方程组不等式(组)与函数

合集下载

一次函数与方程(组)、不等式及二次函数与二元一次方程、不等式的关系

一次函数与方程(组)、不等式及二次函数与二元一次方程、不等式的关系

一次函数与方程(组)、不等式及二次函数与二元一次方程、二元一次不等式的关系1、一次函数与一元一次方程从“数”的角度看,解方程kx+b=0相当于一次函数y=kx+b 的函数值为0时,求自变量的取值;从“形”的角度看,解方程kx+b=0,相当于确定直线y=kx+b 与x 轴交点横坐标的值 一次函数与一元一次不等式从“数”的角度看,解不等于式kx+b 〉0(<0)相当于一次函数y=kx+b 的函数值>0(<0)时,求自变量x 的取值范围;从“形”的角度看,求不等于式kx+b>0(<0)的解集,相当于确定直线y=kx+b 在x 轴上(下)方部分所对应的自变量x 取值范围 从“数”的角度看,解不等于式11b x k +〉22b x k +相当于一次函数111b x k y +=与222b x k y +=函数值y 1>y 2时,求自变量的取值范围;从“形”的角度看,解不等于式11b x k +〉22b x k +,相当于确定直线111b x k y +=在直线222b x k y +=上(下)方部分所对应的自变量x 取值范围 一次函数与二元一次方程组从“数”的角度看,解二元一次方程组{y =k 1x +b 1y =k 2x +b 2相当于求自变量x 为何值时相应的两个函数y =k 1x +b 1与y =k 2x +b 2的函数值相等,从“形”的角度看,解二元一次方程组,相当于确定直线y =k 1x +b 1与y =k 2x +b 2交点的坐标类比可得出二次函数与二元一次方程、二元一次不等式的关系:1、从数的角度看,解方程02=c bx ax ++相当于二次函数c bx ax y ++=2的函数值y=0时自变量x 的值,从形的角度看,解方程02=++c bx ax 相当于确定二次函数c bx ax y ++=2与x 轴的交点模坐标的值2、从数的角度看,解方程)0(02<>++c bx ax 相当于二次函数c bx ax y ++=2的函数值y>0(<0)时自变量x 的取值范围,从形的角度看,解方程)0(02<>++c bx ax 相当于确定二次函数c bx ax y ++=2与在x 轴上(下)方部分所对应的自变量x 取值范围。

人教版 八年级下册数学 同步复习 第14讲 一次函数与方程(组)、不等式 讲义

人教版 八年级下册数学 同步复习 第14讲  一次函数与方程(组)、不等式   讲义

课程标准1. 能用函数观点看一次方程(组),能用辨证的观点认识一次函数与一次方程的区别与联系.2.能用函数的观点认识一次函数、一次方程(组)与一元一次不等式之间的联系,能直观地用图形(在平面直角坐标系中)来表示方程(或方程组)的解及不等式的解,建立数形结合的思想及转化的思想. 3.能运用一次函数的性质解决简单的不等式问题及实际问题.知识点01 一次函数与一元一次方程的关系一次函数y kx b =+(k ≠0,b 为常数),当函数y =0时,就得到了一元一次方程0kx b +=,此时自变量x 的值就是方程kx b +=0的解.所以解一元一次方程就可以转化为:当某一个一次函数的值为0时,求相应的自变量的值.从图象上看,这相当于已知直线y kx b =+(k ≠0,b 为常数),确定它与x 轴交点的横坐标的值. 注意:(1)求一次函数与x 轴的交点,令y=0,解出x 即为与x 轴交点的横坐标;(2)一次函数y kx b =+(k ≠0,b 为常数)是一个关于x 和y 的二元一次方程,这个方程有无数组解,但若已知x 的值(或y 的值),即可求出y 的值(或x 的值);(3)若一次函数y kx b =+,满足等式mk b n += 或0mk b n +-=,则函数必过点(m,n );同理,若一次函数图像上有个点(m ,n ),则二元一次方程有一组解为x my n =⎧⎨=⎩;知识点02 一次函数与二元一次方程组每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这时的函数为何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标. 注意:(1)两个一次函数图象的交点与二元一次方程组的解的联系是:在同一直角坐标系中,两个一次函数图象的交点坐标就是相应的二元一次方程组的解.反过来,以二元一次方程组的解为坐标的点一定是相应的两个一次函数的图象的交点.如一次函数学生/课程 年级 8年级 学科 数学 授课教师日期时段核心内容一次函数与方程(组)、不等式 (第14讲)24y x =-+与31322y x =-图象的交点为(3,-2),则32x y =⎧⎨=-⎩就是二元一次方程组2431322y x y x =-+⎧⎪⎨=-⎪⎩的解.(2)当二元一次方程组无解时,相应的两个一次函数在直角坐标系中的直线就没有交点,则两个一次函数的直线就平行.反过来,当两个一次函数直线平行时,相应的二元一次方程组就无解.如二元一次方程组3531x y x y -=⎧⎨-=-⎩无解,则一次函数35y x =-与31y x =+的图象就平行,反之也成立.(3)当二元一次方程组有无数组解时,则相应的两个一次函数在直角坐标系中的直线重合,反之也成立.知识点03 方程组解的几何意义1.方程组的解的几何意义:方程组的解对应两个函数的图象的交点坐标.2.根据坐标系中两个函数图象的位置关系,可以看出对应的方程组的解情况: 根据交点的个数,看出方程组的解的个数;根据交点的坐标,求出(或近似估计出)方程组的解.3.对于一个复杂方程组,特别是变化不定的方程组,用图象法可以很容易观察出它的解的个数.知识点04 一次函数与一元一次不等式由于任何一个一元一次不等式都可以转化为ax b +>0或ax b +<0或ax b +≥0或ax b +≤0(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数y ax b =+的值大于0(或小于0或大于等于0或小于等于0)时求相应的自变量的取值范围. 注意:(1)求关于x 的一元一次不等式ax b +>0(a ≠0)的解集,从“数”的角度看,就是x 为何值时,函数y ax b =+的值大于0.从“形”的角度看,确定直线y ax b =+在x 轴(即直线y =0)上方部分的所有点的横坐标的范围. (2)常见的解集:0(0)y kx b >+>或0(0)y kx b ≥+≥或0(0)y kx b <+<或0(0)y kx b ≤+≤或x m >x m ≥x m <x m ≤2x >2x ≥ 2x < 2x ≤2x <-2x ≤- 2x >- 2x ≥-4x <4x ≤ 4x > 4x ≥无论求0(0)y kx b >+>或还是0(0)y kx b <+<或,都应首先求出一次函数与x 轴交点的横坐标(即令y=0),再根据题目要求,确定x 的取值范围: ①y >0时,取x 轴上方图像自变量的范围; ②y <0时,取x 轴下方图像自变量的范围;知识点05 一元一次方程与一元一次不等式我们已经学过,利用不等式的性质可以解得一个一元一次不等式的解集,这个不等式的解集的端点值就是我们把不等式中的不等号变为等号时对应方程的解. 注意:(1)不等式的解集中,端点无论取到取不到,该值都是对应方程的解;例如:一次函数y kx b =+,若0y >时,x 的取值范围是2x >,则方程0kx b +=的解为2x =,且一次函数y kx b =+过点(2,0);(2)一次函数y kx b =+,若当a x m << 时,y 的取值范围是b y n <<,则可得出一次函数过点(,),(,)(,),(,)a b m n a n m b 或;知识点06 如何确定两个不等式的大小关系ax b cx d +>+(a ≠c ,且0ac ≠)的解集⇔y ax b =+的函数值大于y cx d =+的函数值时的自变量x 取值范围⇔直线y ax b =+在直线y cx d =+的上方对应的点的横坐标范围.两个一次函数比较大小,求自变量x 的取值范围,首先要求出两一次函数的交点横坐标(列二元一次方程组),再根据图像判断。

知识总结,关于不等式的性质,以及函数方程不等式之间的联系

知识总结,关于不等式的性质,以及函数方程不等式之间的联系

知识总结,关于不等式的性质,以及函数方程不等式之间的联系本文分析了不等式的定义、性质及函数方程不等式之间的联系。

首先,我们讨论了不等式概念的基本概念,包括不等式的类型和不等式组;其次,我们探讨了不等式的性质,比如非负性、可加性和对称性等;最后,我们研究了不等式方程与函数不等式之间的联系。

一、不等式的定义不等式是数学中最基本的概念之一,它表示两个数的大小关系。

它的具体定义可以表达为:如果a、b是数,且a≠b,那么根据其大小关系,存在如下不等式:a>b(a大于b)、a≥b(a大于等于b)、a<b(a小于b)、a≤b(a小于等于b)。

不等式组指的是由多个不等式组成的集合,它是一种非常有用的数学工具,可以被用来描述更多有趣且复杂的结果。

不等式组可以根据其形式来分类,常见的不等式组有:单不等式、多个不等式连续构成的多个不等式组、范围不等式组等。

二、不等式的性质不等式性质指的是不等式具有的一系列普遍性质,它们可以帮助我们协助理解不等式的表达和运用。

常见的不等式性质有:1.负性:我们知道大于号的符号表示结果大于零,而小于号的符号表示结果小于零,这就限定了不等式的结果一定是大于或小于零。

2.加性:任何两个不等式可以加在一起,等价于将两个不等式结合起来,例如a<b 与 c<d,把它们加在一起可以得到a+c < b+d。

3.称性:一个不等式的符号可以和相反的符号交换形成新的不等式,例如a<b 与 b>a,它们是等价的。

4.合性:一个不等式可以和多个不等式结合,并可以生成更大的不等式,例如a<b 与 c<d以构成a+c<b+d。

三、函数方程与不等式之间的联系在很多数学问题中,不等式和函数方程经常会被混合使用,因为它们之间有一定的联系。

函数方程与不等式之间的联系可以表示为:函数方程是一个数学表达式,它可以定义函数的输入和输出值之间的关系,例如 y=f(x),表示y是x的函数;而不等式可以表示两个值之间的大小关系,例如y>f(x),表示y大于x的函数。

中考方程(组)不等式(组)一次函数求最值的综合应用

中考方程(组)不等式(组)一次函数求最值的综合应用

专题8 一次函数的应用(即方程(组)不等式(组)和一次函数的综合应用)一次函数求最值,不同于二次函数求最值,它一般分三步:1.根据题目中的等式条件,建立一次函数关系式,确定其增减性;2.根据题目中的不等式条件,列不等式(组),求出自变量的取值范围;3.根据一次函数的增减性,恰当选取自变量的值,求函数的最值。

1.某商场同时购进甲、乙两种商品共200件,其进价和售价如下表,设其中甲种商品购进x件(1)若该商场购进这200件商品恰好用去17900元,求购进甲、乙两种商品各多少件?(2)若设该商场售完这200件商品的总利润为y元.①求y与x的函数关系式;②该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若商场保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该商场获得最大利润的进货方案.2.某销售商准备采购A、B两种型号的空气净化器,经调查,采购2台A型净化器和3台B型净化器共需花费11500元,且采购5台A型净化器和购进4台B型净化器所需的费用相等.(1)求每台A型、B型净化器的进价各是多少?(2)若销售商购进A型、B型净化器共50台,其中A型的台数不大于B型的台数,且不少于15台,设购进A型净化器a台.①求a的的取值范围;②已知A型的售价是2600元/台,B型的售价是3200元/台,设销售商售完50台净化器获得的利润为w,求w的最大值.3.某商场筹集资金12.8万元,一次性购进空调、彩电共30台,已知购买3台空调和2台彩电花费2.32万元,购买2台空调和4台彩电需花费2.48万元。

(1)求每台空调与彩电的进价分别是多少元?(2)已知每台空调的售价为6100元,每台彩电的售价为3900元,设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元,试求出y与x的函数关系式;(3)根据市场需要,这些空调、彩电很快全部售出,商场计划再次筹集资金12.8万元,一次性购买空调、彩电共30台,且可全部售出,在(2)的条件下,商场如何进货可获得最大利润,最大利润是多少元?4.某超市计划购进甲、乙两种玩具若干件,已知5件甲种玩具与3件乙种玩具的进价之和为231元,2件甲种玩具的进价与3件乙种玩具的进价之和为141元.(1)求每件甲种玩具和每件乙种玩具的进价分别是多少?(2)如果购进甲种玩具有优惠,优惠方法:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0,且x为整数)件甲种玩具需花费y元,请求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,超市应选择购进哪种玩具最省钱.5.学校打算购进一批甲、乙两种办公桌若干张,若学校购进15张甲办公桌和10张乙办公桌共花费15500元,购进8张甲种办公桌的费用与购买5张乙办公桌的费用相等.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购进甲、乙两种办公桌共30张,且甲种办公桌不多于乙种办公桌数量的2倍,请你设计一种费用最少的方案,并求出该方案所需费用.6.某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?7.某地新建的一个企业,每月产生1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:已知商家售出的2台A型污水处理器和3台B型污水处理器的总价为44万元,售出的1台A型污水处理器和4台B型污水处理器的总价为42万元.(1)求每台A型污水处理器和B型污水处理器的价格分别是多少万元?(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的两种污水处理器共10台,请你设计出最省钱的购买方案,请求出最低费用.答案自我诊断1.考点:一次函数的应用.分析:(1)甲种商品购进x件,乙种商品购进了200﹣x件,由总价=甲单价×甲商品数量+乙单价×乙商品数量,可得出关于x的一元一次方程,解出方程即可得出结论;(2)①根据利润=甲商品单件利润×数量+乙商品单件利润×数量,即可得出y关于x的函数解析式;②根据总价=甲单价×甲数量+乙单价×乙数量,列出关于x的一元一次不等式,解不等式即可得出x的取值范围,再根据y关于x函数的增减性即可解决最值问题;(3)根据利润=甲单件利润×数量+乙单件利润×数量,可得出y关于x的函数解析式,分x的系数大于0、小于0以及等于0三种情况考虑即可得出结论.解:(1)甲种商品购进x件,乙种商品购进了200﹣x件,由已知得:80x+100(200﹣x)=17900,解得:x=105,200﹣x=200﹣105=95(件).答:购进甲种商品105件,乙种商品95件.(2)①由已知可得:y=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000(0≤x≤200).②由已知得:80x+100(200﹣x)≤18000,解得:x≥100,∵y=﹣60x+28000,在x取值范围内单调递减,∴当x=100时,y有最大值,最大值为﹣60×100+28000=22000.故该商场获得的最大利润为22000元.(3)y=(160﹣80+a)x+(240﹣100)(200﹣x),即y=(a﹣60)x+28000,其中100≤x≤120.①当50<a<60时,a﹣60<0,y随x的增大而减小,∴当x=100时,y有最大值,即商场应购进甲、乙两种商品各100件,获利最大.②当a=60时,a﹣60=0,y=28000,即商场应购进甲种商品的数量满足100≤x≤120的整数件时,获利都一样.③当60<x<70时,a﹣60>0,y岁x的增大而增大,∴当x=120时,y有最大值,即商场应购进甲种商品120件,乙种商品80件获利最大.点评:本题考查了一次函数的应用、一元一次不等式的应用以及一元一次方程的应用,解题的关键是:(1)根据数量关系列出关于x的一元一次方程;(2)根据数量关系找出y关于x的函数关系式;(3)根据一次函数的系数分类讨论.本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心.4.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时,根据“一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时”,列出方程组,即可解答.(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8﹣2a)件.从而得到W=﹣8a+3200,再根据“加工A型服装数量不少于B型服装的一半”,得到a≥50,利用一次函数的性质,即可解答.解:(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时.由题意得:,解得:答:熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时.(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8﹣2a)件.∴W=16a+12(25×8﹣2a)+800,∴W=﹣8a+3200,又∵a≥,解得:a≥50,∵﹣8<0,∴W随着a的增大则减小,∴当a=50时,W有最大值2800.∵2800<3000,∴该服装公司执行规定后违背了广告承诺.。

用函数观点看方程(组)与不等式

用函数观点看方程(组)与不等式

【本讲主要内容】用函数观点看方程(组)与不等式1. 一次函数与一元一次方程的关系2. 一次函数与一元一次不等式的关系3. 一次函数与二元一次方程(组)的关系【知识掌握】【知识点精析】一. 一次函数与一元一次方程的关系由于任何一元一次方程都可以转化为ax b+=0(a b、是常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看这相当于已知直线y ax b=+,确定它与x轴交点的横坐标的值.二. 一次函数与一元一次不等式的关系由于任何一元一次不等式都可以转化为ax b+>0或ax b+<0(a b、是常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围.从图象上看,解ax b+>0相当于已知直线y ax b=+在x轴上方时,自变量x 相应的取值范围;解ax b+<0相当于已知直线y ax b=+在x轴下方时,自变量x相应的取值范围.三. 一次函数与二元一次方程(组)的关系每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标.方程(组)、不等式与函数之间互相联系,用函数观点可以把它们统一起来,解决问题时,应根据具体情况灵活地、有机地把它们结合起来使用.【解题方法指导】例1. (2006年重庆市中考题)(课改实验区考生做)如图,已知函数y ax b y kx=+=和的图像交于点P,则根据图像可得,关于x y、的二元一次方程组y ax by kx=+=⎧⎨⎩的解是______.∴l2的函数表达式为y x=-10075(2)乙车先到达B地.3001007515 4=-∴=x x,设l1的函数表达式是y k x=1O图像过点()154300,∴k 1=80.即y x =80当y =400时,400805=∴=x x , ∴-=519414(小时)键性词语;三要有一定的生产、生活常识,对当前市场经济条件下各种常见的现象有所了解,能抓住它们的本质和规律,恰当地构建出数学模型.【典型例题分析】例1. (2006年云南省课改实验区中考题)如图,直线l l 12与相交于点P ,l 1的函数表达式为y x =+23,点P 的横坐标为-1,且l 2交y 轴于点A (0,-1).求直线l 2的函数表达式.若x y ==23,,则0621342..⨯+⨯=(万元)∴电视台选择15秒广告播放4次、30秒广告播放2次的方式,收益较大. 点评:本题综合应用了二元一次方程与一次函数的知识解决实际问题.例3. (2006年浙江省中考题)宁波市土地利用现状通过国土资源部验收,我市在节约集约用地方面已走在全国前列.1996~2004年,市区建设用地总量从33万亩增加到48万亩,相应的年GDP从295亿元增加到985亿元.宁波市区年GDP y(亿元)与建设用地总量x(万亩)之间存在着如图所示的一次函数关系.(1)求y关于x的函数关系式.(2)据调查2005年市区建设用地比2004年增加4万亩,如果这些土地按以上函数关系式开发使用,那么2005年市区可以新增GDP多少亿元?(3)按以上函数关系式,我市年GDP每增加1亿元,需增建设用地多少万亩?(精确到0.001万亩)∴-=≈x x21460022.(万亩)即年GDP每增加1亿元,需增加建设用地约0.022万亩.例4. (2006年云南省中考题)云南省公路建设发展速度越来越快,通车总里程已位居全国第一,公路的建设促进了广大城乡客运的发展.某市扩建了市县际公路,运输公司根据实际需要计划购买大、中两型客车共10辆,大型客车每辆价格为25万元,中型客车每辆价格为15万元.(1)设购买大型客车x(辆),购车总费用为y(万元),求y与x之间的函数表达式;(2)若购车资金为180万元至200万元(含180万元和200万元),那么有几种购车方案?在确保交通安全的前提下,根据客流量调查,大型客车不能少于4辆,此时如何确定购车方案可使该运输公司购车费用最少?解:(1)设购买大型客车x辆,则购买中型客车()10-x辆.由题意得:y x x=+-251510(),即y x=+10150(2)1015018010150200xx+≥+≤⎧⎨,解得xx≥≤⎧⎨35,∴≤≤35x(山西省课改实验区)如图,是某函数的图象,则下列结论中正确的是(的取值是-325,B. 当y=-3时,x的近似值是0,2C. 当x=-32时,函数值y最大D. 当x>-3时,y随x的增大而增大2. (太原市)小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l l12、如图所示,他解的这个方程组是()2xy+-=,2(黄冈市课改实验区)如图,在光明中学学生耐力测试比赛中,甲、乙两学生测试的(秒)之间的函数关系图像分别为折线OABC正确的是()A. 乙比甲先到达终点B. 乙测试的速度随时间增加而增大C. 比赛进行到29.4秒时,两人出发后第一次相遇D. 比赛全程甲的测试速度始终比乙的测试速度快二. 填空题:某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y (微克)随时间x (小时)的变化情况如图所示,当成人按规定剂量服用后,(1)服药后________小时,血液中含药量最高,达每毫升______毫克,接着逐步衰减; (2)服药5小时,血液中含药量_______毫克;(3)当x ≤2时,y 与x 之间的函数关系式是___________; (4)当x ≥2时,y 与x 之间的函数关系式是___________;(5)如果每毫升血液中含药量3毫克或3毫克以上时,治疗疾病最有效,那么这个有效时间是_________小时.三. (昆明市课改实验区)如图,直线l 1与l 2相交于点P ,l 1的函数表达式为y x =+23,点P 的横坐标为-1,且l 2交y 轴于点A (0,-1).求直线l 2的函数表达式.四. (河北省课改实验区)甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30m时,用了__________h.开挖6h时甲队比乙队多挖了______m;(2)请你求出:①甲队在06x的时段内,y与x之间的函数关系式;≤≤②乙队在26x的时段内,y与x之间的函数关系式;≤≤(3)当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?五. (2004年黑龙江省中考题)某送奶公司计划在三栋楼之间建一个取奶站,三栋楼在同一条直线上,顺次为A楼、B楼、C楼,其中A楼与B楼之间的距离为40米,B楼与C楼之间的距离为60米.已知A楼每天有20人取奶,B楼每天有70人取奶,C楼每天有60人取奶,送奶公司提出两种建站方案.方案一:让每天所有取奶的人到奶站的距离总和最小;方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和.(l)若按照方案一建站,取奶站应建在什么位置?(2)若按照方案二建站,取奶站应建在什么位置?(3)在(2)的情况下,若A楼每天取奶的人数增加(增加的人数不超过22人),那么取奶站将离B楼越来越远,还是越来越近?请说明理由.【综合测试答案】一. 选择题:1. B2. D3. C4. C二. 填空题:(1)2,6; (2)3 (3)y x =3(4)y x =-+8 (5)4三. 解:设点P 坐标为(-1,y ),代入y x =+23,得y =∴1,点P (-1,1)设直线l 2的函数表达式为y kx b =+,把P (-1,1)、A (0,-1)分别代入y kx b =+,得11=-+-=⎧⎨⎩k b b∴=-=-⎧⎨⎩k b 21,∴直线l 2的函数表达式为y x =--21.四. 解:(1)2,10;(2分)(2)①设甲队在06≤≤x 的时段内y 与x 之间的函数关系式为y k x =1, 由图可知,函数图像过点(6,60), ∴=6601k ,解得k y x 11010=∴=,(4分)②设乙队在26≤≤x 的时段内y 与x 之间的函数关系式为y k x b =+2, 由图可知,函数图像过点(2,30),(6,50), ∴+=+=⎧⎨⎩23065022k b k b ,解得k b 2520==⎧⎨⎩,∴=+y x 520 (6分)(3)由题意,得10520x x =+,解得x h =4(). ∴当x 为4h 时,甲、乙两队所挖的河渠长度相等.五. 解:(1)设取奶站建在距A 楼x 米处,所有取奶的人到奶站的距离总和为y 米, ①当040≤≤x 时,y x x x x =+-+-=-+207040601001108800()()∴当x =40时,y 的最小值为4400②当40100<≤x 时,y x x x x =+-+-=+20704060100303200()(),此时,y 的值大于4400因此按方案一建奶站,取奶站应建在B 楼处 (2)设取奶站建在距A 楼x 米处,①当040≤≤x 时,20601007040x x x +-=-()()解得x =-<32030(舍去)②当40100<≤x 时,20601007040x x x +-=-()()解得x =80 因此按方案二建奶站,取奶站应建在距A 楼80米处 (3)设A 楼取奶人数增加a 人,第11页 版权所有 不得复制 11①当040≤≤x 时,()()()20601007040++-=-a x x x , 解得x a =-+320030(舍去),②当40100<≤x 时, ()()()20601007040++-=-a x x x 解得x a =-∴8800110,当a 增大时,x 增大,∴当A 楼取奶的人数增加时,按照方案二建奶站,取奶站仍建在B 、C 两楼之间,且随着人数的增加,离B 楼越来越远。

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
①-②,得 2y=2,∴y=1, x=2, x=2,
∴原方程组的解为y=1,将y=1 代入 2kx-3y<5 得 2×k×2-3<5,解得 k<2.
命题点 2:一次方程(组)的应用(近 3 年考查 15 次)
7.(数学文化)(2021·武汉第 7 题 3 分)我国古代数学名著《九章算术》
中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价
32 人.2 艘大船与 1 艘小船一次共可以满载游客 46 人.则 1 艘大船与 1
艘小船一次共可以满载游客的人数为
( B)
A.30
B.26
C.24
D.22
11.★(2022·武汉第 10 题 3 分)幻方是古老的数学问题,我国古代的《洛 书》中记载了最早的幻方——九宫格.将 9 个数填入幻方的空格中,要 求每一横行、 每一竖列以及两条对角线上的 3 个数之和相等,例如图① 就是一个幻方.图②是一个未完成的幻方,则 x 与 y 的和是 ( D ) A.9 B.10 C.11 D.12
14.(2020·仙桃第 12 题 3 分)篮球联赛中,每场比赛都要分出胜负,每 队胜 1 场得 2 分,负 1 场得 1 分.某队 14 场比赛得到 23 分,则该队胜 了__99__场.
15.(2020·黄冈第 19 题 6 分)为推广黄冈各县市名优农产品,市政府组 织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买 6 盒 羊角春牌绿茶和 4 盒九孔牌藕粉,共需 960 元,如果购买 1 盒羊角春牌 绿茶和 3 盒九孔牌藕粉共需 300 元,请问每盒羊角春牌绿茶和每盒九孔 牌藕粉分别需要多少元?
【分层分析】设购进创意文具袋 x 个,由题干信息①得购进笔记本为
((2x2+x+10)个,由题干信息②可列方程为 xx++(2(x2+x1+0)1=0)190.

一次函数与方程、不等式、方程组关系PPT课件

一次函数与方程、不等式、方程组关系PPT课件

05
CHAPTER
总结与展望
总结一次函数与方程、不等式、方程组的关系
一次函数与方程的关系
一次函数与方程组的关系
一次函数是线性方程的几何表示,通 过将方程中的x替换为函数表达式,可 以得到相应的方程。
一次函数可以用于解决线性方程组问 题,通过消元法或代入法将方程组转 化为一次函数的交点问题。
一次函数与不等式的关系
斜率
一次函数图像的倾斜程度 由斜率k决定,k>0时,图 像为增函数;k<0时,图 像为减函数。
截距
b为y轴上的截距,表示函 数与y轴交点的纵坐标。
一次函数的图像
绘制方法
通过代入一组x值计算对应的y值 ,得到一系列点,将这些点连接 成线即可得到一次函数的图像。
图像特点
一次函数图像是一条直线,斜率为 k,截距为b。
一次函数与方程、不等式、方 程组关系ppt课件
目录
CONTENTS
• 一次函数的基本概念 • 一次函数与方程的关系 • 一次函数与不等式的关系 • 一次函数的应用 • 总结与展望
01
CHAPTER
一次函数的基本概念
一次函数的定义
01
02
03
一次函数
形如y=kx+b(k≠0)的 函数,其中x是自变量,y 是因变量。
一次函数与一元一次不等式组
一元一次不等式组
由两个或两个以上一元一次不等式组成的集合。
关系
对于一元一次不等式组,可以通过将其转化为一次函数的形式,利用函数的交点来求解。例如,解不等式组 $begin{cases} x + 2 > 0 x - 1 < 0 end{cases}$,可以将其转化为两个一次函数的形式,然后找到两个函数的 交点,即解集。

第3节 一次函数与方程(组)及一元一次不等式

第3节 一次函数与方程(组)及一元一次不等式

第三节一次函数与方程(组)及一元一次不等式二、核心纲要直线:y = kx+b(k≠0)与x轴交点的横坐标,就是一元一次方程kx+b = 0 (k≠0)的解.求直线y = kx+b与x轴交点时,可令y = 0,得到方程k + B = 0,解方程得x=bk-,直线y=kx+b交x轴于点(bk-,0),bk-就是直线y =kx+b与x轴交点的横坐标,可令y轴交点的横坐标.注:(1)从“数”看:kx+b=0(k≠0)的解⇔在一次函数y=kx+b(k≠0)中,令y=0时,x的值.(2)从“形”看:kx+b=0(k≠0)的解⇔一次函数y=kx+b(k≠0)的图像与x轴交点的横坐标.2.—次函数与一元一次不等式的关系(1) 任何一次一次不等式都可以转化为ax+b>0或ax + b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围.(2) 函数图像的位置决定两个函数值的大小关系①函数y1的图像在函数y2的图像的上方⇔y1>y2,如下图所示;②函数y1的图像在函数y2的下方⇔y1<y2,如下图所示;③特别说明:函数y 的图像在x 轴上方⇔y >0;函数y 的图像在X 轴下方y <0.3.一次函数与二元一次方程(组)的关系(1)一次函数的解析式:y =kx +b (k ≠0)本身就是一个二元一次方程,直线y =kx +b (k ≠0)上有无数个点,每个点的横纵坐标都满足二元一次方程y =kx +b (k ≠0),因此二元一次方程的解也就有无数个. (2) —次函数:y = kx +b (k ≠0)① 从“数”看,它是一个二元一次方程; ② 从“形”看,它是一条直线。

4.两条直线的位置关系与二元一次方程组的解 (1) 二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有唯一的解⇔直线y =k 1x +b 1不平行于直线y =k 2x +b 2⇔k 1≠k 2.(2) 二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩无解⇔直线y =k 1x +b 1平行于直线y =k 2x +b 2⇔k 1=k 2,b 1≠b 2. (3) 二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有无数多个解⇔直线y =k 1x +b 1与y =k 2x +b 2重合⇔k 1=k 2,b 1=b 2.5.比较两个函数值大小的方法 (1) 画图像,求交点.(2) 过交点作平行于y 轴的直线. (3) 谁高谁大.6.数学思想数形结合和转化思想.本节重点讲解:一个定理,一个证明,两个思想.三、全能突破1.若直线y =(m -3)x +6与x 轴交于点(3,0),则m 的值为( ) A. 1 B. 2 C. 3 D. 42.如图19-3-1所示,一次函数y =kx +b 的图像经过A 、B 两点,则kx +b ≥0的解集是( ) A. x >0 B. x ≥—3 C. x >2 D. -3≤x ≤23.已知ax +b =0的解是2,则直线y =ax +b 与x 轴的交点坐标是______。

八年级下册数学-一次函数与二元一次方程组、不等式

八年级下册数学-一次函数与二元一次方程组、不等式

第17讲 一次函数与二元一次方程组、不等式知识导航二元一次方程组的解实质是求组成方程组的两个方程的公共解,也可以看作是求两条直线的交点坐标. 1.一般地,每个二元一次方程组都对应两个一次函数,因而也对应两条直线;从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这两个函数值是何值;从形的角度看,解方程组相当于确定两条直线的交点的坐标.2.二元一次方程组的解法有代入法,加减消元法和图象法,图象法只是直观地反映了二元一次方程组的解在相应的一次函数图象上的点的坐标之间的关系.3.解一元一次不等式ax +b >0或ax +b <0(a ≠0),相当于是某个一次函数y =ax +b 的值大于0或小于0时,求自变量x 的取值范围.【板块一】一次函数与一元一次方程方法技巧由于任何一元一次方程都可转化为kx +b =0(k ,b 为常数,k ≠0)的形式,所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值;从图象上看,这相当于已知直线y =kx +b 确定它与x 轴交点的横坐标的值.题型一 直线与坐标轴的交点【例1】(1)直线y =kx +b 过点A (0,-3)和点B (2,0),则关于x 的方程kx +b =0的解是( ) A .x =2 B .x =-2 C .x =3 D .x =-3 (2)直线y =k 1x +1和直线y =k 2x -3的交点在x 轴上,则12k k =( ) A . 13 B .-3 C .13D .3【例2】(1)关于x 的方程x +b =-2的解为x =1,则函数y =x +b +2与x 轴交点坐标为______________; (2)一次函数y =kx +b 的图象经过点A (2,1),则直线y =kx +b -1与x 轴交点B 的坐标是______________.针对练习11.一次函数y =kx +b 的图象如图所示,则关于x 的方程kx +b =0的解是_____________,关于x 的方程kxx2.不论m为何值,直线y=(m-1)x+m一定经过一个定点,则这个定点的坐标为______________.3.如图,在口ABCD中,点A(-1,0),B(3,0),D(0,3),AC,BD交于点'O.(1)求点'O的坐标;(2)若直线y=kx-1,将口ABCD的面积分成两等份,求k的值.x板块二一次函数与二元一次方程组题型二求两条直线的交点【例1】用作图象的方法解方程组27 38 x yx y【例2】已知函数y=1(1)1(10)1(00)1(1)x xx xx xx x的图象为“W”型,直线y=kx-k+1与函数y的图象有三个公共点,则k的值是()A.1或12B.0或12C.12D.12或-12题型三直线与直线的交点坐标位置与字母的取值范围【例3】已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)交于点M,且直线l2与x轴的交点为A(-2,0).(1)如图,若点M在第一象限,求k的取值范围;(2)若点M在第二象限,直接写出k的取值范围.针对练习21.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b),不解关于x,y的方程组1,, y xy mx n=+⎧⎨=+⎩请你直接写出它的解.2.无论m为何实数,直线y=x+2m与直线y=-x+4的交点一定不可能在()A.第一象限B.第二象限C.第三象限D.第四象限3.若直线y=kx+3经过直线y=4-3x与y=2x-1的交点,求k的值.4.在夹击直角坐标系xOy中,点P的坐标为(m+1,m-1).(1)试判断点P是否在一次函数y=x-2的图象上,并说明理由;(2)如图,一次函数y=132x-+的图象与x轴,y轴分别相交于点A,B,若点P在△AOB的内部,求m的取值范围.【板块三】一次函数与一元一次不等式(组)方法技巧 一元一次不等式求解:从数的角度看,求ax +b >0(a ≠0)的解即求x 为何值时,y =ax +b 的值大于0;从形的角度看,求ax +b >0(a ≠0)的解即确定直线y =ax +b 在x 轴上方的图象所对应的x 的取值范围,数形结合是解一次不等式(组)的重要方法. 题型四 观察图象求不等式的解.【例1】如图,函数y 1=1x -和,y 2=12x +1的图象相交于(0,1),(4,3)两点,当y 1>y 2时,x 的取值范围______.题型五 利用图象求不等式组的解【例2】(1)如图1,直线y =kx +b 经过点A (-1,3),与x 轴交于点B0),则关于x 的不等式组0≤kx +b <-3x 的解集为_______.图1 图2 图3 图4(2)如图2,直线y =kx +b 经过点A (-1,0)和B (3,-1)两点,则不等式组x -4<kx +b ≤0的解集为_____.(3)如图3,直线y =kx +b 交x 轴于(-3,0),且过P (2,-3),则不等式组kx +b ≤-1,5x <0的解集为_____.(4)如图4,直线y =kx +b 经过A (2,0)和P (3,1)两点,则关于x 的不等式组1,3,x b kx kx b ⎧-≤⎪⎨⎪>-⎩ 的解集为____. 【例3】如图,直线y 1=kx +b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),求不等式组mx >kx +b >mx -2的解集.题型六隐藏的交点的运用【例4】(1)如图1,直线y=kx+b过A(2,1),B,0),则不等式组0≤kx+b<12x的解集为_____.(2)如图2,直线y=kx+b经过A(2,1),B(-1,-2)两点,求不等式组12x>kx+b>-2的解集.图1 图2 题型七由不等的解集求交点坐标【例5】不等式kx+b>2x+3的解集为x>1,则方程组,23y kx by x=+⎧⎨=+⎩的解为___.针对练习31.在平面直角坐标系中,直线y=kx向下平移6个单位后刚好过点(-2,0),求不等式kx-6>3x的解集.2.在平面直角坐标系中,将直线y=kx+2沿y轴翻折后刚好经过点(2,1),求不等式kx+2>x+1的解集.3.在平面直角坐标系中,点A,B的坐标分别为(3,m),(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围是_______(用含m的式子表示).4.如图,已知直线y=kx+b过(-2,3)和(-1,0),则x+5>kx+b≥0的解集为_____.5.如图,A(2,1)为直线y=kx+b上一点,则不等式kx+b>x-1>0的解集为____.6.在同一平面直角坐标系中,直线y=kx与函数24,(3),2,(33),28,(3)x xy xx x+<-⎧⎪=--≤≤⎨⎪->⎩的图象恰好有三个不同的交点,则k的取值范围是_______.7.已知关于x的不等式kx+b>0的解集为x>1,下列关于直线y=kx+b与x轴交点坐标与k的符号正确的是()A.(1,0),k>0 B.(1,0),k<0 C.(-1,0),k>0 D.(-1,0),k<0 8.如图,直线y=-x+m与y=nx+4(n≠0)的交点的横坐标为-2,求关于x的不等式组-x+m>nx+4n>0的整数解集.。

深圳中考数学不等式-方程(组)函数应用题(附答案)

深圳中考数学不等式-方程(组)函数应用题(附答案)

第二节不等式,方程(组)与函数应用题【例题经典】例1 近年来,由于土地沙化日渐加剧,沙尘暴频繁,严重影响国民生活.•为了解某(1y (万亩)与x(年数)之间的关系式;并计算到第20年时该地区的沙漠面积.(2)为了防沙治沙,政府决定投入资金,鼓励农民植树种草.经测算,植树1亩需资金200元,种草1亩需资金100元.某组农民计划在一年内完成2400亩绿化任务,在实施中,由于实际情况所限,植树完成了计划的90%,种草超额完成了计划的20%,恰好完成了计划的绿化任务.那么所节余的资金还能植树多少亩?【点评】培养学生一次函数的建模能力、解决问题的能力.例2(2006年深圳市)工艺商场按标价销售某种工艺品时,每件可获利45元;•按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)该工艺品每件的进价、标价分别为多少元?(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?【点评】二次函数的常规应用题,要注意探究二次函数关系式.【考点精练】1.(2006年常德市)某电器经营业主计划购进一批同种型号的挂式空调和电风扇,若购进8台空调和20台电风扇,需要资金17400元,若购进10台空调和30台电风扇,需要资金22500元.(1)求挂式空调和电风扇每台的采购价各是多少元?(2)该经营业主计划购进这两种电器共70台,而可用于购买这两种电器的资金不超过30000元,根据市场行情,销售一台这样的空调可获利200元,•销售一台这样的电风扇可获利30元.该业主希望当这种电器销售完时,所获得的利润不少于3500元,•试写出该经营业主有哪几种进货方案?哪种方案获利最大?最大利润是多少?2.甲、乙两家体育器材商店出售同样的乒乓球拍和乒乓球,球拍一付定价60元,乒乓球每盒定价10元.今年世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买一付乒乓球拍赠两盒乒乓球;乙商店规定所有商品9折优惠.•某校乒乓球队需要买2付乒乓球拍,乒乓球若干盒(不少于4盒).设该校要买乒乓球x盒,所需商店在甲商店购买需用y1元,在乙商店购买需用y2元.(1)请分别写出y1、y2与x之间的函数关系式(不必注明自变量x的取值范围);(2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜.(3)若该校要买2付乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案.3.(2006年绵阳市)某产品每件的成本是120元,为了解市场规律,•试销阶段按两种方案进行销售,结果如下:方案甲:保持每件150元的售价不变,此时日销售量为50件;方案乙:不断地调整售价,此时发现日销售量y(件)是售价x(元)的一次函数,•(1销售总利润大?(2)分析两种方案,为获得最大日销售利润,每件产品的售价应定为多少元?此时,最大日销售利润S是多少?(注:销售利润=销售额-成本额,销售额=售价×销售量)4.在黄州服装批发市场,某种品牌的时装当季节即将来临时,价格呈上升趋势,•设这种时装开始定价为20元,并且每周(7天)涨价2元,从第6周开始保持30•元的价格平稳销售;从第12周开始,当季节即将过去时,平均每周减价2元,直到第16周周末,该服装不再销售.(1)试建立销售价y与周次x之间的函数关系式;(2)若这种时装每件进价Z与周次x之间的关系为Z=-0.125(x-8)2+12,1≤x•≤16,且x为整数,试问该服装第几周出售时,每件销售利润最大?最大利润是多少?5.(2006年河北省)利达经销店某工厂代销一种建筑材料(•这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.•综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其他费用100元.•设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.6.心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力逐步增强,•中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力y•随时间t变化规律有如下关系式:y=24100(010) 240(1020)7380(2040) t t ttt t-++<≤⎧⎪<≤⎨⎪-+<≤⎩(1)讲课开始后第5分钟时与讲课开始后第25分钟时比较,•何时学生的注意力更集中?(2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?(3)一道数学难题,需要讲解24分钟,为了效果较好,要求学生的注意力最低达到180,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?7.(2006年盐城市)国家为了关心广大农民群众,增强农民抵御大病风险的能力,积极推行农村医疗保险制度.某市根据本地的实际情况,•制定了纳入医疗保险的农民医疗费用报销规定,享受医保的农民可以定点医院就医,在规定的药品品种范围内用药,由患者先垫付医疗费用,年终到医保中心报销.医疗费的报销比例标准如下表:(1)y元,试求y与x的函数关系式;(2)若某农民一年内自付医疗费为2600元(自付医疗费=实际医疗费-按标准报销的金额),则该农民当年实际医疗费为多少元?(3)若某农民一年内自付医疗费不少于4100元,则该农民当年实际医疗费至少为多少元?8.(2006年哈尔滨市)2006年春,我市为美化市容,开展城市绿化活动,•要种植一种新品种树苗.甲、乙两处育苗基地均以每株4元的价格出售这种树苗,•并对一次性购买该种树苗不低于1000株的用户均实行优惠:•甲处的优惠政府是每株树苗按原价的八折出售;乙处的优惠政府是免收所购树苗中150株的费用,•其余树苗按原价的九折出售.(1)规定购买该种树苗只能在甲、乙两处中的一处购买,•设一次性购买x(•x•≥1000且x为整数)株该种树苗,若在甲处育苗基地购买,所花的费用为y1元,写出y1与x 之间的函数关系式;若在乙处育苗基地购买所花的费用为y2元,写出y2与x•之间的函数关系式.(两个函数关系式均不要求写出自变量x的取值范围)(2)若在甲、乙两处分别一次性购买1500株该种树苗,在哪一处购买所花的费用少?为什么?(3)若在甲育苗基地以相应的优惠方式购买一批该种树苗,又在乙育苗基地以相应的优惠方式购买另一批该种树苗,两批树苗共2500株,购买这2500株树苗所花的费用至少需要多少元?这时应在甲、乙两处分别购买该种树苗多少株?答案:例题经典例1.(1)y=90+0.2(x-1),当x=20时,y=93.8(2)80亩例2:解:(1)•设工艺品每件的进价是x元,则标价为(x+45)元,根据题意,得(x+45)×85%×8-8x=(x+45-35)×12-12x ,解得x=155(元),x+45=200(元),故该工艺品每件的进价、•标价分别是155元、200元(2)设每件工艺品应降低x 元出售,每天获得的利润为y 元.•根据题意,得y=(45-x )(100+4x )=-4x 2+80x+4500=-4(x-10)2+4900.•故每件工艺品降价10元出售,每天获得的利润最大,获得的最大利润是4900元. 考点精练1.(1)设挂式空调每台x 元,电风扇每台y 元,∴820174001800103022500150x y x x y y +==⎧⎧⎨⎨+==⎩⎩,解之得, 即空调1800元/台,电风扇150元/台 (2)设空调x 台,则电扇(70-x )台,则1800(70)150********(70)303500x x x x +-≤⎧⎨+-≥⎩, 解之得8.2≤x ≤11.8,∴x 取9,10,11设利润为W=200x+(70-x )∴k=170>0,•∴x 取最大11,W=3970元2.(1)y 1=10(x-4)+60×2=10x+80,y 2=0.9(10x+60×2)=9x+108 •(2)当x>28时,选乙商店;当x=28时,甲、乙一样;当4≤x<28时,选甲店(3)最佳方案:到甲店购买2付乒乓球拍,获赠4盒乒乓球;到乙店买16盒乒乓球.3.(1)y=kx+b ,13070115050200k b k k b b +==-⎧⎧⎨⎨+==⎩⎩,解之得, ∴y=-x+200,∴第4天,第5天180元时,各售出20件,∴设利润为W ,∴W 甲=(150-120)×50×5=7500元, W 乙=(130-120)×70+(150-120)×50+(160-120)×40+(180-120)×20×2=6200元,∴W 甲>W 乙,∴甲方案利润大.(2)W=(x-120)y=(x-120)(-x+200),•W=-x 2+320x-24000,x=-2b a=160元, W 最大=1600元.方案甲每天获利1500元,∴应定价为160元,利润最大.4.(1)y=218(16)30(611)252(1216)x x x x x +≤≤⎧⎪≤≤⎨⎪-+≤≤⎩(2)设销售利润为W=222114(16)81226(611)81428(1216)8x xx x xx x x⎧+≤≤⎪⎪⎪-+≤≤⎨⎪⎪-+≤≤⎪⎩,∴当x=11时,W最大=191 85.分析:此类二次函数应用题为中考常见题型.分析题中销售量与售价间的关系,从而构建函数模型,•利用函数性质,求解利润最大问题.解:(1)45+26024010-×7.5=60(吨)(2)y=(x-100)(45+26010x-×7.5),化简得:y=-34x2+315x-24000.(3)y=-34x2+315x-24000=-34(x-210)2+9075.•利达经销店要获得最大月利润,材料的售价应定为每吨210元.(4)我认为,小静说的不对,理由:方法一:当月利润最大时,x为210元,而对于月销售额W=x(45+26010x-×7.5)=-34(x-160)2+19200•来说,当x为160元时,月销售额W最大,∴当x为210元时,月销售额W不是最大,•∴小静说的不对.方法二:当月利润最大时,x为210元,此时,月销售额为17325元;而当x•为200元时,月销售额为18000元.∵17325<18000,当月利润最大时,月销售额W不是最大,∴小静说的不对6.(1)第25分钟比第5分钟更集中(2)开课10分钟后,学生注意力最集中,最持续10分钟,可以(3)可以7.(1)y=710(x-500)(500<x≤10000(2)•设该农民一年内实际医疗费为x元,则当x≤500时,不合题意,当500<x≤10000时,有500+(x-500)×0.3=2600,解之得:x=7500(元).答略(3)设该农民一年内实际医疗费为x元,∵500+(10000-500)×0.3=3350<4100,∴x>10000.根据题意有:500+(10000-500)×0.3+(x-10000)×0.2≥4100,解之得:x≥13750(元).答:略8.分析:解答(3)时,可设在乙处购买a株该种树苗,所花钱数为W元,可列出W与a 的函数关系式,•再根据题意列出关于a的不等式组,求a的范围,然后利用一次函数的性质进行解答.解:(1)y1=0.8×4x,y1=3.2x;y2=0.9×4(x-150),y2=3.6x-540(2)•应在甲处育苗基地购买所花的费用少.当x=1500时,y1=3.2×1500=4800;y2=3.6×1500-540=4860,∵y1<y2,∴在甲处购买所花的费用少(3)设在乙处购买a株该种树苗,所花钱数为W元,W=3.2(2500-a)+3.6a-540=0.4a+7460,∵10002500, 100025002500aa≤≤⎧⎨≤-≤⎩,∴1000≤a≤1500,且a为整数,∵0.4>0,∴W随a的增大而增大,∴a=1000时,W=7860.2500-1000=1500(株),答:至少需要花费7860元,应在甲处购买1500株,在乙处购买100株.。

浅谈方程、函数、不等式三者之间的关系

浅谈方程、函数、不等式三者之间的关系

浅谈方程、函数、不等式三者之间的关系作者:谢文芳来源:《学校教育研究》2014年第24期在初中阶段,方程、函数、不等式都是比较重要的知识点。

在初中数学教学中占重要地位。

对于它们之间的关系应该如何理解和认识,在这里笔者谈一点粗浅看法。

第一,函数、方程和不等式是初中数学学习的主要内容之一。

这三部分内部之间有着很密切的联系,知识点体系主要采用以函数为主线,将函数图像、性质和方乘及不等式的相关知识,进行综合运用,用函数观点看方程(组)与不等式数形结合思想的又一体现,它交给我们从另一个方位来思考方程(组)与不等式的问题,让人耳目一新,让我们领略了数学思维的多元性,进一步体验了数形结合的重要性。

在学习方程和不等式的时候加入与函数的联系,在学习中让学生比较好的理解它们之间的内在的联系是十分重要的内容,这也是初中阶段数学最为重要的内容之一。

而新课程标准中把这个联系提到了十分明朗、鲜明的程度。

因此,应该重视这部分的教学。

第二,在教学中,这部分内容应该抓好两个要点:第一个要点是各个内容之间相关概念之间的联系、第二个要点是各个内容之间相关性质之间的联系。

例如,方程与函数之间相对应问题?实际上,想对应的问题就是求函数的零点,即函数图像与横轴交点的横坐标的值。

在不等式中,方程的根又是如何体现的?方程的根就是不等式解集中的特殊值。

反之,函数的零点从方程的角度看,就是方程的根,从不等式的角度看,就是解集中的特殊的解。

不等式的解集从函数的角度看,就是图像在横轴的上方或下方,从方程的角度看,就是先解方程,求出方程的根,以两根为端点写出不等式的解集。

这三个不同内容之间,一些概念是相通的,但是名称又不完全一样。

但本质上是一致的。

1.一元一次方程、一元一次不等式及一次函数的关系一次函数及其图像与一元一次方程及一元一次不等式有着密切的关系,函数y=ax+b(a≠0,a,b为常数)中,函数的值等于0时自变量x的值就是一元一次方程ax+b=0(a≠0)的解,所对应的坐标(1 ,0)是直线y=ax+b与x轴的交点坐标,反过来也成立;•直线y=ax+b 在x轴的上方,也就是函数的值大于零,x的值是不等式ax+b>0(a≠0)的解;在x轴的下方也就是函数的值小于零,x的值是不等式ax+b<0(a≠0)的解。

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

5.(数学文化)《九章算术》是中国古代数学著作之一,书中有这样的一 个问题:五只雀、六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问: 每只雀、燕的质量各为多少?设一只雀的质量为 x 斤,一只燕的质量为 y
5x+6y=1, 斤,则可列方程组为__4x+y=5y+__x.
【考情分析】广西近 6 年主要考查解一元一次方程或二元一次方程组, 应用一元一次方程或二元一次方程组解决简单的实际问题,难度小,分 值 3-10 分,常在解答题中与不等式、一次函数的实际应用结合考查.
x=1, 则方程组的解为y=-1.
x-3y=-2, 5.(2020·玉林第 20 题 6 分)解方程组:2x+y=3.
x-3y=-2①, 解:2x+y=3②. ①+②×3 得 x+6x=-2+3×3, 解得 x=1, 将 x=1 代入②得 2+y=3, 解得 y=1.
x=1, 则方程组的解为y=1.
根据题意可列方程组为
y=3x-2, A.y=2x+9
y=3x-2, C.y=2x-9
y=3(x-2), B.y=2x+9
y=3(x-2), D.y=2x-9
( B)
7.(2021·桂林第 24 题 8 分)为了美化环境,建设生态桂林,某社区需 要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天 能完成的绿化改造面积比乙队多 200 m2,甲队与乙队合作一天能完成 800 m2 的绿化改造面积. (1)甲、乙两工程队每天各能完成多少 m2的绿化改造面积? (2)该社区需要进行绿化改造的区域共有 12 000 m2,甲队每天的施工费 用为 600 元,乙队每天的施工费用为 400 元,比较以下三种方案: ①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成. 哪一种方案的施工费用最少?

函数与方程(组)、不等式的联系

函数与方程(组)、不等式的联系

函数与方程(组)、不等式的联系山东 孙延林万事万物都处于普遍联系之中,数学各知识之间也是如此.运用联系的观点来认识一次函数、方程和不等式,对于提高大家的认知水平和解题能力是大有裨益的.一、一次函数和一元一次方程的联系任何一个一元一次方程都可以化简成ax+b=0(a ≠0,a,b 为常数)的形式,其解恰好就是一次函数y=ax+b(a ≠0,a,b 为常数)的函数值为0时,自变量x 的取值,反映在图象上,就是直线y=ax+b 与x 轴的交点横坐标.例1 一次函数y=21-x+2图象与x 轴的交点A 的坐标是 , 与y 轴的交点B 的坐标是 .析解: 由于x 轴上所有点的纵坐标都为0,故令y=0,即有21-x+2=0,将一次函数图象与x 轴的交点问题转化为一元一次方程的问题.解得x=2,因此点A 的坐标是(4,0).同理,令x=0,得到一元一次方程y=2,即点B 的坐标是(0,2).二、一次函数和一元一次不等式的联系任何一个一元一次不等式都可以化简成ax+b>0(或 ax+b<0)(a ≠0,a,b 为常数) 的形式, 其解恰好就是一次函数y=ax+b(a ≠0,a,b 为常数)的函数值大于(或小于0)时,自变量x 的取值范围,反映在图象上,就是直线y=ax+b 在x 轴上方的部分(或x 轴下方的部分)对应的自变量x 的取值范围.例 2 一次函数y=2x-4的图象如图1所示,当x时,其函数值大于0; 当x 时,其在x 轴的下方.析解:令y>0,即2x-4>0,解不等式得x>2;图象在x 轴的下方就是指y<0,从而2x-4<0,解不等式得x<2.三、一次函数和二元一次方程组的联系任何一个二元一次方程都可以看作一次函数,反过来,任何一个一次函数解析式都是二元一次方程,从而一次函数解析式----直线上点的坐标就是二元一次方程的解;进一步说,任何二元一次方程组都对应两个一次函数,也就对应两条直线.从数的角度看,解方程组相当于求自变量为何值时两个函数的值相等,以及求该函数值.反映在图象上, 解方程组相当于求两条直线的交点坐标.例3 如图2,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax b y kx =+⎧⎨=⎩的二元一次方程组的解是 . 析解:求方程组的解实际上就是求两条直线交点的坐标.从图2直接看出函数图象的交点(-4,-2),即关于y ax b y kx =+⎧⎨=⎩的二元一次方程组的解是⎩⎨⎧-=-=.2,4y xx 图2。

用函数的观点看方程组和不等式

用函数的观点看方程组和不等式
14
皮肌炎图片——皮肌炎的症状表现
• 皮肌炎是一种引起皮肤、肌肉、 心、肺、肾等多脏器严重损害的, 全身性疾病,而且不少患者同时 伴有恶性肿瘤。它的1症状表现如 下:
• 1、早期皮肌炎患者,还往往伴 有全身不适症状,如-全身肌肉酸 痛,软弱无力,上楼梯时感觉两 腿费力;举手梳理头发时,举高 手臂很吃力;抬头转头缓慢而费 力。
设计意图: 通过综合运用一次函数与不等式、方程(组) 解决实际问题,让学生体会方程组、不等式与 函数之间的联系,尝试用函数的观点认识问题17 。
教学过程 巩固练习,深化理解
练习 下面有两种移动电话计费方式: 你知道如何选择计费方式更省钱吗?
全球通
神州行
月租费
50元/月 0
本地通话费 0.40元/分 0.60元/分
节期间A商场打8折,B商场消费超过200元后,
可打7折。试问如何选择购物更经济?
设计意图: 巩固本节所学知识,运用于实际生活问题;布置 不同层次的作业,满足不同学生不同发展需求20。
21
人教版数学八年级上册第十四章《一次函数》第三节第三课时
用函数观点看 二元一次方程(组)
华南师范大学数学科学学院 李博姿
设计意图:
通过小结明确本节的主要内容、思想和方法,
培养学生善于反思的良好习惯.
19
教学过程 归纳小结,布置作业
复习巩固:
6.利用函数图象解方程组:
(1) 3x + 2y = 5, (2) x + 2y = 4,
2x – y = 1;
2x - y = 6.
综合运用:
8.A、B商场平时以同样价格出售相同商品,春
设计意图: 引导学生探索二元一次方程与一次函数的对应 关系;

一次函数与方程组、不等式的关系

一次函数与方程组、不等式的关系

一次函数与方程组、不等式的关系
一次函数与方程组、不等式的关系
一、概述
一次函数,又称一元函数,是利用一个变量由常数、指数、对数、三
角函数和其他的混合动态变量构成的函数。

它可以以简单的一次曲线
定义某一参数变化情况,也可以定义涉及多个变量的复杂方程组,对
曲线参数进行函数式分析和证明。

一次函数可以看做是方程组和不等
式的特例,与方程组、不等式关系密切。

二、一次函数与方程组的关系
一次函数可以看做方程组的特殊情况,当某一方程只有一个未知数时,它就可以转换成一次函数,并有着一定的图形表示,简化了对其进行
分析的过程,极大的提高了效率。

如当一组方程组均为一个未知数冚
构成时,若满足一次函数的性质,那么这组方程组就可以看做是一次
函数的特殊情况。

例如,若我们有一组以y=2x+1构成的一次函数,那么它就可以表示为
形如y-2x-1=0的方程,也就是图形上红色一次函数曲线对应着满足蓝
色方程线的点。

三、一次函数与不等式的关系
与方程组类似,不等式也可以通过一次函数转换,当某一不等式只有一个未知数构成时,就可以用一次函数进行表示,并且由于不等式的加减性,不同类型的不等式有着不同的图形表示。

例如,当y<2x+1的不等式表达式转换为一次函数时,我们可以得到一条红色的上限函数曲线,它就可以表示不等式表达式所给出的结果,也就是解空间位于红色曲线之下的点才符合不等式表达式。

四、总结
一次函数与方程组、不等式的关系密切,它们各自都可以通过对另一个的转换来进行数学分析和求解,而一次函数的表示也简化了数学求解的难度,可以有效的提高效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方程(组)不等式(组)与函数
1、方程
1
1x
=的解为________。

2、方程x 2
=4x 的解是 . 3、方程
x
x 5
27=-的解是 。

4、已知一元二次方程有一个根为1,那么这个方程可以是 (只需写出一个方程) 5、如果关于x 的方程2
40x x a ++=有两个相等的实数根,那么a = 6、请给出一元二次方程28x x -+ =0的一个常数项,使这个方程有两个不相等的实数根。

7、已知方程0932
=+-m x x 的一个根是1,则m 的值是 。

8、一元二次方程2
210x x --=的根是 .
9、若代数式
2
1
x x -+的值是零,则x =__;若代数式()()21x x -+的值是零,则x = . 10、不等式2-x ≥3的解集是___________________________ 11、不等式16(x+1)《64的正整数解为 。

12、不等式3x-9≤0的解集是 .
13、已知不等式组⎩⎨⎧<-≥11
x x 的解集如图所示,则不等式组的整数解为__________。

14、不等式组⎪⎩⎪⎨⎧->-≥-x
x x 31112
21
的解集为_______.
15、 不等式组x x -<+>⎧⎨⎩
21
210的解集是____________。

16、 点P (1,2)关于y 轴对称的点的坐标是 .
27、如果点P (y x ,)关于原点的对称点为(-2,3),则=+y x 。

18、已知点P 1()3,a 与P 2()3,2--关于原点对称,则______=a 。

19、在数轴上,与表示-1的点距离为3的点所表示的数是__________. 20
、函数y =x 取值范围是 .
21
、函数y =的取值范围是 .
22、函数y =3+x 中,自变量x 的取值范围是____________. 23
、函数y =x 的取值范围是 .
24
、函数y 中,自变量x 的取值范围是 。

25、在函数5
1
-=
x y
中,自变量x 的取值范围是_____________________ 26、函数2
1-=
x y 中自变量x 的取值范围是__________。

27、函数y =
1
3
-x 中,自变量x 的取值范围是___________; 28、函数3
1
-=
x y 中,自变量x 的取值范围是 。

29、函数y =
3
x+1
中自变量x 的取值范围是 。

30、试写出图象位于第二象限与第四象限的一个反比例函数解析式 . 31、一个函数的图像过点(1,2),则这个函数的解析式是 。

32、有一个函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的解析式可以是 (任写出一个)。

33、点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是 34、若点(2,1)在双曲线k
y x
=上,则k 的值为_______。

35、已知反比例函数x
k y 2
-=
,其图象在第一、第三象限内,则k 的值可为__________。

(写出满足条件的一个k 的值即可)
36、如果函数()1f x x =+,那么()1f = 37、若正比例函数y =mx (m ≠0)和反比例函数y =n
x
(n ≠0)的图象都经过点(2,3),则m =_____,n =_____ .
38、在平面直角坐标系中,入射光线经过y 轴上点A (0,3),由x 轴上点C 反射,反射光线经过点B (-3,1),则点C 的坐标为_____.
39、如图:半径为2的P 的圆心在直线y=2x-1上运动,当P
相切时圆心P 的坐标为 40、已知函数y=-kx
k≠0
与y=
x
4
-的图象交于 A、B两点,过点A作AC垂直于y轴,垂足为点C,则△BOC的面积为____ 41、反比例函数x
k
y =
的图象经过点(2,-1),则k 的值为 . 42、 如果反比例函数的图象经过点(1,-2), 那么这个反比例函数的解析式为_______ 43、函数y=
x
2
的图象如图所示,在同一直角坐标系内, 如果将直线y=-x+1沿y 轴向上平移2个单位后,那么 所得直线与函数y=
x
2
的图象的交点共有 个。

44、一条抛物线的对称轴是x=1且与x轴有惟一的公共点,并且开口方向向下,则这条抛物线的解析式是___(任写一个)
45、请选择一组你喜欢的c b a 、、的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满足下列条件:①开口向下,②当2<x 时,y 随x 的增大而增大;当2>x 时,y 随x 的增大而减小。

这样的二次函数的解析式可以是 。

46、如果将二次函数22y x =的图象沿y 轴向上平移1个单位,那么所得图象的函数解析式是
47、抛物线2)1(2+-=x y 的顶点坐标是 。

48、把棱长为1cm 的四个正方体拼接成一个长方体,
则在所得长方体中,表面积最大的值等于 cm 2
. 49、在平面直角坐标系中,横坐标、纵坐标都为整数的点
称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有_________个. 50、在直角坐标系xOy 中,O 是坐标原点,抛物线2
y=x -x-6 与x 轴交于A,B 两点(点A 在点B 的左侧),与y 轴相交于点C 。

如果点M 在y 轴右侧的抛物线上,AMO
2
S
3
COB
S =
那么点M 的坐标是_________。

1
(第55题)
51、二次函数()112
+-=x y 图象的顶点坐标是____________。

52、已知抛物线解析式为y=x 2-3,则此抛物线的顶点坐标为 53、已知抛物线562+-=x x y 的部分图象如图,则抛物线的对称轴 为直线x= ,满足y <0的x 的取值范围是 ,将抛物线
562+-=x x y 向 平移 个单位,则得到抛物线962+-=x x y .
54、根据图1中的抛物线,当x 时,y 随x 的增大而增大, 当x 时,y 随x 的增大而减小,当x 时,y 有最大值。

55、如图,△P 1O A 1、△P 2 A 1 A 2是等腰直角三角形,点P 1、
P 2在函数4
y x =(x >0)的图象上,斜边OA 1、A 1A 2都
在x 轴上,则点A 2的坐标是 .
56、用长度一定的绳子围成一个矩形,如果矩形的一边长x (m ) 与面积y (m 2
)满足函数关系144)12(2+--=x y
(0<x <24),
则该矩形面积的最大值为__________________ m 2
. 57、如图,学校有一块长方形花铺,有极少数人为了
避开拐角走“捷径”,在花铺内走出了一条“路”。

他们仅仅 少走了 步路(假设2步为1米),却踩伤了花草。

58、如图,一艘轮船向正东方向航行,上午9时测得它在 灯塔P 的南偏西30°方向,距离灯塔120海里的M 处, 上午11时到达这座灯塔的正南方向的N 处,则这艘轮船 在这段时间内航行的平均速度是 海里/时。

相关文档
最新文档