中考数学总复习资料1
中考数学总复习资料(基础、简单)
中考数学总复习资料一 ..................................................................................................................................................................................... - 1 -二 ........................................................................................................................................................ 错误!未定义书签。
三 ................................................................................................................................................................................... - 15 -四 ................................................................................................................................................................................... - 26 -五 ........................................................................................................................................................ 错误!未定义书签。
中考总复习数学第1节 平行四边形与多边形
12.(2020·河池)如图,在▱ABCD 中,CE 平分∠BCD, 交 AB 于点 E,EA=3,EB=5,ED=4,则 CE 的长是 (C)
A.5 2 B.6 2 C.4 5 D.5 5
五、解答题(20 分) 13.(本题满分 10 分)(2020·通辽)中心为 O 的正六边形 ABCDEF 的半径为 6 cm,点 P,Q 同时分别从 A,D 两点出发,以 1 cm/s 的速度 沿 AF,DC 向终点 F,C 运动,连接 PB,PE,QB,QE, 设运动时间为 t(s). (1)求证:四边形 PBQE 为平行四边形;
第五章 四边形
第1节 平行四边形与多边形
A 卷(70 分)
一、选择题(每小题 5 分,共 20 分)
1.(2020·济宁)一个多边形的内角和是 1080°,则这
个多边形的边数是( B )
A.9
B.8
C.7
D.6
2.(2019·柳州)如图,在▱ABCD 中,全等三角形的 对数共有( C )
A.2 对 B.3 对 C.4 对 D.5 对
B 卷(30 分) 四、选择题(每小题 5 分,共 10 分) 11.(2020·宜昌)游戏中有数学智慧,找 起点游戏规定:从起点走五段相等直路之后 回到起点,要求每走完一段直路后向右边偏 行.成功的招数不止一招,可助我们成功的 一招是( A )
A.每走完一段直路后沿向右偏 72°方向行走 B.每段直路要短 C.每走完一段直路后沿向右偏 108°方向行走 D.每段直路要长
7.(2019·梧州)如图,▱ABCD 中,∠ADC=119°,BE⊥DC 于 点 E,DF⊥BC 于点 F,BE 与 DF 交于点 H,则∠BHF= 61 度.
8.(2019·武汉)如图,在▱ABCD 中,E,F 是对角线 AC 上两点,AE =EF=CD,∠ADF=90°,∠BCD =63°,则∠ADE 的大小为 21° .
中考数学总复习 第一部分 教材考点全解 第五章 四边形 第特殊的平行四边形课件
点,连接DO并延长,交AB延长线于点E,连接BD,EC.
(1)求证:四边形BECD是平行四边形;
(2)若∠A=50°,则当∠BOD=
°时,四边形BECD
是矩形.
12/9/2021
第二十九页,共六十四页。
(1)证明:∵四边形ABCD是平行四边形, ∴AB∥DC, ∴∠OEB=∠ODC. 又∵O为BC的中点, ∴=. 在△BOE和△COD中,
【答案】 (1)BO,CO,OE,OD(方法不唯一) (2)∠BCD,∠BDC,OD,∠ODB(方法不唯一)
12/9/2021
第三十二页,共六十四页。
证明一个四边形是矩形的常用方法有:(1)首先证明这个 四边形是平行四边形,再证明有一个角是直角或者证明其对 角线相等;(2)直接证明四边形有三个角都是直角.注意不能将 两个判定方法相混淆.
12/9/2021
第二十四页,共六十四页。
命题(mìng 正方形的性质(xìngzhì)与判定(8年4考) tí)点3 7.(2017·河南 9 题)我们知道:四边形具有不稳定性.如图,
在平面直角坐标系中,边长为 2 的正方形 ABCD 的边 AB
在 x 轴上,AB 的中点是坐标原点 O.固定点 A,B,把正方
12/9/2021
第三十八页,共六十四页。
(2)∵四边形 ABCD 是菱形, ∴AB= . ∵△ADE≌△CDF, ∴AE= , ∴BE= , ∴∠BEF=∠BFE.
【答案】 (1)CD,∠C,∠CFD,∠CFD,∠C,CD (2)CB,CF,BF
12/9/2021
第三十九页,共六十四页。
证明一个四边形是菱形的常用方法有:(1)首先证明这个 四边形是平行四边形,再证明有一组邻边相等或者对角线互 相垂直;(2)直接证明四边形的四条边都相等.注意不能将两个 判定方法混淆.
(完整版)中考数学知识点总结(完整版)
中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 —a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数:(1)实数a(a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号. 4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示.实数和数轴上的点是一一对应的关系. 四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。
最新中考数学总复习第一部分数与代数 第二章 方程与不等式 第7讲 一元二次方程及应用
数学
(2)解:∵x2-4mx+3m2=0,即(x-m)(x-3m)=0, ∴x1=m,x2=3m. ∵m>0,且该方程的两个实数根的差为2, ∴3m-m=2, ∴m=1.
返回
数学
考点3 *一元二次方程根与系数的关系
8.(2021 黄石)已知关于 x 的一元二次方程 x2+2mx+m2+m=0 有 实数根. (1)求 m 的取值范围; (2)若该方程的两个实数根分别为 x1,x2,且x12+x22=12,求 m 的值.
返回
数学
14.(2018广东)关于x的一元二次方程x2-3x+m=0有两个不相 等的实数根,则实数m的取值范围是( A )
A.m<9
4
B.m≤9
4
C.m>9
4
D.m≥9
4
返回
数学
15.(2019广东)已知x1,x2是一元二次方程x2-2x=0的两个实 数根,下列结论错误的是( D )
A.x1≠x2
一元二次方 题14,
题4,
程的解 4分
3分
解一元二次 方程
题 题9,3
21(2), 分 2分
题17, 6分
返回
数学
一元二次方程
题9,
题8,
根的判别式
3分
3分
一元二次方程
的应用题
◇链接教材◇人教版:九上第二十一章P1-P26
北师版:九上第二章P30-P58
返回
数学
课前预习
1.(2021深圳)已知方程x2+mx-3=0的一个根是1,则m的值为 2.
2.(2021广州)方程x2-4x=0的实数解是 x1=0,x2=4 .
2024年中考数学总复习第一部分考点精练第八单元统计与概率第2课时概率
班级:________姓名:________第2课时概率基础题1. (2023徐州)下列事件中的必然事件是()A. 地球绕着太阳转B. 射击运动员射击一次,命中靶心C. 天空出现三个太阳D. 经过有交通信号灯的路口,遇到红灯2. (2023贵州)在学校科技宣传活动中,某科技活动小组将3个标有“北斗”,2个标有“天眼”,5个标有“高铁”的小球(除标记外其他都相同)放入盒中,小红从盒中随机摸出1个小球,并对小球标记的内容进行介绍,下列叙述正确的是()A. 摸出“北斗”小球的可能性最大B. 摸出“天眼”小球的可能性最大C. 摸出“高铁”小球的可能性最大D. 摸出三种小球的可能性相同3. (2023丽水)某校准备组织红色研学活动,需要从梅岐、王村口、住龙、小顺四个红色教育基地中任选一个前往研学,选中梅岐红色教育基地的概率是()A. 12 B.14 C.13 D.344. 小华将给弟弟买的糖果放到一个不透明的袋子中,这些糖果除了口味和外包装的颜色外其余都相同,袋子里各种口味糖果的数量统计如图所示,他让弟弟从袋子里随机摸出一颗糖果,则弟弟恰好摸到苹果味糖果的概率是()第4题图A. 12 B.13C. 15 D.4155. (人教九上P136例1改编)小强、小明、小华三人做抛硬币游戏,规定:同时抛两枚质地均匀的硬币,若两枚硬币全部正面朝上,则小强获胜;若两枚硬币一枚正面一枚反面朝上,则小明获胜;若两枚硬币全部反面朝上,则小华获胜.那么此游戏()A. 对小强有利B. 对小明有利C. 对小华有利D. 是公平的6. [新考法——跨生物学科]孟德尔被誉为现代遗传学之父,他通过豌豆杂交实验,发现了遗传学的基本规律.如图,纯种高茎豌豆和纯种矮茎豌豆杂交,子一代都是高茎豌豆,子一代种子种下去,自花传粉,获得的子二代豌豆由DD ,Dd ,dd 三种遗传因子控制,由此可知,子二代豌豆中含遗传因子D 的概率是________.第6题图7. (2023本溪)如图,等边三角形ABC 是由9个大小相等的等边三角形构成,随机地往△ABC 内投一粒米,落在阴影区域的概率为________.第7题图8. [新考法——传统文化](2023山西改编)中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分.若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是________. 9. (2023杭州)一个仅装有球的不透明布袋里只有6个红球和n 个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为25,则n =________.拔高题10. (2022聊城)如图,两个相同的可以自由转动的转盘A 和B ,转盘A 被三等分,分别标有数字2,0,-1;转盘B 被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A ,B ,转盘停止时,两个指针指向转盘A ,B 上的对应数字分别为x ,y (当指针指在两个扇形的交线时,需重新转动转盘),那么点(x ,y )落在平面直角坐标系第二象限的概率是________.第10题图11. [新考法——真实问题情境](2023福建)为促进消费,助力经济发展,某商场决定“让利酬宾”,于“五一”期间举办了抽奖促销活动.活动规定:凡在商场消费一定金额的顾客,均可获得一次抽奖机会.抽奖方案如下:从装有大小质地完全相同的1个红球及编号为①②③的3个黄球的袋中,随机摸出1个球,若摸得红球,则中奖,可获得奖品;若摸得黄球,则不中奖.同时,还允许未中奖的顾客将其摸得的球放回袋中,并再往袋中加入1个红球或黄球(它们的大小质地与袋中的4个球完全相同),然后从中随机摸出1个球,记下颜色后不放回,再从中随机摸出1个球,若摸得的两球的颜色相同,则该顾客可获得精美礼品一份.现已知某顾客获得抽奖机会.(1)求该顾客首次摸球中奖的概率;(2)假如该顾客首次摸球未中奖,为了有更大机会获得精美礼品,他应往袋中加入哪种颜色的球?说明你的理由.创新题12. (2022武汉)班长邀请A,B,C,D四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是()第12题图A. 14 B.13 C.12 D.2313. “宫商角徵羽”是中国古乐的五个基本音阶(相当于西乐的1,2,3,5,6),是采用“三分损益法”通过数学方法获得.如图,现有一款“一起听古音”的音乐玩具,音乐小球从A处沿轨道进入小洞就可以发出相应的声音,且小球进入每个小洞中的可能性大小相同.现有一个音乐小球从A处先后两次进入小洞,先发出“商”音,再发出“羽”音的概率是________.第13题图1. A2. C 【解析】∵有3个标有“北斗”,2个标有“天眼”,5个标有“高铁”,∴小红从盒中随机摸出1个小球,摸出“高铁”小球的可能性最大.3. B4. D 【解析】由题意可得,弟弟恰好摸到苹果味糖果的概率为43+3+5+4=415.5. B 【解析】画树状图如解图,由树状图可知,共有4种等可能的结果,其中两枚硬币全部正面朝上的结果有1种,一枚正面一枚反面朝上的结果有2种,两枚硬币全部反面朝上的结果有1种,∴P (小强获胜)=14,P (小明获胜)=24=12,P (小华获胜)=14,∵14<12,∴此游戏对小明有利.第5题解图6. 34 【解析】 纯种高茎豌豆(DD )和纯种矮茎豌豆(dd )杂交,子一代都是高茎豌豆(Dd ),子一代种子种下去,自花传粉,获得的子二代豌豆由DD 、Dd 、dd 三种遗传因子控制,比例为1∶2∶1.由此可知,子二代豌豆中含遗传因子D 的个体有DD 、Dd ,概率是34.7. 598. 16【解析】将《论语》《孟子》《大学》《中庸》分别记作A ,B ,C ,D ,根据题意,列表如下:A B C D A (B ,A ) (C ,A ) (D ,A ) B (A ,B ) (C ,B ) (D ,B ) C (A ,C ) (B ,C ) (D ,C )D(A ,D )(B ,D )(C ,D )由表可知,共有12种等可能的结果,抽取的两本恰好是《论语》和《大学》的结果有2种,∴P (抽取的两本恰好是《论语》和《大学》)=212=16.9. 9 【解析】根据题意,列出方程6n +6=25,解得n =9.经检验,n =9是原分式方程的解.10. 16【解析】列表如下:由表可知,共有12种等可能的结果,其中点(x ,y )落在平面直角坐标系第二象限的有2种结果,∴P (点(x ,y )落在平面直角坐标系第二象限)=212=16.11. 解:(1)该顾客首次摸球的所有可能结果为红,黄①,黄②,黄③,共4种等可能的结果,记“首次摸得红球”为事件A ,则事件A 发生的结果只有1种, ∴P (A )=14,∴P (该顾客首次摸球中奖)=14;(2)他应往袋中加入黄球. 理由如下:记往袋中加入的球为“新”,摸得的两球的所有可能的结果列表如下:由表格可知,共有20种等可能的结果,(ⅰ)若往袋中加入的是红球,两球颜色相同的结果共有8种,此时该顾客获得精美礼品的概率P 1=820=25;(ⅱ)若往袋中加入的是黄球,两球颜色相同的结果共有12种,此时该顾客获得精美礼品的概率P 2=1220=35.∵25<35,∴他应往袋中加入黄球.12. C 【解析】画树状图如解图,由树状图可知,4个A 中每个各有6种等可能的结果,共有24种等可能的结果,其中A ,B 两位同学座位相邻的结果有12种,∴P (A ,B 两位同学座位相邻)=1224=12.第12题解图13.125【解析】 根据题意画树状图如解图,由树状图可知,共有25种等可能的结果,其中先发出“商”音,再发出“羽”音的结果有1种,∴P (先发出“商”音,再发出“羽”音)=125.第13题解图。
【初中数学精品资料】中考数学总复习_全部导学案(教师版)
第2课时 实数的运算【知识梳理】1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数. 2.有理数减法法则:减去一个数,等于加上这个数的相反数.3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘; 任何数与0相乘,积仍为0.4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除; 0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数. 5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减; 如果有括号,先算括号里面的. 6.有理数的运算律:加法交换律:a+b=b+a(a b 、为任意有理数) 加法结合律:(a+b)+c=a+(b+c)(a, b,c 为任意有理数)【思想方法】数形结合,分类讨论【例题精讲】例1.某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名.例2.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年6月17日上午9时应是( )A .伦敦时间2006年6月17日凌晨1时.B .纽约时间2006年6月17日晚上22时.C .多伦多时间2006年6月16日晚上20时 .D .汉城时间2006年6月17日上午8时.例3.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________个圆组成.北京 汉城 8 9 0 伦敦 -4 多伦多纽约 国际标准时间(时) -5 例2图……例3图【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________【例6】给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【当堂检测】1.分解因式:39a a -= , _____________223=---x x x 2.对于任意两个实数对(a ,b )和(c ,d ),规定:当且仅当a =c 且b =d 时, (a ,b )=(c ,d ).定义运算“⊗”:(a ,b )⊗(c ,d )=(ac -bd ,ad +bc ).若(1,2)⊗(p ,q )=(5,0),则p = ,q = . 3. 已知a=1.6⨯109,b=4⨯103,则a 2÷2b=( )A. 2⨯107B. 4⨯1014C.3.2⨯105D. 3.2⨯1014 . 4.先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中2332a b =--=-,.5.先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,.第4课时 分式与分式方程【知识梳理】1. 分式概念:若A 、B 表示两个整式,且B 中含有字母,则代数式BA叫做分式. 2.分式的基本性质:(1)基本性质:(2)约分:(3)通分: 3.分式运算4.分式方程的意义,会把分式方程转化为一元一次方程.5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根. 【思想方法】1.类比(分式类比分数)、转化(分式化为整式)2.检验【例题精讲】1.化简:2222111x x x x x x-+-÷-+2.先化简,再求值: 22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中22x =+.3.先化简11112-÷-+x xx )(,然后请你给x 选取一个合适值,再求此时原式的值.4.解下列方程(1)013522=--+x x x x (2)41622222-=-+-+-xx x x x5.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是( )A. B.C.D.【当堂检测】1.当99a =时,分式211a a --的值是.2.当x 时,分式112--x x有意义;当x 时,该式的值为0.3.计算22()ab ab 的结果为.4. .若分式方程xxk x --=+-2321有增根,则k 为( ) A. 2 B.1 C. 3 D.-25.若分式32-x 有意义,则x 满足的条件是:( ) A .0≠x B .3≥x C .3≠x D .3≤x6.已知x =2008,y =2009,求x yx 4y 5x y x 4xy5x y 2xy x 2222-+-+÷-++的值7.先化简,再求值:4xx 16x )44x x 1x 2x x 2x (2222+-÷+----+,其中22+=x8.解分式方程. (1)22011xx x -=+- (2)x 2)3(x 22x x -=--;(3) 11322xx x -=--- (4)11-x 1x 1x 22=+--第5课时 二次根式【知识梳理】 1.二次根式:(1)定义:____________________________________叫做二次根式. 2.二次根式的化简:3.最简二次根式应满足的条件:(1)被开方数中不含有能开得尽的因数或因式. (2)根号内不含分母 (3)分母上没有根号4.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 5.二次根式的乘法、除法公式:(1)a b=ab a 0b 0⋅≥≥(,)(2)a a=a 0b 0b b≥(,)6..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式. 【思想方法】 非负性的应用【例题精讲】 【例1】要使式子1x x+有意义,x 的取值范围是( ) A .1x ≠B .0x ≠C .10x x >-≠且D .10x x ≠≥-且【例2】估计132202⨯+的运算结果应在( ). A .6到7之间 B .7到8之间 C .8到9之间D .9到10之间【例3】 若实数x y ,满足22(3)0x y ++-=,则xy 的值是 .【例4】如图,A ,B ,C ,D 四张卡片上分别写有523π7-,,,四个实数,从中任取两张卡片.A B C D(1)请列举出所有可能的结果(用字母A ,B ,C ,D 表示); (2)求取到的两个数都是无理数的概率.【例5】计算:(1)103130tan 3)14.3(27-+︒---)(π(2)101(1)527232-⎛⎫π-+-+-- ⎪⎝⎭.【例6】先化简,再求值:)1()1112(2-⨯+--a a a ,其中33-=a .【当堂检测】1.计算:(1)01232tan 60(12)+--+-+. (2)cos45°·(-21)-2-(22-3)0+|-32|+121- (3)026312()cos 304sin 6022-++-+.2.如图,实数a 、b 在数轴上的位置,化简222()a b a b ---思考与收获第9课时 方程的应用(二)【知识梳理】1.一元二次方程的应用;2. 列方程解应用题的一般步骤;3. 问题中方程的解要符合实际情况.【例题精讲】 例1. 一个两位数的十位数字与个位数字和是7,把这个两位数加上45后,•结果恰好成为数字对调后组成的两位数,则这个两位数是( ) A .16 B .25 C .34 D .61例2. 如图,在宽为20米、长为30米的矩形地面上修 建两条同样宽的道路,余下部分作为耕地.若耕地面积 需要551米2,则修建的路宽应为( ) A .1米 B .1.5米 C .2米 D .2.5米 例3. 为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A.225003600x = B.22500(1)3600x +=C.22500(1%)3600x += D.22500(1)2500(1)3600x x +++= 例4. 某地出租车的收费标准是:起步价为7元,超过3千米以后,每增加1千米,•加收2.4元.某人乘这种出租车从甲地到乙地共付车费19元,•设此人从甲地到乙地经过的路程为x 千米,那么x 的最大值是( )A .11B .8C .7D .5例5. 已知某工厂计划经过两年的时间,•把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数约是________.按此年平均增长率,预计第4年该工厂的年产量应为_____万台.例6. 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000•元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?例7. 幼儿园有玩具若干份分给小朋友,如果每人分3件,那么还余59件.•如果每人分5件,那么最后一个人不少于3件但不足5件,试求这个幼儿园有多少件玩具,有多少个小朋友.【当堂检测】1. 某印刷厂1•月份印刷了书籍60•万册,•第一季度共印刷了200万册,问2、3月份平均每月的增长率是多少?2. 为了营造人与自然和谐共处的生态环境,某市近年加快实施城乡绿化一体化工程,创建国家城市绿化一体化城市.某校甲,乙两班师生前往郊区参加植树活动.已知甲班每天比乙班少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2天,求甲,乙两班每天各植树多少棵?3. A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s 的速度向D移动.⑴ P、Q两点从出发开始到几秒时四边形PBCQ的面积为33 cm2?⑵ P、Q两点从出发开始到几秒时,点P和点Q的距离是10 cm?4. 甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg.(1)乙班比甲班少付出多少元?(2)甲班第一次,第二次分别购买苹果多少千克?购苹果数不超过30kg 30kg以下但不超过50kg50kg以上每千克价格3元 2.5元2元第10课时 一元一次不等式(组)【知识梳理】1.一元一次不等式(组)的概念;2.不等式的基本性质;3.不等式(组)的解集和解法. 【思想方法】1.不等式的解和解集是两个不同的概念;2.解集在数轴上的表示方法.【例题精讲】 例1.如图所示,O 是原点,实数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论错误的是( ) A. 0b a >-B. 0ab <C. 0b a <+D. 例2. 不等式112x ->的解集是( )A.12x >- B.2x >- C.2x <-D.12x <-例3. 把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是( )A .B .C .D .例4. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个例5. 小明和爸爸妈妈三人玩跷跷板,三人的体重一共为150kg ,爸爸坐在跷跷板的一端,小明体重只有妈妈一半,小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地,那么小明的体重应小于( ) A. 49kg B. 50kg C. 24kg D. 25kg 例6.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于( ) A .0 B .1 C .2D .3例7.解不等式组:(1)21113x xx +<⎧⎪⎨-≥⎪⎩ (2)⎪⎩⎪⎨⎧+<+->+)6(3)4(4,5351x x x x4321B A O C)c a (b >-1 01- 10 1- 1 0 1- 1 0 1-第12课时 一次函数图象和性质【知识梳理】1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0). 2. 一次函数y kx b =+的图象是经过(kb-,0)和(0,b )两点的一条直线. 3. 一次函数y kx b =+的图象与性质【思想方法】数形结合【例题精讲】 例1. 已知一次函数物图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上; (3)求此函数与x 轴、y 轴围成的三角形的面积.例2. 已知一次函数y=(3a+2)x -(4-b),求字母a 、b 为何值时: (1)y 随x 的增大而增大; (2)图象不经过第一象限;(3)图象经过原点; (4)图象平行于直线y=-4x+3; (5)图象与y 轴交点在x 轴下方.例3. 如图,直线l 1 、l 2相交于点A ,l 1与x 轴的交点坐标为(-1,0),l 2与y 轴的交点坐标为(0,-2),结合图象解答下列问题: (1)求出直线l 2表示的一次函数表达式;(2)当x 为何值时,l 1 、l 2表示的两个一次函数的函数值都大于0?k 、b 的符号k >0,b >0k >0,b <0k <0,b >0k <0,b <0图像的大致位置经过象限 第 象限 第 象限第 象限第 象限 性质y 随x 的增大 而y 随x 的增大而而y 随x 的增大 而y 随x 的增大 而xy O32y x a =+1y kx b =+yxO BA 例4.如图,反比例函数xy 2=的图像与一次函数b kx y +=的图像交于点A(m,2),点B(-2, n ),一次函数图像与y 轴的交点为C. (1)求一次函数解析式; (2)求C 点的坐标; (3)求△AOC 的面积.【当堂检测】1.直线y =2x +8与x 轴和y 轴的交点的坐标分别是_______、_______;2.一次函数1y kx b =+与2y x a =+的图象如图,则下列 结论:①0k <;②0a >;③当3x <时,12y y <中, 正确的个数是( )A .0B .1C .2D .33.一次函数(1)5y m x =++,y 值随x 增大而减小,则m 的取值范围是( ) A .1m >-B . 1m <-C .1m =-D .1m <4.一次函数23y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 5.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( )6.已知整数x 满足-5≤x≤5,y 1=x+1,y 2=-2x+4对任意一个x ,m 都取y 1,y 2中的较小值,则m 的最大值是( ) A.1 B.2 C.24 D.-97.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为 ( ) A.(0,0) B.(22,22-) C.(-21,-21) D.(-22,-22)第2题图 第5题图 第7题图第13课时 一次函数的应用【例题精讲】例题1.某地区的电力资源丰富,并且得到了较好的开发.该地区一家供电公司为了鼓励居民用电,采用分段计费的方法来计算电费.月用电量x (度)与相应电费y (元)之间的函数图像如图所示.⑴月用电量为100度时,应交电费 元; ⑵ 当x≥100时,求y 与x 之间的函数关系式; ⑶ 月用电量为260度时,应交电费多少元?例题2. 在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少? (3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出t 的取值范围.例题3.某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)2·4·6· 8· S(km) 2 0 t(h) A B1日:有库存6万升,成本价4元/升,售价5元/升. 13日:售价调整为5.5元/升.15日:进油4万升,成本价4.5元/升.31日:本月共销售10万升.图(1) 2 O 5 x A B C P D 图(2)第1题图 例题4.奥林玩具厂安排甲、乙两车间分别加工1000只同一型号的奥运会吉祥物,每名工人每天加工的吉祥物个数相等且保持不变,由于生产需要,其中一个车间推迟两天开始加工.开始时,甲车间有10名工人,乙车间有12名工人,图中线段OB 和折线段ACB 分别表示两车间的加工情况.依据图中提供信息,完成下列各题:(1)图中线段OB 反映的是________车间加工情况;(2)甲车间加工多少天后,两车间加工的吉祥物数相同? (3)根据折线段ACB 反映的加工情况, 请你提出一个问题,并给出解答.【当堂检测】 1.如图(1),在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图(2)所示,则△BCD 的面积是( )A .3B .4C .5D .6 2.如图,在中学生耐力测试比赛中,甲、乙两学生测试的路程s (米)与时间t (秒)之间的函数关系的图象分别为折线OABC 和线段OD ,下列说法正确的是( ) A .乙比甲先到终点B .乙测试的速度随时间增加而增大C .比赛到29.4秒时,两人出发后第一次相遇D .比赛全程甲测试速度始终比乙测试速度快 3.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A .12分钟 B .15分钟C .25分钟D .27分钟4.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x (h)时,汽车与甲地的距离为y (km),y 与x 的函数关系如图所示.根据图像信息,解答下列问题: (1)这辆汽车的往、返速度是否相同?请说明理由;(2)求返程中y 与x 之间的函数表达式; (3)求这辆汽车从甲地出发4h 时与甲地的距离.2 B x (天) AC18 20 O 960 1000 y (只) 第2题图 第3题图 第4题图第14课时 反比例函数图象和性质【知识梳理】1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质3.k 的几何含义:反比例函数y =kx(k≠0)中比例系数k 的几何意义,即过双曲线y =kx(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 . 【思想方法】 数形结合【例题精讲】例1 某汽车的功率P 为一定值,汽车行驶时的速度v (米/秒)与它所受的牵引力F (牛)之间的函数关系如右图所示:(1)这辆汽车的功率是多少?请写出这一函数的表达式;(2)当它所受牵引力为1200牛时,汽车的速度为多少千米/时? (3)如果限定汽车的速度不超过30米/秒,则F 在什么范围内?例2如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点. (1)试确定上述反比例函数和一次函数的表达式; (2)求AOB △的面积;(3)x 为何值时,一次函数值大于反比例函数值. k 的符号k >0 k <0 图像的大致位置经过象限 第 象限 第 象限 性质在每一象限内,y 随x 的增大而在每一象限内,y 随x 的增大而oy xy xoOyxBA【当堂检测】1. (2008年河南)已知反比例函数的图象经过点(m ,2)和(-2,3),则m 的值为 .2.(2008年宜宾)若正方形AOBC 的边OA 、OB 在坐标轴上,顶点C 在第一象限且在反比例函数y =x1的图像上,则点C 的坐标是 . 3.在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是 ( )A .k >3B .k >0C .k <3D . k <0 4. (2008年广东)如图,反比例函数图象过点P,则它的解析式为( )A.y =1x (x>0) B.y =-1x (x>0) C.y =1x (x<0) D.y =-1x(x<0)5.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3 ) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( )A .不小于54m 3B .小于54m 3C .不小于45m 3D .小于45m 36.(2008巴中)如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k = . 7.对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它图象上B .图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小 8.(2008年乌鲁木齐)反比例函数6y x=-的图象位于( ) A .第一、三象限 B .第二、四象限 C .第二、三象限 D .第一、二象限 9.某空调厂装配车间原计划用2个月时间(每月以30天计算),每天组装150台空调.(1)从组装空调开始,每天组装的台数m (单位:台/天)与生产的时间t (单位:天)之间有怎样的函数关系?(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?第5题图1-1yOxP第4题图第6题图y xO OyxBA第15课时 二次函数图象和性质【知识梳理】1. 二次函数2()y a x h k =-+的图像和性质a >0a <0图 象 开 口 对 称 轴 顶点坐标最 值当x = 时,y 有最 值当x = 时,y 有最 值 增减性 在对称轴左侧 y 随x 的增大而y 随x 的增大而 在对称轴右侧 y 随x 的增大而y 随x 的增大而2. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中h = , k = .3. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系. 4. 二次函数c bx ax y ++=2中c b a ,,的符号的确定.【思想方法】 数形结合【例题精讲】 例1.已知二次函数24y x x =+,(1) 用配方法把该函数化为2()y a x h k =-+ (其中a 、h 、k 都是常数且a≠0)形式,并画 出这个函数的图像,根据图象指出函数的对称 轴和顶点坐标.(2) 求函数的图象与x 轴的交点坐标.例2. (2008年大连)如图,直线m x y +=和抛物线c bx x y ++=2都经过点A(1,0),B(3,2).⑴ 求m 的值和抛物线的解析式;⑵ 求不等式m x c bx x +>++2的解集.(直接写出答案)【当堂检测】1. 抛物线()22-=x y 的顶点坐标是 .2.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 . 3. 如图所示的抛物线是二次函数2231y ax x a =-+- 的图象,那么a 的值是 .4.二次函数2(1)2y x =-+的最小值是( )A.-2B.2C.-1D.15. 请写出一个开口向上,对称轴为直线x =2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .6.已知二次函数22y x x m =-++的部分图象如右图所示,则关于x 的一元二次方程220x x m -++=的解为 .7.已知函数y=x 2-2x-2的图象如图所示,根据其中提供的信息,可求得使y≥1成立的x 的取值范围是( )A .-1≤x≤3B .-3≤x≤1C .x≥-3D .x≤-1或x≥3 8. 二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论: ①a >0; ②c >0; ③ b 2-4a c >0,其中正确的个数是( ) A. 0个 B. 1个 C. 2个 D. 3个第7题图 第8题图9. 已知二次函数243y ax x =-+的图象经过点(-1,8).(1)求此二次函数的解析式;(2)根据(1)填写下表.在直角坐标系中描点,并画出函数的图象;x 0 1 2 3 4 y(3)根据图象回答:当函数值y<0时,x 的取值范围是什么?第3题图第6题图第16课时 二次函数应用【知识梳理】1. 二次函数的解析式:(1)一般式: ;(2)顶点式:2. 顶点式的几种特殊形式.⑴ , ⑵ , ⑶ ,(4) .3.二次函数c bx ax y ++=2通过配方可得224()24b ac b y a x a a-=++,其抛物线关于直线x = 对称,顶点坐标为( , ).⑴ 当0a >时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 ;⑵ 当0a <时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 .【思想方法】 数形结合【例题精讲】例1. 橘子洲头要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP ,柱子顶端P 处装上喷头,由P 处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP =3米,喷出的水流的最高点A 距水平面的高度是4米,离柱子OP 的距离为1米. (1)求这条抛物线的解析式;(2)若不计其它因素,水池的半径至少要多少米, 才能使喷出的水流不至于落在池外?例2.随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润1y 与投资量x 成正比例关系,如图(1)所示;种植花卉的利润2y 与投资量x 成二次函数关系,如图(2)所示(注:利润与投资量的单位:万元) ⑴ 分别求出利润1y 与2y 关于投资量x 的函数关系式; ⑵ 如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?(1) (2)【当堂检测】1. 有一个抛物线形桥拱,其最大高度为16米,跨度为40米,现在它的示意图放在平面直角坐标系中如图,则此抛物线的解析式为 .2. 某公司的生产利润原来是a 元,经过连续两年的增长达到了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系是( ) A .y =x 2+a B .y = a (x -1)2 C .y =a (1-x )2 D .y =a (l +x )2 3.如图,用长为18 m 的篱笆(虚线部分),两面靠墙围成矩形的苗圃.⑴ 设矩形的一边为()m x 面积为y (m 2),求y 关于x 的函数关系式,并写出自变量x 的取值范围;⑵ 当x 为何值时,所围苗圃的面积最大,最大面积是多少?4.体育测试时,初三一名高个学生推铅球,已知铅球所经过的路线为抛物线35321212++-=x x y 的一部分,根据关系式回答:⑴ 该同学的出手最大高度是多少?⑵ 铅球在运行过程中离地面的最大高度是多少? ⑶ 该同学的成绩是多少?5.某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润A y (万元)与投资金额x (万元)之间存在正比例函数关系:A y kx =,并且当投资5万元时,可获利润2万元; 信息二:如果单独投资B 种产品,则所获利润B y (万元)与投资金额x (万元)之间存在二次函数关系:2B y ax bx =+,并且当投资2万元时,可获利润2.4万元;当投资4万元,可获利润3.2万元.(1) 请分别求出上述的正比例函数表达式与二次函数表达式;(2) 如果企业同时对A 、B 两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少.第1题图第17课时 数据的描述、分析(一)【知识梳理】1.掌握总体、个体、样本、样本容量四个基本概念;2.理解样本平均数、极差、方差、 标准差、中位数、众数. 【思想方法】1. 会运用样本估计总体的思想【例题精讲】 例1.某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环) 如下:8,6,10,7,9,则这五次射击的平均成绩是 环,中位数 环,极差是 环,方差是 环2.例2.已知样本x 1、x 2、x 3、x 4的平均数是2,则x 1+3、x 2+3、x 3+3、x 4+3的平均 数为 ; .已知样本x 1,x 2,x 3,…,x n 的方差是1,那么样本2x 1+3, 2x 2+3,2x 3+3,…,2x n +3的方差是 , 标准差是 .例3.小明上学期六门科目的期末考试成绩(单位:分)分别是:120,115,x ,60,85,80.若平均分是93分,则x=_________,一组数据2,4,x ,2, 3,4的众数是2,则x = .例4.为了了解我市九年级学生中考数学成绩,从所有考生的试卷中抽取1000 份试卷进行统计分析,在这个问题中,样本是被抽取的1000名学生,则总体 是 ,个体是 , 样本是 ,样本容量是 .例5.某校九年级(1)班积极响应校团委的号召, 每位同学都向“希望工程” 捐献图书,全班40名同学共捐图书320册.特别值得一提的是李扬、王州两 位同学在父母的支持下各捐献了50册图书. 班长统计了全班捐书情况如下 表(被粗心的马小虎用墨水污染了一部分):⑴ 分别求出该班级捐献7册图书和8册图书的人数;⑵ 请算出捐书册数的平均数、中位数和众数, 并判断其中哪些统计量不能 反映该班同学捐书册数的一般状况,说明理由.册数 4 5 6 7 850 人数 6 8 15 2第18课时数据的描述、分析(二)【知识梳理】1. 明确扇形图、条形图、折线统计图的区别与联系.【思想方法】1. 基本图形的识别.【例题精讲】例1.下面是两户居民家庭全年各项支出的统计图.根据统计图,下列对两户教育支出占全年总支出的百分比作出的判断中,正确的是()A.甲户比乙户大 B.乙户比甲户大C.甲、乙两户一样大 D.无法确定哪一户大例1图例2.在“不闯红灯,珍惜生命”活动中,文明中学的关欣和李好两位同学某天来到城区中心的十字路口,观察、统计上午7:00~12:00中闯红灯的人次.制作了如下的两个数据统计图.(1)求图(一)提供的五个数据(各时段闯红灯人次)的众数和平均数.(2)估计一个月(按30天计算)上午7:00~12:00在该十字路口闯红灯的未成年人约有________人次.(3)请你根据统计图提供的信息向交通管理部门提出一条合理化建议.例2图例3.数学课上,年轻的刘老师在讲授“轴对称”时,设计了如下四种教学方法:①教师讲,学生听;②教师让学生自己做;③教师引导学生画图,发现规律;④教师让学生对折纸,观察发现规律,然后画图.数学教研组长将上述教学方法作为调研内容发到全年级8个班420名同学手中,。
中考总复习数学01- 第二部分 专题一 运算求解题
∴1※(-2)=3×1+4×(-2)
=3+(-8)
=-5,
∴1※(-2)的值为-5.
8
9
10
11
12
专题一
返回类型清单
运算求解题—新定义
(2)若5※3=16,2※(-3)=-2,求a与b的值.
解:(2)∵5※3=16,2※(-3)=-2,
5a+3b=16①,
∴൝
①+②得7a=14,解得a=2,
数学
专题一
运算求解题
专题一
运算求解题
类型清单
类型一
缺项
类型二
运算过程纠错
类型三
新定义
类型四
数轴情境问题
专题一
返回类型清单
运算求解题—缺项
类型一
缺项
题型讲解
缺项的有关题目,通常给定一个代数式或者式子的部分信息,要求我们按
要求补全缺项,利用相应的运算法则,解决问题.主要通过观察、分析、
尝试、计算,验证结论,解决问题,培养了学生的符号意识和运算能力.
+
∴m= .
−
8
9
10
11
12
专题一
返回类型清单
运算求解题—数轴情境问题
类型四
数轴情境问题
题型讲解
数轴情境类题型主要考查学生对数轴概念的理解能力,培养学生借助
数轴建立数式联系,运用数学知识解决问题,培养学生的抽象思维和学
习习惯.
例题
13
14
15
专题一
返回类型清单
运算求解题—数轴情境问题
题型讲解
7.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只
中考数学知识点复习 总复习资料大全(精华版)
中考数学总复习资料大全第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆ 一、 重要概念 1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏) 2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示: 奇数:2n-1偶数:2n (n 为自然数) 7.绝对值:①定义(两种): 代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,实数 无理数(无限不循环小数)有理数 正分数 负分数 正整数0 负整数 (有限或无限循环性数) 整数 分数 正无理数负无理数0 实数 负数整数分数 无理数有理数 正数 整数 分数无理数有理数│a │ 2a a (a ≥0) (a 为一切实数)a(a≥0)-a(a<0)│a │=只要其中有“││”出现,其关键一步是去掉“││”符号。
二、 实数的运算 1. 运算法则(加、减、乘、除、乘方、开方) 2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律) 3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。
中考数学总复习考点系统复习第一节 统计
第6题图
根据以上信息,解答下列问题: (1)补全上面两幅统计图;填出本次所抽取学生四月份“读书量”的众数为__3_本_____;
第6题解图
(2)求本次所抽取学生四月份“读书量”的平均数;
(2)∵18÷30%=60(人), ∴x= 1 ×(1×3+2×18+3×21+4×12+5×6)=3(本).
第4题图
根据以上提供的信息,解答下列问题:
(1)求所统计的这组数据的中位数和平均数;
解:(1)∵ 10+11 =10.5(棵); x= 9×1+10×4+11×3+12×2=10.6(棵).
2
10
∴所统计的这组数据的中位数为10.5棵,平均数为10.6棵.(3分)
(2)求抽查的这10个小组中,完成本次植树任务的小组所占的百分比; (2)∵ 4+3+2×100%=90%. 10 ∴在抽查的10个小组中,90%的小组完成了植树任务.(5分)
返回思维导图
概念:一组数据中出现次数 最多 的数据
数 据众 的数 数代 据表 的
特点:表示一组数据中出现次数最多的数据,次数多能够反映一组数 据的集中程度 通用情况:日常生活中“最佳”、“最受欢迎”、“最满意”、“最 受关注”等,与众数有关,它是反映一组数据的集中程度
分 析
数据的
概念:s2= n1[(x1-x)2+(x2-x)2+…+(xn-x)2]
请你根据以上提供的信息,解答下列问题: (1)补全频数分布直方图和扇形统计图; 解:(1)补全统计图如解图;(2分)
所抽取七年级学生早锻炼时间统计图
第7题解图
(2)所抽取的七年级学生早锻炼时间的中位数落在_2_0_≤_x_<__3_0_(或__填__C__) _区间内;
(云南)数学中考总复习专题突破课件:专题1 规律探索问题
专题1 规律探索问题
解:设M=1+3+32+33+…+32014,① ①式两边都乘3,得 3M=3+32+33+34+…+32015,② ②-①,得2M=32015-1, 两边都除以2,得
32015-1 M= 2 , 即1+3+32+33+…+32014=320125-1.
考点探究
专题1 规律探索问题 【点拨交流】 (1)视察第1,2,3个图,你能发现规律吗? (2)根据特例,你能写出第n个图中点的个数吗?
进而探ห้องสมุดไป่ตู้出一般规律,最后充分应用一般规律求解.
考点探究
专题1 规律探索问题
探究三 数形结合猜想型
11 1 1
1
例3 在数学活动中,小明为了求 2 + 22+ 23+ 24 +…+ 2n 的值
(结果用n表示),设计了如图Z1-2甲所示的正方形.
考点探究
图Z1-2
专题1 规律探索问题
11 1 1 1 (1)请你利用这个几何图形求 2 + 22 + 23 + 24 + 25 的值为
故选B.
考点探究
专题1 规律探索问题 【点拨交流】 (1)每个图形中的数与图形存在什么样的关系? (2)最小的数所在的图形面积与未标记数字的图形面积之间
有什么样的关系? (3)如何应用发现的规律求算式的值?
考点探究
专题1 规律探索问题 【归纳总结】 本例通过数形结合思想探索算式与图形面积之间的关系,
考点探究
专题1 规律探索问题 【归纳总结】
考点探究
专题1 规律探索问题
探究二 图形规律型 例2 [2014·武汉] 视察下列一组图形中点的个数,其中 第1个图中共有4个点,第2个图中共有10个点,第3个图中共有 19个点,…按此规律第5个图中共有点的个数是( B )
最新中考数学总复习第一部分数与代数 第二章 方程与不等式 第5讲一次方程(组)及应用
数学
考点2 二元一次方程组及其应用
3.(2021 金华)已知 x=2,是方程 3x+2y=10 的一个解,则 m 的值 y=m
是2 .
返回
数学
4.(2021 眉山)解方程组: 3x-2y+20=0, 2x+15y-3=0.
解:方程组整理得 3x-2y=-20① ,①×15+②×2 得 49x=-294, 2x+15y=3②
第一部分 数与代数
第二章 方程与不等式
第5讲 一次方程(组)及应用
数学
目录
01 命题分析
02 课前预习
03 考点梳理
04 课堂精讲
05 广东中考
06
新题速递(创新思维题)——全国视野
数学
命题分析
广东省卷近年中考数学命题分析
命题点 2021 2020 2019 2018 2017 2016
解一元一次
由题意得 x+y=55 .解得 x=5.9 .
y=9x-4
y=49.1
答:港珠澳大桥的桥梁长度和隧道长度分别为 49.1 km 和
5.9 km.
返回
数学
广东中考
6.(2013深圳)某商场将一款空调按标价的八折出售,仍可获利 10%,若该空调的进价为2 000元,则标价为 2 750 元.
返回
数学
若 a=b,则a = b(d≠0).
dd
(2)解法的一般步骤:
①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数
化为1.
返回
数学
2.解下列方程: (1)4x-2=3-x; x=1
(2)x+2 = x.
54
x=8
中考总复习数学第1节 一次方程(组)及其应用
【自主作答】(1)x=1;(2)xy==12,.
类型3:列一次方程(组)解实际问题
►例3(2020·绍兴)有两种消费券:A 券,满 60 元减 20
元;B 券,满 90 元减 30 元,即一次购物大于等于 60 元、
90 元,付款时分别减 20 元、30 元.小敏有一张 A 券,
小聪有一张 B 券,他们都购了一件标价相同的商品,各
【自主作答】100 或 85
►例4某一天,蔬菜经营户老李用了 145 元从蔬菜批
发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄
子当天的批发价与零售价如下表所示:
品名
黄瓜
茄子
批发价/(元/千克)
3
4
零售价/(元/千克)
4
7
当天他卖完这些黄瓜和茄子共赚了 90 元,这天他批 发的黄瓜与茄子分别是多少千克?
(1)请求出 A,B 两个品种去年平均亩产量分别是多 少.
(2)今年,科技小组加大了小麦种植的科研力度,在 A,B 种植亩数不变的情况下,预计 A,B 两个品种平均 亩产量将在去年的基础上分别增加 a%和 2a%,由于 B 品种深受市场的欢迎,预计每千克价格将在去年的基础 上上涨 a%,而 A 品种的售价不变.A,B 两个品种全部 售出后总收入将在去年的基础上增加290a%.求 a 的值.
自付款,若能用券时用券,这样两人共付款 150 元,则
所购商品的标价是
元.
分析:设所购商品的标价是 x 元,由题意,得
①所购商品的标价小于 90 元, x-20+x=150 ,
解得 x= 85
;②所购商品的标价大于 90 元,
x-20+x-30=150 ,解得 x= 100 .故所购商品
的标价是 100 或 85 元.
中考数学总复习第一章数与式第1课时实数pptx课件新人教版
(2)a-b=0⇔a=b;
(3)a-b<0⇔a<b.
4.倒数比较法
若
1
a>0,b>0,
>
1
,则
a<b.
5.平方法
因为由 a>b>0,可得
> ,所以我们可以把 与 的大小问题转
化成比较 a 和 b 的大小问题.
自主测试
1.如果60 m表示“向北走60 m”,那么“向南走40 m”可以表示为(
(2)一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;
负数没有平方根.
2.算术平方根
(1)如果一个正数 x 的平方等于 a,即 x2=a,那么这个正数 x 叫做 a 的算
术平方根,a 的算术平方根记作 .0 的算术平方根是 0,即 0=0.
(2)算术平方根都是非负数,即 ≥0(a≥0).
1.科学记数法
把一个数N表示成 a×10n (1≤|a|<10,n是整数)的形式叫科学记数法.当
|N|>10时,n等于原数N的整数位数减1;当0<|N|<1时,n是一个负整数,它的
绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零).
2.近似数与精确度
一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时,用精
A.-20 mB.-40 m
C.20 m D.40 m
答案:B
)
1
2.- 的绝对值是(
5
)
A.5
B.-5
1
C. 5
1
D.-5
答案:C
3
3.-4的倒数是(
人教版九年级数学中考总复习 专题一 作图专题 含解析及答案
专题一作图专题1.如图所示,小明利用一块平面镜使此时的太阳光水平射入隧道内。
请你通过作图画出平面镜并标出反射角的角度。
答案:如图所示解析:根据光的反射定律,反射角等于入射角,作反射光线和入射光线夹角的角平分线就是法线的位置;由图知,反射光线和入射光线的夹角为180°-60°=120°,则反射角等于入射角等于60°。
2.图中的A'B'是物体AB经过平面镜M后所成的像,请在图中画出该物体。
答案:如图所示3.如图所示,点光源S置于平面镜前,请画出点光源S的成像光路图。
答案:如图所示解析:从点光源S向镜面任意发出两条入射光线,入射点分别是O1、O2;根据光的反射定律,画出这两条入射光线的反射光线;将这两条反射光线反向延长,相交于点S',点S'即为点光源S在平面镜中所成的像。
4.如图所示,在平静的湖边上方有一盏路灯,潜水员在水下E处看到了路灯的像,图中A、B两点,其中一点是路灯的发光点,另一点是路灯的像点。
请你区分发光点、像点,在图中画出水下E处的潜水员看到路灯的光路图。
答案:如图所示解析:根据光从空气中斜射入水中时,折射角小于入射角,可知A为路灯的发光点,B为像点,连接EB与界面的交点即为入射点,光路图如图所示。
5.如图所示,平面镜垂直于凸透镜主光轴且在凸透镜左侧焦点上,请完成光路图。
答案:如图所示6.如图所示,请在图中画出力F的力臂l及物体所受重力的示意图。
答案:如图所示7.如图所示,某人在A处提起物体,请在图中画出最省力的绳子绕法。
答案:如图所示解析:从动滑轮上挂钩开始,依次绕过定滑轮和动滑轮,绳端回到人的手中,提升物体绳子条数为3,是最省力的绕法。
8.根据下面左侧电路实物图,在下面右侧方框内画出对应的电路图。
答案:如图所示9.设计一个病床呼叫电路。
要求:开关S1控制指示灯L1和电铃,开关S2控制指示灯L2和电铃。
请在图中连线,形成符合要求的完整电路图。
中考数学必背知识点(完整版)
中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的,分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的,形式,其中p 、q 是互质的,整数,这是有理数的,重要特征。
2、无理数:初中遇到的,无理数有三种:开不尽的,方根,如2、34;特定结构的,不限环无限小数,如1.101001000100001……;特定意义的,数,如π、45sin °等。
3、判断一个实数的,数性不能仅凭表面上的,感觉,往往要经过整理化简后才下结论。
二、实数中的,几个概念1、相反数:只有符号不同的,两个数叫做互为相反数。
(1)实数a 的,相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的,倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的,绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的,绝对值是一个非负数,从数轴上看,一个实数的,绝对值,就是数轴上表示这个数的,点到原点的,距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的,实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的,平方根,a 叫a 的,算术平方根。
(2)正数的,平方根有两个,它们互为相反数;0的,平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的,立方根。
(4)一个正数有一个正的,立方根;0的,立方根是0;一个负数有一个负的,立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的,直线称为数轴。
原点、正方向、单位长度是数轴的,三要素。
2023年中考数学总复习第一章《数与式》第二节 二次根式
2023年中考数学总复习第一章《数与式》第二节二次根式一、选择题1.[2020·邯郸丛台区二模]下列二次根式中,是最简二次根式的是()A.B.C.D.2.[2020·上海]下列二次根式中,与是同类二次根式的是()A.B.C.D.3.[2020·衡水模拟]下列计算正确的是()A.B.C.D.4.[2020·宜昌]对于无理数,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是()A.B.C.D.5.[2020·石家庄模拟]如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与BC.A与C D.B与C(第5题图)6.[2020·原创]下列运算正确的是()A. B.C. D.7.[2020·聊城]计算的结果正确的是()A.1B.C.5D.98.[人八下课本P11,T12高仿]如图,从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,则余下部分的面积为()A.78cm2B.cm2C.cm2D.cm2(第8题图)9.[易错][2020·秦皇岛模拟]按如图所示的运算程序,若输入数字“9”,则输出的结果是()A.7B.C.1D.(第9题图)二、填空题10.[2020·扬州]代数式在实数范围内有意义,则实数x的取值范围是_______.11.[2020·保定模拟]若2□=6,则“□”内的运算符号为_______.12.[2020·河北模拟]计算×-的结果是_______.13.[2020·保定定兴县一模]==_______.14.[2020·哈尔滨]计算的结果是______.15.[2020·常德]计算:=_______.16.[2020·山西]计算:=_______.三、解答题17.[2019·石家庄新华区模拟]计算:.18.[创新][2020·遵化二模]利用平方差公式可以进行简便计算:例1:99×101=(100-1)(100+1)=1002-12=10000-1=9999;例2:39×410=39×41×10=(40-1)(40+1)×10=(402-12)×10=(1600-1)×10=1599×10=15990.请你参考上述算法,运用平方差公式简便计算:(1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学总复习资料1《数与式》考点1 有理数、实数的概念 【知识要点】1、实数的分类:有理数,无理数。
2、实数和数轴上的点是___________对应的,每一个实数都可以用数轴上的________来表示,反过来,数轴上的点都表示一个________。
3、_________________叫做无理数。
一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如4),也不是所有的无理数都可以写成根号的形式(如π)。
【典型考题】1、把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73π- 有理数集{ },无理数集{ }正实数集{ } 2、在实数271,27,64,12,0,23,43--中,共有_______个无理数3、在4,45sin ,32,14.3,3︒--中,无理数的个数是_______4、写出一个无理数________,使它与2的积是有理数【复习指导】解这类问题的关键是对有理数和无理数意义的理解。
无理数与有理数的根本区别在于能否用既约分数来表示。
考点2 数轴、倒数、相反数、绝对值 【知识要点】 1、若0≠a ,则它的相反数是______,它的倒数是______。
0的相反数是________。
2、一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是__________。
⎩⎨⎧<≥=)0____()0____(||x x x3、一个数的绝对值就是数轴上表示这个数的点与______的距离。
【典型考题】1、___________的倒数是211-;0.28的相反数是_________。
2、如图1,数轴上的点M 所表示的数的相反数为_________M-1 0 3图13、0|2|)1(2=++-n m ,则n m +的值为________4、已知21||,4||==y x ,且0<xy ,则yx的值等于________ 5、实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( )①0>+c b ②c a b a +>+ ③ac bc > ④ac ab >A.1个B.2个C.3个D.4个6、①数轴上表示-2和-5的两点之间的距离是____数轴上表示1和-3的两点之间的距离是______。
②数轴上表示x 和-1的两点A 和B 之间的距离是_______,如果|AB|=2,那么____________=x 【复习指导】1、若b a ,互为相反数,则0=+b a ;反之也成立。
若b a ,互为倒数,则1=ab ;反之也成立。
2、关于绝对值的化简①绝对值的化简,应先判断绝对值符号内的数或式的值是正、负或0,然后再根据定义把绝对值符号去掉。
②已知)0(||≥=a a x ,求x 时,要注意a x ±= 考点3 平方根与算术平方根 【知识要点】1、若)0(2≥=a a x ,则x 叫a 做的_________,记作______;正数a 的__________叫做算术平方根,0的算术平方根是____。
当0≥a 时,a 的算术平方根记作__________。
2、非负数是指__________,常见的非负数有(1)绝对值0___||a ;(2)实数的平方0___2a ;(3)算术平方根)0(0___≥a a 。
3、如果cb a ,,是实数,且满足0||2=++c b a ,则有_____,_____,===c b a 【典型考题】1、下列说法中,正确的是( ) A.3的平方根是3B.7的算术平方根是7C.15-的平方根是15-±D.2-的算术平方根是2- 2、9的算术平方根是______ 3、38-等于_____∙a 图2∙∙bc4、 03|2|=-+-y x ,则______=xy考点4 近似数和科学计数法 【知识要点】1、精确位:四舍五入到哪一位。
2、有效数字:从左起_______________到最后的所有数字。
3、科学计数法:正数:_________________ 负数:_________________ 【典型考题】1、据生物学统计,一个健康的成年女子体内每毫升血液中红细胞的数量约为420万个,用科学计算法可以表示为___________2、由四舍五入得到的近似数0.5600的有效数字的个数是______,精确度是_______3、用小数表示:5107-⨯=_____________考点5 实数大小的比较 【知识要点】1、正数>0>负数;两个负数绝对值大的反而小;在数轴上,右边的数总大于左边的数;2、作差法: .,0,00b a b a b a b a b a b a <<->>-==-则;若则;若,则若 【典型考题】1、比较大小:0_____21_____|3|--;π。
2、应用计算器比较5113与的大小是____________3、比较41,31,21---的大小关系:__________________4、已知2,,1,10x x xx x ,那么在<<中,最大的数是___________考点6 实数的运算 【知识要点】1、是正整数);时,当n a a a n ______(_____00==≠-。
2、今年我市二月份某一天的最低温度为C ︒-5,最高气温为C ︒13,那么这一天的最高气温比最低气温高___________3、如图1,是一个简单的数值运算程序,当输入x 的值为-1时,则输出的数值为____________4、计算(1)|21|)32004(21)2(02---+- (2)︒⋅+++-30cos 2)21()21(10考点7 乘法公式与整式的运算 【知识要点】1、判别同类项的标准,一是______ ____;二是________________。
2、幂的运算法则:(以下的n m ,是正整数)_____)1(=⋅n m a a ____))(2(=n m a _____))(3(=n ab )0______()4(≠=÷a a a n m______))(5(=n a b3、乘法公式:_))()(1(=-+b a b a ____________))(2(2=+b a _____________))(3(2=-b a4、去括号、添括号的法则是_________________【典型考题】1、下列计算正确的是( )A.532x x x =+B.632x x x =⋅C.623)(x x =-D.236x x x =÷2、下列不是同类项的是( )A.212与- B.n m 22与 C.b a b a 2241与-D 222221y x y x 与-3、计算:)12)(12()12(2-+-+a a a4、计算:)()2(42222y x y x -÷-考点8 因式分解 【知识要点】因式分解的方法: 1、提公因式: 2、公式法:________2;__________2222=++=-b ab a b a _______222=+-b ab a 【典型考题】1、分解因式_____2=+mn mn ,______4422=++b ab a 2分解因式______12=-x 考点9:分式【知识要点】 1、分式的判别:(1)分子分母都是整式,(2)分母含有字母;2、分式的基本性质:)0(≠÷÷=⋅⋅=m ma mb m a m b a b 3、分式的值为0的条件:___________________4、分式有意义的条件:_____________________最简分式的判定:_____________________5、分式的运算:通分,约分 【典型考题】1、当x _______时,分式52+-x x 有意义2、当x _______时,分式242--x x 的值为零3下列分式是最简分式的是( )A.aba a +22 B.a xy 36 C.112+-x xD 112++x x 4、下列各式是分式的是( ) A.a 1 B.3a C.21 D π6 5、计算:x x ++-1111 6、计算:112---a a a考点10 二次根式 【知识要点】1、二次根式:如)0(≥a a2、二次根式的主要性质:(1))0_____()(2≥=a a (2)⎪⎩⎪⎨⎧<=>==)0__()0__()0__(||2a a a a a(3))0,0_______(≥≥=b a ab (4))0,0____(>≥=b a a b3、二次根式的乘除法)0,0________(≥≥=⋅b a b a)0,0_______(>≥=b a ba4、分母有理化: 最简二次根式:5、同类二次根式:化简到最简二次根式后,根号内的数或式子相同的二次根式6、二次根式有意义,根号内的式子必须大于或等于零 【典型考题】1、下列各式是最简二次根式的是( )A.12 B.x 3 C.32x D.352、下列根式与8是同类二次根式的是( )A.2 B.3 C.5 D.63、二次根式43-x 有意义,则x 的取值范围_________4、若63=x ,则x =__________5、计算:3322323--+6、计算:)0(4522≥-a a a7、计算:5120-4、数a 、b 在数轴上的位置如图所示,化简:222)()1()1(b a b a ---++.(第8题)。