18届高三理科数学下学期二诊模拟考试试卷
2018届重庆市南开中学高三二诊模拟理科数学试题及答案
重庆南开中学高2018届高三二诊模拟考试数学试题(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟。
第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个备选项中,只有一项是符合题目要求的。
1、设i 是虚数单位,则复数1iz i=-+的虚部是( ) A 、2i - B 、12-C 、12D 、2i2、已知命题:,2lg p x R x x ∃∈->,命题2:,0q x R x ∀∈>,则( ) A 、命题p q ∨是假命题 B 、命题p q ∧是真命题 C 、命题()p q ∧⌝是真命题 D 、命题()p q ∧⌝是假命题3、已知等比数列{}n a 的公比2q =,且462,,48a a 成等差数列,则{}n a 的前8项和为( )A 、127B 、255C 、511D 、10234、若22nx ⎫⎪⎭展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )A 、180B 、120C 、90D 、455、已知菱形ABCD 的边长4,150ABC ∠= ,若在菱形内任取一点,则该点到菱形的四个顶点的距离均大于1的概率为( )A 、4πB 、14π-C 、8πD 、18π-6、若抛物线()2:20C y px p =>上一点到焦点和x 轴的距离分别为5和3,则此抛物线的方程为( )A 、22y x =B 、)24y x = 或C 、22y x =或218y x =D 、23y x=)24y x =7、某程序框图如图所示,现分别输入下列四个函数()f x ,则可以输出()f x 的是( )A 、()11212x f x =+- B 、()1lg 21xf x x x -=-+ C 、()1212x x f x x =--D 、()32f x x x=--8、已知ABC ∆的三个内角,,A B C 所对的边分别为,,a b c ,若1b a c b -=-=且2C A =,则cos C =( )A 、12B 、14C 、16D 、189、已知某几何体的三视图如图所示,过该几何体最短两条棱的中点作平面α,使得α平分该几何体的体积,则可以作此种平面α ( ) A 、恰好1个 B 、恰好2个 C 、至多3个 D 、至少4个10、数列{}n a ()2014,n n N ≥∈满足:120120i i i a a a +++++< ,其中1,2,,2012i n =- ,120130j j j a a a +++++> ,其中1,2,,2013j n =- ,则满足条件的数列{}n a 的项数n 的最大值为( )A 、4025B 、4026C 、20132D 、20142第II 卷(非选择题,共100分)二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分。
2018届高三下学期第二次模拟理数试卷
A.
B.C.D. )源自6. [2018·漳州调研]某三棱锥的三视图如图所示, 则该三棱锥的最长棱的长度为 (
A. 5
B. 2 2
C. 3
D. 2 3
7.[2018·凯里一中]公元前 5 世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他 提出让乌龟在阿基里斯前面 1000 米处开始, 和阿基里斯赛跑, 并且假定阿基里斯的速 度是乌龟的 10 倍.当比赛开始后,若阿基里斯跑了 1000 米,此时乌龟便领先他 100 米;当阿基里斯跑完下一个 100 米时,乌龟仍然前于他 10 米.当阿基里斯跑完下一个 10 米时,乌龟仍然前于他 1 米……,所以,阿基里斯永远追不上乌龟.根据这样的规 律,若阿基里斯和乌龟的距离恰好为 102 米时,乌龟爬行的总距离为( A.
2.[2018·集宁一中]已知集合 U {x | y 3 x } , A {x | y log 9 x} , B { y | y 2 x } ,则
A ðU B = (
A.
) B. R C. x | x 0 D. 0
3. [2018·山东师大附中]设随机变量 X 服从正态分布 N , 2 , 若 P ( X 4) P ( X 0) , 则 =( A. 1 ) B. 2 C. 3 D. 4
第 18 项 a18 ( A.
1 36
) B.9 C.18 D.36
12.[2018·佛山质检]双曲线 C :
x2 y2 1(a 0, b 0) 的左右焦点分别为 F1 , F2 ,焦距 a 2 b2
2c ,以右顶点 A 为圆心的圆与直线 l : x 3 y c 0 相切于点 N ,设 l 与 C 交点为 P , Q ,若点 N 恰为线段 PQ 的中点,则双曲线 C 的离心率为(
成都七中18届高三理科数学下学期二诊模拟考试试卷(含答案)
若对任意的正整数 n, 在区间[1,n 成立,则 m 的最大值为( ) A. 4 B. 5
C. 6
第 II 卷(非选择题,共 90 分)
二. 填空题(本大题共 4 小题,每小题 5 分,共 20 分)
yx
13. 若实数 x, y 满足
2 x y 2 ,则 y 的最大值为 x y 1
1 1 1 m 恒成立,求 m 的最小值. a1 a2 an
18. (本题满分 12 分) 随着移动互联网的快速发展, 基于互联网的共享单车应运而生. 某市场研究人员为了了解共享单车运营公司 M 的经 营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图:
25
市场占有率y(%)
y2 x2 1 a b 0 所围成 a2 b2
的平面图形绕 y 轴旋转一周后,得一橄榄状的几何体(如图,称为“椭球体”) ,请类比 以上所介绍的应用祖 暅原理求球体 体积的做法求 这个椭球体的体 积 . 其体积等于 ________. 三. 解答题(本大题共 7 小题,共 70 分. 解答应写出文字说明、证明过程或演算步骤) 17. (本题满分 12 分) 已知等比数列 a n 满足 an 1 λS n 1 ,其中 λ 1 , S n 为 a n 前 n 项和, n N * . (1) 求 a1 ; (2) 设 λ 4 ,若 n N *,
23. (本题满分 10 分) 已知函数 f (x)=m-|x-1|,m∈R. (1) 当 m 1时,求不等式 f x 3 的解集; (2) 若 f (x+2)+ f (x-2)≥0 的解集为[-2,4],求 m 的值.
成都七中高 2018 届数学二诊模拟考试理科答案
四川省成都市2018届高三数学二诊试卷理科 含解析
2018年四川省成都市高考数学二诊试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|y=},B={x||x|≤2},则A∪B=()A.[﹣2,2] B.[﹣2,4] C.[0,2]D.[0,4]2.函数f(x)=2x+x﹣2的零点所在区间是()A.(﹣∞,﹣1)B.(﹣l,0)C.(0,1)D.(1,2)3.复数z=(其中i为虚数单位)的虚部是()A.﹣1 B.﹣i C.2i D.24.已知某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能为()A. B.C.D.5.将函数f(x)=cos(x+)图象上所有点的横坐标缩短为原来的倍,纵坐标不变,得到函数g(x)的图象,则函数g(x)的一个减区间是()A.[﹣,] B.[﹣,]C.[﹣,]D.[﹣,]6.某校高三(1)班在一次单元测试中,每位同学的考试分数都在区间[100,128]内,将该班所有同学的考试分数分为七组:[100,118),[118,118),[118,112),[112,116),[116,120),[120,124),[124,128],绘制出频率分布直方图如图所示,已知分数低于112分的有18人,则分数不低于120分的人数为()A.10 B.12 C.20 D.407.某微信群中甲、乙、丙、丁、卯五名成员同时抢4个红包,每人最多抢一个,且红包被全部抢光,4个红包中有两个2元,两个3元(红包中金额相同视为相同的红包),则甲乙两人都抢到红包的情况有()A.35种B.24种C.18种D.9种8.在三棱锥P﹣ABC中,已知PA⊥底面ABC,AB⊥BC,E,F分别是线段PB,PC上的动点.则下列说法错误的是()A.当AE⊥PB时,△AEF﹣定为直角三角形B.当AF⊥PC时,△AEF﹣定为直角三角形C.当EF∥平面ABC时,△AEF﹣定为直角三角形D.当PC⊥平面AEF时,△AEF﹣定为直角三角形9.已知函数f(x)=,则不等式f(f(x))<4f(x)+1的解集是()A.(﹣3,0)B.(﹣,1)C.(0,2)D.(﹣,log32)10.已知抛物线y=x2的焦点为F,经过y轴正半轴上一点N作直线l与抛物线交于A,B两点,且=2(O为坐标原点),点F关于直线OA的对称点为C,则四边形OCAB面积的最小值为()A.3 B.C.2D.二、填空题:本大题共5小题,每小题5分,共25分.11.已知双曲线=1的右焦点为(3,0),则该双曲线的离心率等于______.12.的展开式中,x2项的系数为______.(用数字作答)13.已知实数x,y满足,则x2+y2﹣2x的取值范围是______.14.执行如图所示的程序框图,输出的S的值为______15.已知函数f(x)=x+sin2x.给出以下四个命题:①∀x>0,不等式f(x)<2x恒成立;②∃k∈R,使方程f(x)=k有四个不相等的实数根;③函数f(x)的图象存在无数个对称中心;④若数列{a n}为等差数列,且f(a l)+f(a2)+f(a3)=3π,则a2=π.其中的正确命题有______.(写出所有正确命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a=,且b2+c2=3+bc.(I)求角A的大小;(Ⅱ)求bsinC的最大值.17.已知数列{a n}满足a1=1,(n+1)a n=(n﹣1)a n,(n≥2,n∈N*).﹣1(I)求数列{a n}的通项公式a n;(Ⅱ)设数列{a n}的前n项和为S n.证明:S n<2.18.某商场举行购物抽奖活动,抽奖箱中放有除编号不同外,其余均相同的20个小球,这20个小球编号的茎叶图如图所示,活动规则如下:从抽奖箱中随机抽取一球,若抽取的小球编号是十位数字为l的奇数,则为一等奖,奖金100元;若抽取的小球编号是十位数字为2的奇数,则为二等奖,奖金50元;若抽取的小球是其余编号则不中奖.现某顾客有放回的抽奖两次,两次抽奖相互独立.(I)求该顾客在两次抽奖中恰有一次中奖的概率;(Ⅱ)记该顾客两次抽奖后的奖金之和为随机变量X,求X的分布列和数学期望.19.如图.在三棱柱ABC﹣A1B1C1中,已知侧棱与底面垂直,∠CAB=90°,且AC=1,AB=2,E为BB1的中点,M为AC上一点,=.(I)证明:CB1∥平面A1EM;(Ⅱ)若二面角C1﹣A1E﹣M的余弦值为,求AA1的长度.20.已知椭圆C:=1(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆C有相同的焦点,点P为抛物线与椭圆C在第一象限的交点,且|PF1|=.(I)求椭圆C的方程;(Ⅱ)与抛物线相切于第一象限的直线l,与椭圆交于A,B两点,与x轴交于M点,线段AB的垂直平分线与y轴交于N点,求直线MN斜率的最小值.21.设函数f(x)=lnx.(I)求函数g(x)=x﹣1﹣f(x)的极小值;(Ⅱ)若关于x的不等式mf(x)≥在[1,+∞)上恒成立,求实数m的取值范围;(Ⅲ)已知a∈(0,),试比较f(tana)与﹣cos2a的大小,并说明理由.2018年四川省成都市高考数学二诊试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|y=},B={x||x|≤2},则A∪B=()A.[﹣2,2] B.[﹣2,4] C.[0,2]D.[0,4]【考点】并集及其运算.【分析】求出集合的等价条件,根据集合的基本运算进行求解即可.【解答】解:A={x|y=}={x|4x﹣x2≥0}={x|0≤x≤4},B={x||x|≤2}={x|﹣2≤x≤2},则A∪B={x|﹣2≤x≤4},故选:B.2.函数f(x)=2x+x﹣2的零点所在区间是()A.(﹣∞,﹣1)B.(﹣l,0)C.(0,1)D.(1,2)【考点】函数零点的判定定理.【分析】据函数零点的判定定理,判断f(﹣1),f(0),f(1),f(2)的符号,即可求得结论.【解答】解:f(﹣1)=2﹣1+1﹣2=﹣<0,f(0)=﹣1<0,f(1)=1>0,f(2)=4>0,故有f(0)•f(1)<0,由零点的存在性定理可知:函数f(x)=2x+x﹣2的零点所在的区间是(0,1)故选:C.3.复数z=(其中i为虚数单位)的虚部是()A.﹣1 B.﹣i C.2i D.2【考点】复数代数形式的乘除运算.【分析】利用复数的化数形式的乘除运算法则求解.【解答】解:∵z=====1+2i,∴复数z=(其中i为虚数单位)的虚部是2.故选:D.4.已知某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能为()A. B.C.D.【考点】简单空间图形的三视图.【分析】几何体为椎体与柱体的组合体,分四种情况进行判断.【解答】解:由主视图和侧视图可知几何体为椎体与柱体的组合体,(1)若几何体为圆柱与圆锥的组合体,则俯视图为A,(2)若几何体为棱柱与圆锥的组合体,则俯视图为B,(3)若几何体为棱柱与棱锥的组合体,则俯视图为C,(4)若几何体为圆柱与棱锥的组合体,则俯视图为故选:D.5.将函数f(x)=cos(x+)图象上所有点的横坐标缩短为原来的倍,纵坐标不变,得到函数g(x)的图象,则函数g(x)的一个减区间是()A.[﹣,] B.[﹣,]C.[﹣,]D.[﹣,]【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据三角函数的图象变换关系求出g(x)的解析式,结合三角函数的单调性进行求解即可.【解答】解:将函数f(x)=cos(x+)图象上所有点的横坐标缩短为原来的倍,纵坐标不变,则y=cos(2x+),即g(x)=cos(2x+),由2kπ≤2x+≤2kπ+π,k∈Z,得kπ﹣≤x≤kπ+,k∈Z,即函数的单调递减区间为[kπ﹣,kπ+],k∈Z,当k=0时,单调递减区间为[﹣,],故选:D.6.某校高三(1)班在一次单元测试中,每位同学的考试分数都在区间[100,128]内,将该班所有同学的考试分数分为七组:[100,118),[118,118),[118,112),[112,116),[116,120),[120,124),[124,128],绘制出频率分布直方图如图所示,已知分数低于112分的有18人,则分数不低于120分的人数为()A.10 B.12 C.20 D.40【考点】频率分布直方图.【分析】由频率分布直方图求出得分数低于112分的频率,从而求出高三(1)班总人数,再求出分数不低于120分的频率,由此能求出分数不低于120分的人数.【解答】解:由频率分布直方图得分数低于112分的频率为:(0.01+0.18+0.18)×4=0.36,∵分数低于112分的有18人,∴高三(1)班总人数为:n==50,∵分数不低于120分的频率为:(0.18+0.18)×4=0.2,∴分数不低于120分的人数为:50×0.2=10人.故选:A.7.某微信群中甲、乙、丙、丁、卯五名成员同时抢4个红包,每人最多抢一个,且红包被全部抢光,4个红包中有两个2元,两个3元(红包中金额相同视为相同的红包),则甲乙两人都抢到红包的情况有()A.35种B.24种C.18种D.9种【考点】计数原理的应用.【分析】根据红包的性质进行分类,若甲乙抢的是一个2和一个3元的,若两个和2元或两个3元,根据分类计数原理可得.【解答】解:若甲乙抢的是一个2和一个3元的,剩下2个红包,被剩下的3人中的2个人抢走,有A22A32=12种,若甲乙抢的是两个和2元或两个3元的,剩下2个红包,被剩下的3人中的2个人抢走,有A22C32=6种,根据分类计数原理可得,共有12+6=18种,故选:C.8.在三棱锥P﹣ABC中,已知PA⊥底面ABC,AB⊥BC,E,F分别是线段PB,PC上的动点.则下列说法错误的是()A.当AE⊥PB时,△AEF﹣定为直角三角形B.当AF⊥PC时,△AEF﹣定为直角三角形C.当EF∥平面ABC时,△AEF﹣定为直角三角形D.当PC⊥平面AEF时,△AEF﹣定为直角三角形【考点】棱锥的结构特征.【分析】A.当AE⊥PB时,又PA⊥底面ABC,AB⊥BC,可得AE⊥BC,利用线面垂直的判定与性质定理可得AE⊥EF,即可判断出正误.B.当AF⊥PC时,无法得出△AEF﹣定为直角三角形,即可判断出正误;C.当EF∥平面ABC时,可得EF∥BC,利用线面垂直的判定与性质定理可得:BC⊥AE,EF⊥AE,即可判断出正误;D.当PC⊥平面AEF时,可得PC⊥AE,由C可知:BC⊥AE利用线面垂直的判定与性质定理即可判断出正误.【解答】解:A.当AE⊥PB时,又PA⊥底面ABC,AB⊥BC,∴AE⊥BC,可得:AE⊥平面PBC,∴AE⊥EF,∴△AEF﹣定为直角三角形,正确.B.当AF⊥PC时,无法得出△AEF﹣定为直角三角形,因此不正确;C.当EF∥平面ABC时,平面PBC∩ABC=BC,可得EF∥BC,∵PA⊥底面ABC,AB⊥BC,∴BC⊥平面PAB,∴BC⊥AE,因此EF⊥AE,则△AEF﹣定为直角三角形,正确;D.当PC⊥平面AEF时,可得PC⊥AE,由C可知:BC⊥AE,∴AE⊥平面PBC,∴AE ⊥EF,因此△AEF﹣定为直角三角形,正确.故选:B.9.已知函数f(x)=,则不等式f(f(x))<4f(x)+1的解集是()A.(﹣3,0)B.(﹣,1)C.(0,2)D.(﹣,log32)【考点】分段函数的应用.【分析】根据分段函数的表达式,讨论f(x)的符号,将不等式进行转化求解即可.【解答】解:由3x+1=0得x=﹣,当x<﹣时,3x+1<0,则由f(f(x))<4f(x)+1得f(3x+1))<4(3x+1)+1,即3(3x+1)+1<12x+4+1,即9x+4<12x+5,得x>﹣,此时不等式无解,当x≥﹣时,当x≥0时,f(x)=3x≥1,则由f(f(x))<4f(x)+1得<4•3x+1,设t=3x,则不等式等价为3t<4t+1,设g(t)=3t﹣4t﹣1,则g(0)=0,g(2)=9﹣8﹣1=0,即g(t)<0的解为0<t<2,即0<3x<2,得0≤x<log32,当﹣≤x<0时,f(x)=3x+1≥0,则f(f(x))=33x+1,则由f(f(x))<4f(x)+1得33x+1<4(3x+1)+1,设t=3x+1,则不等式等价为3t<4t+1,设g(t)=3t﹣4t﹣1,则g(0)=0,g(2)=9﹣8﹣1=0,即g(t)<0的解为0<t<2,即0<3x+1<2,即﹣1<3x<1,得﹣<x<,此时﹣<x<0,综上所述,﹣<x<log32.即不等式的解集为(﹣,log32),故选:D10.已知抛物线y=x2的焦点为F,经过y轴正半轴上一点N作直线l与抛物线交于A,B两点,且=2(O为坐标原点),点F关于直线OA的对称点为C,则四边形OCAB面积的最小值为()A.3 B.C.2D.【考点】抛物线的简单性质.【分析】先设直线AB方程为y=kx+b(b>0),联立y=x2求解利用=2,求出b,可得直线AB方程为y=kx+2,设d1、d2分别为F到OA、O到AB的距离,利用四边形OCAB的面积S=S△OAC+S△OAB=(OA•d1+AB•d2),可得S关于k的函数,利用导数知识即可求解.【解答】解:不妨设位于第一象限的交点为A(x1,y1)、第二象限的交点为B(x2,y2),则x1>0,x2<0.OA的直线方程为y=x=x1x,F点的坐标为(0,).设直线AB方程为y=kx+b(b>0),联立y=x2求解,有x2﹣kx﹣b=0∴x1+x2=k,x1x2=﹣b,∴y1y2=b2,∵=2,∴x1x2+y1y2=﹣b+b2=2∵b>0,∴b=2∴△=k2+8,x1=(k+)①;线段AB=②.设d1、d2分别为F到OA、O到AB的距离.∵C是F关于OA的对称点,∴C到OA的距离=d1.∴四边形OCAB的面积S=S△OAC+S△OAB=(OA•d1+AB•d2).根据点到直线距离公式,d1=③,d2=④.又线段OA=⑤,∴将①~⑤代入S,有S=(k+17).由S对k求导,令导函数=0,可得1+=0,解得k=﹣时,S最小,其值为3.故选:A.二、填空题:本大题共5小题,每小题5分,共25分.11.已知双曲线=1的右焦点为(3,0),则该双曲线的离心率等于.【考点】双曲线的简单性质.【分析】利用双曲线=1的右焦点为(3,0),求出|a|,再利用双曲线的定义,即可求出双曲线的离心率.【解答】解:∵双曲线=1的右焦点为(3,0),∴a2+5=9,∴|a|=2,∵c=3,∴双曲线的离心率等于.故答案为:.12.的展开式中,x2项的系数为﹣20.(用数字作答)【考点】二项式定理的应用.【分析】先求出二项式展开式的通项公式,再令x的幂指数等于2,求得r的值,即可求得展开式中的x2项的系数.【解答】解:在的展开式中,它的通项公式为T r+1=•x5﹣r•(﹣1)r,令5﹣r=2,求得r=3,可得x2项的系数为﹣=﹣20,故答案为:﹣20.13.已知实数x,y满足,则x2+y2﹣2x的取值范围是[﹣1,19] .【考点】简单线性规划.【分析】画出满足条件的平面区域,求出角点的坐标,而(x﹣1)2+y2的几何意义表示平面区域内的点与(1,0)的点距离的平方,求出(x﹣1)2+y2的范围,从而求出x2+y2﹣2x的范围即可.【解答】解:画出满足条件的平面区域,如图示:由,解得A(3,4),x2+y2﹣2x=(x﹣1)2+y2﹣1,而(x﹣1)2+y2的几何意义表示平面区域内的点与(1,0)的点距离的平方,0≤(x﹣1)2+y2≤20,∴﹣1≤(x﹣1)2+y2≤19,故答案为:[﹣1,19].14.执行如图所示的程序框图,输出的S的值为【考点】程序框图.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序,可得该程序的功能是利用循环结构计算并输出变量S=•tan•tan…tan的值.由于:S=•tan•tan…tan tan=•tan•tan…cot•cot=tan=.故答案为:.15.已知函数f(x)=x+sin2x.给出以下四个命题:①∀x>0,不等式f(x)<2x恒成立;②∃k∈R,使方程f(x)=k有四个不相等的实数根;③函数f(x)的图象存在无数个对称中心;④若数列{a n}为等差数列,且f(a l)+f(a2)+f(a3)=3π,则a2=π.其中的正确命题有③④.(写出所有正确命题的序号)【考点】函数的图象.【分析】①用特殊值的方法即可;②③根据函数图象判断;④可用反代的方法判断成立.【解答】解:①当x=时,显然f(x)>2x,故错误;②根据函的图象易知,方程f(x)=k最多有三个不相等的实数根,故错误;③根据函数的图象易知函数f(x)的图象存在无数个对称中心,故正确;④f(a l)+f(a2)+f(a3)=3π,∴a l+a2+a3=3π,sina l+sina2+sina3=0,解得a2=π,故正确.故答案为:③④.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a=,且b2+c2=3+bc.(I)求角A的大小;(Ⅱ)求bsinC的最大值.【考点】余弦定理;正弦定理.【分析】(I)由余弦定理可得:cosA===,即可得出.(II)由正弦定理可得:可得b=,可得bsinC=2sinBsin=+,根据B∈即可得出.【解答】解:(I)由余弦定理可得:cosA===,∵A∈(0,π),∴A=.(II)由正弦定理可得:,可得b=,bsinC=•sinC=2sinBsin=2sinB=sin2B+=+,∵B∈,∴∈.∴∈.∴bsinC∈.17.已知数列{a n}满足a1=1,(n+1)a n=(n﹣1)a n,(n≥2,n∈N*).﹣1(I)求数列{a n}的通项公式a n;(Ⅱ)设数列{a n}的前n项和为S n.证明:S n<2.【考点】数列的求和;数列递推式.【分析】(Ⅰ)依题意,可得a n=••…×××a1=,再验证n=1时是否符合该式即可得到答案,(Ⅱ)先裂项求和,再放缩法证明即可.【解答】解:(Ⅰ)∵a1=1,(n+1)a n=(n﹣1)a n,﹣1∴=,∴=,…,==,==,∴a n=••…×××a1=,又n=1时a1=1,满足上式,∴数列{a n}的通项公式a n=,(Ⅱ)∵a n==2(﹣),∴S n=a1+a2+…+a n=2(1﹣+﹣+…+﹣)=2(1﹣)<2,问题得以证明.18.某商场举行购物抽奖活动,抽奖箱中放有除编号不同外,其余均相同的20个小球,这20个小球编号的茎叶图如图所示,活动规则如下:从抽奖箱中随机抽取一球,若抽取的小球编号是十位数字为l的奇数,则为一等奖,奖金100元;若抽取的小球编号是十位数字为2的奇数,则为二等奖,奖金50元;若抽取的小球是其余编号则不中奖.现某顾客有放回的抽奖两次,两次抽奖相互独立.(I)求该顾客在两次抽奖中恰有一次中奖的概率;(Ⅱ)记该顾客两次抽奖后的奖金之和为随机变量X,求X的分布列和数学期望.【考点】离散型随机变量的期望与方差;茎叶图;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(Ⅰ)设一次抽奖抽中i等奖的概率为P i(i=1,2),没有中奖的概率为P0,由此能求出该顾客两次抽奖中恰有一次中奖的概率.(Ⅱ)X的可能取值为0,50,100,150,200,分别求出相应的概率,由此能求出X的分布列和EX.【解答】解:(Ⅰ)设一次抽奖抽中i等奖的概率为P i(i=1,2),没有中奖的概率为P0,则P1+P2==,即中奖的概率为,∴该顾客两次抽奖中恰有一次中奖的概率为:P==.(Ⅱ)X的可能取值为0,50,100,150,200,P(X=0)=,P(X=50)==,P(X=100)==,P(X=150)==,P(X=200)==,X∴EX==55(元).19.如图.在三棱柱ABC﹣A1B1C1中,已知侧棱与底面垂直,∠CAB=90°,且AC=1,AB=2,E为BB1的中点,M为AC上一点,=.(I)证明:CB1∥平面A1EM;(Ⅱ)若二面角C1﹣A1E﹣M的余弦值为,求AA1的长度.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(I)建立空间直角坐标系,利用向量关系求出F的坐标,根据线面平行的判定定理即可证明证明:CB1∥平面A1EM;(Ⅱ)建立空间直角坐标系,求出平面的法向量,利用向量法进行求解即可.【解答】(I)如图,连接AB1,交A1E于F,连接MF,∵E为BB1的中点,∴建立以A为坐标原点,AB,AC,AA1分别为x,y,z轴的空间直角坐标系如图:设AA1=h,则A(0,0,0),C1(0,1,h),A1(0,0,h),E(2,0,),M(0,,0),B1(2,0,h),设F(x,0,z),则∥,∥,∵=(x,0,z),=(2,0,h),∴①∵=(x,0,z﹣h),=(2,0,﹣),∴=②,由①②得z=h,x=,或F作FT⊥AB,则==,则∴AF=AB1,∵=.∴MF∥CB1,∵MF⊂平面平面A1EM,CB1⊄平面A1EM,∴CB1∥平面A1EM;(Ⅱ)设平面C1A1E的法向量为=(x,y,z),平面MA1E的法向量为=(x,y,z),则,则,令z=1,则x=,y=0,则=(,0,1),由得,令z=1,则x=,y=,即=(,,1)|cos<,>|==,得h2=2,即h=,则AA1的长度为.20.已知椭圆C:=1(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆C有相同的焦点,点P为抛物线与椭圆C在第一象限的交点,且|PF1|=.(I)求椭圆C的方程;(Ⅱ)与抛物线相切于第一象限的直线l,与椭圆交于A,B两点,与x轴交于M点,线段AB的垂直平分线与y轴交于N点,求直线MN斜率的最小值.【考点】椭圆的简单性质.【分析】(I)求得抛物线的焦点,可得c=1,设P为(,m),由椭圆的焦半径公式可得,|PF1|=a+•=,由椭圆和抛物线的定义可得,2a=++1,解方程可得a=2,由a,b,c的关系,可得b,进而得到椭圆方程;(Ⅱ)设直线l的方程为y=kx+b(k>0),代入抛物线的方程,由判别式为0,可得kb=1,再由椭圆方程联立,运用韦达定理和判别式大于0,结合中点坐标公式和直线的斜率公式,以及基本不等式即可得到所求最小值.【解答】解:(I)抛物线y2=4x的焦点为(1,0),可得椭圆的c=1,设P为(,m),由椭圆的焦半径公式可得,|PF1|=a+•=,由椭圆和抛物线的定义可得,2a=++1,解得a=2,b==,即有椭圆的方程为+=1;(Ⅱ)设直线l的方程为y=kx+b(k>0),代入抛物线的方程,可得k2x2+(2kb﹣4)x+b2=0,由相切的条件可得,△=(2kb﹣4)2﹣4k2b2=0,化简可得kb=1,由y=kx+和椭圆方程3x2+4y2=12,可得(3+4k2)x2+8x+﹣12=0,由64﹣4(3+4k2)(﹣12)>0,可得k>,设A(x1,y1),B(x2,y2),可得x1+x2=﹣,即有中点坐标为(﹣,),设N(0,n),由=﹣,可得n=﹣,由y=kx+,设y=0,则x=﹣,M(﹣,0),可得直线MN的斜率为k MN==﹣=﹣≥﹣=﹣.当且仅当k=>时,取得最小值﹣.21.设函数f(x)=lnx.(I)求函数g(x)=x﹣1﹣f(x)的极小值;(Ⅱ)若关于x的不等式mf(x)≥在[1,+∞)上恒成立,求实数m的取值范围;(Ⅲ)已知a∈(0,),试比较f(tana)与﹣cos2a的大小,并说明理由.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(I)求导数,确定函数的单调性,即可求函数g(x)=x﹣1﹣f(x)的极小值;(Ⅱ)mf(x)≥可化为mlnx﹣≥0,构造函数,得出m(x+1)2﹣2x≥0在[1,x0]上恒成立,即可求实数m的取值范围;(Ⅲ)已知a∈(0,),证明<,分类讨论,即可比较f(tana)与﹣cos2a的大小.【解答】解:(I)函数g(x)=x﹣1﹣f(x)=x﹣1﹣lnx,g′(x)=(x>0),∴g(x)在(0,1)上单调递减,(1,+∞)上单调递增,∴x=1时,g(x)的极小值为0;(Ⅱ)mf(x)≥可化为mlnx﹣≥0,令h(x)=mlnx﹣(x≥1),则h′(x)=,∵h(1)=0,∴∃x0>1,h(x)在[1,x0]上单调递增,∴m(x+1)2﹣2x≥0在[1,x0]上恒成立,∴m≥;(Ⅲ)由(Ⅱ)可知x>1,>.∵0<x<1,∴>1∴>,∴<,令x=t2,可得t>1,lnt>,0<t<1,lnt<,∵f(tana)=lntana,﹣cos2a=,∴0<a<,0<tana<1,f(tana)<﹣cos2aa=,tana﹣1,f(tana)=﹣cos2a,<a<,tana>1,f(tana)>﹣cos2a.2018年9月20日。
山西省2018届高三第二次模拟理科数学试卷(附解析)
山西省2018届高三第二次模拟理科数学试卷(附解析)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2,1,0,1,2A =--,()()120B x x x =-+<,则A B =( ) A .{}1,0- B .{}0,1C .{}1,0,1-D .{}0,1,22.已知复数241iz i+=-(i 为虚数单位),则z 的共轭复数在复平面对应的点的坐标 是( ) A .()3,3B .()1,3-C .()3,1-D .()1,3--3.一次考试中,某班学生的数学成绩X 近似服从正态分布()100,100N ,则该班数学成绩的及格率可估计为(成绩达到90分为及格)(参考数据:()0.68P X μσμσ-≤≤+≈)( ) A .60%B .68%C .76%D .84%4.若函数()()22,0,x x f x g x x -⎧-<⎪=⎨>⎪⎩为奇函数,则()()2f g =( )A .2-B .2C .1-D .15.已知点P 是直线0x y b +-=上的动点,由点P 向圆22:1O x y +=引切线,切点分别为M ,N ,且90MPN ∠=︒,若满足以上条件的点P 有且只有一个,则b =( )A .2B .2±CD .6.已知不等式组210210x y x x y -+≥⎧⎪≤⎨⎪+-≥⎩,表示的平面区域为D ,若函数1y x m =-+的图象上存在区域D 上的点,则实数m 的取值范围是( )A .10,2⎡⎤⎢⎥⎣⎦B .12,2⎡⎤-⎢⎥⎣⎦C .[]2,1-D .31,2⎡⎤-⎢⎥⎣⎦7.某几何体的三视图如图所示,若图中小正方形的边长均为1,则该几何体的体积是( )A .283π B .323π C .523π D .563π 8.设()201212nn n x a a x a x a x -=++++,若140a a +=,则5a =( )A .32-B .64C .128-D .2569.执行如图所示的程序框图,输出的值是( )A .2-B .0C .2D 10.设P 为双曲线()2222:1,0x y C a b a b-=>上的点,1F ,2F 分别为C 的左、右焦点,且212PF F F ⊥,1PF 与y 轴交于点Q ,O 为坐标原点,若四边形2OF PQ 有内切圆,则C 的离心率为( )A B C .2D .311.在四面体ABCD 中,AB AC ==,6BC =,AD ⊥底面ABC ,G 为DBC ∆的重心,且直线DG 与平面ABC 所成的角是30,若该四面体ABCD 的顶点均在球O 的表面上,则球O 的表面积是( )A .24πB .32πC .46πD .49π12.设等差数列{}n a 的公差为9π,前8项和为6π,记tan 9k π=,则数列{}1tan tan n n a a +的前7项和是( )A .22731k k --B .22371k k --C .221171k k --D .227111k k --第Ⅱ卷(共90分)二、填空题:每题5分,满分20分,将答案填在答题纸上.13.问题“今有女子不善织布,逐日所织的布以同数递减,初日织五尺,末一日织一尺,计织三十日,问共织几何?”源自南北朝张邱建所著的《张邱建算经》,该问题的答案是 . 14.已知向量a 与b 的夹角是56π,且a a b =+,则向量a 与a b +的夹角是 .15.已知函数()()2cos2cos 0222xxxf x ωωωω=+>的周期为23π,当0,3x π⎡⎤∈⎢⎥⎣⎦时,函数()()g x f x m =+恰有两个不同的零点,则实数m 的取值范围是 . 16.当1x >,不等式()211x x e ax -+>恒成立,则实数a 的取值范围是 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且cos cos 2cos c B b C a A +=.(1)求A ;(2)若2a =,2sin sin sin B C A =,D 为BC 边上一点,且13BD BC =,求AD 的长.18.(12分)如图,三棱柱111ABC A B C -中,90BCA ∠=,1AC ⊥平面1A BC . (1)证明:1BC AA ⊥;(2)若BC AC =,11A A AC =,求二面角11B A B C --的余弦值.19.(12分)某大型商场去年国庆期间累计生成2万张购物单,从中随机抽出100张,对每单消费金额进行统计得到下表:分布直方图所估计出的每单消费额的中位数与平均数恰好相等.用频率估计概率,完成下列问题:(1)估计去年国庆期间该商场累计生成的购物单中,单笔消费额超过800元的概率;(2)为鼓励顾客消费,该商场计划在今年国庆期间进行促销活动,凡单笔消费超过600元者,可抽奖一次.抽奖规则为:从装有大小材质完全相同的5个红球和5个黑球的不透明口袋中,随机摸出4个小球,并记录两种颜色小球的数量差的绝对值X,当4,2,0X=时,消费者可分别获得价值500元、200元和100元的购物券.求参与抽奖的消费者获得购物券的价值的数学期望.20.(12分)已知抛物线2:4E x y =的焦点为F ,(),0P a 为x 轴上的点. (1)当0a ≠时,过点P 作直线l 与E 相切,求切线l 的方程;(2)存在过点P 且倾斜角互补的两条直线1l ,2l ,若1l ,2l 与E 分别交于A ,B 和C ,D 四点,且FAB ∆与FCD ∆的面积相等,求实数a 的取值范围.21.(12分)已知函数()ln f x m x =. (1)讨论函数()()11F x f x x=+-的单调性; (2)定义:“对于在区域D 上有定义的函数()y f x =和()y g x =,若满足()()f x g x ≤恒成立,则称曲线()y g x =为曲线()y f x =在区域D 上的紧邻曲线”.试问曲线()1y f x =+与曲线1xy x =+是否存在相同的紧邻直线,若存在,请求出实数m 的值; 若不存在,请说明理由.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知曲线C 的极坐标方程为221613sin ρθ=+,P 为曲线C 上的动点,C 与x 轴、y 轴的正半轴分别交于A ,B 两点.(1)求线段OP 中点Q 的轨迹的参数方程;(2)若M 是(1)中点Q 的轨迹上的动点,求MAB ∆面积的最大值.23.(10分)【选修4-5:不等式选讲】 已知函数()221f x x x =+--. (1)解不等式()1f x ≤;(2)若关于x 的不等式()f x ax >只有一个正整数解,求实数a 的取值范围.2018届山西省高三第二次模拟考试卷数学(理)答案一、选择题.二、填空题. 13.90尺 14.120︒15.(]3,2--16.(],1-∞三、解答题.17.【答案】(1)3A π=;(2)3AD =. 【解析】(1)∵cos cos 2cos c B b C a A +=,∴sin cos sin cos 2sin cos C B B C A A +=. ∴()sin 2sin cos B C A A +=,∴sin 2sin cos A A A =, ∵()0,A π∈,∴sin 0A ≠,∴1cos 2A =,∴3A π=. (2)∵2a =,2sin sin sinBC A =,∴24bc a ==.由2222cos a b c bc A =+-,得2244b c =+-,∴228b c +=,又4bc =,∴2b c ==.则ABC ∆为等边三角形,且边长为2,∴23BD =.在ABC ∆中,2AB =,23BD =,3B π=,由余弦定理可得AD =.18.【答案】(1)证明见解析;(2)7-. 【解析】(1)证明:∵1AC ⊥平面1A BC ,∴1AC BC ⊥. ∵90BCA ∠=,∴BC AC ⊥,∴BC ⊥平面11ACC A , ∴1BC AA ⊥.(2)∵1AC ⊥平面1A BC ,∴11AC AC ⊥, ∴四边形11ACC A 为菱形,∴1AA AC =.又11A A AC =,∴1A AC ∆与11ACC ∆均为正三角形. 取11AC 的中点1D ,连接1CD ,则1CD AC ⊥.由(1)知1CD BC ⊥,则可建立如图所示的空间直角坐标系C xyz -.设2BC AC ==,则()2,0,0A,(1C -,()0,2,0B,(1A,(1B -. ∴()112,2,0B A =-,(11,0,B B =,(1AC =-.设平面11B A B 的法向量为(),,m x y z =,则11100,m B A m B B ⎧⋅=⎪⎨⋅=⎪⎩,∴2200x y x -=⎧⎪⎨=⎪⎩,∴x yx =⎧⎪⎨=⎪⎩,取1z =,则)m =为平面11B A B 的一个法向量.又(1AC =-为平面1A BC 的一个法向量,∴111cos ,77m AC m AC m AC ⋅<>===-⋅. 又二面角11B A B C --的平面角为钝角,所以其余弦值为 19.【答案】(1)0.05p =;(2)()5003E Y =元. 【解析】(1)因消费额在区间(]0,400的频率为0.5,故中位数估计值为400. 设所求概率为p ,而消费额在(]0,600的概率为0.8. 故消费额在区间(]600,800内的概率为0.2p -.因此消费额的平均值可估计为()1000.253000.255000.37000.2900p p ⨯+⨯+⨯+⨯-+⨯. 令其与中位数400相等,解得0.05p =.(2)根据题意()44554101412C C P X C +===,()1331555541010221C C C C P X C +===,()225541010021C C P X C ===.设抽奖顾客获得的购物券价值为Y ,则Y 的分布列为故()15002001002121213E Y =⨯+⨯+⨯=(元). 20.【答案】(1)切线l 的方程为0y =或20ax y a --=;(2)a 的取值范围为1a <<-或11a -<<或1a <<.【解析】(1)设切点为200,3x Q x ⎛⎫⎪⎝⎭则002x x l x yk ===. ∴Q 点处的切线方程为()200042x x y x x -=-. ∵l 过点P ,∴()200042x x a x -=-,解得02x a =或00x =. 当0a ≠时,切线l 的方程为0y =或20ax y a --=. (2)设直线1l 的方程为()y k x a =-,代入24x y =得2440x kx ka -+=,①216160k ka ∆=->,得()0k k a ->, ②由题意得,直线2l 的方程为()y k x a =--, 同理可得()0k k a --->,即()0k k a +>, ③ ②×③得()2220k k a ->,∴22a k <.④设()11,A x y ,()22,B x y ,则224x x k +=,224x x ka =.∴AB =F 到AB的距离为d =,∴FAB ∆的面积为41S =+ 同理FCD ∆的面积为41S =-由已知得4141+=- 化简得()2221a k -=, ⑤欲使⑤有解:则22a <,∴a < 又22212a k k=-<,得21k ≠,∴21a ≠. 综上,a的取值范围为1a <-或11a -<<或1a << 21.【答案】(1)见解析;(2)存在,1m =. 【解析】(1)()()'22110m mx F x x x x x -=-=>. 当0m ≤时,()'0F x <,函数()F x 在()0,+∞上单调递减;当0m >时,令()'0F x <,得1x m <,函数()F x 在10,m ⎛⎫⎪⎝⎭上单调递减; 令()'0F x >,得1x m >,函数()F x 在1,m ⎛⎫+∞ ⎪⎝⎭上单调递增. 综上所述,当0m ≤时,()F x 在()0,+∞上单调递减;当0m >时,()F x 在10,m ⎛⎫⎪⎝⎭上单调递减,在1,m ⎛⎫+∞ ⎪⎝⎭上单调递增.(2)原命题等价于曲线()1y f x =+与曲线1xy x =+是否相同的外公切线. 函数()()1ln 1f x m x +=+在点()()11,ln 1x m x +处的切线方程为()()111ln 11m y m x x x x -+=-+,即()1111ln 111mx my x m x x x =++-++, 曲线1x y x =+在点222,1x x x ⎛⎫ ⎪+⎝⎭处的切线方程为()()22222111x y x x x x -=-++, 即()()222222111x y x x x =+++.曲线()1y f x =+与1xy x =+的图象有且仅有一条外公切线, 所以()()()21221212121,(1)11ln 1.(2)11m x x mx x m x x x ⎧=⎪++⎪⎨⎪+-=⎪++⎩有唯一一对()12,x x 满足这个方程组,且0m >,由(1)得()21211x m x +=+代入(2)消去1x ,整理得()2222ln 1ln 101m x m m m x +++--=+,关于()221x x >-的方程有唯一解. 令()()()22ln 1ln 111g x m x m m m x x =+++-->-+, ∴()()()()'2221122111m x m g x x x x +-⎡⎤⎣⎦=-=+++. 当0m >时,()g x 在11,1m ⎛⎫--+ ⎪⎝⎭上单调递减,在11,m ⎛⎫-++∞ ⎪⎝⎭上单调递增;所以()min 11ln 1g x g m m m m ⎛⎫=-+=-- ⎪⎝⎭.因为x →+∞,()g x →+∞;1x →-,()g x →+∞,只需ln 10m m m --=. 令()ln 1h m m m m =--,()'ln h m m =-在0m >为单减函数, 且1m =时,()'0h m =,即()()max 10h m h ==, 所以1m =时,关于2x 的方程()2222ln 1ln 101m x m m m x +++--=+有唯一解, 此时120x x ==,外公切线的方程为y x =. ∴这两条曲线存在相同的紧邻直线,此时1m =.22.【答案】(1)点Q 的轨迹的参数方程为2cos sin x y θθ=⎧⎨=⎩(θ为参数);(2)4.【解析】(1)由C 的方程可得2223sin 16ρρθ+=,又222x y ρ=+,sin y ρθ=,∴C 的直角坐标方程为22416x y +=,即221164x y +=.设()4cos ,2sin P θθ,则()2cos ,sin Q θθ,∴点Q 的轨迹的参数方程为2cos sin x y θθ=⎧⎨=⎩(θ为参数).(2)由(1)知点Q 的轨迹的普通方程为2214x y +=,()4,0A ,()0,2B,AB =直线AB 的方程为240x y +-=. 设()2cos ,sin M θθ,则M 到AB 的距离为d ==≤, ∴MAB ∆面积的最大值为142S =⨯=.23.【答案】(1){3x x ≥或13x ≤};(2)13a ≤<. 【解析】()()()()4,23,214,1x x f x x x x x -≤-⎧⎪=-<≤⎨⎪-+>⎩, (1)当2x ≤-时,41x -≤,∴5x ≤,∴2x ≤-; 当21x -<≤时,31x ≤,∴13x ≤,∴123x -<≤; 当1x >时,41x -+≤,∴3x ≥,∴3x ≥. 综上,不等式的解集为{3x x ≥或13x ≤}. (2)作出函数()y f x =与y ax =的图象,由图象可知当13a ≤<时,不等式只有一个正整数解1x =, ∴13a ≤<.。
【高三数学试题精选】2018届高三数学(理)二诊试题及答案
2018届高三数学(理)二诊试题及答案
5 c 东省淄博市六中10 cABDA
二、填空题11 2; 12 ; 131; 14 ; 15①②
三、解答题
16解命题p为真命题得,---------------------------3分命题q为真命题(1)若,经检验符合条---------5分
(2)若,则解得综(1)(2)得 ---8分
根据题意知,命题p、q有且只有一个为真命题,
当p真q假时实数a的取值范围是;
当p假q真时,实数a的取值范围是 -------10分
综上 -------12分
17、(1)由条得
18.(Ⅰ)当时,有 //平面AD
证明∵D 平面ABcD,NB 平面ABcD,∴D//NB,…………2分
∴ ,又,∴ ,…………4分
∴在中,QP//A,
又面AD,A 面AD,∴ // 面AD…………6分
(Ⅱ)解以DA、Dc、D所在直线分别为x轴、轴、z轴,建立空间直角坐标系,
则D(0,0,0),B(2,2,0),c(0,2,0),(0,0,2)N(2,2,1),∴ =(0,-2,2), =(2,0,1), =(0,2,0),………………7分设平面cN的法向量为 =(x,,z)则,∴ ,
∴ =(1,-2,-2)
又NB 平面ABcD,∴NB Dc,Bc Dc,∴Dc 平面BNc,
∴平面BNc的法向量为 = =(0,2,0),………………11分
设所求锐二面角为,则………………12分
19.解(1)设 ,则, a=2, ,…… 3分
(2)由(1)知,因为是奇函数,所以 =0,即。
四川省成都市2018届高三二诊模拟考试数学理科试卷含答案
2018届2017~2018学年下期二诊模拟考试数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,则复数.3A.3B -.3C i.4D i -2.已知全集U =R ,集合{|30}A x x =-<,那么集合U A C B ⋂等于.{|23}A x x -≤≤.{|23}B x x -<< .{|2}C x x ≤-.{|3}D x x <3.若,x y 满足约束条件02326x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =+ 的最小值是.3A -.6B.3D4.则sin 2α的值为5.执行如图所示的程序框图,输出的S 值为6. 一个底面为正方形的四棱锥,其三视图如图所示,若这个四棱锥的体积 为2 ,则此四棱锥最长的侧棱长为7.等比数列{}n a 中,20a >则25""a a <是35""a a <的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.已知函数()f x 对任意x ∈R 都有(4)()2(2)f x f x f +-=,若(1)y f x =-的图象关于直线1x =对称,则(2018)f=A. B. C. D.9、已知是双曲线的左、右焦点, 点在上若,则的离心率为A. B. C. D.10.,将()f x 图像的横坐标伸长为原来的2个单位后得到函数()g x ,在区间[0,]π上随机取一个数x ,则()1g x ≥的概率为11.若函数y =f (x )的图象上存在不同的两点,使得函数的图象在这两点处的切线的斜率之和等于常数t ,则称函数y =f (x )为“t 函数”.下列函数中为“2函数”的个数有① y =x -x 3 ②y =x +e x ③y =x ln x ④y =x +cos xA.1个B.2 个C.3 个D.4个12、已知向量满足,若,的最大值和最小值分别为,则等于A. B.2 C. D.二、填空题:本大题共4小题,每小题5分,共20分.133项和第5项的二项式系数相等,则展开式中的常数项为 .14、已知数列{}n a 的各项都为正数,前n 项和为n S ,若2{log }n a 是公差为1的等差数列,且5=62S ,则2=a15.已知四面体ABCD 的所有棱长都为,O 是该四面体内一点,且点O 到平面ABC 、平面ACD 、平面ABD 、平面BCD 的距离分别为,x ,和y ,则+的最小值是 .16.为抛物线上一点,且在第一象限,过点作垂直该抛物线的准线于点为抛物线的焦点,为坐标原点, 若四边形的四个顶点在同一个圆上,则该圆的方程为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17.(本小题满分12分)如图,,,a b c 分别是锐角ABC ∆的三个内角A B C ,,的对边,(1)求sin C 的值;(2)若点D 在边BC 上,3BD CD =,ABC ∆的面积为14,求AD 的长度.18. (本小题满分12分)2014年9月,国务院发布了《关于深化考试招生制度改革的实施意见》,某地作为高考改革试点地区,从当年秋季新入学的高一学生开始实施,高考不再分文理科,每个考生,英语,语文,数学三科为必考科目,并从物理、化学、生物、政治、历史、地理六个科目中任选三个科目参加高考,物理、化学、生物为自然科学科目,政治、历史、地理为社会科学科目.假设某位考生选考这六个科目的可能性相等.(1)求他所选考的三个科目中,至少有一个自然科学科目的概率;(2)已知该考生选考的三个科目中有一个科目属于社会科学科目,两个科目属于自然科学科目,若该考生所选的社会科学科目考试的成绩获A等的概率都是0.75,所选的自然科学科目考试的成绩获A等的概率都是0.8,且所选考的各个科目考试的成绩相互独立,用随机变量X 表示他所选的三个科目中考试成绩获A等的科目数,求X的分布列和数学期望.19.(本小题满分12分)如图,在多面体ABCDEF中,矩形BDEF所在平面与正方形ABC D所在平面垂直,点M为AE的中点.(1)求证:BM//平面EFC,求直线AE与平面BDM所成角的正弦值.(2)若DE AB20、(本小题满分12分),O 为坐标原点. (1)求椭圆C 的方程;(2)若斜率大于0的直线l 交椭圆C 于A B 、两点(A 在x 轴上方),交x 轴正半轴于P 点,若3PB PA +=0,求AOB ∆面积的最大值以及此时直线l 的方程.21.(本小题满分12分)已知a ∈R ,()(1)ln f x ax x =-(1)若2()ln f x x x x ≤--恒成立,求a 的值;(2)若()f x 有两个极值点,,求a 的范围并证明1()4f x >.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为2sin2cos (0)a a ρθθ=>,过点的直线的参数方程为(t 为参数), 直线与曲线相交于两点.(1)写出曲线的直角坐标方程和直线的普通方程; (2)求a 的值.23.选修4-5:不等式选讲已知函数()|32|f x x =+. (1)解不等式()4|1|f x x <--(2)若0a >,不等式||()4x a f x --≤恒成立,求实数a 的取值范围.石室中学高2018届2017-2018学年下期二诊模拟考试数学参考答案(理科)一、选择题二、填空题13. 20-; 14. 4;三、解答题17. 解:(1,因B 为锐角,所以分,分(2分分,由余弦定理,2222cos AD AB BD AB BD B =+-⋅⋅,解得5AD =…………………………12分18..(1).记“某位考生选考的三个科目中至少有一个科目是自然科学科目”为事件M ,分 (2)随机变量X 的所有可能取值有0,1,2,3.所以X 的分布列为:19..(1)由题知B D E F A B C ⊥面面,而B D E D ⊥,BDEF ABCD=BD 面面∩,DE BDEF ⊂面所以DE ABCD 面⊥,以DA ,DC ,DE 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设AD=1,则()1,1,0B ,,()0,0,1E ,()1,1,1F ,()0,1,0C ,所以EFC 的法向量为()1,1,1m =- ,则0MB m ⋅= 即MB m ⊥ ,又面MB EFC ⊄,所以//面MB EFC ;……………6分(2)由(1)知所以面BDM 的法向量为()1,1,1n =-又()1,0,1AE =- ,所以直线AE 与面BDM12分 20.解: (1)设切线为0bx ay ab +-=,则,解得224,3a b ==,所以椭圆C 的方程分(2)设直线l 为(0,0)x my n m n =+>>,联立得222(34)63120m y mny n +++-=,设1122(,),(,)A x y B x y ,②由0∆>,可得22340m n -+>…….6分 又因为3PB PA +=0,可得123y y -=③…………7分分分满足0∆>, 所以AOB ∆面积的最大值为此时直线l 的方程为分 21. 解(1)由题:得1ln 0x a x --≥ 令:,,…………………1分 所以F,且.所以当时恒成立,此时在上单调递增,(0,1),()0x F x ∴∈<这与F矛盾;………………………………..3分 当时令,解得,所以在上单调递减,在上单调递增,即,又因为,又F(1)=0 所以………………………..6分①若0a ≥时, 知:'()f x 在(0,)+∞单调递增,不合题…分 此时知道:()f x 在1(0,)x 单减,12(,)x x 单增,2(,)x +∞单减 且易知又110ax -<<1()4f x ∴>…………………………………………………12分 22. (1)由=整理得=,∴曲线的直角坐标方程为=,直线的普通方程为=…………………………………………………….4分(2)将直线的参数方程代入曲线的直角坐标方程=中,得, 设两点对应的参数分别为,则有==,……………………………….6分∵=,∴=即=…………………………….8分∴=即,解得或者(舍去),∴的值为1…………………………………………………………………………….10分23. (1)不等式.当,,解之得;当时,,解之得;当时,,无解.综上,不等式的解集为.…………………… 5分(2)令,则当时,.欲使不等式恒成立,只需,即.又因为,所以,即…………………………….10分。
2018年高三第二次模拟数学(理科)测试题 及答案
2018年高三第二次模拟数学(理科)测试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{|20}A x x =->,{|0}B x x =>,则AB =( )A.(0 B .(2)(0)-∞-+∞,, C.)+∞ D.((0)-∞+∞,,2.复数13ii -=+( ) A .931010i - B .131010i + C .931010i + D .131010i -3. 以下关于双曲线M :228x y -=的判断正确的是( ) A .M 的离心率为2 B .M 的实轴长为2 C.M 的焦距为16 D .M 的渐近线方程为y x =±4.若角α的终边经过点(1-,,则tan()3πα+=( )A. B.5.某几何体的三视图如图所示,其中俯视图中的圆的半径为2,则该几何体的体积为( )A .51296π-B .296 C.51224π- D .512 6.设x ,y 满足约束条件330280440x y x y x y -+⎧⎪+-⎨⎪+-⎩≥≤≥,则3z x y =+的最大值是( )A .9B .8 C.3 D .47.执行如图所示的程序框图,若输入的11k =,则输出的S =( )A .12B .13 C.15 D .188.我国南宋著名数学家秦九韶发现了三角形三边求三角形面积的“三斜求积公式”,设ABC △三个内角A ,B ,C 所对的边分别为a ,b ,c ,面积为S,则“三斜求积公式”为S =.若2sin 24sin a C A =,2(sin sin )()(27)sin a C B c b a A -+=-,则用“三斜求积公式”求得的S =( ) ABD9.某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,且质量指标值大于或等于100的产品为优质产品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100 件这种产品,并测量了每件产品的质量指标值(都在区间[90110], 内),将这些数据分成4 组:[9095),,[95100),,[100105),,[105110],,得到如下两个频率分布直方图:已知这2 种配方生产的产品利润y (单位:百元)与其质量指标值t 的关系式均为19509510011001052105t t y t t -<⎧⎪<⎪=⎨<⎪⎪⎩,,≤,≤,≥.若以上面数据的频率作为概率,分别从用A 配方和B 配方生产的产品中随机抽取一件,且抽取的这2 件产品相互独立,则抽得的这两件产品利润之和为0 的概率为( ) A .0.125 B .0.195 C.0.215 D .0.235 10. 设38a =,0.5log 0.2b =,4log 24c =,则( )A .a c b <<B .a b c << C.b a c << D .b c a << 11. 将函数sin 2cos2y x x =+的图象向左平移ϕ(02πϕ<<)个单位长度后得到()f x 的图象,若()f x 在5()4ππ,上单调递减,则ϕ的取值范围为( )A .3()88ππ,B .()42ππ, C.3[]88ππ, D .[)42ππ,12.过圆P :221(1)4x y ++=的圆心P 的直线与抛物线C :23y x = 相交于A ,B 两点,且3PB PA =,则点A 到圆P 上任意一点的距离的最大值为( ) A .116 B .2 C.136 D .73第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量()AB m n =,,(21)BD =,,(38)AD =,,则mn =. 14.71(4)2x - 的展开式中3x 的系数为.15. 若函数32()3f x x x a =--(0a ≠)只有2个零点,则a =.16.在等腰三角形ABC 中,23A π∠=,AB =BC 边上的高AD 翻折,使BCD △ 为正三角形,则四面体ABCD 的外接球的表面积为.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知公差不为0的等差数列{}n a 的前n 项和n S ,11S +,3S ,4S 成等差数列,且1a ,2a ,5a 成等比数列.(1)求数列{}n a 的通项公式;(2)若4S ,6S ,10S 成等比数列,求n 及此等比数列的公比.18. 4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个小组中随机抽取10 名学生参加问卷调查.各组人数统计如下:(1)从参加问卷调查的10 名学生中随机抽取两名,求这两名学生来自同一个小组的概率; (2)在参加问卷调查的10 名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用X 表示抽得甲组学生的人数,求X 的分布列及数学期望.19. 如图,在正方体1111ABCD A B C D -中,F ,G 分别是棱1CC ,1AA 的中点,E 为棱AB 上一点,113B M MA = 且GM ∥ 平面1B EF .(1)证明:E 为AB 的中点;(2)求平面1B EF 与平面11ABC D 所成锐二面角的余弦值.20. 已知椭圆C :22221x y a b+=(0a b >>)的离心率2e =,直线10x +-= 被以椭圆C (1)求椭圆C 的方程;(2)过点(40)M , 的直线l 交椭圆于A ,B 两个不同的点,且MA MB λ=⋅,求λ 的取值范围.21. 已知函数3()ln(1)ln(1)(3)f x x x k x x =+----(k ∈R ) (1)当3k = 时,求曲线()y f x = 在原点O 处的切线方程; (2)若()0f x > 对(01)x ∈, 恒成立,求k 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为cos 1sin x t y t αα=⎧⎨=+⎩(t 为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为2sin 0ρθθ-=. (1)写出直线l 的普通方程及曲线C 的直角坐标方程;(2)已知点(01)P ,,点0)Q ,直线l 过点Q 且曲线C 相交于A ,B 两点,设线段AB 的中点为M ,求PM 的值. 23.选修4-5:不等式选讲 已知函数()23f x x x =-++. (1)求不等式()15f x ≤的解集;(2)若2()x a f x -+≤对x ∈R 恒成立,求a 的取值范围.广西区2018年3月高三年级第二次高考模拟联合考试数学参考答案(理科)一、选择题1-5:DADBC 6-10:ACDBA 11、12:CC 二、填空题13.7 14.140- 15.4- 16.15π 三、解答题17. 1)设数列{}n a 的公差为d由题意可知3142215210S S S a a a d =++⎧⎪=⎨⎪≠⎩,整理得1112a d a =⎧⎨=⎩,即112a d =⎧⎨=⎩所以21n a n =-(2)由(1)知21n a n =-,∴2n S n =,∴416S =,836S =,又248n S S S =,∴22368116n ==,∴9n =,公比8494S q S == 18.由已知得,问卷调查中,从四个小组中抽取的人数分别为3,4,2,1,从参加问卷调查的10 名学生中随机抽取两名的取法共有21045C = 种, 这两名学生来自同一小组的取法共有22234210C C C ++= 种.所以所求概率102459P == (2)由(1)知,在参加问卷调查的10 名学生中,来自甲、丙两小组的学生人数分别为3,2.X 的可能取值为0,1,2,22251(0)10C P X C ===,1132253(1)5C C P X C ===,23253(2)10C P X C ===.所以X 的分布列为()012105105E X =⨯+⨯+⨯=19.(1)证明:取11A B 的中点N ,连接AN ,因为1=3B M MA ,所以M 为1A N 的中点,又G 为1AA 的中点,所以GM AN ∥, 因为GM ∥ 平面1B EF ,GM ⊂ 平面11ABB A ,平面11ABB A 平面11B EF B E =所以1GM B E ∥,即1AN B E ∥,又1B N AE ∥,所以四边形1AEB N 为平行四边形,则1AE B N =,所以E 为AB 的中点. (2)解:以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -,不妨令正方体的棱长为2,则1(222B ,,),(210)E ,,,(021)F ,,,1(202)A ,,,可得1(012)B E =--,,,(211)EF =-,,,设()m x y z =,, 是平面1B EF 的法向量,则12020m B E y z m EF x y z ⎧⋅=--=⎪⎨⋅=-++=⎪⎩,令2z =,得(142)m =--,, 易得平面11ABC D 的一个法向量为1(202)n DA ==,,所以cos 4222m n m n m n⋅===, 故所求锐二面角的余弦值为4220.解:(1)因为原点到直线10x -=的距离为12,所以2221()2b +=(0b >),解得1b =. 又22222314c b e a a ==-=,得2a =所以椭圆C 的方程为2214x y +=. (2) 当直线l 的斜率为0 时,12MA MB λ=⋅=当直线l 的斜率不为0 时,设直线l :4x my =+,11()A x y ,,22()B x y ,,联立方程组22414x my x y =+⎧⎪⎨+=⎪⎩,得22(4)8120m y my +++=由22=6448(4)0m m ∆-+>,得212m >, 所以122124y y m =+21122212(1)312(1)44m MA MB y m m λ+=⋅===-++由212m >,得2330416m <<+,所以39124λ<<. 综上可得:39124λ<≤,即39(12]4λ∈,21.解:(1)当3k = 时,211()9(1)11f x x x x'=+--+-,∴(0)11f '=故曲线()y f x = 在原点O 处的切线方程为11y x =(2)22223(1)()1k x f x x+-'=- 当(01)x ∈, 时,22(1)(01)x -∈,,若23k -≥,2223(1)0k x +->,则()0f x '>,∴()f x 在(01), 上递增,从而()(0)0f x f >=.若23k <-,令()0(01)f x x '=⇒=,,当(0x ∈时,()0f x '<,当1)x ∈ 时,()0f x '>,∴min ()(0)0f x f f =<= 则23k <-不合题意. 故k 的取值范围为2[)3-+∞,22.解:(1)由直线l 的参数方程消去t ,得l 的普通方程为sin cos cos 0x y ααα-+=,由2sin 0ρθθ-=得22sin cos 0ρθθ-=所以曲线C的直角坐标方程为2y =(2)易得点P 在l,所以tan 3PQ k α===-,所以56πα= 所以l的参数方程为112x y t ⎧=⎪⎪⎨⎪=+⎪⎩,代入2y = 中,得21640t t ++=.设A ,B ,M 所对应的参数分别为1t ,2t ,0t . 则12082t t t +==-,所以08PM t == 23.解:(1)因为213()532212x x f x x x x --<-⎧⎪=-⎨⎪+>⎩,,≤≤,,13x <-≤ 所以当3x <- 时,由()15f x ≤ 得83x -<-≤; 当32x -≤≤ 时,由()15f x ≤ 得32x -≤≤; 当2x > 时,由()15f x ≤ 得27x <≤ 综上,()15f x ≤ 的解集为[87]-,(2)(方法一)由2()x a f x -+≤ 得2()a x f x +≤,因为()(2)(3)5f x x x --+=≥,当且仅当32x -≤≤ 取等号, 所以当32x -≤≤ 时,()f x 取得最小值5.所以,当0x = 时,2()x f x + 取得最小值5, 故5a ≤,即a 的取值范围为(5]-∞,(方法二)设2()g x x a =-+,则max ()(0)g x g a ==, 当32x -≤≤ 时,()f x 的取得最小值5, 所以当0x = 时,2()x f x + 取得最小值5, 故5a ≤,即a 的取值范围为(5]-∞,。
2018新疆高三年级第二次诊断测试二模 理科数学答案
令h t = n-m = e
()
-
∴t >
1 2 + ln 3 1 1 = 时, h¢ (t ) > 0 , 0 < t < 时, h¢ (t ) < 0 ,故 h (t )min = h . 3 3 3 3
三、解答题:第 17~21 题每题 12 分,解答应在答卷的相应各题中写出文字说明,说明过 程或演算步骤. 17. (12 分) (Ⅰ)设 an 的首项为 a1 ,公差为 d ,依题意,有 所以 an 2n 3 ;
2018 年高三年级学业水平学科能力第二次诊断测试
理科数学答案
一、选择题:本大题共 12 小题,每小题 5 分。在每个小题给出的四个选项中,只有一项是 符合题目要求的。 1~5.BACDD 6~10.DCCBA 11~12. AB 1.选 B.【解析】由题意得 A B = {x | x ³ 1} .故选 B. 2.选 A.【解析】∵
2 2
…5 分
x 1 t cos 2 2 2 代入 x y 4 x 0 ,整理得 t 2t cos 3 0 y t sin 2 1 1 , AP AM AN
c b2 , , yN b 得b
2
2
2
2
c2 b2 c 1 ,∴ y N yM , 2 2c 4 2
∴ N 是 FM 的中点.故选 A.
11.选 A.【解析】∵当 x < -1 时, y < 0 ,排除 B、D,当 x 取无穷大时,∵ a > 1 ,∴ y 无 穷大,排除 C.故选 A. 12.选 B.【解析】如图,设 A x1 , y1 , B x2 , y2 , k AB
2018届高三二模数学(理)试题 含答案
哈尔滨市第九中学2018届高三第二次模拟数学试卷(理科)一选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知i 是虚数单位,复数z 满足()11z i i -=+,则z 的共轭复数是 A. 1 B. -1 C. i D.i -2.设非空集合,P Q 满足PQ P =,则A. ,x Q x P ∀∈∈B. ,x Q x P ∀∉∉ . 00,x Q x P ∃∉∈ D.00,x P x P ∃∈∉3.若221x y+=,则x y +的取值范围是A. []0,2 B. []2,0- C. [)2,-+∞ D.(],2-∞-4.若2sin 3sin 33ππθθ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则tan θ=A. 2-B. 5C. 3D.5.从12,3,4,5,6,7,8中随机取出一个数x ,执行如图所示的程序框图,则输出的x 不小于40的概率为 A.34 B. 58 C. 78 D. 126.以坐标原点为对称中心,两条坐标轴为对称轴的双曲线的一条渐近线的倾斜角为3π,则双曲线的离心率为A. 2B. 2C.D.2 7.已知某几何体的三视图如图所示,则该几何体的体积为A. 16B. 32C. 48D. 144 8.函数()ln cos f x x x =+的图象为9.已知过球面上A,B,C 三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面的面积为 A.169π B. 83π C. 619πD.4π10.若实数,x y 满31x y -≤≤足,则2x yz x y+=+的最小值是 A.53 B. 2 C. 35 D.1211.已知抛物线2:8C y x =的焦为F,准线l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则QF = A.72 B. 52C. 3D. 2 12.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角”.该表由若干数字组成,从第二行起,每一行的数字均等于其“肩上”两数之和,表中最后一行今有一个数,则这个数为A. 201620172⨯B. 201820172⨯C. 201720162⨯D.201820162⨯二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量()()1,2,4,3a b ==,且()a tab ⊥+,则实数t = .14. 已知12nx x ⎛⎫+ ⎪⎝⎭的展开式中前三项的系数依次成等差数列,则展开式中4x 的系数为 .15. 2018年1月27日,哈尔滨地铁3号线一期开通运营,甲、乙、丙、丁四位同学决定乘坐地铁去城乡路、哈西站和哈尔滨大街。
市2018届高三下学期4月二模考试数学(理)试题 含答案
山东省德州市2018届高三下学期4月二模考试高三数学(理科)试题第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U R =,集合{}2|20M x x x =+->,11|()22x N x -⎧⎫=≥⎨⎬⎩⎭,则()U M N =ð( ) A .[]2,0-B .[]2,1-C .[]0,1D .[]0,22.若复数(1)(3)mi i ++(i 是虚数单位,m R ∈)是纯虚数,则复数31m ii+-的模等于( ) A .1B .2C .3D .43.已知平面向量a 和b 的夹角为60︒,(2,0)a =,||1b =,则|2|a b +=( ) A .20B .12C.D.4.已知3cos 5α=,cos()αβ-=,且02πβα<<<,那么β=( ) A .12πB .6π C .4π D .3π 5.某产品的广告费用x 万元与销售额y 万元的统计数据如表:根据上表可得回归方程9.4y x a =+,据此模型预测,广告费用为6万元时的销售额为( )万元 A .65.5B .66.6C .67.7D .726.下列说法正确的是( )A .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,210x x ++>”B .命题“若2320x x -+=,则1x =或2x =”的否命题是:“若2320x x -+=,则1x ≠或2x ≠”C .直线1l :210ax y ++=,2l :220x ay ++=,12//l l 的充要条件是12a = D .命题“若x y =,则sin sin x y =”的逆否命题是真命题 7.执行如图所示的程序框图,则输出的结果是( )A .7B .8C .9D .108.已知双曲线22221x y a b-=(a >,0b >)的两条渐进线与抛物线24y x =的准线分别交于A ,B 两点,O 为坐标原点,若AOB S ∆=e =( )A .32B .2C .2D 9.已知某空间几何体的三视图如图所示,则该几何体的体积为( )A .403B .343C.10 D.6 10.已知函数|ln |,0,()(2),2,x x e f x f e x e x e <≤⎧=⎨-<<⎩设方程()2x f x b -=+(b R ∈)的四个实根从小到大依次为1x ,2x ,3x ,4x ,对于满足条件的任意一组实根,下列判断中一定成立的是( ) A .122x x +=B .2234(21)e x x e <<-C .340(2)(2)1e x e x <--<D .2121x x e <<第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11.关于x 的不等式|2||8|x x a -+-≥在R 上恒成立,则a 的最大值为 . 12.已知{}(,)|||1,||1x y x y Ω=≤≤,A 是曲线3y x =与12y x =围成的区域,若向区域Ω上随机投一点P ,则点P 落入区域A 的概率为 .13.设x ,y 满足约束条件360,20,0,0,x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩则目标函数z ax by =+(0a >,0b >)的最大值为10,则22a b +的最小值为 .14.现有12张不同的卡片,其中红色、黄色、蓝色、绿色卡片各3张,从中任取3张,要求这3张卡片不能时同一种颜色,且红色卡片至多1张,不同取法的种数为 .15.若对任意的x D ∈,均有()()()g x f x h x ≤≤成立,则称函数()f x 为函数()g x 到函数()h x 在区间D 上的“任性函数”.已知函数()f x kx =,2()2g x x x =-,()(1)(ln 1)h x x x =++,且()f x 是()g x 到()h x 在区间[]1,e 上的“任性函数”,则实数k 的取值范围是 .三、解答题 (本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数()4sin cos()3f x x x π=++0,6x π⎡⎤∈⎢⎥⎣⎦. (Ⅰ)求函数()f x 的值域;(Ⅱ)已知锐角ABC ∆的两边长a ,b 分别为函数()f x 的最小值与最大值,且ABC ∆的外,求ABC ∆的面积. 17.已知等比数列{}n a 的前n 项和为n S ,且163n n S a +=+(a N +∈). (Ⅰ)求a 的值及数列{}n a 的通项公式;(Ⅱ)设122233(1)(221)(log 2)(log 1)n n n n n n b a a --++=++,求{}n b 的前n 项和n T .18.如图所示的多面体是由一个直平行六面体被平面AEFG 所截后得到的,其中45BAE GAD ∠=∠=︒,22AB AD ==,60BAD ∠=︒.(Ⅰ)求证:BD ⊥平面ADG ;(Ⅱ)求直线GB 与平面AEFG 所成角的正弦值.19.来自某校一班和二班的共计9名学生志愿服务者被随机平均分配到运送矿泉水、清扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有一名一班志愿者的概率是2021. (Ⅰ)求清扫卫生岗位恰好一班1人、二班2人的概率;(Ⅱ)设随机变量X 为在维持秩序岗位服务的一班的志愿者的人数,求X 分布列及期望. 20.已知函数21()2ln (2)2f x x a x a x =-+-,a R ∈. (Ⅰ)当1a =-时,求函数()f x 的极值; (Ⅱ)当0a <时,讨论函数()f x 单调性;(Ⅲ)是否存在实数a ,对任意的m ,(0,)n ∈+∞,且m n ≠,有()()f m f n a m n->-恒成立?若存在,求出a 的取值范围;若不存在,说明理由.21.已知椭圆C :22221(0)x y a b a b +=>>经过点,左右焦点分别为1F 、2F ,圆222x y +=与直线0x y b ++=相交所得弦长为2.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设Q 是椭圆C 上不在x 轴上的一个动点,Q 为坐标原点,过点2F 作OQ 的平行线交椭圆C 于M 、N 两个不同的点. (1)试探究2||||MN OQ 的值是否为一个常数?若是,求出这个常数;若不是,请说明理由.(2)记2QF M ∆的面积为1S ,2OF N ∆的面积为2S ,令12S S S =+,求S 的最大值.高三数学(理科)试题答案一、选择题1-5:ACDCA 6-10:BDDBB二、填空题11.6 12.548 13.251314.189 15.[]2,2e - 三、解答题16.解:(Ⅰ)1()4sin (cos )2f x x x x =⋅22sin cos x x x =-sin 2x x =2sin(2)3x π=+,∵06x π≤≤,∴22333x πππ≤+≤,∴sin(2)123x π≤+≤, ∴函数()f x的值域为⎤⎦.(Ⅱ)依题意a =2b =,ABC ∆的外接圆半径4r =,sin 23a A r ===,sin 22b B r ===,cos A =1cos 3B =,sin sin()sin cos cos sin 3C A B A B A B =+=+=, ∴11sin 222ABC S ab C ∆==⨯=. 17. 解:(Ⅰ)∵等比数列{}n a 满足163n n S a +=+(a N +∈),1n =时,169a a =+;2n ≥时,1166()3(3)23n n n n n n a S S a a +-=-=+-+=⨯.∴13n n a -=,1n =时也成立,∴169a ⨯=+,解得3a =-, ∴13n n a -=.(Ⅱ)122233(1)(221)(log 2)(log 1)n n n n n n b a a --++=++1222(1)(221)(1)n n n n n --++=+12211(1)(1)n n n -⎡⎤=-+⎢⎥+⎣⎦. 当n 为奇数时,22222221111111()()11223(1)(1)n T n n n ⎡⎤=+-++++=+⎢⎥++⎣⎦…; 当n 为偶数时,n T =22222221111111()()11223(1)(1)n n n ⎡⎤+-++-+=-⎢⎥++⎣⎦…. 综上,1211(1)(1)n n T n -=+-+. 18.(Ⅰ)证明:在BAD ∆中,∵22AB AD ==,60BAD ∠=︒.由余弦定理2222cos60BD AD AB AB AD =+-⋅︒,BD ,∵222AB AD DB =+, ∴AD DB ⊥,在直平行六面体中,GD ⊥平面ABCD ,DB ⊂平面ABCD ,∴GD DB ⊥, 又ADGD D =,∴BD ⊥平面ADG .(Ⅱ)解:如图以D 为原点建立空间直角坐标系D xyz -, ∵45BAE GAD ∠=∠=︒,22AB AD ==, ∴(1,0,0)A,B,E ,(0,0,1)G ,(1AE =-,(1,0,1)AG =-,1)GB =-,设平面AEFG 的法向量(,,)n x y z =,20,0,n AE x z n AG x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩令1x =,得3y =,1z =, ∴3(1,n =-, 设直线GB 和平面AEFG 的夹角为θ, ∴21sin |cos ,|||7||||GB n GB n GB n θ⋅=<>==⋅ 所以直线GB 与平面AEFG 所成角的正弦值为7.19.解:(Ⅰ)记“至少一名一班志愿者被分到运送矿泉水岗位”为事件A ,则A 的对立事件为“没有一班志愿者被分到运送矿泉水岗位”,设有一班志愿者x 个,19x ≤<,那么393920()121xC P A C -=-=,解得5x =,即来自一班的志愿者有5人,来自二班志愿者4人;记“清扫卫生岗位恰好一班1人,二班2人”为事件C ,那么1254395()14C C P C C ==, 所有清扫卫生岗位恰好一班1人,二班2人的概率是514. (Ⅱ)X 的所有可能值为0,1,2,3.1254395(1)14C C P X C ===,21543910(1)21C C P X C ===,3054395(3)42C C P X C ===, 所以X 的分布列为()012321142142E X =⨯+⨯+⨯+⨯3=.20.解:(Ⅰ)当1a =-时,21()2ln 32f x x x x =+-,2232(1)(2)'()3x x x x f x x x x x-+--=+-==.当01x <<或2x >时,'()0f x >,()f x 单调递增; 当12x <<时,'()f x <,()f x 单调递减, 所以1x =时,5()(1)2f x f ==-极大值; 2x =时,()(2)2ln 24f x f ==-极小值.(Ⅱ)当0a <时,2'()(2)af x x a x =-+-2(2)2x a x a x+--=(2)()x x a x -+=, ①当2a ->,即2a <-时,由'()0f x >可得02x <<或x a >-,此时()f x 单调递增;由'()0f x <可得2x a <<-,此时()f x 单调递减;②当2a -=,即2a =-时,'()0f x ≥在(0,)+∞上恒成立,此时()f x 单调递增; ③当2a -<,即20a -<<时,由'()0f x >可得0x a <<-或2x >,此时()f x 单调递增;由'()0f x <可得2a x -<<,此时()f x 单调递减.综上:当2a <-时,()f x 增区间为(0,2),(,)a -+∞,减区间为(2,)a -; 当2a =-时,()f x 增区间为(0,)+∞,无减区间;当20a -<<时,()f x 增区间为(0,)a -,(2,)+∞,减区间为(,2)a -. (Ⅲ)假设存在实数a ,对任意的m ,(0,)n ∈+∞,且m n ≠,有()()1f m f n a m ->-恒成立,不妨设0m n >>,则由()()1f m f n a m ->-恒成立可得:()()f m am f n an ->-恒成立,令()()g x f x ax =-,则()g x 在(0,)+∞上单调递增,所以'()0g x ≥恒成立, 即'()0f x a -≥恒成立,∴2(2)0ax a a x -+--≥,即2220x x a x--≥恒成立,又0x >, ∴2220x x a --≥在0x >时恒成立, ∴2min11(2)22a x x ⎡⎤≤-=-⎢⎥⎣⎦,∴当12a ≤-时,对任意的m ,(0,)n ∈+∞,且m n ≠,有()()1f m f n a m ->-恒成立. 21. 解:(Ⅰ)由已知可得:圆心到直线0x y b ++=的距离为1,1=,所以b = 又椭圆C经过点,所以221413a b +=,得到a =所以椭圆C 的标准方程为22132x y +=. (Ⅱ)(1)设00(,)Q x y ,11(,)M x y ,22(,)N x y ,OQ 的方程为x my =, 则MN 的方程为1x my =+.由22,1,32x my x y =⎧⎪⎨+=⎪⎩得222226,236,23m x m y m ⎧=⎪⎪+⎨⎪=⎪+⎩即22022026,236.23m x m y m ⎧=⎪⎪+⎨⎪=⎪+⎩所以0||||OQ y ==由221,1,32x my x y =+⎧⎪⎨+=⎪⎩,得22(23)440m y my ++-=,所以122423m y y m +=-+,122423y y m =-+,12||||MN y y =-==222)2323m m m +==++,所以222||236(1)||23MN m m OQ m +==++ (2)∵//MN OQ ,∴2QF M ∆的面积2OF M =∆的面积,∴12OMN S S S S ∆=+=, ∵O 到直线MN :1x my =+的距离d =∴222111)||222323m S MN d m m +=⋅=⨯=++t =,则221m t =-(1t ≥),2S t t===+, 令1()2(1)g t t t t =+≥,21'()20g t t =->, ∴()g t 在[1,)+∞上为增函数,min ()(1)3g t g ==,max S =.。
山西省2018届高三第二次模拟考试(理数).doc
山西省2018届高三第二次模拟考试数学(理科)本试卷分选择题和非选择题两部分,共4页,满分150分,考试用时120分钟。
注意事项:1.答题前,考生务必用黑色字迹的钢笔或签字笔将自己的校名、姓名、考号、座位号等相关信息填写在答题卡指定区域内。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A = {—2, — l,0,l,2}, B = |x|(x-l)(x + 2)<0|,则 =A.{-1,0}B. {0,1}C. {—1,0,1}D. {0,1,2}2 + 4/2.已知复数z二二一(,为虚数单位),则z的共轴复数在复平面对应的点的坐标是1— zA. (3,3)B. (—1,3)C. (3, —1)D. (―1,—3)3.一次考试中,某班学生的数学成绩X近似服从正态分布/V(IOOJOO),则该班数学成绩的及格率可估计为(成绩达到90分为及格)(参考数据:P(〃 - b V X % 〃 + b) = 0.68 )A. 60%B. 68%C. 76%D. 84%,、2,尤<0, / /、、4.若函数/(%)=,、为奇函数,则g(2)二[g(x),x>0A. -2B. 2C. -1D. 15.己知点P是直线x+y-b = 0上的动点,由点P向圆O:J + y2= 1引切线,切点分别为M , N , K ZMPN = 90°,若满足以上条件的点F有且只有一个,则人=A. 2B. ±2C. V2D. ±72x-2y + l>0,6.己知不等式组Jx<2, 表示的平面区域为D,若函数y = |x —l| + "z的图象上存x+y—120在区域。
最新-四川省遂宁市2018届高三第二次诊断考试理科数学试题及答案 精品
数学(理科)试题
本试卷分第I卷(选择题)和第II卷(非选择题)两部分。总分150分。考试时间120分钟。
第Ⅰ卷(选择题,满分50分)
注意事项:
1.答题前,考生务必将自己的姓名、班级、考号用0.5毫米的黑色墨水签字笔填写在答题卡上。并检查条形码粘贴是否正确。
2.选择题使用2B铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米黑色墨水签字笔书写在答题卡对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷10小题,每小题5分,共50分.在每小题列出的四个选项中,只有一项是符合题目要求的.
1.设集合 , ,
则
A. B. C. D.
2.已知 是虚数单位,若复数 满足 ,则 的共轭复数 为
A. B. C. D.
3.下列有关命题的说法正确的是
A.命题“若 ”的否命题为:“若 ”;
二、填空题:本大题共5题,每小题5分,共25分.
11.若 的二项展开式中所有项的二项式系数和为 ,则常数项为▲(用数字作答)
12.已知函数 ,
则 ▲
13.海轮“和谐号”从A处以每小时21海里的速度出发,海轮“奋斗号”在A处北偏东 的方向,且与A相距10海里的C处,沿北偏东 的方向以每小时9海里的速度行驶,则海轮“和谐号”与海轮“奋斗号”相遇所需的最短时间为▲小时
设 , ,则 , ,∴ 。∵直线 与圆 相切,∴ ,即 ,∴ ,∵ , ,∴ ,同理 ,∴
因此,△ 的周长是定值6.
法二:设 , ,则 , , ,∴ ,又M是圆O的切点,连接OP,OM,∴ ,∴ ,同理 ,∴ ,因此,△ 的周长是定值6.
三、解答题:本大题共6小题,共75分.
16.(本小题满分12分)
重庆市2018届高三下学期二模理科数学试题(附解析)
重庆市2018届高三下学期二模理科数学试题(附解析)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}6,5,4,3,2,1=U ,集合{}3,5,1=A ,集合{}Z x x x x B ∈≤--=,0)4)(2(|,则()U A B =ð( )A .{}1,6B .{}6C .{}63,D .{}1,3 2.在复平面内,复数Z 所对应的点的坐标为)(4,3,则ZZ=( ) A .i 5453-B .i 5354-C .i 5453+D .i 5354+3.已知数列{}n a 为等差数列,其前n 项和为n S ,若6482=-+a a a ,则11=S ( ) A .132B .108C .66D .不能确定4.某车间为了规划生产进度提高生产效率,记录了不同时段生产零件个数x (百个)与相应加工总时长y (小时)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为05.07.0ˆ+=x y ,则下列结论错误..的是( ) A .加工总时长与生产零件数呈正相关 B .该回归直线一定过点)5.2,5.3(C .零件个数每增加1百个,相应加工总时长约增加0.7小时D .m 的值是2.855.已知函数⎪⎩⎪⎨⎧≥<≤=1,4sin 10,2)(x x x x f x π,则=-+)7log 3()2(2f f ( )A .87B .157C .158D .2276.某几何体的三视图如图所示,其侧视图为等边三角形,则该几何体的体积为( )A .3263+πB .43+πC .32123+πD .432+π7.已知25tan 1tan =+αα,)2,4(ππα∈,则)42sin(πα-的值为( ) A .1027-B .102C .102-D .1027 8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入的2,2==n x ,则输出的=S ( )A .8B .10C .12D .229.已知向量b a ,5==+的取值范围是( ) A .]5,0[B .]25,5[C .]7,25[D .]10,5[10.已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为12F F 、,以O 为圆心,12F F 为直径的圆与椭圆在第一象限相交于点P ,且直线OP 的斜率为3,则椭圆的离心率为( )A .13-B .213- C .22 D .23 11.已知实数b a ,满足不等式1)1(22≤-+b a ,则点)1,1(-A 与点)1,1(--B 在直线01=++by ax 的两侧的概率为( ) A .43B .32C .21D .3112.已知函数mx x x x f ++=233)(,)0(,)1ln()(>++=n nx x x g ,若函数)(x f 的图像关于点)1,1(--对称,且曲线)(x f 与)(x g 有唯一公共点,则=+n m ( )A .3B .5C .7D .9第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.若51(2)(1)ax x++展开式中常数项为12,则实数a 等于 .14.甲、乙、丙三个同学在看c b a ,,三位运动员进行“乒乓球冠军争夺赛”.赛前,对于谁会得冠军进行预测,甲说:不是b ,是c ;乙说:不是b ,是a ;丙说:不是c ,是b .比赛结果表明,他们的话有一人全对,有一人对一半错一半,有一人全错,则冠军是 .15.已知三棱锥ABC P -的外接球的球心为O ,⊥PA 平面ABC ,AB AC ⊥,2AB AC ==,1PA =,则球心O 到平面PBC 的距离为 .16.如图,在平面四边形ABCD 中,ACD ∆的面积为3,132-==BC AB ,,135120=∠=∠BCD ABC ,,则=AD .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)有如下数阵,,,,,)2,2,2()2,2,2()2,2()2(:12154332-+n n n 其中第n 个括号内的所有元素之和记为n a .(1)求数列{}n a 的通项公式;(2)令22(1)log (4)n n n n b n a =-⋅+-,求数列{}n b 的前100项和100S .18.(12分)当前,以“立德树人”为目标的课程改革正在有序推进.高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施.重庆2018年初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分为50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分,某学校在初三上期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到右边频率分布直方图,且规定计分规则如下表:(1)现从样本的100名学生中,任意选取2人,求两人得分之和不大于35分的概率; (2)若该校初三年级所有学生的跳绳个数X 服从正态分布),(2σμN ,用样本数据的平均值和方差估计总体的期望和方差,已知样本方差1692≈S (各组数据用中点值代替).根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步,假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,现利用所得正态分布模型:(ⅰ)预估全年级恰好有2000名学生时,正式测试每分钟跳182个以上的人数;(结果 四舍五入到整数)(ⅱ)若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为ξ,求随机变量ξ的分布列和期望.附:若随机变量X 服从正态分布),(2σμN ,则6826.0)(=+<<-σμσμX P ,)22(σμσμ+<<-X P .9974.0)33(9544.0=+<<-=σμσμX P ,19.(12分)如图,在矩形ABCD 中,点G F E 、、分别为CD 和AB 的三等分点,其中AD AG AB 33==23=,现将ADE ∆和BCF ∆分别沿BF AE ,翻折到AME ∆和BNF ∆的位置,得到一个以、、、、、M F E B A N 为顶点的空间五面体.(1)证明//:MN 平面;ABCD(2)若2=MG ,求平面AME 与平面EGN 所成锐二面角的余弦值.20.(12分)在平面直角坐标系xOy 中,已知两定点11(0,)(0,)33M N -,,平面内的动点P 在y 轴上的射影为1P ,且1||||MN MP NM NP +=+,记点P 的轨迹为C . (1)求点P 的轨迹方程C ;(2)设点),1,2(),1,0(A F 以A 为圆心,||AF 为半径的圆A 与直线1-=y 相切于点,B 过F 作斜率大于0的直线与曲线C 在第一象限交于点Q ,与圆A 交于点.H 若直线QB QA QH ,,的斜率成等差数列,且E 为QB 的中点,求QFB ∆和QHE ∆的面积比.21.(12分)已知函数()ln ().au x x a R x=-∈ (1)若曲线)(x u 与直线0=y 相切,求a 的值. (2)若,21e a e <<+设,ln |)(|)(xxx u x f -=求证:()f x 有两个不同的零点12,x x ,且 21x x e -<.(e 为自然对数的底数)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,已知曲线M 的参数方程为12cos 12sin x y ββ=+⎧⎨=+⎩β(为参数),以原点为极 点,x 轴正半轴为极轴建立极坐标系,直线1l 的极坐标方程为=θα,直线2l 的极坐标方程为=+2πθα.(1)写出曲线M 的极坐标方程,并指出它是何种曲线;(2)设1l 与曲线M 交于C A 、两点,2l 与曲线M 交于D B 、两点,求四边形ABCD 面积的取值范围.23.(10分)【选修4-5:不等式选讲】 已知函数)()(R x x x f ∈=.(1)求不等式4)1()1(≤++-x f x f 的解集;M (2)若,,M b a ∈证明.4)()(2:+≤+ab f b a f2018届重庆市高三第二次模拟考试卷数学(理)答案一、选择题. 1-5:BACDB 6-10:ADDBA 11、12:CB二、填空题.13.2 14.C 15.66 16.22三、解答题.17.解:(1)n a =.2421)21(2222121n n n n n n n-=--=++-+ ………… 5分(2)222log (4)(1)(1)n n n n n b a n n n =-+-⋅=+-⋅.10100)14(2)1001(100501100=-++⋅=∴∑=k k S ……………… 12分18.解:(1)两人得分之和不大于35分,即两人得分均为17分,或两人中1人17分,1人18分,;16502921001121626=+=C C C C P ……………… 3分 (2)18508.02101.020030.019034.018012.017006.0160=⨯+⨯+⨯+⨯+⨯+⨯=X (个)5分 又,13,1692≈≈s S 所以正式测试时,182,13,195=-∴==σμσμ (ⅰ),8413.026826.011)182(=--=>∴ξP 16836.168220008413.0≈=⨯∴(人) … 7分(ⅱ)由正态分布模型,全年级所有学生中任取1人,每分钟跳绳个数195以上的概率为0.5,即,125.0)5.01()0(),5.0,3(~303=-⋅==∴C P B ξξ122233333(1)0.5(10.5)0.375,(2)0.5(10.5)0.375,(3)0.50.125;P C P C P C ξξξ==⋅⋅-===⋅⋅-===⋅=∴ξ的分布列为.5.15.03)(=⨯=X E ……… 12分19.解:(1)⊄AB CD AB ,// 平面//,AB EFNM ∴平面,EFNM 又⊂AB 平面,ABNM 平面 ABNM 平面,MN EFNM =;//AB MN ∴⊄MN 平面//,MN ABCD ∴平面.ABCD ……………… 5分(2)取AE 中点,O 连接,,,MG OG MO 由勾股定理逆定理易证,OG MO ⊥O ME MA ,= 为AE 中点,.AE MO ⊥∴又⊥∴=OM O OG AE , 平面,ABCD如图,分别以OM OG OA 、、为z y x 、、轴建立空间直角坐标系 显然平面AME 的一个法向量()0,1,01=n ,)0,0,1(-E ,).0,1,0(G法一:取BF 中点记为H ,由(1)知//MN 平面,ABCD 故N 到平面ABCD 的距离,1===NH OM dN 在平面ABCD 的射影与H 重合,易得点N 的坐标为).1,2,2(-法二:连接,,HN OH 由(1)知,//AB MN 又,//,//OH MN AB OH ∴ 由 ,552cos cos =∠=∠HMN MHO 可得,22=MN 即OHNM 为矩形. N 在平面ABCD 的射影与H 重合,易得点N 的坐标为).1,2,2(-法三:由最小角定理可得,3,21cos cos cos π=∠∴=∠∠=∠MAB EAG MAO MAB可得,2AG MN =().1,2,22-=+=+=∴AG OM MN OM ON设平面EGN 的一个法向量为()),1,2,1(),0,1,1(,,,2-===z y x n则有⎩⎨⎧=++-=+020z y x y x ,可取().3,1,12-=n设平面AME 与平面EGN 所成锐二面角为θ .1111cos cos ==∴θ…… 12分 20.解:(1)设(,)P x y ,则1(0,)P y121(0,)(0,)(0,1)33MN MP y y ∴+=++=+,21(0,)(,)(,1)33NM NP x y x y +=-+-=- 由1||||MN MP NM NP +=+可得222(1)(1)y x y +=+-即24x y =.24C x y ∴=的轨迹方程为:. ……… 4分 (2)设2(,)4t Q t ,由2,QF QB QA k k k +=得222111444222t t t t t t -+-+=--,得2t =+t =舍) Q ∴,1,QF k =………… 8分90QFB ∴∠=且易得(2,3)H ,11(31)422QFB S FQ FB ∴=⋅=⋅+⋅+……………… 10分 又1112222222QHE QHB S S HB ∆∆===,: 2.QFB QHE S S ∴==…… 12分 21.解:(1)设切点)0,(0x P ,)('2x x a x u -+=.,002x a x x a k -=∴=-+=∴ 又切点在函数)(x u 上,,0)(0=∴x u 即,1ln 0ln 000-=⇒=-x x x a.1,10ea e x -=∴=∴ ……………… 4分(2)证明:不妨设12x x <, 21()0a u x x x'=--<,所以()u x 在(0,)+∞上单调递减, 又()10,(2)ln 202a au e u e e ee=->=-<, 所以必存在0(,2)x e e ∈,使得0()0u x =,即,ln 00x x a =⎪⎩⎪⎨⎧>--≤<--=∴00,ln ln 0,ln ln )(x x x x x a x x x x x x x ax f . 6分①当00x x <≤时,222211ln ln (1)1(1)()0a x x x a x x a f x x x x x x---+---+'=---=≤<, 所以()f x 在区间0(0,]x 上单调递减,注意到1()10a f e ee=-->,00000ln ln ()ln 0x x a f x x x x x =--=-<所以函数()f x 在区间0(0,]x 上存在零点1x ,且10e x x <<. ………… 9分 ②当0x x >时,22211ln ln (1)()0a x x x a f x xx x x -++-'=+-=> 所以()f x 在区间0(,)x +∞上单调递增,又0ln ln ln )(0000000<-=--=x x x x x a x x f , 且ln 21ln 241411(2)ln 2ln 21ln 20222252522a e f e e e e e e e e e=-->--->->->, 所以()f x 在区间0(,2)x e 上必存在零点2x ,且022x x e <<.综上,()f x 有两个不同的零点1x 、2x ,且21212x x x x e e e -=-<-=. ……… 12分22.解:(1)由12cos 12sin x y ββ=+⎧⎨=+⎩(β为参数)消去参数β得:22(1)(1)4x y -+-=,将曲线M 的方程化成极坐标方程得:2-2(sin cos )20ρρθθ+-=, ∴曲线M 是以)1,1(为圆心,2为半径的圆. …………… 5分(2)设12||,||OA OC ρρ==,由1l 与圆M 联立方程可得22(sincos )20ρραα-+-=1212+=2(sin cos )=2ρρααρρ∴+⋅-,,∵O ,A ,C 三点共线,则12||||AC ρρ=-==①, ∴用+2πα代替α可得||BD =, 121,=2ABCD l l S ⊥∴⋅四边形2sin 2[0,1]ABCD S α∈∴∈四边形. ……………… 10分23.解:(1)2,1112,112,1x x x x x x x -<-⎧⎪-++=-≤<⎨⎪≥⎩由];2,2[411-=⇒≤++-M x x ……………… 5分 (2)法一:要证42+≤+ab b a ,只需证()()2244a b ab +≤+,即证()222484816a ab b ab ab ++≤++,ab ab 88≤只需证()2224416a b ab +≤+,即证()()22440a b --≥由(1),2,2≤≤b a :上式显然成立,故原命题得证. 法二:b a b a +≥+ ,∴要证42+≤+ab b a 只需证422+≤+ab b a ,即证()()220a b --≥ 由(1),2,2≤≤b a :上式显然成立,故原命题得证.。
黑龙江省大庆市2018届高三下学期二模理科数学试题(附解析)
黑龙江省大庆市2018届高三下学期二模理科数学试题(附解析)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2,1,0,1,2,A =--{}0B x x =<,则()A B R=ð( )A .{}2,1,0,1,2--B .{}0,1,2C .{}0,1D .{}12.复数21iZ i=-的实数为( ) A .1i -+ B .i C .1 D .1-3.若,x y 满足133515x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩,则z x y =+的最大值为( )A .1B .3C .9D .124.执行下面的程序框图,则输出的S =( )A .1111+++...+2313B .1111+++...+24624C .1111+++ (24626)+D .1111+++ (24628)+5.某几何体的三视图如图所示,则该几何体的表面积为( )A .B .6C .D .6.在ABC ∆中,0,2,23AB BC AB BC ⋅===,D 为AC 的中点,则BD DA ⋅=( )A .2B .-2C .D .-7.在古代,直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.三国时期吴国数学家赵爽用“弦图”( 如图) 证明了勾股定理,证明方法叙述为:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实.”这里的“实”可以理解为面积.这个证明过程体现的是这样一个等量关系:“两条直角边的乘积是两个全等直角三角形的面积的和(朱实二 ),4个全等的直角三角形的面积的和(朱实四) 加上中间小正方形的面积(黄实) 等于大正方形的面积(弦实)”.若弦图中“弦实”为16,“朱实一”为现随机向弦图内投入一粒黄豆(大小忽略不计),则其落入小正方形内的概率为( )A .1-8B .2C .2D .1-28.函数21()cos cos 2f x x x x =+-在下列某个区间上单调递增,这个区间是( )A .-03π⎡⎤⎢⎥⎣⎦,B .03π⎡⎤⎢⎥⎣⎦,C .-33ππ⎡⎤⎢⎥⎣⎦,D .263ππ⎡⎤⎢⎥⎣⎦,9.已知12F F 、分别是双曲线2222:(0,0)x y C a b a b-=>>的左、右焦点,P 为双曲线右支上一点,若1260F PF ∠=,12S F PF ∆=( )AB C D .210.下面是追踪调查200个某种电子元件寿命(单位:h )频率分布直方图,如图: 其中300-400、400-500两组数据丢失,下面四个说法中有且只有一个与原数据相符,这个说法是( )①寿命在300-400的频数是90; ②寿命在400-500的矩形的面积是0.2; ③用频率分布直方图估计电子元件的平均寿命为:1500.12500.153500.454500.155500.15⨯+⨯+⨯+⨯+⨯④寿命超过400h 的频率为0.3 A .①B .②C .③D .④11.已知函数2()x x f x e=,下列关于()f x 的四个命题;①函数()f x 在[]01,上是增函数 ②函数()f x 的最小值为0③如果[]0,x t ∈时max 24()f x e =,则t 的最小值为2 ④函数()f x 有2个零点 其中真命题的个数是( ) A .1 B .2C .3D .412.已知函数sin cos (),,sin cos 162x x f x x x x ππ+⎡⎤=∈⎢⎥+⎣⎦,若方程()0f x a -=有解,则a 的最小值为( )A .1B .2CD .3第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.二项式6(2)x y +展开式中42x y 的系数为 (用数字作答) 14已知0,0x y >>,若28=16x y ∙,则-1log292log 27x y ++ .15.已知三棱锥,S ABC SA -⊥平面ABC ,ABC ∆为等边三角形,2,3SA AB ==,则三棱锥S ABC -外接球的体积为 .16.已知点(4,0)A 及抛物线24y x =的焦点F ,若抛物线上的点P 满足2PA PF =,则=PF .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)已知n S 为等差数列{}n a 的前n 项和,且191,81a S ==.记[]5log n n b a =,其中[]x 表示不超过x 的最大整数,如[][]50.9=0log 161=,. (1)求11461,,b b b(2)求数列{}n b 的前200项和.18.(12分)为了解高校学生平均每天使用手机的时间长短是否与性别有关,某调查小组随机抽取了25 名男生、10名女生进行为期一周的跟踪调查,调查结果如表所示:(1)根据列联表判断,是否有90%的把握认为学生使用手机的时间长短与性别有关; (2)在参与调查的平均每天使用手机不超过3小时的10名男生中,有6人使用国产手机,从这10名男生中任意选取3人,求这3人中使用国产手机的人数x 的分布列和数学期望.参考公式:2()=()()()()n nd bc K a c b d a b c d -++++ ()n a b c d =+++19.(12分)如图,在矩形ABCD中,2∆沿BM向AD=,M是AD的中点,将MABAB=,4上折起,使平面ABM⊥平面BCDM⊥;(1)求证:AB CM-的大小(2)求二面角-B AC M20.(12分)已知椭圆22221(0)x y C a b a b +=>>:离心率为2,四个顶点构成的四边形的面积是4.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于,P Q 均在第一象限,l 与x 轴、y 轴分别交于M 、N 两点,设直线l 的斜率为K ,直线,OP OQ 的斜率分别为1,2k k ,且212k k k =(其中O 为坐标原点).证明: 直线l 的斜率为定值.21.(12分)已知函数2()ln (1)()f x x a x a R =+-∈. (1)当0a <时,求函数()y f x =的单调区间;(2)当1x ≥时,2()(1)x f x a x e e ≥--+恒成立,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xoy 中,以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,圆1C 的方程为22480x y x y +--=,直线2C 的极坐标方程为=6R πθρ∈().(1)写出1C 的极坐标方程和2C 的平面直角坐标方程;(2)若直线3C 的极坐标方程为=6R πθρ∈(),设2C 与1C 的交点为3O M C 、,与1C 的交点为O N 、求OMN ∆的面积.23.(10分)【选修4-5:不等式选讲】 已知函数()12f x x x =++- (1)求不等式()5f x ≥的解集(2)当[]0,2x ∈,时不等式2()f x x x a ≥--恒成立,求实数a 的取值范围2018届黑龙江省大庆市高三第二次模拟考试卷数学(理)答 案一、选择题. 1-5:BDCCA 6-10:BDAAB 11、12:CD二、填空题.13.6014.215.323π16.三、解答题.17.解:(1)设等差数列{}n a 的公差为d由已知9=81S ,根据等差数列性质可知:95199(4)81S a a d ==+= 所以149a d +=. 因为11a =,所以2d =所以21n n a =-所以[]15log 10b ==,[]145log 272b ==,[]615log 1212b ==(2)当12n ≤≤时,13n a ≤≤ )n a N *∈(,[]5log 0n bn a ==共两项; 当312n ≤≤时,[]5523,log 1n n n a b a ≤≤==,共10项; 当1362n ≤≤时,[]515123,log 2n n n a b a ≤≤==,共50项;当63200n ≤≤时,[]5125399,log 3n n n a b a ≤≤==,共138项. 所以数列{}n b 的前200项和为201015021383524⨯+⨯+⨯+⨯=.18.解:(1)由列联表得:2235(157103)1752.571817251068k ⨯⨯-⨯==≈⨯⨯⨯ 由于2.57 2.706<,所以没有90%的把握认为学生使用手机的时间长短与性别有关. (2)X 可取值0,1,2,3314(0)33010CP X C ===,21346(1)31010C C P X C ===,12146(2)3210C C P X C ===316(3)3610CP X C ===, 所以X 的分布列为这3人中使用国产手机的人数X 的数学期望为13119()0+1+2+33010265E X =⨯⨯⨯⨯= 19.解:(1)证明:由题意可知,BM ===4CM BC ====,所以,在BCM ∆KH ,222+BC BM CM =,所以CM BM ⊥;因为平面ABM ⊥平面BCDM 且BM 是交线,CM ⊂平面BCDM 所以CM ⊥平面ABM 因为AB ⊂平面ABM ,所以AB CM ⊥.解:(2)设BM 中点为O ,BC 中点为N ,连接ON所以//ON MC ,所以ON ⊥平面ABM 所以ON BM ⊥,ON AO ⊥. 因为AB AM =,所以AO BM ⊥以O 为坐标原点,分别以OB ON OA 、、所在直线为x 轴、y 轴建立空间直角坐标系, 如图则(0A C B M 、、、,),从而CB =-, CA =-, (0,CM =-. 设1(,,)x y z =n 为平面ABC 的法向量,则110200CA x y z CB x y ⋅=-+=⎧⎧⇒⎨⎨⋅==⎩⎩n n ,可以取1(1,1,1)=n . 设2(,,)x y z =n 为平面ACM 的法向量,则2202000CA x y z CM y ⋅=-+=⎧⎧⇒⎨⎨⋅==⎩⎩n n 可以取2(1,0,1)=-n .因此,120⋅=n n ,有120n n ⊥=,即平面ABC ⊥平面ACM , 故二面角B AC M --的大小为90°.20.解:(1)由题意得21442c aab ⎧=⎪⎪⎨⎪⋅=⎪⎩, 又222=a b c +,解得2,1a b ==.所以椭圆C 的方程为2214x y +=(2)设直线l 的方程为(0)y kx m m =+≠,点,P Q 的坐标分别为11)22(,,(,)x y x y ,由2214y kx m x y =+⎧⎪⎨+=⎪⎩,消去y 得222(14)84(1)0k x kmx m +++-=, 222222=6416(14)(1)16(41)0k m k m k m ∆-+-=-+>,则212122284(1),1414km m x x x x k k --+==++, 所以2212121212()()()y y kx m kx m k x x km x x m =++=+++,因为212k k k =,所以222121212121212()y y k x x km x x m k k k x x x x +++===,即22228014k m m k-+=+ 又0m ≠,所以214k =, 又结合图象可知,12k =-,所以直线l 的斜率k 为定值1-2.21.解:(1)因为2()1(1)()f x nx a x a R =+-∈,函数定义域为:}{0x x >21221'()2(1)ax ax f x a x x x-+=+-=,令2()221g x ax ax =-+,由0a <可知,2480a a -> 从而()0g x =有两个不同解.令'()0f x =,则21110,022x x ==+> 当(0,2)x x ∈时,'()0f x >;当2(,)x x ∈+∞时,'()0f x <,所以函数()y f x =的单调递增区间为102(,,单调递减区间为12⎛⎫+∞ ⎪ ⎪⎝⎭. (2)由题意得,当1x ≥时,1220x nx e ax a e +-+-≥恒成立. 令()122x h x nx e ax a e =+-+-, 求导得1'()2x h x e a x=+-, 设1()2x x e a x ϕ=+-,则21'()x x e xϕ=-, 因为1x ≥,所以21,1x e e x≥≤,所以'()0x ϕ>, 所以()x ϕ在[)1+∞,上单调递增,即'()h x 在[)1+∞,上单调递增, 所以'()'(1)12h x h e a ≥=+-①当12ea +≤时,'()0h x ≥, 此时,()122x h x nx e ax a e =+-+-在[)1+∞,上单调递增, 而(1)0h =,所以()0h x ≥恒成立,满足题意. ②当12ea +>时,'(1)120h e a =+-<, 而1'(12)22012h n a a a n a=+-> 根据零点存在性定理可知,存在0(1,12)x n a ∈,使得0'()0h x =. 当(1,0)x x ∈时,'()0,()h x h x <单调递减; 当0(,)x x ∈+∞时,'()0h x >,()h x 单调递增. 所以有0()(1)0h x h <=,这与()0h x ≥恒成立矛盾,所以实数a 的取值范围为1+-2e ⎛⎤∞ ⎥⎝⎦,.22.解:(1)直角坐标与极坐标互化公式为cos sin x y ρθρθ=⎧⎨=⎩,tan yx ρθ⎧⎪⎨=⎪⎩圆1C 的普通方程为22480x y x y +--=,把cos ,sin x y ρθρθ==代入方程得,2-4cos 8sin 0ρρθρθ-=,所以1C的极坐标方程为y x =;(2)分别将==36ππθθ,代入1C 的极坐标方程=4cos 8sin ρθθ+得;1ρ2ρ则OMN ∆的面积为11sin (2(4sin()82236OMN S OM ON MON ππ∆=∙∠=⨯+⨯+⨯-=+所以OMN ∆的面积为23.解:(1)由题意知,需解不等式125x x ++-≥. 当1x <-时,上式化为-25x +≥,解得2x ≤-; 当12x -≤≤时,上式化为35≥,无解; 当2x >时,①式化为215x -≥,解得3x ≥. 所以()5f x ≥的解集为{2x x ≤-或}3x ≥.(2)当[]0,2x ∈时,()3f x =,则当[]0,2x ∈,23x x a --≤恒成立. 设2()g x x x a =--,则()g x 在[]02,上的最大值为(2)2g a =-. 所以(2)3g ≤,即23a -≤,得1a ≥-. 所以实数a 的取值范围为[)-1+∞,.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都七中高2018届二诊模拟考试
数学(理)
试卷满分:150分 考试时间:120分钟
第I 卷(选择题,共60分)
一. 选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 设集合(){}03|≤-=x x x S ,⎭
⎬⎫⎩
⎨⎧
<=-1)2
1(|1x x T ,则=T S ( ) A. [)+∞,0 B. (]3,1 C. [)+∞,3 D. (]()+∞∞-,10, 2. 已知复数z 为纯虚数,且
11=-i
z
,则z = ( ) A. i 2± B. i 2± C. i 2 D. i
3. 若向量)2
3
,
21(=,)1,3(=,则ABC Δ的面积为( ) A.
2
1
B. 23
C. 1
D.
3
4. 为了解户籍性别对生育二胎选择倾向的影响, 某地从育龄人群中随机抽取了容量为 100的调查样本, 其中城镇户
籍与农民户籍各 50人; 男性 60人 , 女性 40人. 绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图(如图所示), 其中阴影部分表示倾向选择生育二胎的对应比例, 则下列叙述中错误的是 ( )
A. 是否倾向选择生育二胎与户籍有关
B. 是否倾向选择生育二胎与性别无关
C. 倾向选择生育二胎的人员中, 男性人数与女性人数相同
D. 倾向选择不生育二胎的人员中, 农村户籍人数少于城镇户籍人数
5. 一个棱锥的三视图如图所示,则该棱锥的外接球的体积是 ( )
A. π9
B. 2
9π
C. π36
D. π18
6. 按照右图所示的程序框图,若输入的a 为2018,k 为8,则输出的结果为( ) A. 2473 B. 3742 C. 4106 D. 6014
7. 若实数a 满足a a
4
3log 132
log >>,则a 的取值范围是( ) A. )1,32
( B. )43,32( C. )1,43( D. )3
2,0( 8. 在ABC Δ中,角B 为4
3π
,BC 边上的高恰为BC 边长的一半, 则=A cos ( ) A.
552 B. 55 C. 3
2
D. 35 9. ⎪⎭
⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-112134
2x x x 的展开式中1
-x 的系数是 ( )
A. 2
B. 1
C.
25 D. 2
1
10. 等差数列{}n a 各项都为正数,且其前9项之和为45. 设
n
n n a a b -+
=
104
1,其中91≤≤n .若{}n b 中的最小项为3b ,则{}n a 的公差不能为( ) A. 1 B.
65 C. 32 D. 2
1 11. 已知圆C :()
()()R 4
1
222
2∈=-+-a a y a x ,考虑下列命题:①圆C 上的点到()0,4的距离的最小值为27;②圆
C 上存在点P 到点⎪⎭⎫
⎝⎛0,21的距离与到直线23-=x 的距离相等;③已知点A ⎪⎭
⎫
⎝⎛0,23,在圆C 上存在一点P ,使得以
AP 为直径的圆与直线2
1
=
x 相切. 其中真命题的个数为( ) A.0 B.1 C.2 D.3 12. 已知函数()()0>+
=t x
t
x x f ,过点P (1,0)作曲线y =f (x )的两条切线PM ,PN ,切点分别为M ,N ,设g (t )=|MN |,若对任意的正整数n ,在区间[1,n
n 16
+
]内存在m +1个数a 1, a 2,…,a m +1使得不等式g (a 1)+g (a 2)+…+g (a m )<g (a m +1)成立,则m 的最大值为( )
A. 4
B. 5
C. 6
D. 7
第II 卷(非选择题,共90分)
二. 填空题(本大题共4小题,每小题5分,共20分)
13. 若实数x , y 满足
1
22≤+≤+≤y x y x x
y ,则y 的最大值为
14. 若双曲线
19
162
2=-y x 的渐近线与圆()422=-+m y x 相切,则m =
15. 设函数()x x x f cos 2sin -=. 已知常数)2,0(πθ∈且满足55cos =
θ,]2
5,2[π
πt ∈,则关于t 的不等式2
5
)(<
+θt f 的解集为 16. 祖暅是我国齐梁时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.” 这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等. 于是可把半径相等的半球(底面在下)和圆柱(圆柱高等于半径)放在同一水平面上,圆柱里再放一个半径和高都与圆柱相等的圆锥(锥尖朝下),考察圆柱里被圆锥截剩的立体,这样在同一高度用平行平面截得的半球截面和圆柱中剩余立体截得的截面面积相等,因
此半球的体积等于圆柱中剩余立体的体积. 设由椭圆 122
22=+b
x a y ()0>>b a 所围成
的平面图形绕y 轴旋转一周后,得一橄榄状的几何体(如图,称为“椭球体”),请类比
以上所介绍的应用祖暅原理求球体体积的做法求这个椭球体的体积. 其体积等于________.
三. 解答题(本大题共7小题,共70分. 解答应写出文字说明、证明过程或演算步骤) 17. (本题满分12分)
已知等比数列{}n a 满足11+=+n n S λa ,其中1-≠λ,n S 为{}n a 前n 项和,*N ∈n . (1) 求1a ;
(2) 设4=λ,若*N ∈∀n ,
m a a a n
≤+++11121 恒成立,求m 的最小值. 18. (本题满分12分)
随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司M 的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图:
(1) 由折线图可以看出,可用线性回归模型拟合月度市场占有率y 与月份代码x 之间的关系.求y 关于x 的线性回归方程,并预测M 公司2017年4月的市场占有率;
(2) 为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的A 、B 两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致单车使用寿命各不相同.考虑到公司运营的经济效益,该公司决定先对这两款车型的单车各100
辆进行科学模拟测试,得到两款单车使用寿命的频
数表如下:
500元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率.如果你是M 公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?
参考公式:回归直线方程为a x b y
ˆˆˆ+=,其中 = x b y a
ˆˆ-=.
19. (本题满分12分)
如图,四棱锥ABCD P -中,侧棱P A 垂直于底面ABCD , AB=AC=AD=3,
2AM =MD ,N 为PB 的中点,AD 平行于BC ,MN 平行于面PCD ,PA =2. (1) 求BC 的长;
(2) 求二面角N -PM -D 的余弦值. 20. (本题满分12分)
已知椭圆C :12
22
=+y x 的左右顶点分别为A 、B ,P 为椭圆C 上不同于A 、B 的任意一点. (1) 求APB ∠的正切的最大值并说明理由;
(2) 设F 为椭圆C 的右焦点,直线PF 与椭圆C 的另一交点为Q ,PQ 的中点为M ,若QM OM =,求直线PF 的斜率.
21. (本题满分12分) 已知函数()()a
x a
x x f ++
+=21ln . (1) 讨论函数()x f 的单调性;
(2) 若函数()x f 存在两个极值点x 1,x 2且满足f (x 1)+f (x 2)>4,求a 的取值范围.
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一个题目计分. 请考生用2B 铅笔将答题卡上所做题目的题号涂黑.
22. (本题满分10分)
在直角坐标系xOy 中,抛物线C 的方程为x y 42
=.
(1) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;
(2) 直线l 的参数方程是 α
t y α
t x s in c o s 2=+=(t 为参数),l 与C 交于A ,B 两点,64||=AB ,求l 的倾斜角.
23. (本题满分10分)
已知函数f (x )=m -|x -1|,m ∈R .
(1) 当1-=m 时,求不等式()3-≥x f 的解集; (2) 若f (x +2)+ f (x -2)≥0的解集为[-2,4],求m 的值.。