aassymbols

合集下载

symbols

symbols


Short form 单词缩略 ref = reference co. = company ad. = advertisement info = information usu =usually bio = biology chem = chemistry max = maximum min = minimum intro = introduction esp = especially subj = subject tel = telephone
句子简化训练原则 1. 用最少的语言来记录大量语言表达的信息, 即关键词,如名词,动词,数量词,日期,地 名,人名。 Eg: “Last Saturday my classmates and I went on a picnic.” 这句话可这样笔记 .Sat, I & classzs, picnic “China and Europe have been trading with each other for more than 2,000 years.” 可这样记 Chi & Euro, trade, >2,000 yrs.
象形符号
O 圆圈代表地球,横线表示赤道,所以 这个符号就可以表示国际的、世界的、 全球的等: international, worldwide, global, universal, etc.
U U 看酷似一个酒杯,在笔记中表示合同、 协议(treaty, agreement)一般只有在谈 判成功、协议成交后才会表示"举杯祝贺"。 如果在U内填入2××××,就可以表示 为bilateral(双边的), 填入3表示为 trilateral(三边的)。填入在U中填入1表示: Unilateralism(单边主义),填入m (multiple) 表示多边主义。如果在U上加一 个"/"××××表示谈判破裂。

英语作文各种符号的含义

英语作文各种符号的含义

英语作文各种符号的含义Symbols Commonly Used in English Writing.In English writing, various symbols are employed to convey specific meanings or functions. Understanding these symbols is essential for effective communication and interpretation of texts. Here's an overview of some of the most commonly used symbols:Punctuation Marks.Period (.): Indicates the end of a declarativesentence or the abbreviation of a word or phrase (e.g., Dr., U.S.A.).Comma (,): Separates elements in a list, clauses in a sentence, or introduces non-essential information.Semicolon (;): Connects two closely related independent clauses or separates items in a complex list.Colon (:): Introduces a list, explanation, or a direct quotation.Question Mark (?): Indicates the end of an interrogative sentence.Exclamation Mark (!): Expresses strong emotions or emphasizes a statement.Mathematical Symbols.Equal Sign (=): Indicates equality or equivalence.Plus Sign (+): Represents addition.Minus Sign (-): Represents subtraction.Division Sign (/ or ÷): Represents division.Multiplication Sign (× or ): Represents multiplication.Greater Than Sign (>): Indicates that one quantity is greater than another.Less Than Sign (<): Indicates that one quantity is less than another.Logical Symbols.Parentheses (): Group together related elements or expressions.Braces {}: Enclose sets or collections of items.Brackets []: Indicate optional information or provide additional clarification.Slash (/): Used in alternative choices or to indicate a fraction.Asterisk (): Marks important or noteworthy information or acts as a reference point.Units of Measurement.Inches (in): Measurement of length.Feet (ft): Measurement of length.Miles (mi): Measurement of distance.Pounds (lb): Measurement of weight.Ounces (oz): Measurement of weight.Gallons (gal): Measurement of liquid volume.Currency Symbols.Dollar Sign ($): Represents various currencies, including the United States dollar.Euro Sign (€): Represents the euro, the currency of the European Union.Pound Sign (£): Represents the British pound sterling.Yen Sign (¥): Represents the Japanese yen.Rupee Sign (₹): Represents the Indian rupee.Copyright and Trademark Symbols.Copyright Symbol (©): Indicates the owner's exclusive right to copy and distribute a work.Trademark Symbol (™): Identifies a brand or product that is protected from unauthorized use.Service Mark Symbol (℠): Similar to the trademark symbol but used for services rather than products.Other Symbols.Ampersand (&): Represents the word "and."Apostrophe ('): Indicates possession, plurals, or omitted letters.Hyphen (-): Connects words to form compound words or separates syllables.Ellipsis (...): Indicates an omission or a pause in thought.Quotation Marks (" "): Enclose direct quotations or cited material.。

Signs和Symbols之间的区别与关系

Signs和Symbols之间的区别与关系

Signs和Symbols之间的区别与关系霍伟潮&王梦筝在开始这⼀次的课题之前,我们先贴上Sign和Symbol的英⽂诠释。

Sign:Noun1. a perceptible indication of something not immediately apparent (as a visible clue that somethinghas happened);2. a public display of a (usually written) message;"he posted signs in all the shop windows"3. any communication that encodes a message;4. structure displaying a board on which advertisements can be posted;5. (astrology) one of 12 equal areas into which the zodiac is divided6. (medicine) any objective evidence of the presence of a disorder or disease;"there were no signs of asphixiation"7. having an indicated pole (as the distinction between positive and negative electric charges);8. an event that is experienced as indicating important things to come;9. a gesture that is part of a sign language10. a fundamental linguistic unit linking a signifier to that which is signified;"The bond between the signifier and the signified is arbitrary"--de Saussure11. a character indicating a relation between quantities;"don't forget the minus sign"Verb1. mark with one's signature; write one's name (on);2. approve and express assent, responsibility, or obligation;3. be engaged by a written agreement;4. engage by written agreement;5. communicate silently and non-verbally by signals or signs;6. place signs, as along a road;7. communicate in sign language;"I don't know how to sign, so I could not communicate with my deaf cousin"8. make the sign of the cross over someone in order to call on God for protection; consecrateAdjective1. used of the language of the deafSymbol:Noun1. an arbitrary sign (written or printed) that has acquired a conventional significance2. something visible that by association or convention represents something else that is invisible;"the eagle is a symbol of the United States"可以看到,Sign的含义要⽐Symbol丰富得多。

symbols

symbols

The Comprehensive L A T E X Symbol ListScott Pakin<pakin@>∗29September2003AbstractThis document lists2826symbols and the corresponding L A T E X commands that produce them.Some of these symbols are guaranteed to be available in every L A T E X2εsystem;others require fonts and packagesthat may not accompany a given distribution and that therefore need to be installed.All of the fontsand packages used to prepare this document—as well as this document itself—are freely available from theComprehensive T E X Archive Network().Contents1Introduction61.1Document Usage (6)1.2Frequently Requested Symbols (6)2Body-text symbols7 Table1:L A T E X2εEscapable“Special”Characters (7)Table2:L A T E X2εCommands Defined to Work in Both Math and Text Mode (7)Table3:Predefined L A T E X2εText-mode Commands (7)Table4:Non-ASCII Letters(Excluding Accented Letters) (8)Table5:Letters Used to Typeset African Languages (8)Table6:Punctuation Marks Not Found in OT1 (8)Table7:pifont Decorative Punctuation Marks (8)Table8:wasysym Phonetic Symbols (8)Table9:tipa Phonetic Symbols (8)Table10:wsuipa Phonetic Symbols (10)Table11:phonetic Phonetic Symbols (10)Table12:Text-mode Accents (11)Table13:tipa Text-mode Accents (11)Table14:wsuipa Text-mode Accents (12)Table15:phonetic Text-mode Accents (13)Table16:wsuipa Diacritics (13)Table17:textcomp Diacritics (13)Table18:textcomp Currency Symbols (13)Table19:marvosym Currency Symbols (14)Table20:wasysym Currency Symbols (14)Table21:eurosym Euro Signs (14)Table22:textcomp Legal Symbols (14)Table23:textcomp Old-style Numerals (14)Table24:Miscellaneous textcomp Symbols (15)Table25:Miscellaneous wasysym Text-mode Symbols (15)Table26:A M S Commands Defined to Work in Both Math and Text Mode (15)∗The original version of this document was written by David Carlisle,with several additional tables provided by Alexander Holt.See Section7.6on page69for more information about who did what.13Mathematical symbols16 Table27:Binary Operators (16)Table28:A M S Binary Operators (16)Table29:stmaryrd Binary Operators (17)Table30:wasysym Binary Operators (17)Table31:txfonts/pxfonts Binary Operators (17)Table32:mathabx Binary Operators (18)Table33:ulsy Geometric Binary Operators (18)Table34:mathabx Geometric Binary Operators (18)Table35:Variable-sized Math Operators (18)Table36:A M S Variable-sized Math Operators (19)Table37:stmaryrd Variable-sized Math Operators (19)Table38:wasysym Variable-sized Math Operators (19)Table39:mathabx Variable-sized Math Operators (19)Table40:txfonts/pxfonts Variable-sized Math Operators (20)Table41:esint Variable-sized Math Operators (20)Table42:Binary Relations (21)Table43:A M S Binary Relations (21)Table44:A M S Negated Binary Relations (21)Table45:stmaryrd Binary Relations (21)Table46:wasysym Binary Relations (21)Table47:txfonts/pxfonts Binary Relations (22)Table48:txfonts/pxfonts Negated Binary Relations (22)Table49:mathabx Binary Relations (22)Table50:mathabx Negated Binary Relations (23)Table51:trsym Binary Relations (23)Table52:trfsigns Binary Relations (23)Table53:Subset and Superset Relations (23)Table54:A M S Subset and Superset Relations (23)Table55:stmaryrd Subset and Superset Relations (24)Table56:wasysym Subset and Superset Relations (24)Table57:txfonts/pxfonts Subset and Superset Relations (24)Table58:mathabx Subset and Superset Relations (24)Table59:Inequalities (24)Table60:A M S Inequalities (24)Table61:wasysym Inequalities (25)Table62:txfonts/pxfonts Inequalities (25)Table63:mathabx Inequalities (25)Table64:A M S Triangle Relations (25)Table65:stmaryrd Triangle Relations (25)Table66:mathabx Triangle Relations (25)Table67:Arrows (26)Table68:Harpoons (26)Table69:textcomp Text-mode Arrows (26)Table70:A M S Arrows (26)Table71:A M S Negated Arrows (26)Table72:A M S Harpoons (26)Table73:stmaryrd Arrows (27)Table74:txfonts/pxfonts Arrows (27)Table75:mathabx Arrows (27)Table76:mathabx Negated Arrows (27)Table77:mathabx Harpoons (28)Table78:chemarrow Arrows (28)Table79:ulsy Contradiction Symbols (28)Table80:Extension Characters (28)Table81:stmaryrd Extension Characters (28)Table82:txfonts/pxfonts Extension Characters (28)2Table83:mathabx Extension Characters (28)Table84:Log-like Symbols (29)Table85:A M S Log-like Symbols (29)Table86:Greek Letters (29)Table87:A M S Greek Letters (29)Table88:txfonts/pxfonts Upright Greek Letters (30)Table89:upgreek Upright Greek Letters (30)Table90:txfonts/pxfonts Variant Latin Letters (30)Table91:A M S Hebrew Letters (30)Table92:Letter-like Symbols (30)Table93:A M S Letter-like Symbols (31)Table94:txfonts/pxfonts Letter-like Symbols (31)Table95:mathabx Letter-like Symbols (31)Table96:trfsigns Letter-like Symbols (31)Table97:A M S Delimiters (31)Table98:stmaryrd Delimiters (31)Table99:mathabx Delimiters (31)Table100:nath Delimiters (31)Table101:Variable-sized Delimiters (32)Table102:Large,Variable-sized Delimiters (32)Table103:Variable-sized stmaryrd Delimiters (32)Table104:mathabx Variable-sized Delimiters (32)Table105:nath Variable-sized Delimiters(Double) (33)Table106:nath Variable-sized Delimiters(Triple) (33)Table107:textcomp Text-mode Delimiters (33)Table108:Math-mode Accents (34)Table109:A M S Math-mode Accents (34)Table110:yhmath Math-mode Accents (34)Table111:trfsigns Math-mode Accents (34)Table112:Extensible Accents (35)Table113:overrightarrow Extensible Accents (35)Table114:yhmath Extensible Accents (35)Table115:A M S Extensible Accents (35)Table116:chemarr Extensible Accents (36)Table117:chemarrow Extensible Accents (36)Table118:mathabx Extensible Accents (36)Table119:esvect Extensible Accents (37)Table120:undertilde Extensible Accents (37)Table121:Dots (37)Table122:A M S Dots (37)Table123:mathdots Dots (38)Table124:yhmath Dots (38)Table125:Miscellaneous L A T E X2εSymbols (38)Table126:Miscellaneous A M S Symbols (38)Table127:Miscellaneous wasysym Symbols (38)Table128:Miscellaneous txfonts/pxfonts Symbols (38)Table129:Miscellaneous mathabx Symbols (39)Table130:Miscellaneous textcomp Text-mode Math Symbols (39)Table131:mathcomp Math Symbols (39)Table132:gensymb Symbols Defined to Work in Both Math and Text Mode (39)Table133:mathabx Mayan Digits (39)Table134:marvosym Math Symbols (39)Table135:Math Alphabets (40)34Science and technology symbols41 Table136:wasysym Electrical and Physical Symbols (41)Table137:ifsym Pulse Diagram Symbols (41)Table138:ar Aspect Ratio Symbol (41)Table139:textcomp Text-mode Science and Engineering Symbols (41)Table140:wasysym Astronomical Symbols (41)Table141:marvosym Astronomical Symbols (42)Table142:mathabx Astronomical Symbols (42)Table143:wasysym Astrological Symbols (42)Table144:marvosym Astrological Symbols (42)Table145:mathabx Astrological Symbols (42)Table146:wasysym APL Symbols (42)Table147:wasysym APL Modifiers (42)Table148:marvosym Computer Hardware Symbols (43)Table149:ascii Control Characters(IBM) (43)Table150:marvosym Communication Symbols (43)Table151:marvosym Engineering Symbols (43)Table152:wasysym Biological Symbols (43)Table153:marvosym Biological Symbols (43)Table154:marvosym Safety-related Symbols (44)5Dingbats45 Table155:bbding Arrows (45)Table156:pifont Arrows (45)Table157:marvosym Scissors (45)Table158:bbding Scissors (45)Table159:pifont Scissors (45)Table160:dingbat Pencils (45)Table161:bbding Pencils and Nibs (46)Table162:pifont Pencils and Nibs (46)Table163:dingbat Hands (46)Table164:bbding Hands (46)Table165:pifont Hands (46)Table166:bbding Crosses and Plusses (46)Table167:pifont Crosses and Plusses (46)Table168:bbding Xs and Check Marks (46)Table169:pifont Xs and Check Marks (47)Table170:wasysym Xs and Check Marks (47)Table171:pifont Circled Numbers (47)Table172:wasysym Stars (47)Table173:bbding Stars,Flowers,and Similar Shapes (47)Table174:pifont Stars,Flowers,and Similar Shapes (48)Table175:wasysym Geometric Shapes (48)Table176:ifsym Geometric Shapes (48)Table177:bbding Geometric Shapes (49)Table178:pifont Geometric Shapes (49)Table179:universa Geometric Shapes (49)Table180:manfnt Dangerous Bend Symbols (49)Table181:skull Symbols (49)Table182:Non-Mathematical mathabx Symbols (49)Table183:marvosym Information Symbols (49)Table184:Miscellaneous dingbat Dingbats (50)Table185:Miscellaneous bbding Dingbats (50)Table186:Miscellaneous pifont Dingbats (50)46Other symbols51 Table187:textcomp Genealogical Symbols (51)Table188:wasysym General Symbols (51)Table189:wasysym Musical Notes (51)Table190:wasysym Circles (51)Table191:Miscellaneous manfnt Symbols (51)Table192:marvosym Navigation Symbols (52)Table193:marvosym Laundry Symbols (52)Table194:Other marvosym Symbols (52)Table195:Miscellaneous universa Symbols (52)Table196:ifsym Weather Symbols (53)Table197:ifsym Alpine Symbols (53)Table198:ifsym Clocks (53)Table199:Other ifsym Symbols (53)Table200:skak Chess Informator Symbols (54)7Additional Information557.1Symbol Name Clashes (55)7.2Where can Ifind the symbol for...? (55)7.3Math-mode spacing (64)7.4Bold mathematical symbols (65)7.5ASCII and Latin1quick reference (66)7.6About this document (69)References69 Index7151IntroductionWelcome to the Comprehensive L A T E X Symbol List!This document strives to be your primary source of L A T E X symbol information:font samples,L A T E X commands,packages,usage details,caveats—everything needed to put thousands of different symbols at your disposal.All of the fonts covered herein meet the following criteria:1.They are freely available from the Comprehensive T E X Archive Network().2.All of their symbols have L A T E X2εbindings.That is,a user should be able to access a symbol by name,not just by\char number .These are not particularly limiting criteria;the Comprehensive L A T E X Symbol List contains samples of2826 symbols—quite a large number.Some of these symbols are guaranteed to be available in every L A T E X2εsystem; others require fonts and packages that may not accompany a given distribution and that therefore need to be installed.See /cgi-bin/texfaq2html?label=instpackages+wherefiles for help with installing new fonts and packages.1.1Document UsageEach section of this document contains a number of font tables.Each table shows a set of symbols,with the corresponding L A T E X command to the right of each symbol.A table’s caption indicates what package needs to be loaded in order to access that table’s symbols.For example,the symbols in Table23,“textcomp Old-Style Numerals”,are made available by putting“\usepackage{textcomp}”in your document’s preamble.“A M S”means to use the A M S packages,viz.amssymb and/or amsmath.Notes below a table provide additionalinformation about some or all the symbols in that table.One note that appears a few times in this document,particularly in Section2,indicates that certain symbols do not exist in the OT1font encoding(Donald Knuth’s original,7-bit font encoding,which is the default font encoding for L A T E X)and that you should use fontenc to select a different encoding,such as T1 (a common8-bit font encoding).That means that you should put“\usepackage[ encoding ]{fontenc}”in your document’s preamble,where encoding is,e.g.,T1or LY1.To limit the change in font encoding to the current group,use“\fontencoding{ encoding }\selectfont”.Section7contains some additional information about the symbols in this document.It shows which symbol names are not unique across packages,gives examples of how to create new symbols out of existing symbols, explains how symbols are spaced in math mode,presents a L A T E X ASCII and Latin1tables,and provides some information about this document itself.The Comprehensive L A T E X Symbol List ends with an index of all the symbols in the document and various additional useful terms.1.2Frequently Requested SymbolsThere are a number of symbols that are requested over and over again on comp.text.tex.If you’re looking for such a symbol the following list will help youfind it quickly.,as in“Spaces significant.” (7)´ı,`ı,¯ı,ˆı,etc.(versus´i,`i,¯i,andˆi) (11)¢ (13)e (14)©,®,and™ (14)‰ (15) (20)∴ (21)and (22)and (24)... (38)°,as in“180°”or“15℃” (39)L,F,etc (40)N,Z,R,etc (40)−R (58)´¯a,`ˆe,etc.(i.e.,several accents per character)60 <,>,and|(instead of¡,¿,and—) (66)ˆand˜(or∼) (67)62Body-text symbolsThis section lists symbols that are intended for use in running text,such as punctuation marks,accents, ligatures,and currency symbols.Table1:L A T E X2εEscapable“Special”Characters$\$%\%\_∗}\}&\&#\#{\{∗The underscore package redefines“_”to produce an underscore in text mode(i.e.,itmakes it unnecessary to escape the underscore character).Table2:L A T E X2εCommands Defined to Work in Both Math and Text Mode$\$\_‡\ddag{\{¶\P c○©\copyright...\dots}\}§\S†\dag£\poundsWhere two symbols are present,the left one is the“faked”symbol that L A T E X2εprovides by default,and the right one is the“true”symbol that textcomp makesavailable.Table3:Predefined L A T E X2εText-mode Commandsˆ\textasciicircum<\textless˜\textasciitilde aª\textordfeminine∗\textasteriskcentered oº\textordmasculine\\textbackslash¶\textparagraph|\textbar·\textperiodcentered{\textbraceleft¿\textquestiondown}\textbraceright“\textquotedblleft•\textbullet”\textquotedblrightc○©\textcopyright‘\textquoteleft†\textdagger’\textquoteright‡\textdaggerdbl r○®\textregistered$\textdollar§\textsection...\textellipsis£\textsterling—\textemdash TM™\texttrademark–\textendash\textunderscore¡\textexclamdown\textvisiblespace>\textgreaterWhere two symbols are present,the left one is the“faked”symbol that L A T E X2εprovides by default,and the right one is the“true”symbol that textcomp makesavailable.7Table4:Non-ASCII Letters(Excluding Accented Letters)˚a\aaÐ\DH∗ L\Lø\oß\ss˚A\AAð\dh∗ l\lØ\O SS\SSÆ\AEÐ\DJ∗Ŋ\NG∗Œ\OEÞ\TH∗æ\aeđ\dj∗ŋ\ng∗œ\oeþ\th∗∗Not available in the OT1font e the fontenc package to select analternate font encoding,such as T1.Table5:Letters Used to Typeset African LanguagesÐ\B{D}°\m{c}¤\m{f}¨\m{k}»\M{t} \m{Z}\B{d} \m{D} \m{F} \m{N} \M{T}Â\T{E}\B{H}ð\M{d} \m{G}­\m{n}º\m{t}â\T{e}§\B{h}Ð\M{D}¦\m{g}ª\m{o} \m{T}Å\T{O}·\B{t}¡\m{d}À\m{I} \m{O}®\m{u}∗å\T{o}\B{T} \m{E}à\m{i} \m{P} \m{U}∗\m{b}¢\m{e} \m{J}±\m{p} \m{Y}\m{B} \M{E}©\m{j}¬\m{s}¯\m{y}\m{C}£\M{e} \m{K} \m{S}¶\m{z}These characters all need the T4font encoding,which is provided by the fc package.∗\m{v}and\m{V}are synonyms for\m{u}and\m{U}.Table6:Punctuation Marks Not Found in OT1«\guillemotleft‹\guilsinglleft…\quotedblbase"\textquotedbl »\guillemotright›\guilsinglright‚\quotesinglbaseTo get these symbols,use the fontenc package to select an alternate font encoding,such as T1.Table7:pifont Decorative Punctuation Marks❛\ding{123}❝\ding{125}❡\ding{161}❣\ding{163}❜\ding{124}❞\ding{126}❢\ding{162}Table8:wasysym Phonetic SymbolsD\DH \dh \openoÞ\Thorn \inveþ\thornTable9:tipa Phonetic Symbols8È\textbabygamma P\textglotstopï\textrtailnb\textbarb;\texthalflengthó\textrtailrc\textbarc»\texthardsignù\textrtailsd\textbard#\texthooktopú\textrtailté\textbardotlessjá\texthtbü\textrtailzg\textbargê\texthtbardotlessj$\textrthookÜ\textbarglotstopÁ\texthtcÀ\textsca1\textbariâ\texthtdà\textscbª\textbarlä\texthtg¤\textsce8\textbaro H\texththå\textscgÝ\textbarrevglotstopÊ\texththengË\textsch0\textbaruÎ\texthtk@\textschwaì\textbeltlÒ\texthtp I\textsciB\textbetaÓ\texthtq¨\textscjò\textbullseye£\texthtrtaildÏ\textscl \textceltpalÉ\texthtscgð\textscnX\textchiÖ\texthtt×\textscoeligÅ\textcloseepsilonÿ\texthvlig±\textscomegaÑ\textcloseomegaÛ\textinvglotstopö\textscrÆ\textcloserevepsilon K\textinvscr A\textscriptaÞ\textcommatailzÌ\textiota g\textscriptg^\textcorner«\textlambda V\textscriptv\textcrb:\textlengthmarkÚ\textscu¡\textcrd³\textlhookt Y\textscyg\textcrg¦\textlhtlongi \textsecstressè\textcrh¶\textlhtlongyº\textsoftsignÛ\textcrinvglotstopÔ\textlonglegrÂ\textstretchc¬\textcrlambda½\textlptr t C\texttctclig2\textcrtwo M\textltailmÙ\textteshligC\textctcñ\textltailn T\texttheta¢\textctdë\textltildeþ\textthorn¢ý\textctdctzligÐ\textlyoghlig¿\texttoneletterstem ²\textcteshÍ\textObardotlessjµ\texttsligJ\textctj­\textOlyoghlig5\textturna®\textctn°\textomega¯\textturncelig´\textctt_\textopencorner4\textturnh´C\textcttctclig O\textopeno©\textturnk¸\textctyogh%\textpalhookÕ\textturnlonglegr ý\textctz F\textphi W\textturnmdý\textdctzlig|\textpipeî\textturnmrlegS\textdoublebaresh"\textprimstressô\textturnr}\textdoublebarpipe¼\textraiseglotstopõ\textturnrrtail=/\textdoublebarslash§\textraisevibyi6\textturnscripta {\textdoublepipe7\textramshornsØ\textturnt\textdoublevertline\\textrevapostrophe2\textturnv\textdownstep9\textreveû\textturnwÃ\textdyoghlig3\textrevepsilon L\textturnyd z\textdzlig Q\textrevglotstop U\textupsilonE\textepsilon¹\textrevyogh \textupstepS\texteshÇ\textrhookrevepsilon \textvertlineR\textfishhookrÄ\textrhookschwa§\textvibyi¥\textg~\textrhoticity·\textvibyyG\textgamma¾\textrptrß\textwynn\textglobfallã\textrtaild Z\textyogh(continued on next page)9(continued from previous page)\textglobrise í\textrtailltipa defines shortcut characters for many of the above.It also defines a command \tone for denoting tone letters (pitches).See the tipa documentation for more information.Table 10:wsuipa Phonetic Symbols3\babygamma V \eng R \labdentalnas !\schwa ¦\barb "\er G \latfric B \sci \bard w \esh T \legm X \scn 9\bari \eth i \legr t \scrF \barl h \flapr I \lz¡\scripta `\baro \glotstop ¢\nialpha (\scriptg e \barp ¨\hookb ©\nibeta \scriptv C \barsci \hookd \nichi\scu \barscu )\hookg $\niepsilon \scy \baru 6\hookh 1\nigamma §\slashb Y \clickb 7\hookhengA \niiota \slashc \clickc &\hookrevepsilon P \nilambda \slashd \clickt4\hv b \niomega \slashu c \closedniomega \inva g \niphi \taild '\closedrevepsilon D \invfy \nisigma r \tailinvr ¥\crossb d \invglotstop \nitheta H \taill \crossd 8\invh \niupsilon W \tailn 5\crosshs \invlegr U \nj p \tailr Q \crossnilambda S \invm d \oo v \tails \curlyc q \invr a \openo \tailt x \curlyesh u \invscr#\reve\tailz \curlyyogh £\invscripta f \reveject \tesh \curlyz ¤\invv %\revepsilon f \thorn @\dlbari \invw \revglotstop E \tildel \dz\invy\scd\yoghe\ejective2\ipagamma\scgTable 11:phonetic Phonetic Symbolsj \barjf \flap i ¯\ibar e \rotvara i \vari¡\barlambda c \glottal \openo w \rotw ¨\varomega w \emgma f \hausaB ¯h \planck y \roty g \varopeno n \engma \hausab \pwedge e \schwa v ˚\vodx \enya h \hausad ¢\revD p \thorn h \voicedh 4\epsi \hausaD \riota u \ubar x\yoghs \esh k \hausak m \rotmu \udesc d \eth u \hausaK \rotOmega \vara p\fjh\hookdr\rotr q\varg10Table 12:Text-mode Accents¨A¨a \"{A}\"{a}`A`a \‘{A}\‘{a}˝A˝a \H{A}\H{a}˘A˘a \u{A}\u{a}´A´a \’{A}\’{a}A ¯a ¯\b{A}\b{a}Ąą\k{A}\k{a}†ˇAˇa \v{A}\v{a}˙A˙a \.{A}\.{a}A ¸¸a \c{A}\c{a}˚A ˚a \r{A}\r{a}˜A˜a \~{A}\~{a}¯A¯a \={A}\={a}A .a .\d{A}\d{a} A a \t{A}\t{a}ˆAˆa \^{A}\^{a} A a\G{A}\G{a}‡¼A¼a \U{A}\U{a}‡ Aa \newtie{A}\newtie{a}∗A ○a ○\textcircled{A}\textcircled{a}∗Requires the textcomp package.†Not available in the OT1font e the fontenc package to select an alternate font encoding,such as T1.‡Requires the T4font encoding,provided by the fc package.Also note the existence of \i and \j ,which produce dotless versions of “i”and “j”(viz.,“ı”and “j”).These are useful when the accent is supposed to replace the dot.For example,“na\"{\i}ve ”produces a correct “na¨ıve”,while “na\"{i}ve ”would yield the rather odd-looking “na ¨ive”.(“na\"{i}ve ”does work in encodingsother than OT1,however.)Table 13:tipa Text-mode Accents¡©A ¡©a \textacutemacron{A}\textacutemacron{a}¡§A ¡§a \textacutewedge{A}\textacutewedge{a}A 0a 0\textadvancing{A}\textadvancing{a}A `a `\textbottomtiebar{A}\textbottomtiebar{a}¨©A ¨©a \textbrevemacron{A}\textbrevemacron{a} A a \textcircumacute{A}\textcircumacute{a}¢ A ¢ a \textcircumdot{A}\textcircumdot{a} A a \textdotacute{A}\textdotacute{a} ¨A ¨a\textdotbreve{A}\textdotbreve{a}¨A ¨a \textdotbreve{A}\textdotbreve{a}A a \textdoublegrave{A}\textdoublegrave{a}A a \textdoublevbaraccent{A}\textdoublevbaraccent{a} A a \textgravecircum{A}\textgravecircum{a} A a \textgravedot{A}\textgravedot{a}©A ©a \textgravemacron{A}\textgravemacron{a} A a \textgravemid{A}\textgravemid{a}A a \textinvsubbridge{A}\textinvsubbridge{a}A )a )\textlowering{A}\textlowering{a} A a \textmidacute{A}\textmidacute{a}$A $a\textovercross{A}\textovercross{a}(continued on next page)(continued from previous page)" A "a\textoverw{A}\textoverw{a}A a \textpolhook{A}\textpolhook{a}A(a(\textraising{A}\textraising{a}A1a1\textretracting{A}\textretracting{a}¦©A¦©a\textringmacron{A}\textringmacron{a} A a\textroundcap{A}\textroundcap{a}A#a#\textseagull{A}\textseagull{a}A a\textsubacute{A}\textsubacute{a}A a\textsubarch{A}\textsubarch{a}A©a©\textsubbar{A}\textsubbar{a}A a \textsubbridge{A}\textsubbridge{a}A ¢a¢\textsubcircum{A}\textsubcircum{a}A a\textsubdot{A}\textsubdot{a}A a\textsubgrave{A}\textsubgrave{a}A!a!\textsublhalfring{A}\textsublhalfring{a} A'a'\textsubplus{A}\textsubplus{a}A a\textsubrhalfring{A}\textsubrhalfring{a}A ¦a¦\textsubring{A}\textsubring{a}A a \textsubsquare{A}\textsubsquare{a}A £a£\textsubtilde{A}\textsubtilde{a}A ¤a¤\textsubumlaut{A}\textsubumlaut{a}A"a"\textsubw{A}\textsubw{a}A §a§\textsubwedge{A}\textsubwedge{a}A8a8\textsuperimposetilde{A}\textsuperimposetilde{a}A 4a4\textsyllabic{A}\textsyllabic{a}£ A£ a\texttildedot{A}\texttildedot{a}bA b a\texttoptiebar{A}\texttoptiebar{a}A a\textvbaraccent{A}\textvbaraccent{a}tipa defines shortcut sequences for many of the above.See the tipa documentation for more information.Table14:wsuipa Text-mode AccentsA g a g\dental{A}\dental{a}A a \underarch{A}\underarch{a}Table 15:phonetic Text-mode AccentsA {a {\hill{A}\hill{a}©A ©a \rc{A}\rc{a}A ˜a˜\ut{A}\ut{a}A ˚a ˚\od{A}\od{a}Aa \syl{A}\syl{a}{A {a\ohill{A}\ohill{a}A ..a ..\td{A}\td{a}The phonetic package provides a few additional macros for linguistic accents.\acbar and \acarc compose characters with multiple accents;for example,\acbar{\’}{a}produces “´¯a ”and \acarc{\"}{e}produces “¨¯e ”.\labvel joinstwo characters with an arc:\labvel{mn}→“ mn”.\upbar is intended to gobetween characters as in “x\upbar{}y’’→“x y”.Lastly,\uplett behaves like \textsuperscript but uses a smaller font.Contrast “p\uplett{h}’’→“p h ”with “p\textsuperscript{h}’’→“p h ”.Table 16:wsuipa Diacriticss \ain v \leftp x \overring h \stress }\underwedge k \corner n \leftt ~\polishhook j \syllabic t \upp u \downp q \length w \rightp r \underdots l\uptm \downt{\midtilde o \rightt y \underring p\halflengthz\openi\secstress|\undertildeThe wsuipa package defines all of the above as ordinary characters,not as accents.However,it does provide \diatop and \diaunder commands,which are used to compose diacritics with other characters.For example,\diatop[\overring|a]produces “x a ”,and \diaunder[\underdots|a]produces “r a ”.See the wsuipa doc-umentation for more information.Table 17:textcomp Diacritics˝\textacutedbl ˇ\textasciicaron ¯\textasciimacron ´\textasciiacute ¨\textasciidieresis ̏\textgravedbl˘\textasciibreve`\textasciigraveThe textcomp package defines all of the above as ordinary characters,not as accents.Table 18:textcomp Currency Symbols฿\textbaht $\textdollar\textguarani ₩\textwon ¢\textcent$\textdollaroldstyle ₤\textlira ¥\textyen¢\textcentoldstyle ₫\textdong ₦\textnaira ₡\textcolonmonetary €\texteuro \textpeso¤\textcurrencyƒ\textflorin£\textsterlingTable19:marvosym Currency Symbols¢\Denarius e\EUR D\EURdig e\EURtm£\Pfund\Ecommerce d\EURcr c\EURhv¦\EyesDollar¡\Shilling The different euro signs are meant to be compatible with different fonts—Courier (\EURcr),Helvetica(\EURhv),Times(\EURtm),and the marvosym digits listed in Table134(\EURdig).Table20:wasysym Currency Symbols¢\cent¤\currencyTable21:eurosym Euro SignsA C\geneuroB C\geneuronarrow C\geneurowide e\officialeuro\euro is automatically mapped to one of the above—by default,\officialeuro—based on a eurosym package option.See the eurosym documentation for more information.The\geneuro...characters are generated from the current body font’s“C”character and therefore may not appear exactly as shown.Table22:textcomp Legal Symbols℗\textcircledP c○©\textcopyright℠\textservicemark \textcopyleft r○®\textregistered TM™\texttrademarkWhere two symbols are present,the left one is the“faked”symbol that L A T E X2εprovides by default,and the right one is the“true”symbol that textcomp makes available.See /cgi-bin/texfaq2html?label=tradesyms for solu-tions to common problems that occur when using these symbols(e.g.,getting a“r○”when you expected to get a“®”).Table23:textcomp Old-style Numerals0\textzerooldstyle4\textfouroldstyle8\texteightoldstyle1\textoneoldstyle5\textfiveoldstyle9\textnineoldstyle2\texttwooldstyle6\textsixoldstyle3\textthreeoldstyle7\textsevenoldstyleRather than use the bulky\textoneoldstyle,\texttwooldstyle,mands shown above,consider using\oldstylenums{...}to typeset an old-style number.。

Symbol

Symbol

• T.S.Eliot the wasteland
• Ezra Pound
• Symbolism is especially appropriate for poetry because it enables poets to compress a very complex idea or set of ideas into one image or even one word. Therefore, symbolism is one of the most powerful devices that poets employ in creation.
• However, in order to convey particular meanings, writers often create their own symbols in their writing. This type of symbols acquires its suggestiveness not only from qualities inherent in its elf but also from the way in which it is used in a given work or context. • For example, Whitman and Sandburg both use grass as a symbol to represent nature.
Literary symbols are of two broad types: the conventional ones and the occasionallycoined ones. • Certain symbols occur again and again in literary, thus becoming conventional and possessing almost settled symbolic meaning. For instance: roses symbolizes love; spring symbolizes life, and winter death; a journey on the road often symbolizes the journey through life. • These conventional symbols are easy to recognize and identify.

Symbolcomplete(符号大全)

Symbolcomplete(符号大全)

Symbol complete(符号大全)Symbol Daquan 2010-07-22 12:29Formulas and notations in mathematical physics: Alpha alpha: Alfa AlphaBeta beta beta: BetaGamma gamma gamma: GammaDelta DelteEpsilon epsilon: episilon EpsilonSome of the zeta Jieta: ZetaEpsilon ETA: yita EtaTheta theta theta: ThetaI l: erota IotaKappa kappa Kapa: KappaA: Lamuda Lambda.Mu Mu: Bartholomew MuUpsilon V: Ao NuE: Roxy Xi.April: Mike Omicron / European roundPi Pi: send PiP P: soft RhoSigma: Sigma SigmaT: t TauR V: Yu Puxilong UpsilonPhi Phi: Fai PhiX x: ChiOnly psi pusai: PsiOmega Omega: Omega OmegaSymbol complete:(1) the number of symbols: such as: I, 2 + I, a, x, natural logarithm base e, PI pi.Such as: (2) operational symbol plus (+) and minus (-) sign, (* or *), division (or / /), the union of two sets (U), (a), Reagan (intersection), log (log, LG, LN), (:), differential ratio (d), integral (formula).(3) the relationship between symbols: such as "=" is equal to "value" or "," is the approximate symbol, not equal to is not equal, ">" is greater than the symbol, "<" is less than the symbol, "said variable trend," ~ "is similar to" Te "is congruent symbol. No," "parallel" is "an" symbol is the vertical symbol, "/" is "and" the proportion of symbols, symbols belong to.(4) a combination of symbols: such as parentheses (brackets) "," [] "braces" {} "line"-"(5) the nature of symbols such as a "+", "-" sign, the absolute value of the symbol """(6) ellipsis: (a) such as triangle, sine (SIN), X function (f (x)), limit (LIM), because (dreams), so (H0), sum (sigma), product (II), from each N element R from all the different elements the number of combinations (C), power (aM), factorial (!) Etc..Symbolic meaningH-infinity infinityPI.The absolute value of the |x| functionU set withA set intersectionIs greater than or equal toIs less than or equal toIt is less than or equal to the congruenceLn (x) the logarithm based on eLG (x) with 10 as the base of the logarithmFloor (x) on the integral functionCeil (x) under the integral functionX mod y for remainderDecimal part X - floor (x)Formula F (x) x integralFormula [a:b]f (x) integral to B a x.P equals 1, or 0[1 = k = n]f (k) of the N sum, can be extended to many Such as: Sigma [n, is, prime][n < 10]f (n)Sigma Sigma [1 = I = J = n]n^2Lim f (x) (x->) limitF (z) f on M's order derivative function of ZC (n:m) combination number, n take MP (n:m) permutationsM|n m divisible nM m and n n t coprimeA A a belongs to the set AThe number of elements in the #A collection AJunior physics formula:Physical quantity (unit) formula; deformation of remark formulaSpeed V (m/S) v= S: distance /t: timeGravity G (N) G=mg M: mass g:9.8N/kg or 10N/kgThe density of =m/V m (kg/m3) P: quality: Volume VThe resultant force is the same as F (N): F and =F1+F2In the opposite direction: when F is the opposite of =F1 - F2,F1>F2Buoyancy F float(N) F, floating =G matter - G, depending on the G: the gravity of the object in the liquidBuoyancy F float(N) F floating =G matter, this formula applies onlyObject floating or suspendedBuoyancy F float(N) F =G =m g= P floating row row row row row: G gV liquid liquid gravityPlatoon M: the quality of the liquidP: liquid liquid densityPlatoon V: the volume of the liquid(that is, the volume immersed in a liquid)Lever balance conditions F1L1=, F2L2, F1: power L1: power armF2: resistance L2: resistance armFixed pulley F=GS=h F: the pull of the free end of the ropeG: gravity of objectsS: the distance at which the end of the rope movesH: the distance that an object risesMoving pulley F= (G object +G wheel)S=2, h, G objects: the gravity of objectsG wheel: the gravity of the moving pulleyPulley block F= (G, +G wheel)S=n H N: the number of segments of the rope by moving the pulley Mechanical work W(J) W=Fs F: forceS: the distance traveled in the direction of forceUseful work, W, yesTotal W total W =G HW total =Fs applies pulley block verticallyMechanical efficiency = x 100%Power P(W) P=W: work!T: timePressure P(Pa) P=F: stressS: force areaLiquid pressure P(Pa) P= P GH P: liquid densityH: depth (from liquid level to desired point)Vertical distanceHeat Q(J) Q=cm T C: the specific heat capacity of material quality: MT: temperature change valueFuel combustionHeat Q (J) Q=mq M: qualityQ: calorific valueCommon Physics Formulas and important knowledge pointsI. physical formulaUnit) deformation of formula remark formulaSeries circuitCurrent I (A) I=I1=I2=...... Current is equal everywhere Series circuitVoltage U (V) U=U1+U2+...... Series circuitPartial pressure actionSeries circuitResistor R (omega) R=R1+R2+......Parallel circuitCurrent I (A) I=I1+I2+...... The current trunk is equal to theSum of branch currents (shunt)Parallel circuitVoltage U (V) U=U1=U2=......Parallel circuitResistor R (omega) = + +......Ohm's law I=Current and voltage in a circuitProportional to, inversely proportional to the resistance Current definition I=Q: the amount of charge (Coulomb)T: time (S)Electrical work W(J) W=UIt=Pt U: voltage I: currentT: time P: electric powerElectrical power P=UI=I2R=U2/R U: voltage I: currentR: resistanceElectromagnetic wave velocity and waveLong, the relationship between the frequencies of C= lambda V C:Unit formula of physical quantityName, symbol, name, symbolThe quality is m kg kg m=pvThe temperature is t degrees Celsius, C degrees CelsiusSpeed v m / sec, m/s v=s/tDensity p kg / M 3 kg/m3 p=m/vForce (gravity) F Newton (cow) N G=mgThe pressure is P Pascal (PA) Pa P=F/SWork W Joule (focus) J W=FsPower P watt (W) w P=W/tCurrent I ampere (an) A I=U/RVoltage U volts (volts) V U=IRResistance R ohm (OU) R=U/IElectrical work W Joule (focus) J W=UItElectrical power P watts (Watts) w P=W/t=UIHeat Q Joule (coke) J Q=cm (T-T degrees)Specific heat C Jiao / (kg degree C) J/ (kg degrees C)In the vacuum, the speed of light is 3 * 108 meters per secondG 9.8 Newton / kg15 degrees C air speed of 340 meters per secondCompilation of Physics Formulas for junior high school [mechanical part]1, speed: V=S/t2, gravity: G=mg3, density: P =m/V4, pressure: p=F/S5, liquid pressure: p= P GH6, buoyancy:(1) F float = F - F (pressure difference)(2) F floating = G - F (apparent gravity);(3) F floating = G (floating, suspended)(4), the Archimedes principle: F floating =G = P liquid gV 7, leverage balance conditions: F1 L1 = F2 L28, ideal slope: F/G = h/L9. Ideal pulley: F=G/n10, actual pulley: F = (G + G moving) / N (vertical direction) 11, work: W = FS = Gh (raise the object)12, power: P = W/t = FV13, work principle: W hand = W machine14, the actual total machinery: W = W is W extra15, mechanical efficiency: ETA = W /W total16 pulley block efficiency:(1) nF, ETA = G/ (vertical direction)(2), ETA = G/ (G + G) (vertical direction without friction)(3), ETA = f / nF (horizontal)[heat part]1, heat absorption: Q absorption = Cm (T - t0) = Cm, delta T2 heat release: Q = Cm (t0 - t) = Cm = t3, calorific value: q = Q/m4, the efficiency of furnace and heat engine: ETA = Q the effective use of /Q fuel5, heat balance equation: Q = Q suction6, thermodynamic temperature: T = T273K[electrical part]1, current strength: I = Q, electricity /t2, resistance: R= P L/S3 Ohm's Law: I = U/R4 Joule's law:(1) Q = I2Rt universal formula)(2) Q = UIt = Pt = UQ electric = U2t/R (pure resistance formula) 5 、 series circuit:(1) I = I1 = I2(2), U = U1U2(3), R = R1R2(4) U1/U2 = R1/R2 (partial pressure formula)(5) P1/P2 = R1/R26 、 parallel circuit:(1), I = I1I2(2) U = U1 = U2(3), 1/R = 1/R11/R2 [R = R1R2/ (R1R2)](4) I1/I2 = R2/R1 (shunt formula)(5) P1/P2 = R2/R17 fixed resistance:(1) I1/I2 = U1/U2(2) P1/P2 = I12/I22(3) P1/P2 = U12/U228 electric work:(1) W = UIt = Pt = UQ (universal formula)(2) W = I2Rt = U2t/R (pure resistance formula)9 electric power:(1) P = W/t = UI (universal formula)(2) P = I2R = U2/R (pure resistance formula) [common physical quantity]1, speed of light: C = 3 * 108m/s (in vacuum)2, sound speed: V = 340m/s (15 DEG C)3, the human ear distinguish echo: more than 0.1s 4, gravity acceleration: g = 9.8N/kg = 10N/kg5, the standard atmospheric pressure value:760 mm mercury column = 1.01 * 105Pa6, the density of water: P = 1 * 103kg/m37. Freezing point of water: 0 DEG C8. Boiling point of water: 100 DEG C9. The specific heat of water:C = 4.2 * 103J/ (kg DEG C)10, yuan charge: e = 1.6 * 10-19C11, a dry battery voltage: 1.5V12, a section of lead-acid battery voltage: 2V13, for human safety voltage: less than 36V (less than 36V)14 、 voltage of power circuit: 380V15 、 home circuit voltage: 220V16, unit conversion:(1) 1m/s = 3.6km/h(2) 1g/cm3 = 103kg/m3(3) and 1kW = H = 3.6 * 106J;Compilation of Physics Formulas for junior high school [mechanical part]1, speed: V=S/t2, gravity: G=mg3, density: P =m/V4, pressure: p=F/S5, liquid pressure: p= P GH6, buoyancy:(1) F float = F - F (pressure difference)(2) F floating = G - F (apparent gravity);(3) F floating = G (floating, suspended)(4), the Archimedes principle: F floating =G = P liquid gV 7, leverage balance conditions: F1 L1 = F2 L28, ideal slope: F/G = h/L9. Ideal pulley: F=G/n10, actual pulley: F = (G + G moving) / N (vertical direction) 11, work: W = FS = Gh (raise the object)12, power: P = W/t = FV13, work principle: W hand = W machine14, the actual total machinery: W = W is W extra15, mechanical efficiency: ETA = W /W total16 pulley block efficiency:(1) nF, ETA = G/ (vertical direction)(2), ETA = G/ (G + G) (vertical direction without friction)(3), ETA = f / nF (horizontal)[heat part]1, heat absorption: Q absorption = Cm (T - t0) = Cm, delta T2 heat release: Q = Cm (t0 - t) = Cm = t3, calorific value: q = Q/m4, the efficiency of furnace and heat engine: ETA = Q the effective use of /Q fuel5, heat balance equation: Q = Q suction6, thermodynamic temperature: T = T273K[electrical part]1, current strength: I = Q, electricity /t2, resistance: R= P L/S3 Ohm's Law: I = U/R4 Joule's law:(1) Q = I2Rt universal formula)(2) Q = UIt = Pt = UQ electric = U2t/R (pure resistance formula) 5 、 series circuit:(1) I = I1 = I2(2), U = U1U2(3), R = R1R2(4) U1/U2 = R1/R2 (partial pressure formula)(5) P1/P2 = R1/R26 、 parallel circuit:(1), I = I1I2(2) U = U1 = U2(3), 1/R = 1/R11/R2 [R = R1R2/ (R1R2)](4) I1/I2 = R2/R1 (shunt formula)(5) P1/P2 = R2/R17 fixed resistance:(1) I1/I2 = U1/U2(2) P1/P2 = I12/I22(3) P1/P2 = U12/U228 electric work:(1) W = UIt = Pt = UQ (universal formula)(2) W = I2Rt = U2t/R (pure resistance formula) 9 electric power:(1) P = W/t = UI (universal formula)(2) P = I2R = U2/R (pure resistance formula) [common physical quantity]1, speed of light: C = 3 * 108m/s (in vacuum)2, sound speed: V = 340m/s (15 DEG C)3, the human ear distinguish echo: more than 0.1s4, gravity acceleration: g = 9.8N/kg = 10N/kg5, the standard atmospheric pressure value:760 mm mercury column = 1.01 * 105Pa6, the density of water: P = 1 * 103kg/m37. Freezing point of water: 0 DEG C8. Boiling point of water: 100 DEG C9. The specific heat of water:C = 4.2 * 103J/ (kg DEG C)10, yuan charge: e = 1.6 * 10-19C11, a dry battery voltage: 1.5V12, a section of lead-acid battery voltage: 2V13, for human safety voltage: less than 36V (less than 36V)14 、 voltage of power circuit: 380V15 、 home circuit voltage: 220V16, unit conversion:(1) 1m/s = 3.6km/h(2) 1g/cm3 = 103KEncyclopedia of mathematical symbols:(1) the number of symbols: such as: I, 2+i, a, x, natural logarithm base e, pi.Such as: (2) operational symbol plus (+) and minus (-) sign, (* or *), division (or / /), the union of two sets (U), (a), the intersection of root (V), (log, LG, log LN), than (:). Differential (DX), integral (formula).(3) the relationship between symbols: such as "=" is equal, "is" is the approximate symbol, not equal to is not equal, ">" is greater than the symbol, "<" is less than the symbol, "said," variable trend, "~" is similar to "=" symbols are congruent. "The" "symbol is parallel," t "is the vertical symbol," / "is directly proportional to the symbols (not inversely proportional to the symbol, but can be used as a symbol with reciprocal" and "inversely) is a symbol of" C "or" C below a bar "is" contained "symbols.(4) a combination of symbols: such as parentheses "(in parentheses)" "" "," {} "horizontal braces"-"(5) the nature of symbols: such as a "+", "-" sign, the absolutevalue of the symbol """(6) ellipsis: (a) such as triangle, sine, cosine (SIN) (COS), X function (f (x)), limit (LIM), dreams because (a foot stand, stand (two) said so, foot standing, can stop) the sum (sigma), product (II), from each n elements of the R elements removed all the different number of combinations (C (R) (n) (A), power, Ac, Aq, x^n), factorial (!) Etc..(7) other symbols: alpha, beta, gamma and so forthThe origin of mathematical symbols:For example, the plus sign used to have several, and now the universal "+" number.The "+" is evolved from the Latin "et" (meaning of "harmony"). In sixteenth Century, Italy scientist Tartaglia in Italian "PLU" (and meaning) the first letter said, "Mu" grass have become the last "+"."-" is evolved from the Latin "minus" (minus) meaning. The abbreviation m, and then the omission of the letter, becomes "-".Some people say, liquor merchants "-" said how much the barrel of wine sold. Later, when the new wine is poured into the barrel, in the "-" with a vertical, meaning that the cancellation of the original lines, this became a "+".By fifteenth Century, the German mathematician Wei Demeiofficially confirmed: "+" is used as a plus, "-" used as a minus sign.Once a dozen times, now general two. One is "X", which was first proposed by British mathematician Okut in 1631, and was first invented by British mathematician, Hector ott. German mathematician Leibniz said: "X" number like the Latin alphabet "X" against, and in favor with "No.". He also said "are" put forward by. But this symbol is now applied to set theory.In eighteenth Century, American mathematician Oude Levin, the "X" as a symbol of multiplication. He thought that the "X" was "+" tilted to write, another sign of increasing."," first as a minus sign, long popular in continental europe. Until 1631 the British mathematician aucuy special "said in addition to or better than, other people" - "(except line) said in addition. Later, the Swiss mathematician Raha in his book "algebra", according to the people to create, will be officially "/" as a case.Square root Latin "Radix used" (root) and the two letters together and said that at the beginning of the seventeenth Century, the French mathematician in his "geometry", the first time the "tick" said reagan. "V" is from the Latin word line "R", "-" is the line.In sixteenth Century the French mathematician dimension leaves special "=" said the difference between the amount of two. But the British University of Oxford mathematics, Professor Leo Calder think any rhetoric, with two parallel and equal to theequivalent linear representation is the most appropriate, and equal to the symbol "=" from the beginning of 1540 to use.In 1591, Veda, a French mathematician, used the symbols in the diamond to be accepted gradually. Seventeenth Century German Leibniz made extensive use of "=", he is still used in geometry "~" similar, "=" said."Greater than" and less than "< <" is the 1631 British famous mathematician mathematician, "Rui Rui" created. As for the "more than", "less than", "and" the three symbols appear, is very very late. "{}" brackets and brackets "," is one of the founders of algebra Zhide created wei.Any number comes from the word "any" in English, because both lowercase and uppercase are prone to confusion, so capitalize the first letter of the word and turn it upside down, as shown.A mathematical symbol of a mathematical symbolSuch as: I, 2+i, a, x, natural logarithm base e, pi.Operational symbolAs a plus (+) and minus (-) sign, (* or *), division (or / /), the union of two sets (U), (a), the intersection of root (V), (log, LG, log LN), than (:), differential, integral (DX) (formula), (PHI) and curve integral.Relational symbolSuch as "=" is the sign "=" is the approximate symbol, not equal to is not equal, ">" is greater than the symbol, "<" is less than the symbol, "or" is greater than or equal to the symbol (can also be written as "less than", "less than") is less than or equal to the symbol (can also be written "using"),. "," said variable trend, "~" is similar to "=" symbols are congruent, "" parallel "is" an "symbol is the vertical symbol," / "is directly proportional to the symbols (not inversely proportional to the symbol, but can be used as a symbol with reciprocal inverse)" this is "symbol"? "Is" contained "symbols.Combination symbolAs in parentheses, "()) brackets [[]]","{}" horizontal braces"-"Property symbolAs a "+", "-" sign, the absolute value of the symbol "| |" sign ""Ellipsis(a) such as triangle, triangle (Rt delta), sine cosine (SIN), (COS), X function (f (x)), limit (LIM), angle (angle),Because of dreams, (a foot stand, stand)* so (two feet standing, can stop) the sum (sigma), product (II),from each n elements of the R elements removed all the different number of combinations (C (R) (n) (A), power, Ac, Aq, x^n), factorial (!) Etc..(7) other symbols: alpha, beta, gamma and so forthExpress existence",For any given"The meaning of mathematical symbols:Symbolic (Symbol) meaning (Meaning)= equal to is equal toIs not equal to is not equal to not equal< less than is less than> greater than is, greater, thanParallel is parallel to ||Greater than or is greater than or equal to is equal toLess than or is less than or equal to is equal toIt is less than or equal to the congruencePi Pi|x| absolute value absolute, value, of, XSimilar to is similar toIs equal to (especially = congruent for triangle) "is far greater than the number"Far less than number"U UnionA intersectionIncluded inThe circleDiameter of phiBeta betaH-infinity infinityLn (x) the logarithm based on eLG (x) with 10 as the base of the logarithmFloor (x) on the integral functionCeil (x) under the integral functionX mod y for remainderX - floor (x) decimal partFormula F (x) DX integralFormula [a:b]f (x) DX A to B integralThe use of mathematical symbols:P equals 1, or 0[1 = k = n]f (k) of the N sum, can be extended to many Such as: Sigma [n, is, prime][n < 10]f (n)Sigma Sigma [1 = I = J = n]n^2Lim f (x) (x->) limitF (z) f on M's order derivative function of ZC (n:m) combination number, n take MP (n:m) permutationsM|n m divisible nM m and n n t coprimeA A a belongs to the set AThe number of elements in the #A collection A。

LaTeX Symbols符号1-常用

LaTeX Symbols符号1-常用

a ´ a `
\acute{a} \grave{a}
a ¯ a
\bar{a} \vec{a}
a ˙ a ¨
\dot{a} \Biblioteka dot{a}a ˘ a ˜
\breve{a} \tilde{a}
Table 11: Math mode accents
abc ← − abc abc abc √ abc f
\widetilde{abc} \overleftarrow{abc} \overline{abc} \overbrace{abc} \sqrt{abc} f’
H
\vartriangle \circledS \mho \backprime \blacksquare \complement
∠ ∅ ð
\triangledown \angle \Finv \varnothing \blacklozenge \eth
Table 18: AMS Miscellaneous \dotplus \barwedge \boxtimes \ltimes \curlywedge \circledcirc \smallsetminus \veebar \boxdot \rtimes \curlyvee \centerdot \Cap \doublebarwedge \boxplus \leftthreetimes \circleddash \intercal \Cup \boxminus \divideontimes \rightthreetimes \circledast
Σ Υ Φ
\Sigma \Upsilon \Phi
Ψ Ω
\Psi \Omega
Table 1: Greek Letters \pm \mp \times \div \ast \star ◦ \circ • \bullet · \cdot + + Not predefined in ± ∓ × ÷ ∗ \cap \cup \uplus \sqcap \sqcup ∨ \vee ∧ \wedge \ \setminus \wr − A L TEX 2ε . Use one ∩ ∪ \diamond \bigtriangleup \bigtriangledown \triangleleft \triangleright \lhd∗ \rhd∗ \unlhd∗ \unrhd∗ ⊕ ⊗ \oplus \ominus \otimes \oslash \odot \bigcirc \dagger \ddagger \amalg

asymbolof的用法

asymbolof的用法

asymbolof的用法A Symbol of Elegance and Style: The Versatile Use of "Asymbolof"IntroductionIn the world of fashion and design, certain symbols have become iconic representations of elegance and style. One such symbol that has stood the test of time is "Asymbolof." Widely recognized for its versatility and timeless appeal, Asymbolof is a go-to accessory for individuals looking to enhance their personal style. From clothing to accessories, home decor to art, the possibilities are endless when it comes to incorporating Asymbolof into various aspects of our lives.1. The Fashion Industry's Love Affair with Asymbolof1.1 Elevating Outfits with Subtle SophisticationOne need not look any further than the runways of prestigious fashion houses to understand the significant impact Asymbolof has had in modern fashion. Designers consistently incorporate this symbol into their collections as a means of elevating outfits with subtle sophistication. Whether it be on clothing labels, handbags, or shoes, Asymbolof adds an air of luxury and exclusivity.1.2 Embodying Timeless EleganceAsymbolof exemplifies timeless elegance—a quality that transcends evolving fashion trends. The simplicity and symmetry of this symbol make it a versatile addition to any ensemble, allowing individuals to express their unique sense of style while remaining in sync with classic aesthetics.2. Asymbolof Beyond Fashion: Accessories and Home Decor2.1 Accessorizing with ClassThe allure of Asymbolof extends beyond clothing; it seamlessly integrates into accessories such as watches, bracelets, necklaces, or earrings. By incorporating this symbol into their designs, jewellers create pieces that exude class and refinement.2.2 Enhancing Living SpacesNot limited to personal adornment alone, Asymbolof finds its way into home decor choices too. Whether it's incorporated as wall art or subtly embroidered on luxurious cushions, Asymbolof adds a touch of chic elegance to any living space.3. Asymbolof- A Medium of Artistic Expression3.1 Asymbolof as a CanvasArtists and creators have found inspiration in Asymbolof, utilizing its simple yet visually striking form as a canvas for their creative expressions. From intricate paintings to graphic designs, this symbol has become a means of conveying powerful messages through art.3.2 Bridging Cultures and IdeasThe universality of Asymbolof has allowed it to transcend borders, cultures, and ideologies. It acts as a visual language that bridges gaps and initiates dialogue between people from diverse backgrounds. This medium has the power to foster connections, promote understanding, and celebrate unity amidst diversity.ConclusionAsymbolof's exceptional versatility continues to captivate the fashion industry and beyond. Its minimalistic nature enables it to seamlessly integrate into various aspects of our lives—be it fashion, accessories, home decor, or art. This timeless symbol embodies elegance and sophistication while offering individuals an opportunity for self-expression. Whether you choose to wear it proudly on your outfit, display it in your living space, or incorporate it into your artistic endeavors, Asymbolof is an enduring emblem of style that resonates across cultures and generations.。

详解Symbol(自定义值,内置值)

详解Symbol(自定义值,内置值)

详解Symbol(⾃定义值,内置值)ES6 引⼊了⼀种新的原始数据类型 Symbol,表⽰独⼀⽆⼆的值。

它是JavaScript 语⾔的第七种数据类型Symbol 特点:1. Symbol 的值是唯⼀的,⽤来解决命名冲突的问题,即使参数相同1// 没有参数的情况2 let name1 = Symbol();3 let name2 = Symbol();4 name1 === name2 // false5 name1 === name2 // false67// 有参数的情况8 let name1 = Symbol('flag');9 let name2 = Symbol('flag');10 name1 === name2 // false11 name1 === name2 // false2.Symbol 值不能与其他数据进⾏运算- 数学计算:不能转换为数字- 字符串拼接:隐式转换不可以,但是可以显⽰转换- 模板字符串3) Symbol 定义的对象属性不参与 for…in/of 遍历,但是可以使⽤Reflect.ownKeys / Object.getOwnPropertySymbols()来获取对象的所有键名1 let sy = Symbol();2 let obj = {3 name:"zhangsan",4 age:215 };6 obj[sy] = "symbol";7 console.log(obj); //{name: "zhangsan", age: 21, Symbol(): "symbol"}89for(let key in obj) {10 console.log(key);11 } //只输出了name,age12131415 Object.getOwnPropertySymbols(obj); //[Symbol()]16 Reflect.ownKeys(obj); //["name", "age", Symbol()]1718 Object.keys(obj); //["name", "age"]19 Object.getOwnPropertyNames(obj) //["name", "age"]20 Object.keys(obj) //["name", "age"]21 Object.values(obj) //["zhangsan", 21]22 JSON.stringify(obj) //{"name":"zhangsan","age":21}注: 遇到唯⼀性的场景时要想到 SymbolSymbol的⽅法:1.Symbol.for()作⽤:⽤于将描述相同的Symbol变量指向同⼀个Symbol值,这样的话,就⽅便我们通过描述(标识)区分开不同的Symbol了,阅读起来⽅便Symbol.for("foo"); // 创建⼀个 symbol 并放⼊ symbol 注册表中,键为 "foo"Symbol.for("foo"); // 从 symbol 注册表中读取键为"foo"的 symbolSymbol.for("bar") === Symbol.for("bar"); // true,证明了上⾯说的Symbol("bar") === Symbol("bar"); // false,Symbol() 函数每次都会返回新的⼀个 symbolvar sym = Symbol.for("mario");sym.toString();// "Symbol(mario)",mario 既是该 symbol 在 symbol 注册表中的键名,⼜是该 symbol ⾃⾝的描述字符串Symbol()和Symbol.for()的相同点:它们定义的值类型都为"symbol";Symbol()和Symbol.for()的不同点:Symbol()定义的值不放⼊全局 symbol 注册表中,每次都是新建,即使描述相同值也不相等;⽤ Symbol.for() ⽅法创建的 symbol 会被放⼊⼀个全局 symbol 注册表中。

SAT数学常考符号介绍

SAT数学常考符号介绍

SAT数学常考符号介绍SAT数学是大家公认的在SAT考试中比较容易的一项,但是也是需要大家记忆专业词汇最多的考试,当然在记忆SAT数学词汇的同时,大家也需要关注一下SAT数学题常用的符号,这些符号用英文是怎么表示的,我们该如何理解呢?下面我们来看看这些SAT数学常考符号介绍的详细内容吧。

Logical Symbols A ? B means if A is true then B is also true; if A is false then nothing is said about B. → may mean the same as ? (the symbol may also indicate the domain and codomain of a function; see table of mathematical symbols).Logical SymbolsA ·B means if A is true then B is also true; if A is false then nothing is said about B.→ may mean th e same as ? (the symbol may also indicate the domain and codomain of a function; see table of mathematical symbols).· may mean the same as ? (the symbol may also mean superset).A· B means A is true if B is true and A is false if B is false.The statement ?A is true if and only if A is false.The statement A ∧ B is true if A and B are both true; else it is false.The statement A ∨ B is true if A or B (or both) are true; if both are false, the statement is false.· x: P(x) means P(x) is true for all x.· x: P(x) means there is at least one x such that P(x) is true.· x: P(x) means there is exactly one x such that P(x) is true.x· y means y is derived from x.以上就是对SAT数学常考符号的介绍,希望对大家有帮助。

a symbol of 造句

a symbol of 造句

a symbol of 造句1. A dove is a symbol of peace. Just like when we see a dove flying freely in the sky, don't we feel a sense of calm and hope? Isn't that amazing?2. The heart is a symbol of love. For example, when you give your heart to someone, it means you really love them, right? Just like giving them the most precious thing!3. The rainbow is a symbol of hope and beauty. Isn't it true that whenever we see a rainbow after the rain, we feel a glimmer of hope and can't help but admire its colors?4. The flag is a symbol of a nation. You see, when the flag is raised high, it represents the pride and dignity of that country. Don't we all feel a connection to our own nation's flag?5. A smile is a symbol of happiness. Just think about it, when someone gives you a big smile, doesn't it instantly brighten your day and make you feel good?6. A wedding ring is a symbol of commitment. When two people exchange wedding rings, it means they are committed to each other for life, isn't that romantic and meaningful?In conclusion, these symbols have deep meanings and bring various emotions and ideas to our lives. They are like little reminders of the important things in life.。

数学各种符号英语 -回复

数学各种符号英语 -回复

数学各种符号英语 -回复Mathematical Symbols in EnglishMathematics is a universal language used to express and analyze quantitative relationships. Alongside numbers and equations, mathematical symbols play a vital role in conveying mathematical concepts and operations. Understanding and correctly using these symbols is crucial for effective communication in mathematics. In this article, we will explore various mathematical symbols and their corresponding English names.1. Basic Arithmetic Symbols1.1 Addition (+): This symbol is used to represent the operation of adding two or more quantities. For example, 2 + 3 = 5.1.2 Subtraction (-): The subtraction symbol is used to denote the operation of subtracting one quantity from another. For instance, 6 - 4 =2.1.3 Multiplication (×): This symbol represents the operation of multiplying two or more numbers together. For example, 2 × 4 = 8.1.4 Division (÷): The division symbol is used to indicate the operation of dividing one quantity by another. For instance, 10 ÷ 2 = 5.2. Advanced Arithmetic Symbols2.1 Exponent (^): The exponent symbol is used to raise a number to a certain power. For example, 2^3 represents 2 raised to the power of 3, resulting in 8.2.2 Square Root (√): This symbol is used to denote the square root of a number. For instance, √16 = 4, since 4 × 4 = 16.2.3 Percentage (%): The percentage symbol is used to express a portion out of 100. For example, 50% represents 50 out of 100.3. Algebraic Symbols3.1 Equals (=): The equals sign is used to denote that two quantities or expressions have the same value. For instance, 4x + 2 = 10.3.2 Greater Than (>): This symbol represents a comparison, indicating that one quantity is larger than another. For example, 5 > 3.3.3 Less Than (<): The less than symbol denotes that one quantity is smaller than another. For instance, 2 < 7.3.4 Inequality Symbols (≥, ≤): These symbols are used to express that one quantity is greater than or equal to, or less than or equal to another quantity. For example, 3x ≤ 9.4. Geometric Symbols4.1 Circle (⭕): The circle symbol is used to represent a two-dimensional geometric shape with all points equidistant from the center.4.2 Square (□): This symbol represents a four-sided polygon with equal-length sides and right angles.4.3 Triangle (△): The triangle symbol denotes a three-sided polygon.4.4 Line (—): The line symbolizes a straight, infinitely extended one-dimensional geometric object.5. Set Theory Symbols5.1 Union (∪): The union symbol is used to represent the combinationof two or more sets. For example, A ∪ B represents the set that contains all elements of set A and set B.5.2 Intersection (∩): This symbol denotes the common elements shared by two or more sets. For instance, A ∩ B represents the set of elements that belong to both set A and set B.5.3 Subset (⊆): The subset symbol is used to indicate that a set is a subset of another set. For example, A ⊆ B expresses that all elements of set A are also elements of set B.5.4 Empty Set (∅): This symbol represents a set with no elements.In conclusion, understanding mathematical symbols is essential for effective communication in mathematics. From basic arithmetic to set theory, each symbol carries its own meaning and function. By familiarizing yourself with these symbols and their English names, you will enhance your mathematical literacy and excel in the world of numbers and equations.。

代数符号及英文读法

代数符号及英文读法

代数符号及英文读法Alright, let's dive into the world of algebraic symbols and their English pronunciations in a casual, conversational way.First up, we have the equals sign '='. You know, that little guy that says "this is the same as that." We call it "equals" or sometimes "is equal to." Simple, right?Moving on, let's talk about the plus sign '+'. You can think of it as two lines crossing, kind of like a road intersection. We say "plus" or "add" when we see it. It's the symbol for addition, the fundamental operation in math.Now, how about the minus sign '-'? It's kind of like a dash or a hyphen, representing subtraction. We call it "minus" or "subtract" when using it. It's the counterpart to the plus sign, showing us how to take away.Ah, and here's the multiplication sign '×'. It's likean 'X' on its side, representing the action of multiplying. We often say "times" or "multiply" when we see this symbol. It's a handy way to represent repeated addition.Lastly, let's not forget the division sign '÷'. It's that.。

南开大学 外国语学院 美国文学课件 阿拉比Symbol

南开大学 外国语学院 美国文学课件 阿拉比Symbol

Symbol
The particular meaning of a symbol in any given place can only be determined from the whole context in which the symbol appears.
Symbol
the literal level
Symbol ---- the literal / figurative ing
Eg. In “Araby”, Araby is a bazaar. Yet, it refers to more than a mere marketplace. Since the word Araby is a poetic name for Arabia, which is associated with “ The Arabian Nights”, a collection of Oriental tales, Araby suggests something fanciful or illusory, thus, the latter indicates the figurative level.
Symbol
However, the protecting mountains can also mean isolating walls which do not permit one to get out of the alley and thus the valley can become a symbol of imprisonment.
Symbol
Symbol
A symbol is a thing that refers to more than itself. In literature symbols generally do not stand for any one meaning; they point or suggest. The relation between a thing and its symbolic significance to objects or actions:

symbol 动词 英语解释

symbol 动词 英语解释

symbol 动词英语解释Symbols are powerful tools that represent ideas, emotions, or concepts in a concise way. When we talk about a heart-shaped symbol, it immediately evokes feelings of love and affection. Symbols are often used in language to express complex thoughts in a simple graphic or sign.In art and design, symbols are visual representations that speak volumes without words. A peace sign, for instance, instantly communicates the desire for harmony and non-violence. Symbols are universal, crossing language barriers to connect people and cultures.In the realm of religion and spirituality, symbols hold deep meaning and are often used in rituals and worship. A cross, for Christians, represents the sacrifice of Jesus and their faith. Symbols in this context are not justvisual representations; they are also spiritual anchorsthat guide believers.Symbols can also be used in daily life to represent brands, ideas, or organizations. A logo for a company, for example, becomes a symbol of its values and identity. These symbols are carefully crafted to leave a lasting impression on people's minds.And lastly, symbols can be personal, too. A charm bracelet might hold symbols that represent a person's family, hobbies, or life goals. These symbols are unique to each individual and carry deep personal meaning.。

LIST OF SYMBOLS

LIST OF SYMBOLS
LIST OF SYMBOLS
¯c A ¯v A b c cp cv C Cm CS curl v d D D Dm div v e E f fe F F g g h h H ¯ H I
Jacobian of convective fluxes Jacobian of viscous fluxes constant depth of control volume in two dimensions speed of sound specific heat coefficient at constant pressure specific heat coefficient at constant volume vector of characteristic variables molar concentration of species m (= ρ Ym /Wm ) Smagorinsky constant ∂w ∂v ∂u ∂w ∂v ∂u curl of v = ∇ × v = − , − , − ∂y ∂z ∂z ∂x ∂x ∂y distance diagonal part of implicit operator artificial dissipation effective binary diffusivity of species m ∂u ∂v ∂w divergence of v = ∇ · v = + + ∂x ∂y ∂z internal energy per unit mass total energy per unit mass Fourier symbol of the time-stepping operator vector of external volume forces flux vector flux tensor amplification factor grid velocity enthalpy local grid (cell) size total (stagnation) enthalpy Hessian matrix (matrix of second derivatives) √ imaginary unit (I = −1)

量子力学中的符号

量子力学中的符号
2
ι κ λ μ ν ξ o π sin
iota kappa lambda mu nu xi omicron pi

P T Y X Ψ Ω
ϱ, ρ ς,σ τ υ φ, ϕ χ ψ ω
rho sigma tau upsilon phi chi psi omega
,0 < <
.
Symbols in Quantum Mechanics Introduction
Three formulations
. . .
. .
.
. . . . . . . .
. . . . . . . .
. . . . . . . . .
. .
. .
. .
. .
.
Symbols in Quantum Mechanics Introduction
. .
. .
. .
. .
.
Symbols in Quantum Mechanics Basics
Greek Letters
A B Δ E Z H Θ α β γ δ ε, ϵ ζ η ϑ,θ alpha beta gamma delta epsilon zeta eta theta K Λ M N O ι κ λ μ ν ξ o π iota kappa lambda mu nu xi omicron pi P T Y X Ψ Ω ϱ, ρ ς,σ τ υ φ, ϕ χ ψ ω rho sigma tau upsilon phi chi psi omega
4πϵ0 r 2
4πε0 r 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SymbolsinEnglish符号英文

SymbolsinEnglish符号英文

数学符号英文说法和发音大全!!各路出国党不妨看过来!作者:Symbols+ plus /'plʌs/- minus /'maɪnəs/±plus or minus /'plʌs ɔ: 'maɪnəs/x multiplied by /'mʌltɪplaɪd baɪ// over; divided by /'əʊvə/ /dɪ'vaɪdəd/÷divided /dɪ'vaɪdəd/= equals /'ɪ:kwəlz/≈approximately, similar /ə'prɒksɪmətlɪ/ /'sɪmɪlə tʊ/≡equivalent to; identical /ɪk'wɪvələnt tʊ/ /aɪ'dentɪkl tʊ/≠not equal to /'nɒt 'iːkwəl tʊ/> greater than /'greɪtəðən/< less than /'les ðən/≥greater than or equal to /'greɪtəðən ər 'iːkwəl tʊ/≤less than or equal to /'les ðən ər' iːkwəl tʊ/⊁not greater than /'nɒt 'greɪtəðən/⊀not less than /'nɒt 'les ðən/≫much greater than /'mʌʧ 'greɪtəðən/≪much less than /'mʌʧ 'les ðən/⊥perpendicular to /pɜːpən'dɪkjʊlə tʊ/∣∣parallel to /'pærəlel tʊ/≢not equivalent to, not identical to /'nɒt ɪk'wɪvələnt tʊ/ /'nɒt aɪ'dentɪkl ≄≉not similar to /'nɒt 'sɪmɪlə tʊ/²squared /'skweəd/³cubed /'kju:bd/4 to the fourth; to the power four /təðə 'fɔːθ/ /te ðə 'pɑʊə fɔː/n to the n; to the nth; to the power n /təðɪ en; tə dɪ enθ; təðə pɑʊər e √root; square root /ru:t/ /skweə ru:t/∛cube root /kju:b ru:t/∜fourth root /fɔːθ ruːt/! factorial /fæk'tɔːrɪəl/% percent /pə'sent/∞infinity /ɪn'fɪnətɪ/∝varies as; proportional to /'vɛərɪz/ /prə'pɔːʃənəl/˙dot /dɒt/¨double dot /dʌbl dɒt/: is to, ratio of /reɪʃɪəʊ/f(x) fx f; function /ef/ /'fʌŋkʃən/f'(x) f dash; derivative /dæʃ/ /dɪ'rɪvətɪv/f''x f double-dash; second derivative /'dʌbl dæʃ/ /'sekənd dɪ'rɪvətɪv/f'''(x) f triple-dash; f treble-dash; third derivative /'trɪpl dæʃ/ / trebl dæʃ/ /θɜ:d dɪ'rɪv f(4) f four; fourth derivative /fɔːθ dɪ'rɪvətɪv/∂partial derivative, delta /paːʃəl dɪ'rɪvətɪv/ /deltə/∫integral /'ɪntɪgrəl/∑sum /sʌm/w.r.t. with respect to /wɪð 'rɪspekt/log log /lɒg/log₂x log to the base 2 of x /lɒg təðə beɪs tu: əv eks/∴therefore /'ðɛəfɔː/∵because /bɪ'kɒz/→gives, leads to, approaches /gɪvz/ /li:dz tʊ/ /əprəʊʧəz// per /pɜ:/∈belongs to; a member of; an element of /bɪ'lɒŋz/ /'membə/ /'elɪmənt/∉does not belong to; is not a member of; is not an element of /nɒt bɪ'lɒŋ/ /nɒt ə 'membə/ /nɒt ən ⊂contained in; a proper subset of /kən'teɪnd ɪn/ /'prɒpə 'sʌbset/⊆contained in; subset /'sʌbset/⋂intersection /'ɪntəsekʃən/⋃union /'juːnɪən/∀for all /fə rɔ:l/cos x cos x; cosine x /kɒz/sin x sine x /saɪn/tan x tangent x /tan/cosec x cosec x /'kəʊsek/sinh x shine x /'ʃaɪn/cosh x cosh x /'kɒʃ/tanh x than x /θæn/|x| mod x; modulus x /mɒd/ /'mɒdjʊləs/℃degrees Centigrade /dɪ'gri:z 'sentɪgreɪd/℉degrees Fahrenheit /dɪ'gri:z 'færənhaɪt/°K degrees Kelvin /dɪ'gri:z 'kelvɪn/0°K,absolute zero /absəlu:t zi:rəʊ/–273.15 °Cmm millimetre /'mɪlɪmiːtə/cm centimetre /'sentɪmiːtə/cc, cm³cubic centimetre, centimetre cubed /'kjuːbɪk 'sentɪmiːtə/ /'sentɪmiːtə 'kj m metre /'miːtə/km kilometre /kɪ'lɒmɪtə/mg milligram /'mɪlɪgræm/g gram /græm/kg kilogram /'kɪləgræm/AC A.C. /eɪ si:/DC D.C. /di: si:/Examplesx + 1 x plus onex -1 x minus onex ± 1 x plus or minus onexy x y; x times y; x multiplied by y(x — y)(x + y) x minus y, x plus yx/y x over y; x divided by y;x ÷ y x divided by yx = 5 x equals 5; x is equal to 5x ≈ y x is approximately equal to yx ≡ y x is equivalent to y; x is identical with yx ≠ y x is not equal to yx > y x is greater than yx < y x is less than yx ≥ y x is greater than or equal to yx ≤ y x is less than or equal to y0 < x < 1 zero is less than x is less than 1; x is greater than zero and less than 10 ≤ x ≤ 1 zero is less than or equal to x is less than or equal to 1; x is greater than or equal to zero and less than or equal to 1x²x squaredx³x cubedx4 x to the fourth; x to the power fourxn x to the n; x to the nth; x to the power nx-n x to the minus n; x to the power of minus n√root x; square root x; the square root of x∛the cube root of x∜the fourth root of xthe nth root of x(x + y)²x plus y all squared(x/y)²x over y all squaredn! n factorial; factorial nx% x percent∞infinityx ∝ y x varies as y; x is (directly) proportional to yx ∝ 1/y x varies as one over y; x is indirectly proportional to yẋx dotẍx double dotf(x) fx f of x; the function of xf'(x) f dash x; the (first) derivative of with respect to xf''x f double-dash x; the second derivative of f with respect to xf'''(x) f triple-dash x; f treble-dash x; the third derivative of f with respect to x f(4) f four x; the fourth derivative of f with respect to x∂v the partial derivative of v∂v∂θdelta v by delta theta, the partial derivative of v with respect to θ∂²v∂θ²delta two v by delta theta squared; the second partial derivative of v with respect to θdv the derivative of vdvdθ d v by d theta, the derivative of v with respect to thetad²vdθ² d 2 v by d theta squared, the second derivative of v with respect to theta,∫integralintegral from zero to infinity∑sumthe sum from i equals 1 to nw.r.t. with respect tologey log to the base e of y; log y to the base e; natural log (of) y∴therefore∵because→gives, approachesΔx → 0 delta x approaches zerolimΔx→0 the limit as delta x approaches zero, the limit as delta x tends to zeroLtΔx→0 the limit as delta x approaches zero, the limit as delta x tends to zerom/sec metres per secondx ∈ A x belongs to A; x is a member of A; x is an element of Ax∉ A x does not belong to A; x is not a member of A; x is not an element of AA⊂ B A is contained in B; A is a proper subset of BA ⊆B A is contained in B; A is a subset of BA ⋂B A intersection BA ⋃B A union Bcos x cos x; cosine xsin x sine xtan x tangent x, tan xcosec x cosec xsinh x shine xcosh x cosh xtanh x than x|x| mod x; modulus x18 ℃eighteen degrees Centigrade70 ℉seventy degrees FahrenheitGreek alphabetΑαa lpha /'ælfə/Ββb eta /'bi:tə/Γγg amma /'gæmə/Δδd elta /'deltə/Εεe psilon /'epsilən/Ζ ζ z eta /'zi ːt ə/ Η η e ta /'i ːt ə/ Θ θ t heta /'θi ːt ə/ Ι ι i ota /a ɪ'əʊt ə/ Κ κ k appa /'k æp ə/ Λ λ l amda /'l æmd ə/ Μ μ m u /'mju ː/ Ν ν n u /'nju ː/ Ξ ξ x i /'ksa ɪ/ Ο ο o micron /'əʊm ɪkr ən/ Π π p i /'pa ɪ/ Ρ ρς rho /'r əʊ/ Σ σ s igma /'s ɪgm ə/ Τ τ t au /'t ɑʊ/ Υ υ u psilon /'j ʊps ɪl ən/ Φ φ p hi /'fa ɪ/ Χ χ c hi /'ka ɪ/ Ψ ψ p si /'psa ɪ/ Ω ω o mega /'əʊm ɪg ə/ ^Roman alphabet A a /'e ɪ/ B b /'bi ː/ C c /'si ː/ D d /'di ː/ E e /'i ː/ F f /'ef/ G g /'ʤi ː/H h /'e ɪʧ/ I i /'a ɪ/ J j /'ʤe ɪ/ K k /'ke ɪ/ L l /'el/ M m /'em/ N n /'en/ O o /'əʊ/ P p /'pi ː/ Q q /'kju ː/ R r /'ɑː/ S s /'es/ T t /'ti:/ U u /'ju:/V v /'vi:/ W w /'d ʌblju ː/ X x /'eks/ Y y /'wa ɪ/ Z z /'zed/ ^ Fractions ½ a half /ə 'h ɑ:f/ ¼ a quarter/ə 'kw ɔːt ə/ ¾ three quarters/θri ː'kw ɔːt əz/⅓ a third /ə 'θɜ:d/ ⅔ two thirds /tu: 'θɜ:dz/ ⅕ a fifth /ə 'f ɪf θ/ ⅖ two fifths /tu: 'f ɪf θs/ ⅗ three fifths /θri ː 'f ɪf θs/ ⅘ four fifths /f ɔː 'f ɪf θs/ ⅙ a sixth /ə 's ɪks θ/ ⅚ five sixths /fa ɪv 's ɪks θs/ ⅛ an eighth /ən 'e ɪt θ/ ⅜ three eighths /θri ː 'e ɪt θs/ ⅝ five eighths /fa ɪv 'e ɪt θs/⅞ seven eighths/sev ən'e ɪt θs/^Decimal Fractions0.1 nought point one /n ɔ:t p ɔɪnt w ʌn/ 0.01 nought point oh one /n ɔ:t p ɔɪnt əʊ w ʌn/ 0.0001 nought point oh oh oh one /ten p ɔɪnt əʊ əʊ əʊ w ʌn/ 1.1 one point one /w ʌn p ɔɪnt w ʌn/ 1.2 one point two /w ʌn p ɔɪnt tu:/ 1.23 one point two three /w ʌn p ɔɪnt tu: θri:/ 1.0123 one point oh one two three /w ʌn p ɔɪnt əʊ w ʌn tu: θri:/ 10.01 ten point oh one /ten p ɔɪnt əʊ w ʌn/ 21.57 twenty-one point five seven /'twent ɪ w ʌn p ɔɪnt fa ɪv 'sev ən/2.6666666666.... two point six recurring /tu: p ɔɪnt s ɪks r ɪ'k ɜ:r ɪŋ/ 2.612361236123... two point six one two three recurring /tu: p ɔɪnt s ɪks w ʌn tu: θri: r ɪ'k ɜ:r ɪŋ/ 2.5 million two point five million /tu: p ɔɪnt fa ɪv 'm ɪlj ən/ ^SI Units: Prefixes 10-24 y octo y /'j ɒkt əʊ/10-21 z epto z /'zeptəʊ/10-18 a tto a /'atəʊ/10-15 f emto f /'femtəʊ/10-12 p ico p /'pi:kəʊ/10-9 nano n /'nanəʊ/10-6 micro µ/'maɪkrəʊ/10-3 milli m /'mɪlɪ/10-2 centi c /'sentɪ/10-1 deci d /'desɪ/103 kilo k /'kɪləʊ/106 mega M /'megə/109 giga G /'gɪgə/1012 tera T /'terə/1015 peta P /'petə/1018 exa E /'eksə/1021 zetta Z /'zetə/1024 yotta Y /'jɒtə/1027 xona X /'zəʊnə/1030 weka W /'wekə/1033 vunda V /'vʊndə/^Cardinal Numbers1 one /wʌn/2 two /tu:/3 three /θri:/4 four /fɔː/5 five /faɪv/6 six /sɪks/7 seven /'sevən/8 eight /eɪt/9 nine /naɪn/10 ten /ten/11 eleven /ɪ'levən/12 twelve /twelv/13 thirteen /θɜ:'ti:n/14 fourteen /fɔː'ti:n/15 fifteen /fɪf'ti:n/16 sixteen /sɪkst'i:n/17 seventeen /seven'ti:n/18 eighteen /eɪ'ti:n/19 nineteen /naɪn'ti:n/20 twenty /'twentɪ/21 twenty-one /twentɪ'wʌn/22 twenty-two /twentɪ'tu:/23 twenty-three /twentɪ'θri:/24 twenty-four /twentɪ'fɔː/25 twenty-five /twentɪ'faɪv/26 twenty-six /twentɪ'sɪks/27 twenty-seven /twentɪ'sevən/28 twenty-eight /twentɪ'eɪt/29 twenty-nine /twentɪ'naɪn/30 thirty /'θɜ:tɪ/40 forty /'fɔːtɪ/50 fifty /'fɪftɪ/60 sixty /'sɪkstɪ/70 seventy /'sevəntɪ/80 eighty /'eɪtɪ/90 ninety /'naɪntɪ/100 a hundred; one hundred /ə 'hʌndrəd/ /w 101 a hundred and one /ə 'hʌndrəd ən 102 a hundred and two /ə 'hʌndrəd ən 110 a hundred and ten /ə 'hʌndrəd ən 120 a hundred and twenty /ə 'hʌndrəd ən 200 two hundred /tu: 'hʌndrəd/ 300 three hundred /θri: 'hʌndr 400 four hundred /fɔː 'hʌndrəd/ 500 five hundred /faɪv 'hʌndrəd/ 600 six hundred /sɪks 'hʌndrəd/ 700 seven hundred /'sevən 'hʌndr 800 eight hundred /eɪt 'hʌndrəd/ 900 nine hundred /naɪn 'hʌndrəd 1 000 a thousand, one thousand /əθ'ɑʊzənd/ 1 001 a thousand and one /ə 'θɑʊzənd ə1 010 a thousand and ten /ə 'θɑʊzənd ə1 020 a thousand and twenty /ə 'θɑʊzənd ə1 100 one thousand, one hunded /wʌn 'θɑʊzən 1 101 one thousand, one hundred and one /wʌn 'θɑʊzən 1 110 one thousand, one hundred and ten /wʌn 'θɑʊzən9 999 nine thousand, nine hundred and ninety-nine /naɪn 'θɑʊzən10 000 ten thousand /ten 'θɑʊzənd 15 356 fifteen thousand, three hundred and fifty six /'fɪfti:n 'θɑʊzə100 000 a hundred thousand /ə 'hʌndrəd 'θ1 000 000 a million /ə 'mɪljən/ 100 000 000 a hundred million /ə 'hʌndrəd 'm 1 000 000 000 a billion /ə 'bɪljən/ 100 000 000 000 a hundred billion /ə 'hʌndrəd 'bɪ1 000 000 000 000 a trillion /ə 'trɪljən/1 000 000 000 000 000 a quadrillion /ə kw ɒdr ɪlj ən/1 000 000 000 000 000 000 a quintillian /ə kw ɪn't ɪlj ən/ 1 000 000 000 000 000 000 000 a sextillion /ə seks't ɪlj ən/ 1 000 000 000 000 000 000 000 000 a septillion /ə sep't ɪlj ən/ 1 000 000 000 000 000 000 000 000 000 an ocillion /ən ɒkt't ɪlj ən/ 1 000 000 000 000 000 000 000 000 000 000 a nonillion /ə n ɒn'ɪlj ən/ 1 000 000 000 000 000 000 000 000 000 000 000 a decillion /ə de's ɪlj ən/^Ordinal Numbers 1st first /f ɜ:st/ 2nd second /'sek ənd/ 3rd third /θɜ:d/ 4th fourth /f ɔ:θ/ 5th fifth /f ɪf θ/ 6th sixth /s ɪks θ/ 7th seventh /'sev ən θ/ 8th eighth /e ɪt θ/ 9th ninth /na ɪn θ/ 10th tenth /ten θ/ 11th eleventh /ɪ'lev ən θ/ 12th twelfth /'twelf θ/ 13th thirteenth /θɜ:'ti:n θ/ 14th fourtheenth /f ɔː'ti:n θ/ 15th fidteenth /f ɪf'ti:n θ/ 16th sixteenth /s ɪks'ti:n θ/ 17th seventeenth /seven'ti:n θ/ 18th eighteenth /e ɪ'ti:n θ/ 19th nineteenth /na ɪn'ti:n θ/20th twentieth /'twent ɪəθ/ 21st twenty-first /twent ɪ'f ɜ:st/ 22nd twenty-second /twent ɪ'sek ənd/ 23rd twenty-third /twent ɪ'θɜ:d/ 24th twenty-fourth /twent ɪ'f ɔ:θ/ 25th twenty-fifth /twent ɪ'f ɪf θ/ 26th twenty-sixth /twent ɪ's ɪks θ/27th twenty-seventh/twent ɪ'sev ən θ/28th twenty-eighth /twent ɪ'e ɪt θ/ 29th twenty-ninth /twent ɪ'na ɪn θ/30th thirtieth /'θɜːt ɪəθ/ 31st thirty-first /θɜːt ɪ'f ɜ:st/40th fortieth /'f ɔ:t ɪəθ/ 50th fiftieth /'f ɪft ɪəθ/100th hundredth /'hʌndrədθ/ 1 000th thousandth /'θɑʊzəndθ/ 1 000 000th millionth /'mɪljənθ/。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Table 13: Relations (math mode) ≤ ≺ ⊂ ⊆ ∈ \leq \prec \preceq \ll \subset \subseteq \sqsubset \sqsubseteq \in \vdash \smile \frown \neq \equiv \sim \simeq \asymp \approx ≥ \geq \succ \succeq \gg \supset \supseteq \sqsupset \sqsupseteq \ni \dashv \mid \parallel \perp \cong \bowtie \propto \models \doteq \Join
∂ ∞ ✷ ∀ ∃ ¬
A AASTEX, AMS math, and L TEX symbols
3
Table 12: AMS arrows (math mode) \dashleftarrow ⇔ \leftleftarrows ⇒ \leftrightarrows \Lleftarrow \twoheadleftarrow \leftarrowtail \looparrowleft \leftrightharpoons \curvearrowleft \circlearrowleft \Lsh \upuparrows \upharpoonleft \downharpoonleft \multimap \leftrightsquigarrow \nleftarrow \nLeftarrow \nleftrightarrow \dashrightarrow \rightrightarrows \rightleftarrows \Rrightarrow \twoheadrightarrow \rightarrowtail \looparrowright \rightleftharpoons \curvearrowright \circlearrowright \Rsh \downdownarrows \upharpoonright \downharpoonright \rightsquigarrow \nrightarrow \nRightarrow \nLeftrightarrow
✄ † ‡ ✂ ¤
A AASTEX, AMS math, and L TEX symbols
2
Table 7: AMS binary operators (math mode) \dotplus \smallsetminus \Cap, \doublecap \Cup, \doublecup \barwedge \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal Table 10: AMS miscellaneous symbols (math mode) \hbar \hslash \vartriangle \triangledown \square \lozenge \circledS \angle \measuredangle \nexists \mho \Finv \Game \Bbbk \backprime \varnothing \blacktriangle \blacktriangledown \blacksquare \blacklozenge \bigstar \sphericalangle \complement \eth \diagup \diagdown \restriction

h s
. . . p . UBVR U −B B −V V −R U −R
Table 2: Text-mode nts ` o o ´ o ˆ o ¨ o ˜ \‘{o} \’{o} \^{o} \"{o} \~{o} ¯ o o ˙ o ˘ o ˇ o ˝ \={o} \.{o} \u{o} \v{o} \H{o} oo o ¸ o . o ¯ \t{oo} \c{o} \d{o} \b{o}
Table 6: Binary operators (math mode) ± ∓ \ · × ∗ ◦ • ÷ ✁ ∨ ∧ ⊕ ⊗ \pm \mp \setminus \cdot \times \ast \star \diamond \circ \bullet \div \lhd \vee \wedge \oplus \ominus \otimes \oslash ∩ ∪ \cap \cup \uplus \sqcap \sqcup \triangleleft \triangleright \wr \bigcirc \bigtriangleup \bigtriangledown \rhd \odot \dagger \ddagger \amalg \unlhd \unrhd
Table 14: AMS binary relations (math mode) \leqq \leqslant \eqslantless \lesssim \lessapprox \approxeq \lessdot ≪ \lll, \llless ≶ \lessgtr \lesseqgtr \lesseqqgtr \doteqdot, \Doteq \risingdotseq \fallingdotseq \backsim \backsimeq \subseteqq \Subset \sqsubset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft \trianglelefteq \vDash \Vvdash \smallsmile \smallfrown \bumpeq \Bumpeq ∝ \varpropto \blacktriangleleft ∴ \therefore \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot ≫ \ggg, \gggtr ≷ \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq ∼ \thicksim ≈ \thickapprox \supseteqq \Supset \sqsupset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \trianglerighteq \Vdash \shortmid \shortparallel \between \pitchfork \backepsilon \blacktriangleright ∵ \because
Table 5: Greek and Hebrew letters (math mode) α β γ δ ζ η θ ι κ λ µ ε ϑ Γ ∆ Θ Λ Ξ Π ℵ ‫ג‬ \alpha \beta \gamma \delta \epsilon \zeta \eta \theta \iota \kappa \lambda \mu \digamma \varepsilon \vartheta \varrho \Gamma \Delta \Theta \Lambda \Xi \Pi \aleph \gimel ν ξ o π ρ σ τ υ φ χ ψ ω κ ς ϕ Σ Υ Φ Ψ Ω \nu \xi o \pi \rho \sigma \tau \upsilon \phi \chi \psi \omega \varkappa \varsigma \varphi \Sigma \Upsilon \Phi \Psi \Omega \beth \daleth

♦ ∠
ð
Table 8: Miscellaneous symbols † c ¶ # % } \dag \copyright \P \# \% \_ \} § ‡ £ $ & { \S \ddag \pounds \$ \& \{ k
Table 11: Arrows (math mode) Table 9: Miscellaneous symbols (math mode) ℵ ı ℘ \aleph \hbar \imath \jmath \ell \wp \Re \Im \partial \infty \Box \forall \exists \neg \flat \natural \mho ∅ ∇ √ ⊥ ∠ \ ✸ ♣ ♦ ♥ ♠ \prime \emptyset \nabla \surd \top \bot \| \angle \triangle \backslash \Diamond \sharp \clubsuit \diamondsuit \heartsuit \spadesuit ← \leftarrow ←− \longleftarrow ⇐ \Leftarrow ⇐= \Longleftarrow → \rightarrow −→ \longrightarrow ⇒ \Rightarrow =⇒ \Longrightarrow ↔ \leftrightarrow ←→ \longleftrightarrow ⇔ \Leftrightarrow ⇐⇒ \Longleftrightarrow → \mapsto −→ \longmapsto ← \hookleftarrow → \hookrightarrow \leftharpoonup \rightharpoonup \leftharpoondown \rightharpoondown \rightleftharpoons ❀ \leadsto ↑ \uparrow \Updownarrow ⇑ \Uparrow \nearrow ↓ \downarrow \searrow ⇓ \Downarrow \swarrow \updownarrow \nwarrow
相关文档
最新文档