2009-2010学年上学期期末市质检九年级数学复习题(华师大版)
(典型题)华师大版九年级上册数学期末测试卷
华师大版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.若随机摸出一个小球后不放回,再随机摸出一个小球,则两次取出小球标号的和等于5的概率为()A. B. C. D.2、有四张分别画有线段、等边三角形、平行四边形和正方形的四个图形的卡片,它们的背面都相同,现将它们背面朝上,从中翻开任意一张的图形是中心对称图形,但不是轴对称图形的概率是()A. B. C. D.13、已知点A的坐标为(-1,2) ,直线轴,并且AB=4,则点B的坐标为()A. B. 或 C. D. 或4、一个三角形的三边长分别为1,k,4,化简|2k-5|-的结果是( )A.3k-11B.k+1C.1D.11-3k5、下列二次根式中属于最简二次根式的是( )A. B. C. D.6、小明随意地往如图的长方形方砖里扔石子(不考虑扔出界的情形),扔在阴影方砖上的概率是()A. B. C. D.7、某商店3月份的营业额为15万元,4月份的营业额比3月份的营业额减少10%;商店经过加强管理,实施各种措施,使得5、6月份的营业额连续增长,6月份的营业额达到了20万元;设5、6月份的营业额的平均增长率为x,依题意可列方程为()A. B. C.D.8、我们把宽与长的比值等于黄金比例的矩形称为黄金矩形.如图,在黄金矩形()的边上取一点,使得,连接,则等于()A. B. C. D.9、线段MN在直角坐标系中的位置如图所示,若线段M′N′与MN关于y轴对称,则点M的对应点M′的坐标为()A.(4,2)B.(﹣4,2)C.(﹣4,﹣2)D.(4,﹣2)10、在平面直角坐标系xoy中,若A点坐标为(﹣3,3),B点坐标为(2,0),则△ABO的面积为()A.15B.7.5C.6D.311、在△ABC中,∠C=90°,AB=6,cosA= ,则AC等于().A.18B.2C.D.12、关于x的一元二次方程的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根 D.m不确定,所以无法判断13、下列计算正确的是()A. B. C. D.=±1514、三角形两边的长分别是8和6,第三边的长是方程x2﹣12x+20=0的一个实数根,则三角形的周长是()A.24B.26或16C.26D.1615、如图所示,在直角坐标系内,原点O恰好是▱ABCD对角线的交点,若A点坐标为(2,3),则C点坐标为()A.(-3,-2)B.(-2,3)C.(-2,-3)D.(2,-3)二、填空题(共10题,共计30分)16、下列事件:①掷一枚六个面分别标有1~6的数字的均匀骰子,骰子停止转动后偶数点朝上;②抛出的篮球会下落;③任意选择电视的某一频道,正在播放动画片;④在同一年出生的367名学生中,至少有两人的生日是同一天.其中是随机事件的有________(只需填写序号).17、已知的整数部分是,小数部分是,则________.18、已知:点P的坐标是(m,﹣1),且点P关于x轴对称的点的坐标是(﹣3,2n),则m=________,n=________.19、关于x的方程(m﹣2)﹣x+3=0是一元二次方程,则m=________.20、掷一枚均匀的硬币,前两次抛掷的结果都是正面朝上,那么第三次抛掷的结果正面朝上的概率为________21、若的一元二次方程有两个不相等的实数根,则的取值范围是________.22、如图所示,是象棋棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4, -1)上,则“炮”所在的点的坐标是________23、在一张比例尺为1︰50000的地图中,小明家到动车站的距离有0.2米,则小明家到动车站的实际距离是________ 米.24、如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=________.25、代数式在实数范围内有意义,则x的取值范围是________.三、解答题(共5题,共计25分)26、2cos30°﹣|1﹣tan60°|+tan45°•sin45°.27、如图,在H市轨道交通的建设中,规划在A、B两地修建一段地铁,点B在点A的正东方向,由于A、B之间建筑物较多,无法直接测量,现选参照物C,测得点C在点A的东北方向上、在点B的北偏西60°方向上,B、C两点间距离为800m,请你求出这段地铁AB的长度.(结果精确到1m,参考数据:≈1.414,≈1.732)28、下表记录了一名球员在罚球线上投篮的结果,投篮次数(n)50 100 150 209 250 300 350投中次数(m)28 60 78 104 123 152 175投中频率(n/m)0.56 0.60 0.52 0.50 0.49 0.51 0.58 (1)计算并填写表中的投中频率(精确到0.01);(2)这名球员投篮一次,投中的概率约是多少(精确到0.1)?29、某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)30、如图,在一笔直的海岸线上有A、B两个观测点,B在A的正东方向,AB=4km.从A测得灯塔C在北偏东53°方向上,从B测得灯塔C在北偏西45°方向上,求灯塔C与观测点A的距离(精确到0.1km).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)参考答案一、单选题(共15题,共计45分)1、C2、A3、D4、A5、C6、B7、B8、B9、D10、D11、B12、B13、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
华师大版九年级上册数学期末测试卷【参考答案】
华师大版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图,在Rt△ABC中,∠A=30°,BC=2 ,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A. ﹣B. ﹣C. ﹣D.﹣2、若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是()A.k>1B.k>-1且k≠0C.k≥-1且k≠0D.k<1且k≠03、在Rt△ABC中,∠C=90°,AB=13,AC=5,则tanA的值为()A. B. C. D.4、下列事件中,必然事件是()A.打开电视,它正在播广告B.掷两枚质地均匀的正方体骰子,点数之和一定大于6C.早晨的太阳从东方升起D.没有水分,种子发芽5、下列计算正确的是()A. B. C. D.6、若关于的一元二次方程有实数根,则的最大整数值为()A.2B.3C.4D.57、函数y= 中,自变量x的取值范围是()A.x>-2B.x≥-2C.x≠2D.x≤-28、将一个三角形和一个矩形按照如图的方式扩大,使他们的对应边之间的距离均为1,得到新的三角形和矩形,下列说法正确的是()A.新三角形与原三角形相似B.新矩形与原矩形相似C.新三角形与原三角形、新矩形与原矩形都相似D.都不相似9、下列根式中属最简二次根式的是()A. B. C. D.10、同时抛掷A、B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x、y,并以此确定点P(x,y),那么点P落在抛物线y=﹣x2+3x上的概率为()A. B. C. D.11、下列方程①x2﹣2x﹣1=0;②ax2+bx+c=0;③+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2,其中一元二次方程共有()个.A.1B.2C.3D.412、三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长能构成等腰三角形的概率是( )A. B. C. D.13、已知,则的值为()A. B. C. D.14、在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个.小颖做摸球实验.她将盒子里面的球搅匀后从中随机摸出一个球记下颜色后放回,不断重复上述过程,多次试验后,得到表中的数据数据,并得出了四个结论,其中正确的是()摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 70 128 171 302 481 599 9030.75 0.64 0.57 0.604 0.601 0.599 0.602摸到白球的频率A.试验1500次摸到白球的频率比试验800次的更接近0.6B.从该盒子中任意摸出一个小球,摸到白球的频率约为0.6C.当试验次数n为2000时,摸到白球的次数m一定等于1200D.这个盒子中的白球定有28个15、如图,在Rt△ABO中,∠OAB=90°,B(3,3),点D在边AB上,AD=2BD,点C为OA的中点,点P为边OB上的动点,若四边形PCAD周长最小,则点P的坐标为( )A.( ,)B.(2,2)C.( ,)D.( ,)二、填空题(共10题,共计30分)16、从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是:________ 。
华师大版九年级上册数学期末考试题(附答案)
华师大版九年级上册数学期末考试题(附答案)一、单选题(共10题;共20分)1.对于分式,当x=-1时,其值为0,当x=1时,此分式没有意义,那么( )A. a=b= -1B. a=b=1C. a=1, b= -1D. a=- 1, b=12.已知点P(m+3,2m+4)在x轴上,那么点P的坐标为()A. (-1,0)B. (1,0)C. (-2,0)D. (0,2)3.如图所示,观察下面的国旗,是轴对称图形的是()。
A. (1)(2)(3)B. (1)(2)(4)C. (2)(3)(4)D. (1)(3)(4)4.己知x=2是关于x的方程x2-(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为( )A. 6B. 8C. 10D. 8或105.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A. 3列5行B. 5列3行C. 4列3行D. 3列4行6.△ABC中,AD是∠BAC的平分线,且AB=AC+CD.若∠BCA=60°,则∠ABC的大小为()A. 30°B. 60°C. 80°D. 100°7.如图,CD∥AB,OE平分∠AOD,OF⊥OE,OG⊥CD,∠CDO=50°,则下列结论:① ∠AOE=65°;② OF平分∠BOD;③ ∠GOE=∠DOF;④ ∠AOE=∠GOD,其中正确结论的个数是()8题A. 4个B. 3个C. 2个D. 1个8.已知一次函数y=(k+1)x+b的图象如图所示,则k的取值范围是()A. k<0B. k<﹣1C. k<1D. k>﹣19.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=2,D是AB边上一个动点(不与点A,B重合),E 是BC边上一点,且∠CDE=30°.设AD=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B. C. D.10.求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020 , 则2S=2+22+23+24+…+22021 , 因此2S -S=22021-1.仿照以上推理,计算出1+2020+20202+20203+…+20202020的值为( ) A.B.C.D.二、填空题(共4题;共8分)11.已知命题:如果 ,那么,则该命题的逆命题...是________命题.(在横线上填“真”或“假”).12.一次函数的图象过点(0,3)且与直线y=-x 平行,那么函数解析式是________. 13.点P (2,-1)关于x 轴对称的点P′的坐标是________. 14.如图,在△ABC 中,AB=AC=, BC=2,以AB 为直径的⊙O 分别交AC 、BC 两边于点D 、E ,则△CDE的面积为________ .三、解答题(共7题;共72分)15.△ABC 在平面直角坐标系中的位置如图所示.(1)写出A 、B 、C 三点的坐标;(2)①若△ABC每个顶点的横坐标不变,纵坐标都乘以-1,请你在同一坐标系中描出对应的点A'、B'、C',并依次连接这三个点,所得的△A'B'C'与原△ABC有怎样的位置关系?②在(①的基础上,纵坐标都不变,横坐标都乘以-1,请你在同一坐标系中描出对应的点A”、B”、C”,并依次连接这三个点,所得的△A”B”C”与原△ABC有怎样的位置关系?16.如图,OB⊥AB,OC⊥AC,垂足为B,C,OB=OC,AO平分∠BAC吗?为什么?17.已知:一次函数的图象经过点A(4,3)和B(-2,0).(1)求这个一次函数的表达式;(2)求一次函数与y轴的交点.18.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于第一、三象限内的两点,与轴交于点.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使最大,求的最大值及点P的坐标;19.综合与实践实践操作:①如图1,是等边三角形,D为BC边上一个动点,将绕点A逆时针旋转得到,连接CE.②如图2,在中,于点D,将绕点A逆时针旋转得到,延长FE 与BC交于点G.③如图3,将图2中得到沿AE再一次折叠得到,连接MB.问题解决:(1)小明在探索图1时发现四边形ABCE是菱形.小明是这样想的:请根据小明的探索直接写出图1中线段CD,CF,AC之间的数量关系为________:(2)猜想图2中四边形ADGF的形状,并说明理由;问题再探:(3)在图3中,若AD=6,BD=2,则MB的长为________.20.A县和B县春季分别急需化肥100吨和60吨,C县和D县分别储存化肥110吨和50吨,全部调配给A 县和B县.运费如下表所示:(1)设从C县运到A县的化肥为x吨,则从C县运往B县的化肥为________吨,从D县运往A县的化肥为________吨,从D县运往B县的化肥为________吨;(2)求总运费W(元)与x(吨)之间的函数关系式,并写出自变量x的取值范围;(3)求最低总运费,并说明运费最低时的运送方案.21.如图,点A,B分别在x轴,y轴上,过A,B作AB垂线,交反比例函数y=(k>0,x>0)的图象于D,C,四边形ABCD为矩形,CF⊥y轴于F,DE⊥x轴于E,CF=a,BF=b,OA=x,OB=y.(1)求证:AE=a.(2)请写出两个不同的关于a,b,x,y的关系式.(3)求证:∠OAB=45°.答案一、单选题1.A2. B3. D4. C5. C6.A7. B8. B9. C 10. C二、填空题11. 假12.y=-x+3 13.(2,1) 14.三、解答题15. (1)解:由图可知,点A(3,4),B(1,2),C(5,1)(2)解:如图,△A'B'C'与原△ABC关于x轴对称,△A”B”C”与原△ABC关于原点对称.16. 解:AO平分∠BAC∵OB⊥AB,OC⊥AC,∴∠B=∠C=90°,又∵OB=OC,AO为公共边,∴△ACO≌△ABO,∴∠BOA=∠COA,∴AO平分∠BAC.17. (1)解:∵过点A(4,3)和点B(-2,0),∴,解得:,∴一次函数表达式为(2)解:对于一次函数y= ,令x=0,得到y=1,则一次函数与y轴交点坐标为(0,1).18.(1)解:∵在反比例函数上∴∴反比例函数的解析式为把代入可求得∴.把代入为解得.∴一次函数的解析式为.(2)解:的最大值就是直线与两坐标轴交点间的距离.设直线与轴的交点为.令,则,解得,∴令,则,,∴∴, ∴的最大值为.⑶直接写出当时,的取值范围.解:根据图象的位置和图象交点的坐标可知:当时的取值范围为; 或.19. (1)CD+CF=AC (2)解:四边形ADGF是正方形,理由如下:如图:∵Rt△ABD绕点A逆时针旋转90°得到△AEF,∴AF=AD,∠DAF=90°,∵AD⊥BC,∴∠ADC=∠DAF=∠F=90°,∴四边形ADGF是矩形,∵AF=AD,∴四边形ADGF是正方形;(3)20. (1)(110-x);(100-x);(x-50)(2)解:w=40x+35(110-x)+45(100-x)+50(x-50)=10x+5850,A县的化肥全从C县运进,则x=100,D县的化肥全运往A县,则x=100-50=50,所以自变量x的取值范围是50≤x≤100(3)解:w与x成一次函数,k=10>0,w随x的增大而增大,∵50≤x≤100,∴x=50时,w最小,w=10×50+5850=6350(元),从C县运到A县的化肥为50吨,从C县运往B县的化肥为110-50=60吨,从D县运往A县的化肥为100-50=50吨,D县的化肥全运往A县21. (1)证明:∵四边形ABCD为矩形,CF⊥y轴于F,DE⊥x轴于E,∴∠BFC=∠ABC=∠BAD=∠AED=90°,BC=AD,∴∠CBF+∠ABO=∠ABO+∠OAB=90°,∴∠CBF=∠OAB,∵∠BAO+∠DAE=∠DAE+∠ADE=90°,∴∠BAO=∠ADE,∴∠CBF=∠ADE,∴△BCF≌△DAE(AAS),∴AE=CF=a(2)解:由(1)知,BF=DE=b,∵OA=x,OB=y,∴C(a,b+y),D(a+x,b),∵点D,C在反比例函数y=(k>0,x>0)的图象上,∴a(b+y)=b(a+x)=k,即ay=bx①;∵∠BFC=∠AOB=90°,∠CBF=∠BAO,∴△CBF∽△BAO,∴,∴②;(3)证明:由(2)中的①÷②得,x2=y2,∵x>0,y>0,∴x=y,∴OA=OB,∴△AOB是等腰直角三角形,∴∠OAB=45°.。
华师大版九年级上册数学期末测试卷及含答案(适用考试)
华师大版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列说法不正确的是()A.为了解宿迁市所有中学生的视力情况,可采用抽样调查的方法B.彩票中奖的机会是1﹪,买100张彩票一定会中奖C.在同一年出生的367名学生中,至少有两人的生日是同一天D.12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任取一只,取到是二等品的概率是2、对一批衬衣进行抽检,统计合格衬衣的件数,得到如下的频数表:抽查件数(件)100 150 200 500 800 1000合格频数85 141 176 445 724 900根据表中数据,下列说法错误的是()A.抽取100件的合格频数是85B.任抽取一件衬衣是合格品的概率是0.8 C.抽取200件的合格频率是0.88 D.出售1200件衬衣,次品大约有120件3、如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.(,﹣)C.(﹣,﹣)D.(﹣,﹣)4、今年以来,CPI(居民消费价格总水平)的不断上涨已成为热门话题.已知某种食品在9月份的售价为8.1元/kg,11月份的售价为10元/kg.求这种食品平均每月上涨的百分率是多少?设这种食品平均每月上涨的百分率为x,根据题意可列方程式为()A.8.1(1+2x)=10B.8.1(1+x)2=10C.10(1﹣2x)=8.1 D.10(1﹣x)2=8.15、如图,△ABC中,CD⊥AB,BE⊥AC,= ,则sinA的值为()A. B. C. D.6、在平面直角坐标系中,点P(-3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限7、用长分别为5,7,9,13(单位:厘米)的四段木棒为边摆三角形,可摆出不同的三角形的个数为()A.1个B.2个C.3个D.4个8、下列计算正确的是()A. B. =1 C. D.9、如图,的顶点C的坐标为,点A在x轴正半轴上,且,将先绕C顺时针旋转,再向左平移2个单位,则点A的对应点的坐标是()A. B. C. D.10、在平面直角坐标系中,点(﹣3,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限11、下面计算正确的是()A. B. C. D.12、如图,管中放置着三根同样的绳子AA1、BB1、CC1小明和小张两人分别站在管的左右两边,各随机选该边的一根绳子,若每边每根绳子被选中的机会相等,则两人选到同根绳子的概率为()A. B. C. D.13、有一箱子装有3张分别标示4,5,6的号码牌,已知小明以每次取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,则组成的二位数是6的倍数的概率是()A. B. C. D.14、如图,直线1l //l2//l3,直线AC分别交,,于点A,B,C,直线DF分别交,,于点D,E,若,则的值为()A. B. C. D.15、点M(2,3)关于y轴对称的点的坐标为()A.(- 2,- 3)B.(2,- 3)C.(- 2,3)D.(3,- 2)二、填空题(共10题,共计30分)16、在平面直角坐标系中,点P(m,3)在第一象限的角平分线上,点Q(2,n)在第四象限角平分线上,则m+n的值为________.17、如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=8,AC=6,F是DE的中点,若点E是直线BC上的动点,连接BF,则BF的最小值是________.18、△ABC和△A′B′C′中,∠A=60°,∠B=40°,∠A’=60°,当∠C′=________ 时,△ABC∽△A′B′C′.19、已知关于x方程x2﹣6x+m2﹣2m+5=0的一个根为1,则m2﹣2m=________.20、如图, 内接于⊙O, ,则⊙O的直径等于________.21、如图,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,且AM=100海里.那么该船继续航________ 海里可使渔船到达离灯塔距离最近的位置.22、在平面直角坐标系xOy中,已知A(0,1),B(1,0),C(3,1),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标是________.23、如图,在平行四边形ABCD中,BE⊥CD,BF⊥AD,垂足分别为E,F,CE=2,DF=1,∠EBF=60°,则平行四边形ABCD的周长为________.24、在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA的值为________。
华师大版九年级数学上册期末检测题.docx
期末检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题2分,共24分)1.已知25523y x x =-+--, 则2xy 的值为( ) A.15- B.15 C.152-D.1522.一个正偶数的算术平方根是a ,那么与这个正偶数相邻的下一个正偶数的算术平方根是( ) A.a +2 B. a 2+2 C.√a 2+2 D.±√a +23.在ABC △中,90C =︒∠,如果2,1AB BC ==,那么sin A 的值是( ) A.21 B.55 C.33 D.23 4.(2013·山东潍坊中考)已知关于x 的方程2(1)10kx k x +--=,下列说法正确的是( ) A.当0k =时,方程无解B.当1k =时,方程有一个实数解C.当1k =-时,方程有两个相等的实数解D.当0k ≠时,方程总有两个不相等的实数解5.从分别写有数字4-,3-,2-,1-,0,1,2,3,4的九张卡片中,任意抽取一张,则所抽卡片上数字的绝对值小于2的概率是( ) A .19 B .13 C .12 D .236.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )A.3B.3C.6D.97.(2013·湖北孝感中考)如图,在△ABC 中,AB AC a ==, BC b =(a b >).在△ABC 内依次作∠CBD =∠A ,∠DCE =∠CBD ,∠EDF=∠DCE ,则EF 等于( ) A.32b a B.32a b C.43b a D.43a b8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现从中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是( )A.24B.18C.16D.69.(2013•山东潍坊中考)一渔船在海岛A 南偏东20︒方向的B 处遇险,测得海岛A 与B 的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西80︒方向向海岛C 靠近,同时,从A 处出发的救援船沿南偏西10︒方向匀速航行,20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( ) A.103海里/时 B.30海里/时 C.203海里/时 D.303海里/时10.如图,在Rt △ABC 中,∠ACB =90°,BC =3,AC =4,AB 的垂直平分线DE 交AB 于点D ,交BC 的延长线于点E ,则CE 的长为( )A.32B.76C.256D.211.周末,身高都为1.6 m的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A处测得她看塔顶的仰角α为45°,小丽站在B处测得她看塔顶的仰角β为30°.她们又测出A,B 两点的距离为30 m.假设她们的眼睛离头顶都为10 cm,则可计算出塔高约为(结果精确到0.01,参考数据:2≈1.414,3≈1.732)()A.36.21 mB.37.71 mC.40.98 mD.42.48 m12.如图,菱形ABCD的周长为40cm,DE AB⊥,垂足为E,3sin5A=,则下列结论正确的有()①6cmDE=;②2cmBE=;③菱形面积为260cm;④410cmBD=.A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)13.(2013·陕西中考)一元二次方程230x x-=的根是 .14.(2013·江西中考)若一个一元二次方程的两个根分别是Rt ABC△的两条直角边长,且3ABCS=△,请写出一个符合题意的一元二次方程 .15.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是________.16.若kxyzxzyzyx=+=+=+,则k=.17.如图,在Rt△ABC中,斜边BC上的高AD=4,cos B=45,则AC=________.18.如图,小明在A 时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_______米.三、解答题(共78分)19.(8分)已知2008210045x a a=-+-+,其中a是实数,将式子11x xx x+-+++11x xx x+++-化简并求值.20.(8分)计算下列各题:第12题图(1)222sin 45sin 35sin 5521︒-+︒+︒+ ;(2)12()03tan 30π4-︒ +-+121-⎪⎭⎫ ⎝⎛-.21.(10分)随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量2010年为10万只,预计2012年将达到14.4万只.求该地区2010年到2012年高效节能灯年销售量的平均增长率.22.(10分)已知线段OA OB ⊥,C 为OB 的中点,D 为AO 上一点,连接,AC BD 交于P 点.(1)如图①,当OA OB =且D 为AO 中点时,求APPC的值;(2)如图②,当OA OB =,AD AO =14时,求tan∠BPC .23.(10分)某校九年级数学兴趣小组的同学开展了测量东江宽度的活动.如图,他们在河东岸边的A 点测得河西岸边的标志物B 在它的正西方向,然后从A 点出发沿河岸向正北方向行进200米到点C 处,测得B 在点C 的南偏西60︒的方向上,他们测得东江的宽度是多少米?(结果保留整数,参考数据: √2≈1.414,,√3≈1.732)24.(10分)在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树的高度,设计的方案及测量数据如下: (1)在大树前的平地上选择一点A ,测得由点A 看大树顶端C 的仰角为35°; (2)在点A 和大树之间选择一点B (A,B,D 在同一条直线上),测得由点B 看大树顶端C 的仰角恰好为45°;(3)量出A,B 两点间的距离为45 m ..请你根据以上数据求出大树CD 的高度.(结果保留3个有效数字) 25.(10分)(2014·北京中考)阅读下面材料:小腾遇到这样一个问题:如下图①,在△ABC 中,点D 在线段BC 上,∠BAD =75°, ∠CAD =30°,AD =2,BD =2DC ,求AC 的长.第22题图 O D AP B C O D A P B C第25题图小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如上图②).请回答:∠ACE的度数为____,AC的长为____.参考小腾思考问题的方法,解决问题:如下图③,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,第25题图26.(12分) 把一副扑克牌中的三张黑桃牌(它们正面的数字分别为3,4,5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当两张牌的牌面数字相同时,小王赢;当两张牌的牌面数字不同时,小李赢.现请你利用画树状图或列表的方法分析游戏规则对双方是否公平,并说明理由.期末检测题参考答案1.A 解析:由题意,知250x -≥,520x -≥,所以52x =,3y =-,所以215xy =-. 2.C 解析:一个正偶数的算术平方根是a ,则这个正偶数是a 2,与这个正偶数相邻的下一个正偶数是a 2+2,算术平方根是√a 2+2. 3.A 解析: sin A =BCAB =12.4.C 解析:本题主要考查了一元二次方程根的判别式的应用.当0k =时,原方程变为一元一次方程10x -=,该方程的解是1x =,故A 项错误;当1k =时,原方程变为一元二次方程210x -=,方程有两个不相等的实数解:121,1x x ==-,故B 项错误;当0k ≠时,原方程为一元二次方程,2224(1)4(1)0b ac k k k ∆=-=-+=+≥,方程总有两个实数解,当且仅当1k =-时,方程有两个相等的实数解,故C 项正确,D 项错误.5.B 解析:绝对值小于 2 的卡片有1-,0,1,共3张,故所求概率为3193=. 6.B 解析:方法1:∵ ()22287484278a ,b ,c ,b ac ==-==-=--⨯⨯=∆,∴ x =−b±√b 2−4ac 2a =8±2√24,∴ x 12+x 22=(8+2√24)2+(8−2√24)2=9,∴ 这个直角三角形的斜边长是3,故选B.方法2:设1x 和2x 是方程22870x x -+=的两个根,由一元二次方程根与系数的关系可得:⎪⎩⎪⎨⎧==+,,2742121x x x x ∴ 22221212127()24292x x x x x x +=+-=-⨯=,∴ 这个直角三角形的斜边长是3,故选B.7.C8.C 解析:∵ 摸到红色球、黑色球的频率稳定在15%和45% ,∴ 摸到白色球的频率为 1−15%−45%=40% ,故口袋中白色球的个数可能是40×40%=16(个). 9.D 解析:如图,过点C 作CD AB ⊥于点D .设AC x =海里. 在△ACD 中,∠90ADC =︒,∠102030CAD =︒+︒=︒,AC x =海里,∴C D =12AC =12x 海里,AD =3CD =3x 海里. 在△BCD 中,∠90BDC =︒,∠802060CBD =︒-︒=︒, ∴BD =3CD =3x 海里. ∵ AD BD AB +=,∴3x +3x 20=, 解得103x =,∴ 救援船航行的速度为2010330360÷=(海里/时).10. B 解析:在Rt △ABC 中,∠ACB =90°,BC =3,AC =4,由勾股定理得AB =5. 因为DE 垂直平分AB ,所以BD =52.又因为∠ACB =∠EDB =90°,∠B =∠B ,所以 △ABC ∽△EBD ,所以BEAB=BD BC,所以BE =BD•AB BC=256,所以CE =BE −BC =256−3=76.11.D 解析:如图,AB =EF =30 m ,CD =1.5 m ,∠GDE =90︒,∠DEG =45︒,∠DFG =30︒.设DG =x m ,在Rt△DGF 中,tan∠DFG =DGDF ,即tan 30︒=33=x DF,∴ DF =3x .在Rt△DGE 第9题答图中,∵ ∠GDE =90°,∠DEG =45°,∴ DE =DG =x m .根据题意,得3x −x =30,解得x =31-≈40.98. ∴ CG =40.98+1.5=42.48(m).12.C 解析:由菱形ABCD 的周长为40cm ,知10cm AB BC CD AD ====.因为3sin 5A =,所以6cm DE =.再由勾股定理可得8cm AE =,所以2cm BE =,所以菱形的面积())2222210660cm 62210cm S AB DE ,BD BE DE =⋅=⨯==++= .13.0x =或3x =2560x x -+=(答案不唯一)15.45解析:在圆、等腰三角形、矩形、菱形、正方形中,只有等腰三角形不是中心对称图形,所以抽到有中心对称图案的卡片的概率是45.16.12-或 解析: 当x +y +z ≠0 时,()22=++=+=+=+z y x x y x z z y ;当x +y +z =0 时, x =−(y +z ),y =−(z +x ),z =−(x +y ), 所以()1-=++-=+=zy z y z y x k .17.5 解析:在Rt △ABC 中,∵ cos B =45,∴ sin B =35,tan B =34.在Rt △ABD 中,∵ AD =4,sin B =35,∴ AB =203.在Rt △ABC 中,∵ tan B =34,AB =203,∴ AC =203×34=5.18.6 解析:如图,因为∠CDF =∠FDE =90o ,90,90CFD DFE DCF DFC +=︒+=︒∠∠∠∠,所以∠DFE =∠DCF , 所以△DFE ∽△DCF , 所以DF DC=DE DF,所以 DF 2=DE •DC =36, 所以DF =6米.C DEF19.解:原式=2(1)x x +-+2(1)x x +-=22+=2(1)242x x x ++=+.∵ 5x ,∴ 200820 -≥a 且10040- ≥a , 解得1004 a =, ∴ 5x =, ∴ 原式=4x +2=22.20.解:(1)222sin 45sin 35sin 55︒︒+︒=2221)sin 35cos 35-+︒+︒112+=.(2)12︒-30tan 3+()0π4-+121-⎪⎭⎫ ⎝⎛-2133332-+⨯-=13-=.21.解:设该地区2010年到2012年高效节能灯年销售量的平均增长率为x .依据题意,列出方程10(1+x )2=14.4,化简,得(1+x )2=1.44,解这个方程,得1+x =±1.2,∴ x =0.2或−2.2.∵ 该地区2010年到2012年高效节能灯年销售量的平均增长率不能为负数, ∴ x =−2.2舍去,∴ x =0.2.答:该地区2010年到2012年高效节能灯年销售量的平均增长率为20%. 22.解:(1)过点C 作CE ∥OA 交BD 于点E ,则△BCE ∽△BOD .又C 为OB 的中点,所以BC OC =,所以1122CE OD AD ==.再由CE ∥OA 得△ECP ∽△DAP ,所以2==CEAD PC AP . (2)过点C 作CE ∥OA 交BD 于点E ,设AD x =,则4OA OB x ==,3OD x =.由△BCE ∽△BOD ,得1322CE OD x ==.再由△ECP ∽△DAP ,得32==CE AD PE PD . 由勾股定理可知5BD x =,52DE x =,则32=-PD DE PD ,可得PD x AD ==, 则∠BPC =∠DPA =∠A ,所以tan ∠BPC =tan ∠A =21=AO CO . 23.解:在Rt △ABC 中,∠BAC =90°,AC =200米 , ∵ tan 60o =ACAB, ∴ AB =2003≈200×1.732≈346(米). 故测得东江的宽度约为346米.24.解:∵ ∠CDB =90°, ∠CBD =45°,∴ CD =BD. ∵ AB =4.5 m ,∴ AD =BD +4.5. 设树高CD 为m x ,则BD =x m ,()45m AD x .=+. ∵ ∠CAD =35°,∴ tan ∠CAD = tan 35°=5.4+x x. 整理,得 4.5tan 351tan 35⨯=-oox ≈10.5.故大树CD 的高度约为10.5 m.25.解:∠ACE 的度数为75°,AC 的长为3.过点D 作DF ⊥AC 于点F ,如下图.∵ ∠BAC =90°,∴ AB ∥DF ,∴ △ABE ∽△FDE .∴ 2.AB AE BE DF EF ED===∴ EF =1,AB =2DF .∵ 在△ACD 中,∠CAD =30°,∠ADC =75°,∴ ∠ACD =75°,∴ AC =AD .∵ DF ⊥AC ,∴ ∠AFD =90°. 在△AFD 中,AF =2+1=3,∴ DF =AF tan 30°2AD DF == AC AB ==∴BC =∴26. 解:游戏规则不公平.理由如下:故P (牌面数字相同)3193==, P (牌面数字不同)3296==. ∵ 31<32,∴ 此游戏规则不公平,小李赢的可能性大.初中数学试卷桑水出品。
(必刷题)华师大版九年级上册数学期末测试卷及含答案
华师大版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、在式子,,,中,x可以取2和3的是()A. B. C. D.2、如图,A、B两点分别位于一个池塘的两端,为了测量A、B之间的距离,小天想了一个办法:在地上取一点C,使它可以直接到达A﹑B两点,连接AC、BC,在AC上取一点M,使AM=3MC,作MN∥AB交BC于点N,测得MN=38m,则A、B两点间的距离为()A.76mB.95mC.114mD.152m3、某班同学毕业时将自己的照片向全班其他同学各送一张表示留念,全班共送2450张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=2450B.x(x﹣1)=2450×2C.x(x﹣1)=2450 D.2x(x+1)=24504、如图1,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点,三角形的布洛卡点(Brocardpoint)是法国数学家和数学教育家g洛尔(A. L. C'relle1780 - 1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡( Brocard1845- 1922) 重新发现,并用他的名字命名。
问题:如图2,在等腰△DEF中,DF= EF, FG是△DEF的中线,若点Q为△DEF的布洛卡点,FQ= 9, ,则DQ+ EQ= ( )A. B.10 C. D.5、如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为()A. B. C. D.6、已知方程x2+mx+3=0的一个根是1,则m的值为()A.4B.﹣4C.3D.﹣37、下列各式一定是二次根式的是()A. B. C. D.8、抛掷一个均匀的正方体骰子两次,设第一次朝上的数字为x、第二次朝上的数字为y,并以此确定(x,y),那么点P落在抛物线上的概率为()A. B. C.0.5 D.0.259、如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若DE=2,∠B=60°,则CD的长为()A.0.5B.1.5C.D.110、下列事件是必然事件的是()A.瓶酒会爆B.在一段时间内汽车出现故障C.地球在自转D.下届世界杯在中国举行11、点P在四象限,且点P到x轴的距离为3,点P到y轴的距离为2,则点P 的坐标为()A.(﹣3,﹣2)B.(3,﹣2)C.(2,3)D.(2,﹣3)12、若二次根式在实数范围内有意义,则x的取值范围是()A.x≠5B.x<5C.x≥5D.x≤513、如图,梯形ABCD中,∠ABC和∠DCB的平分线相交于梯形中位线EF上的一点P ,若EF=2,则梯形ABCD的周长为()A.12B.10C.8D.614、如图,正方形ABCD的边长是,连接交于点O,并分别与边交于点,连接AE,下列结论:;;;当时,,其中正确结论的个数是()A.1B.2C.3D.415、一个不透明的袋子装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相同,任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cos∠C= ,那么GE=________.17、如图,矩形ABCD中,BE平分∠ABC交AD于点E,F为BE上一点,连接DF,过F作FG⊥DF交BC于点G,连接BD交FG于点H,若FD=FG,BF=3 ,BG=4,则GH的长为________.18、若一元二次方程有一根为,则________.19、如图,在平面直角坐标系中,矩形OABC,OA=3,OC=6,将△ABC沿对角线AC翻折,使点B落在点B′处,AB′与y轴交于点D,则点D的坐标为________.20、如图,在平面直角坐标系中,直线交坐标轴于、点,点在线段上,以为一边在第一象限作正方形.若双曲线经过点,.则的值为________.21、一元二次方程的根是________.22、若关于的一元二次方程无实数根,则一次函数的图象不经过第________象限.23、如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么BD=________24、如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C顺时针旋转得到△A'B'C,M是AC的中点,N是A'B'的中点,连接MN,若AC=4,∠ABC=30°,则线段MN的最小值为________.25、已知x=-1是一元二次方程ax2+bx-10=0的一个解,且a≠-b ,则的值为________三、解答题(共5题,共计25分)26、计算:.27、有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=,将这副直角三角板按如图(1)所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图(2),当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC= 度;(2)如图(3),在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,当D在BA的延长线上时,设BF=x,两块三角板重迭部分的面积为y.求y与x的函数关系式,并求出对应的x取值范围.28、已知关于x的方程的两根为满足:,求实数k的值29、某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为多少米?(结果精确到0.1.参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)30、为了测量悬停在空中A处的无人机的高度,小明在楼顶B处测得无人机的仰角为45°,小丽在地面C处测得A、B的仰角分别为56°、14°.楼高BD为20米,求此时无人机离地面的高度.(参考数据:tan14°≈0.25,tan56°≈1.50)参考答案一、单选题(共15题,共计45分)2、D3、C4、B5、A6、B7、C8、A9、D10、C11、D12、D13、C14、B15、C二、填空题(共10题,共计30分)17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、。
华师大版九年级上册数学期末质量检测试题(附答案)
华师大版九年级上册数学期末质量检测试题(附答案)学校:___________姓名:___________班级:___________考号:___________评卷人 得分一、选择题( ) A 、a=;51,23,5,32===d c b B 、a=9,b=6,c=3,d=4 C 、a=3,b=4,c=5,d=6 D 、a=8,b=0.05,c=0.6,d=10;2.如图,D ,E 分别是△ABC 的边AC 和BC 的中点,已知DE=2,则AB=( )3题A .1B .2C .3D .43.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,若DE=2,BC=5,则AD :DB=( )A .3:2B .3:5C .2:5D .2:34.关于x 的一元二次方程x 2﹣4x+2m=0没有实数根.....,则实数m 的取值范围是( ) A .m >2 B .m >―2 C .m <2 D .m <―25.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构成三角形的概率是( ) A . 1 B . 43 C .12D .146.5月9号重庆实验外国语学校就行了“五四表彰大会”,初三某班老师准备从包括小明在内的四名优秀团员中,随机抽取了2名学生参加表彰大会,则抽到小明的概率是( ) A .12 B .13 C .14 D .167.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为( )A .112B .512C .16D .128.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是( ).A .种植10棵幼树,结果一定是“有9棵幼树成活”B .种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C .种植10n 棵幼树,恰好有“n 棵幼树不成活”D .种植n 棵幼树,当n 越来越大时,种植成活幼树的频率会越来越稳定于0.99.若578a b c==,且3a-2b+c=3,则2a+4b-3c 的值是( ) A .14 B .42 C .7 D .14310.如图,在△ABC 中,BC >AC ,点D 在BC 上,且DC=AC ,∠ACB 的平分线CE 交AD 于E ,点F 是AB 的中点,则S △AEF :S 四边形BDEF 为A .3:4B .1:2C .2:3D .1:311.某厂改进工艺降低了某种产品的成本,两个月内从每件产品250元,降低到了每件160元,平均每月降低率为 ( )A.15%B.20%C.5%D.25% 12.下列四组图形中,一定相似的是A .正方形与矩形B .正方形与菱形C .菱形与菱形D .正五边形与正五边形 评卷人 得分二、填空题13.如图,AB∥CD∥EF,AF 与BE 相交于点G ,且AG=2,GD=1,DF=5,那么的值等于 .14.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取一个进行检测,抽到不合格产品的概率是________________.15.如图,点D 、E 分别为△ABC 的边AB 、AC 的中点,同时,点F 在DE 上,且∠AFB=90°,已知AB=5,BC=8,那么EF 的长为 .16.设α,β是一元二次方程x 2+2x -1=0的两个根,则αβ的值是______.17.若两个相似三角形的周长之比为2:3,较小三角形的面积为8cm 2,则较大三角形面积是__cm 2.18.如图所示的圆面图案是用相同半径的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在黑色区域的概率为 .评卷人 得分三、计算题19.设抛物线的解析式为2y ax ,过点B 1(1,0)作x 轴的垂线,交抛物线于点A 1(1,2);过点B 2(1,0)作x 轴的垂线,交抛物线于点A 2,…;过点n B (11()2n -,0)(n 为正整数)作x 轴的垂线,交抛物线于点n A ,连接1n n A B +,得直角三角形1n n n A B B +.(1)求a 的值;(2)直接写出线段n n A B ,1n n B B +的长(用含n 的式子表示); (3)在系列Rt △1n n n A B B + 中,探究下列问题: ①当n 为何值时,Rt △1n n n A B B +是等腰直角三角形?②设1≤k <m ≤n (k ,m 均为正整数),问是否存在Rt △1k k k A B B +与Rt △1m m m A B B +相似?若存在,求出其相似比;若不存在,说明理由.20.某校举行春季运动会,需要在初三年级选取1或2名同学作为志愿者,初三(5)班的小熊、小乐和初三(6)班的小矛、小管4名同学报名参加.(1)若从这4名同学中随机选取1名志愿者,则被选中的这名同学恰好是初三(5)班同学的概率是 ;(2)若从这4名同学中随机选取2名志愿者,请用列举法(画树状图或列表)求这2名同学恰好都是初三(6)班同学的概率.21.已知关于x 的一元二次方程22)(5)0x x m ---=(. (1)求证:对于任意实数m ,方程总有两个不相等的实数根; 1,求m 的值及方程的另一个根.评卷人 得分四、解答题次“测量旗杆高度”的活动场景抽象出的平面几何图形. 活动中测得的数据如下:①小明的身高DC=1.5m②小明的影长CE=1.7cm③小明的脚到旗杆底部的距离BC=9cm④旗杆的影长BF=7.6m⑤从D 点看A 点的仰角为30° 请选择你需要的数据,求出旗杆的高度.(计算结果保留到0.1,参考数据≈ 1.414.≈1.732)23.已知关于x 的一元二次方程2630x x k -++=有两个不相等的实数根,求k 的取值范围.24.今年“五·一”节期间,某商场举行抽奖促销活动.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.(1)请你用树形图或列表法表示出抽奖所有可能出现的结果; (2)求抽奖人员获奖的概率.25.今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题: (1)求全班学生人数和m 的值.(2)直接写出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.答案1. A .2.D3.D4.A5.B6.A .7.A8.D .9.D ..12.D13.53.14.5115.1.5.16.-1 17.1819.(1)把A (1,2)代入2y ax =,得:221a =⨯,∴a=2;(2)1212[()]2n n n A B -=⨯ =322n -,1n n B B +=111()()22n n --=2n-;(3)①若Rt △1n n n A B B +是等腰直角三角形,则n n A B =1n n B B +,则3222nn --=,解得:n=3;②若Rt △1k k k A B B +与Rt △1m m m A B B +相似,则11k k k k m m m m A B B B A B B B ++=或11k k k k m m m mA B B BB B A B ++=,∴32322222k k m m ----=或32322222k km m ----=,∴m=k (舍去),或k+m=6.∵m >k ,且k ,m 均为正整数,∴42m k =⎧⎨=⎩或51m k =⎧⎨=⎩,∴相似比=3222k m --=232422--⨯=8:1,或3222k m --=132522--⨯=64:1.∴相似比是8:1或64:1.20.(1)12(2)1621.(1)、∵22)(5)0x x m ---=(,∴x 2﹣7x+10﹣m 2=0, ∵△=(﹣7)2﹣4(10﹣m 2)=9+4 m 2,而m 2≥0, ∴△>0,∴方程总有两个不等的实数根;(2)、∵方程的一个根是1,∴m 2=4,解得:m=±2,∴原方程为:x 2﹣7x+6=0,解得:x 1=1,x 2=6.即m 的值为±2,方程的另一个根是6.分组 分数段(分) 频数 A 36≤x <41 2 B 41≤x <46 5 C 46≤x <51 15 D 51≤x <56 m E56≤x <611022.解:情况一,选用①②④,∵AB ⊥FC ,CD ⊥FC ,∴∠ABF=∠DCE=90°, 又∵AF ∥DE ,∴∠AFB=∠DEC ,∴△ABF ∽△DCE , ∴,又∵DC=1.5m ,FB=7.6m ,EC=1.7m ,∴AB=6.7m . 即旗杆高度是6.7m ; 情况二,选①③⑤.过点D 作DG ⊥AB 于点G .∵AB ⊥FC ,DC ⊥FC ,∴四边形BCDG 是矩形, ∴CD=BG=1.5m ,DG=BC=9m , 在直角△AGD 中,∠ADG=30°, ∴tan30°=,∴AG=3,又∵AB=AG+GB ,∴AB=3+1.5≈6.7m . 即旗杆高度是6.7m .23.∵关于x 的一元二次方程2x -6x+k+3=0有两个不相等的实数根, ∴△=2(6)--4(k+3)=24-4k >0, 解得:k <6.24.(1)列表法表示如下:或树形图:(2)由表格或树形图可知,抽奖所有可能出现的结果共有12种,这些结果出现的可能性相等,其中有一个小球标号为“1”的有6种, 所以抽奖人员的获奖概率为61122p ==. 25.(1)由题意可得:全班学生人数:15÷30%=50(人); m=50﹣2﹣5﹣15﹣10=18(人); (2)∵全班学生人数:50人,∴第25和第26个数据的平均数是中位数, ∴中位数落在51﹣56分数段;(3)如图所示,将男生分别标记为A1,A2,女生标记为B1 A1 A2 B1A1 (A1,A2) (A1,B1)A2 (A2,A1) (A2,B1)B1(B1,A1)(B1,A2)P(一男一女)=46=23.。
华师大版九年级数学上册期末考试试卷(附带答案)
华师大版九年级数学上册期末考试试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________ 一、选择题(本题共10小题,每小题4分,共40分)1.下列根式中,与20是同类二次根式的是()A.15B.45C.35 D.182.关于x的一元二次方程x2=1的根是()A.x=1 B.x1=1,x2=-1C.x=-1 D.x1=x2=13.用配方法解方程x2+4x-1=0时,配方结果正确的是()A.(x+4)2=5 B.(x+2)2=5 C.(x+4)2=3 D.(x+2)2=34.下列事件中,是必然事件的是()A.掷一次骰子,向上一面的点数是6B.13个同学参加一个聚会,他们中至少有2个同学的生日在同一个月C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路口,遇到红灯5.某班一同学在老师的培训后学会了某个物理实验操作,回到班上后第一节课教会了若干名同学,第二节课会做该实验的同学又各自教会了同样多的同学,这样全班共有36名同学会做这个实验.若设1名同学每次都能教会x名同学,则可列方程为()A.x+(x+1)x=36 B.1+x+(1+x)x=36C.1+x+x2=36 D.x+(x+1)2=3663的整数部分为x,小数部分为y,则3x-y的值是()A.3 3-3 B.3C.1D.37.定义运算:a*b=2ab, 若a、b是方程x2+x-m=0(m>0)的两个根,则(a+1)*b+2a的值为()A.m B.2-2m C.2m-2 D.-2m-28.如图,在矩形ABCD中,DE⊥AC于点E,设∠ADE=α,且cos α=35,AB=4,则AC的长为( ) A .3B.165C.203D.163(第8题)(第9题) 9.如图,在菱形ABCD 中,∠ABC =60°,连结AC 、BD ,则ACBD =( )A.12B.22C.32D.3310.如图,正方形ABCD 的边AB =3,对角线AC 和BD 交于点O ,P 是边CD 上靠近点D 的三等分点,连结P A 、PB ,分别交BD 、AC 于点M 、N ,连结MN .有下列结论:①OM =MD ;②S △OMA S △ONB=52;③MN =35820;④S △MDP =38,其中正确的是( )(第10题)A .①②③B .①②④C .②③④D .①②③④二、填空题(本题共6小题,每小题4分,共24分) 11.计算:12+27=________.12.一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出1个球是红球的概率为________.13.若关于x 的方程x 2+(k -3)x -k 2=0的两根互为相反数,则k =________.14.如图,添加一个条件:__________________________,使△ADE ∽△ABC .(写一个即可)(第14题)(第15题)15.如图,在三角形纸片ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,BF =4,CF =6.将这张纸片沿直线DE 翻折,点A 与点F 重合.若DE ∥BC ,AF =EF ,则四边形ADFE 的面积为________.16.如图,菱形ABCD的顶点A在函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且过B、D两点.若AB=2,∠BAD=30°,则k=________.(第16题)三、解答题(本题共9小题,共86分)17.(8分)计算:(-3)2-2sin 45°+||2-1.18.(8分)解方程:2x2-7x-4=0.19.(8分)如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0)、A(2,1)、B(1,-2).(1)以原点O为位似中心,在y轴的右侧按21放大,画出△OAB的一个位似图形△OA1B1;(2)画出将△OAB向左平移2个单位长度,再向上平移1个单位长度后得到的△O2A2B2;(3)△OA1B1与△O2A2B2是位似图形吗?若是,请在图中标出位似中心点M,并写出点M的坐标.(第19题)20.(8分)如图,将Rt△AOB绕直角顶点O按顺时针方向旋转,得到△A′OB′,使点A的对应点A′落在边AB上,过点B′作B′C∥AB,交AO的延长线于点C.(第20题)(1)求证:∠BA′O=∠C;(2)若OB=2OA,求tan∠OB′C的值.21.(8分)如图,已知▱ABCD,点F在AB的延长线上,CF⊥AB.(1)尺规作图:在边BC上找一点E,使得△DCE∽△CBF(保留作图痕迹,不写作法,不必证明)(2)在(1)的条件下,若E为BC的中点,AD=8,BF=3,求AB的长.(第21题)22.(10分)定义:如果关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根互为相反数,那么称这样的方程是“对称方程”.例如:一元二次方程x2-4=0的两个根是x1=2,x2=-2,2和-2互为相反数,则方程x2-4=0是“对称方程”.(1)通过计算,判断下列方程是否是“对称方程”:①x2+x-2=0;②x2-12=0.(2)已知关于x的一元二次方程x2-(k2-4)x-3k=0 (k是常数)是“对称方程”,求k的值.23.(10分)如图,在等腰三角形ADC中,AD=AC,B是DC上的一点,连结AB,且有AB=DB.(1)若∠BAC=90°,AC=3,求CD的长;(第23题)(2)若ABCD=13,求证:∠BAC=90°.24.(12分)在如今智能手机的功能中,都可以利用手势密码进行锁屏和解锁.其中最常见的就是利用3×3的正方形点阵设置密码,我们将其称为“9点码”.通常,在设置“9点码”时,只能连结相邻的两点(如图,不妨将9个点依次对应数字1到9,例如图中路线Ⅰ,Ⅱ是可行的,路线Ⅲ,Ⅳ是不可行的),不能走重复的路线,从而形成相应的密码线段,线段越多,密码越复杂.已知小明设置的“9点码”从右上角的点“3”出发,且用了3个数字.(1)已知横向和纵向的相邻两点距离为1,且以小明设置的“9点码”所经过的点为顶点的三角形恰好是等腰三角形,则该等腰三角形的面积所有可能的值为________;(2)用概率知识并结合树状图回答:若小明设置的“9点码”用了3个数字,对于一个不知道该密码的人(已知出发点和用了3个数字),通过画树状图,求其一次尝试能将小明手机解锁的概率.(第24题)25.(14分)如图,在正方形ABCD中,AB=4,P、Q分别是边AD、AC上的动点.(1)填空:AC=________;(2)若AP=3PD,且点A关于PQ的对称点A′落在边CD上,求tan∠A′QC的值;(3)设AP=a,直线PQ交直线BC于点T,求△APQ与△CTQ面积之和S的最小值.(用含a的代数式表示)(第25题)参考答案一、1.B 2.B 3.B 4.B 5.B 6.C7.D8.C9.D10.D二、11.5 312.3 813.314.∠ADE=∠B(答案不唯一) 15.5 316.6+2 3三、17.解:原式=3-2×22+2-1=2.18.解:原方程可化为(x -4)(2x +1)=0 ∴x -4=0或2x +1=0 ∴x 1=4,x 2=-12.19.解:(1)如图,△OA 1B 1为所作.(2)如图,△O 2A 2B 2为所作.(3)△OA 1B 1与△O 2A 2B 2是位似图形.如图,点M 为所求,其坐标为(-4,2).(第19题)20.(1)证明:如图,∵B ′C ∥AB ,∴∠A +∠C =180°.由旋转,得OA ′=OA ,∴∠1=∠A .∵∠1+∠BA ′O =180°,∴∠A +∠BA ′O =180° ∴∠BA ′O =∠C .(第20题)(2)解:如图,由旋转,得OB ′=OB ∠A ′OB ′=∠AOB =90°,∴∠2+∠3=90°. ∵∠3+∠4=90°,∴∠2=∠4. 由(1)得,∠BA ′O =∠C∴△A ′OB ≌△COB ′,∴∠B =∠OB ′C . 在Rt △AOB 中,OB =2OA∴tan B=OAOB=12.∴tan∠OB′C=tan B=1 2.21.解:(1)如图,点E即为所求.(第21题)(2)∵四边形ABCD是平行四边形,AD=8∴BC=AD=8,AB=CD.∵E为BC的中点,∴CE=BE=12BC=4.∵△DCE∽△CBF,∴CEBF=DCBC∴43=DC8,∴DC=323,∴AB=DC=323.22.解:(1)①x2+x-2=0,即(x+2)(x-1)=0∴x1=-2,x2=1.∵-2和1不互为相反数,∴不是“对称方程”.②由题意,得x=±12=±2 3即x1=2 3,x2=-2 3.∵2 3与-2 3互为相反数,∴是“对称方程”.(2)设x1,x2为原方程的解,∵该方程为“对称方程”∴x1+x2=k2-4=0,即k2=4,解得k=±2.当k=-2时,方程为x2+6=0,无解,不符合题意.当k=2时,方程为x2-6=0,符合题意.∴k的值为2.23.(1)解:∵AD=AC,AB=DB∴∠C=∠D,∠D=∠DAB,∴∠C=∠D=∠DAB.∵∠BAC=90°,∠C+∠D+∠DAC=∠C+∠D+∠DAB+∠BAC=180°,∴∠C+∠D+∠DAB=90°∴∠C=∠D=∠DAB=30°.在△ABC中,∠BAC=90°,∠C=30°∴AB=AC·tan 30°=3×33=1∴BC=2AB=2,BD=AB=1 ∴CD=BD+BC=1+2=3.(2)证明:∵ABCD=13,AB=DB∴BC=2AB,DC=3AB.∵∠DAB=∠C,∠D=∠D∴△DAB∽△DCA,∴ABAC=ADCD.∵AD=AC,∴AC2=3AB2.∵BC=2AB,∴BC2=4AB2.∴AB2+AC2=BC2,∴∠BAC=90°.24.解:(1)12或1(2)如图.(第24题)由树状图可得,所有等可能的结果有15种,而符合条件的结果只有1种,所以一次尝试能将小明手机解锁的概率为1 15.25.解:(1)4 2(2)∵在正方形ABCD中,AB=4,AC为对角线∴AD=AB=4,∠DAC=∠DCA=45°,∠ADC=90°.∵点A关于PQ的对称点A′落在CD边上∴△APQ和△A′PQ关于PQ对称∴AP=A′P,∠P AQ=∠P A′Q=45°.∵∠DA′Q=∠DCA+∠A′QC=∠P A′Q+∠P A′D∴∠A′QC=∠P A′D.∵AP=3PD,AD=4,∴A′P=AP=3,PD=1第 11 页 共 11 页 ∴A ′D =A ′P 2-PD 2=2 2∴tan ∠A ′QC =tan ∠P A ′D =PD A ′D =12 2=24. (3)如图,过点Q 作直线MN ⊥AD 于点M ,交BC 于点N ,则MN ⊥BC .(第25题)∵AP ∥CT ,∴△APQ ∽△CTQ ,∴AP CT =QM QN .设QM =h ,则QN =4-h ,∴a CT =h 4-h解得CT =a (4-h )h∴S =12ah +12·a (4-h )h ·(4-h )=12ah +a (4-h )22h整理得ah 2-(4a +S )h +8a =0.∵方程有实数根∴[-(4a +S )]2-4a ·8a ≥0,即(4a +S )2≥32a 2.又∵4a +S >0,a >0,∴4a +S ≥4 2a∴S ≥(4 2-4)a .当S =(4 2-4)a 时,由方程可得h 1=h 2=2 2,满足题意.故当h =2 2时,△APQ 与△CTQ 面积之和S 最小,最小值为(4 2-4)a .。
华师大九年级数学上册期末综合检测试卷(有答案)
【专题突破训练】华师大版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.若关于x的一元二次方程x2﹣4x+c=0有两个相等的实数根,则常数c的值为()A. ±4B.4C. ±16D.162.如图所示,边长为2的正三角形ABO的边OB在x轴上,将△ABO绕原点O逆时针旋转30°得到三角形OA1B1,则点A1的坐标为()A.(,1)B.(,-1)C.(1,- )D.(2,-1)3.点P(﹣1,4)关于x轴对称的点P′的坐标是()A.(﹣1,﹣4)B.(﹣1,4)C.(1,﹣4)D.(1,4)4.已知=,则=()A.6B.C.D.-5.已知三角形的两边分别为5和8,则此三角形的第三边可能是()A.2B.3C.5D.136.如图,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,垂足为D,若BE=6 cm,则AC等于( )A.6cmB.5cmC.4cmD.3cm7.如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为α,那么滑梯长l为()A.ℎB.ℎC.ℎD.h•sinα8.如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为()A. B. C. D.9.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的.则新品种花生亩产量的增长率为()A.20%B.30%C.50%D.120%10.如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2,其中正确的有()个.A.1B.2C.3D.4二、填空题(共10题;共30分)11.已知一个三角形的三边长分别是a+4,a+5和a+6,则a的取值范围是________.12.当x________时,在实数范围内有意义.13.化简 =________.14.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值 =________.15.如图,在△ABC中,M、N分别是AB、AC的中点,且∠A+∠B=136°,则∠ANM=________°.16.如图,已知点A(2,2)关于直线(k>0)的对称点恰好落在x轴的正半轴上,则k的值是________.17.在△ABC中,点D,E分别在边AB,AC上,如果 = ,AE=4,那么当EC的长是________时,DE∥BC.18.如图,矩形ABCD的对角线AC、BD相交于点O,AB=4,BC=8,过点O作OE⊥AC交AD于点E,则AE的长为________.19.如图∠AOP=∠BOP=15°,PC∥OA , PD⊥OA ,若PC=6,则PD等于________.三、解答题(共9题;共60分)20.若a=1﹣,先化简再求+的值.21.如图,△ABC中,∠ACB=90°,∠B=15°,AB的垂直平分线交AB于E,交BC于D.若BD=7,求AC的长.22.甲、乙两船同时从港口A出发,甲船以12海里/时的速度向北偏东35°航行,乙船向南偏东55°航行,2小时后,甲船到达C岛,乙船到达B岛,若C、B两船相距30海里,问乙船的速度是每小时多少海里?23.阅读下列材料,然后回答问题.在进行二次根式的化简运算时,我们有时会碰上形如的式子,其实我们还可以将其进一步简化:= = =﹣1.以上这种化简的步骤叫做分母有理化.请用上面的方法化简:.24.如图,点C,D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB,求∠APB的度数.25.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin 75°≈0.965 9,cos 75°≈0.258 8,tan 75°≈3.732,≈1.732,60千米/小时≈16.7米/秒)26.如图,在△ABC中,AB=AC,点D、E分别在BC、AB上,且∠BDE=∠CAD.求证:△ADE∽△ABD.27.动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率是0.3.现年20岁的这种动物活到25岁的概率为多少?现年25岁的这种动物活到30岁的概率为多少?28.如图,小平为了测量学校教学楼的高度,她先在A处利用测角仪测得楼顶C的仰角为30°,再向楼的方向直行50米到达B处,又测得楼顶C的仰角为60度.已知测角仪的高度是1.2米,请你帮助小平计算出学校教学楼的高度CO.()答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】A4.【答案】B5.【答案】C6.【答案】D7.【答案】A8.【答案】D9.【答案】A10.【答案】C二、填空题11.【答案】12.【答案】≥313.【答案】14.【答案】40615.【答案】4416.【答案】17.【答案】618.【答案】519.【答案】3三、解答题20.【答案】解:+=+.∵a=1﹣<1,∴原式=+=.把a=1﹣代入得:===(1+)2=3+2.21.【答案】解:连接AD,∵AB的垂直平分线交AB于E,∴AD=BD,∴∠DAB=∠B,∵BD=7,∴AD=7,∵∠B=15°,∴∠DAB=15°,∴∠ADC=30°,∵∠C=90°,∴AC= AD=3.5.22.【答案】解:根据题意得:AC=12×2=24,BC=30,∠BAC=90°.∴AC2+AB2=BC2.∴AB2=BC2-AC2=302-242=324∴AB=18.∴乙船的航速是:18÷2=9海里/时.23.【答案】解:原式= =2+.24.【答案】解:∵△PCD是等边三角形,∴∠PCD=60°,∴∠ACP=120°,∵△ACP∽△PDB,∴∠APC=∠B,又∠A=∠A,∴△ACP∽△ABP,∴∠APB=∠ACP=120°25.【答案】解:(1)在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC·tan ∠BAC=30×tan 75°≈30×3.732≈112(米).(2)∵此车速度=112÷8=14(米/秒)<16.7(米/秒)=60(千米/小时) ∴此车没有超过限制速度.26.【答案】证明:∵AB=AC,∴∠B=∠C,∵∠ADB=∠C+∠CAD=∠BDE+∠ADE,∠BDE=∠CAD,∴∠ADE=∠C,∴∠B=∠ADE,∵∠DAE=∠BAD,∴△ADE∽△ABD27.【答案】现年20岁的这种动物活到25岁的概率为=0.625,现年25岁的这种动物活到30岁的概率为=0.6,答:现年20岁的这种动物活到25岁的概率为0.625,现年25岁的这种动物活到30岁的概率为0.6.28.【答案】解:设CM=x米∵∠CEM=30°,∴tan30°=,∴EM=x.∵∠CFM=60°,∴tan60°=,∴MF=,∴x﹣=50.解得x=25≈42.5,∴CO=42.5+1.2=43.7.答:学校教学楼的高度CO是43.7米.。
华师大版九年级数学(上册)期末复习测试题(含答案详解)
华师大版九年级数学(上册)期末复习测试题(含答案详解)(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分)1..若, 则的值为( )A. B.8 C. 9 D.2.一个正偶数的算术平方根是那么与这个正偶数相邻的下一个正偶数的算术平方根 是( ) A.B.C.D.3.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( ) A.14k >-B.14k >-且0k ≠C.14k <-D.14k ≥-且0k ≠ 4.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )5.下列四个三角形,与左图中的三角形相似的是( )6.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在和,则口袋中白色球的个数可能是( )A.24B.18C.16D.67.从分别写有数字4-、3-、2-、1-、0、1、2、3、4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是( ) A .19 B .13 C .12 D .23第5题图 A B C D8.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中只有3个红球.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在,那么可以推算出a大约是()A.12 B.9 C.4 D.39.已知直角三角形的两条直角边的比为其斜边长为,那么这个三角形的面积是()A. B. C. D.10.如图,在Rt△中,∠°,于点.已知,,那么()A.B.C. D.11.周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在处测得她看塔顶的仰角为,小丽站在处测得她看塔顶的仰角为30°.她们又测出两点的距离为30米.假设她们的眼睛离头顶都为,则可计算出塔高约为(结果精确到,) ()A.36.21米B.37.71米C.40.98米D.42.48米12.如图,菱形的周长为,DE AB⊥,垂足为E,3sin5A=,则下列结论正确的有()①6cmDE=;②2cmBE=;③菱形面积为260cm;④BD=.A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)13.计算:1)(2________.14.三角形的每条边的长都是方程的根,则三角形的周长是_______________.第12题图A15.已知点关于原点对称的点在第一象限,那么的取值范围是________. 16.如图所示,一个圆形转盘被等分成五个扇形区域,上面分别标有数字,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数)_______P (奇数)(填“>”“<”或“=”). 17.长度为的四条线段,从中任取三条线段能组成三角形的概率 是_______.18. 若k x y z x z y z y x =+=+=+,则19. 菱形OABC 在平面直角坐标系中的位置如图所示,45AOC OC ∠==°,,则点B 的坐标为_____________.20. 如图,小明在时测得某树的影长为3米, 时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_______米.三、解答题(共60分)21.(7分)已知0045x =+,其中a 是实数,将式子22.(10分)计算下列各题: (1)55sin 35sin 12145sin 222+++-;(2)12︒-30tan 3+121-⎪⎭⎫ ⎝⎛-.23.(7分)随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量年为万只,预计年将达到 万只.求该地区年到年高效节能灯年销售量的平均增长率.24.(10分)已知线段,为的中点,为上一点,连结交于点.(1)如图①,当且为中点时,求PCAP的值; (2)如图②,当,AO AD =41时,求tan ∠.第19题图第20题图A 时B 时DA PDA25.(8分)某校九年级数学兴趣小组的同学开展了测量东江宽度的活动。
华师版九年级数学上册期末测试题(含答案)
华东师大版数学九年级上期期末测试题一、选择题1. 下列方程中, 是一元二次方程的是(A )221x y += (B )21121x x =+ (C )24535x x --= (D0= 2. 下列各组二次根式中, 化简后是同类二次根式的是(A)(B和3 (C)n(D3. 下列说法正确的是(A )做抛掷硬币的实验, 如果没有硬币用图钉代替硬币, 做出的实验结果是一致的 (B )抛掷一枚质地均匀的硬币, 已连续掷出5次正面, 则第6次一定掷出背面 (C )某种彩票中奖的概率是1%, 因此买100张该彩票一定会中奖(D )天气预报说明天下雨的概率是50%, 也就是说明天下雨和不下雨的机会是均等的4.若 = , 则 的值为 (A )5 (B )15 (C )3 (D )135. △ 的顶点 的坐标为 , 先将△ 沿 轴对折, 再向左平移两个单位, 此时 点的坐标为(A )(2,4)- (B )(0,4)- (C )(4,4)-- (D )(0,4)6. 用配方法解方程 , 下列配方变形正确的是(A )2(2)2x += (B )2(2)2x -= (C )2(2)4x += (D )2(2)4x -= 7. 如图(1), 小正方形的边长均为1, 则下列图中的三角形 (阴影部分)与△ABC 相似的是8. 某服装店搞促销活动, 将一种原价为56元的衬衣第一次降价后, 销量仍然不好, 又进行第二次降价, 两次降价的百分率相同, 现售价为31.5元, 设降价的百分率为 , 则列出方程正确的是 (A )256(1)31.5x -= (B )56(1)231.5x -÷= (C )256(1)31.5x += (D )231.5(1)56x -=二、填空题: (本大题共8个小题, 每小题3分, 共24分.请把答案填在题中的横线上. )(B )(C )(D )(A )CAB图(1)9. 若二次根式有意义, 则实数的取值范围是__________.10. 在比例尺为1∶4000000的地图上, 量得甲、乙两地距离为2.5cm, 则甲、乙两地的实际距离为____________km.11. 如图(4), 在菱形中, 、分别是、的中点,•如果, 那么菱形的周长__________.12. 有30张扑克牌, 牌面朝下, 随机抽出一张记下花色再放回;洗牌后再这样抽, 经历多次试验后, 得到随机抽出一张牌是红桃的概率为20%, 则红桃牌大约有张.13. 关于的一元二次方程有实数根, 则的取值范围是________.14. 如图(5), 在中, ∠是直角, , ,矩形的一边在上, 顶点、分别在、上, 若∶=1∶4, 则矩形的面积是;15. 设, 是关于的方程的两个实数根,且.则= .三、(本大题共4个小题, 每小题6分, 共24分. )16. 化简:· . 17. 解方程:.18. 解方程: . 19. 已知中, , ,, 求和.20. (2007山东青岛)一艘轮船自西向东航行, 在A处测得东偏北21.3°方向有一座小岛C, 继续向东航行60海里到达B处, 测得小岛C此时在轮船的东偏北63.5°方向上. 之后, 轮船继续向东航行多少海里, 距离小岛C最近?(参考数据:sin21.3°≈ , tan21.3°≈ , sin63.5°≈ , tan63.5°≈2)((第16题图) 四、(本大题共4个小题, 每小题7分, 共28分. )21.一个不透明的袋子中装有三个完全相同的小球, 小球上分别标有数字3, 4, 5, •从袋中随机取出一个小球, 用小球上的数字作十位, 然后放回, •搅匀后再取出一个小球, 用小球上的数字作个位, 这样组成一个两位数;试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为8的两位数的概率是多少?•用列表法或画树状图加以说明.22. 如图(7), 在△ 中, 是∠ 的平分线, 的垂直平分线 交 于 , 交 的延长线于 , 连结 .求证: · . 五、(本大题共2个小题, 每题9分, 共18分. ) 29.为适应市场需要, 某灯具商店采购了一批某种型号的节能灯, 共用去400元, 在搬运过程中, 不小心打碎了5盏, 该店把余下的灯每盏加价4元全部售出;仍然获得利润90元.求每盏灯的进价.A BC 东参考答案与评分建议一、CBDAA CBADA CC二、13. 14. 100 15. 40 16. 17. 6 18. 且 19. 100 20. ②③三、21. 解:原式 ………………………………(4分)3a = ………………………………(6分) 22. 解: ………………………………(2分)2(1)0x += ………………………………(4分)1x =- ………………………………(6分) 23. 解: ( ) ……………(4分)125,2x x ==- (125,2x x ==-) ………………………………(6分)24. 解: 在 中, ∵∴ , ……………(4分)∴ , ∴ ……………(6分)四、25.解:可以组成33, 34, 35, 43, 44, 45, 53, 54, 55 ……………(2分)……………(5分)3 4 4 5 3 3 4 5 3 45 5十位上的数字与个位上的数字之和为8的两位数的概率是:……………(7分) 26. (1)解: 设抛物线为:∵抛物线的图象与 轴交于 、 两点, 且经过点∴ , ∴ ……………(4分)∴抛物线的解析式为2(2)(1)y x x =+-(也可以是2224y x x =+-)…………(5分) (2)2224y x x =+-2211192()42()4222y x x x =++--=+- ∴抛物线的对称轴为12x =-(直接用公式求出也得分)……………(7分)27. 证明: ∵ 是 的垂直平分线, ∴ , …………(2分) 又∵ 平分 , ∴ ……………(3分)∵,ADF B BAD DAF CAD CAF ∠=∠+∠∠=∠+∠ ∴B CAF ∠=∠ ……………(4分) ∴BAF AFC ∆∆ ……………(5分) ∴ , 即 ……………(6分)∴2FD FB FC =⋅ ……………(7分)28. 解: 根据题意得: ……………(1分)∴222121212()2x x x x x x +=+- ……………(2分)2(2)(21)11k k =+-+= ……………(3分) 解得124,2k k =-= ……………(4分)当 时, ……………(5分)当 时, , 不合题意, 舍去……………(6分) ∴4k =- ……………(7分)五、解: 设每盏灯的进价为 元, ……………(1分) 根据题意列方程得: ……………(4分) 解方程得: ……………(7分)经检验 都是原方程的根, 但 不合题意, 舍去∴10x = ……………(8分) 答: 每盏灯的进价为10元.……………(9分) 30. 解:正确画出图形得5分方法一: 如图(8.1)(没有考虑人的高度不扣分)①将标杆EF 立在一个适当的位置; ……………(6分)②人 站在一个适当的位置: 通过标杆的顶部 , 刚好看到旗杆的顶部 ……(7分) ③测出人的身高CD ,标杆的高度EF ,人到标杆DF 的距离和人到旗杆DB 的距离 …(8分) ④计算旗杆的高度: ∵ ,∴ , 所以旗杆的高度 …………(9分) (方法二: 如图(8.2)①将平面镜放在 处, ……………(6分)②人 走到适当的地方: 刚好能从平面镜 中看到旗杆的顶部 …………(7分) ③测出人的高度 , 人到平面镜的距离 , 平面镜到旗杆底部的距离 …(8分) ④计算出旗杆的高度: ∵ ,∴ , 所以旗杆的高度 …………(9分) )六、31.(1)证明:∵ , ∴∴BPD BMA ∆∆…………(1分)∴,DP BP BPPD AM AM AB AB==…………(2分) 同理: …………(3分) 又∵ 是等边三角形, ∴ ∴12()BP CP BP CPh h AM AM h h AB AC BC BC+=+=+=…………(4分) (也可以用面积相等、三角函数来证明) (2)123h h h h ++=…………(5分) 过 作 ∥ , 交 于 , 交 于 , 交 于 又∵ , ∴ …………(6分)由(1)可得: …………(7分) ∴123h h h AN MN h ++=+=…………(8分) (3)123h h h h ++= …………(10分)32. 解: (1)∵直线 经过 轴上的点 和 轴上的点 ∴ , ∴, ∴ …………(1分)又∵抛物线2y x bx c =++经过A 、B 两点∴2204488b b c c c=-⎧=++⎧⇒⎨⎨=--=⎩⎩…………(2分) ∴抛物线为822--=x x y …………(3分)(2)由(1)可得 (注意: 可以由公式求出, 也可由配方得出)…………(4分) 过 作 轴的垂线, 交 轴于 ∴1OG =ABD AOB AGD AOB AOBD OBDG S S S S S S ∆∆∆∆=-=+-四边形梯形111(89)1(41)9486222=⨯+⨯+⨯-⨯-⨯⨯=…………(6分) (3)过 作 轴, 交 于 , 交抛物线于 , 设 则2(,28);(,28)H t t N t t t ---由图可知: …………(7分)①当 时, 解得: 都不合题意, 舍去…………(8分) ②当 时, 解得: (不合题意, 舍去)…………(9分) 由①和②可得: ∴22228028()28339t t --=-⨯-=- ∴280(,)39N -……………………(10分)。
福建省洛江区2009—2010学年度九年级数学上学期期末质量检查及答案华东师大版
洛江区2009—2010学年度初三年上学期期末质量检查数 学 试 题一、选择题(单项选择,每小题4分,共24分)在答题卡上相应题目的答题区域内作答. 1.下面与2是同类二次根式的是( ) A .3 B .12 C .8 D .12-2.在Rt △ABC 中,∠C=90°,a = 1 , c = 4 , 则sinA 的值是 ( ) A .1515 B .41 C .31D .4153.一元二次方程022=+x x 的解是( )A .0B .0或-2C .-2D .没有实数根4.袋中有5个白球,k 个红球,经过实验,从中任取一个恰为红球的概率是32,则k 的值为( ) A .10B .16C .18D .205.在图中,∠1=∠2,则与下列各式不能说明△ABC ∽△ADE 的是( ) A .∠D=∠B B .∠E=∠C C .AC AE AB AD = D .BCDEAB AD =6.将点A (4,0)绕着原点O 顺时针方向旋转30°角到对应点A ', 则点A '的坐标是( ) A .)2,32( B .(4,-2) C .)2,32(- D .)32,2(- 二、填空题(每小题3分,共36分)在答题卡上相应题目的答题区域内作答. 7.当x 时,二次根式12-x 有意义。
8.化简:2)12(= 。
9.已知012=-++b a ,那么=+b a 。
10.若方程02)1(2=-++x m x 有一个解是-1,则m = 。
11.如图是引拉线固定电线杆的示意图。
已知:CD ⊥AB ,∠CAD=∠CBD=60°,CD 6=m ,则拉线AC 的长是___________m 。
12.在比例尺为1:300 000的地图上,量得甲、乙两地的距离是5㎝,则两地的实际距离41CB A为 ㎞.13.若△ABC ∽△A ′B ′C ′,∠A=60°,∠B=45°,则∠C ′为 度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009-2010学年(上)期市末质检 九年级数学模拟试题(华师大版)一、选择题(本题共10小题,每小题3分,共30分).1.计算2-(-1)2等于( )A.1B.0 3.-1 D.32.化简x-y-(x+y)的最后结果是( ) A.0 B.2x C.-2y D.2x-2y3.小明的妈妈为了奖励小明在学习中取得的进步,给小明新买了一个文具盆,你估计这个文具盒的厚度为3( )(填上合适的长度单位)。
A .mm;B .cm;C .dm;D .km 4. 方程x(x+3)=x+3的解是 ( ) A. x=1 B. x 1=0, x 2=-3 C. x 1=1, x 2=3 D. x 1=1, x 2=-3 5. 下列图中能过说明∠1>∠2的是 ( )A.B.C.D.6. 使一元二次方程28x x -+=0有两个不相等的实数根的一个常数项是( )A . 16;B . 64;C . 1;D . 207.某市社会调查队对城区内一个社区居民的家庭经济状况进行了调查,结果是:该社区共有500户,高收入、中等收入和低收入家庭分别有125户、280户和95户.已知该市有100万户家庭,下列表述正确的是( )A.该市高收入家庭约25万户B.该市中等收入家庭约56万户C.该市低收入家庭约19万户D.因为城市社区家庭经济状况良好,所以不能据此估计全市所有家庭经济状况 8.如图,⊙O 的半径OA=3,以点A 为圆心,OA 的长为半径画弧交⊙O 于B 、C,则BC=( )A.23B.33C.223 D.2339. 方程组⎩⎨⎧==+127xy y x 的一个解是( )A⎩⎨⎧==52y x B ⎩⎨⎧==26y x C ⎩⎨⎧==34y x D⎩⎨⎧-=-=43y x10.用一块等边三角形的硬纸片(如图1)做一个底面为等边三角形且高相等的无盖的盒子(边缝忽略不计,如图2),在△ABC 的每个顶点处各剪掉一个四边形,其中四边形AMDN 中,∠MDN 的度数为( ) A. 100° B. 110° C. 120° D. 130°二、填空题(本题共5小题,每小题4分,共20分)11. 两个不相等的实数m ,n 满足m 2-6m=4,n 2-6n=4,则mn 的值为12. 一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:1u +1v=1f. 若f =6厘米,v =8厘米,则物距u = 厘米.13.已知平面直角坐标系上的三个点O (0,0)、A (-1,1)、B (-1,0),将△ABO 绕点O 按顺时针方向旋转135°,则点A 、B 的对应点A 1、B 1的坐标分别是A 1( , ) ,B 1( , ) .14. 如图,正方形ABCD 内接于⊙O ,E 为DC 的中点, 直线BE 交⊙O 于点F ,如果⊙O,则O 点到BE的距离OM =________.15. 在平面直角坐标系中,横坐标、纵坐标都为整数的点 称为整点.观察图中每一个正方形(实线)四条边上的整 点的个数,请你猜测由里向外第10个正方形(实线)四 条边上的整点个数共有_________个.三、解答题16. 计算:(1)230120.125200512-⎛⎫-⨯++- ⎪⎝⎭17. 解方程:212312=---x x xx 。
18. 先化简,再求值:22112()2y x yx yx xy y-÷-+-+,其中1x =+1y =-19. 如图8,△ABC 和△A ’B ’C ’关于直线MN 对称, △A ’B ’C ’和△A ’’B ’’C ’’关于直线EF 对称。
(第14题B图 1图 2图8AN MBC A ’ A ’’B ’ B ’’ ’C ’’(1) 画出直线EF ;(2) 直线MN 与EF 相交于点O ,∠BOB ’’ 与直线MN 、EF 所夹锐角α的数量关系是20. 如图,△ABO 中,OA =OB ,以O 为圆心的圆经过AB 的中点C ,且分别交OA 、OB 于点E 、F .(1) 求证:AB 是⊙O 的切线;(2) 若△ABO 腰上的高等于底边的一半,且34AB ,求的长.21.质检员为控制盒装饮料产品质量,需每天不定时的30次去检测生产线上的产品.若把从0时到24时的每十分钟作为一个时间段(共计144个时间段),请你设计一种随机抽取30个时间段的方法:使得任意一个时间段被抽取的机会均等,且同一时间段可以多次被抽取. (要求写出具体的操作步骤) 22、如图,用三个全等的菱形ABGH 、BCFG 、CDEF 拼成平行四边形ADEH ,连接AE 与BG 、CF 分别交于P 、Q , (1) 若AB=6,求线段BP 的长;(6分)(2) 观察图形,是否有三角形与ΔACQ 全等?并证明你的结论,(4分) 解:23. 已知:如图7,P 是正方形ABCD 内一点,在正方形ABCD 外有一点E ,满足∠ABE =∠CBP ,BE =BP ,(1) 求证:△CPB ≌△AEB ; (2) 求证:PB ⊥BE ; (3) 若PA ∶PB =1∶2,∠APB =135°,求cos ∠P AE 的值.24. 如图,已知直线L 与◎○相切于点A ,直径AB=6,点P 在L 上移动,连接OP 交◎○于点C ,连接BC 并延长BC 交直线L 于点D , (1) 若AP=4, 求线段PC 的长(4分) (2) 若ΔPAO 与ΔBAD 相似,求∠APO的度数和四边形OADC 的面积(答 案要求保留根号)(6分) 解:OABCEF图 7P ED C BA25.我国年人均用纸量约为28公斤,每个初中毕业生离校时大约有10公斤废纸;用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树.(1)若我市2005年初中毕业生中环保意识较强的5万人,能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使多少亩森林免遭砍伐.(2)宜昌市从2001年初开始实施天然林保护工程,到2003年初成效显著,森林面积大约由1374.094万亩增加到1500.545万亩.假设我市年用纸量的15%可以作为废纸回收、森林面积年均增长率保持不变,请你按宜昌市总人口约为415万计算:在从2005年初到2006年初这一年度内,我市新增加的森林面积与因回收废纸所能保护的森林面积之和最多可能达到多少亩.(精确到1亩)参考答案:一、1—10:A C B D B C D B C C二、填空题11.-4;12. 24 厘米;13. A1 (2,0), B1(22,22);14.5;15. 40三、解答题16.(1)3;(2)12a+;17. x=-1;x=1/3;;19.解:(1)如图2,连结B’B’’。
………1分作线段B’B’’的垂直平分线EF。
………2分则直线EF是△A’B’C’和△A’’B’’C’’的对称轴。
…3分(1)结B’O。
∵△ABC和△A’B’C’关于MN对称,∴∠BOM=∠B’OM又∵△A’B’C’和△A’’B’’C’’关于EF对称,∴∠B’OE=∠B’’OE。
∴∠BOB’’=∠BOM+∠B’OM+∠B’OE+∠B’’OE=2(∠B’OM+∠B’OE)=2α。
即∠BOB’’=2α20. 解:(1)证明:连结OC. …………………………1分∵OA=OB,AC=BC,∴OC⊥AB.∴AB是⊙O的切线. ……………………2分(2)过B点作BD⊥AO,交AO的延长线于D点.由题意有AB=2BD,由题目条件,有34=AB.AC在Rt △ABD 中,根据正弦定义21sin==ABBD A∴∠A =30°. …………………………………………3分 在Rt △ACO 中,3221==AB AC,∠A =30°,则AO =2OC .由勾股定理,求得 OC =2. ………………………………4分 ∵OA =OB ,且∠A =30°, ∴∠AOB =120°. 由弧长公式可求得的长为π34. ……………………5分21.解:(方法一)(1).用从1到144个数,将从0时到24时的每十分钟按时间顺序编号,共有144个编号.(2).在144个小物品(大小相同的小纸片或小球等)上标出1到144个数. (3)把这144个小物品用袋(箱)装好,并均匀混合.(4)每次从袋(箱)中摸出一个小物品,记下上面的数字后,将小物品返回袋中并均匀混合.(5)将上述步骤4重复30次,共得到30个数.(6)对得到的每一个数除以60转换成具体的时间.(不答此点不扣分) (方法二)(1)用从1到144个数,将从0时到24时的每十分钟按时间顺序编号,共有144个编号. (2)使计算器进入产生随机数的状态. (3).将1到144作为产生随机数的范围.(4)进行30次按键,记录下每次按键产生的随机数,共得到30个数. (5)对得到的每一个数除以60转换成具体的时间.(不答此点不扣分)注意:本题可以设计多种方法,学生的答案中(法一)只要体现出随机性即可评2分;体现出按时间段顺序编号即可评2分;体现出有放回的抽签(小物品)即可评1分;体现出30次性重复抽签即可评1分;叙述大体完整、基本清楚即可评1分,共7分.(法二)只要体现出按时间段顺序编号即可评2分;体现出30次重复按键即可评1分;其他只要叙述大体完整、基本清楚即可. 22. 解:186336BCFG =⨯==∴====∴AB AD AB DE CD BC CDEF ABGH 是全等菱形,、、菱形 ………1分AEDAPB D ABG DEBG ∠=∠∠=∠∴,// …2分ABP ∆∴∽ΔADE …………………3分 ADAB DEBP =∴………………………5分26186=⨯=∙=∴DE ADAB BP ……………6分(2)图中的ΔEGP 与ΔACQ 全等……………………………………7分 证明:菱形 ABGH 、BCFG 、CDEF 是全等的菱形FG EF BC AB ===∴FG EF BC AB +=+∴既AC=EG ………………………………………………8分 AD//HE21∠=∠∴ CF BG //43∠=∠∴……………………………………………9分∴ ΔEGP ≌ΔACQ ………………………………………10分 23.(1) 证明:∵ 四边形ABCD 是正方形∴ BC =AB …… 1分 ∵ ∠CBP =∠ABE BP =BE …… 2分 ∴ △CBP ≌△ABE …… 3分 (2) 证明:∵∠CBP =∠ABE∴∠PBE =∠ABE +∠ABP …… 4分=∠CBP +∠ABP =90° …… 5分∴ PB ⊥BE …… 6分(1)、(2)两小题可以一起证明.证明:∵∠CBP =∠ABE∴∠PBE =∠ABE +∠ABP …… 1分=∠CBP +∠ABP=90° …… 2分∴ PB ⊥BE …… 3分以B 为旋转中心,把△CBP 按顺时针方向旋转90°, …… 4分 ∵ BC =AB ∠CBA =∠PBE =90° BE =BP …… 5分 ∴△CBP 与△ABE 重合∴ △CBP ≌△ABE …… 6分 (3) 解:连结PE∵ BE =BP ∠PBE =90°∴∠BPE =45° …… 7分 设 AP 为k , 则 BP =BE =2k∴ PE 2=8k 2 …… 8分∴ PE =22k图 7EP D C B A∵∠BPA =135° ∠BPE =45°∴∠APE =90° …… 9分 ∴AE =3 k在直角△APE 中: cos ∠PAE =AP AE =13 …… 10分24、解:(1)与l ◎○相切于点A ,904=∠∴……………1分 222APOAOP+=∴………2分222434,321+=∴====OPAP AB OC OP5=∴OP ………………3分 235=-=∴PC ………4分(2)∆ PAO ∽ΔBAD,且∠1>∠2,∠4=∠4=900APO ∠=∠∴2………………………………………………5分32132∠+∠=∠∠=∠∴=∴ OCOBAPO ∠=∠=∠∴2221……………………………6分903901904=∠∴=∠+∠∴=∠∴APO APO30=∠∴APO ………………………………7分 在Rt ΔBAD 中,0302=∠=∠APO3233630tan 60=⨯==∴AD …………………8分方法一:过点O 作OE ⊥BC 于点E ,233303,233,3020=⨯==∴==∠con BE OE BO 332==∴BE BC ………………………………9分 BOC BAD OADCS S S ∆∆-=∴四边形34936233321326212121-=⨯⨯-⨯⨯=∙-∙=OE BC AD AB=3415……………………………10分方法二:在Rt ΔOAP 中,AP=6tan600=33,OP=2OA=6, ∴DP=AP -AD=3,336,3323=-=-==-OC OP PC过点C 作CF ⊥AP 于F ,∴∠CPF=300, ∴CF=2321=PC ………9分∴S 四边形OADC =S ΔOAP -S ΔCDP =21AP ·OA -21DP ·CF=21(233333⨯-⨯=4315…………………10分25.解:(1) 5万初中毕业生利用废纸回收使森林免遭砍伐的最少亩数是: 5×104×10÷1000×18÷80=112.5(亩)……… 3分 或分步骤计算:5万初中毕业生①废纸回收的数量:5×104×10=5×105(公斤)= 500(吨)…1分 ②因废纸回收使森林免遭砍伐的数量:500×18=9000 ……… 2分③因废纸回收使森林免遭砍伐的最少亩数是:9000÷80=112.5(亩)………3分 (注:学生因简单叙述或无文字叙述直接得出计算结果不扣分) (2)设2001年初到2003年初我市森林面积年均增长率为x ,依题意可得 1374.094×(1+x )2=1500.545 ……… 5分 解得:x =0.045=4.5% ……… 6分 ∴ 2005年初到2006年初全市新增加的森林面积: 1500.545×104×(1+4.5%)2×4.5% = 737385(亩)………7分 又全市因回收废纸所能保护最多的森林面积:415×104×28×15%÷1000×18÷50=6275(亩)…9分 (结果正确即评2分,此点可单独评分) ∴新增加的森林面积与保护的森林面积之和最多可能达到的亩数: 737385(亩)+6275(亩)= 743660(亩) ……… 10分。