初始磁导率4700锰锌铁氧体频率特性图

合集下载

MnZn铁氧体磁导率频率稳定性和温度稳定性分析

MnZn铁氧体磁导率频率稳定性和温度稳定性分析

MnZn铁氧体磁导率频率稳定性和温度稳定性分析 2003年05月30日02:52MnZn铁氧体磁导率频率稳定性和温度稳定性分析Analysis Stabilization of Permability Versus Frequency Temperature of MnZn Ferrite摘要:本文综合分析了MnZn铁氧体材料磁导率的频率稳定性及温度稳定性。

要获得有温度稳定性的软磁材料,通常采用过铁配方,当的含量控制在53.6mol %时,可以获得很好的温度稳定性;且通过适当控制和的比例,可以得到多个补偿点,在较宽温度范围内得到平坦的~T曲线。

材料的起始磁导率截止频率是互相制约的,因此在磁导率没有特殊要求的情况下,可以通过适当降低磁导率来提高材料的应用频率。

若对材料磁导率要求比较高时,可以用缺铁配方以及降低烧结温度的途径来提高软磁铁氧体材料的使用频率。

关键词:MnZn铁氧体频率稳定性温度稳定性前言高精尖特别是高可靠工程技术的发展,要求软磁材料不但要高,低tanδ,更重要的是高稳定性,即磁导率的温度稳定性、频率稳定性要高,减落要小,随时间的老化要尽可能小,以保证长寿命工作于太空、海底、地下及其它恶劣环境。

在低温、潮湿、电磁场、机械负荷、电离辐射等影响因素较强的情况下,软磁材料性能的变化是其基本特性参数在物理化学过程中发生变化结果。

锰锌铁氧体是低频段应用极广的铁氧体,在500kHz频率以下较其他铁氧体具有更多的优点。

如磁滞损耗低,在相同高磁导率的情况下居里温度较Ni-Zn高,起始磁导率甚大,目前最高达4×,且价廉。

因此,对MnZn铁氧体进行稳定性研究具有良好的市场前景。

本文将分别对MnZn铁氧体磁导率的频率稳定性和温度稳定性进行具体分析。

1 MnZn铁氧体磁导率温度稳定性分析软磁材料的温度稳定性用温度系数α表示。

定义为:由于温度的改变而引起的被测量的相对变化与温度变化之比。

故磁导率的温度系数为:(1)式中,,分别是温度时材料的磁导率。

铁氧体材料特性及不同规格有效参数

铁氧体材料特性及不同规格有效参数

i 铁氧体材料特性及不同规格有效参数10.3.1 国产铁氧体材料特性铁氧体的电阻率大约在106~1012μΩ·cm ,适用于几千到几百兆Hz 的频率之间。

对铁氧体软磁材料的主要要求是:初始磁导率μ 高,比损耗(单位体积或重量)小,磁导率随温度的变化要小等。

锰锌和镍锌铁氧体是常用的材料。

可用来制作滤波电感,高频功率变压器,谐振电感等。

铁氧体材料最高工作频率主要受损耗限制。

在一定的允许损耗下,频率提高,工作磁通密度相应减少,与提高频率来减少磁芯体积相矛盾。

一般建议的磁通密度是在工作频率下权衡损耗、体积、结构和效率的结果,不是绝对的。

例如PHILIPS 建议变压器磁芯:<100kHz 可用3C81、3C90、3C91、3C94 和3C96 等;<400kHz 可用3C90、3C94 和3C96 等;200kHz ~1MHz 可用3F3、3F4 和3F35;1~3MHz 可用3F4 和4F1;>3MHz 可用4F1 等。

电感磁芯:<500kHz 可用2P…、3C30 和3C90;<1MHz 可用3C90、3F3 和3F35 等等。

国产常用的牌号及主要磁性能见表10-7所示。

10.3.2 铁氧体尺寸规格铁氧体磁芯在通讯和开关电源中应用十分广泛,磁芯外形结构多种多样。

开关电源中主要应用的有E 型,ETD 型,EC 型,RM 型,PQ 型,EFD 型,EI 型,EFD 型,环形,LP 型.在模块电源中,主要应用扁平磁芯和集成磁元件。

例如FERROXCUBE-PHILIPS 的平面E 型磁芯,适于表面贴装的EP 、EQ 和ER 磁芯,以及集成电感元件(IIC -Integrated inductance component )等。

IIC 已将元件和磁芯合成一体,通过外部PCB 可自由组成电感和变压器。

各种磁芯结构往往是针对特定的应用设计的,有各自的优点和缺点,要根据应用场合,选择相应的磁芯结构。

锰锌和镍锌铁氧体(图)

锰锌和镍锌铁氧体(图)

锰锌和镍锌铁氧体磁环:
铁氧体锰锌磁环
1.在抑制高频干扰时,宜选用镍锌铁氧体;磁导率为1MHZ-300MHZ,镍锌铁氧体的阻值很大。

2.在抑制低频干扰时,宜选用锰锌铁氧体;磁导率在1KHZ-10MHZ,阻值在150kΩ以下。

3.己知的磁芯可以绕一些线后量电感量,从而判断导磁率,越大就越低频。

铁氧体的磁导率越高,其低频时的阻抗越大,高频时阻抗越小。

镍锌铁氧体NXO材料的初始导磁率μ比较低约10-2500,使用频率从五百千赫至几百兆赫。

具高
电阻率,高居里温度。

锰锌铁氧体MXO材料的初始导磁率μ约从400-10000,使用频率从几十赫至几百千赫。

用于上限频率f1低于500kHz-1MHz的情况下。

超过这个频率,必须使用NiZn(镍锌NXO)材料。

磁环体积决定了频率低端的最大承受功率;
线间介质决定了频率高端的最大承受功率;
绕线长度决定了最短工作波长;
线圈的电感量决定了最低工作波长;
磁环的失磁温度决定了功率耐受能力;
.。

NiZn铁氧体材料特性总表

NiZn铁氧体材料特性总表
×10-6/°C 20°C ~60°C
°C
>105 5.2
Ω.m g/cm3
注:以上数据是根据标准样环¢25×¢15×8获得的典型数据,有关产品的具体性能会在此基础上有所调整。 The above typical data are calculated from the standard toroid core.The specific property of any parts will be adjusted a little based on these data.
符号 Symbol
μi
测试条件 Condition
f
25℃
tan δ/μi
25℃
Bs
25℃
Br
25℃
Hc
25℃
aμr
Tc
ρ
25℃
d
25℃
标称值 Value
350±25%
单位 Unit
0.1-2
45 1MHz 430 4000A/m
240
MHz ×10-6
mT mT
55 8-25 >230
A/m
×10-6/°C 20°C ~60°C
°C
>105 5.2
Ω.m g/cm3
注:以上数据是根据标准样环¢25×¢15×8获得的典型数据,有关产品的具体性能会在此基础上有所调整。 The above typical data are calculated from the standard toroid core.The specific property of any parts will be adjusted a little based on these data.

“常温型”和“宽温型”锰锌铁氧体材料特性简介及达成途径

“常温型”和“宽温型”锰锌铁氧体材料特性简介及达成途径

《“常温型”和“宽温型”锰锌铁氧体材料特性简介及达成途径》 一、“常温型”锰锌铁氧体材料特性简介锰锌铁氧体材料初始磁导率μi的温度曲线,通常呈现两个峰值。

其中:1、接近于材料居里温度Tc点的峰,称为“Ⅰ峰”,在超出居里温度Tc 以上时,材料的初始磁导率μi,急剧下降,材料由“铁磁性”相,转变为“顺磁性”相,也称为顺磁体,从而失去实际应用价值。

2、远离于材料居里温度Tc点的峰,称为“Ⅱ峰”,该位置对应于材料损耗的最低点,也是所制成器件的最佳工作区域。

上述“Ⅰ峰”、“Ⅱ峰”点的形成,与锰锌铁氧体材料的一个重要特性——“磁晶各向异性常数”K1,密切相关。

在“Ⅰ峰”、“Ⅱ峰”点位置,对应于的“磁晶各向异性常数”K1 = 0,具体如图一所示:图一:“常温型”锰锌铁氧体材料μi和K1的对应温度曲线从图一可以看到:在器件的最佳工作温区,材料的初始磁导率μi或者电感量L值,是在一定的范围内起伏、波动的,从磁性材料专业角度讲,是有一定的温度系数αμi的。

二、“宽温型”锰锌铁氧体材料简介从图一可以看出:初始磁导率μi的温度系数αμi越小,表示在器件最佳工作温区,材料的初始磁导率μi,随温度的变化不敏感,或者表示μi~T曲线越平坦,这就衍生出“宽温型”锰锌铁氧体材料的概念,如图二所示:图二:“宽温型”锰锌铁氧体材料μi和K1的对应温度曲线由图二中可见:在器件的最佳工作温区,材料初始磁导率μi温度曲线,与图一相比,比较平坦!其主要原因是:在器件最佳工作温区,材料“磁晶各向异性常数”K1值,基本在K1~T曲线的横坐标轴、亦即零轴附近,详见图二K1~T曲线中的红色曲线区域!简言之,在器件最佳工作温区,如果控制材料“磁晶各向异性常数”K1值,基本在0值附近,则材料的初始磁导率μi的温度曲线,也会越平坦,则亦即实现了宽温要求!三、“宽温型”锰锌铁氧体材料特性的达成途径铁氧体磁性材料的理论研究表明:如果材料的晶体结构完整、没有晶格缺陷,并且具备其它相应的完美特点及特性,则在一定的温度区域范围内,可以实现材料“磁晶各向异性常数”K1值均为0,使得材料初始磁导率μi的温度曲线为一条直线,亦即材料初始磁导率μi的温度系数αμi= 0。

锰锌软磁铁氧体磁芯术语及定义

锰锌软磁铁氧体磁芯术语及定义

1.初始磁导率iμ 初始磁导率是磁性材料的磁导率(B/H )在磁化曲线始端的极限值,即 i μ=01μ0H lim →H B式中0μ为真空磁导率(4л×710-H/m )H 为磁场强度(A/m )B 为磁通密度(T )2.有效磁导率eμ 在闭合磁路中,如果漏磁可忽略,可以用有效磁导率来表征磁芯的性能。

e μ=20N L ⋅μ﹒e e A L式中 L 为装有磁芯的线圈的电感量(H )N 为线圈匝数Le 为有效磁路长度(m )e A 为有效截面积(2m ) 0μ为真空磁导率(4л×710-H/m )3. 饱和磁通密度Bs(T)磁化到饱和状态的磁通密度。

见图1.4.剩余磁通密度Br(T)从饱和状态去除磁场后,剩余的磁通密度。

见图1.5.矫顽力Hc(A/m)从饱和状态去除磁场后,磁芯继续被反向磁场磁化,直至磁通密度减为零,此时的磁场强度称为矫顽力。

见图1.6.损耗因数 tanδ损耗因数是磁滞损耗、涡流损耗和剩余损耗三者之和tanδ =tan h δ+tan e δ+tan r δ式中tan h δ为磁滞损耗因数tan e δ为涡流损耗因数tan r δ为剩余损耗因数7.相对损耗因数 tanδ/μ相对损耗因数是损耗因数与磁导率之比tanδ/i μ(适用于材料)t anδ/e μ(适用于磁路中含有气隙的磁芯)8.品质因数Q品质因数为损耗因数的倒数:Q=1/tanδ9.温度系数μα(1/K ) 温度系数为温度在T1和T2范围内变化时,每变化1K 相应的磁导率的相对变化量: μα=12112T T 1-⋅-μμμ (T2>T1)式中1μ 为温度为1T 时的磁导率2μ 为温度为2T 时的磁导率10.相对温度系数rμα(1/k) 温度系数和磁导率之比:r μα=122212T T 1-⋅-μμμ (T2>T1)11.居里温度Tc(℃)在该温度下材料由铁磁性(或亚铁磁性)转变成顺磁性。

见图2.12.减落因数FD 在恒温条件下,完全退磁的磁芯的磁导率随时间的衰减变化,即 F D =2112211T T log μμμ⋅-(T2>T1)式中 1μ 为退磁后1t 分钟的磁导率2μ 为退磁后2t 分钟的磁导率13.电阻率ρ(Ω/m )具有单位截面积和单位长度的磁性材料的电阻。

铁氧体的磁导率

铁氧体的磁导率

铁氧体的磁导率铁氧体的磁导率是多少为计算互感器的电感系数,但不知道铁氧体的磁导率…从⼏到3万,范围很宽。

六⾓晶系铁氧体:⼏到⼏⼗。

NiZn(MgZn)铁氧体:⼏⼗到2000,⽬前最⾼4000,磁导率上千的很少见。

MnZn铁氧体:⼏百到30000,5000以上算⾼磁导率。

铁氧体饱合磁化强度也较低(通常只有纯铁的1/3~1/5),因⽽限制了它在要求较⾼磁能密度的低频强电和⼤功率领域的应⽤。

就电特性来说,铁氧体的电阻率⽐⾦属、合⾦磁性材料⼤得多,⽽且还有较⾼的介电性能。

铁氧体的磁性能还表现在⾼频时具有较⾼的磁导率。

因⽽,铁氧体已成为⾼频弱电领域⽤途⼴泛的⾮⾦属磁性材料。

铁氧体饱合磁化强度也较低(通常只有纯铁的1/3~1/5),因⽽限制了它在要求较⾼磁能密度的低频强电和⼤功率领域的应⽤。

就电特性来说,铁氧体的电阻率⽐⾦属、合⾦磁性材料⼤得多,⽽且还有较⾼的介电性能。

铁氧体的磁性能还表现在⾼频时具有较⾼的磁导率。

因⽽,铁氧体已成为⾼频弱电领域⽤途⼴泛的⾮⾦属磁性材料。

测量单位由于历史的原因,在此⼿册中采⽤了CGS制单位,国际制(SI)和CGS制之间的转换可简化于下表2:表2单位转换表在CGS制⾃由空间磁导率的幅值为1且⽆量纲。

在SI制⾃由空间磁导率的幅值为4π×10-7亨/⽶ 3.3、电感对于每⼀个磁芯电感(L)可⽤所列的电感系数(AL)计算: (14) AL:对1000匝的电感系数 mH N:匝数所以:这⾥这⾥L是nH 电感也可由相对磁导率确定,磁芯的有效参数见图 10: (15) Ae:有效磁芯⾯积 cm2 :有效磁路长度 cm µ:相对磁导率(⽆量纲)对于环形功率磁芯,有效⾯积和磁芯截⾯积相同。

根据定义和安培定理,有效磁路长度是线圈的安匝数(NI)和从外径到外径穿过磁芯⾯积的平均磁场强度之⽐。

有效磁路长度可⽤安培定理和平均磁场强度给出的公式计算: (16) O.D. :磁芯外径 I.D. :磁芯内径电感系数是⽤单层密绕线圈测量的。

多种材料的磁导率

多种材料的磁导率

非铁磁性物质的μ近似等于μ0。

而铁磁性物质的磁导率很高,μ>〉μ0。

铁磁性材料的相对磁导率μr=μ/μ0如铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000;镍铁合金为2000;锰锌铁氧体为300~5000;坡莫合金为20000~200000。

空气的相对磁导率为1。

00000004;铂为1.00026;汞、银、铜、碳(金刚石)、铅等均为抗磁性物质,其相对磁导率都小于1,分别为0.999971、0.999974、0。

99990、0.999979、0.999982。

铁粉心磁导率10左右材料以优良的频率特性和阻抗特性良好的温度特性是雷达和发射机滤波用电感器最佳材料;磁导率33材料最适合在几十A到上百A的大电流逆变电感器,如果对体积和温升要求不高,可以使用其做频率底于50KHz的开关电源输出电感器,APFC电感器;磁导率75材料是做差模电感器和频率在20K左右的滤波电感器储能电感器的高性价比材料。

铁镍50该材料最适合用做差模电感器但是价格很高,由于原来国内能做铁镍钼的厂家做的铁镍钼性能很差,所以一些开关电源厂家和军工客户都使用铁镍50材料做储能电感器,其实这是错误的选择,因为这种材料的损耗仅好于铁粉心,是铁硅铝的2倍左右,是铁镍钼的三倍左右,但是该材料同样磁导率下,直流叠加特性好于铁硅铝材料,虽然它的Bs值达14000Gs,但是由于磁滞回线的形状不一样,所以它的直流叠加特性并不好于铁镍钼材料(只是原来国内能做的厂家做的性能较差)。

铁硅铝高性价比材料,是铁粉心的替代品(不包括低磁导率铁粉心)。

铁镍钼价格与铁镍50相当(我公司),损耗最低材料,频率特性最好的材料,如果将您正在使用的国内公司的铁镍50材料换成我公司的铁镍钼材料将大大提高您的模块效率。

不信您可以索要样品适用 .四种金属磁粉心性能和价格对比金属磁粉心与铁氧体材料应用对比应用之功率变压器粉心铁镍钼磁粉心铁镍50磁粉心铁硅铝磁粉心5k~200k5k~50k5k~200k—55~200—55~200-55~200环型极限外径到φ63。

铁氧体材料的特性

铁氧体材料的特性

铁氧体材料的特性MnZn系铁氧体具有高的起始磁导率,较高的饱和磁感应强度,在无线电中频或低频范围有低的损耗,它是1兆赫兹以下频段范围磁性能最优良的铁氧体材料。

常用的MnZn系铁氧体起始磁导率μi=400-20000,饱和磁感应强度Bs=400-530mT。

NiZn系铁氧体使用频率100kHz~100MHz,最高可使用到300MHz。

这类材料磁导率较低,电阻率很高,一般为105~107Ωcm。

因此,高频涡流损耗小,是1MHz以上高频段磁性能最优良材料。

常用NiZn系材料的磁导率μi=5-1500,饱和磁感应强度Bs=250-400mT。

MgZn系铁氧体材料的电阻率较高,主要应用于制作显像管或显示管的偏转线圈磁芯。

5.1.1.2磁粉芯材料的特性磁粉芯是由颗粒直径很小(0.5~5mm)的铁磁性粉粒与绝缘介质混合压制而成的磁芯,一般为环形,也有压制成E形的。

磁粉芯的电磁特性取决于金属粉粒材料的导磁率、粉粒的大小与形状、填充系数、绝缘介质的含量、成型压力、热处理工艺等。

磁粉芯主要用于电感铁芯,由于金属软磁粉末被绝缘材料包围,形成分散气隙,大大降低了金属软磁材料的高频涡流损耗,使磁粉芯具有抗饱和特性与宽频响应特性,特别适用于制作谐振电感、功率因数校正电感、输出滤波电感、EMI滤波器电感等。

常用磁粉芯主要有铁粉芯、铁硅铝粉芯、高磁通量(HighFlux)粉芯、坡莫合金粉芯(MPP)。

铁粉芯由碳基铁磁粉及树脂碳基铁磁粉构成,由于价格低廉,铁粉芯至今仍然是用量最大的磁粉芯,磁导率为10~100。

铁硅铝粉芯的典型成分为:9%Al、55Si、85%Fe。

由于在纯铁中加入了硅和铝,使材料的磁滞伸缩系数接近零,降低了材料将电磁能转化为机械能的能力,同时也降低了材料的损耗,使铁硅铝粉芯的损耗比铁粉芯的损耗低。

铁硅铝粉芯的饱和磁感应强度在1.05T左右,磁导率有26、60、75、90、125等5种,比铁粉芯具有更强的抗直流偏磁能力。

锰锌铁氧体磁芯介绍

锰锌铁氧体磁芯介绍

1、锰锌功率铁氧体材料(用于开关电源、节能灯等大功率设备)
TDK PC30(国产R2KB),相对磁导率2000,最高工作频率100kHz。

TDK PC40(国产R2KB1),相对磁导率2000,最高工作频率500kHz。

TDK PC50(国产R2KB2),相对磁导率2000,最高工作频率可达1MHz。

一般电子市场中绕制开关电源变压器的,都是这类材料,国产材料一般只说“磁导率2000”,好一点的相当于PC40,差一点的相当于PC30,相当于PC50的较少见。

廉价节能灯中的磁环和电感,一般是相当于PC30的材料,因为其工作频率一般在50kHz以下。

2、一般锰锌铁氧体材料(用于收音机中波磁棒、AM中周等)
R400,最常见的材料,相对磁导率400。

改进的材料,例如R750、R800等,其相对磁导率比MXO-400高,高频损耗小,绕制的线圈Q值高,但绕制匝数要比MXO-400材料少,需要实测。

目前很多中波磁棒都是此类改进材料,使用时不宜盲目按照过去的参数绕制线圈,需要实测一下电感系数,方法是用漆包线在磁棒一端密绕数十匝,测出电感量,根据电感量与线圈匝数的平方成正比,可以计算出达到预定电感量所需匝数。

锰锌铁氧体软磁材料及产品系列

锰锌铁氧体软磁材料及产品系列

锰锌铁氧体软磁材料及产品系列双高材料■材料用途这种材料具有高磁导率和高剩磁,低功率损耗的特点,适用于宽带变压器(特别是含有直流分量的场合)、脉冲(功率)变压器、特殊要求的扼流圈等磁芯的制造。

该材料特性与西门子公司新近开发的N55材料性能相当。

■材料指标■典型曲线功率铁氧体材料■材料用途这种材料是一种高频率低损耗铁氧体材料, 相当于TDK的PC40(H7C4)。

主要应用于100~500KHz 开关电源变压器。

■材料指标■典型曲线高频功率铁氧体材料■材料用途这种材料是一种高频低损耗材料。

主要应用于500~1000 KHz开关电源,相当于TDK的PC50材料。

■材料指标■典型曲线宽温铁氧体材料■材料用途这种该类材料具有适中的磁导率、高的饱和磁感应强度与低的损耗等优良特性,特别是在很宽的温度范围(-40℃—100℃)内,具有较好的磁导率稳定性。

主要应用于温度范围很宽,电感值变化很小的场合。

■材料指标■典型曲线产品类型【EER磁芯】■ 外形结构■ 用途高频开关电源变压器、匹配变压器、扼流变压器等。

■ 型号【EE磁芯】■ 外形结构■ 用途电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器、电感器及扼流圈、脉冲变压器等。

■ 型号【ETD磁芯】■ 外形结构■ 用途电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器。

■ 型号【EI 磁芯】■ 外形结构■ 用途高频开关电源变压器、功率变压器、整流变压器、电压互感器等。

■ 型号【ET 磁芯】■ 外形结构■ 用途滤波变压器■ 型号【EFD 磁芯】■ 外形结构■ 用途高频开关电源变压器器、整流变压器、开关变压器等。

■型号【UF 磁芯】■ 外形结构■ 用途整流变压器、脉冲变压器、扼流变压器、电源变压器等。

■ 型号【PQ 磁芯】■ 外形结构■ 用途高频开关电源变压器、整流变压器等。

■ 型号【RM 磁芯】■ 外形结构■ 用途高频开关电源变压器、整流变压器、屏蔽变压器、脉冲变压器、脉冲功率变压器、扼流变压器、滤波变压器。

锰锌软磁铁氧体磁芯参数-应用于变压器

锰锌软磁铁氧体磁芯参数-应用于变压器
初始磁导率µi
4
6000 5000 4000 3000
磁 芯 损 耗 Pc( kw/m)
3
10
50
0k
Hz
10
3
Hz 0k 30 Hz 0k 20 Hz 0k 10
10
2
2000 1000 0 0 40 80 120 160 200 240 温度T(℃)
10
1
25
kH
z
50
kH
z
60 C 100 C 10
ISO9001:2000 Certified
锰锌软磁铁氧体
MnZn MnZn Ferrite Cores Selection Guide
江门市华林磁电有限公司
Jiangmen Hualin Magnetoelectric Co., Ltd.
1/49


Contents
☆锰锌铁氧体材料特性 MATERIAL CHARACTERISTICS………………………………………………3 ☆术语及定义 TERMS & DEFINITIONS…………………………………………………………………10 ☆CI 型 ☆EE 型 ☆EED 型 ☆EER 型 ☆EI 型 CI CORES…………………………………………………………………………………………13 EE CORES……………………………………………………………………………………… 14 EED CORES……………………………………………………………………………………21 EER CORES……………………………………………………………………………………22
JLH-5
温度T(℃)
8/49
JLH-12、JLH-15 材料特性曲线图 Curve Graph of JLH-12、JLH-15 Material Characteristics

不同初始导磁率MnZn、NiZn铁氧体材料高饱和磁感应强度、高直流叠加、低损耗特性参数

不同初始导磁率MnZn、NiZn铁氧体材料高饱和磁感应强度、高直流叠加、低损耗特性参数

MnZn高饱和磁感应强度、高直流叠加、低损耗材料特性MnZn High Saturation Flux Density Low Core Loss Material,High DC-Bias Material Characteristics.参数Parameter符号Symbol单位Uint测试条件ConditionZF-2C ZF-3B ZF-4B ZF-5T ZF-5B ZF-6B初始磁导率Initialpermeabilityμi/23℃,10kHz2300±25%3000±25%3600±25%4300±25%4500±25%5500±25%饱和磁通密度Saturation magnetic flux density Bs mT23℃,10kHzHm=1.2kA/m510530480490470470剩磁Residual magneticflux densityBr mT23℃,10kHz1008550606060矫顽力CoercivityHc A/m23℃,10kHz14126685损耗因子Relative loss factortanδ/μi×10-610kHz522233温度因子Relative temperature coefficient αuir×10-6/℃-20~25℃0~+20~+10~+20~+10~+20~+325~70℃0~+30~+1-1~+1-1~+1-1~+2-1~+2减落因子DisaccommodationfactorD F×10-610kHz<3.0<2.0<2.0<2.0<2.5<3.0居里温度CurietemperatureTc℃—>220>215>180>180>175>175电阻率Electrical resistivityρΩ·m—542110.5密度Densityd g/cm3— 4.8 4.9 4.8 4.9 4.8 4.9MnZn高导材料特性MnZn High Permeability Ferrite Material Characteristics参数Parameter符号Symbol单位Uint测试条件ConditionZF-5ZF-7ZF-10ZF-12ZF-15初始磁导率Initial permeability μi/23℃,10kHz5000±25%7500±30%10000±30%12000±25%15000±25%饱和磁通密度Saturation magnetic flux density Bs mT23℃,10kHzHm=1.2kA/m410410380360360剩磁Residual magneticflux densityBr mT23℃,10kHz7080120100100矫顽力CoercivityHc A/m23℃,10kHz66655损耗因子Relative loss factor tanδ/μi×10-6100kHz1020301010kHz1010kHz温度因子Relative temperature coefficient αuir×10-6/℃20~60℃-0.5~+2.0-0.5~+2.0-0.5~+2.0-0.5~+2.0-0.5~+2.0减落因子DisaccommodationfactorD F×10-610kHz<3.0<2.5<2.0<2.0<2.5居里温度CurietemperatureTc℃—>170>125>125>115>110电阻率Electrical resistivityρΩ·m—10.30.20.150.15密度Densityd g/cm3— 4.8 4.8 4.9 4.95 4.95NiZn铁氧体材料特性NiZn Ferrite Material Characteristic材质初始磁导率μi饱和磁通密度Bs损耗因子tanδ/μi温度因子αuir居里温度Tc电阻率ρ密度dMaterialInitialpermeabilityFluxdensity Relative loss factorRelative temperaturecoefficientCurietemperatureElectricalresistivityDensity /mT kA/m×10-6MHz×10-6/℃(20~60℃)℃Ω·m g/cm3ZF-00116±25%240 4.0≤50010050>300106 5.0 ZF-01125±25%400 4.0≤1001018>250106 5.0 ZF-02250±25%310 4.0≤60215>220106 5.0 ZF-04400±25%360 4.0≤250.125>220106 5.1 ZF-06600±25%350 1.6≤170.118>170106 5.1 ZF-07730±25%330 1.6≤150.112>150106 5.1 ZF-09850±25%380 1.6≤130.110>150106 5.1 ZF-11000±25%320 1.6≤100.15>130106 5.1 ZF-1A1200±25%360 1.6≤180.15>120106 5.1 ZF-1B1500±25%300 1.6≤150.14>110105 5.1 ZF-1C1700±25%280 1.6≤180.14>110105 5.1 ZF-1D2000±25%270 1.6≤100.15>100105 5.1 ZF-N22500±25%260 1.6≤100.15>85105 5.1。

MnZn铁氧体关键磁参数及工艺

MnZn铁氧体关键磁参数及工艺

第一章MnZn铁氧体的关键磁参数1.1 引言铁氧体磁性即亚铁磁性,0n铁氧体的晶体结构研究入手,探讨分析MnZn铁氧体有关的基础理论,对本文所涉及的基本电磁参数如起始磁导率µi、损耗P L、饱和磁感应强度B s、居里温度T c等进行了分析,为本文的研究提供理论依据。

1.2 MnZn铁氧体的晶体结构及磁性来源1.2.1 MnZn铁氧体的晶体结构凡是晶体结构和天然矿石—镁铝尖晶石(MgAl2O4)的结构相似的铁氧体,称为尖晶石型铁氧体。

我们研究的MnZn铁氧体就属于尖晶石型铁氧体。

尖晶石型铁氧体的晶体结构属于立方晶系,其化学分子式可以MeFe2O4(或AB2O4)表示。

其中,Me为金属离子Mg2+、Mn2+、Ni2+、Zn2+、Fe2+、Li1+等;而Fe为三价离子,也可以被其他三价金属离子Al3+、Cr3+或Fe2+、Ti4+所代替。

总之,只要几个金属离子的化学价总数为8价,能与四个氧离子化学价平衡即可,但也要注意离子的大小及其他一些问题。

尖晶石型结构的一个晶胞共有56个氧离子,相当于8MeFe2O4,其中有24个金属离子,32个氧离子。

由于晶胞中的离子很多,结构较复杂,不易全部画出。

图1-1表示了部分金属离子在晶胞中的分布。

每个晶胞实际上可以分为8个小立方,这8个小立方体又分为两类,每种各有4个;每两个共边的小立方体是同类的,每两个共面的小立方体分属于不同类型的结构。

在每个不同类型的小立方体内都有4个氧离子。

在8个小立方体中,氧离子都位于体对角线中点至顶点的中心。

由于氧离子比较大,金属离子比较小,而以氧离子作为密堆积结构,金属离子都填充在氧离子密堆积的空隙中。

氧离子之间存在两种空隙:即八面体空隙和四面体空隙,如图1-2。

八面体空隙被六个氧离子包围,由六个氧离子中心连线构成八个三角形平面,而称八面体,其空隙较大,也称B位。

四面体空隙则是由四个氧离子包围而成的,四个氧离子中心连线构成四个三角形平面,所以称四面体,其空隙较小,也称为A位。

锰锌软磁铁氧体磁性材料特点以及在电源中的应用

锰锌软磁铁氧体磁性材料特点以及在电源中的应用

锰锌软磁铁氧体磁性材料特点以及在电源中的应用锰锌(MnZn)系软磁铁氧体概述锰锌系软磁铁氧体主要是具有尖晶石结构的mMnFe2O4·nZnFe2O4 与少量 Fe3O4 组成的单相固溶体,用锰锌系铁氧体磁性材料做成的电感磁芯及其它磁性元器件,应用频率从数百赫兹到几千兆赫兹,是最重要的软磁铁氧体材料,其产量占了软磁铁氧体磁性材料总产量的60%以上,因此,锰锌铁氧体的发展更为引人注意。

锰锌铁氧体材料主要分为高频低功耗铁氧体(又称功率铁氧体,初始磁导率通常小于5000,多数在2000左右)和高磁导率即高μi(初始磁导率)铁氧体两类。

初始磁导率ui是磁性材料的磁导率(B/H)在磁化曲线初始区的极限值,即μ0为真空磁导率 permeability in vacuum (4π×10-7H/m),单位亨/米H为磁场强度 magnetic field strength (A/m)B为磁通密度 magnetic flux density (T)(1)锰锌功率铁氧体概述功率铁氧体的主要特征是在高频(几百千赫)高磁感应(几千高斯,1T=10000Gs)的条件下,仍旧保持很低的功耗,而且其在一定的温度范围内功耗随磁芯的温升而下降,在80℃左右达到最低点,从而可以形成良性循环。

功率铁氧体的主要用途是以各种开关电源变压器和彩电回扫变压器为代表的功率型电感器件,用途十分广泛,是目前产量最大的软磁铁氧体。

如下是天通'TDG'的TP4系列的温度和磁芯损耗关系。

我国新发布的'软磁铁氧体材料分类'行业标准,把功率铁氧体材料分为PW1~PW5 五类,其适用工作频率也逐步提高。

如适用频率为15~100kHz 的 PW1 材料;适用频率为 25~200kHz 的 PW2 材料;适用频率为100~300kHz 的PW3 材料;适用频率为300~1MkHz 的 PW4 材料;适用频率为 1~3MHz 的 PW5 材料。

锰锌软磁铁氧体磁芯术语及定义(精)

锰锌软磁铁氧体磁芯术语及定义(精)

1.初始磁导率i μ初始磁导率是磁性材料的磁导率(B/H )在磁化曲线始端的极限值,即 i μ=01μ0H lim →HB 式中0μ为真空磁导率(4л×710-H/m )H 为磁场强度(A/m )B 为磁通密度(T )2.有效磁导率e μ在闭合磁路中,如果漏磁可忽略,可以用有效磁导率来表征磁芯的性能。

e μ=20NL ⋅μ﹒e e A L 式中 L 为装有磁芯的线圈的电感量(H )N 为线圈匝数Le 为有效磁路长度(m )e A 为有效截面积(2m ) 0μ为真空磁导率(4л×710-H/m )3. 饱和磁通密度Bs(T)磁化到饱和状态的磁通密度。

见图1.4.剩余磁通密度Br(T)从饱和状态去除磁场后,剩余的磁通密度。

见图1.5.矫顽力Hc(A/m)从饱和状态去除磁场后,磁芯继续被反向磁场磁化,直至磁通密度减为零,此时的磁场强度称为矫顽力。

见图1.6.损耗因数 tanδ损耗因数是磁滞损耗、涡流损耗和剩余损耗三者之和tanδ =tan h δ+tan e δ+tan r δ式中tan h δ为磁滞损耗因数tan e δ为涡流损耗因数tan r δ为剩余损耗因数7.相对损耗因数 tanδ/μ相对损耗因数是损耗因数与磁导率之比tanδ/i μ(适用于材料)t anδ/e μ(适用于磁路中含有气隙的磁芯)8.品质因数Q品质因数为损耗因数的倒数:Q=1/tanδ9.温度系数μα(1/K )温度系数为温度在T1和T2范围内变化时,每变化1K 相应的磁导率的相对变化量: μα=12112T T 1-⋅-μμμ (T2>T1) 式中1μ 为温度为1T 时的磁导率2μ 为温度为2T 时的磁导率10.相对温度系数r μα(1/k)温度系数和磁导率之比:r μα=122212T T 1-⋅-μμμ (T2>T1)11.居里温度Tc(℃)在该温度下材料由铁磁性(或亚铁磁性)转变成顺磁性。

见图2.12.减落因数F D在恒温条件下,完全退磁的磁芯的磁导率随时间的衰减变化,即 F D =2112211T T log μμμ⋅-(T2>T1)式中 1μ 为退磁后1t 分钟的磁导率2μ 为退磁后2t 分钟的磁导率13.电阻率ρ(Ω/m )具有单位截面积和单位长度的磁性材料的电阻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档