雷诺实验1

合集下载

《工程流体力学》实验指导书剖析

《工程流体力学》实验指导书剖析

《工程流体力学》实验指导书适用专业:机械电子工程上海电机学院2014年9月目录实验一雷诺实验 (1)实验二局部水头损失实验 (5)实验三沿程水头损失实验 (10)实验一雷诺实验一、实验目的和要求1. 观察层流、湍流的流态及其转换过程;2. 测定临界雷诺数,掌握园管流态判别准则;3. 学习应用量纲分析法进行实验研究的方法,确定非圆管流的流态判别准数。

二、实验装置1.实验装置简图实验装置及各部分名称如图1所示。

图1 雷诺实验装置图1. 自循环供水器2. 实验台3. 可控硅无级调速器4. 恒压水箱5. 有色水水管6. 稳水孔板7. 溢流板8. 实验管道9. 实验流量调节阀10. 稳压筒11.传感器12. 智能化数显流量仪2. 装置说明与操作方法供水流量由无级调速器调控,使恒压水箱4始终保持微溢流的程度,以提高进口前水体稳定度。

本恒压水箱设有多道稳水隔板,可使稳水时间缩短到3~5分钟。

有色水经有色水水管5注入实验管道8,可据有色水散开与否判别流态。

为防止自循环水污染,有色指示水采用自行消色的专用色水。

实验流量由调节阀9调节。

流量由智能化数显流量仪测量,使用时须先排气调零,所显示为一级精度瞬时流量值。

水温由数显温度计测量显示。

三、 实验原理1883年, 雷诺(Osborne Reynolds)采用类似于图1所示的实验装置,观察到液流中存在着层流和湍流两种流态:流速较小时,水流有条不紊地呈层状有序的直线运动,流层间没有质点混掺,这种流态称为层流;当流速增大时,流体质点作杂乱无章的无序的直线运动,流层间质点混掺,这种流态称为湍流。

雷诺实验还发现存在着湍流转变为层流的临界流速c v ,c v 与流体的粘性ν、园管的直径d 有关。

若要判别流态,就要确定各种情况下的c v 值,需要对这些相关因素的不同量值作出排列组合再分别进行实验研究,工作量巨大。

雷诺实验的贡献不仅在于发现了两种流态,还在于运用量纲分析的原理,得出了量纲为一的判据——雷诺数Re ,使问题得以简化。

物理雷诺实验报告

物理雷诺实验报告

一、实验目的1. 观察流体流动的层流和湍流现象;2. 研究雷诺数与流体流动状态的关系;3. 掌握实验原理和实验方法;4. 提高对流体力学基本概念的理解。

二、实验原理雷诺实验是研究流体流动的经典实验之一,由法国工程师雷诺在1883年发明。

实验原理如下:1. 流体在管道中流动存在两种流动状态:层流和湍流;2. 层流时,流体质点呈平行流动,速度分布均匀;3. 湍流时,流体质点呈不规则流动,速度分布不均匀;4. 雷诺数(Re)是判断流体流动状态的准则,其表达式为:Re = ρvd/μ,其中ρ为流体密度,v为流体流速,d为管道直径,μ为流体粘度;5. 当Re较小时,流体呈层流;当Re较大时,流体呈湍流。

三、实验设备与材料1. 实验台;2. 实验管道;3. 流量计;4. 雷诺数测定装置;5. 计时器;6. 水和颜料。

四、实验步骤1. 准备实验装置,将实验管道连接好,并检查无泄漏;2. 调节实验管道的入口阀门,使管道内的流速稳定;3. 将实验管道内充满水,并加入适量的颜料;4. 通过流量计调节入口阀门,改变管道内的流速;5. 观察流体流动状态,记录不同流速下的雷诺数;6. 根据实验数据,绘制雷诺数与流速的关系曲线;7. 分析实验结果,验证雷诺数与流体流动状态的关系。

五、实验结果与分析1. 实验结果:通过实验,我们观察到当流速较小时,流体呈层流状态,流速较大时,流体呈湍流状态。

根据实验数据,我们绘制了雷诺数与流速的关系曲线,发现当Re小于2000时,流体呈层流;当Re大于4000时,流体呈湍流。

2. 分析:实验结果表明,雷诺数与流体流动状态密切相关。

当Re较小时,流体呈层流;当Re较大时,流体呈湍流。

这与实验原理相符。

六、实验结论1. 雷诺实验验证了流体流动的层流和湍流现象;2. 雷诺数是判断流体流动状态的准则,其表达式为:Re = ρvd/μ;3. 当Re较小时,流体呈层流;当Re较大时,流体呈湍流;4. 本实验验证了雷诺数与流体流动状态的关系,提高了对流体力学基本概念的理解。

第二章化工原理实验 雷诺实验

第二章化工原理实验 雷诺实验

第二章化工原理实验实验一、雷诺实验一、实验目的:1.建立“滞流和湍流两种流动形态”的感性认识;2.观察雷诺准数与流体流动类型的相互关系;3.观察滞流时流体在圆管内的速度分布曲线;二、实验原理:1.滞流时,流体质点做直线运动,即流体分层流动,与周围的流体无宏观的混合,湍流时,流体质点呈紊乱地向各方向作随机的脉动,流体总体上仍沿管道方向流动。

2.雷诺准数是判断实际流动类型的准数。

若流体在圆管内流动,则雷诺准数可用下式表示:(2-1)一般认为,当Re≤2000时,流体流动类型属于滞流;当Re≥4000时,流动类型属于湍流;而Re值在2000~4000范围内是不稳定的过渡状态,可能是层流也可能是湍流,取决于外界干扰条件。

如管道直径或方向的改变、管壁粗糙,或有外来振动等都易导致湍流。

3.对于一定温度的流体,在特定的圆管内流动,雷诺准数仅与流速有关。

本实验是改变水在管内的速度,观察在不同雷诺准数下流体流型的变化。

理论分析和实验证明,滞流时的速度沿管径按抛物线的规律分布。

中心的流速最大,愈近管壁流速愈慢。

湍流时由于流体质点强烈分离与混合,所以速度分布曲线不再是严格的抛物线,湍流程度愈剧烈,速度分布曲线顶部的区域愈广阔而平坦,但即使湍流时,靠近管壁区域的流体仍作滞流流动,这一层称为滞流内层或滞流底层,。

它虽然极薄,但在流体中进行热量和质量的传递时,产生的阻力比流体的湍流主体部分要大得多。

三、实验装置及流程:1.实验装置示意图及流程图2-1 雷诺实验——装置示意图及流程1.溢流管;2.小瓶;3.上水管;4.细管;5.水箱;6.水平玻璃管;7.出口阀门实验装置如图2-1所示,图中水箱内的水由自来水管供给,实验时水由水箱进入玻璃管(玻璃管供观察流体流动形态和滞流时管路中流速分布之用)。

水量由出口阀门控制,水箱内设有进水稳流装置及溢流管,用以维持平稳而又恒定的液面,多余水由溢流管排入下水道。

2.实验仿真界面图2-2 雷诺实验——仿真界面四、实验步骤:1、实验步骤(1)雷诺实验1)打开进水阀,使自来水充满高位水箱;2)待有溢流后,打开流量调节阀;3)缓慢地打开红墨水调节阀;4)调节流量调节阀,并注意观察滞流现象;5)逐渐加大流量调节阀的开度,并注意观察过渡流现象;6)进一步加大流量调节阀的开度,并注意观察湍流现象;7)由孔板流量计测得流体的流量并计算出雷诺准数;8)关闭红墨水调节阀,然后关闭进水阀,待玻璃管中的红色消失,关闭流量调节阀门,结束本次实验。

雷诺实验

雷诺实验

1、开启进水开关,向水箱内注水。

到达一定水位高度,并保持适当的溢流,使水箱内水位稳定(为
保证水的紊流度充分降低,该项工作应在实验之前24小时进行)。

在实验期间如出现水位变化时,应缓慢调节进水开关确保水箱内水位稳定
2、待管内空气排出后,松开颜色水开关使颜色水随玻璃管内主流一起流动。

此时可见管内水流
处于紊流状态。

3、缓慢关小放水开关,同时观察玻璃管内颜色水变动情况,直到颜色水变为一条稳定的直线,此
时即为紊流转变为层流的下临界状态。

用量杯和秒表测量此时的流量
4、开大放水开关,使玻璃管内水流变为紊流状态;重新缓慢关小放水开关,待玻璃管内颜色水变
为一条直线时,用量杯和秒表测量此时的流量
5、重复步骤4
6、实验完成后,关闭颜色水开关
7、微微开启调节阀9,并注入颜色水于管道内,使颜色水流成一条直线。

通过颜色水质点的运
动观察管内水流层流流态;然后逐步开大调节阀9,通过颜色水直线的变化观察水流从层流到紊流变化的水力特征;待管中出现完全紊流后再逐步关小调节阀,观察水流由紊流转变为层流的水力特征。

8、3、测定下临界雷诺数
9、
10、(1)将调节阀打开,使管中呈完全紊流,再逐步关小调节阀使流量减小。

当流量调节到
实验色水在全管刚刚拉成一条直线状态时,即为下临界状态。

注意每调节一次阀门,均须等待稳定几分钟。

11、
12、(2)待管中出现临界状态时,用体积法测定流量。

13、
14、(3)重新开大调节阀,使管内流动形成完全紊流,按上述步骤重复测量6~7次。

实验数据记录
六、实验结果。

化工原理实验讲义(应化)

化工原理实验讲义(应化)

化⼯原理实验讲义(应化)实验⼀雷诺实验⼀、⽬的与要求1、通过实验了解圆管内流体流动情况,建⽴流型概念。

2、通过流量的测定、雷诺数的计算和圆管内流线的特征,判断流体的流动型态,并测定临界雷诺数。

3、测定流体在圆形直管中层流、湍流的速度分布图。

⼆、实验原理流体作稳态流动时,其流动型态基本分为滞流(层流)、湍流两种,这两种流型的过渡状态称为过渡流。

流体流动的型态与流体的密度、粘度及流道的直径有关。

这可⽤雷诺准数来判断,⼀般为:Re≤2000为滞流Re≥4000为湍流2000三、实验主要仪器及主要技术数据实验主要仪器:雷诺仪、秒表、量筒实验主要数据:实验管道有效长度L=600mm外径d =30mm内径d i=26mm四、实验⽅法1、准备⼯作(1)向墨⽔储瓶中加⼊适量的⽤⽔稀释过的墨⽔。

(2)调整墨⽔细管出⼝的位置,使它位于实验管道的中⼼线上。

(3)轻轻打开墨⽔流量调节夹,使墨⽔从墨⽔咀流出,排出墨⽔管内空⽓,关闭调节夹。

2、雷诺实验过程(1)关闭流量出⼝调节阀,打开储⽔槽进⽔阀,使⾃来⽔充满⽔槽,并使槽内溢流堰具有⼀定的溢流量。

(2)轻轻打开管道出⽔阀门,使流体缓慢流过实验管道,排出管内⽓体。

(3)调节储⽔槽下部的出⽔阀开度,调节储⽔槽液位,使其保持恒定。

(4)缓慢地适当打开墨⽔流量调节夹,墨⽔⾃墨⽔咀流出,待墨线稳定后,即可看出当前⽔流量下实验管道中墨⽔的流线。

根据流线判断流型,并⽤秒表、量筒测定流体流量。

(5)适当的增⼤管道出⽔阀开度,通过调节储⽔槽下部的出⽔阀和进⽔阀控制储⽔槽液位,并维持⼀定的⽔槽溢流板溢流量。

适当调整墨⽔流量,使墨线清晰,稳定后,测定较⼤流量下实验管内的流动状况。

如此反复,可测得⼀系列不同流量下的流型,并判断临界流型。

3、速度分布图的测定与上述雷诺数测定相似,通过流量调节及墨线线形的判断,分别判定流型为层流、湍流时对应的管道出⽔阀的开度范围。

⾸先使储⽔槽液位恒定(此时,可通过调节储⽔槽的进⼝阀和出⼝阀使液位稳定),瞬时开关墨⽔流量调节夹,在墨⽔咀出⼝处形成⼀个墨团,观察墨团端⾯特征,打开管道出⽔阀(使出⽔阀开度在所测定流型的开度范围),观察墨团端⾯随流体流动时的变化,记下管道末端墨团端⾯的形态后,通过调节储⽔槽的进⼝阀和出⼝阀调节储槽液位,使其恒定。

实验一 雷诺实验

实验一 雷诺实验

学号姓名实验一雷诺实验一、基本原理雷诺(Reynolds)用实验方法研究流体流动时,发现影响流动类型的因素除流速u外,尚有管径(或当量管径)d,流体的密度ρ及粘度μ,并且由此四个物理量组成的无因次数群Re=duρ/μ的值是判定流体流动类型的一个标准。

Re<2000~2300时为层流Re>4000时为湍流2000<Re<4000时为过渡区,在此区间可能为层流,也可能为湍流。

二、设备参数环境参数:温度 20℃压力 101325kPa水的参数:密度 998.2kg/m3 粘度 100.5E-5Pa*s设备参数:玻璃管径:20mm三、实验步骤●打开进水阀门在输入框输入0-100的数字,也可以通过点击上下按钮调节阀门开度。

按回车键完成输入,按ESC 键取消输入。

●打开红墨水阀●打开排水阀门●查看流量点击转子流量计查看当前流体流量●观察流体流动状态点击玻璃管,通过弹出的录像查看流体的流动状态●记录数据点击画面下方的自动记录按钮,记录实验数据,也可以手动记录。

●重复第三步到第六步,记录排水阀不同开度下的流量。

四、数据处理雷诺数计算公式Re=duρ/μ从这个定义式来看,对同一仪器d为定值,故u仅为流量的函数。

对于流体水来说,ρ,μ几乎仅为温度的函数。

因此确定了温度及流量,即可唯一的确定雷诺数。

数据记录:五、注意事项1、雷诺实验要求减少外界干扰,严格要求时应在有避免振动设施的房间内进行,由于条件不具备演示实验也可以在一般房间内进行,因为外界干扰及管子粗细不均匀等原因,层流的雷诺数上界到不了2300,只能到1600左右。

2、层流时红墨水成一线流下,不与水相混。

3、湍流时红墨水与水混旋,分不出界限。

流体力学实验指导

流体力学实验指导

实验一:雷诺实验实验学时:2 实验类型:验证实验要求:选修一、实验目的:1、 观察层流、紊流的流态;2、 测定临界雷诺数,掌握圆管流态的判断标准;3、 观察紊流形成的过程,理解紊流产生的机理;4、 观察的流态;5、观察流体在各种绕流运动中阻力的大小,分析流体流动的两种阻力形式。

二、 实验内容:1、 观察层流、紊流的流态;2、 测定临界雷诺数,掌握圆管流态的判断标准;3、 观察紊流形成的过程,理解紊流产生的机理;4、 理解流体绕流过程中的摩擦阻力与压差阻力的两种阻力形式。

三、实验原理1、雷诺数:反映惯性力与粘性力的比值。

vdR e υ=24dQ πυ=R e >4000为紊流 R e <2000为层流2000< R e <4000为层流与紊流过度区2、绕流阻力:为摩擦阻力与压差阻力之和。

2222ρυρυpp ff A C A C D +=式中:D —绕流阻力;C f —绕流摩擦阻力系数; A f —绕流摩擦阻力迎流面积; C p —绕流压差阻力系数; A p —绕流压差阻力迎流面积;υ—来流速度。

四、实验仪器与元件实验仪器:雷诺实验仪、壁挂式流动显示仪 仪器元件:自循环供水系统、颜色水箱、放水阀等 流体介质:水、颜色水 实验装置如图:雷 诺 数 实 验 台1. 箱及潜水泵 2.上水管 3. 溢流管 4. 电源 5.整流栅 6.溢流板 7.墨盒 8. 墨针 9.实验管 10. 调节阀 11. 接水箱 12. 量杯 13. 回水管 14实验桌 雷诺数γdV R e ⋅=,根据连续方程:A V=Q ,AQ V =五、实验方法与步骤实验方法与操作步骤如下:1、熟悉实验装置各部分功能,记录有关常数;2、观察两种流态。

打开电源开关4使水箱充水至溢流水位,经稳定后,微微开启调节阀10,并打开墨盒上的颜色水调节阀门注入颜色水于实验管内,使颜色水流成一直线。

通过颜色水质点的运动观察管内水流的层流流态,然后逐步开大调节阀,通过颜色水直线的变化观察层流转变到紊流的水力特征,待管中出现完全紊流后,再逐步关小调节阀,观察由紊流转变为层流的水力特征。

1. 雷诺实验-学生版本

1. 雷诺实验-学生版本

1雷诺实验1.1 实验目的(1)了解管内流体质点的运动方式,了解流体在不同流动形态时的特点。

(2)观察圆直管内流体作层流、过渡流、湍流时的流动形态,测定临界雷诺数。

(3)观察流体流动的速度分布,测定出不同流动型态对应的雷诺数。

1.2 实验内容通过控制水的流量,观察管内红线的流动形态来理解流体质点的流动状态,并分别记录不同流动形态下的流体流量值,计算出相应的雷诺准数。

1.3 实验原理流体在圆管内的流型可分为层流、过渡流、湍流三种状态。

流体流动的速度u、流体的粘度μ、流体的密度ρ以及流体流经的管道直径d直接影响着流体的流动形态。

这四个因素可以用雷诺数表示为:雷诺准数:Re =(1-1)式中:d ——管径,m;u——流体的流速,m/s;μ ——流体的粘度,Ns/m2;ρ——流体的密度,kg/m3。

当Re ≤ 2000时,流体质点运动非常有规律,为直线运动并且相互平行,此时流体为层流流动。

层流流动时,管截面上速度分布呈现抛物线分布。

当Re ≥ 4000时,流体质点除了沿水流方向流动外,其他方向也会出现不规则的脉动现象,此时流体为湍流流动。

当2000 ≤ Re ≤ 4000 时,流体的流动形态处于层流和湍流中间的过渡状态,成为过渡流。

1.4 实验装置的基本情况1. 实验设备流程示意图见图-1:图-1 雷诺实验装置流程图1-下口瓶;2-调节夹;3-进水阀;4-高位槽;5-测试管;6-排气阀;7-温度计;8-溢流口;9-调节阀;10-转子流量计;11-排水阀2. 实验装置主要技术参数:实验管道有效长度L=1000 mm;外径Do=30 mm;内径Di=25mm。

1.5 实验操作步骤1. 实验前准备工作(1)向广口试剂瓶中加入适量用蒸馏水稀释过的红墨水,调节红墨水,使其充满软胶管。

(2)实验前应仔细调整示踪剂注入管的位置,使其位置处于实验管道的中心线上。

(3)关闭水流量调节阀、排气阀,打开进水阀、排水阀,向高位水箱注水,使水充满水箱并产生溢流。

实验1 雷诺实验和柏努利实验 - 副本

实验1  雷诺实验和柏努利实验 - 副本

实验一 雷诺实验和柏努利实验雷诺实验一、实验目的1、建立对层流(滞流)和湍流两种流动类型的直观感性认识;2、观测雷诺数与流体流动类型的相互关系;3、观察层流中流体质点的速度分布。

二、基本原理流体流动类型与雷诺数的关系μρdu =Re (1-1)Re <2000~2300时为层流;Re > 4000 时为湍流; 2000<Re < 4000时为过渡区,在此区间可能为层流,也可能为湍流。

确定了温度及流量,即可由仪器铭牌上的图查取雷诺数。

当流体的流速较小时,管内流动为层流,管中心的指示液成一条稳定的细线通过全管,与周围的流体无质点混合;随着流速的增加,指示液开始波动,形成一条波浪形细线;当速度继续增加,指示液将被打散,与管内流体充分混合。

三、实验装置图1-1雷诺实验示意图1、墨水罐2、墨水阀3、进水阀4、高位水槽5、溢流管6、流态观察管7、转子流量计8、排水阀四、操作要点a)开启进水阀,使高位槽充满水,有溢流时即可关闭(若条件许可,此步骤可在实验前进行,以使高位槽中的水经过静置消除旋流,提高实验的准确度)。

b)开启排水阀及墨水阀,根据转子流量计的示数,利用仪器上的对照图查得雷诺数,并列表记录之。

c)逐渐开大排水阀,观察不同雷诺数时的流动状况,并把现象记入表中。

d)继续开大排水阀,到使红墨水与水相混旋,测取此时流量并将相应的雷诺数记入表中。

e)观察在层流中流体质点的速度分布:层流中,由于流体与管壁间及流体与流体间内摩擦力的作用,管中心处流体质点速度较大,愈靠近管壁速度愈小,因此在静止时处于同一横截面的流体质点,开始层流流动后,由于速度不同,形成了旋转抛物面(即由抛物线绕其对称轴旋转而形成的曲面)。

下面的演示可使同学们直观地看到这曲面的形状。

预先打开红墨水阀,使红墨水扩散为团状,再稍稍开启排水阀,使红墨水缓慢随水运动,则可观察到红墨水团前端的界限,形成了旋转抛物面。

五、数据记录层流R e<900 湍流R e>1800六、思考题1、流体的流动类型与雷诺准数的值有什么关系?答:2、为什么要研究流体的流动类型?它在化工过程中有什么意义?答:六、实验讨论柏努利实验 (流体机械能转换实验)一、实验目的1、通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和柏努利方程;2、通过实测流速的变化和与之相应的压头损失的变化,确定两者之间的关系。

(完整版)雷诺实验

(完整版)雷诺实验

雷诺实验一、实验背景1883年,雷诺通过实验发现到液流中存在着层流和湍流两种流态:流速较小时,水流有条不紊的呈现层状有序的直线运动,流层间没有质点掺混,这种流态称为层流;当流速增大时,流体质点做杂乱无章的无序的运动,流层间质点掺混,这种流态称为湍流。

雷诺实验还发现存在着湍流转变为层流的临界流速0V ,而0V 又与流体的粘性,圆管的直径d 有关。

若要判别流态,就要确定各种情况下的0V 值。

雷诺运用量纲分析的原理,对这些相关因素的不同量值作出排列组合再分别进行实验研究,得出了无量纲数——雷诺数e R ,以此作为层流与紊流的判别依据,使复杂问题得以简化。

经反复测试,雷诺得出圆管流动的下临界雷诺数值为2320,工程上,一般取之为2000。

当e R <2320时,管中流态为层流,反之,则为湍流。

雷诺简介奥斯本 雷诺(Osborne Reynolds),英国力学家、物理学家和工程师。

1842年8月23日生于北爱尔兰的贝尔法斯特,1912年2月21日卒于萨默塞特的沃切特。

1867年毕业于剑桥大学王后学院。

1868年出任曼彻斯特欧文学院(以后改名为维多利亚大学)的首席工程学教授,1877年当选为皇家学会会员,1888年获皇家勋章,1905年因健康原因退休。

他是一位杰出的实验科学家,由于欧文学院最初没有实验室,因此他的许多早期试验都是在家里进行的。

他于1883年发表了一篇经典性论文──《决定水流为直线或曲线运动的条件以及在平行水槽中的阻力定律的探讨》。

这篇文章以实验结果说明水流分为层流与紊流两种形态,并提出以无量纲数Re (后称为雷诺数)作为判别两种流态的标准。

他还于1886年提出轴承的润滑理论,1895年在湍流中引入有关应力的概念。

雷诺兴趣广泛,一生著述很多,其中近70篇论文都有很深远的影响。

这些论文研究的内容包括力学、热力学、电学、航空学、蒸汽机特性等。

他的成果曾汇编成《雷诺力学和物理学课题论文集》两卷。

化工原理实验指导书

化工原理实验指导书

《化工原理》实验指导书冯治宇编沈阳大学生物与环境工程学院目录实验一:雷诺实验实验二:流体沿程阻力损失的测定实验三:流体局部阻力损失的测定实验四:孔板流量计流量系数的测定实验五:离心泵特性曲线的测定课程编号:1414341课程类别:学科必修课程适用层次:本科适用专业:环境工程课程总学时:64 适用学期:第四学期实验学时:10 开设实验项目数:5撰写人:冯治宇审核人:王英刚教学院长:马德顺实验一:雷诺实验一、实验目的与要求观察层流和紊流的物理现象以及相互转换的特征,了解雷诺数的测定和计算。

实验前认真预习;实验中严格按照规定操作;实验后认真总结。

二、实验类型验证型。

三、实验原理及说明在管流动的问题中,流体的流动常受到压力、重力、粘滞力、弹性力和表面张力等各种力的影响,其中与流体关系最大的是粘滞力,即由真实流体所具有的粘性而产生的力,使得流体的流动呈现两种差异性较大的流态—层流和紊流,这两种流动现象的区别可由惯性力与粘滞力的比值体现出来。

实验中可发现,当玻璃管内流体的流动速度较小时,可以看到颜色水呈明显的直线形状(层流);当节流阀逐渐开大颜色水开始抖动,断断续续,最后染色线扩散到整个玻璃管中。

染色线开始扩散时的流体平均速度,称为临界速度。

当流体速度超过临界速度时,流体分子的动量增加,使惯性力大于粘滞力,流体分子发生上下左右不规则的混合,这种流动称为紊流。

雷诺数计算公式:式中l为特征尺寸(m);u为流体的平均速度(m/s);ρ为流体密度(kg/m3);μ为流体动力粘度(Pa﹒s);q v为流量(m3/s);A为管路截面积(m2)。

流态稳定性的根据雷诺数判定:R e < 2000, 层流;2000<R e < 4000, 过渡流;R e > 4000紊流。

图1 实验原理示意图当流速小时,染料自始自终均呈一直线,且不向周围扩散,称为层流;而当速度很大时,管内染料则将整支管子染色,且向周围扩散,称为紊流。

(完整版)雷诺实验

(完整版)雷诺实验

雷诺实验雷诺实验一、实验背景1883 年,雷诺通过实验发现到液流中存在着层流和湍流两种流态:流速较小时,水流有条不紊的呈现层状有序的直线运动,流层间没有质点掺混,这种流态称为层流;当流速增大时,流体质点做杂乱无章的无序的运动,流层间质点掺混,这种流态称为湍流。

雷诺实验还发现存在着湍流转变为层流的临界流速 V ,而V 又0 0与流体的粘性,圆管的直径d 有关。

若要判别流态,就要确定各种情况下的V 值。

0雷诺运用量纲分析的原理,对这些相关因素的不同量值作出排列组合再分别进行实,以此作为层流与紊流的判别依据,使复验研究,得出了无量纲数——雷诺数 Re杂问题得以简化。

经反复测试,雷诺得出圆管流动的下临界雷诺数值为 2320,工程上,一般取之<2320 时,管中流态为层流,反之,则为湍流。

为 2000 。

当Re雷诺简介奥斯本雷诺 (Osborne Reynolds) ,英国力学家、物理学家和工程师。

1842 年 8 月 23 日生于北爱尔兰的贝尔法斯特, 1912年 2 月 21 日卒于萨默塞特的沃切特。

1867 年毕业于剑桥大学王后学院。

1868 年出任曼彻斯特欧文学院(以后改名为维多利亚大学)的首席工程学教授, 1877 年当选为皇家学会会员, 1888年获皇家勋章, 1905 年因健康原因退休。

他是一位杰出的实验科学家,由于欧文学院最初没有实验室,因此他的许多早期试验都是在家里进行的。

他于 1883 年发表了一篇经典性论文── 《决定水流为直线或曲线运动的条件以及在平行水槽中的阻力定律的探讨》。

这篇文章以实验结果说明水流分为层流与紊流两种形态,并提出以无量纲数 Re (后称为雷诺数)作为判别两种流态的标准。

他还于 1886 年提出轴承的润滑理论, 1895 年在湍流中引入有关应力的概念。

雷诺兴趣广泛,一生著述很多,其中近 70 篇论文都有很深远的影响。

这些论文研究的内容包括力学、热力学、电学、航空学、蒸汽机特性等。

雷诺实验_实验报告

雷诺实验_实验报告

一、实验目的1. 观察流体在管道中流动时的层流和湍流现象,区分两种不同流态的特征,了解两种流态产生的条件。

2. 测定临界雷诺数,掌握圆管流态判别准则。

3. 学习古典流体力学中应用无量纲参数进行实验研究的方法,并了解其实用意义。

二、实验原理流体在管道中流动时,存在两种不同的流动状态:层流和湍流。

层流是指流体流动时,各层流体互不干扰,呈平行流动状态;湍流是指流体流动时,各层流体互相干扰,呈无规则流动状态。

雷诺数(Re)是判断流体流动状态的重要无量纲参数,其表达式为:Re = ρvd/μ其中,ρ为流体密度,v为流体平均流速,d为管道直径,μ为流体动力粘度。

当雷诺数较小时,流体呈层流状态;当雷诺数较大时,流体呈湍流状态。

临界雷诺数(Re_c)是层流和湍流状态的分界点,对于圆形管道,其表达式为:Re_c = 2000三、实验设备与材料1. 实验台2. 圆形管道3. 可调流速装置4. 水泵5. 水箱6. 液体颜色指示剂7. 计时器8. 测量尺四、实验步骤1. 准备实验设备,将圆形管道固定在实验台上。

2. 在水箱中注入适量的水,打开水泵,调节流速装置,使水流速度逐渐增大。

3. 在管道进口处加入液体颜色指示剂,观察颜色指示剂在管道中的流动状态。

4. 记录不同流速下颜色指示剂的流动状态,并测量管道直径、流体密度和动力粘度。

5. 计算不同流速下的雷诺数,观察雷诺数与流态的关系。

6. 重复步骤3-5,验证临界雷诺数。

五、实验结果与分析1. 实验过程中,观察到以下现象:(1)当流速较小时,颜色指示剂在管道中呈平行流动状态,流体呈层流状态。

(2)当流速逐渐增大时,颜色指示剂在管道中开始出现波纹,随后波纹逐渐增多,振幅增大,流体呈湍流状态。

(3)当流速达到临界雷诺数时,颜色指示剂在管道中呈无规则流动状态,流体呈湍流状态。

2. 计算不同流速下的雷诺数,发现随着流速增大,雷诺数逐渐增大。

当雷诺数达到临界雷诺数时,流体从层流状态转变为湍流状态。

实验1 雷诺实验和柏努利实验 - 副本

实验1  雷诺实验和柏努利实验 - 副本

实验一 雷诺实验和柏努利实验雷诺实验一、实验目的1、建立对层流(滞流)和湍流两种流动类型的直观感性认识;2、观测雷诺数与流体流动类型的相互关系;3、观察层流中流体质点的速度分布。

二、基本原理流体流动类型与雷诺数的关系μρdu =Re (1-1)Re <2000~2300时为层流;Re > 4000 时为湍流; 2000<Re < 4000时为过渡区,在此区间可能为层流,也可能为湍流。

确定了温度及流量,即可由仪器铭牌上的图查取雷诺数。

当流体的流速较小时,管内流动为层流,管中心的指示液成一条稳定的细线通过全管,与周围的流体无质点混合;随着流速的增加,指示液开始波动,形成一条波浪形细线;当速度继续增加,指示液将被打散,与管内流体充分混合。

三、实验装置图1-1雷诺实验示意图1、墨水罐2、墨水阀3、进水阀4、高位水槽5、溢流管6、流态观察管7、转子流量计8、排水阀四、操作要点a)开启进水阀,使高位槽充满水,有溢流时即可关闭(若条件许可,此步骤可在实验前进行,以使高位槽中的水经过静置消除旋流,提高实验的准确度)。

b)开启排水阀及墨水阀,根据转子流量计的示数,利用仪器上的对照图查得雷诺数,并列表记录之。

c)逐渐开大排水阀,观察不同雷诺数时的流动状况,并把现象记入表中。

d)继续开大排水阀,到使红墨水与水相混旋,测取此时流量并将相应的雷诺数记入表中。

e)观察在层流中流体质点的速度分布:层流中,由于流体与管壁间及流体与流体间内摩擦力的作用,管中心处流体质点速度较大,愈靠近管壁速度愈小,因此在静止时处于同一横截面的流体质点,开始层流流动后,由于速度不同,形成了旋转抛物面(即由抛物线绕其对称轴旋转而形成的曲面)。

下面的演示可使同学们直观地看到这曲面的形状。

预先打开红墨水阀,使红墨水扩散为团状,再稍稍开启排水阀,使红墨水缓慢随水运动,则可观察到红墨水团前端的界限,形成了旋转抛物面。

五、数据记录层流R e<900 湍流R e>1800六、思考题1、流体的流动类型与雷诺准数的值有什么关系?答:2、为什么要研究流体的流动类型?它在化工过程中有什么意义?答:六、实验讨论柏努利实验 (流体机械能转换实验)一、实验目的1、通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和柏努利方程;2、通过实测流速的变化和与之相应的压头损失的变化,确定两者之间的关系。

实验一 雷诺实验

实验一 雷诺实验

实验一:雷诺实验实验一 雷诺实验一、实验目的1、观察流体在管内流动时的两种不同型态。

2、观察层流状态下管路中流体速度分布状态。

3、测定流动形态与雷诺数Re 之间的关系及临界雷诺数值。

二、实验内容1、根据测定参数计算Re 并判断流体流动的流型;2、确定临界雷诺值三、实验原理 1、概述在实际化工生产中,许多过程都涉及到流体流动的内部细节,尤其是流体的流动现象。

故而了解流体的流动形态极其重要。

本实验装置便于观察,结构简单能使学生对流体流动的两种形态有更好的认识。

2、实验原理流体流动过程中有两种不同的流动型态:层流和湍流。

流体在管内作层流流动时,其质点作直线运动,且质点之间互相平行互不混杂互不碰撞。

湍流时质点紊乱地向各个方向作不规则运动,但流体的主体仍向某一方向流动。

影响流体流动型态的因素,除代表惯性力的流速和密度及代表粘性力的粘度外,还与管型、管径等有关。

经实验归纳得知可由雷诺准数Re 来判别:μρdu =Re式中:d — 管子内径(m )u — 流速(m / s ) ρ—流体密度(㎏/m 3) μ—流动粘度(PaS )雷诺准数是判断流体流动类型的准数,一般认为,Re≤2000为层流;Re≥4000为湍流;2000<Re <4000为不稳定的过渡区。

对于一定温度的液体,在特定的圆管内流动,雷诺准数仅与流速有关。

本实验是以水为介质,改变水在圆管内的流速,观察在不同雷诺准数下流体流动类型的变化。

化工原理实验讲义3、实验装置流程图1 试剂盒2 试剂调节阀3 高位水槽4 雷诺管5 水量调节阀6 计量水箱7 进水阀8、9 排水阀图1-1 雷诺实验流程图四、操作步骤1、依次检查实验装置的各个部件,了解其名称与作用,并检查是否正常。

2、关闭各排水阀门和流量调节阀门,开泵向实验水箱供水。

3、待有实验水箱溢流口有水溢流出来之后稍开流量调节阀门,调节指示液试剂调节阀门至适度(以指示液呈不间断细流排出为宜)。

4、调节水量由较小值缓慢增大,同时观察指示液流动形状,并记下指示液呈一条稳定直线、指示液开始波动、指示液与流体(水)全部混合时通过秒表和量筒来确定的流量,计算Re,将测得的Re临界值与理论值比较。

雷诺实验实验报告

雷诺实验实验报告

实验一雷诺实验一、实验目的1、观察流体流动时各种流动型态;2、观察层流状态下管路中流体速度分布状态;3、测定流动型态与雷诺数Re之间的关系及临界雷诺数值。

二、实验原理概述流体在流动过程中有两种截然不同的流动状态,即层流和湍流。

它取决于流体流动时雷诺数Re值的大小。

雷诺数:Re=duρ/μ式中:d-管子内径,mu-流体流速,m/sρ-流体密度,kg/m3μ-流体粘度,kg/(m·s)实验证明,流体在直管内流动时,当Re≤2000时属层流;Re≤4000时属湍流;当Re在两者之间时,可能为层流,也可能为湍流。

流体于某一温度下在某一管径的圆管内流动时,Re值只与流速有关。

本实验中,水在一定管径的水平或垂直管内流动,若改变流速,即可观察到流体的流动型态及其变化情况,并可确定层流与湍流的临界雷诺数值。

三、装置和流程本实验装置和流程图如右图。

水由高位槽1,流径管2,阀5,流量计6,然后排入地沟。

示踪物(墨水)由墨水瓶3经阀4、管2至地沟。

其中,1为水槽2为玻璃管3为墨水瓶4、5为阀6为转子流量计四、操作步骤1、打开水管阀门2、慢慢打开调节阀5,使水徐徐流过玻璃管3、打开墨水阀4、微调阀5,使墨水成一条稳定的直线,并记录流量计的读数。

5、逐渐加大水量,观察玻璃管内水流状态,并记录墨水线开始波动以及墨水与清水全部混合时的流量计读数。

6、再将水量由大变小,重复以上观察,并记录各转折点处的流量计读数。

7、先关闭阀4、5,使玻璃管内的水停止流动。

再开墨水阀,让墨水流出1~2cm距离再关闭阀4。

8、慢慢打开阀5,使管内流体作层流流动,可观察到此时的速度分布曲线呈抛物线状态。

五、实验数据记录和处理表1 雷诺实验数据记录。

化工原理操作实验思考题答案

化工原理操作实验思考题答案

化工原理实验思考题实验一 雷诺实验1 影响流动形态的因素有哪些?流体的流动形态分为层流和湍流两种,由雷诺常数可知,影响流体流动形态的因素有管径、流速、流体密度以及流体黏度这4 点。

2 为什么要研究流体的流动形态? 它在工业生产过程中有何实际指导意义?因为流体要输送,所以要知道流体的流动形态,流量多少?流速多少? 流速又跟压力有关,最大后确定管径。

3 生产中无法通过观察来判断管内流体的流动状态,可用什么反复来判断?通过流量,算出流速,再算出雷诺准数,根据雷诺准数的大小与文献表对比,便可知道。

实验二 流体能量转换(伯努利方程)实验1 为什么随流量增大,垂直玻璃管中液面下降?流量增大,动压头增大,增大的是由位压头转变的,所以位压头会减小,导致液面下降。

2.当流量增大时,水流过45度弯头的局部阻力系数ζ是否变化?解释其原因。

变化很小,忽略不计。

但局部损失是和流速的平方成正比关系,所以就算有所减小,相对因流速增大带来的影响,可忽略。

3 为什么实验中应保持溢流管中有水流动?保证溢流管水是满的,4 启动离心泵前,为何要先关闭出口阀,待启动运转正常后再逐渐开大,而停泵时也要关闭出口阀?离心泵起动时要关死点起动,即关闭出口阀。

这是因为此时流量为零,泵的功率最小,相应起动电流最小,不会对电网产生冲击。

停泵一般没必要关出口阀,有时是为了防止介质回流。

实验四 流体流动阻力损失的测定1 在对装置做排气工作时,是否一定要关闭流程尾部的流量调节阀?为什么?可以不关闭,因为流量调节阀的作用是调节流量的平衡的,避免压缩空气出现大的波动 2 为什么要对测试系统进行排气 如何让检查排气是否完全?若测压管内存有气体,在测量压强时,水柱因含气泡而虚高,使压强测得不准确。

排气后的测压管一端通静止的小水箱中(此小水箱可用有透明的机玻璃制作,以便看到箱内的水面),装有玻璃管的另一端抬高到与水箱水面略高些,静止后看液面是否与水箱中的水面齐平,齐平则表示排气已干净。

1雷诺实验

1雷诺实验

(3)缓慢地逐渐增大调节阀的开度,使水通过试验导管的流速平 稳地增大。直至试验导管内直线流动的红色细流开始发生波动 时,记下水的流量和温度,以供计算下临界雷诺数据。
(4)继续缓慢地增加调节阀开度,使水流量平稳地增加。这时, 导管内的流体的流型逐步由层流向湍流过渡。当流量增大到某 一数据值后,示踪剂(红墨水)一进入试验导管,立即被分散 呈烟雾状,这时表明流体的流型已进入湍流区域。记下水的流 量和温度数据,以供计算上临界雷诺数。
图1
赠送精美图标
1、字体安装与设置
2、替换模板
如果您对PPT模板中的字体风格不满意,可进行批量替换,一次性更改各页面字体。 1. 在“开始”选项卡中,点击“替换”按钮右侧箭头,选择“替换字体”。(如下图)
模板中的图片展示页面,您可以根据需要
方法一:更改图片
2. 在图“替换”下拉列表中选择要更改字体。(如下图)
中间态
湍流
流体流速增大到某个值后,流体质点除流动方向上的流动外,还向其它方向作随 机的运动,即存在流体质点的不规则脉动,这种流体形态称为湍流。
实验一 雷诺实验
1、实验目的:
• 本实验的目的,是通过雷诺实验装置,观察流 体流动过程的不同流型及其转变过程,测定流型 转变时的临界雷诺数。
2、实验原理:
3、实验装置
• 雷诺实验装置主要由稳压溢流水槽、试验导管 和转子流量计等部分组成,如图1所示。
• 自来水不断注入并充满稳压溢流水槽。稳压溢 流水槽的水流经试验导管和流量计,最后排入下 水道。稳压溢流水槽的溢流水,也直接排入下水 道。
1、示踪迹瓶;2、稳压溢流水槽;3、试验导管; 4、转子流量计;V01;示踪迹调节阀;V02上水调节阀 V03水流量调节阀;V04,V05—泄水阀;V06—放风阀。

流体力学实验指导书

流体力学实验指导书

实验一流动演示实验(一)雷诺实验一、实验目的1、观察流体在管内流动的不同流态。

2、层流和湍流的判别。

二、实验原理流体流动有两种不同流态,即层流和湍流。

流体作层流流动时,其流体质点作平行于管轴的直线运动,喘流时流体质点在沿管轴流动的同时还做着杂乱无章的随机运动。

雷诺数是判断流动型态的特征数。

若流体在圆管内流动,雷诺数可用下式表示Re =μρ⋅⋅ud式中:d ——管内径,m;u ——流速, m∕s,ρ——流体密度, k g∕m³,μ——流体黏度,Pa•s。

一般,Re < 2000时,流动型态为层流;Re > 4000时,流动为喘流。

在两者之间时,有时为层流,有时为喘流,流动型态与环境有关。

对于一定温度下的流体,在特定的圆管内流动时,雷诺数仅与流速有关。

本实验通过改变水在管内的流速,观察流体在管内流动型态的变化。

三、实验装置实验装置见图1-1。

图中4为高位槽,实验时水由此高位槽进入玻璃管5。

槽内设有溢流槽3,用以维持平稳、恒定的液面。

实验时打开流量控制阀7,水即由高位槽进入观察用的玻璃管5中,着色水由高位玻璃瓶1经阀9调节流量,通过针形孔进入玻璃管5中心处。

调节阀门7和阀门9,改变流体流速,可以在玻璃管5内观察到不同的流动形态。

流量很小,流体处于层流时,着色水的流动呈一条直线;随着水流量的逐渐加大,着色水由直线开始抖动,继而着色水被扰动成波状前进;随着水流量的继续加大,着色细线变为螺旋前进,再增大流量则出现断裂、旋涡、混合,最后完全与水流主体混在一起,整个水都染上了颜色。

四、实验内容和主要实验步骤1、打开进水阀,向高位槽4送水,使高位槽内的水成溢流状态,以保持高位槽内液位恒定。

2、关闭水流量控制阀7,打开着色水流量控制阀9,观擦着色此时在玻璃管中的状态。

当着色水流出5cm左右后,缓慢打开水流量控制阀7,使水流量尽可能的小,观察层流时流速分布曲线的性状及层流时着色水的流动情况。

3、待玻璃管内的层流流动稳定后,缓慢调节流量控制阀7, 逐渐增大水的流量,观察着色水的流动有何变化,并测定流量,计算不同流动型态时的雷诺数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

雷诺实验
一、实验目的要求
1.观察层流、紊流的流态及其转捩特征;
2.测定临界雷诺数,掌握圆管流态判别准则;
3.学习古典流体力学中应用无量纲参数进行实验研究的方法,并了解其实用意义。

二、实验装置
实验装置如下图所示:
自循环雷诺实验装置图
1 自循环供水器
2 实验台
3 可控硅无级调速器
4 恒压水箱
5 有色水水管
6 稳水隔板
7 溢流板
8 实验管道
9 实验流量调节阀
供水流量由无级调速器调控使恒压水箱4始终保持微溢流的程度,以提高进口前水体稳定度。

本恒压水箱还设有多道稳水隔板,可使稳水时间缩短到3~5分钟。

有色水经有色水水管5注入实验管道8,可据有色水散开与否判别流态。

为防止自循环水污染,有色指示水采用自行消色的专用色水。

三、实验原理
流体在管道中流动存在两种流动状态,即层流与湍流。

从层流过渡到湍流状态称为流动的转捩,管中流态取决于雷诺数的大小,原因在于雷诺数具有十分明确的物理意义即惯性力与粘性力之比。

当雷诺数较小时,管中为层流,当雷诺数较大时,管中为湍流。

转捩所对应的雷诺数称为临界雷诺数。

由于实验过程中水箱中的水位稳定,管径、水的密度与粘性系数不变,因此可用改变管中流速的办法改变雷诺数。

雷诺数 KQ
d Q
vd
R e ==
=
ν
πν
4 ; K =
ν
πd 4
四、实验方法与步骤
1.测记实验的有关常数。

2.观察两种流态。

打开开关3使水箱充水至溢流水位。

经稳定后,微微开启调节阀9,并注入颜色水于实验管内使颜色水流成一直线。

通过颜色水质点的运动观察管内水流的层流流态。

然后逐步开大调节阀,通过颜色水直线的变化观察层流转变到紊流的水力特征。

待管中出现完全紊流后,再逐步关小调节阀,观察由紊流转变为层流的水力特征。

3.测定下临界雷诺数。

① 将调节阀打开,使管中呈完全紊流。

再逐步关小调节阀使流量减小。

当流量调节到使颜色水在全管刚呈现出一稳定直线时,即为下临界状态; ② 待管中出现临界状态时,用重量法测定流量;
③ 根据所测流量计算下临界雷诺数,并与公认值(2320)比较。

偏离过大,需重测;
④ 重新打开调节阀,使其形成完全紊流,按照上述步骤重复测量不少于三次;
⑤ 同时用水箱中的温度计测记水温,从而求得水的运动粘度。

注意:
a 、每调节阀门一次,均需等待稳定几分钟;
b 、关小阀门过程中,只许渐小,不许开大;
c 、随出水流量减小,应适当调小开关(右旋),以减小溢流量引发的扰动。

*4.测定上临界雷诺数。

逐渐开启调节阀,使管中水流由层流过渡到紊流,当色水线刚开始散开时,即为上临界状态,测定上临界雷诺数l 一2次。

5.收拾实验台,整理数据。

五、实验报告要求
1. 简要写出实验原理和实验步骤,画出实验装置。

2. 记录、计算有关常数。

实验装置台号No : 4 管径(cm )d = 1.37cm 水温
(C
)t = 16
运动粘度 ( cm 2/s ) ν =
=
++2
000221.00337.0101775
.0t
t 0.01123
计算常数(s /cm 3) K = 83.554
3. 整理、记录计算表并实测临界雷诺数。

实验次序 颜色水线形态 水重量 时间 流量 雷诺数 阀门开度 增(↑)或减(↓) 备注
1 稳定略弯曲
1.266
60s 21.1 1762.9 无 2 稳定略 1.016
60s
16.93
1414.9

弯曲
1.338 60s 2
2.3 186
3.3 无
3 稳定直
线
实测下临界雷诺数(平均植)R ec=1680.37
注:颜色水形态指稳定直线,稳定略弯曲,直线摆动,直线抖动,断续,完全散开等。

六、实验分析与讨论
1.流态判据为何采用无量纲参数,而不采用临界流速?
因为流态不仅与流速有关还和特征尺寸、密度粘性系数有关
2.为何认为上临界雷诺数无实际意义,而采用下临界雷诺数作为层流与湍流的判据?实测下临界雷诺数为多少?
上临界雷诺数不稳定,变化范围大12000~40000,下临界雷诺数比较稳定,约为2320。

工程中一般采用2320做为层流、紊流的分界
3.雷诺实验得出的圆管流动下临界雷诺数为2320,而目前有些教科书中介绍采用的下临界雷诺数是2000,原因何在?
因为下临界雷诺数受截面影响,不同的截面下临界雷诺数不同圆管最大,其他的较小所以统一采用2000。

相关文档
最新文档