高等数学(定积分)习题及解答
高等数学 第五章 定积分 习题课
x
x
∴ ∵
∴
Q( x ) ≡ c , Q ( 0) = 0 ,
Q( x ) ≡ 0 . 证毕 .
d x f (t)(x −t)dt 0 d x∫ = f (x) (x − x) =0?
13
例 6 . 设 f ( x ) 在 [ a , b ] 上连续且 f ( x ) > 0 ,
F ( x ) = ∫ f ( t ) dt + ∫
(1) . 若在 [ a , b ] 上 , f ( x ) ≥ 0 , 且 ∫ f ( x ) dx = 0 ,
a
b
则在 [ a , b ] 上 f ( x ) ≡ 0 .
( 2) . 若在 [ a , b ] 上 , f ( x ) ≥ 0 , 且 f ( x ) ≡ 0 , /
则 ∫ f ( x ) dx > 0 .
由于 f ( x ) 连续 ,
2h
h
对于 ε = h , ∃δ > 0 , 当 x − c < δ 时 ,
f ( x ) − f (c ) < ε
b
c −δ
a
b
(
c
)
f (c ) − ε < f ( x ) < f (c ) + ε 成立 ,
即 h < f ( x ) < 3h .
∫a f ( x ) dx = ∫a
∫a f = ∫a f + ∫c f ∫a
b b c b b b
b
5 . 在[a , b]上
f ( x) ≥ 0 f ( x) ≤ 0
⇒ ⇒
f ( x ) ≥ g( x ) ⇒
∫a f ≥ 0 b ∫a f ≤ 0 b b ∫a f ≥ ∫a g
高等数学第05章 定积分及其应用习题详解
0
x 1 sin tdt 0dt 1 , 2
b a
f ( x)dx 在 几 何 上 表 示 由 曲 线 y f ( x) , 直 线
x a, x b 及 x 轴所围成平面图形的面积. 若 x a, b时,f ( x) 0, 则 b f ( x)dx 在几何 a
上表示由曲线 y f ( x) ,直线 x a, x b 及 x 轴所围平面图形面积的负值. (1)由下图(1)所示, 1 xdx ( A1 ) A1 0 .
n
2
i
i 1
n
2
1 1 1 1 1 n(n 1)(2n 1) = (1 )(2 ) 3 n 6 6 n n 1 1 2 当 0时 (即 n 时 ) ,由定积分的定义得: x d x = . 0 3
= 5. 利用定积分的估值公式,估计定积分
4 3
1 1
(4 x 4 2 x 3 5) dx 的值.
上任取一点 i 作乘积 f ( i ) xi 的和式:
n
f ( i ) xi c ( xi xi1 ) c(b a) ,
i 1 i 1
n
n
记 max{xi } , 则
1i n
b a
cdx lim f ( i ) xi lim c(b a) c(b a) .
x
0
(t 1)dt ,求 y 的极小值
解: 当 y x 1 0 ,得驻点 x 1 , y '' 1 0. x 1 为极小值点, 极小值 y (1)
( x 1)dx - 2
第六章 定积分的应用
解:方法一,
如图,曲线的参数方程为
⎧ ⎨ ⎩
x y
= =
4 5
cos t + 4sin
t
,
0 ≤ t ≤ 2π ,那么
∫ ∫ 所求旋转体的体积为V =
4π
−4
⋅
y12 ( x)dx
−
4π
−4
⋅
y22 ( x)dx
∫ ∫ = 4π 0 (4sin t + 5)2d cos t − 4π 2π (4sin t + 5)2d cos t
解:如图,
∫ ∫ A =
2π a
ydx =
2π a2 (1− cos t )2 dt
0
0
= 3a2π
3、在[0,1] 上给定函数 y = x 2 ,问 t 取何值时,图中曲边三角形 OACO 与 ADBA 的面积之和最小?
何时最大?
解:设 A(t, t 2 ), (0 ≤ t ≤ 1) ,记曲边三角形 OACO 与 ADBA 的面积 y
这一小块闸门所受压力即压力元素为 dP = ρ gx 50 − x dx ,于是所求压力为 5
∫ P = 20 ρ gx 50 − x dx = 14373 (KN)
0
5
5、设有一长度为 l 、线密度为 μ 的均匀细直棒,在与棒的一端平行距离为 a 单位处有一质量为 m 的质点 M ,试求这细棒对质点的引力。 解:如图,去 y 轴经过细直棒,棒的一端为原点,质点 M 位于 x 轴上,取 y 为积分变量,其变化
62
∫ ∫ S = 2[
π 6
1(
02
2 sinθ )2 dθ +
π 4 π 6
1 2
(完整版)定积分练习题
一、选择题1. 设连续函数f (x )>0,则当a <b 时,定积分⎠⎛a bf (x )d x 的符号( ) A .一定是正的 B .一定是负的C .当0<a <b 时是正的,当a <b <0时是负的D .以上结论都不对解析: 由⎠⎛a bf (x )d x 的几何意义及f (x )>0,可知⎠⎛a b f (x )d x 表示x =a ,x =b ,y =0与y =f (x )围成的曲边梯形的面积.∴⎠⎛ab f (x )d x >0.答案:A 2. 若22223,,sin a x dx b x dx c xdx ===⎰⎰⎰,则a ,b ,c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b解析:a =13x 3 |20=83,b =14x 4 |20=4,c =-cos x |20=1-cos2,∴c <a <b . 答案:D3. 求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( )A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y[答案] B[解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎛01(x -x 2)d x .4.11(sin 1)x dx -+⎰的值为( )A. 2B.0C.22cos1+D. 22cos1- 【答案】A 【解析】[][]1111(sin 1)cos (cos11)cos(1)12x dx x x --+=-+=-+----=⎰5. 由曲线22y x x =+与直线y x =所围成的封闭图形的面积为 ( )A .16B .13C .56D .23【答案】 A由22,x x x +=解得两个交点坐标为(-1,0)和(0,0), 利用微积分的几何含义可得封闭图形的面积为:23201111111((2)()|().32326S x x x dx x x --=-+=--=--=⎰ 二、填空题6. 已知f (x )=⎠⎛0x(2t -4)d t ,则当x ∈[-1,3]时,f (x )的最小值为________.解析: f (x )=⎠⎛0x(2t -4)d t =(t 2-4t )| x 0=x 2-4x =(x -2)2-4(-1≤x ≤3),∴当x =2时,f (x )min =-4.答案: -47. 一物体以v (t )=t 2-3t +8(m/s)的速度运动,在前30 s 内的平均速度为________. 解析:由定积分的物理意义有:s =3020(38)t t dt -+⎰=(13t 3-32t 2+8t )|300=7890(m).∴v =s t =789030=263(m/s).答案:263 m/s 三、解答题8.求下列定积分:(1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x ;(2)(cos e )d x x x π-⎰+;(3)⎠⎛49x (1+x )d x ;(4)⎠⎛0πcos 2x 2d x .解析: (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121x d x =x 22| 21-x 33| 21+ln x |21=32-73+ln 2=ln 2-56. (2)(cos e )d x x x π-⎰+=00cosxd e d x x x ππ--+⎰⎰=sin x ||0-π+e x 0-π=1-1eπ. (3)⎠⎛49x (1+x )d x =⎠⎛49(x 12+x )d x =⎪⎪⎝⎛⎭⎫23x 32+12x 249=23×932-23×432+12×92-12×42=4516. (4)⎠⎛πcos 2x 2d x =⎠⎛0π1+cos x 2d x =12x |0π+12sin x |0π=π2.9. 已知函数f (x )=x 3+ax 2+bx +c 的图象如图:直线y =0在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为274,求f (x ).解:由f (0)=0得c =0, f ′(x )=3x 2+2ax +b . 由f ′(0)=0得b =0, ∴f (x )=x 3+ax 2=x 2(x +a ),由∫-a 0[-f (x )]d x =274得a =-3. ∴f (x )=x 3-3x 2.10.已知f (x )为二次函数,且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2. (1)求f (x )的解析式;(2)求f (x )在[-1,1]上的最大值与最小值. 解析: (1)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b .由f (-1)=2,f ′(0)=0,得⎩⎪⎨⎪⎧ a -b +c =2b =0,即⎩⎪⎨⎪⎧c =2-ab =0.∴f (x )=ax 2+(2-a ).又⎠⎛01f (x )d x =⎠⎛01[ax 2+(2-a )]d x=⎣⎡⎦⎤13ax 3+(2-a )x | 10=2-23a =-2, ∴a =6,∴c =-4. 从而f (x )=6x 2-4.(2)∵f (x )=6x 2-4,x ∈[-1,1], 所以当x =0时,f (x )min =-4; 当x =±1时,f (x )max =2.B 卷:5+2+2一、选择题1. 已知f (x )为偶函数且61(),2f x dx =⎰则66()f x dx -⎰等于( )A .2B .4C .1D .-1解析:∵f (x )为偶函数,∴661()(),2f x dx f x dx -==⎰⎰∴6660()2() 1.f x dx f x dx -==⎰⎰答案:C2. (改编题)A . 3 B. 4 C. 3.5 D. 4.5 【答案】C【解析】2220202101102,0()2,()(2)(2)(2)|(2)|2,02232 3.5.2x x x x f x x f x dx x dx x dx x x x x ----≥⎧=-=∴=++-=++-⎨+<⎩=+=⎰⎰⎰3. 已知函数y =x 2与y =kx (k >0)的图象所围成的阴影部分的面积为92,则k 等于( )A .2B .1C .3D .4答案:C解析:由⎩⎪⎨⎪⎧y =x2y =kx 消去y 得x 2-kx =0,所以x =0或x =k ,则阴影部分的面积为 ∫k 0(kx -x 2)d x =(12kx 2-13x 3) |k 0=92. 即12k 3-13k 3=92,解得k =3. 4. 一物体在力F (x )=⎩⎪⎨⎪⎧10 (0≤x ≤2)3x +4 (x >2)(单位:N)的作用下沿与力F 相同的方向,从x=0处运动到x =4(单位:m)处,则力F (x )作的功为( )A .44B .46C .48D .50解析: W =⎠⎛04F (x )d x =⎠⎛0210d x +⎠⎛24(3x +4)d x =10x | 20+⎝⎛⎭⎫32x 2+4x | 42=46.答案:B5. 函数()x f 满足()00=f ,其导函数()x f '的图象如下图,则()x f 的图象与x 轴所围成的A .31 B .34 C .2 D .38 【答案】B【解析】由导函数()x f '的图像可知,函数()x f 为二次函数,且对称轴为1,x =-开口方向向上,设函数2()(0),(0)0,0.()2,f x ax bx c a f c f x ax b '=++>=∴==+因过点(-1,0)与(0,2),则有2(1)0,202,1, 2.a b a b a b ⨯-+=⨯+=∴==2()2f x x x ∴=+, 则()x f 的图象与x 轴所围成的封闭图形的面积为232032-22114(2)()|=2)(2).333S x x dx x x -=--=--⨯+-=⎰(- 二、填空题6.(改编题)设20lg ,0(),3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰若((1))1,f f =则a 为 。
定积分典型例题20例标准答案
定积分典型例题20例答案例1 求33322321lim(2)n n n n n®¥+++.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x nD =,然后把2111n n n =×的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即入和式中各项.于是将所求极限转化为求定积分.即33322321lim (2)n n n n n ®¥+++=333112lim ()n n n n nn ®¥+++=13034xdx =ò.例2 2202x x dx -ò=_________.解法1 由定积分的几何意义知,2202x x dx -ò等于上半圆周22(1)1x y -+= (0y ³) 与x 轴所围成的图形的面积.故2202x x dx -ò=2p. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t pp-££),则,则222x x dx -ò=2221sin cos t tdt pp --ò=22021sin cos t tdt p-ò=2202cos tdt pò=2p例3 (1)若22()x t x f x e dt -=ò,则()f x ¢=___;(2)若0()()xf x xf t dt =ò,求()f x ¢=___.分析 这是求变限函数导数的问题,利用下面的公式即可这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ¢¢=-ò.解 (1)()f x ¢=422x x xee---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =ò,则可得可得()f x ¢=()()xf t dt xf x +ò.例4 设()f x 连续,且31()x f t dt x -=ò,则(26)f =_________.解 对等式310()x f t dt x -=ò两边关于x 求导得求导得32(1)31f x x -×=,故321(1)3f x x-=,令3126x -=得3x =,所以1(26)27f =.例5 函数11()(3)(0)xF x dt x t =->ò的单调递减开区间为_________.解 1()3F x x ¢=-,令()0F x ¢<得13x>,解之得109x <<,即1(0,)9为所求.为所求. 例6 求0()(1)arctan xf x t tdt =-ò的极值点.的极值点. 解 由题意先求驻点.于是()f x ¢=(1)arctan x x -.令()f x ¢=0,得1x =,0x =.列表如下:如下: 故1x =为()f x 的极大值点,0x =为极小值点.为极小值点. 例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中处的切线相同,其中2arcsin 0()xt g x e dt -=ò,[1,1]x Î-,试求该切线的方程并求极限3lim ()n nf n ®¥.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ¢¢=.解 由已知条件得由已知条件得2(0)(0)0tf g e dt -===ò,且由两曲线在(0,0)处切线斜率相同知处切线斜率相同知2(arcsin )2(0)(0)11x x e f g x-=¢¢===-.故所求切线方程为y x =.而.而3()(0)3lim ()lim33(0)330n n f f n nf f n n®¥®¥-¢=×==-.例8 求 22sin lim(sin )x x x tdt t t t dt®-òò;分析 该极限属于型未定式,可用洛必达法则.型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt ®-òò=2202(sin )lim(1)(sin )x x x x x x ®-××-=220()(2)lim sin x x x x ®-×-=304(2)lim 1cos x x x ®-×- =2012(2)lim sin x x x®-×=0.注 此处利用等价无穷小替换和多次应用洛必达法则.此处利用等价无穷小替换和多次应用洛必达法则.x (,0)-¥(0,1)1 (1,)+¥()f x ¢-+-例9 试求正数a 与b ,使等式2021lim1sin xx t dt x b x a t®=-+ò成立.成立.分析 易见该极限属于型的未定式,可用洛必达法则. 解 20201lim sin x x t dt x b x a t ®-+ò=220lim 1cos x x a x b x ®+-=22001lim lim 1cos x x x b x a x ®®×-+201lim 11cos x x b xa ®==-,由此可知必有0lim(1cos )0x b x ®-=,得1b =.又由.又由 2012lim11cos x x xaa®==-,得4a =.即4a =,1b =为所求.为所求. 例10 设sin 20()sin xf x t dt =ò,34()g x x x =+,则当0x ®时,()f x 是()g x 的(的(). A .等价无穷小..等价无穷小. B .同阶但非等价的无穷小..同阶但非等价的无穷小. C .高阶无穷小..高阶无穷小.D .低阶无穷小. 解法1 由于由于 22300()sin(sin )cos lim lim ()34x x f x x x g x x x ®®×=+ 2200cos sin(sin )lim lim 34x x x x x x ®®=×+ 22011lim 33x x x ®==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到的幂级数,再逐项积分,得到sin223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+ò,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f xg x x x x ®®®-+-+===++.例11 计算21||x dx -ò.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -ò=0210()x dx xdx --+òò=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时在使用牛顿-莱布尼兹公式时,,应保证被积函数在积分区间上满足可积条件.如应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=ò,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界积区间内无界. .例12 设()f x 是连续函数,且1()3()f x x f t dt =+ò,则()________f x =.分析 本题只需要注意到定积分()baf x dx ò是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而1()f t dt ò是常数,记1()f t dt a =ò,则,则()3f x x a =+,且11(3)()x a dx f t dt a +==òò.所以所以2101[3]2x ax a +=,即132a a +=,从而14a =-,所以,所以 3()4f x x =-.例13 计算2112211x xdx x-++-ò. 分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解2112211x x dx x -++-ò=211112221111xxdx dx x x--++-+-òò.由于22211x x +-是偶函数,而211xx +-是奇函数,有112011x dx x-=+-ò, 于是于是 2112211x xdx x-++-ò=212411x dx x+-ò=2212(11)4x x dx x--ò=11200441dx x dx --òò由定积分的几何意义可知12014x dx p-=ò, 故2111022444411x xdx dx x p p -+=-×=-+-òò.例14 计算22()x d tf x t dt dx -ò,其中()f x 连续.连续. 分析 要求积分上限函数的导数,要求积分上限函数的导数,但被积函数中含有但被积函数中含有x ,因此不能直接求导,因此不能直接求导,必须先换必须先换元使被积函数中不含x ,然后再求导.,然后再求导.解 由于由于220()xtf x t dt -ò=22201()2xf x t dt -ò.故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以,所以22()x tf x t dt -ò=201()()2xf u du -ò=21()2x f u du ò,故220()x d tf x t dt dx -ò=201[()]2x d f u du dx ò=21()22f x x ×=2()xf x . 错误解答 22()x d tf x t dt dx -ò22()(0)xf x x xf =-=.错解分析 这里错误地使用了变限函数的求导公式,公式这里错误地使用了变限函数的求导公式,公式()()()xa d x f t dt f x dx¢F ==ò中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.导,而应先换元. 例15 计算3sin x xdx pò.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法. 解 3s i n x x d x pò3(c o s )x d x p=-ò330[(c o s )](co s )x x x d x pp=×---ò 30cos 6xdx pp=-+ò326p=-. 例16 计算1200ln(1)(3)x dx x +-ò. 分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-ò=101ln(1)()3x d x +-ò=1100111[ln(1)]3(3)(1)x dx x x x +-×--+ò =101111ln 2()2413dx x x-++-ò 11ln 2ln324=-.例17 计算20sin x e xdx pò.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法. 解 由于2sin xe xdx pò20sin xxde p=ò220[sin ]cos xxe x e xdx p p=-ò220cos xe e xdx p p=-ò,(1) 而2cos xe xdx pò20cos xxde p=ò2200[cos ](sin )xxe x e x dx p p=-×-ò 2sin 1xe xdx p=-ò, (2)将(将(22)式代入()式代入(11)式可得)式可得2sin xe xdx pò220[sin 1]xe e xdx p p=--ò,故20sin xe xdx pò21(1)2e p=+.例18 计算10arcsin x xdx ò.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解10arcsin x xdx ò210arcsin ()2x xd =ò221100[arcsin ](arcsin )22x x x d x =×-ò 21021421x dx x p=--ò. (1) 令sin x t =,则,则2121x dx x-ò2202sin sin 1sin t d t tp =-ò220sin cos cos t tdt tp=×ò220sin tdt p=ò 201cos 22t dt p-==ò20sin 2[]24t t p-4p =. (2) 将(将(22)式代入()式代入(11)式中得)式中得1arcsin x xdx =ò8p .例19设()f x [0,]p 上具有二阶连续导数,()3f p ¢=且0[()()]cos 2f x f x xdx p¢¢+=ò,求(0)f ¢.分析分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx p ¢¢+ò00()sin cos ()f x d x xdf x p p¢=+òò[]0000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx pppp¢¢¢=-++òò()(0)2f f p ¢¢=--=. 故 (0)f ¢=2()235f p ¢--=--=-.例20 计算2043dx x x +¥++ò. 分析 该积分是无穷限的的反常积分,用定义来计算.解 2043dx x x +¥++ò=20lim 43t t dx x x ®+¥++ò=0111lim ()213t t dx x x ®+¥-++ò =011lim [ln ]23t t x x ®+¥++=111lim (ln ln )233t t t ®+¥+-+ =ln 32.。
定积分试题及答案大学
定积分试题及答案大学# 定积分试题及答案试题1:计算定积分 \(\int_{0}^{1} x^2 dx\)。
答案:首先,我们需要找到函数 \(f(x) = x^2\) 的原函数。
对于这个函数,原函数是 \(F(x) = \frac{1}{3}x^3\)。
然后,我们计算在区间 \([0, 1]\) 上的定积分:\[\int_{0}^{1} x^2 dx = F(1) - F(0) = \frac{1}{3}(1)^3 -\frac{1}{3}(0)^3 = \frac{1}{3} - 0 = \frac{1}{3}\]试题2:求定积分 \(\int_{1}^{2} \frac{1}{x} dx\)。
答案:函数 \(f(x) = \frac{1}{x}\) 的原函数是自然对数函数\(F(x) = \ln|x|\)。
计算定积分:\[\int_{1}^{2} \frac{1}{x} dx = F(2) - F(1) = \ln(2) - \ln(1) = \ln(2)\]试题3:计算定积分 \(\int_{0}^{\pi} \sin(x) dx\)。
答案:函数 \(f(x) = \sin(x)\) 的原函数是 \(-\cos(x)\)。
计算定积分:\[\int_{0}^{\pi} \sin(x) dx = -\cos(\pi) - (-\cos(0)) = -(-1) - (-1) = 2\]试题4:求定积分 \(\int_{-1}^{1} (x^2 - 1) dx\)。
答案:函数 \(f(x) = x^2 - 1\) 的原函数是 \(F(x) =\frac{1}{3}x^3 - x\)。
计算定积分:\[\int_{-1}^{1} (x^2 - 1) dx = F(1) - F(-1) =\left(\frac{1}{3}(1)^3 - 1\right) - \left(\frac{1}{3}(-1)^3 - (-1)\right) = \frac{1}{3} - 1 + \frac{1}{3} + 1 = \frac{2}{3} \]试题5:计算定积分 \(\int_{0}^{1} e^x dx\)。
高等数学习题课(5)定积分
0
则 b a
f
(
x)dx
0
(a b)
推论:(1) 如果在区间[a,b]上 f ( x) g( x) ,
则 b a
f
(
x
)dx
b
a g( x)dx
(a b)
(2)
b
a
f
(
x)dx
b
a
f
( x)dx
(a b)
性质6 设M 及m 分别是函数 f ( x) 在区间[a,b]
上的最大值及最小值,
则
b
即 F( x) x ( f ( x) f (t) 2)dt 0 a f (t) f (x) F ( x) 单调增加.
又 F (a) 0, F(b) F(a) 0,
即
b
f ( x)dx
b dx
(b a)2.
a
a f (x)
例8
( x et2 dt)2
求 lim x
0
x e2t2 dt
( x)
x
a
f
(t )dt 在[a,b]上具有导数,且它的导数
是
( x)
dx
dx a
f (t)dt
f (x)
(a x b)
定理 3(微积分基本公式) 如果F ( x) 是连续函数 f ( x)在区间[a, b]上的一个原函数,则
b
a f ( x)dx F (b) F (a)
也可写成
b a
b
b
a
f
( x)dx
lim
a
f ( x)dx
b
b
a
f
( x)dx
lim
0 a
定积分典型例题及习题答案
04 定积分习题答案及解析
习题一答案及解析
要点一
答案
$frac{1}{2}$
要点二
解析
根据定积分的几何意义,该积分表示一个半圆的面积,半径 为1,因此结果为半圆的面积,即$frac{1}{2}$。
习题二答案及解析
答案:$0$
解析:由于函数$f(x) = x$在区间$[-1, 1]$上为奇函数,根据定积分的性质,奇函数在对称区间上的积 分为0。
定积分的分部积分法
总结词
分Hale Waihona Puke 积分法是一种通过将两个函数的乘积进行求导来计算定积分的方法。
详细描述
分部积分法是通过将两个函数的乘积进行求导来找到一个函数的定积分。具体来说,对于两 个函数u(x)和v'(x),其乘积的导数为u'v+uv',其中u'表示u对x的导数。分部积分法可以表示 为∫bau(x)v'(x)dx=∫bau'(x)v(x)dx+∫bau(x)v(x)dx,其中u'(x)和u(x)分别是u对x的导数和函
定积分典型例题及习题答案
目录
• 定积分的基本概念 • 定积分的计算方法 • 定积分典型例题解析 • 定积分习题答案及解析
01 定积分的基本概念
定积分的定义
总结词
定积分的定义是通过对函数进行分割、 近似、求和、取极限等步骤来得到的。
详细描述
定积分定义为对于一个给定的函数f(x),选择一 个区间[a,b],并将其分割为n个小区间,在每 个小区间上选择一个代表点,并求出函数在这 些点的近似值,然后将这些近似值进行求和, 最后取这个和的极限。
数值。通过分部积分法,可以将复杂的定积分转换为更简单的形式进行计算。
定积分典型例题20例答案
定积分典型例题20例答案例 1 求 Iim 42(3n τ 32n^ JH 3n 3).n厂n分析将这类问题转化为定积分主要是确定被积函数和积分上下限. 若对题目中被积函数难以想到,可采取如下方法:先对区间 [0, 1] n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限•解 将区间[0, 1] n 等分,则每个小区间长为.* ,然后把1的一个因子-乘n n n nn入和式中各项•于是将所求极限转化为求定积分•即Iim A (V n 4 5+⅛2n 2切|+卅)=1计气卩弋F + 山 +;F )=[坏dx=3 •n -r ,n n n I n∖ n 042 -----------------2例 2 [J 2x —xdx= ______________•2 ry解法1由定积分的几何意义知, 0J 2x —X 2dx 等于上半圆周(x —1)2+y 2=1 ( y ≥0)与X 轴所围成的图形的面积.故$ 2χ 一χ2d χ= •■■02解法2本题也可直接用换元法求解.令x_1 = Sint (丄兰t ≤三),则2 2这是求变限函数导数的问题,禾U 用下面的公式即可d V(X)— f (t)dt = f[v(x)]v(x) - f[u(x)]u (X) • dxU(X )丄2-e;可得.Xf (X) = 0f (t)dt Xf(X) •X 3丄解 对等式;f(t)dt =x 两边关于X 求导得3 2f (x -1) 3x =1,4_..1 —sin 2tcostdt =2 :、1 —sin 2tcostdt2522例3(1)若f (x) e 丄Xdt ,则 f (X) =— ; (2)若 f(x)=Xxf (t)dt ,求 f (X )=— •■:'≡. 2 -= 2 02COs tdt=- 分析(2) 由于在被积函数中 X 不是积分变量,故可提到积分号外即Xf (X)=X Of (t)dt ,则V(X) 例4设f (x)连续,且X 3 -1O f (t)dt =X ,贝U f(26)=------ 2-XdX =例7已知两曲线y =f (X)与y =g(χ)在点(0,0)处的切线相同,其中arcs inx 十2g(x) = 0e dt , X [-1,1],试求该切线的方程并求极限Iim nf (-3). n 性 n分析 两曲线y =f(χ)与y =g(χ)在点(0,0)处的切线相同,隐含条件 f (0^g (0).解由已知条件得12X 2= (2) Iim =0 .x-⅛ Si nx注此处利用等价无穷小替换和多次应用洛必达法则.故 f(x 3-1)=13X 2 3 1,令X 46得x=3 ,所以f(26)冷1例5函数F(x) = j (3 _4)dt (x >0)的单调递减开区间为F(X)= 31 1 1x ,令F(X z O 得X 3 ,解之得。
定积分典型例题20例答案
定积分典型例题20例答案例1求lim 丄(循2丁2『L Vn 3) •n n分析将这类问题转化为定积分主要是确定被积函数和积分上下限. 若对题目中被积函数难以想到,可采取如下方法:先对区间 [0, 1] n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0, 1] n 等分,则每个小区间长为 % -,然后把1丄的一个因子-乘nn n nn入和式中各项•于是将所求极限转化为求定积分•即lim A (习n 2 ^2n 2 LVn 3) = lim -(^—L ^—) = VXdx - • n nnnn,n ,n ° 42 -- ------ r例 2o (2x x dx = ___________• 2 . ________解法1由定积分的几何意义知, °. 2x x 2dx 等于上半圆周(x 1)2 y 2 1 ( y 0)与x 轴所围成的图形的面积.故2,2x x 2dx = _ • 0 2'1 sin 2tcostdt = 2。
2J sin 2t costdt =2 : cos 2 tdt^22x 2 2x例 3 (1)若 f (x) x e 七 dt ,则 f (x) = ________; (2)若 f (x) 0 xf (t)dt ,求 f (x)=分析这是求变限函数导数的问题,利用下面的公式即可(1) f (x) =2xe x e x可得xf (x) = 0 f (t)dt xf (x) •x 1例 4 设 f(x)连续,且。
f(t)dt x ,贝U f (26) = _________________O Ax 1解 对等式0 f(t)dtx 两边关于x 求导得3 2f(x 1) 3x 1,解法2本题也可直接用换元法求解.令x 1= Sint (2 t 2),则d v(x)dx u(x)f(t)dt f[v(x)]v(x) f[u(x)]u (x) • (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即xf (x) x 0 f (t)dt ,则x 2dx =3 1 令x 1 26得x 3,所以f (26)27故f(x 3 1) 丄3x 例5函数F(x)F (x)1 1,令F (x) 0得r 3,解之得xx1 10 x -,即(0,-)为所求.9 9f (x)x0 (1 t)arctan tdt 的极值点.f (x) = (1 x)arctan x .令 f (x) = 0,得 x 1 , x 0.列表如下:x(,0)0 (0,1) 1(1,)f (x)-0 +f (x)的极大值例7已知两曲线y f (x)与y g(x)在点(0,0)处的切线相同,其中arcs inxg(x) 0t 2e dt , x [ 1,1],试求该切线的方程并求极限 lim nf (?).n n分析两曲线y f (x)与y g(x)在点(0,0)处的切线相同,隐含条件f(0) g(0),f (0)g (0) •解由已知条件得f(0)g(0)°e " dt且由两曲线在(0,0)处切线斜率相同知f (0)g(0)(arcsin x)2e1 x 2故所求切线方程为 y x .而lim nf (-) n nIim3nf(-) n3 0 nf(0) 一 3f (0) 3 •x 22sin tdtlim 0;x 0分析 该极限属于型未定式,可用洛必达法则. 0X 22sin tdt lim ------------------ = lim = ( 2) lim= ( 2)x 0:t (t sin t)dt x 0( 1) x (x sinx) 、7 x 0x sinx ' 丿2x(sin x 2)22 2(x ) 34x(x 0)的单调递减开区间为x 1(3点,x 0为极小值点.由题意先求驻点.于是12x=(2) lim =0 . x 0sinx注此处利用等价无穷小替换和多次应用洛必达法则.1 x t 2例9 试求正数a 与b ,使等式lim -------------------- dt 1成立.x 0x bsin x 0 ‘ ―t 2分析 易见该极限属于 0型的未定式,可用洛必达法则.1 x 2lim.a x 01 bcosx21 x lim3x 0x 2故f(x)是g(x)同阶但非等价的无穷小.2例11计算1|x|dx .分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.2 220 2x 0 x 251|x|dx = 1( x)dx 0xdx = [ y] 1 [y]0 =-.在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如[-]32丄,则是错误的.错误的原因则是由于被积函数 」2在x 0处间断且在被x 6 x 2lim__ x 0x bsin x 0 . a 2x_ _t 「dt = lim _— =lim 1f 2 x 01 bcosx x op x 2x 2limx 01 bcosx由此可知必有 lim(1 bcosx) 0,得 b 1 .又由得a 4 .即a 4 , si nx1xlim a x 01 cosxb 1为所求. 例10设f (x)sin t 2dt , g(x) x 3 x 4,则当0 时,f (x)是 g(x)的( ). A .等价无穷小.B .同阶但非等价的无穷小.解法1由于lim 型 lim si 门伽浪)cosxx 0g(x) x 0C .高阶无穷小.D .低阶无穷小.mo Hx3x 2 4x 3cosx3 4xmo Hxsin (sin x)x解法2 将sin t 2展成t 的幕级数, 1 2 3 3!(t)f (x) 0 sin x 2 [t 2 再逐项积分,得到1 si n 42L ]dt 1 . 3 一 sin xlim 少 x 0g(x).31sin x(- lim -1 . 4sin x 4234x x1 lim -x 01 ■ 4 . sin x L 42 1 xUdx x积区间内无界 例12设f(x)是连续函数,且f(x) 1x 3 0 f(t)dt ,则 f (x)所以 分析本题只需要注意到定积分因f (x)连续,f (x)必可积,从而a 1—,所以 4例13 计算12x21 分析 bf (x)dx 是常数(a, b 为常数).从而f (x) x 3a ,且f(x) x1 21[―X 2 3ax]0 23 2 .10 f (t)dt 是常数,记 10 f (t)dt a ,则1 o(x3a)dx3a a ,x dx. 1 1 x 2由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. I 2x 2 x ------ dx = II 1 x 2 I 2x 2----- dxII .1 x 2 ___ dx .由于 11 1 x 2一是偶函数,而 1 1 x 2 旦古函数, 是奇 2 x 111=dx 2 x0,I2x 2 xII1 x 2dx = 4 由定积分的几何意义可知 例14计算肿(x 2 011 x 20 1x 2dx 1 2x 2 1 dx = 4 1x 2 (11x 2) 0x _= dx 1 1 x 2t 2)dt ,其中 分析 要求积分上限函数的导数, 元使被积函数中不含 ,然后再求导. 由于 x 2 otf(xx 2dx = 4 dx 4;FVdx故令x 2xdx 01 4 dx 0 f(x)连续. 但被积函数中含有 x ,因此不能直接求导,必须先换2 1 x2 2 2t )dt = 2 0f(x t )dt .2 20时u x ;当t x 时u 0,而dtx2 2 1tf(x t)dt=;222d 1 x tf(x t)dt= dx [2 0x 2f (U)( du)=idu ,所以x 2f (u)du ,f (u)du] =£ f(x 2) 2x = xf (x 2).错误解答 — tf(x 2 t 2)dtxf(x 2 x 2) xf(O).dx 0错解分析这里错误地使用了变限函数的求导公式,公式d x(x) a f (t)dt f (x)dx a中要求被积函数f(t)中不含有变限函数的自变量 x ,而f (x 2 t 2)含有x ,因此不能直接求导,而应先换元. 15 计算 3 xsinxdx .分析 被积函数中出现幕函数与三角函数乘积的情形,通常采用分部积分法.=1ln21 In3 .417计算2e si nxdx .分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法. 解 由于 02e x sin xdx;sin xde x [e x sinx]〕2e x cosxdxe^2e x cos xdx ,(1)而02 *cosxdx2cos xde x[e x cosx](?o2e x ( sin x)dx2e x sin xdx 01 , (2)将(2)式代入(1)式可得?e x s in xdx e 2[2 e x sin xdx 1],故2 e xsin xdx1 ~2-(e 2 1). 21例 18 计算 xarcsinxdx .解 3 xs in xdx 3 xd(0 0 '3cosx) [x ( COSX )]oo3( cos x) dx616计算0兽dx .3cosxdx¥ 6分析被积函数中出现对数函数的情形,可考虑采用分部积分法.1x)d(-3 xJdx= 1ln(1 0(3 x)2'1Fln(1x)】1(3 x) (1 x)dx1 In2 21 xarcsin xdx分析被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于 0 [ f (x) f (x)]cos xdx 0 f (x)d sinxcosxdf (x){ f (x)sin x 00 f (x)sin xd" {[ f (x)cosx]° 0f (x)sin xd 冷f ( ) f (0) 2 .故 f (0) 2 f ( )2 3分析 该积分是无穷限的的反常积分,用定义来计算.解 dxtdx1 t 11 解2= lim 2= lim ()dxx 4x 3 t 0 x 4x 3 t 2 0 x 1 x 31 x 1 t 1 t 1 1 =lim [In ]0= lim (In In ) t2 x3 t 2 t 3 3分析 被积函数中出现反三角函数与幕函数乘积的情形,通常用分部积分法.1解xarcs in xdx1x20arcsinxd (一2x1[ arcsinx]。
江苏专转本高等数学 定积分 例题加习题
- 106 -第四章 定积分本章主要知识点● 定积分计算● 特殊类函数的定积分计算 ● 变限积分● 定积分有关的证明题 ● 广义积分敛散性 ● 定积分应用(1)面积 (2)旋转体体积一、定积分计算定积分计算主要依据牛顿—莱伯尼兹公式:设⎰+=C x F dx x f )()(,则()()()()bb a af x dx F b F a F x =-=⎰。
其主要计算方法与不定积分的计算方法是类似的,也有三个主要方法,但需要指出的是对于第Ⅱ类直接交换法,注意积分限的变化:()111()()()()()(())x t bb aa t x f x dx f t t dt ϕϕϕϕϕϕ---=='=⎰⎰。
例4.1.111)edx x ⎰解:原式=e11)ln d x ⎰=32125((ln )ln )|33ex x +=例4.2.30dx ⎰ 解:原式t x t x =+-==11222 1121t tdt t -+⎰=32 121t t dt t -+⎰=322125()|33t t -= 例4.3.⎰22sin πxdx x- 107 -解:原式=⎰-22cos 21πx xd =⎰+-2022cos 21|2cos 21ππxdx x x =20|2sin 414ππx +=4π 二、特殊类函数的定积分计算1.含绝对值函数利用函数的可拆分性质,插入使绝对值为0的点,去掉绝对值,直接积分即可。
例4.4.⎰--21|1|dx x解:原式=121 1(1)(1)x dx x dx --+-⎰⎰=212|)2(2x x -+=)121(02--+=25例4.5.⎰--++22|)1||1(|dx x x解:原式=112211(|1||1|)(|1||1|)(|1||1|)x x dx x x dx x x dx ---++-+++-+++-⎰⎰⎰=112211(11)(11)(11)x x dx x x dx x x dx ------++++-+++-⎰⎰⎰=112211222xdx dx xdx ----++⎰⎰⎰=212122|4|x x ++---=)14(4)41(-++--=102.分段函数积分例4.6.⎩⎨⎧≤+>=0,10,)(2x x x x x f ,求⎰-11)(dx x f解:原式=⎰⎰-+0110)()(dx x f dx x f =⎰⎰-++01102)1(dx x dx x =103012|31|)2(x x x ++- =31)121(+--=65- 108 -例4.7.⎩⎨⎧≤>+=1,1,12)(x x x x x f ,求⎰-+12)1(dx x f解:原式11221(1)()u x f x dx f u du =+--=+==⎰⎰1211()()f u du f u du -+⎰⎰1222111(21)0()udu u du u u -=++=++⎰⎰624=-=3.奇函数积分如果 ()f x 为定义在[],a a -的奇函数,则()0aaf x dx -≡⎰,这是一个很重要考点。
(完整版)定积分应用题附答案
《定积分的应用》复习题一.填空:1.曲线ln ,ln ,ln (0)y x y a y b a b y ===<<及轴所围成的平面图形的面积为A =ln ln by ae dy ⎰=b-a______2.2y x y ==曲线和 ____13____二.计算题:1.求由抛物线 y 2 = 2x 与直线 2x + y – 2 = 0 所围成的图形的面积。
解:(1)确定积分变量为y ,解方程组2222y x y x ⎧=⎨=-+⎩ 得12121/22,12x x y y ==⎧⎧⎨⎨==-⎩⎩ 即抛物线与直线的交点为(21,1)和( 2 , - 2 ).故所求图形在直线y = 1和y = - 2 之间,即积分区间为[-2,1 ]。
(2)在区间[-2,1]上,任取一小区间为[ y , y + dy ],对应的窄条面积近似于高为[(1-21y )-21y 2 ],底为dy 的矩形面积,从而得到面积元素 dA = [(1-21y)- 21y 2 ]dy (3)所求图形面积 A =⎰-12[(1- 21y )-21y 2 ]dy = [y - 41y 2 – 61y 3]12-= 942.求抛物线 y = - x 2 + 4x - 3 及其在点(0,- 3)和(3,0)处的切线所围成的图形的面积。
解:由y = - x 2 + 4x – 3 得 '24,'(0)4,'(3)2y x y y =-+==-。
抛物线在点(0,- 3)处的切线方程为 y = 4x – 3 ;在点(3,0)处的切线方程为 y = - 2x + 6 ; 两切线的交点坐标为 ( 32,3 )。
故 面积A =332223029[(43)(43)][(26)(43)]4x x x dx x x x dx --+-+-+-+-=⎰⎰3.求由摆线 x = a (t – sint) , y = a( 1- cost) 的一拱(02t π≤≤)与横轴所围成的图形的面积。
高等数学第五章习题课1定积分
第 五 章 定 级 分
解
原式 lim
2e
x2
0 e
2 x2
x t2
dt
x
e
0
lim
2 e dt e
x2
x t2
x
lim
2e
x2
2
x 2 xe x
1 lim 0 x x
- 17 -
习题课(一)
3 解
第 五 章 定 级 分
tf ( x t )dt lim 0 ,
1 i 1 2 lim sin sinxdx n 0 n n i 1
n
-2-
习题课(一)
第 五 章 定 级 分
i 1 n i 1 lim sin lim sin n n n n 1 n n n i 1 i 1 1 2 sinxdx 0 2 原式 1 n1 n 2 n nn 3 lim n n n n
1 2 F ( x )dx 0
存在一点 , 使得 F ( ) 0, 即 f ( ) f ( )
-9-
习题课(一)
第 五 章 定 级 分
设在 [0,1] 上 f ( x ) 0, 证明: 1 1 2 0 f ( x )dx f ( 3 ) 证 由于 y f ( x ) 在区间 [0,1] 是上凸的, 所以曲线 1 1 y f ( x ) 在过 ( , f ( )) 处的切线下方,即 3 3 1 1 1 f ( x ) f ( ) f ( )( x ) 3 3 3 1 1 2 1 2 f ( x ) f ( ) f ( )( x ) 3 3 3
(完整版)高等数学定积分应用习题答案
第六章 定积分的应用习题 6-2 (A)1. 求下列函数与 x 轴所围部分的面积:]3,0[,86)1(2+-=x x y ]3,0[,2)2(2x x y -=2. 求下列各图中阴影部分的面积: 1.图 6-13.求由下列各曲线围成的图形的面积:;1,)1(===-x e y e y x x 与;)0(ln ,ln ,0ln )2(>>====a b b y a y x x y 与;0,2)3(2==-=y x y x x y 与;)1(,2)4(22--==x y x y;0,2)1(4)5(2=-=-=y x y x y 与;2,)6(2x y x y x y ===与;)0(2sin ,sin 2)7(π≤≤==x x y x y;8,2)8(222(两部分都要计算)=+=y x x y4.的图形的面积。
所围成与直线求由曲线e x e x y x y ====-,,0ln 15.的面积。
处的切线所围成的图形和及其在点求抛物线)0,3()3,0(342--+-=x x y6.的面积。
处的法线所围成的图形及其在点求抛物线),2(22p ppx y = 7.形的面积。
与两坐标轴所围成的图求曲线a y x =+8.所围图形的面积。
求椭圆12222=+by a x9.。
与横轴所围图形的面积(的一拱求由摆线)20)cos 1(),sin (π≤≤-=-=t t a y t t a x10.轴之间的图形的面积。
的切线的左方及下方与由该曲线过原点求位于曲线x e y x =11.求由下列各方程表示的曲线围成的图形的面积: ;)0(sin 2)1(>=a a θρ;)0()cos 2(2)2(>+=a a θρ ;2cos 2)3(2(双纽线)θρ=抛物体的体积。
轴旋转,计算所得旋转所围成的图形绕及直线把抛物线x x x x ax y )0(4.12002>==体的体积。
旋转轴旋转,计算所得两个轴及所围成的图形,分别绕由y x y x x y 0,2,.133===14.求下列已知曲线所围成的图形,按指定的轴旋转所产生的旋转体的体积: ;,0,,0)1(轴绕与x y a x x axcha y ====;,2sin )2(轴绕与x xy x y π== ;,)20(cos sin )3(轴绕与x x x y x y π≤≤==;0,2,ln )4(轴绕与y y x x y === ;0,2)5(2轴绕与y y x y x x y ==-=;,16)5()6(22轴绕y y x =+-。
同济大学数学系《高等数学》(第7版)(上册)-课后习题(含考研真题)详解-第五章 定积分【圣才出品】
5.2 课后习题详解习题5-1 定积分的概念与性质1.利用定积分定义计算由抛物线y =x 2+1,两直线x =a 、x =b (b >a )及x 轴所围成的图形的面积.解:因为函数f(x)=x 2+1在区间[a ,b]上连续,所以函数可积,为计算方便,不妨把[a ,b]分成n 等份,则分点为每个小区间长度为取ξi 为小区间的右端点x i ,则当n→∞时,上式极限为即为所求图形的面积.2.利用定积分定义计算下列积分:解:因为被积函数在积分区间上连续,所以把积分区间分成n等份,并取ξi为小区间的右端点,得到(1)(2)3.利用定积分的几何意义,证明下列等式:证:(1)根据定积分的几何意义,定积分表示由直线y=2x、x=1及x轴围成的图形的面积,该图形是底边长为1、高为2的三角形,因此面积为1,即(2)根据定积分的几何意义,定积分表示的是由曲线以及x轴、y轴围成的在第I象限内的图形面积,即单位圆的四分之一的图形,因此有(3)因为函数y=sinx在区间[0,π]上非负,在区间[-π,0]上非正.根据定积分的几何意义,定积分表示曲线y=sinx(x∈[0,π])与x轴所围成的图形D1的面积减去曲线y=sinx(x∈[-π,0])与x轴所围成的图形D2的面积,显然图形D1与D2的面积是相等的,所以有(4)因为函数y=cosx在区间上非负.根据定积分的几何意义,定积分表示曲线与x轴和y轴所围成的图形D1的面积加上曲线与x轴和y轴所围成的图形D2的面积,而图形D1的面积和图形D2的面积显然相等,所以有4.利用定积分的几何意义,求下列积分:解:(1)根据定积分的几何意义,表示的是由直线y=x,x=t以及x轴所围成的直角三角形面积,该直角三角形的两条直角边的长均为t,因此面积为因此有(2)根据定积分的几何意义,表示的是由直线x=-2,x=4以及x轴所围成的梯形的面积,该梯形的两底长分别为梯形的高为4-(-2)=6,因此面积为21.因此有(3)根据定积分的几何意义,表示的是由折线y=|x|和直线x=-1,x=2以及x轴所围成的图形的面积.该图形由两个等腰直角三角形组成,一个由直线y=-x,x=-1和x轴所围成,其直角边长为1,面积为另一个由直线y=x,x=2和x轴所围成,其直角边长为2,面积为2.因此(4)根据定积分的几何意义,表示的是由上半圆周以及x轴所围成的半圆的面积,因此有5.设a<b,问a、b取什么值时,积分取得最大值?解:根据定积分几何意义,表示的是由y=x-x2,x=a,x=b,以及x轴所围成的图形在x轴上方部分的面积减去x轴下方部分面积.因此如果下方部分面积为0,上方部分面积为最大时,的值最大,即当a=0,b=1时,积分取得最大值.6.已知试用抛物线法公式求出ln2的近似值(取n=10,计算时取4位小数).解:计算y i并列表表5-2-1按抛物线法公式,求得7.设求解:(1)(2)(3)(4)8.水利工程中要计算拦水闸门所受的水压力.已知闸门上水的压强p与水深h存在函数关系,且有p=9.8h(kN/m2).若闸门高H=3m,宽L=2m,求水面与闸门顶相齐时闸门所受的水压力P.解:在区间[0,3]上插入n-1个分点,取ξi∈[h i-1,h i],并记Δh i=h i-h i-1,得到闸门所受水压力的近似值为根据定积分的定义可知闸门所受的水压力为因为被积函数连续,而连续函数是可积的,因此积分值与积分区间的分法和ξi的取法无关.为方便计算,对区间[0,3]进行n等分,并取ξi为小区间的端点所以。
(完整版)定积分习题及答案
第五章定积分(A 层次)1.203cos sin xdx x ;2.a dx x ax222;3.31221xxdx ;4.1145x xdx ;5.411xdx ;6.14311xdx ;7.21ln 1e xx dx ;8.02222xxdx ;9.dx x 02cos 1;10.dx x x sin 4;11.dx x 224cos 4;12.55242312sin dx xxx x ;13.342sin dx xx ;14.41ln dx xx ;15.1xarctgxdx ;16.202cosxdx e x ;17.dx x x 02sin ;18.dx x e 1ln sin ;19.243cos cos dx x x ;20.40sin 1sin dx x x ;21.dx xxx 02cos 1sin ;22.2111lndx xx x ;23.dx xx 4211;24.20sin ln xdx ;25.211dx xxdx0。
(B 层次)1.求由0cos 0x y ttdtdte 所决定的隐函数y 对x 的导数dxdy 。
2.当x 为何值时,函数x tdt tex I 02有极值?3.x xdt t dxd cos sin 2cos 。
4.设1,211,12xx x x xf ,求20dx x f 。
5.1lim22xdtarctgt xx 。
6.设其它,00,sin 21xx xf ,求x dt t f x。
7.设时当时当0,110,11xex xxf x,求201dx xf 。
8.2221limnn nnn。
9.求nk nknknnen e 12lim 。
10.设x f 是连续函数,且12dt t f x x f ,求x f 。
11.若2ln 261xtedt ,求x 。
12.证明:212121222dxeex。
13.已知axxx dx ex axa x 224lim,求常数a 。
高等数学习题及解答 (2)
普通班高数作业(下)第六章 定积分1、根据定积分的几何意义,说明下列各式的正确性:(第二版P186:1;第三版P155:1) (1)0sin 20=⎰πxdx (4)⎰⎰=-11142xdxdx x2、不计算积分,比较下列各积分值的大小:(第二版P186:2;第三版P155:3) (4)⎰10dx e x与⎰102dx e x(5)⎰2sin πxdx 与⎰20πxdx(6)⎰-02cos πxdx 与⎰20cos πxdx3、利用定积分性质,估计下列积分值:(第二版P186:3;第三版P155:4) (1)⎰-=22dx eI xx (5)⎰--=2295dx xx I (6)⎰=20sin πdx x x I 4、求下列极限:(第二版P186:4;第三版P160:1)(2)211)1(1ln lim -+⎰→x dt t txx (3)⎰+→xt x dt t x 010)2sin 1(1lim (4)2210lim x x t x dt e ⎪⎭⎫⎝⎛⎰+∞→ (6)x x x dt e x xt x sin arctan lim 002⋅⋅-⎰-→5、求下列导数:(第二版P186:5;第三版P161:2)(1)⎰-32x x t dt e dx d (2)⎰-x tdt x t dxd 033sin )( 6、求证方程⎰--=π02cos 1ln dx x exx 在()∞+,0内有且仅有两个不同的实根。
(第二版P186:7;第三版P161:4)7、设)(x f 在[]b a ,上连续,且0)(>x f ,令⎰⎰+=xbxadt t f dt t f x F )(1)()(。
求证:(1)2)(≥'x F ;(2))(x F 在()b a ,内有且仅有一个零点。
(第二版P186:8;第三版P161:5)8、设)(x f 为连续函数,且存在常数a ,满足(1)⎰=+3)(15x adt t f x ,求)(x f及常数a 。
(完整版)高等数学定积分应用习题答案
第六章 定积分的应用习题 6-2 (A)1. 求下列函数与 x 轴所围部分的面积:]3,0[,86)1(2+-=x x y ]3,0[,2)2(2x x y -=2. 求下列各图中阴影部分的面积: 1.图 6-13.求由下列各曲线围成的图形的面积:;1,)1(===-x e y e y x x 与;)0(ln ,ln ,0ln )2(>>====a b b y a y x x y 与;0,2)3(2==-=y x y x x y 与;)1(,2)4(22--==x y x y;0,2)1(4)5(2=-=-=y x y x y 与;2,)6(2x y x y x y ===与;)0(2sin ,sin 2)7(π≤≤==x x y x y;8,2)8(222(两部分都要计算)=+=y x x y4.的图形的面积。
所围成与直线求由曲线e x e x y x y ====-,,0ln 15.的面积。
处的切线所围成的图形和及其在点求抛物线)0,3()3,0(342--+-=x x y6.的面积。
处的法线所围成的图形及其在点求抛物线),2(22p ppx y = 7.形的面积。
与两坐标轴所围成的图求曲线a y x =+8.所围图形的面积。
求椭圆12222=+by a x9.。
与横轴所围图形的面积(的一拱求由摆线)20)cos 1(),sin (π≤≤-=-=t t a y t t a x10.轴之间的图形的面积。
的切线的左方及下方与由该曲线过原点求位于曲线x e y x =11.求由下列各方程表示的曲线围成的图形的面积: ;)0(sin 2)1(>=a a θρ;)0()cos 2(2)2(>+=a a θρ ;2cos 2)3(2(双纽线)θρ=抛物体的体积。
轴旋转,计算所得旋转所围成的图形绕及直线把抛物线x x x x ax y )0(4.12002>==体的体积。
旋转轴旋转,计算所得两个轴及所围成的图形,分别绕由y x y x x y 0,2,.133===14.求下列已知曲线所围成的图形,按指定的轴旋转所产生的旋转体的体积: ;,0,,0)1(轴绕与x y a x x axcha y ====;,2sin )2(轴绕与x xy x y π== ;,)20(cos sin )3(轴绕与x x x y x y π≤≤==;0,2,ln )4(轴绕与y y x x y === ;0,2)5(2轴绕与y y x y x x y ==-=;,16)5()6(22轴绕y y x =+-。
高等数学习题详解-第6章 定积分
习题6-11. 利用定积分的几何意义求定积分:(1)12xdx ⎰;(2)⎰(0)a >.解 (1) 根据定然积分的几何意义知, 102xdx ⎰表示由直线2,1y x x ==及x 轴所围的三角形的面积,而此三角形面积为1,所以121xdx =⎰.(2) 根据定积分的几何意义知,⎰表示由曲线0,y x x a ===及x 轴所围成的14圆的面积,而此14圆面积为214πa ,所以2014a a =⎰π.2. 根据定积分的性质,比较积分值的大小:(1)12x dx ⎰与13x dx ⎰; (2)1xe dx ⎰与1(1)x dx +⎰.解 (1) ∵当[0,1]x ∈时,232(1)0x x x x -=-≥,即23x x ≥,又2x3x ,所以11230x dx x dx >⎰⎰.(2) 令()1,()1x x f x e x f x e '=--=-,因01x ≤≤,所以()0f x '>, 从而()(0)0f x f ≥=,说明1xe x ≥+,所以110(1)x e dx x dx >+⎰⎰.3. 估计下列各积分值的范围:(1)421(1)x dx +⎰;(2) arctan xdx ;(3)2ax aedx --⎰(0a >); (4)22x xe dx -⎰.解 (1) 在区间[]1,4上,函数2()1f x x =+是增函数,故在[1,4]上的最大值(4)17M f ==,最小值(1)2m f ==,所以4212(41)(1)17(41)d xx -≤+≤-⎰,即 4216(1)51x dx ≤+≤⎰.(2) 令()arctan f x x x =,则2()arctan 1x f x x x '=++,当x ∈时,()0f x '>,从而()f x在上是增函数,从而f (x )在上的最大值M f ==,最小值m f ==,所以2arctan 93xdx =≤≤=ππ即2arctan 93xdx ≤≤ππ.(3) 令2()x f x e -=,则2()2x f x xe -'=-,令()0f x '=得驻点0x =,又(0)1f =,2()()a f a f a e -=-=,a >0时, 21a e -<,故()f x 在[],a a -上的最大值1M =,最小值2e a m -=,所以2222aa x aa dx a ---≤≤⎰e e .(4) 令2()x xf x e-=,则2()(21)xxf x x e -'=-,令()0f x '=得驻点12x =,又(0)1,f = 1241(),(2)2f e f e -==,从而()f x 在[]0,2上的最大值2M e =,最小值14m e -=,所以 212242xxee dx e --≤≤⎰.习题6-21. 求下列导数:(1)0d dx ⎰; (2) 5ln 2x t d t e dt dx -⎰; (3) cos 20cos()x d t dt dx π⎰; (4)sin x d t dt dx t π⎰ (0x >). 解 (1)d dx =⎰ (2) 55ln 2x t xd te dt x e dx --=⎰. (3)cos 222cos()cos(cos )(cos )sin cos(cos )x d t dt x x x x dx πππ'=⋅=-⎰. (4) sin sin sin x x d t d t xdt dt dx t dx t xππ=-=-⎰⎰.2. 求下列极限:(1) 02arctan limxx tdt x →⎰; (2)()22220e lime xt xx t dt t dt→⎰⎰.解 (1) ()022000021arctan arctan arctan 11(1)lim limlim lim 222x xx x x x tdt tdt x x x x x →→→→'⎡⎤--⎣⎦+====-'⎰⎰.(2) ()()22222222222000020000220022lim lim lim lim xxx x t t t x tx x x x x x x t x t e dt e dt e dt e dt xe xe te dtte dt →→→→'⎡⎤⋅⎢⎥⎣⎦==='⎡⎤⎣⎦⎰⎰⎰⎰⎰⎰e []2222202000222lim lim lim 2122x t x x x x x x x e dt e x e xe x xe →→→'⎡⎤⎣⎦====+'+⋅⎰. 3. 求由方程e cos 0yxt dt tdt +=⎰⎰所确定的隐函数()y y x =的导数.解 方程两边对x 求导数得:cos 0e y y x '⋅+=, cos e yxy '∴=-, 又由已知方程有000sin e y xtt +=,即1sin sin 00e y x -+-=, 即1sin e yx =-,于是有cos cos sin 1e yx xy x '=-=-. 4. 计算下列定积分:(1)1⎰; (2)221d x x x --⎰;(3) 设,0,2()sin ,2x x f x x x πππ⎧≤≤⎪⎪=⎨⎪≤≤;⎪⎩ ,求0()f x dx π⎰(4)⎰.解 (1)4321121433x ==⎰.(2)21222221101()()()dx x x dx x x dx x x dx x x --=-+-+--⎰⎰⎰⎰012322332101111111116322332x x x x x x -⎛⎫⎛⎫⎛⎫=++=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(3) ()2222022()sin 1cos 82xf x dx xdx xdx x ππππππππ=+=+=+-⎰⎰⎰(4)32322(2)(2)xdx x dx x dx =-=-+-⎰⎰⎰⎰232202115(2)(2)222x x x x =-+-=.5.设函数()f x 在区间[],a b 上连续,在(),a b 内可导,()0f x '≤,1()()xaF x f t dt x a =-⎰;证明:在(),a b 内有()0F x '≤. 证明 22111()()()()()()()()xx aa F x f t dt f x x a f x f t dt x a x a x a ⎡⎤'=-+=--⎢⎥⎣⎦---⎰⎰[][][]21()()()(),(,,)()x a f x x a f a x a b x a ξξ=---∈∈- (),((,)(,))x f x a b x aξηηξ-'=∈∈-. 由已知条件可知结论成立.习题 6-31. 计算下列积分:(1) 3sin()x dx πππ+3⎰; (2) 32(115)dx x 1-+⎰;(3)1-⎰; (4) 320sin cos d ϕϕϕπ⎰;(5)22cos udu ππ6⎰;(6)2e 1⎰(7)1;(8);(9)ln 3ln 2e e x xdx --⎰; (10) 3222dxx x +-⎰. 解 (1)333sin()sin()()[cos()]x dx x d x x ππππππππππ+=++=-+3333⎰⎰42coscos 033ππ=-+=. (2) 123322211(511)151(511)(115)5(511)10512dx d x x x x 11---+==-=+++⎰⎰. (3)1111(54)14x --=--==⎰⎰.(4)23342200011sin cos cos cos cos 44d d πππϕϕϕϕϕϕ=-==-⎰⎰.(5) 222221cos 211cos cos 2(2)224u udu du du ud u ππππππππ6666+==+⎰⎰⎰⎰2611sin 226264u πππππ⎛⎫=+=- ⎪⎝⎭ (6)222111)e e ===⎰⎰. (7) 令tan x t =,则2sec dx tdt =,当1x =时,4t π=;当x =3t π=; 于是332144cos 1sin sin t dt t tππππ==-=⎰. (8)令x t =,则dx tdt =,当0x =时,0t =;当x =,2t π=; 于是2222012cos (1cos 2)(sin 2)22tdt t dt t t ππππ==+==+⎰⎰.(9) 令xe t =,则1ln ,d x t x dt t==,当ln 2x =时,2t =;;当ln 3x =时,3t =;于是3ln3332ln 22221113111(ln ln )12222111x x dx dt t dt e e t t t t --⎛⎫====- ⎪---++⎝⎭⎰⎰⎰. (10)333222211111()ln 231232dx x dx x x x x x -=-=+--++⎰⎰1211(ln ln )ln 2ln 53543=-=- 2. 计算下列定积分: (1)10e xx dx -⎰; (2)e1ln x xdx ⎰;(3)41⎰; (4) 324sin xdx xππ⎰; (5) 220e cos x xdx π⎰; (6) 221log x xdx ⎰;(7)π2(sin )x x dx ⎰; (8) e1sin(ln )x dx ⎰.解 (1)1111000x x x xxe dx xde xe e dx ----=-=-+⎰⎰⎰1110121x e ee e e e----=--=--+=-.(2) 2222211111111111ln ln ln (1)222244e e e e ex xdx xdx x x xdx e x e ==-=-=+⎰⎰⎰.(3) 444111112ln 28ln 2dx x dx x ==-=-⎰⎰⎰8ln 24=-.(4)333324444cot cot cot sin xdx xd x x x xdx x ππππππππ=-=-+⎰⎰⎰34π131ln ln sin 4224xπππ⎛=+=+ ⎝.(5)22222222cos sin sin 2sin x x xx e xdx e d x e xe xdx ππππ==-⎰⎰⎰22222202cos 2cos 4cos x xx e e d x e e xe xdx πππππ=+=+-⎰⎰220e 24cos x e xdx ππ=--⎰于是221cos (2)5xe xdx e ππ=-⎰. (6) ()2222222111122221111log ln ln 2ln 22ln 211ln 2ln 22x xdx xdx x x xdx x x x ==-⎛⎫=- ⎪ ⎪⎝⎭⎰⎰⎰ 133(4ln 2)22ln 224ln 2=-=-. (7) 223200001111(sin )(1cos 2)(sin2)2232x x dx x x dx x x d x ππππ=-=-⎰⎰⎰ 33200011(sin 22sin2)cos26464x x x xdx xd x πππππ=--=-⎰⎰ 3001(cos 2cos2)64x x xdx πππ=--⎰ 3301sin 264864x πππππ=-+=-. (8)111sin(ln )sin(ln )cos(ln )eeex dx x x x dx =-⎰⎰11sin1cos(ln )sin(ln )eee x x x dx =--⎰1sin1cos11sin(ln )ee e x dx =-+-⎰所以11sin(ln )(sin1cos11)2ex dx e e =-+⎰. 3. 利用被积函数的奇偶性计算下列积分:(1)11ln(x dx -⎰ ; (2)1212sin 1xdx x -++⎰(3)222(x dx -+⎰; (4)4224cos d θθππ-⎰.解 (1)ln(x 是奇函数,11ln(0x dx -∴=⎰.(2) 2sin 1xx +是奇函数,121sin 01x dx x -∴=+⎰, 因此 111221112sin 22arctan 11x dx dx x x x π---+===++⎰⎰. (3)2222222((42416x dx dx dx ---=+==⎰⎰⎰.(4) ()244222022201cos 24cos 8cos 82212cos 2cos231384222d d d d θθθθθθθθθππππππ-π+⎛⎫== ⎪⎝⎭=++=⋅⋅⋅=⎰⎰⎰⎰.4. 证明下列等式: (1) 证明:1100(1)(1)m n n m x x dx x x dx -=-⎰⎰;(2) 证明:1122111xx dx dx x x =++⎰⎰ (0x >); (3) 设()f x 是定义在区间(,)-∞+∞上的周期为T 的连续函数,则对任意(,)a ∈-∞+∞,有0()()a TTaf x dx f x dx +=⎰⎰.证 (1)令1x t -=,则dx dt =-,当0x =时,1t =;当1x =时,0t =;于是1111(1)(1)()(1)(1)m nm nnmn m x x dx t t dt t t dt x x dx -=--=-=-⎰⎰⎰⎰,即11(1)(1)m n n m x x dx x x dx -=-⎰⎰.(2) 令1x t=则21dx dt t -=,于是11111112222211211111111111t xx t t dx dt t dt dx x tt x t t⎛⎫=⋅=-⋅==- ⎪++++⎝⎭+⎰⎰⎰⎰⎰d ,即 1122111xx dx dx x x =++⎰⎰. (3) 因为()()()a TT a Taaf x dx f x dx f x dx ++=+⎰⎰⎰,而()()()a Taaaf x dx x t T f t T dt f t dt +=++=⎰⎰⎰令()()()aT Taf x dx f x dx f x dx ==-⎰⎰⎰故()()a TT af x dx f x dx +=⎰⎰.4. 若()f t 是连续函数且为奇函数,证明0()xf t dt ⎰是偶函数;若()f t 是连续函数且为偶函数,证明()xf t dt ⎰是奇函数.证 令0()()xF x f t dt =⎰.若()f t 为奇函数,则()()f t f t -=-,令t u =-,可得()()()()()xx xF x f t dt f u du f u du F x --==--==⎰⎰⎰,所以0()()xF x f t dt =⎰是偶函数.若()f t 为偶函数,则()()f t f t -=,令t u =-,可得()()()()()xx xF x f t dt f u du f u du F x --==--=-=-⎰⎰⎰,所以0()()xF x f t dt =⎰是奇函数.5. 利用分部积分公式证明:()()()()d xxuf u x u du f x x du -=⎰⎰⎰.证 令0()()uF u f x dx =⎰则()()F u f u '=,则(())()()()xu x xxf x dx du F u du uF u uF u du '==-⎰⎰⎰⎰()()()()xx xxF x uf u du x f x dx uf u du =-=-⎰⎰⎰()()()()xxxxx f u du uf u du xf u du uf u du =-=-⎰⎰⎰⎰()()xx u f u du =-⎰. 习题6-41. 求由下列曲线所围成的平面图形的面积:(1) 2y x =与22y x =-; (2) x y e =与0x =及y e =; (3) 24y x =-与0y =; (4) 2y x =与y x =及2y x =;(5) 1y x=与y x =及2x =; (6) 2y x =与2y x =-; (7) ,x x y e y e -==与1x =;(8) sin (0)2y x x π=≤≤与0,1x y ==. 解 (1)两曲线的交点为(1,1),(1,1)-,取x 为积分变量,[]1,1x ∈-,面积元素22(2)dA x x dx =--,于是所求的面积为112311182(1)2()33A x dx x x --=-=-=⎰.(2) 曲线x y e =与y e =的交点坐标(1,)e , x y e =与0x =的交点为(0,1),取y 为积分变量,[]1,y e ∈,面积元素ln dA ydy =;于是所求面积为111ln (ln )1eee A ydy ydy y y y ===-=⎰⎰.(3)曲线24y x =-与0y =的交点为(2,0),(2,0)-,取x 为积分变量,[]2,2x ∈-,面积元素2(4)dA x dx =-,于是所求的面积为222322132(4)(4)33A x dx x x --=-=-=⎰. (4) 曲线2y x =与y x =的交点为(0,0),(1,1);2y x =与2y x =的交点为(0,0),(2,4);它们所围图形面积为:121222011(2)(2)(2)A x x dx x x dx xdx x x dx =-+-=+-⎰⎰⎰⎰2231201117()236x x x =+-=.(5) 曲线1y x =与y x =的交点为(1,1),1y x =与2x =的交点为1(2,)2;取x 积分变量,[]1,2x ∈,面积元素1()dA x dx x=-,于是所求的面积为22211113()(ln )ln 222A x dx x x x =-=-=-⎰.(6) 曲线2y x =与2y x =-的交点为()()114,2-,和,取y 作积分变量,[]1,2y ∈-,面积元素2(2)dA y y dy =+-,于是所求的面积为2222311117(2)(2)232A y y dy y y y --=+-=+-=⎰.(7) 曲线x y e =与x y e -=的交点(0,1),取x 作积分变量,[]0,1x ∈,面积元素()x x dA e e dx -=-,于是所求图形的面积为1)()2x x x x A e e dx e e e e--=-=+=+-⎰101(.(8)取x 作积分变量,0,2x π⎡⎤∈⎢⎥⎣⎦,面积元素(1sin )dA x dx =-,于是所求的面积为 220(1sin )(cos )12A x dx x x πππ=-=+=-⎰.2. 求由下列曲线围成的平面图形绕指定坐标轴旋转而成的旋转体的体积:(1) 1,4,0y x x y ====,绕x 轴;(2) 3,2,y x x x ==轴,分别绕x 轴与y 轴; (3) 22,y x x y ==,绕y 轴; (4) 22(5)1x y -+=,绕y 轴.解 (1)取x 作积分变量,[]1,4x ∈,体积元素2dV dx xdx ππ==,于是所求旋转体的体积为442111522V xdx x πππ===⎰. (2)绕x 轴旋转时,取x 作积分变量,[]0,2x ∈,体积元素32()x dV x dx π=,于是2267012877x V x dx x πππ===⎰; 同理可求平面图形绕y 旋转所成的旋转体的体积858223003642(4)55y V dy y y πππ⎡⎤=-=-=⎣⎦⎰.(3)曲线2y x =与2x y =的交点为(0,0),(1,1),取y 作积分变量[]0,1y ∈,体积元素222()dV y dy π⎡⎤=-⎣⎦,于是所求的旋转体的体积为1142500113()()2510V y y dx y y πππ=-=-=⎰. (4) 取y 作积分变量[]1,1y ∈-,体积元素22(5(520dV dy π⎡⎤=-=⎣⎦,于是所求的旋转体的体积为1212020102V πππ-==⋅=⎰.3.设某企业边际成本是产量Q (单位)的函数0.2()2QC Q e '=(万元/单位),其固定成本为090C =(万元),求总成本函数. 解 总成本函数为0.200()()290Q QQ C Q C Q dQ C e dQ '=+=+⎰⎰0.20.2010901080QQ Q e e =+=+.4.设某产品的边际收益是产量Q (单位)的函数()152R Q Q '=-(元/单位),试求总收益函数与需求函数. 解 总收益函数为20()(152)15QR Q Q dQ Q Q =-=-⎰需求函数为()15R Q P Q Q==-. 5.已知某产品产量的变化率是时间t (单位:月)的函数()25,0f t t t =+≥,问:第一个5月和第二个5月的总产量各是多少?解 设产品总产量为()Q t ,则()()Q t f t '=,第一个5月的总产量552510()(25)(5)50Q f t dt t dt t t ==+=+=⎰⎰. 第二个5月的总产量为10102102555()(25)(5)100Q f t dt t dt t t ==+=+=⎰⎰.6.某厂生产某产品Q (百台)的总成本()C Q (万元)的变化率为()2C Q '=(设固定成本为零),总收益()R Q (万元)的变化率为产量Q (百台)的函数()72R Q Q '=-.问: (1) 生产量为多少时,总利润最大?最大利润为多少?(2) 在利润最大的基础上又多生产了50台,总利润减少了多少? 解 (1)总利润()()()L Q R Q C Q =-当()0L Q '=即()()0R Q C Q ''-=即7220Q --=,2.5Q =(百台)时,总利润最大,此时的总成本和总收益分别为2.5 2.52.50()225C C Q dQ dQ Q'====⎰⎰2.52.52.520()(72)(7)11.25R R Q dQ Q dQ Q Q '==-=-=⎰⎰总利润11.255 6.25L R C =-=-=(万元).即当产量为2.5(百台)时,总利润最大,最大利润是6.25万元.(2)在利润最大的基础上又生产了50台,此时产量为3百台,总成本3300()26C C Q dQ dQ '===⎰⎰,总收入3323000()(72)(7)12R R Q dQ Q dQ Q Q '==-=-=⎰⎰, 总利润为1266L R C =-=-=(万元).减少了6.2560.25-=万元.即在利润最大的基础上又生产了50台时,总利润减少了0.25万元.习题 6-51. 判断下列反常积分的敛散性,若收敛,则求其值: (1)41dxx+∞⎰; (2)1+∞⎰; (3) 0xe dx +∞-⎰(a >0); (4)sin xdx +∞⎰;(5)1-⎰; (6)222dxx x +∞-∞++⎰;(7)21⎰; (8)10ln x xdx ⎰;(9)e1⎰; (10)23(1)dxx -⎰.解 (1)14311133dx x x +∞+∞=-=⎰.此反常积分收敛.(2)1+∞==+∞⎰.此反常积分发散. (3) 11x xe dx e +∞--+∞=-=⎰.此反常积分收敛.(4) 00sin cos lim cos 1x xdx xx +∞+∞→+∞=-=-+⎰不存在,此反常积分发散.(5)111arcsin x π--==⎰.此反常积分收敛.(6)22(1)arctan(1)22(1)1dxd x x x x x π+∞+∞+∞-∞-∞-∞+==+=++++⎰⎰.此反常积分收敛.(7)23222110012lim lim (1)3x εεεε+++→→+⎡==-+⎢⎣⎰⎰320222lim 22333εε+→⎛==-- ⎝.此反常积分收敛. (8)11122221000111111ln limln lim ln lim ln 222424x xdx xdx x x xdx εεεεεεεεε→→→⎛⎫⎛⎫==-=-- ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰, 所以11220001111ln lim ln lim (ln )4244x xdx x xdx εεεεεε++→→==--=-⎰⎰.此反常积分收敛.(9)111πarcsin(ln )2eeex ===⎰⎰.此反常积分收敛. (10)21233301(1)(1)(1)dx dx dxx x x =+---⎰⎰⎰, 因为反常积分1132001(1)(1)dx x x ==∞--⎰发散,所以反常积分230(1)dxx -⎰发散. 2. 当k 为何值时,反常积分+2(ln )kdxx x ∞⎰收敛?当k 为何值时,这反常积分发散? 解 当1k =时,++222ln ln(ln )ln ln dxd x x x x x∞∞+∞===+∞⎰⎰,发散.当1k ≠时,1++122211(ln )(1)(ln 2)(ln )ln (ln )11kk kk k dx x k x d x x x kk -∞∞--+∞⎧>⎪-===⎨-⎪+∞<⎩⎰⎰所以,当1k >时,此广义积分收敛;当1k ≤时,此广义积分发散. 3. 利用递推公式计算反常积分+0e n x n I x dx ∞-=⎰.解 ++110n x n xn x n n I x de x e n x e dx nI ∞∞----+∞-=-=-+=⎰⎰,因为 +101x x xI xde xe e ∞---+∞+∞=-=--=⎰,所以 121(1)(1)2!n n n I nI n n I n n I n --==-=-= .复习题6(A )1、 求下列积分:(1)121tan sin 1xdx x -+⎰; (2)⎰; (3)2x⎰; (4)ln 0⎰;(5)21220(1)x dx x +⎰; (6)1⎰;(7)120x x e dx -⎰; (8)21(ln )ex dx ⎰;(9) 401cos 2xdx xπ+⎰; (10) 20cos x e xdx π-⎰;(11) 20sin 1cos x xdx xπ++⎰; (12) 40ln(1tan )x dx π+⎰. 解 (1) 因为被积函数2tan sin 1x x +是奇函数,所以121tan 0sin 1xdx x -=+⎰.(2)=⎰⎰,令1sin x t -=,则cos dx tdt =;当0x =时,2t π=-;当1x =时,0t =;所以022221cos 2sin 2cos 2244t t t tdt dt ππππ---+⎡⎤===+=⎢⎥⎣⎦⎰⎰⎰. (3) 令2sin x t =,则2cos dx tdt =,当0x =时,0t =;当2x =时,2t π=;所以222222204sin 4cos 4sin 22(1cos 4)xt tdt tdt t dt πππ=⋅==-⎰⎰⎰⎰2012(sin 4)4t t ππ=-=. (4)t =,则221tdx dt t =+,当0x =时,0t =;当ln 2x =时,1t =;所以2ln 11200022(arctan )2(1)14t dt t t t π==-=-+⎰⎰. (5) 令tan x t =,则2sec dx tdt =,当0x =时,0t =;当1x =时,4t π=;所以22412442240000tan 1cos 2sin 21sec ()(1)sec 22484x t t t t dx tdt dt x t ππππ-===-=-+⎰⎰⎰.(6) 令sec x t =,则sec tan dx t tdt =,当1x =时,0t =;当2x =时,3t π=;所以223330100tan sec tan tan (tan )sec 3t dx t tdt tdt t t x t ππππ===-=⎰⎰⎰. (7)111112221000022xxx x x x e dx x dex exe dx e xde ------=-=-+=--⎰⎰⎰⎰1111110223225x x x e xe e dx e e e ------=--+=--=-⎰.(8)22111111(ln )ln 2ln 2ln 22ee e e ex dx x x x x dx e x x dx e x=-⋅=-+=-⎰⎰⎰.(9) 44440000tan tan tan 1cos 2x dx xd x x x xdx x ππππ==-+⎰⎰⎰ 401ln cos ln 2442x πππ=+=-. (10)2222cos cos cos sin xxxx e xdx xdee x e xdx ππππ----=-=--⎰⎰⎰2220001sin 1sin cos xxx xdee x e xdx πππ---=+=+-⎰⎰221cos x ee xdx ππ--=+-⎰,所以 2201cos (1)2xe xdx e ππ--=+⎰.(11)22222000002sin sin cos tan 1cos 1cos 21cos 2cos2x x x x x d x dx dx dx xd x x x x πππππ+=+=-+++⎰⎰⎰⎰⎰2220002200tan tan ln(1cos )222ln cos ln(1cos )22x x x dx x x x ππππππ=--+=--+⎰20ln 22ln cos222x πππ=++=. (12) 4444000cos sin ln(1tan )ln ln(cos sin )ln cos cos x x x dx dx x x dx xdx xππππ++==+-⎰⎰⎰⎰令4x u π-=,可得0440041ln(cos sin )ln cos()(ln 2ln cos )42x x dx x dx u du ππππ⎤+=-=-+⎥⎦⎰⎰⎰40ln 2ln cos 8xdx ππ=+⎰所以40ln 2ln(1tan )8x dx ππ+=⎰.2、设()f x 在[],a b 上连续,且()1baf x dx =⎰,求()b af a b x dx +-⎰.解 令a b x t +-=,则dx dt =-,当x a =时,t b =;当x b =时,t a =;所以()()()1bababaf a b x dx f t dt f t dt +-=-==⎰⎰⎰.3、设()f x 为连续函数,试证明:()()(())xx tf t x t dt f u du dt -=⎰⎰⎰.证 用分部积分法,(())()(())xxt tx tf u du dt t f u du td f u du =-⎰⎰⎰⎰⎰()()()()xx x xx f u du tf t dt xf t dt tf t dt =-=-⎰⎰⎰⎰()()xf t x t dx =-⎰.4、设()u ϕ为连续函数,试证明:220()2()aa ax dx x dx ϕϕ-=⎰⎰.证2220()()()aaaax dx x dx x dx ϕϕϕ--=+⎰⎰⎰,令x t =-,则0022220()(())()()a aaax dx t dt t dt x dx ϕϕϕϕ-=--==⎰⎰⎰⎰所以022220()()()2()aa aaax dx x dx x dx x dx ϕϕϕϕ--=+=⎰⎰⎰⎰.5、计算下列反常积分:(1)2048dxx x +∞++⎰; (2)21arctan x dx x+∞⎰; (3)1⎰; (4)1e ⎰ 解 (1)222000(2)12arctan 48(2)2228dx d x x x x x π+∞+∞+∞++===++++⎰⎰. (2)221111arctan 1arctan 1arctan (1)x x dx xd dx x x x x x +∞+∞+∞+∞=-=-++⎰⎰⎰ 22111lnln 242142xx ππ+∞=+=++.(3)1110022π⎡===⎣⎰⎰.(4)112ee ===⎰⎰. 6、求抛物线22y px =及其在点(,)2pp 处的法线所围成的平面图形的面积. 解 抛物线22y px =在点(,)2p p 处的法线方程为32x y p +=,两曲线的交点为9(,3),(,)22pp p p -;取y 作积分变量3p y p -≤≤,所求的平面图形面积为 2232333131116()()222263ppp pA p y y dy py y y p p p --=--=--=⎰. 7、求由曲线32y x =与直线4,x x =轴所围图形绕y 轴旋转而成的旋转体的体积.解 曲线32y x =与直线4x =的交点为(4,8),取y 作积分变量,08y ≤≤,体积元素2232434()(16)dy y dy y dy ππ⎡⎤=-=-⎣⎦于是,所求的旋转体的体积为8847003512(16)(16)77V y dy y y πππ=-=-=⎰.8、设某产品的边际成本为()2C Q Q '=-(万元/台),其中Q 代表产量,固定成本022C ==(万元),边际收益()204R Q Q '=-(万元/台).试求: (1) 总成本函数和总收益函数; (2) 获得最大利润时的产量;(3) 从最大利润时的产量又生产了4台,总利润的变化.解 (1)总成本函数2001()(2)2222Q C Q Q dQ C Q Q =-+=-+⎰, 总收益函数20()(204)202QR Q Q dQ Q Q =-=-⎰.(2)利润函数23()()()18222L Q R Q C Q Q Q =-=--,令()0L Q '=,得6Q =(台),而(6)30L ''=-<,所以当产量6Q =(台)时,利润最大.(3)(10)(6)83224L L -=-=-,所以从最大利润时的产量又生产了4台,总利润减少了24(万元).(B) 1、填空题:(1)202cos x d x t dt dx=⎰ . (2) 设()f x 连续,220()()x F x xf t dt =⎰,则()F x '= .(3) 20sin()xd x t dt dx -=⎰ . (4) 设()f x 连续,则220()xd tf x t dt dx -=⎰ . (5) 设20cos ()1sin xt f x dt t=+⎰,则220()1()f x dx f x π'=+⎰ . (6) 设()f x 连续,且1()2()f x x f x dx =+⎰,,则()f x = .(7) 设()f x 连续,且()1cos xtf x t dt x -=-⎰,则20()f x dx π=⎰ .(8)2ln e dxx x +∞=⎰ .解 (1) 2220002224cos (cos )cos (cos )2x x x d d x t dt x t dt t dt x x x dx dx==+-⋅⎰⎰⎰2224cos 2cos xt dt x x =-⎰.(2) 2222200()(())()()2x x d F x x f t dt f t dt x f x x dx '==+⋅⋅⎰⎰ 22220()2()x f t dt x f x =+⎰.(3) 令x t u -=,则02220sin()sin ()sin xxxx t dt u du u du -=-=⎰⎰⎰所以22200sin()sin sin x x d d x t dt u du x dx dx -==⎰⎰. (4)令22x t u -= 则222222001()()()2x x tf x t dt f x t d x t -=---⎰⎰220011()()22x x f u du f u du =-=⎰⎰.所以2222001()()()2x x d d tf x t dt f u du xf x dx dx -=⋅=⎰⎰. (5)22200()arctan ()arctan ()arctan (0)1()2f x dx f x f f f x πππ'==-+⎰, 而02222000cos cos (0)0,()arctan(sin )1sin 21sin 4t t f dt f dt t t t ππππ=====++⎰⎰,所以220()arctan1()4f x dx f x ππ'=+⎰(6) 等式1()2()f x x f x dx =+⎰两边在区间[]0,1积分得1111001()2()2()2f x dx xdx f x dx f x dx =+=+⎰⎰⎰⎰11()2f x dx =-⎰, 所以 ()1f x x =-.(7)令x t u -=,则du dt =-,于是00()()()xxtf x t dt x u f u du -=-⎰⎰原等式化为 0()()1cos xxx f u du uf u du x -=-⎰⎰两边对x 求导()sin xf u du x =⎰在上式中,令2x π=,得()1xf x dx =⎰.(8)22ln 11ln ln ln ee edx d x x x x x +∞+∞+∞==-=⎰⎰ 2、计算下列积分:(1) 120ln(1)(2)x dx x +-⎰; (2)3142(1)x x dx -⎰;(3)31(2)f x dx -⎰,其中21()x x f x e-⎧+=⎨⎩0x x ≤>; (4)()f x dx π⎰,其中0sin ()xtf x dt tπ=-⎰. 解 (1) 111120000ln(1)1ln(1)ln(1)(2)22(1)(2)x x dxdx x d x x x x x ++=+=----+-⎰⎰⎰ 1100111111ln 2()ln 2ln ln 2312323x dx x x x +=--=-=+--⎰. (2) 令2sin x t =,则331144242222200001111cos 2(1)(1)cos ()2222t x x dx x dx tdt dt ππ+-=-==⎰⎰⎰⎰220011cos 41313(12cos 2)(sin 2sin 4)8282832t t dt t t t πππ+=++=++=⎰. (3) 令2x t -=,则dx dt =,当1x =时,1t =-;当3x =时,1t =;于是3101111(2)()()()f x dx f t dt f x dx f x dx ---==+⎰⎰⎰⎰12171(1)3x x dx e dx e--=++=-⎰⎰. (4) 由题设有sin ()xf x xπ'=-,用分部积分法得 00000sin sin ()()()t x f x dx xf x xf x dx dt x dx tx ππππππππ'=-=---⎰⎰⎰⎰ 000sin sin sin ()x x xdx x dx x dx x x xππππππππ=-=----⎰⎰⎰ 0sin 2xdx π==⎰.3、设13201()()1f x x f x dx x =++⎰,求10()f x dx ⎰. 解 等式两边在区间[]0,1上积分得11113200001()()1f x dx dx f x dx x dx x =+⋅+⎰⎰⎰⎰11100011arctan ()()444x f x dx f x dx π=+=+⎰⎰解得1()3f x dx π=⎰.4、求函数2()(1)x t f x t e dt -=-⎰的极值.解 令222()(1)22(1)(1)0x x f x x e x x x x e --'=-⋅=--+=,得函数()f x 的驻点:1,0,1-;当1x <-时,()0f x '>;当10x -<<时,()0f x '<; 当01x <<时,()0f x '>;当1x >时,()0f x '<;所以函数()f x 在0x =处取得极小值(0)0f =,在1x =±处取得极大值:11(1)(1)t f t e dt e-±=-=⎰. 5、设21sin ()x tf x dt t=⎰,求10()xf x dx ⎰.解 用分部积分法得221211122220011001sin 1sin 1sin ()2222x x t t x xf x dx dt dx x dt x xdx t t x ⎡⎤⎡⎤==-⋅⋅⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰⎰112220011cos11sin cos 222x dx x -=-==⎰.6、求曲线(1)(2)y x x =--和x 轴围成的平面图形绕y 轴旋转所成的旋转体体积. 解 抛物线(1)(2)y x x =--的顶点坐标为31(,)24-,左、右半支方程分别为:11()(32x y =-和21()(32x y =+;取y 作积分变量,104y -≤≤;体积元素为2221(())(())3dV x y x y dy π⎡⎤=-=⎣⎦,因此所求的旋转体的体积为0302114433(14)(14)422V y y πππ--==+=+=⎰⎰.7、设2()()()xax x t f t dt Φ=-⎰,证明:()2()()xax x t f t dt 'Φ=-⎰.证 2222()(2)()()2()()xxx xaaaax x xt t f t dt xf t dt x tf t dt t f t dt Φ=-+=-+⎰⎰⎰⎰,所以()22()()2()()xx xaaax xf t dt x tf t dt t f t dt ''Φ=-+⎰⎰⎰222()()2()2()()xxa ax f t dt x f x tf t dt x xf x x f x =+--⋅+⎰⎰2()2()2()()xx xaaaxf t dt tf t dt x t f t dt =-=-⎰⎰⎰.8、设连续函数()f x 满足(2)2()f x f x =,证明:2110()7()xf x dx xf x dx =⎰⎰. 证 202110()()()xf x dx xf x dx xf x dx =+⎰⎰⎰, 令2x t =,则21110000()2(2)(2)42()8()xf x dx tf t d t t f t dt xf x dx ==⋅=⎰⎰⎰⎰, 所以 202110()()()xf x dx xf x dx xf x dx =+⎰⎰⎰ 111000()8()7()xf x dx xf x dx xf x dx =-+=⎰⎰⎰.。