5等于 ( )A.5+12 B. 5-12 C. 1-52 D. 5±123.数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }的连续三项,则数列{b n }的公比为( )A.2 B .4 C .2 D.124.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n 的两个零点,则b 10等于( ) A .24 B .32 C .48 D .64 5.(2009宁夏海南卷文)等差数列{}n a 的前n 项和为n S ,已知2110m m m a a a -++-=,2138m S -=,则m = A.38 B.20 C.10 D.9 6.数列{an}满足a n+1+(-1)na n =2n -1,则{an}的前60项和为()3690 (B )3660 (C )1845 (D )1830 7、已知a,b,c 成等比数列,a,m,b 和b,n,c 分别成等差数列,则+a c m n等于( )(A)4 (B)3 (C)2 (D)18、在如图所示的表格中,如果每格填上一个数后,每一行成等差数列,每一列成等比数列,那么x +y +z 的值为( )(A)1 (B)2 (C)3 (D)4 9.(易错题)已知数列{a n }的通项公式n 2n 1a lo g n 2+=+(n ∈N *),设{a n }的前n 项和为S n ,则使S n <-5成立的自然数n( )()有最大值63 (B )有最小值63 (C )有最大值31 (D )有最小值3110.已知数列{a n }、{b n }都是公差为1的等差数列,其首项分别为a 1、b 1,且a 1+b 1=5,a 1>b 1,a 1、b 1∈N *(n ∈N *),则数列{}nba 的前10项的和等于( )()65 (B )75 (C )85 (D )9511、在西部大开发中,西部某厂在国家财政政策的推动下,积极吸引外资,盘活工厂活力.从2006年1月起,到2008年12月止的36个月中,月产值不断递增且构成等比数列{a n },若逐月累计的产值S n =a 1+a 2+…+a n 满足关系式S n =101a n -36,则该厂的年增长率约为((1+1%)12≈1.126 8)( )(A)12.66% (B)12.68% (C)12.69% (D)12.70%12.已知{}n a 为等差数列,其公差为-2,且739a 是a 与a 的等比中项,{}n n S a 为的前n 项和,*n N ∈,则S 10的值为A .-110 B .-90 C .90 D .11013.在正项等比数列{a n }中,a 1和a 19为方程x 2-10x +16=0的两根,则a 8·a 10·a 12等于( )A .16B .32C .64D .25614、△ABC 中,tan A 是以-4为第三项,-1为第七项的等差数列的公差,tan B 是以12为 第三项,4为第六项的等比数列的公比,则该三角形的形状是(A .钝角三角形 B .锐角三角形C .等腰直角三角形 D .以上均错 15、等差数列{a n }的前n 项和为S n (n =1,2,3,…),若当首项a 1和公差d 变化时,a 5+a 8+a 11是一个定值,则下列选项中为定值的是( )A .S 17 B .S 18 C .S 15 D .S 1416.已知一个等比数列首项为1,项数为偶数,其奇数项和为85,偶数项之和为170,则这个数列的项数为 .17.等差数列中,)(n m s s nm≠=,则nm s += 。
管理类专业学位联考综合能力数学(数列)-试卷1
管理类专业学位联考综合能力数学(数列)-试卷1(总分:70.00,做题时间:90分钟)一、问题求解(总题数:26,分数:52.00)1.已知{a n }为等差数列,且a 2一a 5 +a 8 =9,则a 1 +a 2+…+a 9 =( ).(分数:2.00)A.27B.45C.54D.81 √E.162解析:解析:下标和定理的应用.因为a 2 -a 5 +a 8 =a 2 +a 8 -a 5 =2a 5一a 5 =a 5 =9,所以a 1 +a 2 +…+a 9 =9a 5 =81.2.已知{a n }是等差数列,a 2 +a 5 +a 8 =18,a 3 +a 6 +a 9 =12,则a 4 +a 7 +a 10 =( ).(分数:2.00)A.6 √B.10C.13D.16E.20解析:解析:因为{a n}是等差数列,故a 2+a 5+a 8,a 3+a 6+a 9,a 4+a 7+a 10也成等差;由2×12=18+(a 4 +a 7 +a 10 ),得a 4 +a 7 +a 10 =6.3.已知{a n }是等差数列,a 1 +a 2 =4,a 7 +a 8 =28,则该数列前10项和S 10等于( ).(分数:2.00)A.64B.100 √C.110D.130E.120解析:解析:万能方法,化为a 1和d,得4.某车间共有40人,某次技术操作考核的平均分为90分,这40人的分数从低到高恰好构成一个等差数列:a 1,a 2,…,a 40,则a 1 +a 8 +a 33 +a 40 =( ).(分数:2.00)A.260B.320C.360 √D.240E.340解析:解析:平均分为 a 1 +a 40 =180,故 a 1 +a 8 +a 33 +a 40 =2(a 1 +a 40 )=360.5.已知等差数列{a n }中,a 7 +a 9 =16,a 4 =1,则a 12的值是( ).(分数:2.00)A.15 √B.305C.315D.645E.以上答案均不正确解析:解析:因为a 7 +a 9 =2a 8 =16,故a 8 =8,a 8 -a 4 =4d=8-1=7,得 a 12 =a 8 +4d=8+7=15.6.已知等差数列{a n}中a m+a m+10=a,a m+50+a m+60=b(a≠b),m为常数,且m∈N,则a m+100+a m+110=( ).(分数:2.00)A.B.C.D.E. √7.等差数列{a n }中,已知n为( ).(分数:2.00)A.28B.29C.30D.31 √E.328.首项为-72的等差数列,从第10项开始为正数,则公差d的取值范围是( ).(分数:2.00)A.d>8B.d<9C.8≤d<9D.8<d≤9√E.8<d<98<d≤9.9.等差数列{a n }中,a 1 +a 7 =42,a 10 -a 3 =21,则前10项的S 10 =( ).(分数:2.00)A.255 √B.257C.259D.260E.27210.等差数列中连续4项为a,m,b,2m,那么a:b=( )(分数:2.00)A.B. √C.D.E.a:b=1:3.11.等差数列前n项和为210,其中前4项和为40,后4项的和为80,则n的值为( )(分数:2.00)A.10B.12C.14 √D.16E.18解析:解析:a 1 +a 2 +a 3 +a 4 +a n-3 +a n-2 +a n-1 +a n =4(a 1 +a n )=120,故a 1 +a n =30,12.已知等差数列{a n }中,S 10 =100,S 100 =10,求S 110 =( ).(分数:2.00)A.110B.一110 √C.220D.一220E.0解析:解析:S 100一S 10 =a 11 +a 12 +a 13+…+a 100 =45(a 11 +a 100 )=10一100=一90,故a 11 +a 100 =一2,故13.若在等差数列中前5项和S 5 =15,前15项和S 15 =120,则前10项和S 10 =( ).(分数:2.00)A.40B.45C.50D.55 √E.60解析:解析:等差数列的等长片段和仍然成等差数列,即S n,S 2n一S n,S 3n一S 2n,…仍为等差数列,故S 5,S 10-S 5,S 15-S 10。
2022秋新教材高中数学习题课一等差数列等比数列的综合新人教A版选择性必修第二册
习题课(一) 等差数列、等比数列的综合一、选择题1.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=( )A.2n-1B.n-1C.n-1D.解析:选B 因为a n+1=S n+1-S n,所以由S n=2a n+1,得S n=2(S n+1-S n),整理得3S n=2S n+1,所以=,所以数列{S n}是以S1=a1=1为首项,为公比的等比数列,故S n =n-1.2.已知数列{a n},a1=2,a n+1-2a n=0,b n=log2a n,则数列{b n}的前10项和等于( )A.130 B.120 C.55 D.50解析:选C 在数列{a n}中,a1=2,a n+1-2a n=0,即=2,所以数列{a n}是以2为首项,2为公比的等比数列.所以a n=2×2n-1=2n.所以b n=log22n=n.则数列{b n}的前10项和为1+2+…+10=55.故选C.3.[多选]已知数列{a n}的前n项和S n=n2-9n,第k项满足5<a k<9,则k可以是( )A.9 B.8 C.7 D.6解析:选AB ∵S n=n2-9n,∴当n≥2时,a n=S n-S n-1=2n-10.又a1=S1=-8,符合上式.∴a n=2n-10(n∈N*),∴5<2k-10<9,解得7.5<k<9.5,∴k=8或9.故选A、B.4.在数列{a n}中,已知S n=1-5+9-13+17-21+…+(-1)n-1(4n-3),则S15+S22-S31的值为( )A.13 B.-76 C.46 D.76解析:选B ∵S15=(-4)×7+(-1)14(4×15-3)=29,S22=(-4)×11=-44,S31=(-4)×15+(-1)30(4×31-3)=61,∴S15+S22-S31=29-44-61=-76.5.已知数列{a n}是递增的等比数列,且a4a6-2a+a2a4=144,则a5-a3=( ) A.6 B.8 C.10 D.12解析:选D ∵{a n}是递增的等比数列,∴由a4a6-2a+a2a4=144,a5-a3>0可得a-2a3a5+a=144,(a5-a3)2=144,∴a5-a3=12,故选D.6.已知各项均不为0的等差数列{a n}满足a3-2a+3a7=0,数列{b n}是等比数列,且b6=a6,则b1b7b10等于( )A.1 B.2 C.4 D.8解析:选D 根据等差数列的性质,得a3+a7=2a5,a5+a7=2a6.又a3-2a+3a7=0,所以2a5+2a7-2a=0,即2a6=a,解得a6=2或a6=0(舍去),所以b6=a6=2,则b1b7b10=b2b6b10=b=8.二、填空题7.对于项数为m(m≥3)的有穷数列{a n},若存在项数为m+1的等比数列{b n},使得b k<a k<b k+1,其中k=1,2,…,m,则称数列{b n}为{a n}的“等比分割数列”.已知数列7,14,38,60,则该数列的一个“等比分割数列”可以是______.(写出满足条件的一个各项为整数的数列即可)解析:取一个首项为6,公比为2的数列即满足b k<a k<b k+1,其中k=1,2,…,m.答案:6,12,24,48,968.已知首项都是1的两个数列{a n},{b n}(b n≠0,n∈N*)满足a n b n+1-a n+1b n+2b n+1·b n=0.若b n=3n-1,则数列{a n}的前n项和S n=________.解析:因为a n b n+1-a n+1b n+2b n+1b n=0,b n≠0,所以-=2,所以数列是以=1为首项,2为公差的等差数列,故=2n-1.由b n=3n-1,得a n=(2n-1)3n-1,于是数列{a n}的前n项和S n=1×30+3×31+5×32+…+(2n-1)×3n-1,3S n=1×31+3×32+…+(2n-3)×3n-1+(2n-1)×3n,两式相减得-2S n=1+2×(31+32+…+3n-1)-(2n-1)×3n=-2-(2n-2)3n,所以S n=(n-1)3n+1.答案:(n-1)3n+1三、解答题9.已知数列{a n}的前n项和为S n,a n=3S n+1(n∈N*).(1)求a1,a2;(2)求数列{a n}的通项公式.解:(1)由a n=3S n+1,得a n+1=3S n+1+1,两式相减,得a n+1-a n=3(S n+1-S n)=3a n+1,即=-.又a1=3S1+1=3a1+1,得a1=-,所以a2=-×=.(2)由(1)知,数列{a n}是首项为-,公比为-的等比数列,所以a n=×n-1=n.10.已知公差不为0的等差数列{a n}的首项a1=a,a≠0,前n项和为S n,且,,成等比数列.(1)求数列{a n}的通项公式;(2)设数列的前n项和为A n,若A2 021=,求实数a的值.解:(1)设等差数列{a n}的公差为d,由2=·,即a=a1·a4,得(a1+d)2=a1(a1+3d).因为d≠0,所以d=a1=a,所以a n=a+(n-1)a=na.(2)因为S n==,所以=,所以A n=+++…+=+++…+=.又A2 019==,所以a=2.11.(2021·全国乙卷)设{a n}是首项为1的等比数列,数列{b n}满足b n=.已知a1,3a2,9a3成等差数列.(1)求{a n}和{b n}的通项公式.(2)记S n和T n分别为{a n}和{b n}的前n项和.证明:T n<.解:(1)设等比数列{a n}的公比为q.∵a1,3a2,9a3成等差数列,∴6a2=a1+9a3,即6q=1+9q2,解得q=.∴a n=n-1,∴b n==n n.(2)证明:由(1)得,S n====-×n-1.T n=1×1+2×2+3×3+…+n n, ①则T n=1×2+2×3+3×4+…+n n+1. ②①-②,得T n=1+2+3+…+n-n n+1=-n n+1=-×n,∴T n=-×n.∵=-×n-1=-×n,且3+2n>3,∴当n为正整数时,T n<.。
管理类专业学位联考综合能力(数列)模拟试卷1(题后含答案及解析)
管理类专业学位联考综合能力(数列)模拟试卷1(题后含答案及解析)题型有:1. 问题求解 2. 条件充分性判断问题求解1.已知{an}为等差数列,且a2一a5+a8=9,则a1+a2+…+a9=( ).A.27B.45C.54D.81E.162正确答案:D解析:因为{an}为等差数列,所以a2+a8=2a5,故a2一a5+a8=2a5一a5=a5=9,a1+a2+…+a9=9a5=81.故选D.知识模块:数列2.已知{an}为等差数列,若a2和a10是方程x2一10x一9=0的两个根,则a5+a7=( ).A.-10B.一9C.9D.10E.12正确答案:D解析:a5+a7=a2+a0=10,因此选D.知识模块:数列3.某人在保险柜中存放了M元现金,第一天取出它的,以后每天取出前一天所取的,共取了7天,保险柜中剩余的现金为( ).A.B.C.D.E.正确答案:A解析:知识模块:数列4.在等差数列{an}中a2=4,a4=8.若则n=( ).A.16B.17D.20E.21正确答案:D解析:由题意知解得n=20.因此选D.知识模块:数列5.在一次数学考试中,某班前6名同学的成绩恰好成等差数列.若前6名同学的平均成绩为95分,前4名同学的成绩之和为388分,则第6名同学的成绩为( )分.A.92B.91C.90D.89E.88正确答案:C解析:设此等差数列为{an},则于是a1+a6=2a6一5d=190→90,因此选C.知识模块:数列6.设{an}是非负等比数列,若=( ).A.255B.C.D.E.正确答案:B解析:由题意知,因此选B.知识模块:数列7.一所四年制大学每年的毕业生七月份离校,新生九月份入学,该校2001年招生2000名,之后每年比上一年多招200名,则该校2007年九月底的在校学生有( ).A.14000名B.11600名C.9000名D.6200名E.3200名正确答案:B解析:四年制大学,则该校2007年九月底在校学生为2004级、2005级、2006级、2007级,所以总人数为2004级的人数+2005级的人数+2006级的人数+2007级的人数=(2000+200×3)+(2000+200×4)+(2000+200×5)+(2000+200×6)=11600名.知识模块:数列8.若等差数列{an}满足5a7一a3一12=0,则( ).B.24C.30D.45E.60正确答案:D解析:由等差数列的通项公式有:5(a1+6d)一(a1+2d)一12=0,解得a8=a1+7d=3,=15a8=15×3=45.知识模块:数列9.若等比数列{an}满足a2a4+2a2a5+a2a8=25,且a1>0,则a3+a5=( ).A.8B.5C.2D.一2E.一5正确答案:B解析:因为{an}是等比数列,所以有a2a4=a32,a2a8=a52,所以已知方程可改为(a3+a5)2=25,又因为a1>0,所以a3、a5>0,a3+a5=5.知识模块:数列10.在下边的表格中,每行为等差数列,每列为等比数列,x+y+z=( ).A.2B.C.3D.E.4正确答案:A解析:由每行成等差数列,每列成等比数列,可以解得则x+y+z=2.知识模块:数列11.某地震灾区现居民住房的总面积为a平方米.当地政府计划每年以10%的住房增长率建设新房,并决定每年拆除固定数量的危旧房.如果10年后该地的住房总面积正好比现有住房面积增加一倍,那么,每年应该拆除危旧房的面积是( )平方米?(注:1.19≈2.4,1.110≈2.6,1.111≈2.9精确到小数点后一位)A.B.C.D.E.以上结论都不正确正确答案:C解析:设每年拆除的危房面积为x平方米,则第一年后居民住房总面积为a(1+0.1)一x;第二年后为[a(1+0.1)-x](1+0.1)-x,则第十年后为((((1.1a-x)×1.1一x)×1.1-x)…一x)=2a,则1.110a一1.19x-1.18x-…一1.1x-x=2a.得知识模块:数列12.等比数列{an}中,a3、a8是方程3x2+2x一18=0的两个根,则a4a7=( ).A.-9B.一8C.-6D.6E.8正确答案:C解析:由韦达定理可知,再由等比数列的性质可知a4a7=a3a8=一6.知识模块:数列13.若数列{an}中,an≠0(n≥1),前n项和Sn满足,则是( ).A.首项为2,公比为的等比数列B.首项为2,公比为2的等比数列C.既非等差也非等比数列D.首项为2,公差为的等差数列E.首项为2,公差为2的等差数列正确答案:E解析:,两边同时除以SnSn-1得到是以首项为2.公差为2的等差数列.知识模块:数列14.一个球从100米高处自由落下,每次着地后又跳回前一次高度的一半再落下.当它第10次着地时,共经过的路程是( )米(精确到1米且不计任何阻力).A.300B.250C.200D.150E.100正确答案:A解析:第一次着地,落下距离为100;第二次着地,弹起与落下距离之和为2a2=100;显然第n次着地.弹起与落下距离的和为的等比数列,第10次着地时,共经过的路程S= 知识模块:数列15.果数列{an}的前n项的和,那么这个数列的通项公式是( ).A.an=(n2+n+1)B.an=3×2nC.an=3n+1D.an=2×3nE.以上结论均不正确正确答案:D解析:解得an=3an-1,且由知a1=6.故an=6×3n-1=2×3n.知识模块:数列16.下列通项公式表示的数列为等差数列的是( ).A.B.an=n2-1C.an=5n+(-1)nD.an=3n一1E.正确答案:D解析:等差数列通项为n的一次函数.知识模块:数列17.已知等差数列{an}中a2+a3+a10+a11=64,则S12=( ).A.64B.81C.128D.192E.188正确答案:D解析:a2+a3+a10+a11=64=2(a3+a10)→a3+a10=32,故因此选D.知识模块:数列18.=( ).A.B.C.D.E.以上结论均不正确正确答案:C解析:,因此选C.知识模块:数列19.若6,a、c成等差数列,且36、a2、c2也成等差数列,则c=( ).A.-6B.2C.3或一2D.一6或2E.以上结论都不正确正确答案:E解析:由题意知因此选E.知识模块:数列条件充分性判断A.条件(1)充分,但条件(2)不充分。
高中数学2020届高三专题复习版块七.数列综合1(无答案)
【例1】 已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈⑴证明:数列{}1n n a a +-是等比数列; ⑵求数列{}n a 的通项公式;⑶若数列{}n b 满足12111*44...4(1)(),n n b b b b n a n N ---=+∈证明{}n b 是等差数列.【例2】 已知数列{}n a 的首项为13a =,通项n a 与前n 项和n S 之间满足12(2)≥n n n a S S n -=⋅.⑴求证:1n S ⎧⎫⎨⎬⎩⎭是等差数列,并求公差;⑵求数列{}n a 的通项公式.【例3】 已知数列{}n a 的前n 项和为n S ,且22(1,2,3)n n S a n =-=L ,数列{}n b 中,11b =,点1()n n P b b +,在直线2y x =+上. ⑴求数列{}{}n n a b ,的通项公式n a 和n b ; ⑵设n n n c a b =⋅,求数列{}n c 的前n 项和n T , 并求满足167n T <的最大正整数n .【例4】 已知等比数列{}n a 满足1611a a +=,且34329a a =. ⑴求数列{}n a 的通项n a ;⑵如果至少存在一个自然数m ,恰使123m a -,2()m a ,149m a ++这三个数依次成等差数列,问这样的等比数列{}n a 是否存在?若存在,求出通项公式;若不存在,请说明理由.【例5】 已知等差数列{}n a ,公差为d ,求3521123n n n S a x a x a x a x -=+++L (1)x ≠【例6】 已知数列{}n a 是等差数列,且12a =,12312a a a ++=.(2003北京-文-16)⑴求数列{}n a 的通项公式;⑵令3n n n b a =⋅,求数列{}n b 前n 项和的公式.【例7】 在等差数列{}n a 中,11a =,前n 项和n S 满足条件242,1,2,1n n S n n S n +==+L , ⑴求数列{}n a 的通项公式;⑵记(0)n a n n b a p p =>,求数列{}n b 的前n 项和n T 。
数列综合应用1
例1.(1)已知数列{a n }满足 : a1 1, 2a n * a n+1 (n N ), 求an . 2+a n
(2)已知数列a n 满足:a1 =9,3a n+1 an 4, 求该数列的通项公式a n .
例2.(1)设数列{a n }、 {b n }都是等差数列, 且a1 5, b1 15, a100 +b100 100, 则数列{a n b n }的前100项的和是6000 (2)在等差数列{a n }中, 若Sn an 2 (a 25)n a 1,
n 2 n 1 1 1 (1)在等比数列{a n }中,a1 1,q , 则 3 (4 1) ; 2 i 1 a i a i 1
例3
1 1 (2)求和 1 2 2 3
1 ; n (n-1)
n 1 n
(3)数列3, 33, 333, 3333, 的前n项和为
(1)设b n a n+1 2a n,求证{b n }为等比数列;
an (2)设c n n ,求证{c n }为等差数列; 2 (3)求数列{a n }的通项公式a n 和前n项和Sn .
作业:
课课练第12课时
2 1 2
b n 1.
2
例6.由数列{a n }构造一个新数列: a1,a 2 -a1,a 3 -a 2, ,a n -a n-1, 此数列是首项
1 为1,公比为 等比数列. 3 ( 1)求数列{a n }的通项公式a n;
(2)求数列{a n }的前n项和Sn .
例7.已知数列{a n }的前n项和Sn 4n 则 |a i | 2 i 1 n 24n 144
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列综合题
一、选择题
2.已知数列{3n a }是等比数列,公比为q 则数列{a n }为( )
(A )等比数列,公比为log 3q (B )等差数列,公差为log 3q
(C )等差数列,公差为3q (D )可能既非等差数列,又非等比数列。
3. 在等差数列{a n }中,a 1=4,且a 1,a 5,a 13成等比数列,则(a n )的通项公式为( )
(A )a n =3n+1 (B )a n =n+3 (C )a n =3n+1或a n =4 (D )a n =n+3或a n =4
4.已知a,b,c 成等比数列,且x,y 分别为a 与b 、b 与c 的等差中项,则y
c x a +的值为( ) (A )2
1 (B )-
2 (C )2 (D ) 不确定 5.互不相等的三个正数a,b,c 成等差数列,x 是a,b 的等比中项,y 是b,c 的等比中项,那
么x 2,b 2,y 2三个数( )
(A )成等差数列不成等比数列 (B )成等比数列不成等差数列
(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列
6.在100内能被3整除,但不能被7整除的所有正整数之和为( )
(A )1368 (B )1470 (C )1473 (D )1557
8.已知数列{a n }的前n 项和为S n ,S 2n+1=4n 2+2n,则此数列的通项公式为( )
(A )a n =2n-2 (B )a n =8n-2 (C )a n =2n-1 (D )a n =n 2-n
9.已知(z-x)2=4(x-y)(y-z),则( )
(A )x,y,z 成等差数列 (B )x,y,z 成等比数列
(C )z y x 1,1,1成等差数列 (D )z
y x 1,1,1成等比数列 11.由2开始的偶数数列,按下列方法分组:(2),(4,6),(8,10,12),…,第n 组有n 个数,则第n 组的首项为( )
(A )n 2-n (B )n 2-n+2 (C )n 2+n (D )n 2+n+2
12.数列1
⋯,16
17,815,413,21,前n 项和为( ) (A )n 2-121+n (B )n 2-21211++n (C )n 2-n-121+n (D )n 2-n-212
11++n 14.已知数列{a n }的通项公式a n =5n-1,数列{b n }满足b 1=21,b n-1=32b n ,若a n +log λb n 为常数,则满足条件的λ( )
(A )唯一存在,且值为2
1(B )唯一存在,且值为2 (C )至少存在1个(D )不一定存在 15.若两个等差数列{a n }、{b n }的前n 项和分别为A n 、B n ,且满足
5524-+=n n B A n n ,则135135
b b a a ++的值为( )
(A )97 (B )78 (C )2019 (D )8
7 16.已知数列{a n }的通项公式为a n =
n n ++11
且S n =1101-,则n 的值为( ) (A )98 (B )99 (C )100 (D )101
17.已知数列{a n }的前n 项和为S n =n 2
-5n+2,则数列{n a }的前10项和为( ) (A )56 (B )58 (C )62 (D )60
18.已知数列{a n }的通项公式为a n =n+5, 从{a n }中依次取出第3,9,27,…3n , …项,按原
来的顺序排成一个新的数列,则此数列的前n 项和为( )
(A )2)133(+n n (B )3n +5 (C )23103-+n n (D )2
31031-++n n 二、填空题
1. 各项都是正数的等比数列{a n },公比q ≠1,a 5,a 7,a 8成等差数列,则公比q=
2. 已知等差数列{a n },公差d ≠0,a 1,a 5,a 17成等比数列,则18
621751a a a a a a ++++= 3. 已知数列{a n }满足S n =1+n a 4
1,则a n = 5.已知数列{a n }的通项公式为a n =log (n+1)(n+2),则它的前n 项之积为
6.数列{(-1)n-1n 2}的前n 项之和为
10.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),……,则第60个数对为
二、解答题
1.已知数列{a n }的通项公式为a n =3n +2n +(2n-1),求前n 项和。
2.已知数列{a n }是公差d 不为零的等差数列,数列{a bn }是公比为q 的等比数列, b 1=1,b 2=10,b 3=46,,求公比q 及bn 。
3.已知等差数列{a n }的公差与等比数列{b n }的公比相等,且都等于d(d>0,d ≠1),a 1=b 1 ,a 3=3b 3,a 5=5b 5,求a n ,b n 。
4. 有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,
求这四个数。
5. 已知数列{a n },前n 项和S n =2n-n 2,a n =log 5bn ,其中bn>0,求数列{bn}的前n 项和。
6.已知等比数列{a n },首项为81,数列{b n }满足b n =log 3a n ,其前n 项和S n 。
(1)证明{b n }为等差数列
(2)若S 11≠S 12,且S 11最大,求{b n }的公差d 的范围。