初中数学基础知识测试题_3

合集下载

初中数学冀教版七年级上册第一章 有理数1.7 有理数的加减混合运算-章节测试习题(3)

初中数学冀教版七年级上册第一章 有理数1.7 有理数的加减混合运算-章节测试习题(3)

章节测试题1.【题文】计算:【答案】-4【分析】根据有理数的加减混合运算,先把减法换为加法,再求和即可.【解答】解:=2+(-8)+7+(-5)=9-13=-4.2.【题文】【答案】【分析】先通分,化为同分母分数,再按同分母分数加减法则计算.【解答】解:原式==.3.【题文】计算:-3- 2 +(-4)-(-1).【答案】-8【分析】按有理数的加减法法则进行计算即可.【解答】解:原式= - 3 -2 - 4 + 1= -5 - 4 + 1= -9 + 1= -8 .4.【题文】10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:﹣6,﹣3,0,﹣3,+7,+3,+4,﹣3,﹣2,+1.(1)与标准重量相比较,10袋小麦总计超过或不足多少千克?(2)10袋小麦中哪一个记数重量最接近标准重量?(3)每袋小麦的平均重量是多少千克?【答案】(1)不足2千克;(2)第三个;(3)149.8千克.【分析】(1)先求-﹣6,﹣3,0,﹣3,+7,+3,+4,﹣3,﹣2,+1的和,是正数,则超过,是负数,则不足;(2)根据绝对值即可进行判断,绝对值最小的接近标准重量;(3)求得10袋小麦以每袋150千克为准时的总量,再加上(1)中的结果,然后用总量除以10,即可求得每袋小麦的平均重量.【解答】解:(1)﹣6+(﹣3)+0+(﹣3)+7+3+4+(﹣3)+(﹣2)+1=﹣2<0,所以,10袋小麦总计不足2千克;(2)因为|0|=0,所以第三个记数重量最接近标准重量;(3)(150×10-2)÷10=149.8,所以,每袋小麦的平均重量是149.8千克.【方法总结】本题考查了正数与负数的意义,有理数的加法运算,绝对值等,弄清题意是解题的关键.5.【题文】某电动车厂一周计划生产2100辆电动车,平均每天计划生产300辆,由于各种原因,实际每天的生产量与计划量相比有出入.下表是某周的生产情况(超产为正,减产为负).(1)根据记录可知本周前三天共生产电动车多少辆?(2)本周产量最多的一天比产量最少的一天多生产电动车多少辆?(3)该厂实行每周计件工资制,每生产一辆电动车可得a元,若超额完成,则超额部分每辆再奖b元(b<a),少生产一辆扣b元,求该厂工人这一周的工资总额.(注:第(1)、(2)小题列出算式,并计算)【答案】(1)899辆;(2)26辆;(3)(2109a+9b)元【分析】(1)表示出三天的每一天生产的数量相加即可;(2)比较7个数据的大小,用最大的数据减去最小的数据即可;(3)算出一周的生产的总数量,与一周的计划产量相比写出代数式即可.【解答】解:(1)300×3+[(+5)+(-2)+(-4)]=899(辆);(2)(+16)-(-10)=26(辆);(3)该厂工人这一周的工资总额为(2109a+9b)元.方法总结:此题考查了有理数的混合运算的实际应用,此类题常常结合生产、生活中的热点问题,是近几年中考的常考题型,认真阅读,正确理解题意是解此类题的关键.6.【题文】某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(当天运进大米8 吨,记作+8吨;当天运出大米15吨,记作﹣15吨.)(1)若经过这一周,该粮仓存有大米88吨,求m的值,并说明星期五该粮仓是运进还是运出大米,运进或运出大米多少吨?(2)若大米进出库的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.【答案】(1)星期五该粮仓是运出大米,运出大米20吨;(2)这一周该粮仓需要支付的装卸总费用2700元【分析】(1)根据原有的大米与一周内运进运出的大米的和是88吨列方程求解;(2)计算出一周内运进运出大米的总和乘以每吨的装卸费用即可求解.【解答】解:(1)132﹣32+26﹣23﹣16+m+42﹣21=88,解得m=﹣20,答:星期五该粮仓是运出大米,运出大米20吨;(2)|﹣32|+26+|﹣23|+|﹣16|+|﹣20|+42+|﹣21|=180,180×15=2700元,答:这一周该粮仓需要支付的装卸总费用2700元.7.【题文】一辆货车从超市(O点)出发,向东走2km到达小李家(A点),继续向东走4km到达小张家(B点),然后又回头向西走10km到达小陈家(C点),最后回到超市.(1)以超市为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C、O的位置;(2)小陈家(C点)距小李家(A点)有多远?(3)若货车每千米耗油0. 5升,这趟路货车共耗油多少升?【答案】(1)见解析;(2)6km;(3)10L【分析】(1)根据数轴与点的对应关系,可知超市在原点,小李家所在的位置表示的数是+2,小张家所在的位置表示的数是+6,小陈家所在的位置表示的数是-4;.(2)2-(-4)=6;.(3)先算这趟路一共有多少千米,再乘以货车每千米耗油的升数.【解答】解:(1)如下图:点O表示超市,点A表示小李家,点B表示小张家,点C表示小陈家...(2)从图中可看出小陈家距小李家6千米..故小陈家距小李家6千米..(3)0.5×(|+2|+|+4|+|-10|+|+4|)=0.5×20=10(升)..故这趟路货车共耗油10升.方法总结:数轴:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向.8.【题文】计算:【答案】-4【分析】根据有理数的加减混合运算,先把减法换为加法,再求和即可.【解答】解:=2+(-8)+7+(-5)=9-13=-4.9.【题文】解答下列各题:(1)(﹣3.6)+(+2.5)(2)-﹣(﹣3)﹣2+(3)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)(4)﹣5﹣(﹣11)+2﹣(﹣)(5)3﹣(﹣)+2+(﹣)(6)﹣|﹣1|﹣(+2)﹣(﹣2.75)(7)(﹣7)﹣(﹣11)+(﹣9)﹣(+2)(8)(﹣4)﹣(+5)﹣(﹣4)【答案】(1)﹣1.1(2)1(3)﹣144(4)9(5)6(6)﹣0.6(7)﹣7(8)﹣5【分析】有理数加减混合运算的方法:有理数加减法统一成加法,据此求出每个算式的结果是多少即可.【解答】解:(1)(﹣3.6)+(+2.5)=﹣3.6+2.5=﹣1.1(2)==﹣3+4=1(3)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)=(﹣49﹣91﹣9)+5=﹣149+5=﹣144(4)﹣5﹣(﹣11)=﹣5+11=6+3=9(5)==3+3(6)==0.4+2.75﹣()=3.15﹣3.75=﹣0.6(7)(﹣7)﹣(﹣11)+(﹣9)﹣(+2)=﹣7+11﹣9﹣2=11﹣(7+9+2)=11﹣18=﹣7(8)(﹣4)﹣(+5)﹣(﹣4)=(﹣4)+4﹣5=0﹣5=﹣5.10.【题文】计算:4-(+3.85)-(-3)+(-3.15).【答案】1【分析】把加减法统一为加法,分数转化为小数,然后利用加法的交换结合律将正数与正数结合,负数与负数结合进行计算即可.【解答】解:原式=4.75-3.85+3.25-3.15=(4.75+3.25)+(-3.85-3.15)=8-7=1.11.【题文】计算下列各题:(1)(-9)-(-7)+(-6)-(+4)-(-5);(2)(+4.3)-(-4)+(-2.3)-(+4).【答案】(1)-7; (2)2【分析】先将减法转化为加法,然后写成省略括号的和的形式,再利用加法的交换结合律把正数与正数结合,负数与负数结合进行计算即可.【解答】解:(1)原式=-9+7-6-4+5=(-9-6-4)+7+5=-19+12=-7;(2)原式=4.3+4-2.3-4=8.3-6.3=2.12.【题文】计算(1);(2);(3);(4)【答案】(1); (2) ; (3)-17 ; (4)【分析】进行有理数的加减混合运算时,可先统一成加法,再运用加法交换律,结合律进行运算。

初中数学浙教版七年级上册第4章 代数式4.4 整式-章节测试习题(3)

初中数学浙教版七年级上册第4章 代数式4.4 整式-章节测试习题(3)

章节测试题1.【答题】在代数式:中,单项式的个数有()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】此题考查单项式的定义,单项式是指字母与数字的积叫单项式,一个数字也是单项式;此题中是单项式,所以选C. ;2.【答题】下列各式中,不是整式的是()A. 6xyB.C. x+9D. 4【答案】B【分析】根据多项式与单项式统称为整式,判断即可.【解答】A. 6xy,单项式,是整式,不符合题意;B. ,不是整式,符合题意;.x+9,多项式,是整式,不符合题意;D. 4,单项式,是整式,不符合题意,选B.3.【答题】下列说法中,正确的有()①的系数是;②-22ab2的次数是5;③多项式mn2+2mn-3n-1的次数是3;④a-b和都是整式.A. 1个B. 2个C. 3个D. 4个【答案】C【分析】本题考查了单项式和多项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】(1)因为的系数是,所以①正确;(2)因为的次数是3,所以②错误;(3)因为的次数是3,所以③正确;(4)因为是多项式,是单项式,而单项式和多项式统称为整式,所以④正确;即正确的说法有3个.选C.4.【答题】下列关于单项式﹣3x5y2的说法中,正确的是()A. 它的系数是3B. 它的次数是7C. 它的次数是5D. 它的次数是2【答案】B【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】单项式﹣3x5y2的系数是-3,次数是7,只有B选项是正确的,选B.5.【答题】已知一列数......请写出第5个数是()A. 5x5B. 5x6C.D.【答案】D【分析】根据题意列出代数式即可.【解答】解:奇数位置为负,偶数为正,并且x的指数比系数的绝对值大1,由此得第5个数为:选D.6.【答题】单项式的系数和次数分别是()A. ,3B. ,3C. ,3D. -2,2【答案】C【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】单项式的系数是,单项式的字母为x、y,x的指数为1,y的指数为2,故单项式的次数为1+2=3.选C.7.【答题】单项式的系数和次数分别是()A. B.C. D.【答案】D【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】单项式的系数和次数分别是 ,5.选D.8.【答题】在代数式,2πx2y,,﹣5,a中,单项式的个数是()A. 2个B. 3个C. 4个D. 5个【答案】B【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】2πx2y,﹣5,a是单项式;是多项式;是分式;选B.9.【答题】单项式的()A. 系数是,次数是2次B. 系数是,次数是3次C. 系数是,次数是2次D. 系数是,次数是3次【答案】D【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式的系数是:次数是:选D.方法总结:单项式中的数字因数就是单项式的系数,单项式中所有字母的指数的和就是单项式的次数.10.【答题】如图,用火柴棒搭三角形,搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒,搭3个三角形需要7根火柴,……,那么搭2014个这样的三角形需要火柴棒()A. 6042根B. 6043根C. 4028根D. 4029根【答案】D【分析】根据题意先列出代数式,再代入数值计算即可.【解答】解:∵一个三角形需要3根火柴,2个三角形需要3+2=5根火柴,3个三角形需要3+2×2=7根火柴,…n个三角形需要3+2(n-1)=(2n+1)根火柴.当n=2014时,2n+1=2×2014+1=4029根,选D.11.【答题】多项式的项分别是()A. -x2,,1B. -x2,,-1C. x2,,1D. x2,,-1【答案】B【分析】利用多项式的相关定义进而分析得出答案.【解答】解:利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,得:多项式-x2-x-1的各项分别是:-x2,-x,-1.选B.12.【答题】在整式2xy2,-x,3,x+1,ab-x2,2x2-x+3中,单项式有()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】解:数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式.可以做出选择.2xy2,-x,3是单项式.选C.13.【答题】单项式的系数和次数分别是()A. ,3B. ,3C. ,2D. ,2【答案】B【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】根据单项式系数和次数的概念可得:单项式-x2y的系数是-,次数是3.选B.方法总结:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.14.【答题】已知代数式的值为7,则的值为()A. B. C. 8 D. 10【答案】C【分析】本题考查了代数式求值,先对已知条件和原式化简,找出相同点,再整体代入计算即可.【解答】解:∵2x2-3x+9=7,∴x2-x=-1,则原式=-1+9=8.选C.15.【答题】如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A. y=2n+1B. y=2n+1+nC. y=2n+nD. y=2n+n+1【答案】C【分析】根据题意列出代数式即可.【解答】分析:由题意可得下边三角形的数字规律为:n+2n,继而求得答案.本题解析:观察可知左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为2,22,…,2n,下边三角形的数字规律为1+2,2+22,…,n+2n,∴y=2n+n.选C.16.【答题】单项式的系数和次数分别是()A. ,3B. ,3C. ,2D. ,2【答案】B【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】根据单项式系数和次数的概念可得:单项式-x2y的系数是-,次数是3.选B.17.【答题】下列代数式中,是4次单项式的为()A. 4abcB. ﹣2πx2yC. xyz2D. x4+y4+z4【答案】C【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】A.4abc,3次单项式;B.﹣2πx2y,3次单项式;C.xyz2,4次单项式;D.x4+y4+z4,4次多项式,故符合题意的只有C,选C.18.【答题】如果单项式3a n b2c是5次单项式,那么n=()A. 2B. 3C. 4D. 5【答案】A【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】根据单项式的次数的概念可得:n+2+1=5,解得,n=2,选A.19.【答题】单项式4xy2z3的次数是()A. 3B. 4C. 5D. 6【答案】D【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】单项式的次数是指单项式中所有字母指数的和,1+2+3=6,选D.20.【答题】如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针绕正方形运动,则第2017次相遇在()A. 点AB. 点BC. 点CD. 点D【答案】D【分析】本题主要考查规律性问题,通过分析先确定前几次相遇点是解题的关键.【解答】由题意可知,点P的运动速度是1个单位/秒,点Q的速度是3个单位/秒,第一次相遇在点D,依此类推,可知第二次相遇在点C,第三次相遇在点B,第四次相遇在点A,第五次相遇在点D……,由此可知四次一循环,2017÷4=504……1,所以第2017次相遇在点D,选D.。

初中数学湘教版八年级下册第2章 四边形2.2 平行四边形-章节测试习题(3)

初中数学湘教版八年级下册第2章 四边形2.2 平行四边形-章节测试习题(3)

章节测试题1.【答题】如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有()A. 12个B. 9个C. 7个D. 5个【答案】B【分析】根据平行四边形的定义即可求解.【解答】根据平行四边形的定义:两组对边分别平行的四边形是平行四边形,则图中的四边AEOH,HOFD,EBNO,ONCF,AEFD,EBCF,ABNH,HNCD,ABCD都是平行四边形,共9个.选B.【点评】此题考查的知识点是平行四边形的判定,本题可根据平行四边形的定义,直接从图中数出平行四边形的个数,但数时应有一定的规律,以避免重复.2.【答题】如图,已知△ABC,分别以A,C为圆心,BC,AB长为半径画弧,两弧在直线BC 上方交于点D,连结AD,CD,则有()A. ∠ADC与∠BAD相等B. ∠ADC与∠BAD互补C. ∠ADC与∠ABC互补D. ∠ADC与∠ABC互余【答案】B【分析】首先根据已知条件可以证明四边形ABCD是平行四边形,然后利用平行四边形的性质即可作出判定.【解答】解:如图,依题意得AD=BC、CD=AB,∴四边形ABCD是平行四边形,∴∠ADC+∠BAD=180°,∴B正确.选B.【点评】此题主要考查了平行四边形的判定与性质,先根据已知条件判定平行四边形是解题的关键.3.【答题】已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A. 6种B. 5种C. 4种D. 3种【答案】C【分析】根据平行四边形的判定方法即可找到所有组合方式:(1)两组对边平行①③;(2)两组对边相等②④;(3)一组对边平行且相等①②或③④,所以有四种组合.【解答】依题意得有四种组合方式:(1)①③,利用两组对边平行的四边形是平行四边形判定;(2)②④,利用两组对边相等的四边形是平行四边形判定;(3)①②或③④,利用一组对边平行且相等的四边形是平行四边形判定.选C.【点评】此题主要考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.4.【答题】如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为______°.【答案】25【分析】由,▱ABCD与▱DCFE的周长相等,可得到AD=DE即△ADE是等腰三角形,再由且∠BAD=60°,∠F=110°,即可求出∠DAE的度数.【解答】解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=110°,∴∠ADC=120°,∠CDE═∠F=110°,∴∠ADE=360°﹣120°﹣110°=130°,∴∠DAE= =25°,故答案为:25°.5.【答题】如图,在周长为10cm的平行四边形ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为______cm.【答案】5【分析】先判断出EO是BD的中垂线,得出BE=ED,从而可得出△ABE的周长=AB+AD,再由平行四边形的周长为10cm,即可得出答案.【解答】解:∵点O是BD中点,EO⊥BD,∴EO是线段BD的中垂线,∴BE=ED,故可得△ABE的周长=AB+AD,又∵平行四边形的周长为10cm,∴AB+AD=5cm.故答案为:5cm.6.【答题】如图,在平行四边形ABCD中,已知对角线AC和BD相交于点O,△ABO的周长为17,AB=6,那么对角线AC+BD=______.【答案】22【分析】本题考查的是平行四边形的性质.【解答】因为△ABO的周长为17,AB=6,所以OA+OB=11,∵OA=OC,OB=OD,所以AC+BD=22.故答案为22.【点评】本题的关键是平行四边形的对角线互相平分的性质的运用,求出对角线一半的和,从而求出对角线的和.7.【答题】若平行四边形的周长为80cm,两条邻边的比为3:5,则较短的边为______cm.【答案】15【分析】设平行四边形的两条邻边的分别为3x,5x,再由周长为80cm求出x的值,即可得出答案.【解答】解:设平行四边形的两条邻边的分别为3x,5x,∵平行四边形的周长为80cm,∴2(3x+5x)=80cm,解得x=5cm.∴3x=15cm;故答案为:15cm.8.【答题】如图,在▱ABCD中,∠B=60°,∠BCD的平分线交AD点E,若CD=3,四边形ABCE的周长为13,则BC长为______.【答案】5【分析】利用平行四边形的对边相等且互相平行,进而得出DE=CD=3,再求出AE+BC=7,BC﹣AE=3,即可求出BC的长.【解答】解:∵CE平分∠BCD交AD边于点E,∴∠ECD=∠ECB,∵在平行四边形ABCD中,AD∥BC,AB=CD=3,AD=BC,∠D=∠B=60°,∴∠DEC=∠ECB,∴∠DEC=∠DCE,∴DE=CD=3,∴△CDE是等边三角形,∴CE=CD=3,∵四边形ABCE的周长为13,∴AE+BC=13﹣3﹣3=7①,∵AD﹣AE═DE=3,即BC﹣AE=3②,由①②得:BC=5;故答案为:5.9.【答题】在▱ABCD中,对角线AC、BD交于一点O,AB=11cm,△OCD的周长为27cm,则AC+BD=______cm.【答案】32【分析】首先由平行四边形的性质可求出CD的长,由条件△OCD的周长为27,即可求出OD+OC的长,再根据平行四边的对角线互相平分即可求出平行四边形的两条对角线的和.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=11cm,OA=OC,OB=OD,∵△OCD的周长为27cm,∴OD+OC=27﹣11=16cm,∵BD=2DO,AC=2OC,∴BD+AC=2(OD+OC)=32cm,故答案为:32.10.【答题】若▱ABCD中,∠A=40°,对角∠C=______°.【答案】40【分析】由▱ABCD中,∠A=40°,根据平行四边形的对角相等,即可求得答案.【解答】解:∵▱ABCD中,∠A=40°,∴∠C=∠A=40°.故答案为:40°.【点评】此题考查了平行四边形的性质.注意掌握平行四边形的对角相等定理的应用是解此题的关键.11.【答题】如图,在平行四边形ABCD中,点E在AD上,BD平分∠EBC.若平行四边形ABCD的周长为10,则△AEB的周长为______.【答案】5【分析】证出BE=DE,得出△AEB的周长=AB+AD即可.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADB=∠CBD,∵BD平分∠EBC,∴∠EBD=∠ADB,∴BE=DE,∴△AEB的周长=AB+BE+AE=AB+DE+AE=AB+AD,∵▱ABCD的周长为10,∴AB+AD=5,∴△ABE的周长=AB+AD=5;故答案为:5.12.【答题】如图,在平行四边形ABCD中,E为AD上一点,∠EBC=40°,且BE=BC,CE=CD,则∠A=______°.【答案】110【分析】先根据平行四边形的性质得出∠2=∠3,再根据BE=BC,CE=CD,∠1=∠2,∠3=∠D,进而得出∠1=∠2=∠3=∠D,求出∠D=70°,即可得出∠A的度数.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB,AB∥CD,∴∠2=∠3,∠A+∠D=180°,∵BE=BC,CE=CD,∴BE=BC=10,CE=CD=6,∠1=∠2,∠3=∠D,∵∠EBC=40°,∴∠D=∠1=∠3=70°,∴∠A=180°﹣70°=110°;故答案为:110°.13.【答题】在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于______.【答案】2【分析】由平行四边形的性质和已知条件证出∠BAE=∠BEA,证出AB=BE=3;求出AB+BC=8,得出BC=5,即可得出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴AB=BE=3,∴BC=5,∴EC=BC﹣BE=5﹣3=2;故答案为:2.14.【答题】在平行四边形ABCD中,∠A=70°,则∠C=______度.【答案】70【分析】根据平行四边形的对角相等得出∠A=∠C,代入求出即可.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A=70°,∴∠C=70°,故答案为70.15.【答题】如图,在△ABC中,∠ABC=90°,点D在AB边上,将△ACD沿直线CD翻折后,点A落在点E处,如果四边形BCDE是平行四边形,那么∠ADC=______°.【答案】135【分析】延长CD到点F,根据平行四边形的性质可得出BC∥DE,结合∠ABC=90°,即可得出∠ADE=90°,再根据翻折的性质即可得出∠ADF=∠EDF=45°,从而得出∠BDC=45°,由∠ADC、∠BDC互补即可得出结论.【解答】解:延长CD到点F,如图所示.∵四边形BCDE是平行四边形,∴BC∥DE,∵∠ABC=90°,∴∠BDE=90°,∴∠ADE=90°.∵将△ACD沿直线CD翻折后,点A落在点E处,∴∠ADF=∠EDF= ∠ADE=45°,∴∠BDC=∠ADF=45°,∴∠ADC=180°﹣∠BDC=135°.故答案为:135°.【点评】本题考查了平行四边形的性质,解题的关键是求出∠BDC=45°.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等的角是关键.16.【答题】在平行四边形ABCD中,对角线AC和BD交于点O,AB=2,AC=6,BD=8,那么△COD的周长为______.【答案】9【分析】△COD的周长=OC+OD+CD,根据平行四边形的对角线互相平分的性质求得OC与OD的长,根据平行四边形的对边相等可得CD=AB=2,进而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA= AC=3,OD=OB= BD=4,CD=AB=2,∴△COD的周长=OC+OD+CD=3+4+2=9.故答案为9.17.【答题】如图,已知AD∥BC,CE=5,CF=8,则AD与BC间的距离是______.【答案】5【分析】根据平行线间的距离的定义解答.【解答】解:由图可知,平行线AD与BC间的距离CE,∵CE=5,∴AD与BC间的距离是5.故答案为:5.【点评】本题考查了平行线之间的距离,熟记定义并准确识图是解题的关键.18.【答题】如图,在▱ABCD中,AB=3,BC=5,以点B的圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC 内交于点M,连接BM并延长交AD于点E,则DE的长为______.【答案】2【分析】根据作图过程可得BE平分∠ABC;再根据角平分线的性质和平行四边形的性质可证明∠AEB=∠CBE,证出AE=AB=3,即可得出DE的长.,【解答】解:根据作图的方法得:BE平分∠ABC,∴∠ABE=∠CBE∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD-AE=5-3=2;故答案为:2.【点评】此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出AE=AB是解决问题的关键.19.【答题】如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为______°.【答案】110【分析】首先由在▱ABCD中,∠1=20°,求得∠BAE的度数,然后由BE⊥AB,利用三角形外角的性质,求得∠2的度数.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAE=∠1=20°,∵BE⊥AB,∴∠ABE=90°,∴∠2=∠BAE+∠ABE=110°.故答案为:110°.【点评】此题考查了平行四边形的性质以及三角形外角的性质.注意平行四边形的对边互相平行.20.【答题】如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB 的延长线于点F,则∠BEF的度数为______°.【答案】50【分析】由“平行四边形的对边平行”、“两直线平行,同位角相等”以及“直角三角形的两个锐角互余”的性质进行解答.【解答】解:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠C=∠ABF.又∵∠C=40°,∴∠ABF=40°.∵EF⊥BF,∴∠F=90°,∴∠BEF=90°-40°=50°.故答案是:50°.【点评】本题考查了平行四边形的性质.利用平行四边形的对边平行推知DC∥AB是解题的关键.。

初中数学有理数基础测试题含解析

初中数学有理数基础测试题含解析

初中数学有理数基础测试题含解析一、选择题1.下列语句正确的是()A.近似数0.010精确到百分位B.|x-y|=|y-x|C.如果两个角互补,那么一个是锐角,一个是钝角D.若线段AP=BP,则P一定是AB中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;C中,若两个角都是直角,也互补,错误;D中,若点P不在AB这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的2.下列说法中,正确的是()A.在数轴上表示-a的点一定在原点的左边B.有理数a的倒数是1 aC.一个数的相反数一定小于或等于这个数D.如果a a=-,那么a是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A、如果a<0,那么在数轴上表示-a的点在原点的右边,故选项错误;B、只有当a≠0时,有理数a才有倒数,故选项错误;C、负数的相反数大于这个数,故选项错误;D、如果a a=-,那么a是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.已知a b >,下列结论正确的是( )A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C【解析】【分析】直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.4.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】解:由题意可得:03282a +-=,则23a +=,解得:1a =, Q 3tan 60︒=()201911-=-,()202011-=故a 可以是2020(1).故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.5.在实数-3、0、5、3中,最小的实数是( )A .-3B .0C .5D .3【答案】A【解析】试题分析:本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.根据有理数大小比较的法则比较即可.解:在实数-3、0、5、3中,最小的实数是-3;故选A .考点:有理数的大小比较.6.如果a 是实数,下列说法正确的是( )A .2a 和a 都是正数B .(-a +2可能在x 轴上C .a 的倒数是1a D .a 的相反数的绝对值是它本身【答案】B【解析】【分析】A 、根据平方和绝对值的意义即可作出判断;B 、根据算术平方根的意义即可作出判断;C 、根据倒数的定义即可作出判断;D 、根据绝对值的意义即可作出判断.【详解】A 、2a 和a 都是非负数,故错误;B 、当a=0时,(-a +2在x 轴上,故正确;C 、当a=0时,a 没有倒数,故错误;D 、当a≥0时,a 的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.7.在-3,-1,0,3这四个数中,比-2小的数是( )A .-3B .-1C .0D .3【答案】A【解析】【分析】根据两个负数比较大小,绝对值较大的数反而小,正数比负数大,逐个判断与-2的大小关系即可.【详解】解:∵-32103<-<-<<∴比-2小的数是-3故选:A【点睛】本题考查有理数的大小比较,掌握负数比较大小的方法是关键.8.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )A .2B .2-C .2±D .12± 【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.9.若x <2+|3-x|的正确结果是( ) A .-1B .1C .2x -5D .5-2x 【答案】C【解析】a = 的化简得出即可.解析:∵x <2+|3﹣x|=2352x x x -+-=- .故选D.10.下面说法正确的是( )A .1是最小的自然数;B .正分数、0、负分数统称分数C .绝对值最小的数是0;D .任何有理数都有倒数【答案】C【解析】【分析】 0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A 错误;0是整数,B 错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C 正确;0无倒数,D 错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在11.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;12.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b<0,b-a<0,∴原式=-(a+b)+(b-a)=-a-b+b-a=-2a,故选A.【点睛】.13.7-的绝对值是()A.17-B.17C.7D.7-【答案】C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.14.如果a+b>0,ab>0,那么()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0【答案】A【解析】解:因为ab>0,可知ab同号,又因为a+b>0,可知a>0,b>0.故选A.15.下列运算正确的是()A =-2 B.|﹣3|=3 C=± 2 D【答案】B【解析】【分析】A、根据算术平方根的定义即可判定;B、根据绝对值的定义即可判定;C、根据算术平方根的定义即可判定;D、根据立方根的定义即可判定.【详解】解:A、C2=,故选项错误;B、|﹣3|=3,故选项正确;D、9开三次方不等于3,故选项错误.【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.16.实数a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a b >B .0a b +>C .0ac >D .a c > 【答案】D 【解析】 【分析】根据数轴的特点:判断a 、b 、c 正负性,然后比较大小即可.【详解】根据数轴的性质可知:a <b <0<c ,且|c|<|b|<|a|; 所以a >b ,0a b +>,ac >0错误;|a|>|c|正确;故选D .【点睛】本题考查实数与数轴的关系,关键是根据实数在数轴上的位置判断字母的正负性,根据实数在数轴上离原点的距离判断绝对值的大小.17.67-的绝对值是( ) A .67 B .76- C .67- D .76【答案】A【解析】【分析】非负数的绝对值还是它本身,负数的绝对值是其相反数,据此进行解答即可.【详解】解:|﹣67|=67,故选择A. 【点睛】本题考查了绝对值的定义.18.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【解析】【分析】由图可判断a、b的正负性,a、b的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a<-1,0<b<1,∴a+b<0,|a|>|b|,ab<0,a-b<0.所以只有选项D成立.故选:D.【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.19.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“6cm”分别对应数轴上表示﹣2和实数x的两点,那么x的值为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x之间的距离为6,∴x表示的数为:﹣2+6=4,故选:B.【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.20.数轴上的A、B、C三点所表示的数分别为a、b、1,且|a﹣1|+|b﹣1|=|a﹣b|,则下列选项中,满足A、B、C三点位置关系的数轴为()A.B.C.D.【答案】A【解析】【分析】根据绝对值的意义,在四个答案中分别去掉绝对值进行化简,等式成立的即为答案;【详解】A中a<1<b,∴|a﹣1|+|b﹣1|=1﹣a+b﹣1=b﹣a,|a﹣b|=b﹣a,∴A正确;B中a<b<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=b﹣a,∴B不正确;C中b<a<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=a﹣b,∴C不正确;D中1<a<b,∴|a﹣1|+|b﹣1|=a﹣1+b﹣1=﹣2+b+a,|a﹣b|=b﹣a,∴D不正确;故选:A.【点睛】本题考查数轴和绝对值的意义;熟练掌握绝对值的意义是解题的关键.。

(常考题)人教版初中数学七年级数学下册第一单元《相交线与平行线》测试题(答案解析)(3)

(常考题)人教版初中数学七年级数学下册第一单元《相交线与平行线》测试题(答案解析)(3)

一、选择题1.在下列命题中,为真命题的是( )A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相平行 2.用反证法证明“若⊙O 的半径为r ,点P 到圆心O 的距离d<r ,则点P 在⊙O 的内部”,第一步应假设( )A .d r ≥B .点P 在⊙O 的内部C .点P 在⊙O 上D .点P 在⊙O 上或⊙O 外部 3.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,2cm CH =,4cm EF =,下列结论:①//BH EF ;②AD BE =;③BD CH =:④C BHD ∠=∠;⑤阴影部分的面积为26cm .其中正确的是( )A .①②③④B .②③④⑤C .①②③⑤D .①②④⑤ 4.如图,把一长方形纸片ABCD 沿EG 折叠后,AEG A EG '∠=∠,点A 、B 分别落在A '、B ′的位置,EA '与BC 相交于点F ,已知1125∠=︒,则2∠的度数是( )A .55°B .60°C .70°D .75°5.如图a 是长方形纸带,26DEF ∠=︒,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的CFE ∠的度数是( )A .102°B .112°C .120°D .128°6.光线在不同介质中的传播速度不同,因此当光线从空气射向水中时,会发生折射.如图,在空气中平行的两条入射光线,在水中的两条折射光线也是平行的.若水面和杯底互相平行,且∠1=122°,则∠2=( )A .61°B .58°C .48°D .41°7.如图,将ABC 沿BC 的方向平移1cm 得到DEF ,若ABC 的周长为6cm ,则四边形ABFD 的周长为( )A .6cmB .8cmC .10cmD .12cm8.如图,//AB EF ,90C ∠=︒,则α∠,β∠,γ∠之间的关系是( )A .βαγ∠=∠+∠B .180αβγ∠+∠+∠=︒C .90αβγ∠+∠-∠=︒D .90βγα∠+∠-∠=︒9.如图,△ABC 经平移得到△EFB ,则下列说法正确的有 ( )①线段AC 的对应线段是线段EB ;②点C 的对应点是点B ;③AC ∥EB ;④平移的距离等于线段BF 的长度.A .1B .2C .3D .410.如图,下列不能判定DF ∥AC 的条件是( )A .∠A =∠BDFB .∠2=∠4C .∠1=∠3D .∠A +∠ADF =180° 11.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°12.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A .10︒B .15︒C .20︒D .25︒二、填空题13.下列说法:①对顶角相等;②两点间线段是两点间距离;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤若AC BC =,则点C 是线段AB 的中点;⑥同角的余角相等正确的有_________.(填序号)14.将一副三角板中的两块直角三角尺的直角顶点C 按如图方式叠放在一起(其中,60A ︒∠=,30D ︒∠=;45E B ︒∠=∠=),当90ACE ︒∠<且点E 在直线AC 的上方,使ACD △的一边与三角形ECB 的某一边平行时,写出ACE ∠的所有可能的值____.15.如图,直线//m n ,点A B 、在直线n 上,点C F 、在直线m 上,连接,CA CB CD 、平分ACB ∠交AB 于点D ,平面内有点E ,连接,2180EC ECB BCF ︒∠+∠=,过点F 作//FG CE 交CD 于点,9,4G FGC ADC CAB ABC ︒∠-∠=∠=∠,则ACB =∠____________.16.“等腰三角形的两条边相等”的逆命题是________________.(填真命题或假命题) 17.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB =10,DO =4,平移距离为6,则阴影部分面积为__18.小明用一副三角板自制对顶角的“小仪器”,第一步固定直角三角板ABC ,并将边AC 延长至点P ,第二步将另一块三角板CDE 的直角顶点与三角板ABC 的直角顶点C 重合,摆放成如图所示,延长DC 至点F ,PCD ∠与ACF ∠就是一组对顶角,若30ACF ∠=,则PCD ∠=__________,若重叠所成的(090)BCE n n ∠=<<,则PCF ∠的度数__________.19.如图,CB ∥OA ,∠B =∠A =100°,E 、F 在CB 上,且满足∠FOC =∠AOC ,OE 平分∠BOF ,若平行移动AC ,当∠OCA 的度数为_____时,可以使∠OEB =∠OCA .20.跳格游戏:如图,人从格外只能进入第1格;在格中,每次可向前跳l 格或2格,那么人从格外跳到第6格可以有_________种方法.三、解答题21.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF ⊥CD ,垂足为O ,若∠BOF=38°.(1)求∠AOC 的度数;(2)过点O 作射线OG ,使∠GOE=∠BOF ,求∠FOG 的度数.22.如图,点D 、E 分别为AB 、AC 上的点,点F 、G 为BC 上的点,连接DE ,连接DG 、EF 交于点H .已知12180∠+∠=︒,3B ∠=∠,若66C ∠=︒,求DEC ∠的度数.请你将下面解答过程填写完整.解:∵12180∠+∠=︒∴//AB ________∴3ADE ∠=∠(________________________)∵3B ∠=∠∴_______B =∠∴//DE BC (____________________________)∴180C DEC ∠+∠=︒∵66C ∠=︒∴114DEC ∠=︒23.在如图所示的方格中,每个小正方形的边长为1,点A B C D 、、、在方格纸中小正方形的顶点上.(1)画线段AB ;(2)画图并说理:①画出点C 到线段AB 的最短线路CE ,理由是 ;②画出一点P ,使AP DP CP EP +++最短,理由是 .24.如图,MN ,EF 分别表示两面镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,此时12∠=∠;光线BC 经过镜面EF 反射后的反射光线为CD ,此时34∠=∠,且//AB CD .求证∶//MN EF .25.如图,直线AB 和CD 相交于点O .(1)∠1的邻补角是____________,对顶角是___________;(2)若∠1=40°,求出∠2,∠3,∠4的度数.26.如图,点A 、O 、B 在同一条直线上,∠AOC 比 ∠BOC 大100°,OE 平分∠AOC .求(1)直接写出∠AOC 、∠BOC 的度数;(2)从点O出发画一条射线,使得∠COD=90°,求出∠EOD的度数(可以直接使用第一问的结果)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A、相等的角不一定是对顶角,此项是假命题;B、平行于同一条直线的两条直线互相平行,此项是真命题;C、两直线平行,同旁内角互补,此项是假命题;D、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题;故选:B.【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.2.D解析:D【分析】用反证法证明,即是假设命题的结论不成立,以命题的否定方面作为条件进行推理,得出和已知条件、公理、定义和定理等相矛盾或自相矛盾的结论,从而肯定命题的结论成立.【详解】解:命题“若⊙O的半径为r,点P到圆心的距离d大于r则点P在⊙O的外部”的结论为:点P在⊙O的外部.若用反证法证明该命题,则首先应假设命题的结论不成立,即点P在⊙O上或点P在⊙O 内.故选:D.【点睛】本题考查了反证法,否定命题判断的相反判断,从而肯定原来判断的正确性,这种证明法称为反证法.3.D解析:D【分析】根据平移的性质可直接判断①②③,根据平行线的性质可判断④,阴影部分的面积=S梯形BEFH ,于是可判断⑤,进而可得答案.【详解】解:因为将ABC 沿AB 方向平移2cm 得到DEF ,所以//BH EF ,AD BE =,DF ∥AC ,故①②正确;所以C BHD ∠=∠,故④正确;而BD 与CH 不一定相等,故③不正确;因为2cm CH =,4cm EF BC ==,所以BH=2cm ,又因为BE=2cm ,所以阴影部分的面积=S △ABC -S △DBH = S △DEF -S △DBH =S 梯形BEFH =()12422⨯+⨯=26cm ,故⑤正确;综上,正确的结论是①②④⑤.故选:D .【点睛】本题考查了平移的性质,属于基础题目,正确理解题意、熟练掌握平移的性质是解题的关键. 4.C解析:C【分析】先根据平行线的性质可得55AEG ∠=︒,再根据平角的定义可得70∠︒=DEF ,然后根据平行线的性质即可得.【详解】由题意得://AD BC ,1125∠=︒,180155AEG ∴∠=︒-∠=︒,AEG A EG '∠=∠,55A EG '∴∠=︒,18070DEF AEG A EG '∴∠=︒-∠-∠=︒,又//AD BC ,270DEF ∴∠=∠=︒,故选:C .【点睛】本题考查了平角的定义、平行线的性质,熟练掌握平行线的性质是解题关键.5.A解析:A【分析】根据两条直线平行,内错角相等,则∠BFE=∠DEF=26°,根据平角定义,则∠EFC=154°(图a ),进一步求得∠BFC=154°-26°=128°(图b ),进而求得∠CFE=128°-26°=102°(图c ).【详解】解:∵AD∥BC,∠DEF=26°,∴∠BFE=∠DEF=26°,∴∠EFC=154°(图a),∴∠BFC=154°-26°=128°(图b),∴∠CFE=128°-26°=102°(图c).故选:A.【点睛】本题考查了翻折变换,平行线的性质和平角定义,根据折叠能够发现相等的角是解题的关键.6.B解析:B【分析】由水面和杯底互相平行,利用“两直线平行,同旁内角互补”可求出∠3的度数,由水中的两条折射光线平行,利用“两直线平行,同位角相等”可得出∠2的度数.【详解】如图,∵水面和杯底互相平行,∴∠1+∠3=180°,∴∠3=180°﹣∠1=180°﹣122°=58°.∵水中的两条折射光线平行,∴∠2=∠3=58°.故选:B.【点睛】本题考查了平行线的性质,牢记“两直线平行,同旁内角互补”和“两直线平行,同位角相等”是解题的关键.7.B解析:B【分析】先根据平移的性质得出AD=1,BF=BC+CF=BC+1,DF=AC,再根据四边形ABFD的周长=AD+AB+BF+DF即可得出结论.【详解】∵将周长为6的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC ,又∵AB+BC+AC=6,∴四边形ABFD 的周长=AD+AB+BF+DF=1+AB+BC+1+AC=8.故选:B .【点睛】本题考查了平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.8.C解析:C【分析】分别过C 、D 作AB 的平行线CM 和DN ,由平行线的性质可得到∠α+∠β=∠C+∠γ,可求得答案.【详解】如图,分别过C 、D 作AB 的平行线CM 和DN ,∵AB//EF ,∴AB//CM //DN //EF ,∴αBCM ∠∠=,MCD NDC ∠∠=,NDE γ∠∠=,∴αβBCM CDN NDE BCM MCD γ∠∠∠∠∠∠∠∠+=++=++,又∵BC CD ⊥,∴BCD 90∠=,∴αβ90γ∠∠∠+=+,即αβγ90∠∠∠+-=,故选C .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a//b ,b//c ⇒a//c .9.D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.10.B解析:B【分析】根据选项中角的关系,结合平行线的判定,进行判断.【详解】解:A.∠A=∠BDF,由同位角相等,两直线平行,可判断DF∥AC;B.∠2=∠4,不能判断DF∥AC;C.∠1=∠3由内错角相等,两直线平行,可判断DF∥AC;D.∠A+∠ADF=180°,由同旁内角互补,两直线平行,可判断DF∥AC;故选:B.【点睛】此题考查平行线的判定,熟练掌握内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.11.C解析:C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.12.B解析:B【分析】根据平行线的性质可知,BAF=EFD=45∠即可得出答案。

初中数学新课标测试题及答案(三套)

初中数学新课标测试题及答案(三套)

初中数学新课标考试模拟试题(一)一、选择题(每小题3分,共45分)1、新课程的核心理念是()A.联系生活学数学B.培养学习数学的爱好C.一切为了每一位学生的发展 D、进行双基教学2、教学是数学活动的教学,是师生之间、学生之间()的过程。

A.交往互动B.共同发展C.交往互动与共同发展3、教师要积极利用各种教学资源,创造性地使用教材,学会()。

A.教教材B.用教材教 C、教课标 D、教课本4、根据《数学课程标准》的理念,解决问题的教学要贯穿于数学课程的全部内容中,不再单独出现()的教学。

A.概念 B.计算 C.应用题 D、定义5、“三维目标”是指知识与技能、()、情感态度与价值观。

A.理解与掌握B.过程与方法C.科学与探究 D、继承与发展6、《数学课程标准》中使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的()的动词。

A.过程性目标 B.知识技能目标7、建立成长记录是学生开展()的一个重要方式,它能够反映出学生发展与进步的历程。

A.自我评价 B.相互评价 C.多样评价 D、小组评价8、学生的数学学习活动应是一个()的过程。

A、生动活泼的主动的和富有个性B、主动和被动的生动活泼的C、生动活泼的被动的富于个性9、“用数学”的含义是()A.用数学学习B.用所学数学知识解决问题C.了解生活数学 D、掌握生活数学10、《新课程标准》对“基本理念”进行了很大的修改,过去的基本理念说:“人人学有价值的数学,人人获得必须的数学,不同人在数学上得到不同的发展。

”,现在的《新课标》改为: ( )A.人人都能获得良好的数学教育,不同的人在数学上得到不同的发展B.人人都获得教育,人人获得良好的教育C.人人学有用的数学,人人获得有价值的教育D.人人获得良好的数学教育11、《新课标》强调“从双基到四基”的转变,四基是指:()A. 基础知识、基本技能、基本方法和基本过程B. 基础知识、基本经验、基本过程和基本方法C. 基础知识、基本技能、基本思想和基本活动经验D. 基础知识、基本经验、基本思想和基本过程12、《新课标》强调“从两能到四能”的转变,“四能”是指()A. 分析问题、解决问题的能力;发现问题和讨论问题的能力。

第19章 一次函数 2022-2023学年人教版八年级数学下册基础知识质量检测卷(含答案)

第19章 一次函数 2022-2023学年人教版八年级数学下册基础知识质量检测卷(含答案)

2022-2023学年新人教版初中八年级数学下册第十九单元基础知识质量检测卷时间:90分钟满分:120分班级__________姓名__________得分__________一.选择题(共10小题,满分30分,每小题3分)1.(3分)函数y=x―25中自变量x的取值范围是( )A.x>2B.x<2C.x≥2D.x≤22.(3分)一次函数y=﹣2x+2经过点(a,2),则a的值为( )A.﹣1B.0C.1D.23.(3分)已知一次函数y=kx﹣4(k≠0),y随x的增大而增大,则k的值可以是( )A.﹣2B.1C.0D.﹣34.(3分)下列函数中,是一次函数的是( )A.y=3x﹣5B.y=x2C.y=6xD.y=1x―15.(3分)在正比例函数y=kx中,y的值随着x值的增大而增大,则一次函数y=kx+k在平面直角坐标系中的图象大致是( )A.B.C.D.6.(3分)点P1(﹣1,y1),点P2(2,y2)是一次函数y=kx+b(k<0)图象上两点,则y1与y2的大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.不能确定7.(3分)一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如表数据:支撑物的高度h(cm)10203040506070小车下滑的时间t(s) 4.23 3.00 2.45 2.13 1.89 1.71 1.59下列说法正确的是( )A.当h=70cm时,t=1.50sB.h每增加10cm,t减小1.23C.随着h逐渐变大,t也逐渐变大D.随着h逐渐升高,小车下滑的平均速度逐渐加快8.(3分)下列问题中,变量y与x成一次函数关系的是( )A.10m长铁丝折成长为y(m),宽为x(m)的长方形B.斜边长为5cm的直角三角形的直角边y(cm)和x(cm)C.圆的面积y(cm2)与它的半径x(cm)D.路程一定时,时间y(h)和速度x(km/h)的关系9.(3分)一次函数y=﹣2x+6的图象与y轴的交点坐标是( )A.(0,6)B.(6,0)C.(3,0)D.(0,3)10.(3分)在正比例函数y=kx中,y的值随着x值的增大而减小,则点A(﹣3,k)在( )A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共6小题,满分18分,每小题3分)11.(3分)点P(a,b)在函数y=4x+3的图象上,则代数式12a﹣3b+1的值等于 .12.(3分)一次函数y=(k﹣3)x﹣2的函数值y随自变量x的增大而减小,则k的取值范围是 .13.(3分)小明骑车回家过程中,骑行的路程s与时间t的关系如图所示.则经15分钟后小明离家的路程为 .14.(3分)已知三点A(﹣2,6),B(﹣3,1),C(1,﹣3).若正比例函数y=kx图象经过其中两点,则k的值为 .15.(3分)将一次函数y=﹣2x的图象沿y轴向下平移4个单位长度后,所得图象的函数表达式为 .16.(3分)已知函数y=(m﹣2)x|3﹣m|+5是关于x的一次函数,则m= .三.解答题(共9小题,满分72分)17.(6分)求下列函数中自变量的取值范围.(1)y=2x﹣1;(2)y=x―3+5―x;(3)y=14―2x.18.(6分)平面直角坐标系xOy中,经过点(1,2)的直线y=kx+b,与x轴交于点A,与y轴交于点B.(1)当b=3时,求k的值以及点A的坐标;(2)若k=b,P是该直线上一点,当△OPA的面积等于△OAB面积的2倍时,求点P的坐标.19.(6分)已知y﹣1与x﹣1成正比例,且x=3时,y=4.(1)求y与x之间的函数关系式;(2)当y=﹣1时,求x的值.20.(8分)如图,一次函数y=kx+b(k≠0)的图象经过A,B两点.(1)求此一次函数的解析式;(2)结合函数图象,直接写出关于x的不等式kx+b<4的解集.21.(8分)我国是一个严重缺水的国家,大家应该倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05mL.小明同学在洗手时,没有把水龙头拧紧,当小明离开x小时后,水龙头滴了yml水.(1)试写出y与x之间的函数关系式?(2)当滴了1620mL水时,小明离开水龙头几小时?22.(8分)已知一次函数y=―12x+3.(1)作出函数的图象;(2)求图象与两坐标轴所围成的三角形的面积.23.(10分)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分钟)之间有如下关系:(其中0≤x≤30)时间/x257101213141720接受能力/y47.853.556.35959.859.959.858.355(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?24.(10分)狗头枣产于陕西省延安市一带,久负盛名,其性味甘平,有润心肺、止咳、补五脏、治虚损的功效,已成为革命圣地延安最为著名的特产.某经销商购进了一批狗头枣,根据以往的销售经验,每天的售价与销售量之间有如下关系:当单价为38元/千克时,每天可以销售50千克,单价每下调1元,销量就会增加2千克,若设单价下调了x 元/千克,销售量为y千克.(1)y与x之间的关系式为 ;(2)当售价为28元/千克,这天的销售量是多少?(3)如果这批狗头枣的进价是20元/千克,某天的售价定为30元/千克,则这天的销售利润是多少元?25.(10分)甲超市在国庆节期间进行苹果优惠促销活动,苹果的标价为5元/kg,如果一次购买4kg以上的苹果,超过4kg的部分按标价6折售卖.其中x(单位:kg)表示购买苹果的重量,y甲(单位:元)表示付款金额.(1)文文购买3kg苹果需付款 元;购买5kg苹果需付款 元;(2)写出付款金额y甲关于购买苹果的重量x的函数关系式;(3)乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为5元/kg,且全部按标价的8折售卖.文文如果要购买10kg苹果,请问她在哪个超市购买更划算?参考答案1.C;2.B;3.B;4.A;5.A;6.A;7.D;8.A;9.A;10.C;11.﹣8;12.k<3;13.1.5千米;14.﹣3;15.y=﹣2x﹣4;16.4;17.解:(1)y=2x﹣1中,自变量的取值范围是全体实数;(2)由题意得:x﹣3≥0,5﹣x≥0,解得:3≤x≤5;(3)由题意得:4﹣2x>0,解得:x<2.18.解:(1)∵直线y=kx+b经过点(1,2),∴k+b=2,当b=3时,k=﹣1,∴直线解析式为y=﹣x+3,令y=0,得x=3,∴点A的坐标为(3,0);(2)由(1)知k+b=2,当k=b时,可得k=b=1,∴直线解析式为:y=x+1,令x=0,得y=1,令y=0,得x=﹣1,∴点A的坐标为(﹣1,0),点B坐标为(0,1),∴S△OAB=12×1×1=12,设点P(m,n),∵△OPA的面积等于△OAB面积的2倍,∴12×1×|n|=2×12,∴|n|=2,得n=±2,∴点P坐标为(1,2)或(﹣3,﹣2).19.解:(1)∵y﹣1与x﹣1成正比例,∴设y﹣1=k(x﹣1),∵x=3时y=4,∴4﹣1=k(3﹣1),解得:k=3 2,∴y与x之间的函数关系式为:y﹣1=32(x﹣1),即y=32x―12;(2)当y=﹣1时,﹣1=32x―12,解得:x=―1 3.20.解:(1)将点A(3,4),B(0,﹣2)的坐标分别代入y=kx+b中,得3k+b=4 b=―2,解得k=2b=―2,故一次函数的解析式y=2x﹣2;(2)观察图象可知:关于x的不等式kx+b<4的解集为x<3.21.解:(1)∵水龙头每秒钟会滴下2滴水,每滴水约0.05毫升,∴离开x小时滴的水为3600×2×0.05x,∴y=360x(x≥0).(2)当y=1620mL时,1620=360x,解得x=4.5小时,答:小明离开水龙头4.5小时.22.解:(1)直线一次函数y=―12x+3过(0,3)(6,0)两点,描点连线可以画出其图象,如图:(2)图象与两坐标轴所围成的三角形的面积=12×6×3=9.23.解:(1)反映了提出概念所用的时间x和对概念接受能力y两个变量之间的关系;其中x是自变量,y是因变量;(2)提出概念所用的时间为13分钟时,学生的接受能力最强;(3)当x在2分钟至13分钟的范围内,学生的接受能力逐步增强;当x在13分钟至20分钟的范围内,学生的接受能力逐步降低.24.解:(1)由题意可知y与x之间的关系式为,y=50+2x;(2)当售价为28元/千克,价格下调了x=38﹣28=10,将x=10代入关系试中得y=50+2×10=70,∴当售价为28元/千克,这天的销售量是70千克;(3)当售价为30元/千克,价格下调了x=38﹣30=8,将x=8代入关系试中得y=50+2×8=66,∴当售价为30元/千克时的销售量是66千克,利润=(售价﹣进价)×销售量=(30﹣20)×66=660元,∴这天的销售利润是660元.25.解:(1)由题意可知:文文购买3kg苹果,不优惠,∴文文购买3kg苹果需付款:3×5=15(元),购买5kg苹果,4kg不优惠,1kg优惠,∴购买5kg苹果需付款:4×5+1×5×0.6=23(元),故答案为:15,23;(2)由题意得:当0<x≤4时,y甲=5x,当x>4时,y甲=4×5+(x﹣4)×5×0.6=3x+8,∴付款金额y甲关于购买苹果的重量x的函数解析式为:y甲=5x(0<x≤4) 3x+8(x>4);(3)文文在甲超市购买10kg苹果需付费:3×10+8=38(元),文文在乙超市购买10kg苹果需付费:5×10×0.8=40(元),∵38<40,∴文文应该在甲超市购买更划算.。

初中数学基础知识测试题(含答案)

初中数学基础知识测试题(含答案)

初中数学基础知识测试题学校 姓名 得分一、填空题(本题共30小题,每小题2分,满分60分)1、 和 统称为实数.2、方程623y --853y -=1的解为 . 3、不等式组⎩⎨⎧+-x x 5743 的解集是 . 4、伍分和贰分的硬币共100枚,值3元2角.若设伍分硬币有x 枚,贰分硬币有y 枚,则可得方程组 .5、计算:28x 6y 2÷7x 3y 2= .6、因式分解:x 3+x 2-y 3-y 2= .7、当x 时,分式231+-x x 有意义;又当x 时,其值为零. 8、计算:b a a -+22b ab b -= ;(x 2-y 2)÷y x y x +-= .9、用科学记数法表示:—0.00002008= ;121900000= .10、81的平方根为 ;-12564的立方根为 . 11、计算:18-21= ;(3+25)2= . 12、分母有理化:51= ;y x yx +-= .13、一块长8cm ,宽6cm 的长方形铁片,在四个角各剪去一个边长相等的小正方形,做成一个长方体无盖的盒子,>0, ≤0使它的底面积为24 cm 2 .若设小正方形边长为x cm ,则可得方程为 .14、如果关于x 方程2x 2-4x +k =0有两个不相等的实数根,那么k 的取值范围是 .15、若x 1、x 2是方程2x 2+6x —1=0的两个根,则11x +21x = . 16、以2+1和2—1为根的一元二次方程是 .17、在实数范围内因式分解:3x 2-4x -1= .18、方程x +52 x =5的解是 .19、已知正比例函数y =kx ,且当x =5时,y =7,那么当x =10时,y = .20、当k 时,如果反比例函数y =xk 在它的图象所在的象限内,函数值随x 的减小而增大. 21、在直角坐标系中,经过点(-2,1)和(1,-5)的直线的解析式是 .22、如果k <0,b >0,那么一次函数y =kx +b 的图象经过第 象限.23、如果一个等腰三角形的周长为24cm ,那么腰长y (cm )与底长x (cm )之间的函数关系式是 .24、二次函数y =-2x 2+4 x -3的图象的开口向 ;顶点是 .25、经过点(1,3)、(-1,-7)、(-2,-6)的抛物线的解析式是 .26、把抛物线y =-3(x -1)2+7向右平移3个单位,向下平移4个单位后,所得到的抛物线的解析式是 .27、柳营中学某班学生中,有18人14岁,16人15岁,6人16岁,这个班级学生的平均年龄是 岁.28、当一组数据有8个数从小到大排列时,这组数据的中位数是 .29、一组数据共有80个数,其中最大的数为168,最小的数为122 .如果在频数分布直方图中的组距为5,则可把这组数据分成 组.30、样本29、23、30、27、31的标准差是 .二、填空题(本题共30小题,每小题2分,满分60分)31、如果两条平行线被第三条直线所截,那么 相等, 互补.32、命题“两直线平行,同旁内角互补”的题设是 ,结论是 .33、若三角形三边长分别是6、11、m ,则m 的取值范围是 .34、如果一个多边形的内角和为2520°,那么这个多边形是 边形.35、等腰三角形的 、 、 互相重合.36、在△ABC 中,若∠A =80°,∠B =50°,则△ABC 是 三角形.37、在Rt △ABC 中,∠C =90°,∠A =60°.若AC =5cm ,则AB = cm .38、在Rt △ABC 中,∠C =90°, 如果AC =3cm ,BC =4cm ,那么AB 边上的高CD = cm .39、如果一个平行四边形的两个邻角的差为30°,那么这个平行四边形的较大的一个内角为 (度).40、两组对边分别 的四边形是平行四边形.41、在菱形ABCD 中,若有一个内角为120°,且较短的一条对角线长12cm ,则这菱形的周长为 cm .42、两条对角线 的平行四边形是正方形.43、在梯形ABCD 中,AD ∥BC ,若AB =DC ,则相等的底角是 .44、顺次连结菱形的四边的中点所得到的图形是 形.45、在△ABC 中,点D 、E 分别在AB 、AC 边上,若DE ∥BC ,AD =5,AB =9,EC =3,则AC = .46、在△ABC 中,点D 、E 分别在AB 、AC 边上,AD =2 cm ,DB =4cm ,AE =3cm , EC =1 cm ,因为 且 ,所以△ABC ∽△ADE .47、△ABC 的三条中线AD 、BE 、CF 交于点G .如果△AEG 的面积为12平方厘米,那么△ABC 的面积为 平方厘米.48、把一个三角形改成和它相似的三角形,如果边长扩大为原来的10倍,那么面积扩大为原来的 倍.49、如果∠A 为锐角,tgA =54,那么ctgA = . 50、计算:sin30°= ;tg60°= . 51、在Rt △ABC 中,∠C =90°.如果sinA =23,那么∠B = (度). 52、如果飞机在离地面5000米的高空俯视地面上一个目标时,俯角为30°,那么飞机离目标的距离为 米.53、斜坡的坡度为1︰4,斜坡的水平宽度为20m ,则斜坡的垂直高度为 m .54、在半径为10cm 的圆中,20°的圆心角所对的弧长为 cm .55、若两圆半径分别为9cm 和4cm ,圆心距为5cm ,则两圆位置关系为 .56、若直线AB 经过⊙O 上一点C ,且OC ⊥AB ,则直线AB 是⊙O 的 .57、在△ABC 中,如果AB =9cm ,BC =4cm ,CA =7cm ,它的内切圆切AB 于点D ,那么AD = cm .58、在Rt △ABC 中,∠C =90°.如果AC =5cm ,BC =12cm ,那么△ABC 内切圆的半径为 cm .59、半径分别为5cm 和15cm 的两圆相外切,其外公切线的长为 cm ,连心线与外公切线所夹的锐角为 (度).60、任何正多边形都是 对称图形,边数是偶数的正多边形又是 对称图形.答案一、1、有理数;无理数.2、y =3 .3、x ≤-57.4、⎩⎨⎧=+=+32025100y x y x .5、4x 3 .6、(x -y )(x 2+xy +y 2+x +y ).7、≠-32;=1 .8、b a b a -+;(x +y )2 .9、-2.008×10-5;1.219×108 .10、±3;-54.11、225;29+125.12、551;.yx xy y x --+2.13、(8-2x )(6-2x )=24(或x 2-7x +6=0).14、k <2 .15、6 .16、x 2-22x +1=0 .17、(x -372+)(x -372-).18、x =3 .19、14 .20、>0 .21、y =-2x -3 .22、一、二、四 .23、y =-21x +12,0<x <12 .24、下;(1,-1).25、y =2x 2+5x -4 .26、y =-3(x -4)2+3 .27、14.7 .28、第4和第5个数的平均数.29、10 .30、22.二、31、同位角或内错角;同旁内角.32、两直线平行;同旁内角互补.33、5<m <17 .34、16 . 35、顶角的平分线;底边上的中线;底边上的高.36、等腰.37、10 .38、2.4 .39、105°.40、平行(或相等).41、48 .42、垂直且相等.43、∠A =∠D ,∠B =∠C .44、矩.45、436.46、∠DAE =∠CAB ,AB AD =ACAE .47、72 .48、100 .49、45.50、21;3.51、30°.52、10000 .53、5 .54、910π.55、内切.56、切线.57、6 .58、2 .59、103;30°.60、轴;中心.。

北师大版初中数学七年级上册 第2章 有理数及其运算测试卷(3)含答案

北师大版初中数学七年级上册 第2章 有理数及其运算测试卷(3)含答案

《第二章有理数及其运算》章末测试卷一、把正确的答案选在括号里(每题3分)1.某地一天最高气温23摄氏度,最低气温﹣5摄氏度,这天的温差是()摄氏度.A.18 B.28 C.﹣28 D.﹣182.两个有理数a与b,a+b=0,a与b的关系是()A.一正一负B.互为倒数C.互为相反数D.都是零3.下列各对数中,互为相反数的是()A.﹣0.01和0.1 B.和C.﹣0.125和 D.﹣0.125和84.如果两个数的积为负数,和也为负数,那么这两个数()A.都是负数B.都是正数C.一正一负,且负数的绝对值大D.一正一负,且正数的绝对值大5.设a是最小的自然数,b是最小的正整数,c是最大的负整数,则a、b、c三数之和为()A.﹣1 B.0 C.1 D.26.下列说法正确的是()A.﹣a一定是负数B.a的绝对值等于aC.﹣b是b的相反数D.0的倒数为07.4个有理数相乘,积的符号是负号,则这4个有理数中,负数有()A.1个或3个B.1个或2个C.2个或4个D.3个或4个8.若|x﹣2|+|y+6|=0,则x+y的值是()A.4 B.﹣4 C.﹣8 D.89.把数轴上表示数2的点移动3个单位后,表示的数为()A.5 B.1 C.5或1 D.5或﹣110.若一个有理数的绝对值等于3,则这个数可能是()A.3 B.﹣3 C.±3 D.无法确定二、填空题(每空3分)11.计算:|﹣(+4.8)|=;0﹣(﹣2019)=.12.一艘潜艇正在水下执行任务,所处位置记作﹣50米,距它正上方30米处,有一条鲨鱼正好游过,这条鲨鱼所处位置为米.13.平方得的数是,立方得﹣8的数是.14.绝对值不大于3的所有整数是,其和是,积是.15.我校勤工俭学基地预计今年可收入12800,把这个数用科学记数法表示为:.三、解答题16.(8分)把下列各数填在相应的横线上.,﹣3.15,6,,﹣7,0,﹣100,50%,78,π(1)正整数:6,78(2)整数:6,﹣7,0,﹣100,78(3)负分数:﹣3.15(4)非负数:,6,,050%,78,π.17.(8分)把下列各数表示到数轴上,并将它们从小到大用“<”连接.﹣1,0,4,﹣3,2.5.18.(16分)计算题:(1)﹣20﹣(﹣15)+(﹣12)﹣(+5);(2)(﹣+)×(﹣24);(3);(4)﹣12﹣[1+12÷(﹣6)]2×(﹣)2.19.(6分)某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下:2、﹣1、0、3、﹣2、﹣3、1、0(1)这8名男生共做了多少个俯卧撑?(2)这8名男生的达标率是百分之几?20.(8分)某年国庆节日,学校放假八日,高速公路免费通行,各地风景区游人如织.其中,闻名于西南的珠江源头风景区,在9月30日的游客人数为1000人,接下来的七天中,每天的游客人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数).(1)10月3日的人数为1151人.(2)假期里,游客人数最多的是10月2日,达到1209人.游客人数最少的是10月7日,达到1011人.(3)请问珠江源头风景区在这八天内一共接待了多少游客?参考答案一、把正确的答案选在括号里(每题3分)1.某地一天最高气温23摄氏度,最低气温﹣5摄氏度,这天的温差是()摄氏度.A.18 B.28 C.﹣28 D.﹣18【考点】有理数的减法.【分析】根据有理数的减法,可得答案.【解答】解:由题意,得23﹣(﹣5)=23+5=28,故选:B.【点评】本题考查了有理数的减法,利用有理数的减法:减去一个数等于加上这个数的相反数是解题关键.2.两个有理数a与b,a+b=0,a与b的关系是()A.一正一负B.互为倒数C.互为相反数D.都是零【考点】倒数;相反数.【分析】根据互为相反数的和为零,可得答案.【解答】解:由,a+b=0,a与b的关系互为相反数,故选:B.【点评】本题考查了相反数,利用互为相反数的和为零是解题关键.3.下列各对数中,互为相反数的是()A.﹣0.01和0.1 B.和C.﹣0.125和 D.﹣0.125和8【考点】相反数.【分析】根据相反数的定义,可以得到哪个选项是正确.【解答】解:﹣0.01和0.1不是相反数,和互为倒数,不是相反数,﹣0.125和互为相反数,﹣0.125和8不是互为相反数,故选C.【点评】本题考查相反数,解题的关键是明确相反数的定义.4.如果两个数的积为负数,和也为负数,那么这两个数()A.都是负数B.都是正数C.一正一负,且负数的绝对值大D.一正一负,且正数的绝对值大【考点】有理数的乘法;有理数的加法.【分析】两个数的积为负数说明这两数异号,和也为负数说明这两数中负数的绝对值大.【解答】解:∵两个数的积为负数,∴这两数异号;又∵和也为负数,∴这两数中负数的绝对值较大.故选C.【点评】本题主要考查了有理数的加法与乘法的符号法则.两数相乘,异号得负;绝对值不相等的异号两数相加,取绝对值较大的加数的符号.5.设a是最小的自然数,b是最小的正整数,c是最大的负整数,则a、b、c三数之和为()A.﹣1 B.0 C.1 D.2【考点】有理数的加法;有理数.【分析】最小的自然数是0,最小的正整数是1,最大的负整数是﹣1,依此可得a、b、c,再相加可得三数之和.【解答】解:由题意可知:a=0,b=1,c=﹣1,a+b+c=0.故选:B.【点评】考查了有理数的加法,此题的关键是知道最小的自然数是0,最小的正整数是1,最大的负整数是﹣1.6.下列说法正确的是()A.﹣a一定是负数B.a的绝对值等于aC.﹣b是b的相反数D.0的倒数为0【考点】倒数;相反数;绝对值.【分析】根据各个选项中的说法可以判断哪个选项是正确的.【解答】解:当a=﹣2时,﹣a=2,故选项A错误;当a=﹣2时,|﹣2|=2,故选项B错误;﹣b的相反数是b,故选项C正确;0没有倒数,故选项D错误;故选C.【点评】本题考查倒数、相反数、绝对值,解题的关键是明确它们各自的定义.7.4个有理数相乘,积的符号是负号,则这4个有理数中,负数有()A.1个或3个B.1个或2个C.2个或4个D.3个或4个【考点】有理数的乘法.【专题】计算题.【分析】根据多个数字相乘积为负数,得到负因式个数为奇数个,即可确定出结果.【解答】解:4个有理数相乘,积的符号是负号,则这4个有理数中,负数有1个或3个.故选A.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.8.若|x﹣2|+|y+6|=0,则x+y的值是()A.4 B.﹣4 C.﹣8 D.8【考点】非负数的性质:绝对值.【分析】根据已知等式,利用非负数的性质求出x,y的值,即可确定出x+y的值.【解答】解:∵|x﹣2|+|y+6|=0,∴x﹣2=0,y+6=0,解得x=2,y=﹣6,则x+y=2﹣6=﹣4.故选:B.【点评】此题考查了代数式求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.9.把数轴上表示数2的点移动3个单位后,表示的数为()A.5 B.1 C.5或1 D.5或﹣1【考点】数轴.【专题】计算题.【分析】在数轴上找出表示2的点,向左或向右移动3个单位即可得到结果.【解答】解:把数轴上表示数2的点移动3个单位后,表示的数为5或﹣1.故选D【点评】此题考查了数轴,熟练掌握数轴的意义是解本题的关键.10.若一个有理数的绝对值等于3,则这个数可能是()A.3 B.﹣3 C.±3 D.无法确定【考点】绝对值.【分析】根据绝对值的意义得到|3|=3,|﹣3|=3.【解答】解:∵|3|=3,|﹣3|=3,∴绝对值等于3的有理数为±3.故选C.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.二、填空题(每空3分)11.计算:|﹣(+4.8)|= 4.8;0﹣(﹣2019)=2019.【考点】有理数的减法.【分析】首先将绝对值里面的进行化简,然后再去掉绝对值符号即可;根据有理数的减法法则计算即可求解.【解答】解:|﹣(+4.8)|=4.8;0﹣(﹣2014)=2014.故答案为:4.8;2014.【点评】本题考查了绝对值的求法,有理数的减法,属于基础题,比较简单.12.一艘潜艇正在水下执行任务,所处位置记作﹣50米,距它正上方30米处,有一条鲨鱼正好游过,这条鲨鱼所处位置为﹣20米.【考点】正数和负数.【分析】潜艇所在高度是﹣50米,如果一条鲨鱼在艇上方30m处,根据有理数的加法法则即可求出鲨鱼所在高度.【解答】解:∵潜艇所在高度是﹣50米,鲨鱼在潜艇上方30米处,∴鲨鱼所在高度为﹣50+30=﹣20(米).故答案为:﹣20.【点评】此题主要考查了正负数能够表示具有相反意义的量、有理数的加法等知识,解题关键是正确理解题意,根据题意列出算式解决问题.13.平方得的数是±,立方得﹣8的数是﹣2.【考点】有理数的乘方.【专题】计算题.【分析】利用平方根及立方根的定义即可得到结果.【解答】解:平方得的数是±,立方得﹣8的数是﹣2.故答案为:﹣;﹣2.【点评】此题考查了有理数的乘方,熟练掌握平方根及立方根的定义是解本题的关键.14.绝对值不大于3的所有整数是±3,±2,±1,0,其和是0,积是0.【考点】绝对值;有理数的加法;有理数的乘法.【分析】首先找出绝对值不大于3的所有整数为:±3,±2,±1,0,再求和与积即可.【解答】解:绝对值不大于3的所有整数是:±3,±2,±1,0,3+2+1+0+(﹣1)+(﹣2)+(﹣3)=0,3×2×1×0×(﹣1)×(﹣2)×(﹣3)=0,故答案为::±3,±2,±1,0;0;0.【点评】此题主要考查了绝对值,关键是掌握绝对值的概念,数轴上某个数与原点的距离叫做这个数的绝对值.15.我校勤工俭学基地预计今年可收入12800,把这个数用科学记数法表示为:1.28×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:12800=1.28×104,故答案为:1.28×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三、解答题16.(8分)把下列各数填在相应的横线上.,﹣3.15,6,,﹣7,0,﹣100,50%,78,π(1)正整数:6,78(2)整数:6,﹣7,0,﹣100,78(3)负分数:﹣3.15(4)非负数:,6,,050%,78,π.【考点】有理数.【分析】根据题目中的数据可以分别得到正整数、整数、负分数、非负数分别包括哪些数.【解答】解:(1)正整数:6,78;(2)整数:6,﹣7,0,﹣100,78;(3)负分数:﹣3.15;(4)非负数:,6,,050%,78,π.故答案为:(1)6,78;(2)6,﹣7,0,﹣100,78;(3)﹣3.15;(4),6,,050%,78,π.【点评】本题考查有理数,解题的关键是明确有理数的划分,可以判断一个数属于哪一类型.17.(8分)把下列各数表示到数轴上,并将它们从小到大用“<”连接.﹣1,0,4,﹣3,2.5.【考点】有理数大小比较;数轴.【分析】首先在数轴上表示出各数的位置,再根据当数轴方向朝右时,右边的数总比左边的数大利用<连接即可.【解答】解:如图所示:,﹣3<﹣1<0<2.5<4.【点评】此题主要考查了有理数的比较大小,关键是掌握当数轴方向朝右时,右边的数总比左边的数大.18.(16分)计算题:(1)﹣20﹣(﹣15)+(﹣12)﹣(+5);(2)(﹣+)×(﹣24);(3);(4)﹣12﹣[1+12÷(﹣6)]2×(﹣)2.【考点】有理数的混合运算.【分析】(1)先去括号,再从左到右依次计算即可;(2)根据乘法分配律进行计算即可;(3)先算乘除,再算加减即可;(4)先算括号里面的,再算乘方,乘除,最后算加减.【解答】解:(1)原式=﹣20+15﹣12﹣5=﹣5﹣12﹣5=﹣22;(2)原式=×(﹣24)﹣×(﹣24)+×(﹣24)=﹣8+6﹣9=﹣11;(3)原式=23×(﹣5)﹣(﹣3)×=23×(﹣5)+118=﹣115+118=3;(4)原式=﹣1﹣[1﹣2]2×(﹣)2=﹣1﹣[﹣]2×=﹣1﹣×=1﹣1=0.【点评】本题考查的是实数的混合运算,熟知实数混合运算的法则是解答此题的关键.19.(6分)某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下:2、﹣1、0、3、﹣2、﹣3、1、0(1)这8名男生共做了多少个俯卧撑?(2)这8名男生的达标率是百分之几?【考点】正数和负数.【分析】(1)根据题意可以求得这8名男生共做了多少个俯卧撑;(2)根据题目中的数据可以计算出这8名男生的达标率.【解答】解:(1)7×8+[2+(﹣1)+0+3+(﹣2)+(﹣3)+1+0]=56+0=56(个)即这8名男生共做了56个俯卧撑;(2)达标率是:,即这8名男生的达标率是62.5%.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的实际含义.20.(8分)某年国庆节日,学校放假八日,高速公路免费通行,各地风景区游人如织.其中,闻名于西南的珠江源头风景区,在9月30日的游客人数为1000人,接下来的七天中,每天的游客人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数).(1)10月3日的人数为1151人.(2)假期里,游客人数最多的是10月2日,达到1209人.游客人数最少的是10月7日,达到1011人.(3)请问珠江源头风景区在这八天内一共接待了多少游客?【考点】正数和负数.【分析】(1)根据表格可以解答本题;(2)根据表格中的数据可以解答本题;(3)根据表格可以解答本题.【解答】解:(1)10月3日的人数为:1000+31+178﹣58=1151(人),故答案为:1151;(2)由表格可知,10月2日人数最多,最多为:1000+31+178=1209(人),由表格可知,10月7日人数最少,最少为:1000+31+178﹣58﹣8﹣1﹣16﹣115=1011(人),故答案为:2,1209,7,1011;(3)1000+1000×7+(31+178﹣58﹣8﹣1﹣16﹣115)=1000+7000+11=8011(名)即珠江源头风景区在这八天内一共接待了8011名游客.【点评】本题考查正数和负数,解题的关键是明确题意,找出所求问题需要的条件.。

(常考题)人教版初中数学八年级数学上册第一单元《三角形》测试(包含答案解析)(3)

(常考题)人教版初中数学八年级数学上册第一单元《三角形》测试(包含答案解析)(3)

一、选择题1.如图,在ABC 中,AB 边上的高为( )A .CGB .BFC .BED .AD 2.如图,下列结论中正确的是( )A .12A ∠>∠>∠B .12A ∠>∠>∠C .21A ∠>∠>∠D .21A ∠>∠>∠ 3.已知实数x 、y 满足|x -4|+8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 4.若过六边形的一个顶点可以画n 条对角线,则n 的值是( ) A .1B .2C .3D .4 5.已知三角形的两边长分别为1和4,则第三边长可能是( )A .3B .4C .5D .6 6.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30°7.已知,D 是ABC ∠的边BC 上一点,//DE BA ,CBE ∠和CDE ∠的平分线交于点F ,若F α∠=,则ABE ∠的大小为( )A .αB .52αC .2αD .32α 8.若多边形的边数由3增加到n (n 为大于3的正整数),则其外角和的度数( ) A .不变B .减少C .增加D .不能确定 9.下列每组数分别三根小木棒的长度,用它们能摆成三角形的是( ) A .3,4,8cm cm cmB .7,8,15cm cm cmC .12,13,22cm cm cmD .10,10,20cm cm cm 10.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( )A .3cmB .10cmC .4cmD .6cm 11.如图,王师傅用六根木条钉成一个六边形木框,要使它不变形,至少还要再钉上________根木条( )A .2B .3C .4D .512.如图,105DBA ∠=︒,125ECA ∠=︒,则A ∠的度数是( )A .75°B .60°C .55°D .50°二、填空题13.如图,已知//,AB CD E 是直线AB 上方一点,G 为直线AB 下方一点,F 为直线CD 上一点,148EAF ︒∠=,3BAF BAG ∠=∠,3DCE DCG ∠=∠,则E ∠和G ∠的数量关系为___________.14.如图,C 为∠AOB 的边OA 上一点,过点C 作CD ∥OB 交∠AOB 的平分线OE 于点F ,作CH ⊥OB 交BO 的延长线于点H ,若∠EFD =α,现有以下结论:①∠COF =α;②∠AOH =180°﹣2α;③CH ⊥CD ;④∠OCH =2α﹣90°.其中正确的是__(填序号).15.如图,在△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等,若∠A =70°,则∠BOC =________.16.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则A DB '∠=________.17.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G =_____.18.ABC 中,,AB AC 边上的高,CE BD 相交于点F ,,ABC ACB ∠∠的角平分线交于点G ,若=125CGB ∠︒,则CFB ∠=______.19.如图,∠BAK +∠B +∠C +∠CDE +∠E +∠F +∠MGN +∠H +∠K =________.20.如图,在ABC ∆中,BD 平分ABC ∠,AE BD ⊥.若30ABC ∠=︒,50C ∠=︒,则CAE ∠的度数为_______︒.三、解答题21.已知AB ∥CD ,CF 平分∠ECD .(1)如图1,若∠DCF =25°,∠E =20°,求∠ABE 的度数.(2)如图2,若∠EBF =2∠ABF ,∠CFB 的2倍与∠CEB 的补角的和为190°,求∠ABE 的度数.22.如图,在ABC 中,A ACB ∠=∠,CD 为ABC 的角平分线,CE 是ABC 的高.(1)若15DCB ∠=︒,求CBD ∠的度数;(2)若36DCE ∠=︒,求ACB ∠的度数.23.已知一个多边形的内角和比它的外角和的3倍还多180度.(1)求这个多边形的边数;(2)求这个多边形的对角线的总条数.24.如图,已知1,23180BDE ︒∠=∠∠+∠=.(1)证明://AD EF .(2)若DA 平分BDE ∠,FE AF ⊥于点F ,140∠=︒,求BAC ∠的度数. 25.如图,是A 、B 、C 三个村庄的平面图,已知B 村在A 村的南偏西65°方向,C 村在A 村的南偏东15°方向,C 村在B 村的北偏东85°方向,求从C 村观测A 、B 两村的视角ACB ∠的度数.26.如图,在ABC 中,40B ∠=,80C ∠=.(1)求BAC ∠的度数;(2)AE 平分BAC ∠交BC 于E ,AD BC ⊥于D ,求EAD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】在ABC中,过C点向AB所在的直线作垂线,顶点与垂足之间的线段是AB上的高,由此可得答案.【详解】CG解:ABC中,AB边上的高为:.故选:.A【点睛】本题考查的是三角形的高的含义,掌握钝角三角形的高是解题的关键.2.D解析:D【分析】三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角.【详解】解:∵∠2是△BCD的外角,∴∠2>∠1,∵∠1是△ABC的外角,∴∠1>∠A,∠>∠>∠.∴21A故选D.【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键.3.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x与y的值.由于没有说明x与y是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B.【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.4.C解析:C【分析】根据从一个n边形一个顶点出发,可以连的对角线的条数是n-3进行计算即可.【详解】解:6-3=3(条).答:从六边形的一个顶点可引出3条对角线.故选:C.【点睛】本题考查了多边形的对角线,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n-3.5.B解析:B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x,∵三角形两边的长分别是1和4,∴4-1<x<4+1,即3<x<5.故选:B.【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.6.A解析:A【分析】先根据三角形外角的性质得出∠ADC=∠B+∠BAD,∠AED=∠C+∠EDC,再根据∠B=∠C,∠ADE=∠AED即可得出结论.【详解】解:∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∴∠ADE=∠ADC-∠CDE=∠B+∠BAD-∠CDE∵∠AED是△CDE的外角,∴∠AED=∠C+∠EDC,∵∠ADE=∠AED,∴∠B+∠BAD-∠CDE=∠C+∠EDC,∵∠B=∠C,∴∠BAD=2∠EDC,∵10CDE ∠=︒∴∠BAD=20°;故选:A【点睛】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.7.C解析:C【分析】先利用角平分线和三角形外角的性质可得2BED α∠=,再根据平行线的性质定理即可得出ABE ∠的大小.【详解】解:如下图所示,∵CBE ∠和CDE ∠的平分线交于点F ,∴21,22C CBE DE ∠∠==∠∠,∵12F ∠+∠=∠,F α∠=,∴21α∠-∠=,∵EBD BED EDC ∠+∠=∠,∴22212ED D C BE EBD α∠∠-∠=∠-==∠,∵//DE BA ,∴2ABE BED α∠==∠,故选:C .【点睛】本题考查三角形外角的性质,平行线的性质定理,与角平分线有关的计算.正确理解三角形外角等于与它不相邻的两个内角之和是解题关键.8.A解析:A【分析】利用多边形的外角和特征即可解决问题.【详解】解:因为多边形外角和固定为360°,所以外角和的度数是不变的.【点睛】此题考查多边形内角与外角的性质,容易受误导,注意多边形外角和等于360°.9.C解析:C【分析】根据三角形两边之和大于第三边,两边之差小于第三边计算判断即可.【详解】∵3+4<8,∴A选项错误;∵7+8=15,∴B选项错误;∵12+13>22,∴C选项正确;∵10+10=20,∴D选项错误;故选C.【点睛】本题考查了三角形的存在性,熟练掌握三角形的三边关系定理是解题的关键.10.D解析:D【分析】根据三角形的三边关系解答.【详解】解:∵三角形的两边为3cm,7cm,∴第三边长的取值范围为7-3<x<7+3,即4<x<10,只有D符合题意,故选:D.【点睛】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边.11.B解析:B【分析】根据三角形的稳定性,要使它不变形,只需每一条边都分别在一个三角形之中即可【详解】解:要使六边形木框不变形,则需每一条边都分别在一个三角形之中,观察图形可得,至少还需要再钉上3根木条故选:B本题考查了三角形的稳定性,观察图形如何使每一条边都分别在一个三角形之中是解决本题的关键12.D解析:D【分析】根据邻补角的定义可求得ABC ∠和ACB ∠,再根据三角形内角和为180°即可求出A ∠.【详解】解:105DBA ∠=︒,125ECA ∠=︒,18010575ABC ∴∠=︒-︒=︒,18012555ACB ∠=︒-︒=︒.180755550A ∴∠=︒-︒-︒=︒.故选D .【点睛】 本题考查了邻补角和三角形内角和定理,识记三角形内角和为180°是解题的关键.二、填空题13.【分析】延长线段BA 交CE 于点M 过点G 作AB 的平行线GN 交CE 于点N 根据平行的性质得由得再根据三角形的外角的性质得即可求出和的数量关系【详解】解:如图延长线段BA 交CE 于点M 过点G 作AB 的平行线GN 解析:1483E G ∠=︒-∠【分析】延长线段BA 交CE 于点M ,过点G 作AB 的平行线GN 交CE 于点N ,根据平行的性质得G BAG GCD ∠=∠+∠,由3BAF BAG ∠=∠,3DCE DCG ∠=∠,得333G BAG DCG ∠=∠+∠,再根据三角形的外角的性质得E EMA EAF BAF ∠+∠=∠-∠,即可求出E ∠和G ∠的数量关系.【详解】解:如图,延长线段BA 交CE 于点M ,过点G 作AB 的平行线GN 交CE 于点N ,∵//AB CD ,∴////BH GN CD ,∴BAG AGN ∠=∠,NGC GCD ∠=∠,EMA ECD ∠=∠,∵G AGN NGC ∠=∠+∠,∴G BAG GCD ∠=∠+∠,∵3BAF BAG ∠=∠,3DCE DCG ∠=∠,∴333G BAG DCG ∠=∠+∠,∵EAB E EMA ∠=∠+∠,EAB EAF BAF ∠=∠-∠,∴E EMA EAF BAF ∠+∠=∠-∠,∴E ECD EAF BAF ∠+∠=∠-∠,∴31483E DCG BAG ∠+∠=︒-∠,∴()14833E BAG DCG ∠=︒-∠+∠,∴1483E G ∠=︒-∠.故答案是:1483E G ∠=︒-∠.【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是通过平行线的性质和三角形外角的性质找到角与角之间的数量关系.14.①②③④【分析】分别根据平行线的性质角平分线的定义邻补角的定义直角三角形两锐角互余进行判断即可得出结论【详解】解:∵CD ∥OB ∠EFD =α∴∠EOB =∠EFD =α∵OE 平分∠AOB ∴∠COF =∠EO解析:①②③④【分析】分别根据平行线的性质,角平分线的定义,邻补角的定义,直角三角形两锐角互余进行判断即可得出结论.【详解】解:∵CD ∥OB ,∠EFD =α,∴∠EOB =∠EFD =α,∵OE 平分∠AOB ,∴∠COF =∠EOB =α,故①正确;∠AOB =2α,∵∠AOB +∠AOH =180°,∴∠AOH =180°﹣2α,故②正确;∵CD ∥OB ,CH ⊥OB ,∴CH ⊥CD ,故③正确;∴∠HCO +∠HOC =90°,∠AOB +∠HOC =180°,∴∠OCH =2α﹣90°,故④正确.故答案为:①②③④.【点睛】本题考查了平行线的性质,角平分线的定义,邻补角的定义,直角三角形两锐角互余等知识,熟练掌握相关知识点是解题关键.15.125°【分析】求出O为△ABC的三条角平分线的交点求出∠OBC=∠ABC∠OCB=∠ACB根据三角形内角和定理求出∠ABC+∠ACB求出∠OBC+∠OCB再根据三角形内角和定理求出∠BOC的度数即解析:125°【分析】求出O为△ABC的三条角平分线的交点,求出∠OBC=12∠ABC,∠OCB=12∠ACB,根据三角形内角和定理求出∠ABC+∠ACB,求出∠OBC+∠OCB,再根据三角形内角和定理求出∠BOC的度数即可;【详解】∵在△ ABC中,点O是△ABC内的一点,且点O到△ ABC三边距离相等,∴ O为△ABC的三条角平分线的交点,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠A=70°,∴∠ABC+∠ACB=180°-∠A=110°,∴∠OBC+∠OCB=55°,∴∠BOC=180°-∠OBC-∠OCB=125°,故答案为:125°.【点睛】本题考查了角平分线的有关计算,三角形内角和定理的应用,能正确掌握与角平分线有关的三角形内角和问题是解题的关键;16.10°【分析】由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=45°再利用三角形的内角和求解【详解】解:由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=×90°=45°∴∠ADC解析:10°【分析】由对折可得:∠A=∠CA′D=50°,∠ACD=∠A′CD=45°,再利用三角形的内角和求解.【详解】解:由对折可得:∠A=∠CA′D=50°,∠ACD=∠A′CD=12×90°=45°,∴∠ADC=∠A′DC=180°−45°−50°=85°,∴∠A′DB=180°−85°×2=10°.故答案为:10°.【点睛】本题利用对折考查轴对称的性质,三角形的内角和定理,掌握以上知识是解题的关键.17.540°【分析】连接GD 根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA =540°再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG =∠E+∠F 进而可求解【详解】解:连解析:540°【分析】连接GD ,根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA =540°,再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG =∠E+∠F ,进而可求解.【详解】解:连接GD ,∠A+∠B+∠C+∠CDG+∠DGA =(5﹣2)×180°=540°,∵∠1+∠FGD+∠EDG =180°,∠2+∠E+∠F =180°,∠1=∠2,∴∠FGD+∠EDG =∠E+∠F ,∴∠A+∠B+∠C+∠CDE+∠E+∠F+∠FGA =540°,故答案为540°.【点睛】本题主要考查多边形的内角和定理,三角形的内角和定理,掌握相关定理是解题的关键. 18.110°【分析】根据三角形的内角和定理求出∠GBC +∠GCB 根据角平分线的定义求出∠ABC +∠ACB 从而求出∠A 根据三角形高的定义可得∠AEC=∠FDC=90°然后根据三角形的内角和定理求出∠ACE解析:110°【分析】根据三角形的内角和定理求出∠GBC +∠GCB ,根据角平分线的定义求出∠ABC +∠ACB ,从而求出∠A ,根据三角形高的定义可得∠AEC=∠FDC=90°,然后根据三角形的内角和定理求出∠ACE ,最后利用三角形外角的性质即可求出结论.【详解】解:∵=125CGB ∠︒∴∠GBC +∠GCB=180°-∠CGB=55°∵,ABC ACB ∠∠的角平分线交于点G ,∴∠ABC=2∠GBC ,∠ACB=2∠GCB∴∠ABC +∠ACB=2∠GBC +2∠GCB=2(∠GBC +∠GCB )=110°∴∠A=180°-(∠ABC +∠ACB )=70°∵,AB AC 边上的高,CE BD 相交于点F ,∴∠AEC=∠FDC=90°,∴∠ACE=180°-∠AEC -∠A=20°∴CFB ∠=∠FDC +∠ACE=110°故答案为:110°.【点睛】此题考查的是三角形内角和定理、三角形外角的性质、三角形的高和角平分线,掌握三角形内角和定理、三角形外角的性质、三角形的高的定义和角平分线的定义是解题关键. 19.540°【分析】连接AGGD 先根据∠H+∠K=∠HGA+∠KAG ∠E+∠F=∠EDG+∠FGD 最后根据多边形的面积公式解答即可【详解】解:连接AGGD ∵∠H+∠K+∠HMK=180°∠HGA+∠KA解析:540°【分析】连接AG 、GD ,先根据∠H+∠K=∠HGA+∠KAG, ∠E+∠F=∠EDG+∠FGD,最后根据多边形的面积公式解答即可.【详解】解:连接AG 、GD ,∵∠H+∠K+∠HMK=180°,∠HGA+∠KAG +∠AMG=180°,∠HMK=∠AMG∴∠H+∠K=∠HGA+∠KAG ;同理:∠E+∠F=∠EDG+∠FGD∴∠BAK +∠B +∠C +∠CDE +∠E +∠F +∠MGN +∠H +∠K=∠BAK +∠B +∠C +∠CDE +∠EDG+∠FGD +∠MGN +∠HGA+∠KAG=五边形的内角和=(5-2)×180°=540°故答案为540°.【点睛】本题考查了三角形内角和定理和多边形内角和定理,根据题意正确作出辅助线成为解答本题的关键.20.25【分析】依据角平分线的定义即可得到∠DBC 的度数再根据三角形外角的性质即可得到∠CAE 的度数【详解】解:∵∠ABC=30°BD 平分∠ABC ∴∠DBC=∠ABC=×30°=15°又∵AE ⊥BD ∴∠解析:25【分析】依据角平分线的定义即可得到∠DBC的度数,再根据三角形外角的性质,即可得到∠CAE 的度数.【详解】解:∵∠ABC=30°,BD平分∠ABC,∴∠DBC=12∠ABC=12×30°=15°,又∵AE⊥BD,∴∠BEA=90°-15°=75°,∵∠AEB是△ACE的外角,∴∠CAE=∠AEB-∠C=75°-50°=25°,故答案为:25.【点睛】本题考查了三角形内角和定理,解决问题的关键是掌握三角形外角的性质.三角形的一个外角等于和它不相邻的两个内角的和.三、解答题21.(1)∠ABE=30°;(2)∠ABE=30°【分析】(1)假设CE与AB相交于点G,由题意易得∠DCE=50°,则有∠CGA=∠BGE=130°,然后根据三角形内角和可求解;(2)假设CE与AB、BF相交于点M、N,设∠ABF=x,∠DCF=∠FCE=y,则有∠EBF=2x,∠ABE=3x,∠DCE=2y,根据题意可得∠AMC=180°-2y,∠E=2y-3x,2∠CFB-∠CEB=10°,进而根据三角形内角和及角的和差关系可求解.【详解】解:(1)假设CE与AB相交于点G,如图所示:∵CF平分∠DCE,∠DCF=25°,∴∠DCE=50°,∵AB∥DC,∴∠DCE+∠AGC=180°,∴∠AGC=130°,∴∠EGB=∠AGC=130°,∵∠E=20°,∴∠ABE=30°;(2)假设CE 与AB 、BF 相交于点M 、N ,如图所示:设∠ABF=x ,∠DCF=y ,∵∠EBF=2∠ABF ,CF 平分∠DCE ,∴∠EBF=2x ,∠ABE=3x ,∠FCE=y ,∠DCE=2y ,∵AB ∥DC ,∴∠DCE+∠AMC=180°,∴∠EMB=∠AMC=180°-2y ,∵∠E+∠EMB+∠ABE=180°,∴∠E=2y-3x ,∵∠E+∠ENB+∠FBE=180°,∴∠ENB=180°+x-2y ,∵∠CFB+∠CNF+∠FCE=180°,∴∠CFB=y-x ,∵∠CFB 的2倍与∠CEB 的补角的和为190°,∴2∠CFB-∠CEB=10°,∴()()22310y x y x ---=︒,解得:10x =︒,∴∠ABE=30°.【点睛】本题主要考查平行线的性质及三角形内角和,熟练掌握平行线的性质及三角形内角和是解题的关键.22.(1)120°;(2)36°.【分析】(1)根据角平分线的定义求出∠ACB ,再根据三角形的内角和定理列式计算即可得解; (2)设∠A=∠ACB=x ,根据直角三角形两锐角互余求出∠CDE ,然后利用三角形的一个外角等于与它不相邻的两个内角的和列方程求解即可.【详解】(1)∵CD 为△ABC 的角平分线,∴∠ACB=2∠DCB=2×15°=30°,∵∠A=∠ACB ,∴∠CBD=180°-∠A-∠ACB=180°-30°-30°=120°;(2)设∠A=∠ACB=x ,∵CE 是△ABC 的高,∠DCE=36°,∴∠CDE=90°-36°=54°,∵CD 为△ABC 的角平分线,∴∠ACD=12∠ACB=12x , 由三角形的外角性质得,∠CDE=∠A+∠ACD , ∴1542x x +=︒, 解得x =36°,即∠ACB=36°.【点睛】 本题考查了三角形的内角和定理,角平分线的定义,直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键. 23.(1)9;(2)27【分析】(1)利用多边形的外角和为360°,根据内角和与外角和的关系及多边形内角和公式求出边数即可得答案;(2)根据多边形对角线条数公式计算即可得答案.【详解】(1)设多边形的边数为n ,∵多边形的外角和为360°,内角和比它的外角和的3倍还多180度,∴此多边形的内角和为360°×3+180°=1260°,∴(n-2)×180°=1260,解得:n=9,答:这个多边形的边数是9.(2)由(1)可知此多边形为9边形,∴从一个顶点可引出对角线9-3=6(条),∴这个多边形的对角线的总条数为6×9÷2=27(条),答:这个多边形的对角线的总条数为27条.【点睛】本题考查了多边形的内角与外角、多边形的对角线,掌握多边形的内角和定理、多边形的对角线的条数的计算公式是解题的关键.24.(1)见解析;(2)70°【分析】(1)根据平行线的判定得出AC//DE ,根据平行线的性质得出∠2=∠ADE ,求出∠3+∠ADE=180°,根据平行线的判定得出即可;(2)求出∠BDE 的度数,求出∠2的度数,求出∠3的度数,根据四边形的内角和定理求出∠B ,再根据三角形内角和定理求出即可.【详解】(1)证明:∵∠1=∠BDE ,∴AC//DE ,∴∠2=∠ADE ,∵∠2+∠3=180°,∴∠3+∠ADE=180°,∴AD//EF ;(2)∵∠1=∠BDE ,∠1=40°,∴∠BDE=40°,∵DA 平分∠BDE ,∴∠ADE=12∠BDE=20°, ∴∠2=∠ADE=20°,∵∠2+∠3=180°∴∠3=160°,∵FE ⊥AF ,∴∠F=90°,∴∠B=360°-90°-160°-40°=70°,在△ABC 中,∠BAC=180°-∠1-∠B=180°-40°-70°=70°.【点睛】本题考查了平行线的性质和判定,多边形的内角和定理,角平分线的定义,能灵活运用知识点进行推理和计算是解此题的关键.25.80ACB ∠=︒【分析】根据平行线的性质以及三角形内角和定理即可得到结论.【详解】解:由已知,265∠=︒,315∠=︒,85DBC ∠=︒∵//BD AE∴1265∠=∠=︒∴41856520DBC ∠=∠-∠=︒-︒=︒在ABC 中18018065152080ACB ABC BAC ∠=︒-∠-∠=︒-︒-︒-︒=︒【点睛】本题考查的是方向角的概念,平行线的性质以及三角形内角和定理,熟练掌握三角形的内角和是解答此题的关键.26.(1)60BAC ∠=;(2)20EAD ∠=【分析】(1)根据三角形的内角和定理求解即可;(2)根据垂直定义和三角形内角和定理求得∠DAC=10°,再根据角平分线的定义求得∠CAE=30°,两角作差即可求解.【详解】解:(1)∵180B BAC C ∠+∠+∠=,40B ∠=,80C ∠=,∴180408060BAC ∠=--=;(2)∵AD BC ⊥,∴90ADC ∠=,∵180,80DAC ADC C C ∠=-∠-∠∠=,∴180908010DAC ∠=--=,∵AE 平分BAC ∠, ∴1302BAE CAE BAC ∠=∠=∠=, ∵EAD CAE DAC ∠=∠-∠,∴20EAD ∠=.【点睛】本题考查了三角形的内角和定理、角平分线的定义、垂直定义,熟练掌握角平分线的定义和三角形的内角和定理是解答的关键.。

中考复习数学综合测试题(3)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-

中考复习数学综合测试题(3)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-

中考复习数学综合测试题(3)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------2005年中考复习数学综合测试题(3)一.大胆尝试,选择最佳:1.你认为下列各式正确的是()毛A. a2=(-a ) 2B.a3=(-a) 3C.-a2=D. a3=2 从甲站到乙站有两种走法。

从乙站到丙站有三种走法。

从乙站到丙站有______种走法。

A. 4B. 5C. 6D.73.通常C表示摄氏温度,f表示华氏温度,C与f之间的关系式为:,当华氏温度为68时,摄氏温度为()A. -20B. 20C.-19D. 1 94.从小明家到学校有两条路。

一条沿北偏东45度方向可直达学校前门,另一条从小明家一直往东,到商店处向正北走200米,到学校后门。

若两条路的路程相等,学校南北走向。

学校的后门在小明家北偏东67.5度处。

学校从前门到后门的距离是()米。

A.200米;B.200米;C.200米;D.200米5.小红的妈妈问小兰今年多大了,小兰说:&quot;小红是我现在的年龄时,我十岁;我是小红现在的年龄时,小红25岁。

&quot;小红的妈妈立刻说出了小兰的岁数,小兰与小红差()岁。

A.10B.8C.5D.26.梯子跟地面的夹角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A. sinA的值越小,梯子越陡。

B. cosA的值越小,梯子越陡。

C. tanA的值越小,梯子越陡。

D. 陡缓程度与∠A的函数值无关。

7.某兴趣小组做实验,将一个装满水的酒瓶倒置,并设法使瓶里的水从瓶口匀速流出,那么该倒置酒瓶内水面高度h随水流出时。

水面高度h与水流时间t之间关系的函数图象为()8. 一矩形纸片绕其一边旋转180度后,所得的几何体的主视图和俯视图分别为()A、矩形,矩形B、圆,半圆C、圆,矩形D、矩形,半圆9.二次函数y=-2(x-1)2+3的图象如何移动就得到y=-2x2的图象()A. 向左移动1个单位,向上移动3个单位。

初中数学青岛版七年级下册第8章 角8.3角的度量-章节测试习题(3)

初中数学青岛版七年级下册第8章 角8.3角的度量-章节测试习题(3)

章节测试题1.【答题】如图所示,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A. 110°B. 35°C. 70°D. 145°【答案】A【分析】本题主要考查的是角的计算和角平分线的定义,利用角的和差关系解答即可.【解答】解:OC平分选A.2.【答题】已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A. 20°或50°B. 20°或60°C. 30°或50°D. 30°或60°【答案】C【分析】本题主要考查的是角的计算和角平分线的定义,利用角的和差关系解答即可.【解答】解:分为两种情况:如图1,当∠AOB在∠AOC内部时,∵∠AOB=20°,∠AOC=4∠AOB,∴∠AOC=80°,∵OD平分∠AOB,OM平分∠AOC,∴∠AOD=∠BOD=∠AOB=10°,∠AOM=∠COM=∠AOC=40°,∴∠DOM=∠AOM-∠AOD=40°-10°=30°;如图2,当∠AOB在∠AOC外部时,∠DOM═∠AOM+∠AOD=40°+10°=50°;选C.3.【答题】已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A. 20°或50°B. 20°或60°C. 30°或50°D. 30°或60°【答案】C【分析】本题主要考查的是角的计算和角平分线的定义,利用角的和差关系解答即可.【解答】解:分为两种情况:如图1,当∠AOB在∠AOC内部时,∵∠AOB=20°,∠AOC=4∠AOB,∴∠AOC=80°,∵OD平分∠AOB,OM平分∠AOC,∴∠AOD=∠BOD=∠AOB=10°,∠AOM=∠COM=∠AOC=40°,∴∠DOM=∠AOM-∠AOD=40°-10°=30°;如图2,当∠AOB在∠AOC外部时,∠DOM═∠AOM+∠AOD=40°+10°=50°;选C.4.【答题】如图,直线AB,CD交于点O,OE平分∠AOD,若∠COE=108°,则∠1等于()A. 30ºB. 36ºC. 48ºD. 72º【答案】B【分析】本题主要考查的是角的计算和角平分线的定义,利用角的和差关系解答即可.【解答】∵∠COE=108°,∴∠DOE=180°-108°=72°.∵OE平分∠AOD,∴∠AOD=2∠DOE=2×72°=144°,∴∠BOD=180°-144°=36°.选B.5.【答题】用一副三角板(两块)画角,不可能画出的角的度数是()A. 15°C. 75°D. 135°【答案】B【分析】一副三角尺中包含有30°、45°、60°和90°的角,利用这些角的“和”与“差”可以画出度数是15°的整数倍的角,度数不是15°的整数倍的角利用三角尺是画不出来的.【解答】∵在一副三角尺中,有30°、45°、60°和90°的角,∴利用这四个不同角度的和与差可以画出15°、75°、135°等度数是15°整数倍的角,但不能画出55°的角.选B.6.【答题】如图,OC是∠AOB的平分线,∠BOD=∠DOC,∠BOD=10°,则∠AOD的度数为()A. 50°B. 60°C. 70°【答案】C【分析】本题主要考查的是角的计算和角平分线的定义,利用角的和差关系解答即可.【解答】解:∵∠BOD=∠DOC,∠BOD=10°,∴∠DOC=4∠BOD=40°,∴∠BOC=30°.∵OC是∠AOB的平分线,∴∠AOC=∠BOC=30°,∴∠AAOD=∠AOC+∠DOC=30°+40°=70°.选C.7.【答题】如图,已知∠AOB=∠COD=90°,∠AOD=170°,则∠BOC的度数为()A. 40°B. 30°C. 20°D. 10°【答案】D【分析】本题主要考查的是角的计算,利用角的和差关系解答即可.【解答】解:设∠BOC=x,∵∠AOB=∠COD=90°,∴∠AOC+x=∠BOD+x=90°,∴∠AOB+∠COD-∠AOD=∠AOC+x+∠BOD+x-(∠AOC+∠BOD+x)=10°,即x=10°.选D.8.【答题】一个角是70°18′,则这个角等于()A. 70.18°B. 70.3°C. 70.018°D. 70.03°【答案】B【分析】直接利用度分秒转换法则分别计算得出答案.【解答】70°18′=70°+18′60=70°+0.3°=70.3°.选B.9.【答题】54.27°可化为()A. 54°16′26″B. 54°28′C. 54°16′15″D. 54°16′12″【答案】D【分析】直接利用度分秒转换法则分别计算得出答案.【解答】54.27°=54°+0.2760′=54°+16.2′=54°+16′+0.260″=54°+16′+12″=54°16′12″.选D.10.【答题】如图,OC是∠AOB的平分线,若∠AOC=75°,则∠AOB的度数为()A. 145°B. 150°C. 155°D. 160°【答案】B【分析】本题主要考查的是角的计算和角平分线的定义,利用角的和差关系解答即可.【解答】试题分析:根据角平分线的性质可得:∠AOB=2∠AOC=2×75°=150°,故选择B.11.【答题】如图,OB、OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式为()。

初中数学二次函数的图象与性质基础过关测试题3(附答案详解)

初中数学二次函数的图象与性质基础过关测试题3(附答案详解)

初中数学二次函数的图象与性质基础过关测试题3(附答案详解)1.将抛物线24y x =+先向左平移2个单位,再向下平移1个单位,那么所得抛物线的函数关系式是( ) A .2(2)3y x =-- B .2(2)3y x =+- C .2(2)3y x =-+D .2(2)3y x =++2.如图,已知抛物线y =x 2+bx +c 与直线y =x 交于(1,1)和(3,3)两点,现有以下结论:①b 2﹣4c >0;②3b +c +6=0;③当x 2+bx +c >2x时,x >2;④当1<x <3时,x 2+(b ﹣1)x +c <0,其中正确的序号是( )A .①②④B .②③④C .②④D .③④3.二次函数y =2x 2-8x +9的图象可由y =2x 2的图象怎样平移得到( ) A .先向右平移2个单位再向上平移1个单位 B .先向右平移2个单位再向下平移1个单位 C .先向左平移2个单位再向上平移1个单位 D .先向左平移2个单位再向下平移1个单位4.若点(﹣2,y 1),(﹣1,y 2),(3,y 3)在二次函数y =﹣x 2+x ﹣3的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 3=y 1<y 2B .y 3≤y 2≤y 1C .y 2<y 1=y 3D .y 1<y 2<y 35.对于每个自然数n ,抛物线()()221111n y x x n n n n +=-+++与x 轴交于n A 、n B ,两点,以n n A B 表示该两点间的距离,则1122A B A B ++⋅⋅⋅20152015A B +值为( ). A .20142015B .20162015C .20152014D .201520166.已知点A(-3,y 1),B(-1,y 2),C(2,y 3)在函数y=-x 2的图象上,则y 1,y 2,y 3的大小关系为( ) A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 1<y 37.抛物线y=﹣x 2经过平移得到抛物线y=﹣(x+2)2﹣3,平移的方法是( ) A .向左平移2个,再向下平移3个单位 B .向右平移2个,再向下平移3个单位 C .向左平移2个,再向上平移3个单位D .向右平移2个,再向上平移3个单位9.把抛物线y =ax 2+bx+c 图象先向左平移2个单位长度,再向下平移3个单位长度,所得的图象的解析式是y =x 2+5x+6,则a ﹣b+c 的值为( ) A .2B .3C .5D .1210.已知二次函数y =ax 2+bx +c +2的图象如图所示,顶点为(﹣1,0),下列结论:①abc >0;②b 2﹣4ac =0;③a >2;④ax 2+bx +c =﹣2的根为x 1=x 2=﹣1;⑤若点B (﹣14,y 1)、C (﹣12,y 2)为函数图象上的两点,则y 1>y 2.其中正确的个数是( )A .2B .3C .4D .511.将抛物线y =x 2﹣6x +5化成y =a (x ﹣h )2﹣k 的形式,则hk =_____. 12.如图,ABC ∆的顶点坐标分别为()()()0,4,2,0,4,2A B C ,若二次函数22y x bx =++的图象与阴影部分(含边界)一定有公共点,则实数b 的取值范围是__________.13.若抛物线y=x 2+bx(b>2)上存在关于直线y=x 成轴对称的两个点,则b 的取值范围是______.14.已知抛物线的顶点坐标为(1,8)--,且过点(0,6)-,则该抛物线的表达式为________.15.二次函数22(1)4y x =-+-图象的顶点坐标是______.16.抛物线2(0)y ax a =≠沿某条直线平移一段距离,我们把平移后得到的新抛物线叫做原抛物线的“同簇抛物线”.如果把抛物线2yx 沿直线y x =向上平移,平移距离2时,那么它的“同簇抛物线”的表达式是_____.17.在平面直角坐标系 xOy 中,函数 y = x 2 的图象经过点M (x 1 , y 1 ) ,N (x 2 , y 2 ) 两点,若- 4< x 1< -2, 0< x 2 <2 ,则 y 1 ____ y 2 . (用“ < ”,“=”或“>”号连接) 18.对于二次函数y=5x 2+bx+c ,甲、乙、丙、丁四位同学给出四个说法,甲:图象对称轴是x=1;乙:函数最小值为3;丙:当x=﹣1时,y=0;丁:点(2,8)在函数图象上.其中有且仅有一个说法是错误的,则哪位同学的说法是错误的_____. 19.已知抛物线y=2x 2-bx+3的对称轴经过点(2,—1),则b 的值为______.20.某同学利用描点法画二次函数y =ax 2+bx+c (a≠0)的图象时,列出的部分数据如下表:经检查,发现表格中恰好有一组数据计算错误,请你根据上述信息写出该二次函数的解析式:_____ x 0 1 2 3 4 y3﹣2321.已知二次函数y =﹣x 2﹣2x+3.(1)把函数关系式配成顶点式并求出图象的顶点坐标和对称轴.(2)若图象与x 轴交点为A .B ,与y 轴交点为C ,求A 、B 、C 三点的坐标; (3)在图中画出图象.并求出△ABC 面积.22.已知抛物线2y x bx c =++与y 轴交于点()C 0,6-与x 轴的一个交点坐标是()A 2,0-.()1求此抛物线的顶点D 的坐标;()2将此图象沿x 轴向左平移2个单位长度,直接写出当y 0<时x 的取值范围.23.已知二次函数y =x 2﹣6mx+9m 2+n (m ,n 为常数)(1)若n =﹣4,这个函数图象与x 轴交于A ,B 两点(点A ,B 分别在x 轴的正、负半轴),与y 轴交于点C ,试求△ABC 面积的最大值;(2)若n =4m+4,当x 轴上的动点Q 到抛物线的顶点P 的距离最小值为4时,求点Q 的坐标.24.在平面直角坐标系xOy 中,抛物线2:23c y ax ax =-+与直线:l y kx b =+交于A ,B 两点,且点A 在y 轴上,点B 在x 轴的正半轴上.(1)直接写出点A 的坐标; (2)若1a =-,求直线l 的解析式; (3)若31k -≤≤-,求a 的取值范围.25.如图,是一块三角形材料,∠A =30°,∠C =90°,AB =6.用这块材料剪出一个矩形DECF ,点D ,E ,F 分别在AB ,BC ,AC 上,要使剪出的矩形DECF 面积最大,点D 应该选在何处?26.如图,已知二次函数21:22(0)L y ax ax a a =++->和二次函数22:(2)2(0)=--+>L y a x a 图象的顶点分别为M 、N ,与x 轴分别相交于A 、B 两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1))函数222(0)y ax ax a a =++->的顶点坐标为 ;当二次函数L 1 ,L 2 的y 值同时随着x 的增大而增大时,x 的取值范围是 ;(2)当AD=MN 时,求a 的值,并判断四边形AMDN 的形状(直接写出,不必证明); (3)当B ,C 是线段AD 的三等分点时,求a 的值.27.在如图的平面直角坐标系中,抛物线y =ax 2﹣2amx +am 2+1(a <0)与x 轴交于点A 和点B ,点A 在点B 的左侧,与y 轴交于点C ,顶点是D ,且∠DAB =45°. (1)填空:点C 的纵坐标是 (用含a 、m 的式子表示); (2)求a 的值;(3)点C 绕O 逆时针旋转90°得到点C ′,当﹣12≤m ≤52时,求BC ′的长度范围.28.如图,直线y =-x +4与x 轴,y 轴分别交于点B ,C ,点A 在x 轴负半轴上,且OA =12OB , 抛物线y =ax 2+bx +4经过A ,B ,C 三点.(1)求抛物线的解析式;(2)点P是第一象限内抛物线上的动点,设点P的横坐标为m,过点P作PD⊥BC,垂足为D,用含m的代数式表示线段PD的长,并求出线段PD的最大值;(3)设点E为抛物线对称轴与直线BC的交点,若A,B,E三点到同一直线的距离分别是d1,d2,d3,问是否存在直线l,使得d1= d2=12d3? 若存在,请直接写出d3的值,若不存在,请说明理由.参考答案1.D 【解析】 【分析】根据抛物线的平移规律“左加右减,上加下减”进行判断即可. 【详解】解:抛物线24y x =+先向左平移2个单位,再向下平移1个单位,所得抛物线的函数关系式是:2(2)3y x =++. 故选D. 【点睛】本题考查了抛物线的平移,属于基础题型,熟知抛物线的平移规律是解题的关键. 2.C 【解析】 【分析】由函数y =x 2+bx +c 与x 轴无交点,可得b 2﹣4c <0;当x =3时,y =9+3b +c =3,3b +c +6=0;利用抛物线和双曲线交点(2,1)得出x 的范围;当1<x <3时,二次函数值小于一次函数值,可得x 2+bx +c <x ,继而可求得答案. 【详解】∵函数y =x 2+bx +c 与x 轴无交点, ∴b 2﹣4ac <0; ∴b 2﹣4c <0 故①不正确;当x =3时,y =9+3b +c =3, 即3b +c +6=0; 故②正确;把(1,1)(3,3)代入y =x 2+bx +c ,得抛物线的解析式为y =x 2﹣3x +3, 当x =2时,y =x 2﹣3x +3=1,y =2x=1, 抛物线和双曲线的交点坐标为(2,1)第一象限内,当x>2时,x2+bx+c>2x;或第三象限内,当x<0时,x2+bx+c>2x;故③错误;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确;故选:C.【点睛】本题考查了图象与二次函数系数之间的关系,此题难度适中,注意掌握数形结合思想的应用.3.A【解析】【分析】先将二次函数y=2x2-8x+9变形为顶点式,再利用函数平移规则:上加下减,左加右减,即可解答.【详解】y=2x2-8x+9=2(x-2)2+1所以由y=2x2的图象先向右平移2个单位再向上平移1个单位得到二次函数y=2x2-8x+9的图象.故选A【点睛】本题考查二次函数平移,熟练掌握二次函数平移规律“上加下减,左加右减”是解题关键. 4.A【解析】【分析】首先根据二次函数解析式确定抛物线的对称轴为x=12,再根据抛物线的增减性以及对称性可得y1,y2,y3的大小关系.【详解】解:∵二次函数y =﹣x 2+x ﹣3=﹣(x ﹣12)2﹣114,∴对称轴为x =12, ∵a <0, ∴x <12时,y 随x 增大而增大, ∵(3,y 3)关于对称轴的对称点为(﹣2,y 3) ∴y 3=y 1<y 2. 故选:A . 【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,关键是掌握二次函数的增减性. 5.D 【解析】 【分析】首先求出抛物线与x 轴两个交点坐标,然后由题意得到n n A B 111n n =-+,进而求出1122A B A B ++⋅⋅⋅20152015A B +的值.【详解】 令y =x 2()211n n n +-+x ()11n n +=+0, 即x 2()211n n n +-+x()11n n +=+0, 解得:x 1n =或x 11n =+, 故抛物线y =x 2()211n n n +-+x ()11n n ++与x 轴的交点为(1n ,0),(11n +,0),由题意得:n n A B 111n n =-+,则1122A B A B ++⋅⋅⋅20152015A B +=11111122320152016-+-++-=11201520162016-=. 故选D . 【点睛】本题考查了抛物线与x 轴交点的知识,解答本题的关键是求出n n A B . 6.B 【解析】 【分析】根据二次函数图象上点的坐标特征,把三个点的坐标分别代入二次函数解析式,计算出y 1、y 2、y 3的值,然后比较它们的大小. 【详解】当x=-3时,y 1=-x 2=-9;当x=-1时,y 2=-x 2=-1;当x=2时,y 3=-x 2=-4, 所以y 1<y 3<y 2. 故选B . 【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式. 7.A 【解析】 【分析】先确定两个抛物线的顶点坐标,再利用点平移的规律确定抛物线平移的情况. 【详解】解:抛物线y=-x 2的顶点坐标为(0,0),抛物线y=﹣(x+2)2﹣3的顶点坐标为(-2,-3),而点(0,0)向左平移2个,再向下平移3个单位可得到(-2,-3),所以抛物线y=-x 2向左平移2个,再向下平移3个单位得到抛物线y=﹣(x+2)2﹣3. 故选A . 【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 8.C【解析】【分析】 根据图上给出的条件是与x 轴交于(1,0),叫我们加个条件使对称轴是x=2,意思就是抛物线的对称轴是x=2是题目的已知条件,这样可以求出a 、b 的值,然后即可判断题目给出四个人的判断是否正确.【详解】解:∵抛物线过(1,0),对称轴是x=2,3022a b b a++=⎧⎪∴⎨-=⎪⎩ 解得a=1,b=-4,∴y=x 2-4x+3,当x=3时,y=0,所以小华正确;当x=4时,y=3,小彬也正确,小明也正确;抛物线被x 轴截得的线段长为2,已知过点(1,0),则可得另一点为(-1,0)或(3,0),所以对称轴为y 轴或x=2,此时答案不唯一,所以小颖错误.故选:C .【点睛】本题是开放性题目,要把题目的结论作为题目的条件,再推理出四个人说的结论的正误.难度较大.9.B【解析】【分析】求得平移后抛物线的顶点坐标,根据平移规律求得原抛物线的顶点坐标,写出原抛物线解析式,即可取得a 、b 、c 的值.【详解】y =x 2+5x+6=(x+)2﹣.则其顶点坐标是(﹣,﹣),将其右左平移2个单位长度,再向上平移3个单位长度后得到(﹣,).故原抛物线的解析式是:y =(x+)2+=x 2+x+3.所以a =b =1,c =3.所以a ﹣b+c =1﹣1+3=3.故选B .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.10.D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】 解:①由抛物线的对称轴可知:02b a -<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>,∴0c >,∴0abc >,故①正确;②抛物线与x 轴只有一个交点,∴0∆=,∴240b ac -=,故②正确;③令1x =-,∴20y a b c =-++=, ∵12b a-=-, ∴2b a =,∴220a a c -++=,∴2a c =+,∵22c +>,∴2a >,故③正确;④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确; ⑤∵11124-<-<-, ∴12y y >,故⑤正确;故选D .【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.11.﹣12.【解析】【分析】将抛物线化成顶点式,可得h ,k 的值,代入计算即可.【详解】解:∵y =x 2﹣6x +5=x 2﹣6x +9﹣4=(x ﹣3)2﹣4,∴h =3,k =﹣4,∴hk =3×(﹣4)=﹣12.故答案是:﹣12.【点睛】本题考查了抛物线的顶点式,熟练掌握顶点式的转化是解题关键.12.b≥-4【解析】【分析】因为a=1>0,根据左同右异可知,对称轴在y 轴的左侧时,b >0,对称轴在y 轴右侧时,b <0,对称轴x=-2b ≤2时,二次函数y=x 2+bx+2的图象与阴影部分(含边界)一定有公共点. 【详解】抛物线y=x 2+bx+2与y 轴的交点为(0,2),∵C (4,2),当对称轴在y 轴的右侧时当C 与(0,2)是对称点时,抛物线的对称轴的位置在最右边,∴对称轴0<-2b ≤2时,二次函数y=x 2+bx+2的图象与阴影部分(含边界)一定有公共点, ∴-4≤b <0.当对称轴在y 轴或y 轴的右侧时,都满足条件则有-02b ≤ 解得:b ≥0, 故有b≥-4故答案为b≥-4.【点睛】本题考查了二次函数图象与系数的关系,解题时,利用了二次函数对称轴的位置列不等式来求b 的取值范围,并利用数形结合的思想.13.b>3【解析】【分析】可设出对称的两个点P ,Q 的坐标,利用两点关于直线y=x 成轴对称,可以设直线PQ 的方程为y=-x+a ,由于P 、Q 两点存在,所以方程组2y x a y x bx =-+⎧⎨=+⎩有两组不同的实数解,利用中点在直线上消去b ,建立关于a 的函数关系,求出变量a 的范围.【详解】解:设抛物线上关于直线l 对称的两相异点为P (x 1,y 1)、Q (x 2,y 2),线段PQ 的中点为M (x 0,y 0),设直线PQ 的方程为y=x+a ,由于P 、Q 两点存在,所以方程组2y x a y x bx=-+⎧⎨=+⎩有两组不同的实数解, 即得方程x 2+(1+b )x -a=0.①判别式△=21b ()+-41a ⨯⨯-()>0.② 由①得x 0=x1x22+=-1b 2+,y 0=-x 0+a=1b 2++a ∵M (x 0,y 0)在y=x 上,x 0=y 0∴-1b 1b 22++=+a ∴a=-b-1代入②解得b >3或b <-1 ∵b>2,∴b >3故答案为b >3【点睛】本题考查了直线与抛物线的位置关系,以及对称问题,属于难题,有一定的计算量. 14.22(1)8y x =+-【解析】【分析】利用顶点式求解即可,设y=a (x+1)2-8,把(0,6)-代入求解.【详解】设y=a (x+1)2-8,把(0,6)-代入,得-6=a ×(0+1)2-8,∴a=2,∴22(1)8y x =+-.故答案为:22(1)8y x =+-.【点睛】本题考查了用待定系数法求二次函数解析式的方法,关键是根据条件确定抛物线解析式的形式,再求其中的待定系数.一般式:y=ax 2+bx+c (a≠0);顶点式y=a (x-h )2+k ,其中顶点坐标为(h ,k );交点式y=a (x-x 1)(x-x 2),抛物线与x 轴两交点为(x 1,0),(x 2,0).15.(-1,-4)【解析】【分析】根据抛物线的顶点式直接得到答案.【详解】二次函数22(1)4y x =-+-图象的顶点坐标是(1,4)--.【点睛】本题考查二次函数的顶点式,二次函数的顶点式为y=a (x-h )2+k ,顶点坐标是(h ,k ),解决此题需注意坐标的符号问题.16.()211y x =-+【解析】【分析】沿直线y=x y=ax 2 (a≠0)向右平移1个单位,向上平移1个单位,即可得到平移后抛物线的表达式.【详解】解:∵抛物线2y x =沿直线y x =向上平移,相当于抛物线()2y ax a 0=≠向右平移1个单位,向上平移1个单位,∴根据平移的规律得到:“同簇抛物线”的表达式是()2y x 11=-+.故答案为:()2y x 11=-+.【点睛】本题考查了二次函数的几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式只考虑平移后的顶点坐标,即可求出解析式.17.>【解析】【分析】通过比较点M 和点N 到y 轴的距离的远近判断y 1与y 2的大小.【详解】解:抛物线y=x 2的对称轴为y 轴,而M (x 1,y 1)到y 轴的距离比N (x 2,y 2)点到y 轴的距离要远,所以y 1>y 2.故答案为:>.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.利用二次函数的图象比较二次函数值的大小比较简便.18.丙【解析】【分析】设甲乙正确,利用顶点时写出抛物线的解析式为y=5(x-1)2+3,然后计算自变量为-1和2对应的函数值,从而判断丙错误.【详解】若甲乙对,则抛物线的解析式为y=5(x-1)2+3,当x=-1时,y=23,此时丙错误;当x=2时,y=8,此时丁正确.而其中有且仅有一个说法是错误的,所以只有丙错误.故答案为丙.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.19.8【解析】【分析】根据公式法可求对称轴,可得关于b 的一元一次方程,解方程即可.【详解】∵抛物线y=2x 2-bx+3的对称轴经过点(2,-1),∴对称轴x=-22b =2, 解得:b=8.故答案为8.【点睛】此题考查二次函数的性质,掌握利用公式法求对称轴是解决问题的关键.20.y=x2﹣4x+3.【解析】【分析】由图表的信息知:第一、二、四、五个点的坐标都关于x=2对称,所以错误的一组数据应该是(2,-2);可选取其他四组数据中的任意三组,用待定系数法求出抛物线的解析式.【详解】解:选取(0,3)、(1,0)、(3,0);设抛物线的解析式为y=a(x﹣1)(x﹣3),则有:a(0﹣1)(0﹣3)=3,a=1;∴y=(x﹣1)(x﹣3)=x2﹣4x+3.故答案为y=x2﹣4x+3【点睛】本题考查了用待定系数法求函数解析式的方法,能够正确的判断出错误的一组数据是解答此题的关键.21.(1)y=﹣(x+1)2+4(2)抛物线与 y 轴的交点 C(0,3)(3)6【解析】【分析】(1)根据配方法步骤将解析式配成顶点式可得;(2)求出y=0时x的轴可得点A、B的坐标,求出x=0时y的值可得点C的坐标;(3)根据抛物线的顶点坐标及其与坐标轴的交点可画出抛物线的图象,再由三角形的面积公式可得答案.【详解】(1)∵y=﹣x2﹣2x+3=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴抛物线的顶点坐标为(﹣1,4),对称轴为直线 x =﹣1; (2)当 y =0 时,﹣x 2﹣2x+3=0,解得:x =1 或 x =﹣3,∴抛物线与 x 轴的交点 A (﹣3,0)、B (1,0),当 x =0 时,y =3,∴抛物线与 y 轴的交点 C (0,3);(3)其函数图象如下图所示:S △ABC = AB•y C = ×4×3=6.【点睛】本题考查的知识点是抛物线与x 轴的交点,二次函数的性质,二次函数的三种形式,解题的关键是熟练的掌握抛物线与x 轴的交点,二次函数的性质,二次函数的三种形式.22.(1) D 的坐标为125,24⎛⎫-⎪⎝⎭;(2) 4x 1-<<. 【解析】【分析】 ()1根据抛物线2y x bx c =++与y 轴交于点()C 0,6-与x 轴的一个交点坐标是()A 2,0-,可以求得该抛物线的解析式,然后将解析式化为顶点式,即可求得点D 的坐标;()2根据平移的特点,可以得到平移后抛物线的解析式,从而可以写出当y 0<时x 的取值范围.【详解】解:()1抛物线2y x bx c =++与y 轴交于点()C 0,6-与x 轴的一个交点坐标是()A 2,0-, {c 642b c 0=-∴-+=,得{b 1c 6=-=-, ∴抛物线的解析式为22125y x x 6(x )24=--=--, ∴此抛物线的顶点D 的坐标为125,24⎛⎫- ⎪⎝⎭; ()2抛物线的解析式为2125y (x )24=--, ∴此图象沿x 轴向左平移2个单位长度后对应的函数解析式为:22125325y (x 2)(x )2424=-+-=+-, ∴平移后抛物线的对称轴为直线3x 2=-,当y 0=时,1x 4=-,2x 1=, ∴当y 0<时x 的取值范围是4x 1-<<.【点睛】本题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象与几何变换,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.23.(1)当m =0时,△ABC 的面积最大为8;(2)Q 点的坐标为(﹣6,0)或(0,0).【解析】【分析】(1)把n =﹣4代入得到带有m 的解析式解析式y =x 2﹣6mx+9m 2﹣4,再用带有m 的值表示出A 、B 、C 的坐标,然后得出三角形面积判断最大值;(2)把n =4m+4代入原解析式得到y =(x ﹣3m )2+4m+4,得出顶点P 的坐标,再根据动点Q 到抛物线的顶点P 的距离最小时为PQ 的横坐标相同,即可得出Q 的坐标.【详解】解:(1)若n =﹣4,则y =x 2﹣6mx+9m 2﹣4,当x =0时,y =9m 2﹣4,∴C (0,9m 2﹣4),∵这个函数图象开口向上,与x 轴交于A ,B 两点(点A ,B 分别在x 轴的正、负半轴),与y 轴交于点C ,∴9m 2﹣4<0,当y =0时,x 2﹣6mx+9m 2﹣4=0,x 1=3m+2,x 2=3m ﹣2,∴A (3m+2,0),B (3m ﹣2,0),∵3m+2﹣(3m ﹣2)=4,∴AB =4,∴S △ABC =1•2C AB y =12×4•(﹣9m 2+4)=﹣2m 2+8, ∵﹣2<0,∴当m =0时,△ABC 的面积最大为8;(2)若n =4m+4,则y =x 2﹣6mx+9m 2+4m+4=(x ﹣3m )2+4m+4,∴P (3m ,4m+4),当动点Q 到抛物线的顶点P 的距离最小值为4时,则Q 为(3m ,0)且4m+4=±4, 解得m =﹣2或m =0,∴Q 点的坐标为(﹣6,0)或(0,0).【点睛】本题是二次函数的动点题型,此题综合性较强,难度较大,解题的关键是注意数形结合与方程思想的应用.24.(1)()0,3A ;(2)3y x =-+;(3)a<−1或a>3【解析】【分析】(1)抛物线C :y=ax 2-2ax+3与y 轴交于点A ,令x=0,即可求得A 的坐标;(2)令y=0,解方程即可求得B 的坐标,然后根据待定系数法即可求得直线l 的解析式; (3)当a=3时,抛物线C 过点B (1,0),此时k=-3.当a=-1时,抛物线C 过点B (3,0),此时k=-1.结合图象即可求得.【详解】(1)∵抛物线C:y=ax 2−2ax+3与y 轴交于点A ,∴点A 的坐标为(0,3).(2)当a=−1时,抛物线C 为y=−x 2+2x+3.∵抛物线C与x轴交于点B,且点B在x轴的正半轴上,∴点B的坐标为(3,0).∵直线l:y=kx+b过A,B两点,∴330bk b=⎧⎨+=⎩.解得13kb=-⎧⎨=⎩.∴直线l的解析式为y=−x+3.(3)如图,当a>0时,当a=3时,抛物线C过点B(1,0),此时k=−3.结合函数图象可得a>3.当a<0时,当a=−1时,抛物线C过点B(3,0),此时k=−1.结合函数图象可得a<−1.综上所述,a的取值范围是a<−1或a>3.【点睛】本题考查一次函数和二次函数综合,解题的关键是掌握待定系数法求解析式.25.使剪出的矩形DECF面积最大,点D应该选在AB的中点.【解析】【分析】根据直角三角形的性质求出BC,根据勾股定理求出AC,根据矩形的面积公式列出函数解析式,根据二次函数的性质解答即可.【详解】解:∵∠C=90°,∠A=30°,∴BC =12AB =3,由勾股定理得,AC ==在Rt △ADF 中,∠A =30°,∴AD =2DF ,AF DF ,∴CF =AC ﹣AF =,则矩形DECF 面积=DF ×()2=23)24DF -+当DF =32时,剪出的矩形DECF 面积最大, 则AD =2DF =3,∴使剪出的矩形DECF 面积最大,点D 应该选在AB 的中点.【点睛】本题考查的是勾股定理、二次函数的性质、矩形的性质,根据勾股定理、矩形的面积公式列出二次函数解析式是解题的关键.26.(1)顶点坐标为M (-1,-2),12x -<<;(2)四边形AMDN 是矩形,理由见解析;(3)a =329 【解析】【分析】(1)把222(0)y ax ax a a =++->化为顶点式()212y a x =+-,即可求出顶点坐标;根据图像即可求出次函数L 1 ,L 2 的y 值同时随着x 的增大而增大时,x 的取值范围; (2)由两点间的距离公式求出MN 的长,用含a 的代数式表示出AD 的长,根据AD =MN列方程即可求出a 的值;由两点间的距离公式可求AN =MD ,AM =DN ,从而可证四边形AMDN是平行四边形,又AD =MN ,所以可证四边形AMDN 是矩形;(3)当B ,C 是线段AD 的三等分点时,分两种情况,根据两点间的距离公式求解:①点C 在点B 的左边,②点B 在点C 的左边.【详解】(1)∵222(0)y ax ax a a =++->∴()212y a x =+-,∴顶点坐标为M (-1,-2);∵M (-1,-2),N (2,2),∴当1x >-时, L 1 的y 值随着x 的增大而增大,当2x <时,L 2的y 值随着x 的增大而增大. ∴x 的取值范围是12x -<< .(2)如图1,MN =,当y=0时,即()2120a x +-=,解得1A x =--1B x =-+当y=0时,即()2220a x --+=,2C x =-2D x =+∴AD=(2+-(1--=3+当AD=MN 时,即3+,解得a =2. 当 a =2时,1A x =--2,2D x =3,∵==∴AN=DM,∵==,∴AM=DN,∴四边形AMDN 是平行四边形,∵AD=3-(-2)=5,MN=5,∴AD=MN,∴四边形AMDN 是矩形 ;(3)当B,C是线段AD的三等分点时,存在以下两种情况:①点C在点B的左边,如图2,BC=(21a-+-(22a-=232a-+AC=BD=3 ,即232a-+,解得29a=;②点B在点C的左边,如图3,CB=(22a--(21a-+=23a-AB=CD=22a,即22a23a-329a= .【点睛】本题考查了二次函数一般式与顶点式的互化,二次函数的图像与性质,两点间的距离公式,矩形的判定,数形结合及分类讨论的数学思想.掌握一般式化顶点式的方法是解(1)的关键;灵活运用两点间的距离公式是解(2)的关键;分两种情况求解是解(3)的关键.27.(1)am2+1;(2)a=﹣1;(3)0≤BC′≤94.【解析】【分析】(1)代入0x =求出y 值,此问得解;(2)设抛物线对称轴与x 轴交于点E ,由二次函数的对称性可得出ABD 为等腰直角三角形,进而可得出2AB DE =,利用二次函数图象上点的坐标特征可得出点B 、D 的坐标,由2AB DE =可得出关于a 的无理方程,解之即可得出a 值;(3)由(1)(2)可得出点B 、C 的坐标,由旋转的性质可得出点'C 的坐标,利用两点间的距离公式可求出2'2BC m m =-++,再利用二次函数的性质即可求出:当1522m -≤≤时,'BC 的长度范围. 【详解】解:(1)当x =0时,y =ax 2﹣2amx +am 2+1=am 2+1,∴点C 的纵坐标为am 2+1.故答案为am 2+1.(2)设抛物线对称轴与x 轴交于点E ,如图1所示.∵DA =DB ,∠DAB =45°,∴△ABD 为等腰直角三角形,∴AB =2DE .∵y =ax 2﹣2amx +am 2+1=a (x ﹣m )2+1,∴点D 的坐标为(m ,1).当y =0时,ax 2﹣2amx +am 2+1=0,即a (x ﹣m )2=﹣1,解得:x 1=m x 2=m∴AB =2, 解得:a =﹣1.(3)由(1)(2)可知:点C 的坐标为(0,1﹣m 2),点B 的坐标为(m +1,0).∵点C 绕O 逆时针旋转90°得到点C ′,∴点C ′的坐标为(m 2﹣1,0),∴BC ′=|m +1﹣(m 2﹣1)|=|﹣m 2+m +2|.∵﹣m 2+m +2=﹣(m ﹣12)2+94,﹣12≤m ≤52,∴当m=52时,﹣m2+m+2取得最小值,最小值为﹣74;当m=12时,﹣m2+m+2取得最大值,最大值为94,∴当﹣12≤m≤52时,﹣74≤﹣m2+m+2≤94,∴当﹣12≤m≤52时,0≤BC′≤94.【点睛】本题考查了二次函数图象上点的坐标特征、等腰直角三角形、解无理方程、两点间的距离公式以及二次函数的性质,解题的关键是:(1)代入0x 求出y值;(2)利用等腰直角三角形的性质找出关于a的无理方程;(3)利用二次函数的性质找出'BC的长度范围.28.(1)y=-12x2+ x+4;(2)当m=2时,PE2;(3)存在,满足题意的d3的值为2或665.【解析】【分析】(1)由直线y=-x+4得出B(4,0),C(0,4),即可得出A(-2,0),将A与B坐标代入抛物线解析式求出a与b的值,即可确定出抛物线解析式;(2)已知P点横坐标,根据直线AB、抛物线的解析式,求出C、P的坐标,由此得到线段PC的长;在Rt△OBC中,∠OCB=45°,根据平行线的性质得出∠PFD=45°,解直角三角形即可求出PD的表达式,利用二次函数的性质求出PD的最大值即可.(3)见解析.【详解】解:(1)由y=-x+4得当x=0时,y=4;当y=0时,x=4.∴B (4,0) ,C (0,4), ∴ OB =4.∴ OA =12OB =2, ∴ 点 A (-2,0). 把A (-2,0),B (4,0)分别代入抛物线y =ax 2+bx +4中,得4230,16430.a b a b -+=⎧⎨++=⎩ 解得1,21.a b ⎧=-⎪⎨⎪=⎩ ∴ 抛物线的解析式为 y =-12x 2+ x +4. (2)∵ 点P 的横坐标为m ,则P (m ,-12m 2+ m +4). 过点P 作PF ∥y 轴交BC 于点F ,则F (m ,-m +4) .∴ PF =-12m 2+ m +4-(-m +4)=-12m 2+2m . 在Rt △OBC 中,OB =4,OC =4.又 PF ∥y 轴, ∴ ∠PFD =∠OCB=45°.∴ PD =PF ·sin ∠PFD = PF ·sin ∠OCB =22(-12m 2+2m )=-24(m -2)22 ∵ 0<m <4,-24<0,∴ 当m =2时,PE 2 (3)存在,∵y =-12x 2+ x +4=-12(x-1)²+92, ∴C 点坐标为(1,3),如图,d 1= d 2=12d 3 ,满足题意的d3的值为2或6或655.【点睛】本题考查了二次函数的应用以及解析式的确定、解直角三角形等知识,主要考查学生数形结合思想的应用能力,。

人教版初中数学第二十七章第3节《位似》单元测试题 (3)(含答案解析)

人教版初中数学第二十七章第3节《位似》单元测试题 (3)(含答案解析)

第二十七章第3节《位似》单元测试题 (3)一、单选题1.如图,在平面直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形111OA B C 与矩形OABC 关于点O 位似,且矩形111OA B C 的面积等于矩形OABC 面积的14,那么点1B 的坐标是( )A .()2,3-B .()2,3-C .31,2⎛⎫- ⎪⎝⎭或31,2⎛⎫- ⎪⎝⎭ D .()2,3-或()2,3- 2.如图,已知矩形OABC 与矩形ODEF 是位似图形,P 是位似中心,若点B 的坐标为()2,4,点E 的坐标为()1,2-,则点P 的坐标为( )A .()4,0-B .()3,0-C .()2,0-D .()1.5,0- 3.将铁丝围成的△ABC 铁框平行地面(水平)放置,并在灯泡的垂直照射下,在地面上的影子是△A′B′C′,那么△ABC 与△A′B′C′之间是属于( )A .对称变换B .平移变换C .位似变换D .旋转变换 4.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA 'B 'C '与矩形OABC 关于点O 位似,且矩形OA 'B 'C '的面积等于矩形OABC 面积的14,那么点B '的坐标是( )A .(3,2)B .(-2,-3)C .(2,3)或(-2,-3)D .(3,2)或(-3,-2) 5.下列说法正确的是( )A .四条边相等的平行四边形是正方形B .一条线段有且仅有一个黄金分割点C .对角线相等且互相平分的四边形是菱形D .位似图形一定是相似图形6.如图ABC ∆中,已知13AD AC =,14AE AB =,且ABC ∆的面积为218cm ,则BDE ∆的面积为( )A .26cmB .C .D .7.如图,小“鱼”与大“鱼”是位似图形,如果小“鱼”上一个“顶点”的坐标为(a ,b ),那么大“鱼”上对应“顶点”的坐标为( ).A .(-a ,-2b )B .(-2a ,-b )C .(-2a ,-2b )D .(-2b ,-2a ) 8.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC 的三个顶点均在格点(网格线的交点)上.以原点O 为位似中心,画△A 1B 1C 1,使它与△ABC 的相似比为2,则点B 的对应点B 1的坐标是( )A .(4,2)B .(1,12)C .(1,12)或(﹣1,﹣12)D .(4,2)或(﹣4,﹣2)二、填空题9.如图,DEF 和ABC 是位似图形,点O 是位似中心,点D 、E 、F 分别是OA 、OB 、OC 的中点,若DEF 的面积是2,则ABC 的面积是__________.10.如图,OAB ∆与OCD ∆是以O 点为位似中心的位似图形,相似比为1:2,90,OCD CO CD ∠=︒=,若()10B ,,则点C 的坐标为_________.11.如图,在平面直角坐标系中,将OBC 各顶点的横、纵坐标都乘以一个相同的数得到OED ,若(1,2)B ,(2,0)C ,(5,0)D ,则点E 的坐标为__________.12.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,B 的坐标是()4,2,如果以点O 为位似中心,将矩形OABC 缩小为原来的12,那么点B 的对应点B '的坐标是________.13.已知11OA B ∆在直角坐标系内的位置如图所示, 111112,60,90OA AOB A B O =∠=︒∠=︒,把11OA B ∆绕原点O 逆时针旋转60︒后,再以原点O 为位似中心放大为原来的2倍,得到22OA B ∆,完成一次图形变换,经过2019次图形变换之后,点2019A 的坐标是___________14.如图,已知图中的每个小方格都是边长为工的小正方形,每个小正方形的顶点称为格点,若ABC 与111A B C △是位似图形,且顶点都在格点上,则位似中心的坐标是______.15.△ABC 三个顶点的坐标分别为A (2,2),B (4,2),C (6,4).以原点O 为位似中心,将△ABC 缩小得到△DEF ,其中点D 与A 对应,点E 与B 对应,△DEF 与△ABC 对应边的比为1:2,这时点F 的坐标是_____.三、解答题16.如图,在1010⨯的网格中,每个小方格的边长看做单位1,每个小方格的顶点叫做格点,ABC ∆的顶点都在格点上.(1)请在网格中画出ABC ∆的一个位似图形111A B C ∆,使两个图形以点C 为位似中心,且所画图形与ABC ∆的位似比为2:1;(2)将111A B C ∆绕着点1C 顺时针旋转90得到222A B C ∆,画出图形,并求1A 绕着点1C 旋转到点2A 所经过的路径的长.17.如图,ABC ∆的顶点均在正方形网格的格点上,在已知的直角坐标系中,(1,0)A ,(3,1)C (1)画出将ABC ∆绕原点O 按逆时针方向旋转90后所得的111A B C ∆,并写出点1B 的坐标; (2)在网格内,以点O 为位似中心,画出与ABC ∆位似的图形222A B C ∆,使点2C 的坐标为(6,2)--18.如图,在平面直角坐标系中,OAB 的三个顶点都在格点上,其中点A 的坐标为()2,1.请在y 轴的左侧,以原点O 为位似中心,作OAB 的位似图形()OA B ''△),并使OA B ''△与OAB 的相似比为2.19.如图,在平面直角坐标系中,已知ABC ∆三个顶点的坐标分别为(1,2)A -,(3,4)B -,(2,6)C -.(1)画出ABC ∆绕点A 顺时针旋转90︒后得到的111A B C ∆;并写出点1A ,1B ,1C 的坐标; (2)以原点O 为位似中心,画出将111A B C ∆三条边放大为原来的2倍后的222A B C ∆. 20.如图,△ABC 与△A′B′C′是位似图形,且位似比是1:2.(1)在图中画出位似中心点O ;(2)若AB=2cm ,则A′B′的长为多少?21.已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)以点B 为位似中心,在网格内画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 位似,且位似比为2:1,点C 1的坐标是_______;(2)△A 1B 1C 1的面积是_______平方单位.22.如图,在直角坐标系中,△ABC 的三个顶点坐标分别为A (2,1),B (1,4),C (3,2).请解答下列问题:(1)画出△ABC 关于y 轴对称的图形△A 1B 1C 1,并直接写出C 1点的坐标;(2)以原点O 为位似中心,位似比为1:2,在y 轴的右侧,画出△ABC 放大后的图形△A 2B 2C 2,并直接写出C 2点的坐标;(3)如果点D (a ,b )在线段BC 上,请直接写出经过(2)的变化后对应点D 2的坐标. 23.如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标是A (0,﹣2),B (6,﹣4),C (2,﹣6).(1)请画出与△ABC 关于x 轴对称的△A 1B 1C 1.(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在y 轴左侧画出△A 2B 2C 2. (3)在y 轴上存在点P ,使得△OB 2P 的面积为6,请直接写出满足条件的点P 的坐标.24.在坐标系中,ABC ∆的三个顶点坐标分别为2,4, 3,()()2, (6),3.A B C ---(1)画出ABC ∆关于x 轴对称的111A B C ∆;(2)以M 点为位似中心,在第一象限中画出将111A B C ∆按照2:1放大后的位似图形222A B C ∆; (3)222A B C ∆面积为_______.(直接写出答案)25.如图,在10×10正方形网格中,每个小正方形边长均为1个单位.建立坐标系后,△ABC 中点C 坐标为(0,1).(1)把△ABC 绕点C 顺时针旋转90°后得到△A 1B 1C 1,画出△A 1B 1C 1,并写出A 1坐标. (2)把△ABC 以O 为位似中心放大,使放大前后对应边长为1:2,画出放大后的△A 2B 2C 2,并写出A 2坐标.26.按下列要求在如图格点中作图;(1)作出ABC ∆关于原点成中心对称的图形A B C '''∆;(2)以点B 为位似中心,作出ABC ∆放大2倍的图形BA C ''''∆,并写出C ''的坐标. 27.在如图的正方形网格中,每一个小正方形的边长均为1,已知格点△ABC 的顶点A 、C 的坐标分别是(﹣2,0),(﹣3,3).(1)请在图中的网格平面内建立平面直角坐标系.(2)以点(﹣1,2)为位似中心,相似比为2,将△ABC 放大为原来的2倍,得到△A 1B 1C 1,画出△A 1B 1C 1,使它与△ABC 在位似中心的异侧,并写出B 1点坐标为 .(3)线段BC 与线段B 1C 1的关系为 .28.如图,图中小方格都是边长为1的正方形,ABC 与'''A B C 是关于点O 为位似中心的位似图形,它们的顶点都在小正方形顶点上.()1画出位似中心点O ;()2ABC 与'''A B C 的位似比为29.ABC 与'''A B C 位似,且()()()1,22,21,4A B C ---,,,()()0,02,0,A B '',()4,0,C '-画出位似中心,并写出ABC 与'''A B C 的位似比.30.如图,△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),在正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移4个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C,使△A2B2C与△ABC位似,且△A2B2C与△ABC 的位似比为2:1,并直接写出点B2的坐标.【答案与解析】1.D【解析】由矩形111OA B C 与矩形OABC 关于点O 位似,且矩形111OA B C 的面积等于矩形OABC 面积的14,利用相似三角形的面积比等于相似比的平方,即可求得矩形111OA B C 与矩形OABC 的位似比为1:2,又由点B 的坐标为(-4,6),即可求得答案.∵矩形111OA B C 与矩形OABC 关于点O 位似∴矩形111OA B C ∽矩形OABC∵矩形111OA B C 的面积等于矩形OABC 面积的14 ∴位似比为:12∵点B 的坐标为()4,6-∴点1B 的坐标是:()2,3-或()2,3-故答案为:D .本题考查了位似矩形的问题,掌握位似矩形的性质、相似三角形的性质以及判定定理是解题的关键.2.C【解析】 根据位似变换的性质得:2142PO OD PA AB ===,则PO=OA=2,然后写出P 点坐标. 解:∵点B 的坐标为(2,4),点E 的坐标为(-1,2),∴AB=4,OA=2,OD=2,∵矩形OABC 与矩形ODEF 是位似图形,P 是位似中心,∴ 2142PO OD PA AB ===, ∴PO=OA=2,∴P 点坐标为(-2,0).故选:C .本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行.3.C【解析】根据题意,分析可得△ABC 与△A′B′C′的各对应点的位置关系,面积的大小关系等,进而由几何变化的定义可得答案.根据题意,由于△ABC 平行地面放置,且在灯泡的照射下,所以△ABC 与△A′B′C′的各对应点的位置不变,且其连线应交于灯泡的所在的地方,面积大小不一,所以属于位似变换,故选:C .本题考查了常见几何变化的定义与判定,注意结合题意,把握几何变化的定义进行判断. 4.D【解析】利用位似图形的性质得出位似比,进而得出对应点的坐标.解:∵矩形OA′B′C′的面积等于矩形OABC 面积的14, ∴两矩形面积的相似比为:1:2,∵B 的坐标是(6,4),∴点B′的坐标是:(3,2)或(−3,−2).故答案为:D .此题主要考查了位似变换的性质,得出位似图形对应点坐标性质是解题关键.5.D【解析】直接利用位似图形的性质以及矩形、菱形的判定方法分别分析得出答案.解:A 、四条边相等的平行四边形是菱形,故此选项错误; B 、一条线段有且仅有一个黄金分割点不正确,一条线段有两个黄金分割点,故此选项错误; C 、对角线相等且互相平分的四边形是矩形,故此选项错误; D 、位似图形一定是相似图形,正确.故选:D .此题主要考查了位似图形的性质以及矩形、菱形的判定方法,正确掌握相关性质与判定是解题关键.6.B【解析】 根据13AD AC =,可推出ABD ∆和BCD ∆的面积比,由已知ABD ∆和BCD ∆的面积和是18,可求出ABD ∆的面积,同理,由14AE AB =,可知ADE ∆和BDE ∆的面积比,即可求出BDE ∆的面积.∵13AD AC = ∴12S ABD AD S BDC CD == ∴318S ABC S ABD S BCD S ABD =+== ∴6S ABD = ∵14AE AB = ∴13AE BE ∴13S ADE AE S BDE BE == ∴463S ABC S ADE S BDE S BDE =+== ∴92S BDE =故选:B 本题考查了两个三角形同高时,面积比就等于底边的比,已知两个三角形底边比和面积和,即可分别求出两个三角形面积.7.C【解析】根据位似图形的性质结合图形写出对应坐标即可.∵小“鱼”与大“鱼”的位似比是1:2∴大“鱼”上对应“顶点”的坐标为(-2a ,-2b )故答案为:C .本题考查了位似图形的问题,掌握位似图形的性质是解题的关键.8.D【解析】根据位似三角形的性质画出△A 1B 1C 1,再根据位似的性质求出点B 的对应点B 1的坐标即可. 解:由图可知,点B 的坐标为(2,1),∵以原点O 为位似中心,画△A 1B 1C 1,使它与△ABC 的相似比为2,∴点B 的对应点B 1的坐标是(2×2,1×2)或(﹣2×2,﹣1×2),即(4,2)或(﹣4,﹣2), 故选:D .本题考查了位似三角形的问题,掌握位似三角形的性质是解题的关键.9.8.【解析】首先确定相似比,然后确定面积的比,根据一个三角形的面积求得另一个三角形的面积即可. 解:∵点D ,E ,F 分别是OA ,OB ,OC 的中点, ∴12DF AC =, ∴△DEF 与△ABC 的相似比是1:2, ∴2()DEF ABC S DF S AC ∆∆=,即214ABC S ∆=, 解得:S △ABC =8,故答案为:8.本题主要考查了三角形中位线定理、位似的定义及性质,掌握面积的比等于相似比的平方是解题的关键.10.(1,-1)【解析】连接BC ,由三角形OAB 与三角形OCD 为位似图形且相似比为1:2,根据B 的坐标确定出D 坐标,进而得到B 为OD 中点,利用直角三角形中斜边上的中线等于斜边的一半,确定出BC 与OB 的长,再利用三线合一性质得到CB 垂直于OD ,即可确定出C 坐标.连接BC ,∵△OAB 与△OCD 是以点O 为位似中心的位似图形,相似比为1:2,且B(1,0),∴OB=1,OD=2,即B 为OD 中点,∵OC=CD ,∴CB ⊥OD ,在Rt △OCD 中,CB 为斜边上的中线,∴CB=OB=BD=1,则C 坐标为(1,-1),故答案为:(1,-1).本题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.11.(2.5,5)【解析】直接利用位似图形的性质得出位似比进而得出答案.∵将OBC ∆各顶点的横、纵坐标都乘以一个相同的数得到OED ∆,(2,0)C ,(5,0)D .∴对应点坐标同乘以2.5即可故(1,2)B ,对称点E 的坐标为:(2.5,5).故答案为:(2.5,5).本题考查了位似图形的其中一个性质,位似图形上任意一对对应点到位似中心的距离之比等于位似比.12.()2,1或()2,1--【解析】首先根据题意可知矩形OABC 缩小为原来的12,则点B 的横坐标及纵坐标都将进行相应的变化,据此进一步求解即可.由题意得:矩形OABC 缩小为原来的12, ∴缩小后的矩形与最初的矩形OABC 的位似比为12, ∵位似变换是以原点为位似中心,∴位似图形对应点的坐标比为12±, 又∵点B 的坐标为(4,2),∴点B '的坐标为(2,1)或(2-,1-),故答案为:(2,1)或(2-,1-). 本题主要考查了位似图形的性质,熟练掌握相关概念是解题关键.13.()20192,0-【解析】根据∠A n OB n =60°得出该旋转过程是6次一循环,根据2019÷6的余数判定点2019A 和点3A 方向相同,再根据数值变化规律得出2019A 的坐标.解:由题意可知:A 1(1,A 2(-2,,A 3(-8,0),A 4(-8,,∵∠A n OB n =60°,直线OA 在旋转过程中是每6次一个循环,201963363÷=⋅⋅⋅⋅⋅⋅,∴点2019A 和点3A 方向相同,由题意,得231232,2,2OA OA OA ===,20192019OA 2∴=,∴点2019A 的坐标是()20192,0-. 故答案为:()20192,0-.本题考查了点的坐标以及直角三角形的性质,解题的关键是归纳出点A 的坐标变化规律. 14.(8,0)【解析】连接任意两对对应点,看连线的交点为那一点即为位似中心.解:连接BB 1,A 1A ,易得交点为(8,0).故答案为:(8,0).用到的知识点为:位似中心为位似图形上任意两对对应点连线的交点.15.(3,2)或(﹣3,﹣2)【解析】根据以原点O 为位似中心的位似变换的性质计算,得到答案.∵以原点O 为位似中心,将△ABC 缩小得到△DEF ,△DEF 与△ABC 对应边的比为1:2, ∴△DEF 与△ABC 的相似比为1:2,∵C (6,4).∴点C 的对应点F 的坐标为(6×12,4×12)或(﹣6×12,﹣4×12).即(3,2)或(﹣3,﹣2), 故答案为:(3,2)或(﹣3,﹣2).本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .16.(1)图形见详解;(2)图形见详解,【解析】(1)根据位似中心和位似比找到A,B,C 的对应点111,,,A B C ,顺次连接111,,A B C 即可得出答案;(2)先找到111,,A B C 的对应点222,,A B C ,顺次连接222,,A B C 即可得到222A B C ∆,然后利用弧长公式即可求出1A 绕着点1C 旋转到点2A 所经过的路径的长.(1)如图,(2)如图,∵11AC == ,∴1A 绕着点1C 旋转到点2A 所经过的路径的长为:l ==. 本题主要考查画位似图形和旋转图形,掌握位似图形和旋转图形的画法及弧长公式是解题的关键.17.(1)见解析,1(3,3)B -;(2)见解析.【解析】(1)根据绕原点O 按逆时针方向旋转90的性质画出△111A B C ,再写出点1B 的坐标即可; (2)由(3,1)C 和2(6,2)C --可知位似比为-2,直接利用位似图形的性质得出对应点位置. 解:(1)如图所示:1(3,3)B -(2)如图所示:此题主要考查了位似变换以及旋转变换,理解旋转变换及位似变换的性质、正确得出对应点位置是解题关键.18.见解析【解析】由OA B ''△与OAB 的相似比为2可知图形是放大,延长BO 至'B ,使'2OB OB =,按同样的方法确定'A 即可.解:延长BO 至'B ,使'2OB OB =,得到B 的对应点'B ,按同样的方法确定A 的对应 'A ,如图OA B ''△即为所求.本题考查的是位似作图,掌握相似三角形的性质是作图的关键.19.(1))△A1B1C1见解析,A1(-1,2),B1(1,4),C1(3,3);(2)见解析【解析】(1)点A1与点A重合,然后分别画出点B,点C绕点A顺时针旋转90°后的对应点B1,C1即可;(2)延长OA1到A2,使得OA2=2OA1即可,同法可得B2、C2.解:(1)△A1B1C1如图所示,A1(-1,2),B1(1,4),C1(3,3);(2)△A2B2C2如图所示.本题考查旋转变换、位似变换等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,属于中考基础题.20.(1)见解析;(2)A B''的长为4cm【解析】(1)根据位似图形的性质直接得出位似中心即可;(2)利用位似比得出对应边的比进而得出答案.解:(1)如图所示:连接BB′、CC′,它们的交点即为位似中心O;(2)∵△ABC 与△A′B′C′是位似图形,且位似比是1:2,AB=2cm ,∴A′B′的长为4 cm .此题主要考查了位似图形的性质,利用位似比等于对应边的比得出是解题关键.21.(1)画图见解析;点C 1的坐标是(1,0);(2)10.【解析】(1)利用位似图形的性质得出对应点位置,连线即可;(2)利用等腰直角三角形的性质得出△A 1B 1C 1的面积即可.(1)如图所示,根据位似图形的性质,分别找到点A 、B 、C 的对应点A 1、B 1、C 1连接各点得到△A 1B 1C 1,从图中可知,点C 1的坐标是(1,0);(2)根据图形可知,211A B =40,211A C =20 ,211B C =20,满足勾股定理,211A B =211A C +211B C ,∴△A 1B 1C 1是等腰直角三角形,∴△A 1B 1C 1的面积是:1212×20=10, 答:△A 1B 1C 1的面积是10平方单位,故答案为:10.本题考查了位似图形的作图,勾股定理逆定理的应用,平面直角坐标系中的图形面积,掌握位似图形的作图是解题的关键.22.(1)图详见解析,C1(-3,2);(2)图详见解析,C2(6,4);(3)D2(2a,2b)【解析】(1)依据轴对称的性质,即可得到△ABC关于y轴对称的图形△A1B1C1,进而得出C1点的坐标;(2)依据原点O为位似中心,位似比为1:2,即可得出△ABC放大后的图形△A2B2C2,进而得到C2点的坐标;(3)依据原点O为位似中心,位似比为1:2,即可得出对应点D2的坐标.解:(1)如图所示,△A1B1C1即为所求,C1(-3,2);(2)如图所示,△A2B2C2即为所求,C2(6,4);(3)∵原点O为位似中心,位似比为1:2,∴点D(a,b)的对应点D2的坐标为(2a,2b).此题主要考查了利用位似变换进行作图,正确利用位似的性质得出对应点位置是解题的关键.23.(1)详见解析;(2)详见解析;(3)(0,4),(0,﹣4).【解析】(1)直接利用关于x轴对称点的性质得出对应点坐标进而得出答案;(2)直接利用关于位似图形的性质得出对应点坐标进而得出答案;(3)直接利用三角形面积求法得出答案.(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)如图所示:当△OB2P的面积为6时,点P的坐标为:(0,4),(0,﹣4).此题主要考查了轴对称变换以及位似变换,正确得出对应点位置是解题关键.24.(1)见解析;(2)见解析;(3)14【解析】(1)根据轴对称的特点确定对应点并顺次连线即可;(2)分别连接MA1、MA2、MA3并延长相等的距离得到对应点并顺次连线即可;(3)利用割补法即可求出.(1)如图,(2)如图,(3) 222A B C ∆面积=11148242628222⨯-⨯⨯-⨯⨯-⨯⨯=14, 故答案为:14. 此题考查作图能力,正确掌握轴对称的性质、位似图形的性质是解题的关键,还应掌握网格中图形面积的计算方法.25.(1)见解析, A 1(2,3);(2)见解析,A 2(4,-6).【解析】(1)根据旋转变换的定义,将三角形的三个顶点分别顺时针旋转90°后得到对应点,顺次连接即可得;(2)根据位似变换的定义得出点的对应点,顺次连接即可得.解:(1)如下图所示:111A B C △即为所求,A 1坐标为(2,3);(2)如下图所示:222A B C △即为所求,A 2坐标为(4,−6).本题考查了旋转作图及图形位似的知识,解答此类题目的关键是就是寻找对应点,要求掌握旋转三要素、位似的特点.26.(1)如图所示A B C '''∆;(2)如图所示BA C ''''∆, C ''的坐标为(1,3).【解析】(1)根据关于原点对称图形的性质作出图形即可;(2)根据位似图形的性质得出对应点位置,然后确定C ''的坐标即可.解:(1)如图所示:A B C '''∆,即为所求;(2)如图所示:BA C ''''∆,即为所求, C ''的坐标为(1,3)本题主要考查了位似变换以及旋转变换,运用位似变换和旋转变换找到对应点位置是解题关键.27.(1)见解析;(2)见解析,B 1(5,4);(3)BC ∥B 1C 1,B 1C 1=2BC【解析】(1)根据点A、C的坐标即可建立坐标系;(2)根据位似变换的概念作图即可得;(3)利用位似图形的性质可得答案.解:(1)建立的平面直角坐标系如图所示:(2)如图所示,△A1B1C1即为所求,其中B1点坐标为(5,4),故答案为:(5,4);(3)由位似图形的性质可得BC∥B1C1,B1C1=2BC,故答案为:BC∥B1C1,B1C1=2BC.本题考查额方格作图的问题,掌握位似变换的概念、位似图形的性质是解题的关键.28.()1详见解析;()21:2.【解析】(1)直接利用位似图形的性质连接对应点,进而得出点O的位置;(2)直接利用位似图形的性质得出位似比.解:(1)如图所示:点O即为所求.(2)∵'1 2OAOA∴ABC与'''A B C的位似比为1∶2.故答案为1∶2.本题主要考查了位似变换. 正确掌握位似图形的性质是解题的关键.29.作图见详解,位似比为1:2【解析】连接BB′、CC′,它们的交点P为位似中心,根据位似的性质相似比等于位似比,所以计算AB与A′B′的值即可得到△ABC与△A′B′C′的位似比.解:如图,点P为位似中心.∵AB=1,A′B′=2,∴△ABC与△A′B′C′的位似比=AB:A′B′=1:2.本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行或共线.30.(1)详见解析;(2)图详见解析,点B2的坐标为(4,0).【解析】(1)将△ABC向上平移4个单位得到的△A1B1C1即可;(2)画出△A2B2C,并求出B2的坐标即可.解:(1)如图所示,△A1B1C1为所求的三角形;(2)如图所示,△A2B2C为所求三角形,点B2的坐标为(4,0).本题考查了作图-位似变换,平移变换,熟练掌握位似、平移的性质是解本题的关键.。

新人教版初中数学七年级数学上册第一单元《有理数》测试(含答案解析)(3)

新人教版初中数学七年级数学上册第一单元《有理数》测试(含答案解析)(3)

一、选择题1.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( ) A .2个 B .3个 C .4个 D .5个 2.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=3.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是( ) A .28B .34C .45D .754.下列各组数中,不相等的一组是( )A .-(+7),-|-7|B .-(+7),-|+7|C .+(-7),-(+7)D .+(+7),-|-7|5.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作(). A .+0.02克 B .-0.02克C .0克D .+0.04克6.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( ) A .少5B .少10C .多5D .多107.如果向右走5步记为+5,那么向左走3步记为( ) A .+3B .-3C .+13D .-138.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12B .2或-12C .-2或12D .-2或-129.下列说法中错误的有( )个①绝对值相等的两数相等.②若a ,b 互为相反数,则ab=﹣1.③如果a 大于b ,那么a 的倒数小于b 的倒数.④任意有理数都可以用数轴上的点来表示.⑤x 2﹣2x ﹣33x 3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数. A .4个B .5个C .6个D .7个10.某市11月4日至7日天气预报的最高气温与最低气温如表:最高气温(℃) 19 12 20 9 最低气温(℃) 43-45其中温差最大的一天是( ) A .11月4日 B .11月5日 C .11月6日 D .11月7日 11.把实数36.1210-⨯用小数表示为() A .0.0612B .6120C .0.00612D .61200012.下列计算结果正确的是( ) A .-3-7=-3+7=4 B .4.5-6.8=6.8-4.5=2.3 C .-2-13⎛⎫-⎪⎝⎭=-2+13=-213 D .-3-12⎛⎫-⎪⎝⎭=-3+12=-212 二、填空题13.数轴上A 、B 两点所表示的有理数的和是 ________.14.若有理数a ,b 满足()26150a b -+-=,则ab =__________. 15.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1) =[________]+1.2 =________+1.2 =____;(2)32.5+46+(-22.5) =[____]+46 =_____+46 =____.16.下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1ba=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.17.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________. 18.有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0. 19.一个数的25是165-,则这个数是______.20.某班同学用一张长为1.8×103mm ,宽为1.65×103mm 的大彩色纸板制作一些边长为3×102mm 的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.三、解答题21.计算:|﹣2|﹣32+(﹣4)×(12-)322.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值;(2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).23.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.24.计算:(1)()110822⎫⎛---÷-⨯- ⎪⎝⎭(2)()2313232154⎫⎛-⨯--⨯-÷-⎪⎝⎭25.计算下列各式的值:(1)1243 3.55-+- (2)131(48)64⎛⎫-+⨯- ⎪⎝⎭(3)22350(5)1--÷--26.计算:(1)9-(-14)+(-7)-15; (2)12×(-5)-(-3)÷374(3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可. 【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确; ②|-a|一定是非负数,故说法不正确; ③倒数等于它本身的数为±1,说法正确; ④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确. 说法正确的有③、⑥, 故选A . 【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.2.C解析:C 【分析】根据有理数的运算法则逐一判断即可.【详解】(2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C . 【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.3.C解析:C 【分析】日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a ,则上边的数是a - 7,下边的数是a + 7,则三个数的和是3a ,因而一定是3的倍数,且3数之和一定大于等于24,一定小于等于72,据此即可判断. 【详解】日历纵列上圈出相邻的三个数,下边的数总比上边的数大7,设中间的数是a ,则上边的数是a - 7,下边的数是a + 7,则三个数的和是3a ,因而一定是3的倍数,当第一个数为1,则另两个数为8,15,则它们的和为24,当第一个数为17,则另两个数为24,31,则它们的和为72,所以符合题意的三数之和一定在24到72之间,所以符合题意的只有45,所以C 选项是正确的. 【点睛】此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值范围是关键.4.D解析:D 【详解】A.-(+7)=-7,-|-7|=-7,故不符合题意;B.-(+7)=-7,-|+7|=-7,故不符合题意;C.+(-7)=-7,-(+7)=-7,故不符合题意;D.+(+7)=7,−(−7 )=−7,故符合题意, 故选D.5.B解析:B 【解析】 -0.02克,选A.6.D解析:D 【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10. 故选D .7.B解析:B 【解析】 试题用正负数来表示具有意义相反的两种量:向右记为正,则向左就记为负,由此得:如果向右走5步记为+5,那么向左走3步记为﹣3. 故选B .8.A解析:A 【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可. 【详解】由x 7=可得x=±7,由y 5=可得y=±5, 由x+y>0可知:当x=7时,y=5;当x=7时,y=-5, 则x y 75122-=±=或, 故选A 【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.9.C解析:C 【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断. 【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a ,b 互为相反数,则ab=-1在a 、b 均为0的时候不成立,故本小题错误; ③∵如果a=2,b=0,a >b ,但是b 没有倒数, ∴a 的倒数小于b 的倒数不正确, ∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确; ⑤x 2-2x-33x 3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确; ⑦负数的相反数是正数,大于负数,故本小题错误; ⑧负数的偶次方是正数,故本小题错误, 所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.10.C解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C.【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.11.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.二、填空题13.-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1【解析】由数轴得,点A表示的数是﹣3,点B表示的数是2,∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.14.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab的值再把ab的值代入ab中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a,b 的值,再把a、b的值代入ab中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.15.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56【分析】(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.【详解】解:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2 =-2.4;(2)32.5+46+(-22.5) =[32.5+(-22.5)]+46 =10+46 =56.故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56. 【点睛】本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.16.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab 互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶解析:④ 【分析】利用绝对值的代数意义,有理数的加法,倒数的定义及有理数的乘法法则判断即可. 【详解】①若||a b =,则0b ,故a b =或=-a b ,当b<0时,无解,故①错误; ②0ab 时,a ,b 互为相反数,但是对于等式1ba=-不成立,故②不正确; ③几个有理数相乘,如果负因数有偶数个,但其中有因数0,那么它们的积为0,故③不正确;④两个正数相加,此时和大于每一个加数;一正数一负数相加,此时和大于负数;一个数和0相加,等于这个数;只有两个负数相加,其和小于每一个加数,故④正确; ⑤0除以0没有意义,故⑤不正确. 综上,正确的有④. 故答案为:④. 【点睛】本题考查了绝对值、相反数、有理数的加法、有理数的除法等基础知识点,这都是必须掌握的基础知识点.17.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0 【分析】将同分母的分数分别相加,再计算加法即可. 【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦. 故答案为:0. 【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.18.<<<>【分析】数轴上右边表示的数总大于左边表示的数左边的数为负数右边的数为正数;根据有理数减法法则进行判断即可【详解】由题图可知所以故答案为:<<<>【点睛】考核知识点:有理数减法掌握有理数减法法解析:< < < > 【分析】数轴上右边表示的数总大于左边表示的数.左边的数为负数,右边的数为正数;根据有理数减法法则进行判断即可. 【详解】由题图可知01b a c <<<<,所以0,10,0,10a b b a c c +<-<-<-> 故答案为:<,<,<,> 【点睛】考核知识点:有理数减法.掌握有理数减法法则是关键.19.−8【分析】把这个数看成单位1它的对应的数量是求这个数用除法【详解】()÷=−8故答案为−8【点睛】此题考查有理数的除法解题关键在于这个数看成单位1解析:−8 【分析】把这个数看成单位“1”,它的25对应的数量是165-,求这个数用除法【详解】(165-)÷25=−8. 故答案为−8. 【点睛】此题考查有理数的除法,解题关键在于这个数看成单位“1”20.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30 【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.三、解答题21.162- 【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:|﹣2|﹣32+(﹣4)×(12-)3 =2﹣9+(﹣4)×(﹣18) =2+(﹣9)+12=162-. 【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 22.(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】(1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d ,∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=; ①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.23.(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可.【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a .【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.24.(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ =1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.25.(1)-24.3;(2)-76;(3)-12【分析】(1)先将减法化为加法,再计算加法即可;(2)利用乘法分配律计算即可;(3)先计算乘方,再计算除法,最后计算减法.【详解】解:(1)原式=24 3.2( 3.5)-++-=-24.3;(2)原式=131(48)(48)(48)64⨯--⨯-+⨯- =488(36)-++-=-76;(3)原式=950251--÷-=921---=9(2)(1)-+-+-=-12.【点睛】本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键. 26.(1)1;(2)14;(3)1147-;(4)-900. 【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=7460(3)3--- =6074-+=14;(3)原式=115(8)(9)3-+-÷-- =2815(8)()3-+-÷-=315(8)()28-+--=6157-+=1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.。

2020初中数学一元二次方程单元基础达标测试题3(附答案)

2020初中数学一元二次方程单元基础达标测试题3(附答案)

2020初中数学一元二次方程单元基础达标测试题3(附答案)1.一元二次方程x 2=2﹣3x 化成ax 2+bx+c =0(a≠0)的形式后,a ,b ,c 的值分别为( ) A .0,2,﹣3 B .1,2,﹣3 C .1,﹣2,3 D .1,3,﹣2 2.把一元二次方程()()352x x +-=化成一般形式,得( )A .22170x x +-=B .28170x x --=C .2217x x -=D .22170x x --=3.用配方法解方程2420x x -+=,下列变形正确的是( )A .()222x -=B .()242x -=C .()220x -=D .()241x -= 4.刚刚过去的2018年国庆黄金周,越来越多的外地游客选择来大同游古城、赏美景、品美食、观民俗.小明从大同市旅游局获悉,国庆长假期间,我市共接待海内外游客约900万人次,若每年增长率不变,预计2020年国庆黄金周我市可接待海内外游客约1600万人次.问:年增长率约为( )A .13%B .23%C .33%D .43% 5.若(m +2)24mx -+3x ﹣1=0是关于x 的一元二次方程,则m 的值为( ) A .﹣2 B .±6 C .±2 D .06.下列方程是一元二次方程的是( )A .(x ﹣7)x =x 2B .x 3+2x +1=0C .2x +1x +1=0D .x 2=17.已知x =1是关于x 的方程2230ax x -+=的一个根,则a =( )A .1B .2C .1-D .08.如图,要在一个长10m ,宽8m 的院子中沿三边辟出宽度相等的花园(如图阴影部分),使花园的面积等于院子面积的30%,则这花圃的宽度为( )A .0.5mB .1mC .1.5mD .2m9.下列关于x 的方程是一元二次方程的是( )A .x 2+2x ﹣3=0B .x 2+2xy +3y 2=0C .ax 2+bx +c =0D .x 2=2 10.如图,东西方向上有A ,C 两地相距10千米,甲以16千米/时的速度从A 地出发向正东方向前进,乙以12千米/时的速度从C 地出发向正南方向前进,那么最快经过( )小时,甲、乙两人相距6千米?A .25B .35C .1.5D .1311.已知,a 、b 、c 均为非零实数,且 a >b >c ,关于 x 的一元二次方程ax 2 + bx + c = 0 有两个实数根 x 1和 2。

初中数学浙教版七年级上册第6章 图形的初步知识6.2 线段、射线和直线-章节测试习题(3)

初中数学浙教版七年级上册第6章 图形的初步知识6.2 线段、射线和直线-章节测试习题(3)

章节测试题1.【答题】A、B两点间的距离是指()A.连结A、B两点间的线段;B.过A、B两点间的直线;C.连结A、B两点间的线段长;D.直线AB的长;【答案】C【分析】根据两点间距离的定义:连接两点间的线段长度叫做这两点之间的距离,即可得到结果。

【解答】A、B两点间的距离是指连结A、B两点间的线段长,选C.2.【答题】如图,林林的爸爸只用两枚钉子就把一根木条固定在墙上,下列语句能解释这个原理的是()A. 木条是直的B. 两点确定一条直线C. 过一点可以画无数条直线D. 一个点不能确定一条直线【答案】B【分析】根据两点确定一条直线解答.【解答】本题考查了两点确定一条直线的公理根据直线的公理:两点确定一条直线解答即可.把一根木条固定在墙上,至少需要两个钉子,这是因为经过两点有且只有一条直线,简称:两点确定一条直线.选B.3.【答题】在平面上画出三条直线,两两相交,交点的个数最多应该是()A.1个B.2个C.3个D.4个【答案】C【分析】本题考查了直线的性质在平面上画出三条直线,当这三条直线经过同一个点时,则可以知道有一个交点;当这三条直线不经过同一点时,则可以知道有三个交点.即可得出答案.【解答】解:①当三条直线过同一点时,如图,则知道只有一个交点;②当三条直线不经过同一点时,如图,则可知道有三个交点.选C.4.【答题】下列说法中,其中正确的是()A.延长射线的ABB.延长直线ABC.延长线段ABD.反向延长直线AB【答案】C【分析】根据直线、射线、线段的定义分析判断即可.【解答】A.射线有一个端点,可以向一方无限延伸,故本选项错误;B.直线没有端点,可以向两方无限延伸,故本选项错误;C.延长线段AB,本选项正确;D.直线没有端点,可以向两方无限延伸,故本选项错误;选C.5.【答题】关于直线,下列说法正确的是()A.可以量长度B.有两个端点C.可以用两个小写字母来表示D.没有端点【答案】D【分析】根据直线、射线、线段的定义分析判断即可.【解答】直线没有端点,可以向两方无限延伸,故直线没有长度。

(必考题)初中数学七年级数学下册第二单元《相交线与平行线》测试(有答案解析)(3)

(必考题)初中数学七年级数学下册第二单元《相交线与平行线》测试(有答案解析)(3)

一、选择题1.如图,按照上北下南,左西右东的规定画出方向十字线,∠AOE=m°,∠EOF=90°,OM、ON分别平分∠AOE和∠BOF,下面说法:①点E位于点O的北偏西m°;②图中互余的角有4对;③若∠BOF=4∠AOE,则∠DON=54°;④若MONnAOE BOF,则n的倒数是23,其中正确有()A.3个B.2个C.1个D.0个2.按语句画图:点P在直线a上,也在直线b上,但不在直线c上,直线a,b,c两两相交正确的是()A.B.C.D.3.如图所示,下列条件能判断a∥b的有()A .∠1+∠2=180°B .∠2=∠4C .∠2+∠3=180°D .∠1=∠3 4.已知直线12l l //,一块含60°角的直角三角板如图所示放置,125∠=︒,则2∠等于( )A .30°B .35°C .40°D .45°5.已知点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4 cm ,PB =5 cm ,PC =2 cm ,则点P 到直线m 的距离为( )A .4 cmB .5 cmC .小于2 cmD .不大于2 cm 6.如图,直线//m n ,在Rt ABC 中,90B ∠=︒,点A 落在直线m 上,BC 与直线n 交于点D ,若2130∠=︒,则1∠的度数为( ).A .30°B .40°C .50°D .65°7.如图,∠1的同位角是( )A .∠2B .∠3C .∠4D .∠58.如图,a ∥b ,点A 在直线a 上,点B ,C 在直线b 上,AC ⊥b ,如果AB=5cm ,BC=3cm ,那么平行线a ,b 之间的距离为( )A .5cmB .4cmC .3cmD .不能确定 9.如图,直线a ,b 被直线c 所截,则下列说法中错误的是( )A .∠1与∠2是邻补角B .∠1与∠3是对顶角C .∠2与∠4是同位角D .∠3与∠4是内错角10.如图,若//AB CD ,EF CD ⊥,154∠=,则2∠=( )A .36B .46C .54D .126 11.如图,平面内直线////a b c ,点,,A B C 分别在直线,,a b c 上,BD 平分ABC ∠,并且满足a β∠>∠,则,,a βγ∠∠∠关系正确的是( )A . 2a βγ∠=∠+∠B .22a βγ∠=∠-∠C .a βγ∠=∠+∠D . 2a βγ∠=∠-∠ 12.如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=40°,那么∠2的度数是( )A .35°B .45°C .50°D .65°二、填空题13.如图,点P 、Q 分别在一组平行直线AB 、CD 上,在两直线间取一点E 使得250BPE DQE ∠+∠=︒,点F 、G 分别在BPE ∠、CQE ∠的角平分线上,且点F 、G 均在平行直线AB 、CD 之间,则PFG FGQ ∠-∠=__________.14.如图,360ABC C CDE ∠+∠+∠=︒,直线FG 分别交AB 、DE 于点F 、G .若1110∠=︒,则2∠=___________.15.下列说法:①对顶角相等;②两点间线段是两点间距离;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤若AC BC =,则点C 是线段AB 的中点;⑥同角的余角相等正确的有_________.(填序号)16.在同一平面内,直线AB 与直线CD 相交于点O ,40AOC ∠=︒,射线OE CD ⊥,则∠BOE 的度数为________︒.17.如图,AB ∥CD ,EG 平分AEN ∠,若EFD ∠=108°,则GEN ∠的度数为_________________.18.如图,在三角形ABC 中,90BAC ∠=,AD BC ⊥于点D ,比较线段AB ,BC ,AD 长度的大小,用“<”连接为__________.19.如图,ED//AC ,BE//CD ,若C 60∠=︒,则E _______∠=︒20.如图,DE ∥BC ,EF ∥AB ,图中与∠BFE 互补的角有_____个.三、解答题21.如图,将长方形纸片的一角折叠,使顶点A 落在A '处,EF 为折痕,点F 在线段AD 上,且点F 不与点D 重合,点E 在线段AB 上,此时∠AFE 和∠AEF 互为余角,若EA '恰好平分∠FEB ,回答下列问题.(1)求∠AEF 的度数;(2)∠A FD '= 度.22.如图,直线AB 和直线BC 相交于点B ,连接AC ,点,,D E H 分别在AB 、AC 、BC 上,连接DE 、DH ,F 是DH 上一点,已知13180︒∠+∠=(1)求证:CEF EAD ∠=∠;(2)若DH 平分BDE ∠,2α∠=∠,求3∠的度数.(用α表示)23.在如图所示的方格纸中,每个小正方形的顶点称为格点,点,,A B C 都在格点上. ()1找一格点D ,使得直线//CD AB ,画出直线CD ;()2找一格点E ,使得直线AE BC ⊥于点F ,画出直线AE ,并注明垂足F ;()3找一格点G ,使得直线BG AB ⊥,画出直线BG ;()4连接AG ,则线段,,AB AF AG 的大小关系是 (用“<”连接).24.(1)计算:(﹣3)2﹣(32)2×29﹣6÷23; (2)α∠的余角比这个角少20°,则α∠的补角为多少度? 25.如图所示,直线AB 、CD 相交于点O ,OE 是∠BOD 的平分线,∠AOE =140°.猜想与说理:(1)图中与∠COE 互补的角是 .(2)因为∠AOD +∠AOC =180°,∠BOC +∠AOC =180°,所以根据 ,可以得到∠AOD =∠BOC .探究与计算:(3)请你求出∠AOC 的度数.联想与拓展:(4)若以点O 为观测中心,OB 为正东方向,则射线OC 的方向是 . 26.如图,东西方向上有一条高速公路连接A ,B 两城市,在高速公路的一侧有一座水电站P ,现测得水电站在城市A 的东北方向上,在城市B 北偏西60°方向上. (1)求∠APB 的度数;(2)若一辆轿车以每小时90公里的速度沿AB 方向从A 城市开往B 城市,行驶1.5小时轿车正好在水电站P 的正南方向上,请用方向和距离描述轿车相对于水电站P 的位置.【参考答案】***试卷处理标记,请不要删除1.B解析:B【分析】根据方位角的定义,以及角平分线的定义,分别求出所需角的度数,然后分别进行判断,即可得到答案.【详解】解:∵∠AOE =m °,∴∠EOD=90°-m°,∴点E 位于点O 的北偏西90°-m °;故①错误;∵∠EOF =90°,∴∠EOD+∠DOF =90°,∠AOE+∠BOF=90°,∵∠AOD =∠BOD=90°,∴∠AOE+∠EOD=90°,∠DOF+∠FOB=90°,∠AOM+∠MOD=90°,∠BON+∠DON=90°,∵OM 、ON 分别平分∠AOE 和∠BOF ,∴∠AOM=∠EOM ,∠BON=∠FON ,∴∠EOM+∠MOD=90°,∠FON+∠DON=90°,∴图中互余的角共有8对,故②错误;∵∠BOF =4∠AOE ,∠AOE+∠BOF=90°,∴∠BOF=72°,∴∠BON=36°,∴∠DON=90°-36°=54°;故③正确;∵∠AOE+∠BOF=90°,∴∠MOE+∠NOF=11()904522AOE BOF , ∴9045135MON , ∴1353902MON n AOE BOF , ∴n 的倒数是23,故④正确; ∴正确的选项有③④,共2个;故选:B .【点睛】本题考查了角平分线的定义,余角的定义,方位角的表示,以及角度的和差关系,解题的关键是熟练掌握题意,正确找出图中角的关系进行判断.2.A解析:A根据相交线的概念、点与直线的位置关系进行判断即可.【详解】解:A.符合条件,B.不符合点P不在直线c上;C.不符合点P在直线a上;D.不符合直线a、b、c两两相交;故选:A.【点睛】本题考查的是相交线、点与直线的位置关系,正确理解题意、认识图形是解题的关键.3.B解析:B【分析】通过平行线的判定的相关知识点,并结合题中所示条件进行相应的分析,即可得出答案.【详解】A.∠1 ,∠2是互补角,相加为180°不能证明平行,故A错误.B.∠2=∠4,内错角相等,两直线平行,所以B正确.C. ∠2+∠3=180°,不能证明a∥b,故C错误.D.虽然∠1=∠3,但是不能证明a∥b;故D错误.故答案选:B.【点睛】本题考查的知识点是平行线的判定,解题的关键是熟练的掌握平行线的判定.4.B解析:B【分析】过C作CM∥直线l1,求出CM∥直线l1∥直线l2,根据平行线的性质得出∠1=∠MCB=25°,∠2=∠ACM,即可求出答案.【详解】过C作CM∥直线l1,∵直线l1∥l2,∴CM∥直线l1∥直线l2,∵∠ACB=60°,∠1=25°,∴∠1=∠MCB=25°,∴∠2=∠ACM=∠ACB-∠MCB=60°-25°=35°,故选:B.【点睛】本题考查了平行线的性质,能正确作出辅助线是解此题的关键.5.D解析:D【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥m时,PC是点P到直线m的距离,即点P到直线m的距离2cm,当PC不垂直直线m时,点P到直线m的距离小于PC的长,即点P到直线m的距离小于2cm,综上所述:点P到直线m的距离不大于2cm,故选D.【点睛】此题考查了点到直线的距离,利用了垂线段最短的性质.6.B解析:B【分析】l m,利用平行线的判定定理和性质定理进行分析即可得出答案.由题意过点B作直线//【详解】l m,解:如图,过点B作直线//∵直线m//n,//l m,∴//l n,∴∠2+∠3=180°,∵∠2=130°,∴∠3=50°,∵∠B=90°,∴∠4=90°-50°=40°,∵//l m,∴∠1=∠4=40°.故选:B.【点睛】本题主要考查平行线的性质定理和判定定理,熟练掌握两直线平行,平面内其外一条直线平行于其中一条直线则平行于另一条直线是解答此题的关键.7.D解析:D【分析】根据同位角定义可得答案.【详解】解:解:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角,根据定义,结合图形,∠1的同位角是∠5.故选:D.【点睛】本题考查同位角的定义,解题关键是熟练理解同位角的定义,本题属于基础题型.8.B解析:B【分析】从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,并由勾股定理可得出答案.【详解】解:∵AC⊥b,∴△ABC是直角三角形,∵AB=5cm,BC=3cm,∴(cm),∴平行线a、b之间的距离是:AC=4cm.故选:B.【点睛】本题考查了平行线之间的距离,以及勾股定理,关键是掌握平行线之间距离的定义,以及勾股定理的运用.9.D解析:D【详解】解:∠3与∠4是同旁内角.故选:D10.A解析:A【分析】根据平行线的性质可求解∠GFD 的度数,再结合垂线的定义可求解.【详解】解:∵AB//CD ,∠1=54°,∴∠GFD=∠1=54°,∵EF ⊥CD ,∴∠EFD=90°,即∠2+∠GFD=90°,∴∠2=36°.故选:A .【点睛】本题主要考查平行线的性质,垂线的定义,掌握平行线的性质是解题的关键.11.A解析:A【分析】由平行线的性质可得∠ABC=a β∠+∠,然后根据1=2ABC βγ∠+∠∠求解即可. 【详解】解:∵////a b c ,∴∠ABE=∠α,∠CBE=∠β,∴∠ABC=a β∠+∠,∵BD 平分ABC ∠,∴∠CBD 1=2ABC ∠, ∴()1=2βγαβ∠+∠∠+∠, ∴2a βγ∠=∠+∠.故选A .【点睛】本题考查了角平分线的定义,以及平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.12.C解析:C【分析】根据两条直线平行,同位角相等得∠1的同位角是40°,再根据平角的定义和垂直定义即可求得∠2.【详解】解:∵a ∥b ,∴BC 与b 所夹锐角等于∠1=40°,又AB ⊥BC ,∴∠ABC=90°∴∠2=180°-90°-40°=50°故选:C .【点睛】本题考查了平行线的性质以及平角的概念,熟练应用两直线平行同位角相等是解题关键.二、填空题13.35°【分析】过点F 作过点G 作利用平行线的性质和角平分线的定义即可求解【详解】过点F 作过点G 作∵平分平分设∵∴∴∵∴∴∴故【点睛】本题考查平行线的性质根据题意作出平行线是解题的关键解析:35°【分析】过点F 作//FK AB ,过点G 作//GH CD ,利用平行线的性质和角平分线的定义即可求解.【详解】过点F 作//FK AB ,过点G 作//GH CD ,∵PF 平分BPE ∠,QG 平分CQE ∠,设BPF EPF x ∠==,CQG EQG y ∠=∠=,∵250BPE DQE ∠+∠=︒∴21802250BPE DQE x y ∠+∠=+︒-=︒,∴35x y -=︒,∵//,//,//FK AB GH CD AB CD ,∴//////AB FK GH CD ,∴PFK BPF x ∠=∠=,HGQ CQG y ∠=∠=,KFG HGQ =∠,∴()PFG FGQ PFK KFG HGF HGQ ∠-∠=∠+∠-∠+∠35x KFG HGF y x y =+∠-∠-=-=︒故35PFG FGQ ∠-∠=︒.【点睛】本题考查平行线的性质,根据题意作出平行线是解题的关键.14.70°【分析】如图作CH ∥AB 证明CH ∥DEAB ∥DE 利用平行线的性质即可解决问题【详解】解:如图作CH ∥AB ∵AB ∥CH ∴∠B+∠BCH=180°∵∠ABC+∠BCD+∠CDE=360°∴∠D+∠ 解析:70°.【分析】如图,作CH ∥AB ,证明CH ∥DE ,AB ∥DE ,利用平行线的性质即可解决问题.【详解】解:如图,作CH ∥AB ,∵AB ∥CH ,∴∠B+∠BCH=180°,∵∠ABC+∠BCD+∠CDE=360°,∴∠D+∠DCH=180°,∴CH ∥DE ,∴AB ∥DE ,∴∠1=∠3=110°,∴∠2=180°-∠3=70°故答案为70°.【点睛】本题考查平行线的判定和性质,解题的关键是学会添加常用辅助线,属于中考常考题型.15.①④⑥【分析】利用对顶角的性质判断①利用两点距离定义判定②利用平行公理判定③利用垂线公里判定④利用线段中点定义判定⑤利用余角的性质判定⑥【详解】①对顶角相等正确;②由两点间线段的长度是两点间距离所以解析:①④⑥【分析】利用对顶角的性质判断①,利用两点距离定义判定②,利用平行公理判定③,利用垂线公里判定④,利用线段中点定义判定⑤,利用余角的性质判定⑥.【详解】①对顶角相等正确;②由两点间线段的长度是两点间距离,所以两点间线段是两点间距离不正确;③由过直线外一点有且只有一条直线与已知直线平行,所以过一点有且只有一条直线与已知直线平行不正确;④过一点有且只有一条直线与已知直线垂直正确;=,点C在AB上,则点C是线段AB的中点,所以若⑤由线段中点的性质,若AC BC=,则点C是线段AB的中点不正确;AC BC⑥同角的余角相等正确;正确的有①④⑥.故答案为:①④⑥.【点睛】本题考查对顶角性质,两点间的距离,平行公理,垂线公里,线段的中点,余角的性质等问题,掌握对顶角性质,两点间的距离,平行公理,垂线公里,线段的中点,余角的性质是解题关键.16.50°或130°【分析】先根据垂直的定义求出∠DOE=90°然后根据对顶角相等求出∠DOB的度数再根据角的和差求出∠BOE的度数【详解】解:如图1:∵OE⊥CD∴∠DOE=90°∵∴∠DOB=°∴∠解析:50°或130°【分析】先根据垂直的定义求出∠DOE=90°,然后根据对顶角相等求出∠DOB的度数,再根据角的和差求出∠BOE的度数.【详解】解:如图1:∵OE ⊥CD ,∴∠DOE=90°,∵40AOC ∠=︒,∴∠DOB=40AOC ∠=︒°,∴∠BOE=90°-40°=50°,如图2:∵OE ⊥CD ,∴∠DOE =90°,∵40AOC ∠=︒,∴∠DOB=40AOC ∠=︒°,∴∠BOE=90°+40°=130°,故答案为:50°或130°.【点睛】本题考查了垂线的定义,对顶角相等,要注意领会由垂直得直角这一要点.17.36°【分析】由平行线的性质得再由角平分线的定义即可求出答案【详解】解:∵=108°∴∵∥∴∵平分∴;故答案为:36°【点睛】本题考查了平行线的性质角平分线的定义以及邻补角的定义解题的关键是熟练掌握解析:36°【分析】由平行线的性质,得AEN CFE ∠=∠,再由角平分线的定义,即可求出答案.【详解】解:∵EFD ∠=108°,∴18010872CFE ∠=︒-︒=︒,∵AB ∥CD ,∴72AEN CFE ∠=∠=︒,∵EG 平分AEN ∠, ∴172362GEN ∠=⨯︒=︒; 故答案为:36°.【点睛】 本题考查了平行线的性质,角平分线的定义,以及邻补角的定义,解题的关键是熟练掌握所学的性质定理进行解题.18.AD <AB <BC 【分析】根据垂线段的性质即可得到结论【详解】解:∵在三角形ABC中∠BAC=90°AD⊥BC于点D∴AD<AB<BC故答案为:AD<AB<BC 【点睛】本题考查了垂线段熟练掌握垂线段最解析:AD<AB<BC.【分析】根据垂线段的性质即可得到结论.【详解】解:∵在三角形ABC中,∠BAC=90°,AD⊥BC于点D,∴AD<AB<BC,故答案为:AD<AB<BC.【点睛】本题考查了垂线段,熟练掌握垂线段最短是解题的关键.19.60°【分析】根据平行线的性质可求∠ABE再根据平行线的性质可求∠E 【详解】解:∵BE∥CD∠C=60°∴∠ABE=60°∵ED∥AC∴∠E=60°故答案为:60【点睛】考查了平行线的性质关键是熟悉解析:60°【分析】根据平行线的性质可求∠ABE,再根据平行线的性质可求∠E.【详解】解:∵BE∥CD,∠C=60°,∴∠ABE=60°,∵ED∥AC,∴∠E=60°.故答案为:60.【点睛】考查了平行线的性质,关键是熟悉两直线平行,同位角相等;两直线平行,内错角相等的知识点.20.4【分析】先找到∠BFE的邻补角∠EFC再根据平行线的性质求出与∠EFC 相等的角即可【详解】∵DE∥BC∴∠DEF=∠EFC∠ADE=∠B又∵EF∥AB∴∠B =∠EFC∴∠DEF=∠EFC=∠ADE解析:4【分析】先找到∠BFE的邻补角∠EFC,再根据平行线的性质求出与∠EFC相等的角即可.【详解】∵DE∥BC,∴∠DEF=∠EFC,∠ADE=∠B,又∵EF∥AB,∴∠B=∠EFC,∴∠DEF=∠EFC=∠ADE=∠B,∵∠BFE的邻补角是∠EFC,∴与∠BFE互补的角有:∠DEF、∠EFC、∠ADE、∠B.故答案为4.【点睛】本题主要考查的是平行线的性质,解题时注意:两直线平行,同旁内角互补且同位角相等.三、解答题21.(1)60°;(2)120【分析】(1)根据折叠的性质以及角平分线的定义可知∠AEF=∠A'EF=∠A'EB,再根据平角的定义求解即可;(2)根据折叠的性质、互余的定义以及(1)的结论可得∠AFA'的度数,进而得出∠A'FD 的度数.【详解】解:(1)根据折叠的性质可得∠AEF=∠A'EF,∵EA'恰好平分∠FEB,∴∠AEF=∠A'EF=∠A'EB,∵∠AEF+A'EF+∠A'EB=180°,所以∠AEF=60°;(2)∵∠AFE和∠AEF互为余角,∴∠AFE=90°﹣∠AEF=30°,根据折叠的性质可得∠AFA'=2∠AFE=60°,∴∠A'FD=180°﹣∠AFA'=120°.故答案为:120.【点睛】本题主要考查了角的计算问题,掌握折叠的性质并理清相关角的关系是解答本题的关键.22.(1)见解析(2)90°+1 2α【分析】(1)根据平行线的判定和性质解答即可;(2)根据平行线的性质解答即可.【详解】解:(1)∵∠3+∠DFE=180°,∠1+∠3=180°∴∠DFE=∠1,∴AB∥EF,∴∠CEF=∠EAD;(2)∵AB∥EF,∴∠2+∠BDE=180°又∵∠2=α∴∠BDE =180°−α又∵DH 平分∠BDE∴∠1=12∠BDE =12(180°−α) ∴∠3=180°−12(180°−α)=90°+12α. 【点睛】本题考查了角平分线定义,平行线的性质和判定等知识点,注意:①内错角相等,两直线平行,②两直线平行,同旁内角互补.23.(1)见解析;(2)见解析;(3)见解析;(4)AF AB AG <<【分析】(1)将AB 沿着BC 方向平移,使其过点C ,此时经过的格点即为所求;(2)延长CB ,作AE 与CB 交于F 点,此时E 点即为所求;(3)过B 点作AB 的垂线,经过的格点即为所求;(4)在两个直角三角形中比较即可得出结论.【详解】(1)如图所示,符合题意的格点有D 1,D 2两个,画出其中一个即可;(2)如图所示:E 点即为所求,垂足为F 点;(3)如图所示,点G 即为所求;(4)如图所示,显然,在Rt ABF 中,AB AF >;在Rt ABG 中,AG AB >, 故答案为:AF AB AG <<.【点睛】本题考查应用与设计作图,平行线的判定与性质以及垂线的定义,熟练掌握基本性质定理是解题关键.24.(1)12-;(2)125° 【分析】(1)先计算乘方,再计算乘除,最后计算加减;(2)根据题意可得关于α∠的方程,求出α∠后再根据互补的定义求解.【详解】 解:(1)原式=9﹣94×29﹣6×32=9﹣12﹣9=﹣12; (2)根据题意,得α∠﹣(90﹣α∠)=20°,解得:α∠=55°,所以α∠的补角为180°﹣55°=125°. 【点睛】本题考查了有理数的混合运算、余角和补角以及一元一次方程的求解等知识,熟练掌握上述知识是解题的关键.25.(1)∠BOE 和∠DOE ;(2)同角的补角相等;(3)∠AOC =80°;(4)北偏西10°【分析】(1)根据互为补角的两角之和为180°可得出与∠COE 互补的角;(2)根据同角(或等角)的补角相等即可解答;(3)先求出∠BOE ,继而根据角平分线的性质得出∠DOB ,再由对顶角相等可得出∠AOC 的度数;(4)根据补角的定义求得∠BOC 的值,然后根据直角是90°和方向角的定义即可解答.【详解】解:(1)因为OE 是∠BOD 的平分线,∠COE+∠DOE=180°, 所以∠BOE =∠DOE ,故与∠COE 互补的角有:∠BOE 和∠DOE ;(2)因为同角(或等角)的补角相等,所以∠AOD +∠AOC =180°,∠BOC +∠AOC =180°时,∠AOD =∠BOC .即答案为:同角的补角相等;(3)由题意得,∠BOE=180°-∠AOE=40°,因为OE 是∠BOD 的平分线,所以∠BOD=2∠BOE=80°所以∠AOC=80°;(4)如图,MN 为南北方向,由(3)得∠AOC=80°,所以∠BOC=180°-∠AOC=180°-80°=100°,又因为∠BOM=90°,所以∠MOC=∠BOC-∠BOM=100°- 90°=10°,故射线OC的方向是北偏西10°.【点睛】本题考查补角和方位角的知识,结合图形进行考查比较新颖,注意掌握互为补角的两角之和为180°,另外本题还用到对顶角相等及角平分线的性质.26.(1)105°;(2)小轿车在水电站P正南方向,135km的公路上.【分析】(1)过点P作PE//BC交AB于点E.根据平行线的判定与性质即可求∠APB的度数;(2)根据每小时90公里的速度行驶1.5小时轿车正好在水电站P的正南方向上,即可用方向和距离描述轿车相对于水电站P的位置.【详解】解:(1)如图,过点P作PE//BC交AB于点E.由题意知:∠DAP=45°,∠CBP=60°AD//BC,∴∠CBP=∠BPE=60°(两直线平行,内错角相等),又∵PE//BC,AD//BC,∴PE//DA(平行于同一直线的两条直线互相平行),∴∠DAP=∠APE=45°(两直线平行,内错角相等),∴∠APB=∠APE+∠BPE=45°+60°=105°(2)由(1)知PE//DA,又∵∠DAE=90°,∴∠DAE=∠PEB=90°,∴PE⊥AB,∴∠AEP=90°,∴在△AEP中,∠AEP=90°,∠APE=45°,∴EA=EP,又∵EA=90×1.5=135 (km)∴EP=135(km).答:小轿车在水电站P正南方向,135km的公路上.【点睛】本题考查了平行线的判定与性质、方向角,解决本题的关键是掌握平行线的判定与性质.。

初中数学人教版(五四制)七年级上册第十三章 实数13.2 立方根-章节测试习题(3)

初中数学人教版(五四制)七年级上册第十三章  实数13.2 立方根-章节测试习题(3)

章节测试题1.【题文】将一个体积为0.216 m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.【答案】每个小立方体铝块的表面积为0.54m2.【分析】设小立方体的棱长是xm,得出方程8x3=0.216,求出x的值即可.【解答】解:设小立方体的棱长是xcm,根据题意得:8x3=0.216,解得:x=0.3则每个小立方体铝块的表面积是6×(0.3)2=0.54(m2),答:每个小立方体铝块的表面积是0.54m2.方法总结:本题考查了立方根的应用,关键是能根据题意得出方程.2.【题文】请先观察下列等式:=2,=3,=4,…(1)请再举两个类似的例子;(2)经过观察,写出满足上述各式规则的一般公式.【答案】(1) =5,=6;(2) =n(n≠1,且n 为整数).【分析】观察等式:左边的被开方数的整数部分和分式部分的分子相同,分母是分子的立方减1,右边根号外是左边的整数部分,根号内是左边被开方数的分数部分.【解答】解:(1) =5,=6;(2) =n (n≠1,且n为整数).3.【题文】很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,人们找不到水喝,于是大家一起到神庙里去向神祈求.神说:“我之所以不给你们降水,是因为你们给我做的正方体祭坛太小,如果你们做一个比它大一倍的祭坛放在我面前,我就会给你们降雨.”大家觉得很好办,于是很快做好了一个新祭坛送到神那里,新祭坛的棱长是原来的2倍.可是神愈发恼怒,他说:“你们竟敢愚弄我.这个祭坛的体积不是原来的2倍,我要进一步惩罚你们!”如图所示,不妨设原祭坛边长为a,想一想:(1)做出来的新祭坛是原来体积的多少倍?(2)要做一个体积是原来祭坛的2倍的新祭坛,它的棱长应该是原来的多少倍?【答案】(1)8倍;(2) 倍【分析】由正方体体积公式得,若棱长是原来两倍,则体积变为即可求解.再假设体积为原来两倍时的棱长为,根据体积公式找出与的关系,问题便可解答.【解答】解:(1)根据正方体的体积公式,若棱长是原来的两倍,则它的体积为所以得到新正方体的体积是原来的8倍.(2)设棱长为,则故要使体积是原来的两倍,棱长应是原来的倍.4.【题文】求下列各式中的x:(1)8x3+125=0;(2)(x+3)3+27=0.【答案】(1)x=- (2)x=-6.【分析】直接根据立方根进行运算即可. 【解答】解:5.【题文】求下列各式的值:(1) ;(2)- ;(3)- +;(4) -+.【答案】(1)-10;(2)4;(3)-1;(4)0.【分析】直接根据立方根进行运算即可. 【解答】解:6.【题文】求下列各式的值:(1) ;(2) ;(3)- .【答案】(1)0.1;(2)- ;(3)-【分析】直接进行开立方运算即可.【解答】解:7.【题文】求下列各数的立方根:(1)0.216;(2)0;(3)-2;(4)-5.【答案】(1)0.6(2)0(3)- (4) .【分析】根据立方根与开立方互为逆运算这一关系,可以通过立方运算求一个数的立方根.【解答】解:∴0.216的立方根是0.6,即=0.6;∴0的立方根是0,即=0;且(-)3=-,的立方根是-,即=-;(4)-5的立方根是.8.【答题】已知x-1的立方根是1,2y+2的算术平方根是4,则x+y的平方根是______.【答案】±3【分析】本题考查了平方根,算术平方根和立方根.【解答】由题意知x-1=13,2y+2=42,所以x=2,y=7,所以x+y=9,9的平方根是±3.9.【答题】-27的立方根与的平方根之和为______.【答案】-5或-1【分析】本题考查了平方根和立方根.【解答】-27的立方根是-3,的平方根是±2,所以它们的和是-5或-1.10.【答题】若x2=16,则x=______;若x3=-8,则x=______;的平方根是______.【答案】±4,-2,±【分析】本题考查了平方根和立方根.【解答】用直接开平方法进行解答;用直接开立方法进行解答;先求出的结果为3,再根据平方根的定义求解.解:若x2=16,则x=±4;若x3=-8,则x=-2;=3,3的平方根是.故答案为:±4;-2;.11.【题文】已知x+2的平方根是±2,2x+y+7的立方根是3,试求x2+y的立方根.【答案】【分析】本题考查了平方根和立方根.【解答】由题意得x+2=4,2x+y+7=27,∴x=2,y=16,∴.12.【题文】若,求的值.【答案】-5【解答】由非负数的性质得a=-8,b=27,所以=-2-3=-5.13.【题文】已知x-9的平方根是±3,x+y的立方根是3.(1)求x,y的值;(2)x-y的平方根是多少?【答案】(1)y=9;(2)x-y的平方根是±3.【分析】(1)根据平方根和立方根的概念列出方程,解方程求出x,y的值;根(2)据平方根的概念解答即可.【解答】(1)∵x-9的平方根是±3,∴x-9=9,解得x=18.∵27的立方根是3,∴x+y=27,∴y=9;(2)由(1)得x-y=18-9=9,9的平方根是±3,∴x-y的平方根是±3.14.【题文】已知x-2的平方根是±2,2x+y+7的立方根是3,求的平方根.【答案】±10【解答】∵x-2的平方根是±2,2x+y+7的立方根是3,∴x-2=4,2x+y+7=27,解得x=6,y=8,∴,∴的平方根是±10.15.【答题】-8的立方根与4的算术平方根的和为()A. 0B. 4C. -4D. 0或-4【答案】A【分析】本题考查了立方根和算术平方根.【解答】-8的立方根是-2,4的算术平方根是2,和为0.16.【答题】下列说法错误的有()①4的平方根是2;②-52的算术平方根是5;③0.8的立方根是0.2;④是的一个平方根.A. 1个B. 2个C. 3个D. 4个【答案】C【分析】本题考查了平方根和立方根.【解答】①4的平方根是±2,②-52没有算术平方根,③0.008的立方根是0.2,选C.17.【答题】若一个数的平方根与立方根都是它本身,则这个数是()A. 1B. -1C. 0D. ±1,0【答案】C【分析】本题考查了平方根和立方根.【解答】平方根等于本身的数是0;立方根等于本身的数是0和±1;则平方根和立方根都等于本身的数是0.18.【答题】若一个有理数的平方根与立方根是相等的,则这个有理数一定是()A. 0B. 1C. 0或1D. 0和±1【答案】A【分析】本题考查了平方根和立方根.【解答】0的平方根是0,0的立方根是0,则0的平方根和立方根相等;-1没有平方根;1的平方根是±1,1的立方根是1;所以只有0的平方根和立方根相等.19.【答题】若某数的立方根等于这个数的算术平方根,则这个数等于()A. 0B. ±1C. -1或0D. 0或1【答案】D【分析】本题考查了立方根和算术平方根.【解答】因为一个数的立方根等于这个数的算术平方根,也可理解为一个数的立方根等于这个数的算术平方根等于它本身的数有0和1.或者可以理解为:算术平方根等于它本身的数是0,1,立方根都等于它本身的数是0,1,-1,所以算术平方根与立方根都等于它本身的数是0和1.解:∵算术平方根与立方根都等于它本身的数是0和1.选D.20.【答题】一个正方形的面积变为原来的9倍,则它的边长变为原来的几倍?一个正方体的体积缩小到原来的,则它的棱长缩小到原来的几倍?()A. 3,2B. 3,C. 3,D. 81,2【答案】C【分析】由于一个正方形的边长扩大x倍,面积扩大x2倍;一个立方体的棱长扩大x 倍,体积扩大x3倍.利用前面的结论即可解答.【解答】一个正方形的面积变为原来的9倍,则边长变为原来的3倍;一个立方体的体积变为原来的,则棱长变为原来的.选C.。

(易错题精选)初中数学有理数的运算基础测试题

(易错题精选)初中数学有理数的运算基础测试题

(易错题精选)初中数学有理数的运算基础测试题一、选择题1.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km.用科学记数法表示1.496亿是()A.71.49610⨯B.714.9610⨯C.80.149610⨯D.81.49610⨯【答案】D【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.详解:数据1.496亿用科学记数法表示为1.496×108.故选D.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.暑期爆款国产动漫《哪吒之降世魔童》票房已斩获4930000000,开启了国漫市场崛起新篇章,4930000000用科学计数法可表示为()A.49.3×108B.4.93×109C.4.933×108D.493×107【答案】B【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:4930000000=4.93×109.故选B.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a 与n的值是解题的关键.3.如果a是实数,下列说法正确的是()A.2a和a都是正数B.(-a+2可能在x轴上C.a的倒数是1aD.a的相反数的绝对值是它本身【答案】B【解析】【分析】A、根据平方和绝对值的意义即可作出判断;B、根据算术平方根的意义即可作出判断;C、根据倒数的定义即可作出判断;D、根据绝对值的意义即可作出判断.【详解】A、2a和a都是非负数,故错误;B、当a=0时,(-a+2在x轴上,故正确;C、当a=0时,a没有倒数,故错误;D、当a≥0时,a的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.4.现在网购是人们喜爱的一种消费方式,2018年天猫“双11”全球狂欢节某网店的总交易额超过1207000元,1207000用科学记数法表示为( )A.6⨯D.51.20710⨯12.07101.20710⨯B.70.120710⨯C.5【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1207000=1.207×106,故选A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.2018年全国高考报名总人数是975万人,用科学记数法表示为()A.3⨯人D.70.97510⨯人9.75100.97510⨯人B.29.7510⨯人C.6【答案】C【解析】【分析】根据科学计数法的定义进行作答.【详解】A.错误,应该是69.7510⨯;C.正确;D. 错误,应该是⨯;B.错误,应该是69.75106⨯.综上,答案选C.9.7510【点睛】本题考查了科学计数法的定义:将一个数字表示成(a⨯10的n次幂的形式),其中1≤a <10,n 表示整数,熟练掌握科学计数法的定义是本题解题关键.6.地球上海洋面积约为361000000平方公里,361000000用科学记数法可表示为( ) A .90.36110⨯B .73.6110⨯C .83.6110⨯D .736110⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】 361000000=83.6110⨯,故选:C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.若(x +y ﹣1)2+|x ﹣y +5|=0,则x =( )A .﹣2B .2C .1D .﹣1【答案】A【解析】【分析】由已知等式,利用非负数的性质列出方程组,求出方程组的解得到x 即可.【详解】解:∵(x +y ﹣1)2+|x ﹣y +5|=0, ∴1050x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, 故选:A.【点睛】本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两个数均为零得出方程组是解决此题的的关键.8.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为( )A .81810⨯B .81.810⨯C .91.810⨯D .100.1810⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1800000000=1.8×109,故选C .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.为促进义务教育办学条件均衡,2019年某地区计划投入4200000元资金为该地区农村学校添置实验仪器,4200000这个数用科学记数法表示为( )A .44210⨯B .64.210⨯C .84210⨯D .60.4210⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4200000=4.2×106,故选:B .【点睛】本题考查科学记数法的表示方法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.港珠澳大桥东起香港国际机场附近的香港口岸人工导,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海港湾,全长55千米,设计时速100千米/小时,工程项目总投资额1269亿元,用科学记数法表示1269亿元为( )A .1269×108B .1.269×108C .1.269×1010D .1.269×1011【答案】D【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1269亿=1.269×1011故选D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解题关键.11.计算(-2)100+(-2)99的结果是()A.2 B.2-C.992-D.992【答案】D【解析】解:原式=(﹣2)99[(﹣2)+1]=﹣(﹣2)99=299.故选D.12.按如图所示的运算程序,能使输出结果为10的是()A.x=7,y=2 B.x=﹣4,y=﹣2 C.x=﹣3,y=4 D.x=12,y=3【答案】D【解析】【分析】根据运算程序,结合输出结果确定的值即可.【详解】解:A、x=7、y=2时,输出结果为2×7+22=18,不符合题意;B、x=﹣4、y=﹣2时,输出结果为2×(﹣4)﹣(﹣2)2=﹣12,不符合题意;C、x=﹣3、y=4时,输出结果为2×(﹣3)﹣42=﹣22,不符合题意;D、x=12、y=3时,输出结果为2×12+32=10,符合题意;故选:D.【点睛】此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.13.一周时间有604800秒,604800用科学记数法表示为()A.2604810⨯B.56.04810⨯C.66.04810⨯D.60.604810⨯【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为56.04810⨯,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.14.据报道,2019年元旦小长假云南省红河州共接待游客约为7038000人,将7038000用科学记数法表示为( )A .570.3810⨯B .67.03810-⨯C .67.03810⨯D .60.703810⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将7038000用科学记数法表示为:7.038×106.故选:C .【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.随着垃圾数量的不断增加,宁波从2013年开始启动生活废弃物收集循环利用示范目,总投资约为15.26亿元,以下用科学记数法表示15.26亿正确的是()A .815.2610⨯B .81.52610⨯C .90.152610⨯D .91.52610⨯【答案】D【解析】【分析】先把15.26亿写成1526000000的形式,再根据科学记数法的法则,把15.26亿用科学计数法表示成10n a ⨯的形式即可.【详解】解:15.26=1526000000∵1526000000有10位整数,∴可以确定指数n=10-1=9,即用科学记数法表示为91.52610⨯,故答案为D.【点睛】本题主要考查了科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 当原数的绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.16.将数47300000用科学记数法表示为( )A .547310⨯B .647.310⨯C .74.7310⨯D .54.7310⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将47300000用科学记数法表示为74.7310⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.12010-的倒数是( ) A .2010-B .2010C .12010D .12010- 【答案】A【解析】【分析】 根据倒数的定义求解.【详解】解:根据互为倒数的两个数乘积为1可知:12010-的倒数为-2010. 故选A .【点睛】 本题考查倒数的定义,题目简单.18.北京市将在2019年北京世园会园区、北京新机场、2022年冬奥会场馆等地,率先开展5G 网络的商用示范.目前,北京市已经在怀柔试验场对5G 进行相应的试验工作.现在4G 网络在理想状态下,峰值速率约是100Mbps ,未来5G 网络峰值速率是4G 网络的204.8倍,那么未来5G 网络峰值速率约为( )A .1×102 MbpsB .2.048×102 MbpsC .2.048×103 MbpsD .2.048×104 Mbps 【答案】D【解析】【分析】已知4G 网络的峰值速率,5G 网络峰值速率是4G 网络的204.8倍,可得5G 网络峰值速率,通过化简,用科学计数法表示即可.【详解】解:由题干条件可得,5G 网络峰值速率:100Mbps×204.8=20480 Mbps=2.048×104 Mbps ,故选D.【点睛】本题考查了文字语言转化为数学语言的能力,灵活理解题干的内容并化简是解题的关键.19.2019年我省实施降成本的30条措施,全年为企业减负960亿元以上,用科学记数法表示数据960亿为( )A .79.610⨯B .89.610⨯C .99.610⨯D .109.610⨯【答案】D【解析】【分析】科学记数法的表示形式为a 10n ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:960亿=96000000000=109.610⨯故选:D.【点睛】此题主要考查科学记数法,熟练确定a 和n 是解题的关键.20.已知|m+3|与(n ﹣2)2互为相反数,那么m n 等于( )A .6B .﹣6C .9D .﹣9【答案】C【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m、n的值,然后代入代数式进行计算即可得解.【详解】∵|m+3|与(n﹣2)2互为相反数,∴|m+3|+(n﹣2)2=0,∴m+3=0,n﹣2=0,解得m=﹣3,n=2,所以,m n=(﹣3)2=9.故选C.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学基础知识测试题
学校 姓名 得分
一、填空题(本题共30小题,每小题2分,满分60分)
1、 和 统称为实数.
2、方程623y --8
53y -=1的解为 . 3、不等式组⎩
⎨⎧+-x x 5743 的解集是 . 4、伍分和贰分的硬币共100枚,值3元2角.若设伍分硬币有x 枚,贰分硬币有y 枚,则可得方程组 .
5、计算:28x 6y 2÷7x 3y 2= .
6、因式分解:x 3+x 2-y 3-y 2= .
7、当x 时,分式2
31+-x x 有意义;又当x 时,其值为零. 8、计算:b a a -+22b ab b -= ;(x 2-y 2)÷y
x y x +-= .
9、用科学记数法表示:—0.00002008= ;121900000= .
10、81的平方根为 ;-125
64的立方根为 . 11、计算:18-2
1= ;(3+25)2= . 12、分母有理化:51
= ;y x y
x +-= .
13、一块长8cm ,宽6cm 的长方形铁片,在四个角各剪去一个边长相等的小正方形,做成一个长方体无盖的盒子,使它的底面积为24 cm 2 .若设小正方形边长为x cm ,则可得方程为 .
14、如果关于x 方程2x 2-4x +k =0有两个不相等的实数根,那么k 的取值范围是 .
15、若x 1、x 2是方程2x 2+6x —1=0的两个根,则11x +2
1x = . 16、以2+1和2—1为根的一元二次方程是 .
17、在实数范围内因式分解:3x 2-4x -1= .
18、方程x +52-x =5的解是 .
19、已知正比例函数y =kx ,且当x =5时,y =7,那么当x =10时,y = .
20、当k 时,如果反比例函数y =x
k 在它的图象所在的象限内,函数值随x 的减小而增大. 21、在直角坐标系中,经过点(-2,1)和(1,-5)的直线的解析式是 .
22、如果k <0,b >0,那么一次函数y =kx +b 的图象经过第 象限.
23、如果一个等腰三角形的周长为24cm ,那么腰长y (cm )与底长x (cm )之间的函数关系式是 .
24、二次函数y =-2x 2+4 x -3的图象的开口向 ;顶点是 .
25、经过点(1,3)、(-1,-7)、(-2,-6)的抛物线的解析式是 .
26、把抛物线y =-3(x -1)2+7向右平移3个单位,向下平移4个单位后,所得到的抛物线的解析式是 .
27、柳营中学某班学生中,有18人14岁,16人15岁,6人16岁,这个班级学生的平均年龄是 岁.
28、当一组数据有8个数从小到大排列时,这组数据的中位数是 .
29、一组数据共有80个数,其中最大的数为168,最小的数为122 .如果在频数分布直方图中的组距为5,则可把这
组数据分成 组.
>0, ≤0
30、样本29、23、30、27、31的标准差是 .
二、填空题(本题共30小题,每小题2分,满分60分)
31、如果两条平行线被第三条直线所截,那么 相等, 互补.
32、命题“两直线平行,同旁内角互补”的题设是 ,
结论是 .
33、若三角形三边长分别是6、11、m ,则m 的取值范围是 .
34、如果一个多边形的内角和为2520°,那么这个多边形是 边形.
35、等腰三角形的 、 、 互相重合.
36、在△ABC 中,若∠A =80°,∠B =50°,则△ABC 是 三角形.
37、在Rt △ABC 中,∠C =90°,∠A =60°.若AC =5cm ,则AB = cm .
38、在Rt △ABC 中,∠C =90°, 如果AC =3cm ,BC =4cm ,那么AB 边上的高CD = cm .
39、如果一个平行四边形的两个邻角的差为30°,那么这个平行四边形的较大的一个内角为 (度).
40、两组对边分别 的四边形是平行四边形.
41、在菱形ABCD 中,若有一个内角为120°,且较短的一条对角线长12cm ,则这菱形的周长为 cm .
42、两条对角线 的平行四边形是正方形.
43、在梯形ABCD 中,AD ∥BC ,若AB =DC ,则相等的底角是 .
44、顺次连结菱形的四边的中点所得到的图形是 形.
45、在△ABC 中,点D 、E 分别在AB 、AC 边上,若DE ∥BC ,AD =5,AB =9,EC =3,则AC = .
46、在△ABC 中,点D 、E 分别在AB 、AC 边上,AD =2 cm ,DB =4cm ,AE =3cm , EC =1 cm ,因为 且 ,所以△ABC ∽△ADE .
47、△ABC 的三条中线AD 、BE 、CF 交于点G .如果△AEG 的面积为12平方厘米,那么△ABC 的面积为 平方厘米.
48、把一个三角形改成和它相似的三角形,如果边长扩大为原来的10倍,那么面积扩大为原来的 倍.
49、如果∠A 为锐角,tgA =5
4,那么ctgA = . 50、计算:sin30°= ;tg60°= .
51、在Rt △ABC 中,∠C =90°.如果sinA =2
3,那么∠B = (度). 52、如果飞机在离地面5000米的高空俯视地面上一个目标时,俯角为30°,那么飞机离目标的距离为 米.
53、斜坡的坡度为1︰4,斜坡的水平宽度为20m ,则斜坡的垂直高度为 m .
54、在半径为10cm 的圆中,20°的圆心角所对的弧长为 cm .
55、若两圆半径分别为9cm 和4cm ,圆心距为5cm ,则两圆位置关系为 .
56、若直线AB 经过⊙O 上一点C ,且OC ⊥AB ,则直线AB 是⊙O 的 .
57、在△ABC 中,如果AB =9cm ,BC =4cm ,CA =7cm ,它的内切圆切AB 于点D ,那么AD = cm .
58、在Rt △ABC 中,∠C =90°.如果AC =5cm ,BC =12cm ,那么△ABC 内切圆的半径为 cm .
59、半径分别为5cm 和15cm 的两圆相外切,其外公切线的长为 cm ,连心线与外公切线所夹的锐角为 (度).
60、任何正多边形都是 对称图形,边数是偶数的正多边形又是 对称图形.
答案
一、1、有理数;无理数.2、y =3 .3、x ≤-57.4、⎩
⎨⎧=+=+32025100y x y x .5、4x 3 .6、(x -y )(x 2+xy +y 2+x +y ).7、≠-32;=1 .8、b a b a -+;(x +y )2 .9、-2.008×10-5;1.219×108 .10、±3;-54.11、22
5;29+125.12、551;.y
x xy y x --+2.13、(8-2x )(6-2x )=24(或x 2-7x +6=0).14、k <2 .15、6 .16、x 2-22x +1=0 .17、(x -372+)(x -3
72-).18、x =3 .19、14 .20、>0 .21、y =-2x -3 .22、一、二、四 .23、y =-21x +12,0<x <12 .24、下;(1,-1).25、y =2x 2+5x -4 .26、y =-3(x -4)2+3 .27、14.7 .28、第4和第5个数的平均数.29、10 .30、22.
二、31、同位角或内错角;同旁内角.32、两直线平行;同旁内角互补.33、5<m <17 .34、16 . 35、顶角的平分线;底边上的中线;底边上的高.36、等腰.37、10 .38、2.4 .39、105°.40、平行(或相等).41、48 .42、垂直且相等.43、∠A =∠D ,∠B =∠C .44、矩.45、436.46、∠DAE =∠CAB ,AB AD =AC
AE .47、72 .48、100 .49、45.50、21;3.51、30°.52、10000 .53、5 .54、9
10π.55、内切.56、切线.57、6 .58、2 .59、103;30°.60、轴;中心.。

相关文档
最新文档