2014届高考数学基础知识归类

合集下载

2014高考数学理科知识要点归纳(理科选修系列)

2014高考数学理科知识要点归纳(理科选修系列)

2014高考数学理科选修系列知识要点概括(理科专用)一、排列组合.本节公式(1)排列数公式)1()3)(2)(1(+-⋅⋅⋅---=m n n n n n A mn(这里m、n∈*N ,且m≤n)(2)组合数公式n m n n n n n A A C m mm n mn)1()3)(2)(1(+-⋅⋅⋅---==(这里m、n∈*N ,且m≤n)(3)组合数的两个性质mn nm n C C -= 二、二项式定理1.二项式定理:*222110,)(N n b C b a C b a C b a C a C b a nn n r r n r n n n n n n n n ∈+⋅⋅⋅++⋅⋅⋅+++=+---上列公式所表示的定理叫做二项式定理.右边的多项式叫做n b a )(+的二项展开式,它一共有n+1项.其中各项的系数),,2,1,0(n r C rn ⋅⋅⋅=叫做二项式系数. 式中的r r n r n b a C -叫做二项展开式的通项,用1+r T 表示,即1+r T =rr n r n b a C -.2.二项式系数的性质:(1)对称性.与首末两端“等距离”的两个二项式系数相等.事实上,这一性质可直接由公式mn nm n C C -=得到. (3)各二项式系数的和.)!(!m n n A m n -=)!(!!m n m n C m n -=n b a )(+的展开式的各个二项式系数的和等于n 2.4.二项式奇数项系数的和等于二项式偶数项系数的和.即131202-=⋅⋅⋅++=⋅⋅⋅++n n n n n C C C C三、离散型随机变量分布列1、 离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ⋅⋅⋅⋅⋅⋅、ξ取每一个值()1,2,i x i =⋅⋅⋅的概率为()i i P x p ξ==,则称表ξ1x 2x … i x …P1p2p…i p …为随机变量ξ的概率分布,简称ξ的分布列2、数学期望: 一般地,若离散型随机变量ξ的概率分布为ξ x 1 x 2 … x n … Pp 1p 2…p n…则称=ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望3、方差:对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,…,那么,ξD =121)(p E x ⋅-ξ+222)(p E x ⋅-ξ+…+n n p E x ⋅-2)(ξ+…称为随机变量ξ 的均方差,简称为方差,式中的ξE 是随机变量ξ的期望. 4、标准差:ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ四、矩阵与变换1、定义:规定二阶矩阵A=a b c d ⎡⎤⎢⎥⎣⎦,与向量x y α→⎡⎤=⎢⎥⎣⎦的乘积为ax by A cx dy α→+⎡⎤=⎢⎥+⎣⎦,即A α→=a b c d ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦=ax by cx dy +⎡⎤⎢⎥+⎣⎦2、单位矩阵:1001M ⎡⎤=⎢⎥⎣⎦,3、矩阵的逆矩阵、特征值与特征向量 (1).矩阵的逆矩阵设A 是一个二阶矩阵,如果存在二阶矩阵B ,使得BA =AB =E ,则称矩阵A可逆,或称矩阵A 是可逆矩阵,并且称B 是A 的逆矩阵.(性质1)设A 是一个二阶矩阵,如果A 是可逆的,则A 的逆矩阵是唯一的.A 的逆矩阵记为A -1.(性质2)设A ,B 是二阶矩阵,如果A ,B 都可逆,则AB 也可逆,且(AB )-1=B -1A -1. (2).二阶矩阵的特征值和特征向量(1) 特征值与特征向量的概念设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,α称为A 的一个属于特征值λ的一个特征向量.(2) 特征多项式设λ是二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的一个特征值,它的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y ,则A ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y ,即⎩⎨⎧ ax +by =λx ,cx +dy =λy ,也即⎩⎨⎧(λ-a )x -by =0,-cx +(λ-d )y =0.(*) 定义:设A =⎣⎢⎡⎦⎥⎤a b c d 是一个二阶矩阵,λ∈R , 我们把行列式f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc,称为A 的特征多项式.(3) 矩阵的特征值与特征向量的求法如果λ是二阶矩阵A 的特征值,则λ一定是二阶矩阵A 的特征多项式的一个根,即f (λ)=0,此时,将λ代入二元一次方程组(*),就可得到一组非零解⎣⎢⎡⎦⎥⎤x 0y 0,于是非零向量⎣⎢⎡⎦⎥⎤x 0y 0即为A 的属于λ的一个特征向量五、选修不等式证明 1、基本不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a bab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b ab +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭2、柯西不等式(重点记忆内容)(1),二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.(2)三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++ (3),一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++。

2014届高考数学考点知识专题总复习4

2014届高考数学考点知识专题总复习4

数列的概念【知识点精讲】1、数列:按照一定次序排列的一列数(与顺序有关)2、通项公式:数列的第n 项a n 与n 之间的函数关系用一个公式来表示a n =f(n)。

(通项公式不唯一)3、数列的表示:(1) 列举法:如1,3,5,7,9……; (2) 图解法:由(n,a n )点构成;(3) 解析法:用通项公式表示,如a n =2n+1(4) 递推法:用前n 项的值与它相邻的项之间的关系表示各项,如a 1=1,a n =1+2a n-14、数列分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列; 有界数列,无界数列5、任意数列{a n }的前n 项和的性质Sn= a 1+ a 2+ a 3+ ……+ a n ()()⎩⎨⎧≥-==-2111n S S n S a n nn6、求数列中最大最小项的方法:最大⎩⎨⎧≥≥-+11n n n n a a a a 最小⎩⎨⎧≤≤-+11n nn n a a a a考虑数列的单调性 【例题选讲】例1、根据下面各数列前几项,写出一个通项(1)-1,7,-13,19,…; (2)7,77,777,777,…; (3),...;9910,638,356,154,32 (4)5,0,-5,0, 5,0,-5,0,…; (5)1,0,1,0,1,0,…; 解:(1)a n =(-1)n (6n-5); (2)()11097-=n n a (3))12)(12(2+-=n n n a n (4)2sin 5πn a n =; (5)()*+∈-+=N n a n n 2)1(11;()*∈=N n n a n 2sin 2π [点评]根据数列前几项的规律,会写出数列的一个通项公式。

练习:⑴, (5)4,21,114,72⑵3,5,9,17,33,……⑶1,2,2,4,3,8,4,16,5,…….. 解:()()()()()()()22221121211221312231741n n n n n n nn n n a n n n a a n a ⋅-+++⋅⎪⎩⎪⎨⎧--=+=+=-=或为正偶数为正奇数22222cos 212sin nn n n n a ⋅++⋅=ππ或例2、已知数列⎭⎬⎫⎩⎨⎧-+-1929922n n n (1)求这个数列的第10项;(2)10198是不是该数列中的项,为什么?(3)求证:数列中的各项都在区间(0,1)内;(4)在区间⎪⎭⎫⎝⎛32,31内有无数列中的项?若有,有几项?若无,说明理由。

2014届高考理科数学知识点总结(经典)(1)

2014届高考理科数学知识点总结(经典)(1)

高考数学(理科)基础知识归纳集合与简易逻辑知识回顾:(一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性.3 ⑪①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. (二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.x(自右向左正负相间)则不等式)0)(0(0022110><>++++--a a x a x a x a n n n n 的解可以根据各区间的符号确定.3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法. (2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.特例① 一元一次不等式ax>b 解的讨论;2原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互否互(1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0) (1)根的“零分布”:根据判别式和韦达定理分析列式解之. (2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

2014高考数学考前知识点

2014高考数学考前知识点

2014高考数学考前知识点【集合部分】1、集合相关观念(1)集合性质:确定性、互异性、无序性(2)n 个元素集合有2n个子集,有21n-个真子集,有22n-个非空真子集 (3)空集是任何一个集合的子集,是一切非空集合的真子集(4)交集“”;并集“”;补集“AU C ”{|,} {|} {,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C【函数、导数】1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性(1)定义:对于定义域内任意的x ,若)()(x f x f =-,则)(x f 是偶函数;若)()(x f x f -=-,则)(x f 是奇函数。

(2)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

奇函数)(x f 在原点有定义,则0)0(=f3、函数的周期性:若)()(x f T x f =+,则T 叫做这个函数的一个周期。

(差为定值想周期)(1)三角函数的最小正周期:||2:)cos(),sin(ωπϕωϕω=+=+=T x A y x A y ;||:tan ωπω==T x y 4、两个函数图象的对称性(和为定值想对称)(1)如果函数()x f y =对于一切R x ∈,都有()()x a f x a f -=+,那么函数()x f y =的图象关于直线a x =对称⇔()y f x a =+是偶函数;(2)若都有()()x b f x a f +=-,那么函数()x f y =的图象关于直线2ba x +=对称; 5、极值、最值(极值点处的导数值为零,最值只在极值点处或端点处) 求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 6、图象变换问题(1)平移变换:ⅰ))()(a x f y x f y ±=→=,)0(>a ———左“+”右“-”; ⅱ))0(,)()(>±=→=k k x f y x f y ———上“+”下“-”; (2)对称变换:ⅰ))(x f y =−−→−)0,0()(x f y --=;ⅱ))(x f y =x −−→轴)(x f y -=;ⅲ) )(x f y =y −−→轴)(x f y -=;ⅳ))(x f y =−→−=xy ()x f y =; (3)翻折变换:ⅰ)|)(|)(x f y x f y =→=———(去左翻右)y 轴右不动,右向左翻()(x f 在y 左侧图象去掉);独家内部教材 学习改变命运,携手名师,把握未来!ⅱ)|)(|)(x f y x f y =→=———(留上翻下)x 轴上不动,下向上翻(|)(x f |在x 下面无图象); (4)伸缩变换ⅰ))()(x f y x f y ω=→=, ()0>ω———纵坐标不变,横坐标变为原来的ω1倍;ⅱ))()(x Af y x f y =→=, ()0>A ———横坐标不变,纵坐标变为原来的A 倍; 7、函数零点的求法:⑴直接法(求0)(=x f 的根);⑵图象法;⑶二分法.(4)零点定理:若()y f x =在[,]a b 上满足()()0f a f b ⋅<,则()y f x =在(,)a b 内至少有一个零点。

2014届高考数学知识要点复习8.doc

2014届高考数学知识要点复习8.doc

高中数学概念总结一、 函数 1、若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n 。

二次函数c bx ax y ++=2的图象的对称轴方程是abx 2-=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--ab ac a b 4422,。

用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即(一般式)c bx ax x f ++=2)(,(零点式))()()(21x x x x a x f -⋅-=和n m x a x f +-=2)()( (顶点式)。

2、幂函数nmx y = ,当n 为正奇数,m 为正偶数,m<n 时,其大致图象是3、函数652+-=x x y 的大致图象是由图象知,函数的值域是)0[∞+,,单调递增区间是)3[]5.22[∞+,和,,单调递减区间是]35.2[]2(,和,-∞。

二、 三角函数 1、以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则sin α=ry ,cos α=rx ,tg α=xy ,ctg α=yx ,sec α=xr,csc α=yr 。

2、同角三角函数的关系中,平方关系是:1cos sin 22=+αα,αα22sec 1=+tg ,αα22csc 1=+ctg ;倒数关系是:1=⋅ααctg tg ,1csc sin =⋅αα,1sec cos =⋅αα; 相除关系是:αααcos sin =tg ,αααsin cos =ctg 。

3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。

如:=-)23sin(απαcos -,)215(απ-ctg =αtg ,=-)3(απtg αtg -。

4、 函数B x A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。

2014高三数学知识点分类表

2014高三数学知识点分类表
12
数列
5.一元二次方程与等比数列
5
10
9.算法框图与数列求积
5
立体几何
11.球与几何体、球的表面积
5
22
13.三视图几何体体积
5
19.空间几何体与空间向量
12
概率与统计
6.不等式组表示平面区域与几何概型
5
22
7.频率分布图
5
18.概率与统计12解 Nhomakorabea几何8.双曲线与抛物线的几何性质
5
22
10.均值定理、直线与圆的位置关系
5
21.轨迹方程、直线和圆的位置关系、三角形面积问题
12
函数与导数
12.导数与函数零点
5
27
15.新定义题、二次函数
5
16.函数的图象与性质
5
20.切线、导数、数列型不等式证明
12
3选1题
22、23、24
10
10
其它
1.集合关系
5
20
2.复数的代数运算与定义
5
3.向量共线
5
4.不等式与充要条件
5
12
概率与统计
6.不等式组表示平面区域与几何概型
5
22
7.频率分布图
5
18.概率与统计
12
解析几何
8.双曲线与抛物线的几何性质
5
22
10.均值定理、直线与圆的位置关系
5
21.轨迹方程、直线和圆的位置关系、三角形面积问题
12
函数与导数
12.导数与函数零点
5
27
15.新定义题、二次函数
5
16.函数的图象与性质
5
20.切线、导数、数列型不等式证明

2014年高考数学基础知识点框架复习

2014年高考数学基础知识点框架复习

常 用 简单的逻辑 “或”、“且”、“非” 逻 联结词 辑 用 p q则 p 是q 的 条 语 件; p q则 p 是q 的 条 充要条件 件; p q则 p 是q 的 条 件 全称量词与 “ ”、“ ” 存在量词
命题 ①“非 p ” -----“真假相对” ②“ p且q ”-----“全真且真” ③“ p或q ”-----“全假或假” 1、小范围推出大范围 2、注意语句形式: “A 是 B 的什么条件” “B 的什么条件是 A”
a, A, b 成等差数列
若 m n p q ,则
若 m n p q ,则
⑴公式法:①等差数列通项公式;②等比数列通项公式. ⑵已知含 Sn 的关系式: an
S1 ,(n 1) .并检验是否可以 Sn Sn 1 ,(n 2)
数列通项求 合并写 法 ⑶已知递推关系式: “ an1 an f (n) 型”用迭加法; “
小值.
八、复数 形如 的数 z=a+bi 是实数 复数的概念 z=a+bi 是虚数 z=a+bi 是纯虚数 复数相等的条件 a+bi=c+di 一一对应 一一对应 复数的代数表示 复数 z a bi 向量 OZ 点 Z(a,b) 法 及几何意义 设 z1= a + bi , z2 = c + di (a,b,c,d∈R),则: (1) z 1±z2 = (2) z1z2 = 复数的四则运算 z (3) 1 = z2 九、立体几何初步:画思维导流图 ①由平行四边形得到 ②由三角形中位线得到 ③直线与平面平行的性质定理:如果一天直线和一个平面 线线平行证明 平行,经过这条直线的平面和这个平面相交,那么这条 直线就和两平面的交线平行。 ④如果两个平行平面同时与第三个平面相交,那么它们的 交线平行。 平 ①直线与平面平行的判定定理:如果不在平面内的一条直 行 线和平面内的一条直线平行,那么这条直线和这个平面 线面平行证明 平行。 ②平面与平面平行的定义 ①平面与平面平行的判定定理:如果一个平面内有两条相 交直线平行于另一个平面,那么这两个平面平行。 面面平行证明 ②推论:如果一个平面内有两条相交直线分别平行于另一 个平面内的两条直线,则这两个平面平行。 ①勾股定理 线线垂直证明 ②等腰三角形三线合一 ③线面垂直定义 垂 直 ①直线与平面垂直的判定定理:如果一条直线与平面内的 线面垂直证明 两条相交直线垂直,则这条直线与这个平面垂直。 ②平面与平面垂直的性质定理:如果两个平面互相垂直,

2014年高考数学知识大梳理

2014年高考数学知识大梳理

2014........年高考数学..........知识识大大梳梳理理((...........知知识识精精粹粹版版)) 《《黄黄冈冈中中学学》》资资深深老老师师强强势势总总结结,,为为年年学学子子倾倾情情打打造造.............................................. 高一数学必修1知识网络集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。

、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/nA AA B C A B B C A C A B A B x B x A A B A B A B A BA B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。

、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。

真子集:若且(即至少存在但),则是的真子集。

集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A BA B x x A x B A A A A A A B B A A B A A B B A B A C a rd A B C a rd A C a rd B C a rd A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。

2014高考数学 基础知识清单 第02章 函数 新人教A版

2014高考数学 基础知识清单 第02章 函数 新人教A版

高中数学第二章-函数考试内容:映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系.指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 考试要求:〔1〕了解映射的概念,理解函数的概念.〔2〕了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. 〔3〕了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. 〔4〕理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和性质.〔5〕理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. 〔6〕能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.§02. 函数知识要点一、本章知识网络结构:F:A B对数函数指数函数二、知识回顾: (一) 映射与函数 映射与一一映射 2.函数函数三要素是定义域,对应法那么和值域,而定义域和对应法那么是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法那么二者完全相同的函数才是同一函数. 3.反函数反函数的定义 设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出,得到x=ϕ(y). 假设对于y 在C 中的任何一个值,通过x=ϕ(y),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=ϕ(y) (y ∈C)叫做函数))((A x x f y ∈=的反函数,记作)(1y f x -=,习惯上改写成)(1x f y -=〔二〕函数的性质 ⒈函数的单调性定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴假设当x 1<x 2时,都有f(x 1)<f(x 2),那么说f(x)在这个区间上是增函数; ⑵假设当x 1<x 2时,都有f(x 1)>f(x 2),那么说f(x) 在这个区间上是减函数假设函数y=f(x)在某个区间是增函数或减函数,那么就说函数y=f(x)在这一区间具有〔严格的〕单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数. 2.函数的奇偶性奇函数的定义:如果对于函数f(x)的定义域内任意一个x,都有 f(-x)=-f(x),那么函数f(x)就叫做奇函数.偶函数的定义:如果对于函数f(x)的定义域内任意一个x,都有 f(-x)=f(x),那么函数f(x)就叫做偶函数.正确理解奇、偶函数的定义。

2014年高考数学全部知识点

2014年高考数学全部知识点

2014年高考数学全部知识点1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。

∅ 注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ⊆⇔== (3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 4.你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352的取值范围。

()(∵,∴·∵,∴·,,)335305555015392522∈--<∉--≥⇒∈⎡⎣⎢⎫⎭⎪M a a M a aa5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝ 若为真,当且仅当、均为真p q p q ∧ 若为真,当且仅当、至少有一个为真p q p q ∨若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。

)原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? ()()例:函数的定义域是y x x x =--432lg()()()(答:,,,)022334 10. 如何求复合函数的定义域?[]如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0义域是_。

2014年全国高考数学分类汇编--数列

2014年全国高考数学分类汇编--数列

2014年全国高考数学分类汇编-数列全国2014年高考数学(理科)分类汇编1(2014福建理)3.等差数列{a n}的前n项和S.,若a i 2,S3 12,贝V a6 ()A.8B.10C.12D.142(2014广西理)10.等比数列3”}中,a4 2,35 5,则数列{lg a…}的前8项和等于()A. 6 B . 5 C . 4 D . 33(2014广西文)8.设等比数列{a”}的前”项和为S n,若S2 3,S4 15,贝V S6 ()A. 31 B . 32 C . 63 D ・644(2014重庆文)2.在等差数列{a…}中,印2,a3 a5 10,则a7 ()A.5B.8C.10D.145(2014辽宁文理)8.设等差数列啣的公差为d, 若数列{2宀为递减数列,则(A. d 0B. d 0C. a-|d 0D. a1d 06(2014天津文)5.设a…是首项为a,,公差为1的等差数列,S n为其前n项和,若s, S2, S4,成等比数列,则a1=(A.2B.-2C. 1 D . 12 27(2014课标2文)(5)等差数列a n的公差为2,若a 2, 34, a 8成等比数列,则a 的前n 项和S.= () (A ) n n 1 ( B ) n n 18(2014重庆理)2.对任意等比数列{a n},下列说法 一定正确的是 ( ) A. 31,33,39成等比数列 B. a 2,a 3,a 6成等比数列成等比数列 D -a 3,a 6,a 9成等比数列9(2014安徽理)12.数列a n是等差数列,若311, 333, 355构成公比为q 的等比数列,贝y q _____________________ .10(2014安徽文)12.如图,学科网在等腰直角三 角形ABC 中,斜边BC 2迈,过点A 作BC 的垂线,垂足为 几;过点片作AC 的垂线,垂足为 A 2;过点A 作AC的垂线,垂足为A 3;…, 以此类推,设BA 31 , AA 1 32, A 1A 2 33,•…, A 5A 6 37,贝U 37.11(2014北京理)9.若等差数列a n满足a-i a 8 a90 , a 7 a io0 , 则当n _____________________(C )呼(D) n n 12~时a”的前n项和最大.12(2014广东理)13 .若等比数列a n的各项均为正数,且a0a” a g a>2 2e5,则ln a1 In a2In a2n_________ . ______13(2014广东文)13.等比数列a n的各项均为正数,且时 5 4 ,贝U Iog2 a1 Iog2a2 Iog2a3Iog2 a4 Iog2 a5 ___________________________________14(2014江苏文理)7.在各项均为正数的等比数列{a n}中,a2 1, a8 a6 2a4,则a6 的值是____15(2014江西文)14.在等差数列{a…}中,& i,公差为d,前n项和为{an},当且仅当n 8时S取最大值,则d 的取值范围___________ .16(2014天津理)(11)设a n是首项为&,公差为-1的等差数列,S n为其前n项和.若S0S4成等比数列,则a 的值为_______________ .17(2014课标2文)(16)数列a n满足a n 1,a2=2,贝H a i = __________【答案】CCCBC DAD 9. 1 10. 111. 816.仃.1全国2014年咼考数学(文史)分类汇编 1(2014重庆文)16.已知a n 是首项为1, 公差为2的等差数列,S n表示a n的前n 项和.(I )求 a n 及 S ;(H )设b n是首项为2的等比数列,公比q 满足 q 2色1 q S 0,求b n的通项公式 及其前n 项和T n.【点拨】⑴a 2n 1,S n 2;(n )由 q 2a 41 q S 0得 q 4 ,所以 b n22n1,T n 2(4n 1)2(2014重庆理)22.设a 1 1,0.1 .a : 2a n 2b (n N*)(1)若b 1,求a 2,a 3及数列{%}的通项公式;⑵ 若b 〔,冋:是否存在实数C 使得a 2nc a 2n 1对所有 n N*成立?证明你的结论.5n2【点拨】(1) a 1,a2 2,a3 5.2 1,& 1,猜想a n 1 1(可数归完成);(2)设函数f(x) x2 2x 2 1,令f(x) x 得不动点x 4.仿(1)得a1 1,a2 0,a3 2 1,用数学归纳法可证明:a2n 1 a2m. 事实上,1O当n 1 时,32 0 4 v2 1 a3显然成立.2o.假定当n k时,a2k : 32k 1成立,那么「"当n k 1 时,Qa2k 2 f (a2k 1) (a2k 1 1)21 1(a2k 2 1)2 (32k 1 1)21 (32k 2 1)2([ 1)2 1这就是说当n k 1时,a2k2 1 a2k 3也成立.3(2014浙江文)19、已知等差数列{a n}的公差d 0, 设{a n}的前n 项和为S n,a1 1,S2 S3 36.(1)求d及S n ;⑵求m,k (m,k N*)的值,使得i 3m 1 3m 2 L 3m k 65【点拨】(1) d 2,S n n2;⑵Q3m 2m 1, (k 1)(2m 1)冬严 2 654(2014浙江理)19.已知数列{3n}和{b n}满足a&L 3n( 2)s(n N ).若{a n}为等比数列,且 3 2,& 6 b又32k 3 f (32k 2) (32k 3 1)2(32k 2 1)2 11 43k2a(k 1)(2m k 1) 5 13 k 1 5 k 4 ... 2m k 1 13 m 5⑴求a n与b n;(2)设c a _L(n N).记数列{c n}的前n 项和为S n. ( i ) 求 S ; (ii )求正整数k ,使得对任意nN ,均有& 【点拨】(1)aa 2a 3 \2 ,a i a 2得 a 3268 .从而 q 2, a n a sqn 32n.由 a i a 2L a n( 2户 2 2)2【b n(n 1)(2) G 丄1吉(丄斗).所以a n t n 2n n n 1(i) S cia a L a 古》(分组裂项)(ii)Q^ ML 1 i)鳥 1)2",易见",C 2,C 3,C 4 0,当n 5寸,c n0. 可见S 4最大,即S 4 S n . k 4■5(2014 a n 13a n1 .(I)证明(U)证明: 【点拨】(I)在a n 1 3(『2),可见数列a 1是以3为公比,以a 1 3为首项 的等比数列.故a n 2贰1叮.(H)法1(放缩法)Q^尹课标2理)17.已知数列a n满足a=1, 1是等比数列,并求a n的通项公式; 丄1…+丄3a 1 a 2 a n2 -a n1 3a n 1中两边加2:a2 3n 1 1 2 1 2 1 L 2 1 1 1 32 1 1 33 1 13n 1 112 (本题用的是"加点糖定理")法2(数学归纳法)先证一个条件更強的结论20■假疋对于n 新命题成立,即1 3 1 3a 2 2 3n1 2天津文理)19.已知q 和n 均为给定的大于 1的自然数■设集合M 0,1,2丄,q 1,集合A xx X 1 X 2q L x!q n 1,x M ,i 1,2,L ,n(1) 当q 2 , n 3时,用列举法表示集合A ; (2) ^设 s,t ? A , s ai a 2q L a nq n 1,t b bq L bq n1,其中 a,b M , i 1,2,L ,n .证明:若 3nb ,则 s< t . 【点拨】(I )解:当q 2 , n 3时,M 0,1 ,2x 2 4x s ,x 酣弓卑,2,3为 x ^x 中^ x,x 2,X 30 0 0 0勺 10 0 1 1 0 1 0 1 0 1 1 0 10 01 1 11 a2 31 2 1 1 L 132 93a n L1a3 1氏1al13n0 ^1 2 3 2 2 1 1 a新命题成立.T,那么对于n一23 21al L 1a1al1al a1-a 1a3 1al3n3n3n6(2014 _ 2 3 2 4 3 5 4 1a2可得, A 0,12,3,4,5,6,7 .(H)证明:由 s,t?A , s a a 2q L a nq n 1, t bi bq L b nq n 1, Q,b Ms ta ib a 2 b ? q L an i b n i q n 2a nq n 1.q 1 q 1 q L q 1 q n 2 q n 17(2014四川文)19.设等差数列{a n}的公差为d ,点 (命)在函数f(x) 2x的图象上(nN ). (I)证明:数列⑹为等比数列;(H) 若& 1 ,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴 上的截距为2侖,求数列{a nb 2}的前n 项和S n.【点拨】(I) 丫亍2d…(H) f (x) 2xln2 , k 刀2勺n2 .切线方程y 2a2 2判n2(x a 2),依题设有a 2爲2爲a 2 2, b 24 . ^从a n bn2n 4n(等比差数列,乘公比、错位相减)得(3n 1)4n1 4$ 98(2014四川理)19.设等差数列{a n}的公差为d , 点®,b n)在函数f(x) 2x的图象上(nN *).(I) 若4 2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n}i 1,2丄,n 及an bn,可得q 1 1 q n 1q n 1 1 o.所以, s< t .的前n 项和S n;(2) 若 a 1,函数f(x)的图象在点(a 2,b 2)处的切线在X 轴 上的截距为2需,求数列©的前n 项和T n.【点拨】(1) Q4b 72a82a8 2b r2a7d 2. S n 23n ;(2) f (x) 2Xln2, k 切2Tn2 . 切线方程 y 2a2魯n2(x a 2),依题设有a 2爲2爲 比 2 , b24 .从而 b n 21(等比差数列,乘公比、错位相减)得T n2n2n29(2014上海文)23.已知数列满足3a n a n 1 3a n ,n N 1(1) 若322,83x,a 49,求x的取值范围;(2) 若{a n}是等比数列,且a m血,求正整数m 的最小值,以及m取最小值时相应{aj 的公比;(3) 若a 1,a 2,L ,a 100成等差数列,求数列 a 1,B 2,L ,9!00的公差的取值范围.⑵易见 an0,3a n a n 1 3a n3 q 3又am10k 1 qm1 (3)m1 m 8,m 8.q 宦10 -(3) ^①当 n 1 时,a 1, [a a 1d 3a13【点拨】(1)由a 2 a 3 3a 2 a 3 a 4 3a 3x [3,6];②当 2 n 100时,印 iga.! a n3am d 2器取 n1gd i99.综上島 d 2・10(2014上海理)23.已知数列{a n }满足1 3a n an 1 3环门 N 1 -(1)若 a 22,a 3x,a 49 ,⑵没a n是公比为q 等比数列,S n a 1 a> a j L a n,ig,S, 1 3S,n N求q 的取值范围;3(3)若a 1,a 2,L ,ak成等差数列,且a 32L a k1000,求正整数k 的最大值,以及k 取最大值 时相应数列a 1,a 2,L 耳的公差.【点拨】(1)由3:(2)由加 a n q 3a n,ai 1 [3S S a 1q 3S i ,1 q 2.下面证明任意的n 2,上式都成立. ①当q 1时,显然成立. ②当q 1时,显然成立.对于右不等式等价于 亡严 0.令f (x )—q 二X1),1 q 1 q f (x) q; l J q(q 3) 0,要使 f(x) 0,只需 f(1) 0即書0 q 2 .结合q /a 3 3a2 ”x [3,6]; a 4 3a3,结合 11 (1 q n) 1(1 q n 1)3 1 q 1 q3罟,其中左不等式11(2014山东文)(19)在等差数列{a n}中,已知公 差 d 2, a 2是a 1与a 4的等比中项. (I )求数列{a n}的通项公式;(1)nb ,求 T n.【点拨】(I ) 212 , an 2n(D ) h n (n 1)(分奇偶讨论求和)(n 为奇数)1 n (n 2)(为偶数)12(2014山东理)19.已知等差数列{a n}的公差为 2,前n 项和为S n,且S 1,S 2,S 4成等比数列.(I )求数列{a n}的通项公式;(H )令b ( 1厂盘,求数列{b n}的前n 项和T n.得到【点拨】(I ) a 1,a n2n 1;n取2n1 1000 k a i(2 1) dk(k 1) 2 2 2k 1)k 1999,从而当 k 1999时,q2 1999 -(II )设 b,记T nqa3k2S n3n 2 n(n ) b n ( 1叱1 2n 1 1](分奇偶讨论,最后合并)Tn2n;m ( 1)n.13(2014课标1文)17.已知a n是递增的等差数 列,a 2,a 4是方程X 25x 6 0的根。

2014年高考数学基础知识点框架复习

2014年高考数学基础知识点框架复习
同角三角函数基本关系
注意:开方时符号的选取
函数的图象和性质
函数
图像
定义域
值域
奇偶性
奇函数
偶函数
奇函数
周期性
单调性
对称轴

对称中心
三角恒等变换
两角和
与差
辅助角公式:
二倍角

解三角形
内角和
正弦定理
余弦定理
面积公式
四、数 列:
数列
概 念
按照一定次序排列起来的一列数
等差数列、等比数列
等差数列
等比数列
定义
通项公式
① ;
② ;
使用条件:
“一正二定三取等;
六,
加减法
数乘向量
· =
向量的数量积
· =
· =
向量平行
//
//
向量垂直


距离
︱ ︱=
︱ ︱=
夹角
七、导数
导数概念
在点 处的导数记作:
导数的几何意义
函数 在点 处的导数是曲线 在点 处的切线的斜率,即:
导数的运算
公式
① ; ② ;
③ ; ④ ;
图象:
定义
单调性
应用
函数的
零点
函数 的零点就是方程 实数根,即函数 的图象与 轴交点的横坐标。
求零点个数的方法:
1解方程,看根的个数
2画图,看交点个数
三、三角函数:“一看角、二看名、三看式”
三角函数
弧度角度
定义
, ,
符号规律:“才”
三角函数线
诱导公式
“ ,奇变偶不变,符号看象限”
注意:符号看变化前的函数

2014年高考(文科数学)知识点归纳总结

2014年高考(文科数学)知识点归纳总结

2014年高考(文科数学)知识点归纳总结一.常见的数集自然数集:N ;正整数集:N *或N +;整数集:Z ;有理数集:Q ;实数集:R 。

复数集:C 二.集合间基本关系的几个结论(1)A ⊆A (任何一个集合是本身子集).(2)∅⊆A (空集是任何集合的子集);(3)∅A (非空集合)(空集是任何非空集合的真子集) (4).若A 含有n 个元素,则A 的子集有2n 个,A 的非空子集有2n -1个,A 的非空真子集有2n -2个. 3.集合的运算及其性质(1)集合的交、并、补运算:交集:A ∩B ={x|x ∈A ,且x ∈B};并集:A ∪B ={x|x ∈A ,或x ∈B};补集:∁U A ={x|x ∈U ,且x ∉A}.U 为全集,∁U A 表示A 相对于全集U 的补集.(2)集合的交、并、补运算性质:①A ∪B =A ⇔B ②A ∩B =A ⇔A ③ A ∪(∁U A)=U ④A ∩(∁U A)=∅⑤⑤∁U (∁U A)=A.⑥∁U (A ∪B) =(∁U A) ∩ (∁U A)⑦∁U (A ∩B) =(∁U A) ∪ (∁U A) 三:映 射与函数1.映射:设A 、B 是两个非空集合,如果按某一种对应法则f ,对于A 中的每一个元素,在B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做集合A 到集合B 的映射.A 中的元素叫做原象,B 中的相应元素叫做象。

在A 到B 的映射中,从A 中元素到B 中元素的对应,可以多对一,不可以一对多。

2.函数:设A ,B 是两个非空的数集,如果按照某种对应法则f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个函数,记作y =f(x),x ∈A 函数三要素:定义域A :x 取值范围组成的集合。

值域B :y 取值范围组成的集合。

对应法则f :y 与x 的对应关系。

有解析式和图像和映射三种表示形式 3.函数与映射的区别在于:(1)两个集合必须是数集; (2)不能有剩余的象,即每个函数值y 都能找到相应的自变量x 与其对应。

2014数学高考基础知识、常见结论详解

2014数学高考基础知识、常见结论详解

数学高考基础知识、常见结论详解一、集合与简易逻辑:-、理解集合中的有关概念(1) 集合中元素的特征:确定性,互异性,无序性。

集合元素的互异性:如: A ={x,xy, lg(xy)},B{O,|x|,y},求A ;(2) 集合与元素的关系用符号,F表示。

(3) __________________________________ 常用数集的符号表示:自然数集__________ ;正整数集_______ 、________________________________________ ;整数集_________ ;有理数集 _____________ 、实数集________ 。

(4 )集合的表示法:列举法,描述法,韦恩图。

注意:区分集合中兀素的形式:如:A={x|y=x2亠2x亠1} ;B={y|y=x2亠2x亠1};2 2c ={( X, y) I y = x 2x 1} ; D ={ x | ^ x 2x 1} ;2E 二{( x,y) | y =x 2x 1,x := Z, y := Z};F 二{( x, y') | y = x2 2x1} ;G 二{z|y=x22x 1,z = '}x(5)空集是指不含任何元素的集合。

({0}、 '和{'}的区别;0与三者间的关系)空集是任何集合的子集,是任何非空集合的真子集。

注意:条件为A 5 B,在讨论的时候不要遗忘了A二■-的情况。

”” ” n ■女口:A = {x | ax2- 2x -1=0},如果A R =,求a 的取值。

二、集合间的关系及其运算(1 )符号“ •,F ”是表示元素与集合之间关系的,立体几何中的体现点与直线(面)的关系;符号“,二”是表示集合与集合之间关系的,立体几何中的体现面与直线(面)的关系。

(2)A^l B ={ _____________________ } ;A U B ={ ________________________ };C uA = _______________________________________ }(3)对于任意集合AB,则:① A B_B A ;A B_B A ;A B_A B ;② A B=A= ___________ ;A B=A= ____________ ;C U A B =U = ________ ; C U A B = = ____________ ;③ C U A £B 二_________________ ;___________ 二C u(A B);(4)①若n为偶数,则n = ;若n为奇数,则n = ___________ ;②若n被3除余o,贝u n =__________ ;若n被3除余1,贝u n = ___________ ;若n被3除余2 ,_则n = __________________ ;三、集合中元素的个数的计算:(1) ___________________________________________________________________ 若集合A中有n个元素,则集合A的所有不同的子集个数为______________________________________________ ,所有真子集的个数是__________ ,所有非空真子集的个数是 _________________ 。

2014高考数学必修章节知识点归纳

2014高考数学必修章节知识点归纳

2014年高考数学知识点归纳总结必修1数学知识点第一章、集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、 只要构成两个集合的元素是一样的,就称这两个集合相等。

3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集. 4、 如果集合A 中含有n 个元素,则集合A 有n2个子集.§1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A . 2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A . 3、全集、补集?{|,}U C A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…§1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 第二章、基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。

2014高考数学公式总结_基础知识大全

2014高考数学公式总结_基础知识大全

1.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 3解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. 4.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a b k +<-<,或0)(2=k f 且22122k abk k <-<+. 5.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}m in m a x m ax ()(),()(),()2b f x f f x f p f qa=-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p abx ,2∈-=,则{}m i n()m i n (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.6.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩;(3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .7.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.8.9.10.四种命题的相互关系11.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 12.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=- (2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+, 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.30.分数指数幂(1)m na =(0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质 (1)na =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)rr rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N =-; (3)log log ()na a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数., (2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2log log log 2a a a m nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nn ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).44.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s ()2(1s i n ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±= .22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).48.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=. 51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 53. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++.(2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +.63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.平面两点间的距离公式,A B d=||AB ==(A 11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP的分点,λ是实数,且12PP PP λ=,则 121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k ⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y . 70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔== .(2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=.71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<;121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式 (1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩.(22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或.(32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩.76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=;82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0a x b y c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA CBb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=; ②斜率为k的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b+=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b ⇔+>. 95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b⇔-<. 98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222bya x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=.(3)双曲线22221(0,0)x y a b a b -=>>与直线0A x B y C ++=相切的条件是2222A aB b c -=. 100. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.过焦点弦长p x x px p x CD ++=+++=212122.101.抛物线px y 22=上的动点可设为P ),2(2 y py 或或)2,2(2pt pt P P (,)x y ,其中 22y px = .102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+-;(3)准线方程是2414ac b y a--=. 103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+. (3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212||||AB x x y y ==-=-(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y +代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB = ⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD共线且AB CD 、不共线⇔AB tCD = 且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+.推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+,或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD xAB y AC =+ ⇔ (1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++.121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B点在l 上的射影'B ,则''||cos A B AB = 〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++; 123.设A 111(,,)x y z ,B 222(,,)x y z ,则 AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式. 126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅. 127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r (其中θ(090θ<≤o o)为异面直线a b ,所成角,,a b r 分别表示异面直线a b ,的方向向量)134.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则 ,A B d=||AB ==.135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量b =PQ ).136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅= (n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式d =.d =d ='E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则其体积343V R π=, 其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a ,. 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理) 12n N m m m =+++ . 150.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯ . 151.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. 152.排列恒等式 (1)1(1)mm n nA n m A -=-+;(2)1mmn n n A A n m -=-; (3)11m m n n A nA --=;(4)11nn nn n n nA A A ++=-; (5)11mmm n n nA A mA -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+- . 153.组合数公式m n C=m n m m A A =mm n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). 154.组合数的两个性质 (1)mn C =mn nC - ; (2) mn C +1-m nC =mn C 1+.注:规定10=n C . 155.组合恒等式(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-;(3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n rn rr rr r r C C C C C . (6)nnn rn n n n C C C C C 221=++++++ . (7)1425312-+++=+++n n n n n n n C C C C C C .(8)1321232-=++++n nn n n n n nC C C C .(9)rn m rn rm n r m n rm C C C C C C C +-=+++011. (10)nn n n n n n C C C C C 22222120)()()()(=++++ . 156.排列数与组合数的关系m m n n A m C =⋅! .157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n mn A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n kk A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有kk k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh h h A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法. (4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +. 158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn nn nn mn nn mn nmn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--. (3)(非平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N m m =⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...!!!...211c b a m C C C N m m n n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.(7)(限定分组有归属问题)将相异的p (2m p n n n = 1+++)个物体分给甲、乙、丙,……等m 个人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,2n ,…,m n 等m 个数是否全相异或不全相异其分配方法数恒有!!...!! (212)11m n n n n p n p n n n p C C C N m m =⋅=-.159.“错位问题”及其推广贝努利装错笺问题:信n 封信与n 个信封全部错位的组合数为1111()![(1)]2!3!4!!n f n n n =-+-+- . 推广: n 个元素与n 个位置,其中至少有m 个元素错位的不同组合总数为 1234(,)!(1)!(2)!(3)!(4)!(1)()!(1)()!m m m m ppmm mmf n m n C n C n C n C n C n p C n m =--+---+--+--++--12341224![1(1)(1)]p m p m m m m m m mp mn n n n n nC C C C C C n A A A A A A =-+-+-+-++- . 160.不定方程2n x x x m = 1+++的解的个数(1)方程2n x x x m = 1+++(,n m N *∈)的正整数解有11m n C --个.(2) 方程2n x x x m = 1+++(,n m N *∈)的非负整数解有 11n m n C +--个.(3) 方程2n x x x m = 1+++(,n m N *∈)满足条件i x k ≥(k N *∈,21i n ≤≤-)的非负整数解有11(2)(1)m n n k C +----个.(4) 方程2n x x x m = 1+++(,n m N *∈)满足条件i x k ≤(k N *∈,21i n ≤≤-)的正整数解有12222321(2)11121221(1)n m n m n k n m n k n m n k n n n n n n C C C C C C C +--+---+---+---------+-+- 个. 161.二项式定理nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;二项展开式的通项公式r r n r n r b a C T -+=1)210(n r ,,, =.162.等可能性事件的概率()mP A n=. 163.互斥事件A ,B 分别发生的概率的和 P(A +B)=P(A)+P(B).164.n 个互斥事件分别发生的概率的和P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ). 165.独立事件A ,B 同时发生的概率 P(A ·B)= P(A)·P(B).166.n 个独立事件同时发生的概率P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ). 167.n 次独立重复试验中某事件恰好发生k 次的概率()(1).k kn k n n P k C P P -=-168.离散型随机变量的分布列的两个性质 (1)0(1,2,)i P i ≥= ; (2)121P P ++= . 171.方差()()()2221122n n D x E p x E p x E p ξξξξ=-⋅+-⋅++-⋅+172.标准差σξ=ξD .191. 函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.192.几种常见函数的导数 (1) 0='C (C 为常数).(2) '1()()n n x nxn Q -=∈.(3) x x cos )(sin ='. (4) x x sin )(cos -='.(5) x x 1)(ln =';e a xx a log 1)(log ='.(6) x x e e =')(; a a a xx ln )(='.193.导数的运算法则 (1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v -=≠. 194.复合函数的求导法则设函数()u x ϕ=在点x 处有导数''()x u x ϕ=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,则复合函数(())y f x ϕ=在点x 处有导数,且'''x u x y y u =⋅,或写作'''(())()()x f x f u x ϕϕ=.195.常用的近似计算公式(当x 充小时)(1)x x 2111+≈+;x nx n 111+≈+; (2)(1)1()x x R ααα+≈+∈; x x-≈+111;(3)x e x+≈1; (4)x x l n ≈+)1(;(5)x x ≈sin (x 为弧度); (6)x x ≈tan (x 为弧度); (7)x x ≈arctan (x 为弧度)196.判别)(0x f 是极大(小)值的方法当函数)(x f 在点0x 处连续时,(1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,则)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值. 197.复数的相等,a bi c di a c b d +=+⇔==.(,,,a b c d R ∈) 198.复数z a bi =+的模(或绝对值)||z =||a bi +。

2014高考数学必备提分知识点

2014高考数学必备提分知识点

高中数学必备公式结论1.集合(1)n 元集合有2n个子集,有21n-个真子集,有22n-个非空真子集 (2)空集是任何一个集合的子集,是一切非空集合的真子集(3)交集“ ”;并集“ ”;补集“AU C ”2.函数(1)映射可以多对一,但是不能一对多,从m 元集合到n 元集合可以形成mn 个不同的映射 (2)函数的奇偶性 ①常见的奇函数:21k y x+=,xxy a a -=-,11x x a y a -=+,)y x =,sin y x =②常见的偶函数:y x =,2k y x =,x x y a a -=+,cos y x =,y C =(C 为常数) ③奇函数±奇函数=奇函数;偶函数±偶函数=偶函数奇函数⨯奇函数=偶函数⨯偶函数=偶函数;奇函数⨯偶函数=奇函数 (3)函数的单调性①增函数+增函数=增函数;减函数+减函数=减函数 增函数-减函数=增函数;减函数-增函数=减函数 ②复合函数单调性:同增异减 (4)指对幂函数运算法则 (1)m n m na a a +⋅=;m n m n a a a -÷=;()m n mna a=;()m m m a b ab =(2)log a bab =;log log log ()a a a M N MN +=;log log log a a aMM N N-= log log log m a m N N a=;log log m na a nb b m =;1log log a b b a =2.常见函数的导函数(1)'0C =(C 为常数)(2)'1()n n x nx -=;特别地,'=,'211()x x =-(3)'()ln x x aa a =;特别地,'()x x e e =(4)'11(log)log ln a a x e x x a ==;特别地,'1(ln )x x= (5)'(sin )cos x x =;'(cos )sin x x =-3.三角函数公式(1)圆心角弧度:l R α=;扇形面积公式:12S l R =⋅;180rad π︒=,'157.35718rad ︒︒≈= (2)1cos sin 22=+αα;αααtan cos sin = (3)诱导公式:(4)和角公式:①两角和与差的正余弦,正切公式:cos()cos cos sin sin cos()cos cos sin sin αβαβαβαβαβαβ+=-⎧⎨-=+⎩ s i n ()s i nc o sc o s ss i n ()s i n c o s c o s s i nαβαβαβαβαβαβ+=+⎧⎨-=-⎩ tan tan tan()1tan tan tan tan tan()1tan tan αβαβαβαβαβαβ+⎧+=⎪-⎪⎨-⎪-=⎪+⎩②倍角公式:αααcos sin 22sin =;ααα2tan 1tan 22tan -=;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;③辅助角公式:sin cos )a x b x x ϕ+=+,其中tan baϕ=特别的,有:sin cos )4x x x π+=+,sin cos )4x x x π-=-cos 2sin()6x x x π+=+cos 2sin()6x x x π-=-sin 2sin()3x x x π+=+,sin 2sin()3x x x π=- ④特殊结论:42675cos 15sin -== ,42615cos 75sin +==;tan152︒=tan 752︒=(5)正弦定理:2sin sin sin a b c R A B C=== (6)余弦定理:2222cos a b c bc A =+-,222b c cos 2a A bc+-=;2222cos b a c ac B =+-,222cos 2a c b B ac+-=;2222cos c a b ab C =+-,222cos 2a b c C ab+-=5.数列(1)等差数列①1n n a a d --=;()n m a a n m d -=- ②1(1)()n m a a n d a n m d =+-=+- ③11()(1)22n n n a a n n dS na +-==+; ④当m n p q +=+时,m n p q a a a a +=+;21(21)n n S n a -=- (2)等比数列 ①1n n a q a -=;n m n maq a -= ②11n n m n m a a q a q --=⋅=⋅③11,1(1),11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩④当m n p q +=+时,m n p q a a a a ⋅=⋅;6.不等式(1)若a ,b R ∈,则222a b ab +≥(当且仅当a b =时等号成立)若x ,y R +∈,则x y +≥x y =时等号成立)(2)若a ,b R ∈,则222()42a b a b ab ++≤≤(当且仅当a b =时等号成立) (3)若a ,b ,c R +∈,则有:a b c ++≥a b c ==时等号成立)7.平面向量(1)若11(,)a x y = ,22(,)b x y =①a = 1212(,)a b x x y y +=++ ;1212(,)a b x x y y -=-- ; ②1212a b x x y y ⋅=+;cos a b a b θ⋅=⋅ (θ为a 与b 的夹角)(2)若11(,)a x y = ,22(,)b x y =①当a ∥b 时,12210x y x y -=;②当a ⊥b时,11220x y x y +=(3)AB BC AC += ;AB AC CB -= (4)2AB AC AD +=(D 为BC 中点) 8.立体几何(1)异面直线AB 与CD 的夹角:cos AB CDAB CDθ⋅=⋅(2)线面角:sin l n l n θ⋅=⋅ (l 为直线的方向向量,n为平面的法向量)(3)二面角:1212cos n n n n θ⋅=⋅ (1n ,2n为两个平面的法向量)(4)点P 到平面α的距离:PA n d n ⋅= (A 为平面α内任意一点,n为平面α的法向量)9.直线和圆(1)距离公式:①点111(,)P x y ,222(,)P x y之间的距离:12PP=②点00(,)P x y 到直线0Ax By C ++=的距离:d =③平行线间的距离:10Ax By C ++=与20Ax By C ++=的距离:d =(2)位置关系①11y k x b =+与22y k x b =+平行:12k k =且12b b ≠;11y k x b =+与22y k x b =+垂直:121k k =-②1110A x B y C ++=与2220A x B y C ++=平行:1221A B A B =且1221AC A C ≠且1212B C C B ≠1110A x B y C ++=与2220A x B y C ++=垂直:12120A A B B +=(3)直线0Ax By C ++=和圆222()()x a y b R -+-=的位置关系: 判断圆心(,)O a b 到直线0Ax By C ++=的距离d =与半径R 的大小关系当d R <时,直线和圆相交(有两个交点); 当d R =时,直线和圆相切(有且仅有一个交点); 当d R <时,直线和圆相离(无交点); (4)圆和圆的位置关系:判断圆心距12d OO =与两圆半径之和12R R +,半径之差12R R -(12R R >)的大小关系 当12d R R >+时,两圆相离,有4条公切线;当12d R R =+时,两圆外切,有3条公切线; 当1212R R d R R -<<+时,两圆相交,有2条公切线;当12d R R =-时,两圆内切,有1条公切线;当120d R R ≤<-时,两圆内含,没有公切线;10.圆锥曲线(1)离心率:ce a=(2)通径:过焦点作与焦点所在坐标轴垂直的直线与曲线两个交点的距离(3)焦点三角形:椭圆(或双曲线)上一点00(,)P x y 与两焦点形成的三角形,记12F PF θ∠=(4)渐近线:22221x y a b-=(0a >,0b >)的渐近线方程为b y x a =±与22221x y a b -=具有相同渐近线的双曲线方程:2222x y a bλ-= 等轴双曲线:实轴与虚轴长相等,22x y λ-=,离心率e =共轭双曲线:实虚对调,22221x y a b -=的共轭双曲线是22221y x b a-=(5)抛物线的焦半径:①21cos A p p AF x α=+=-,21cos B p pBF x α=+=+②22sin A B p AF BF x x p α+=++=,112AF BF p+= (6)弦中点问题(点差法):直线y kx b =+与22221x y a b +=(0a b >>)交于A ,B 两点,AB 的中点为00(,)P x y ,则2020x b k a y =-⋅直线y kx b =+与22221x y a b -=(0a >,0b >)交于A ,B 两点,AB 的中点为00(,)P x y ,则2020x b k a y =⋅直线y kx b =+与22y px =交于A ,B 两点,AB 的中点为00(,)P x y ,则0pk y = (7)弦长公式21AB x =-=21AB y =-= 11.排列组合(理科)(1)!(1)(2)21n n A n n n n ==⨯-⨯-⋅⋅⋅⋅⋅⋅⨯;(1)(2)(1)mn A n n n n m =⨯-⨯-⋅⋅⋅⋅⋅⋅-+(2)(1)(1)12(1)mn n n n m C m m⨯-⨯⋅⋅⋅⋅⋅⋅-+=⨯⨯⋅⋅⋅⋅⋅⋅-⨯,m n mn nC C -= (3)011222()n n n n r n r r n nn n n n n a b C a C a b C a b C a b C b ---+=++++++……12.概率统计(1)如果在1次试验中某事件发生的概率为p ,那么在n 次独立重复试验中恰好发生k 次的概率为:()()1n kk k n n P k C p p -=-(2)离散型随机变量分布列的期望方差:1122n n E p p p ξξξξ=++⋅⋅⋅⋅⋅⋅+;2221122()()()n n D E p E p E p ξξξξξξξ=-+-+⋅⋅⋅⋅⋅⋅+-(2)二项分布:~(,)B n p ξ,①()(1)k k n k n P k C p p ξ-==-;②E np ξ=,(1)D np p ξ=-(3)正态分布:2~(,)X N μδ ①()0.6826P X μδμδ-<<+=; ②(22)0.9544P X μδμδ-<<+=; ③(33)0.9973P X μδμδ-<<+=;13.简易逻辑(1)逻辑联结词:或(∨),且(∧),非(⌝) 若p q ∧为真,当且仅当p q 、均为真; 若p q ∨为假,当且仅当p q 、均为假; 若p ⌝为真,当且仅当p 为假; (2)原命题:若A ,则B命题的否定(非p ):若A ,则B ⌝(命题的否定条件不否,结论否) 逆命题:若B ,则A ;否命题:若A ⌝,则B ⌝(否命题是条件和结论全否) 逆否命题:若B ⌝,则A ⌝(3)若A B →,则A 是B 的充分条件,B 是A 的必要条件14.复数(1)21i =-,若z a bi =+ ①a 为实部,b为虚部,z =z a bi =-②z a bi =+且在复平面内对应的点的坐标为(,)a b (2)若1z a bi =+,2z c di =+,①12()()z z a c b d i +=+++;12()()z z a c b d i -=-+- ②12()()z z ac bd ad bc i ⋅=-++;122222()()()()z a bi c di ac bd bc adi z c di c di c d c d+-+-==++-++ 15.极坐标和参数方程(1)过点00(,)P x y 且倾斜角为θ的直线l 的参数方程为:00cos sin x x t y y t θθ=+⎧⎨=+⎩(t 为参数)(2)圆222()()x a y b R -+-=的参数方程为:cos sin x a R y b R θθ=+⎧⎨=+⎩(θ为参数)(3)椭圆22221x y a b +=的参数方程为:cos sin x a y b θθ=⎧⎨=⎩(θ为参数)(4)极坐标系与平面直角坐标系的互化标准:222cos sin x y x y ρθρθρ⎧=⎪=⎨⎪=+⎩16.不等式选讲(1)绝对值不等式:a b a b a b +≥±≥-(2)柯西不等式:222222212121122()()()n n n n x x x y y y x y x y x y ++⋅⋅⋅⋅⋅⋅++⋅⋅⋅⋅⋅⋅≥++⋅⋅⋅⋅⋅⋅(等号当且仅当1212n nx x x y y y ==⋅⋅⋅⋅⋅⋅=时成立)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学基础知识归类——献给高二(5)班学生数学是理科的支柱,数学基础不好往往影响到理化成绩的提高,因此必须给予足够重视。

大家知道,高中数学分为几大板块:一是函数板块,二是三角板块,三是立体几何板块,四是解析几何板块,五是数列板块,六是概率统计板块,七是排列组合板块,八是复数板块,九是不等式板块,十是算法板块。

要学好这些知识,首先要重视课堂听讲,要眼睛随着老师转,脑子随着老师想。

只有抓好了课堂学习,才能谈得上课后复习。

课堂上尽可能多听讲,课后自己再验证,选择一些有特色的问题去探索。

要重视基础知识的复习。

每一章复习开始前一定要把课本看一遍,定理、公式等概念性的东西记住自不必说,例题的解法也要注意,特别是立体几何,在以前高考中曾多次出现课本上的例题。

学完一章或一部分后,要学会归纳总结,掌握规律性的东西,做一些综合题,考前温习一下笔记和自己归纳的东西,将基础知识夯实打牢,注重在基本知识、基本技能和创造性问题的解决上多下功夫。

最后冲刺的诀窍:高考最后两个月要拾遗补缺。

抓基础,理清头脑中的知识网络,而不应该去攻难度太大的题。

可适当去做一些综合性的题,对自己会很有好处的。

如果以前有错题本的话,现在应该看看了;最后一个月复习数学关键是“看”:看练习题,看复习资料。

一眼能看出解题思路的,从此不管它;看不出的,就在草稿纸上演算,演算到理清思路为止,并在题前做“#”记号;很难的综合题,则进行正规演算,目的仍是寻找思路,这种题一直做出了结果,就在题前做“*”记号。

三五天或一周之后,再回过头来看,有“#”的看一看,一般能看出从何处下手;有“*”的看一看,在草稿纸上演算,知道怎么做再停止。

因为这个时候正确与否不重要,重要的是知道该如何下手解这些题,以及需要用哪些知识来解题。

基础知识一.集合与简易逻辑1.注意区分集合中元素的形式.如:{|lg }x y x =—函数的定义域;{|lg }y y x =—函数的值域; {(,)|lg }x y y x =—函数图象上的点集.2.集合的性质: ①任何一个集合A 是它本身的子集,记为A A ⊆. ②空集是任何集合的子集,记为A ∅⊆.③空集是任何非空集合的真子集;注意:条件为A B ⊆,在讨论的时候不要遗忘了A =∅的情况 如:}012|{2=--=x ax x A ,如果A R +=∅ ,求a 的取值.(答:0a ≤)④()U U U C A B C A C B = ,()U U U C A B C A C B = ;A B C A B C = ()();A B C A B C = ()(). ⑤A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=∅ U C A B R ⇔= . ⑥A B 元素的个数:()()card A B cardA cardB card A B =+- .⑦含n 个元素的集合的子集个数为2n ;真子集(非空子集)个数为21n -;非空真子集个数为22n -. 3.补集思想常运用于解决否定型或正面较复杂的有关问题。

如:已知函数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使 0)(>c f ,求实数p 的取值范围.(答:32(3,)-)4.原命题: p q ⇒;逆命题: q p ⇒;否命题: p q ⌝⇒⌝;逆否命题: q p ⌝⇒⌝;互为逆否的两 个命题是等价的.如:“βαsin sin ≠”是“βα≠”的 条件.(答:充分非必要条件)5.若p q ⇒且q p ≠>,则p 是q 的充分非必要条件(或q 是p 的必要非充分条件或q 的一个充分非必要条件是p 或p 的一个必要非充分条件是q).6.注意命题p q ⇒的否定与它的否命题的区别: 命题p q ⇒的否定是p q ⇒⌝;否命题是p q ⌝⇒⌝. 命题“p 或q ”的否定是“p ⌝且q ⌝”;“p 且q ”的否定是“p ⌝或q ⌝”.如:“若a 和b 都是偶数,则b a +是偶数”的否命题是“若a 和b 不都是偶数,则b a +是奇数” 否定是“若a 和b 都是偶数,则b a +是奇数”. 7.常见结论的否定形式原命题中含有全称量词(或存在量词),命题的否定必有存在量词(或全称量词)1.①映射f :A B →是:⑴ “一对一或多对一”的对应;⑵集合A 中的元素必有象且A 中不 同元素在B 中可以有相同的象;集合B 中的元素不一定有原象(即象集B ⊆).②一一映射f :A B →: ⑴“一对一”的对应;⑵A 中不同元素的象必不同,B 中元素都有原象. 2.函数f : A B →是特殊的映射.特殊在定义域A 和值域B 都是非空数集!据此可知函数图像与x 轴 的垂线至多有一个公共点,但与y 轴垂线的公共点可能没有,也可能有任意个.3.函数的三要素:定义域,值域,对应法则.研究函数的问题一定要注意定义域优先的原则.4.求定义域:使函数解析式有意义(如:分母0≠;偶次根式被开方数非负;对数真数0>,底数0> 且1≠;零指数幂的底数0≠);实际问题有意义;若()f x 定义域为[,]a b ,复合函数[()]f g x 定义 域由()a g x b ≤≤解出;若[()]f g x 定义域为[,]a b ,则()f x 定义域相当于[,]x a b ∈时()g x 的值域.5.求值域常用方法: ①配方法(二次函数类);②逆求法(反函数法);③换元法(特别注意新元的范围). ④三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑤不等式法⑥单调性法;⑦数形结合:根据函数的几何意义,利用数形结合的方法来求值域; ⑧判别式法(慎用):⑨导数法(一般适用于高次多项式函数).6.求函数解析式的常用方法:⑴待定系数法(已知所求函数的类型); ⑵代换(配凑)法; ⑶方程的思想----对已知等式进行赋值,从而得到关于()f x 及另外一个函数的方程组。

7.函数的奇偶性和单调性⑴函数有奇偶性的必要条件是其定义域是关于原点对称的,确定奇偶性方法有定义法、图像法等; ⑵若()f x 是偶函数,那么()()(||)f x f x f x =-=;定义域含零的奇函数必过原点((0)0f =); ⑶判断函数奇偶性可用定义的等价形式:()()0f x f x ±-=或()()1(()0)f x f x f x -=±≠;⑷复合函数的奇偶性特点是:“内偶则偶,内奇同外”.注意:若判断较为复杂解析式函数的奇偶性,应先化简再判断;既奇又偶的函数有无数个 (如()0f x =定义域关于原点对称即可).⑸奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; ⑹确定函数单调性的方法有定义法、导数法、图像法和特值法(用于小题)等. ⑺复合函数单调性由“同增异减”判定. (提醒:求单调区间时注意定义域) 如:函数122log (2)y x x =-+的单调递增区间是_____________.(答:(1,2))8.函数图象的几种常见变换⑴平移变换:左右平移---------“左加右减”(注意是针对x 而言); 上下平移----“上加下减”(注意是针对()f x 而言).⑵翻折变换:()|()|f x f x →;()(||)f x f x →. ⑶对称变换:①证明函数图像的对称性,即证图像上任意点关于对称中心(轴)的对称点仍在图像上. ②证明图像1C 与2C 的对称性,即证1C 上任意点关于对称中心(轴)的对称点仍在2C 上,反之亦然.③函数()y f x =与()y f x =-的图像关于直线0x =(y 轴)对称;函数()y f x =与函数 ()y f x =-的图像关于直线0y =(x 轴)对称;④若函数()y f x =对x R ∈时,()()f a x f a x +=-或()(2)f x f a x =-恒成立,则()y f x =图像关 于直线x a =对称;⑤若()y f x =对x R ∈时,()()f a x f b x +=-恒成立,则()y f x =图像关于直线2a b x +=对称;⑥函数()y f a x =+,()y f b x =-的图像关于直线2b a x -=对称(由a x b x +=-确定);⑦函数()y f x a =-与()y f b x =-的图像关于直线2a b x +=对称;⑧函数()y f x =,()y A f x =-的图像关于直线2A y =对称(由()()2f x A f x y +-=确定);⑨函数()y f x =与()y f x =--的图像关于原点成中心对称;函数()y f x =,()y n f m x =-- 的图像关于点22(,)m n对称;⑩函数()y f x =与函数1()y f x -=的图像关于直线y x =对称;曲线1C :(,)0f x y =,关于 y x a =+,y x a =-+的对称曲线2C 的方程为(,)0f y a x a -+=(或(,)0f y a x a -+-+=; 曲线1C :(,)0f x y =关于点(,)a b 的对称曲线2C 方程为:(2,2)0f a x b y --=.9.函数的周期性:⑴若()y f x =对x R ∈时()()f x a f x a +=-恒成立,则 ()f x 的周期为2||a ; ⑵若()y f x =是偶函数,其图像又关于直线x a =对称,则()f x 的周期为2||a ; ⑶若()y f x =奇函数,其图像又关于直线x a =对称,则()f x 的周期为4||a ;⑷若()y f x =关于点(,0)a ,(,0)b 对称,则()f x 的周期为2||a b -;⑸()y f x =的图象关于直线x a =,()x b a b =≠对称,则函数()y f x =的周期为2||a b -; ⑹()y f x =对x R ∈时,()()f x a f x +=-或1()()f x f x a +=-,则()y f x =的周期为2||a ;10.对数:⑴log log n na ab b =(0,1,0,)a a b n R +>≠>∈;⑵对数恒等式log (0,1,0)a Na N a a N =>≠>;⑶log ()log log ;log log log ;log log n a a a aa a a a M NM N M N M N M n M ⋅=+=-=;1log log a a nM =;⑷对数换底公式log log log b b a N aN =(0,1,0,1)a a b b >≠>≠;推论:121123log log log 1log log log log n a b c a a a n a n b c a a a a a -⋅⋅=⇒⋅⋅⋅= .(以上120,0,0,1,0,1,0,1,,,0n M N a a b b c c a a a >>>≠>≠>≠> 且12,,n a a a 均不等于1) 11.方程()k f x =有解k D ⇔∈(D 为()f x 的值域);()a f x ≥恒成立[()]a f x ⇔≥最大值, ()a f x ≤恒成立[()]a f x ⇔≤最小值.12.恒成立问题的处理方法:⑴分离参数法(最值法); ⑵转化为一元二次方程根的分布问题;13.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”: 一看开口方向;二看对称轴与所给区间的相对位置关系;14.二次函数解析式的三种形式: ①一般式:2()(0)f x ax bx c a =++≠;②顶点式:2()()(0)f x a x h k a =-+≠; ③零点式:12()()()(0)f x a x x x x a =--≠.15.一元二次方程实根分布:先画图再研究0∆>、轴与区间关系、区间端点函数值符号;16.复合函数:⑴复合函数定义域求法:若()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域可由 不等式()a g x ≤b ≤解出;若[()]f g x 的定义域为[,]a b ,求()f x 的定义域,相当于[,]x a b ∈时,求 ()g x 的值域;⑵复合函数的单调性由“同增异减”判定.17.对于反函数,应掌握以下一些结论:⑴定义域上的单调函数必有反函数;⑵奇函数的反函数 也是奇函数;⑶定义域为非单元素集的偶函数不存在反函数;⑷周期函数不存在反函数; ⑸互为反函数的两个函数在各自的定义域具有相同的单调性;⑹()y f x =与1()y f x -=互为 反函数,设()f x 的定义域为A ,值域为B ,则有1[()]()f f x x x B -=∈,1[()]()f f x x x A -=∈. 18.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题:()()()0f u g x u h x =+≥(或0≤)()a u b ≤≤()0()0f a f b ≥⎧⇔⎨≥⎩(或()0()0f a f b ≤⎧⎨≤⎩);19.函数(0,)ax b cx dy c ad bc ++=≠≠的图像是双曲线:①两渐近线分别直线d cx =-(由分母为零确定)和直线a cy =(由分子、分母中x 的系数确定);②对称中心是点(,)d a c c-;③反函数为b dx cx ay --=;20.函数(0,0)b xy ax a b =+>>:增区间为(,)-∞+∞,减区间为[-.如:已知函数12()ax x f x ++=在区间(2,)-+∞上为增函数,则实数a 的取值范围是_____(答:12(,)+∞).三.数列1.由n S 求n a ,1*1(1)(2,)n nn S n a S S n n N -=⎧⎪=⎨-≥∈⎪⎩ 注意验证1a 是否包含在后面n a 的公式中,若不符合要 单独列出.如:数列{}n a 满足111534,n n n a S S a ++=+=,求n a (答:{14(1)34(2)n n n a n -==⋅≥).2.等差数列1{}n n n a a a d -⇔-=(d 为常数)112(2,*)n n n a a a n n N +-⇔=+≥∈ 21122(,)(,)n n dda anb a d b a d S An Bn A B a ⇔=+==-⇔=+==-;3.等差数列的性质: ①()n m a a n m d =+-,m n a a m nd --=;②m n l k m n l k a a a a +=+⇒+=+(反之不一定成立);特别地,当2m n p +=时,有2m n p a a a +=; ③若{}n a 、{}n b 是等差数列,则{}n n ka tb +(k 、t 是非零常数)是等差数列;④等差数列的“间隔相等的连续等长片断和序列”即 232,,,m m m m m S S S S S -- 仍是等差数列; ⑤等差数列{}n a ,当项数为2n 时,S S nd -=偶奇,1n n S a S a +=奇偶;项数为21n -时,(*)n S S a a n N -==∈偶中奇,21(21)n n S n a -=-,且1S n S n =-奇偶;()(21)n n nnA aB b f n f n =⇒=-.⑥首项为正(或为负)的递减(或递增)的等差数列前n 项和的最大(或最小)问题,转化为解不等式100n n a a +≥⎧⎨≤⎩(或100n n a a +≤⎧⎨≥⎩).也可用2n S An Bn =+的二次函数关系来分析.⑦若,()n m a m a n m n ==≠,则0m n a +=;若,()n m S m S n m n ==≠,则()m n S m n +=-+; 若()m n S S m n =≠,则S m+n =0;S 3m =3(S 2m -S m );m n m n S S S mnd +=++. 4.等比数列121111{}(0)(2,*)n nn n n n n n a a a q q a a a n n N a a q +--+⇔=≠⇔=≥∈⇔=.5.等比数列的性质 ①n mn m a a q-=,n q ={}n a 、{}n b 是等比数列,则{}n ka 、{}n n a b 等也是等比数列;1sin cos αα--sin cos αα+ ③111111(1)1111(1)(1)(1)(1)n n n n q q a a a a a q q q q na q na q S q q q ------==⎧⎧⎪⎪==⎨⎨-+≠=≠⎪⎪⎩⎩;④m n l k m n l k a a a a +=+⇒=(反之不一定成 立);m n m n m n n m S S q S S q S +=+=+. ⑤等比数列中232,,,m m m m m S S S S S -- (注:各项均不为0) 仍是等比数列. ⑥等比数列{}n a 当项数为2n 时,S S q =偶奇;项数为21n -时,1S a S q -=奇偶.6.①如果数列{}n a 是等差数列,则数列{}n a A (n a A 总有意义)是等比数列;如果数列{}n a 是等比数列, 则数列{log ||}(0,1)a n a a a >≠是等差数列;②若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列;③如果两个等差数列有公共项,那么由他们的公共项顺次组成的数列也是等差数列,且新数列的公差 是原两个等差数列公差的最小公倍数;如果一个等差数列和一个等比数列有公共项,那么由他们的 公共项顺次组成的数列是等比数列,由特殊到一般的方法探求其通项;④三个数成等差的设法:,,a d a a d -+;四个数成等差的设法:3,,,3a d a d a d a d --++; 三个数成等比的设法:,,aq a aq ;四个数成等比的错误设法:33,,,a aqqaq aq (为什么?)7.数列的通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式.⑵已知n S (即12()n a a a f n +++= )求n a 用作差法:11,(1),(2)n nn S n a S S n -=⎧=⎨-≥⎩.⑶已知12()n a a a f n ⋅⋅⋅= 求n a 用作商法:()(1)(1),(1),(2)n f n f n f n a n -=⎧⎪=⎨≥⎪⎩.⑷若1()n n a a f n +-=求n a 用迭加法. ⑸已知1()n na af n +=,求n a 用迭乘法.⑹已知数列递推式求n a ,用构造法(构造等差、等比数列):①形如1n n a ka b -=+,1n n n a ka b -=+, 1n n a ka a n b -=+⋅+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后, 再求n a .②形如11n n n a ka ba --+=的递推数列都可以用 “取倒数法”求通项.8.数列求和的方法:①公式法:等差数列,等比数列求和公式;②分组求和法;③倒序相加;④错位 相减;⑤分裂通项法.公式:12123(1)n n n ++++=+ ;222216123(1)(21)n n n n ++++=++ ;33332(1)2123[]n n n +++++= ;2135n n ++++= ;常见裂项公式111(1)1n n nn ++=-;1111()()n n k k nn k++=-;1111(1)(1)2(1)(1)(2)[n n n n n n n -++++=-;11(1)!!(1)!n n nn ++=-常见放缩公式:212=<=.9.“分期付款”、“森林木材”型应用问题⑴这类应用题一般可转化为等差数列或等比数列问题.但在求解过程中,务必“卡手指”,细心计算 “年限”.对于“森林木材”既增长又砍伐的问题,则常选用“统一法”统一到“最后”解决. ⑵利率问题:①单利问题:如零存整取储蓄(单利)本利和计算模型:若每期存入本金p 元,每期利 率为r ,则n 期后本利和为:(1)2(1)(12)(1)()n n n S p r p r p nr p n r +=+++++=+(等差数列问题);②复利问题:按揭贷款的分期等额还款(复利)模型:若贷款(向银行借款)p 元,采用分期等 额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,分n 期还清.如果每期利率为r (按复利),那么每期等额还款x 元应满足:12(1)(1)(1)(1)n n n p r x r x r x r x --+=+++++++ (等比数列问题). 四.三角函数1.α终边与θ终边相同2()k k Z αθπ⇔=+∈;α终边与θ终边共线()k k Z αθπ⇔=+∈;α终边 与θ终边关于x 轴对称()k k Z αθπ⇔=-+∈;α终边与θ终边关于y 轴对称2()k k Z απθπ⇔=-+∈;α终边与θ终边关于原点对称2()k k Z απθπ⇔=++∈; α终边与θ终边关于角β终边对称22()k k Z αβθπ⇔=-+∈.2.弧长公式:||l r θ=;扇形面积公式:21122||S lr r θ==扇形;1弧度(1rad )≈57.3︒.3.三角函数符号(“正号”)规律记忆口诀:“一全二正弦,三切四余弦”. 注意: tan15cot 752︒=︒=;tan75cot152︒=︒=+; 4.三角函数同角关系中(八块图):注意“正、余弦三兄妹sin cos x x ±、sin cos x x ⋅”的关系.如2(sin cos )12sin cos x x x x ±=±等.5.对于诱导公式,可用“奇变偶不变,符号看象限”概括; (注意:公式中始终视...α.为锐角...).6.角的变换:已知角与特殊角、已知角与目标角、已知角 与其倍角或半角、两角与其和差角等变换.如:()ααββ=+-;2()()ααβαβ=++-;2()()αβαβα=+--;22αβαβ++=⋅;222()()αββααβ+=---等;“1”的变换:221sin cos tan cot 2sin30tan 45x x x x =+=⋅=︒=︒; 7.重要结论:sin cos )a x b x x ϕ++其中tan b aϕ=);重要公式22cos 1sin 2αα-=;2cos α=1cos 22α+;sin 1cos 21cos sin tanααααα-+===22|cos sin |θθ±.万能公式:22tan 1tan sin 2ααα+=;221tan 1tan cos2ααα-+=;22tan 1tan tan 2ααα-=.8.正弦型曲线sin()y A x ωϕ=+的对称轴2()k x k Z ππϕω+-=∈;对称中心(,0)()k k Z πϕω-∈;余弦型曲线cos()y A x ωϕ=+的对称轴()k x k Z πϕω-=∈;对称中心2(,0)()k k Z ππϕω+-∈;9.熟知正弦、余弦、正切的和、差、倍公式,正、余弦定理,处理三角形内的三角函数问题勿忘三 内角和等于180︒,一般用正、余弦定理实施边角互化;正弦定理:sin sin sin 2a bc ABCR ===;余弦定理:22222222()222cos ,cos 1b c ab c abcbca b c bc A A +-+-=+-==-;正弦平方差公式:22sin sin sin()sin()A B A B A B -=+-;三角形的内切圆半径2ABC S a b cr ∆++=;面积公式:124sin abc RS ab C ∆==;射影定理:cos cos a b C c B =+.10.ABC ∆中,易得:A B C π++=,①sin sin()A B C =+,cos cos()A B C =-+,tan tan()A B C =-+. ②22sin cos A B C +=,22cos sinA B C +=,22tancotA B C +=. ③sin sin a b A B A B >⇔>⇔>④锐角ABC ∆中,2A B π+>,sin cos ,cos cos A B A B ><,222a b c +>,类比得钝角ABC ∆结论.⑤tan tan tan tan tan tan A B C A B C ++=.11.角的范围:异面直线所成角2(0,]π;直线与平面所成角2[0,π;二面角和两向量的夹角[0,]π;直线的倾斜角[0,)π;1l 到2l 的角[0,)π;1l 与2l 的夹角2(0,]π.注意术语:坡度、仰角、俯角、方位角等.五.平面向量1.设11(,)a x y = ,22(,)b x y = . (1)1221//0a b x y x y ⇔-= ;(2)121200a b a b x x y y ⊥⇔⋅=⇔+=.2.平面向量基本定理:如果1e 和2e是同一平面内的两个不共线的向量,那么对该平面内的任一向量a,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .3.设11(,)a x y = ,22(,)b x y = ,则1212||||cos a b a b x x y y θ⋅==+ ;其几何意义是a b ⋅ 等于a的长度与b 在a 的方向上的投影的乘积;a在b 的方向上的投影||cos ||a b a b θ⋅==4.三点A 、B 、C 共线AB ⇔ 与AC 共线;与AB 共线的单位向量||ABAB ±.5.平面向量数量积性质:设11(,)a x y = ,22(,)b x y = ,则cos ||||a ba b θ⋅==;注意:,a b 〈〉 为锐角0a b ⇔⋅> ,,a b 不同向;,a b 〈〉 为直角0a b ⇔⋅= ;,a b 〈〉 为钝角0a b ⇔⋅<,,a b 不反向.6.a b ⋅ 同向或有0||||||||||||a b a b a b a b ⇔+=+≥-=- ;a b ⋅ 反向或有0||||||||||||a b a b a b a b ⇔-=+≥-=+ ;a b ⋅不共线||||||||||a b a b a b ⇔-<±<+ .7.平面向量数量积的坐标表示:⑴若11(,)a x y = ,22(,)b x y = ,则1212a b x x y y ⋅=+;||AB = ⑵若(,)a x y =,则222a a a x y =⋅=+ .8.熟记平移公式和定比分点公式. ①当点P 在线段21P P 上时,0λ>;当点P 在线段21P P (或12P P )延长线上时,1λ<-或10λ-<<.②分点坐标公式:若12PP PP λ=;且111(,)P x y ,(,)P x y 222(,)P x y ; 则121211(1)x x y y x y λλλλλ++++⎧=⎪⎪≠-⎨⎪=⎪⎩, 中点坐标公式:121222(1)x x y y x y λ++⎧=⎪⎪=⎨⎪=⎪⎩. ③1P ,P ,2P 三点共线⇔存在实数λ、μ使得12OP OP OP λμ=+且1λμ+=.9.三角形中向量性质:①AB AC + 过BC 边的中点:||||||||()(AB AC AB ACAB AC AB AC +⊥- ;②13()0PG PA PB PC GA GB GC G =++⇔++=⇔为ABC ∆的重心;③PA PB PB PC PA PC P ⋅=⋅=⋅⇔为ABC ∆的垂心; ④||||||0BC PA CA PB AB PC P ++=⇔ 为ABC ∆的内心;||||()(0)AB ACAB AC λλ+≠ 所在直线过ABC ∆内心. ⑤设1122(,),(,)A x y B x y ,12AOB A B B A S x y x y∆=-. 1||||sin 2ABC S AB AC A ∆=⑥O 为ABC ∆内一点,则0BOC AOC AOB S OA S OB S OC ∆∆∆++=.10.(,)(,)(,)a h k P x y P x y ='''−−−−−→ 按平移,有x x h y y k '=+⎧⎨'=+⎩(PP a '= );(,)()()a h k y f x y k f x h ==−−−−−→-=- 按平移.六.不等式1.掌握课本上的几个不等式性质,注意使用条件,另外需要特别注意:①若0ab >,b a >,则11ab>.即不等式两边同号时,不等式两边取倒数,不等号方向要改变.②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论. 2.掌握几类不等式(一元一次、二次、绝对值不等式、简单的指数、对数不等式)的解法,尤其注意 用分类讨论的思想解含参数的不等式;勿忘数轴标根法,零点分区间法.3.掌握重要不等式,(1)均值不等式:若0,>b a ,2211a b a b++≥≥(当且仅当b a =时取等号)使用条件:“一正二定三相等 ” 常用的方法为:拆、凑、平方等;(2),,a b c R ∈, 222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号);(3)公式注意变形如:22222()a b a b ++≥,22()a b ab +≤;(4)若0,0a b m >>>,则b b m aa m++<(真分数的性质);4.含绝对值不等式:,a b 同号或有0||||||||||||a b a b a b a b ⇔+=+≥-=-;,a b 异号或有0 ||||||||||||a b a b a b a b ⇔-=+≥-=+.5.证明不等式常用方法:⑴比较法:作差比较:0A B A B -≤⇔≤.注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小;⑵综合法:由因导果;⑶分析法:执果索因.基本步骤:要证… 需证…,只需证…; ⑷反证法:正难则反;⑸放缩法:将不等式一侧适当的放大或缩小以达证题目的. 放缩法的方法有:①添加或舍去一些项,||a n >.②将分子或分母放大(或缩小) ③利用基本不等式,(1)2n n ++<.④利用常用结论:0111=<;02 211111111(1)(1)1k k k kkk kk k++---=<<=-(程度大);03111111211()kk k k --+<=-(程度小);⑹换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元 代数换元.如:知222x y a +=,可设cos ,sin x a y a θθ==;知221x y +≤,可设cos x r θ=,sin y r θ= (01r ≤≤);知221x y ab+=,可设cos ,sin x a y b θθ==;已知221x y ab-=,可设sec ,tan x a y b θθ==.⑺最值法,如:()a f x >最大值,则()a f x >恒成立.()a f x <最小值,则a f <七.直线和圆的方程1.直线的倾斜角α的范围是[0,π);2.直线的倾斜角与斜率的变化关系2tan ()k παα=≠(如右图):3.直线方程五种形式:⑴点斜式:已知直线过点00(,)x y 斜率为k 方程为00()y y k x x -=-,它不包括垂直于x 轴的直线.⑵斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线. ⑶两点式:已知直线经过 111(,)P x y 、222(,)P x y 两点,则直线方程为112121y y x x y y x x ----=,它不包括垂直于坐标轴的直线.⑷截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为1xy ab+=,它不包括垂直于坐标轴的直线和过原点的直线.⑸一般式:任何直线均可写成0Ax By C ++=(,A B 不同时为0)的形式. 提醒:⑴直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?) ⑵直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等⇔直线的斜率为1-或直线过 原点;直线两截距互为相反数⇔直线的斜率为1或直线过原点;直线两截距绝对值相等⇔ 直线的斜率为1±或直线过原点.⑶截距不是距离,截距相等时不要忘了过原点的特殊情形.4.直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=的位置关系: ⑴平行⇔12210A B A B -=(斜率)且12210B C B C -≠(在y 轴上截距);⑵相交⇔12210A B A B -≠;(3)重合⇔12210A B A B -=且12210B C B C -=.5.直线系方程:①过两直线1l :1110A x B y C ++=,2l :2220A x B y C ++=.交点的直线系方程可设 为111222()0A x B y C A x B y C λ+++++=;②与直线:0l Ax By C ++=平行的直线系方程可设为 0()Ax By m m c ++=≠;③与直线:0l Ax By C ++=垂直的直线系方程可设为0Bx Ay n -+=.6.到角和夹角公式:⑴1l 到2l 的角是指直线1l 绕着交点按逆时针方向转到和直线2l 重合所转的角θ, (0,)θπ∈且2112121tan (1)k k k k k k θ-+=≠-;⑵1l 与2l 的夹角是指不大于直角的角2,(0,]πθθ∈且2112121tan ||(1)k k k k k k θ-+=≠-.7.点00(,)P x y 到直线0Ax By C ++=的距离公式d =两条平行线10Ax By C ++=与20Ax By C ++=的距离是d .8.设三角形ABC ∆三顶点11(,)A x y ,22(,)B x y ,33(,)C x y ,则重心123123(,)33x x x y y y G ++++;9.有关对称的一些结论⑴点(,)a b 关于x 轴、y 轴、原点、直线y x =的对称点分别是(,)a b -,(,)a b -,(,)a b --,(,)b a . ⑵曲线(,)0f x y =关于下列点和直线对称的曲线方程为:①点(,)a b :(2,2)0f a x b y --=; ②x 轴:(,)0f x y -=;③y 轴:(,)0f x y -=;④原点:(,)0f x y --=;⑤直线y x =: (,)0f y x =;⑥直线y x =-:(,)0f y x --=;⑦直线x a =:(2,)0f a x y -=.10.⑴圆的标准方程:222()()x a y b r -+-=. ⑵圆的一般方程:22220(40)x y Dx Ey F D E F ++++=+->.特别提醒:只有当2240D E F +->时,方程 220x y Dx Ey F ++++=才表示圆心为22(,)D E --,(二元二次方程220Ax Bxy Cy Dx Ey F +++++=表示圆0A C ⇔=≠,且220,40B D E AF =+->).⑶圆的参数方程:cos sin x a r y b r θθ=+⎧⎨=+⎩(θ为参数),其中圆心为(,)a b ,半径为r .圆的参数方程主要应用是 三角换元:222cos ,sin x y r x r y r θθ+=→==;222cos ,sin (0x y t x r y r r θθ+=→==≤≤. ⑷以11(,)A x y 、22(,)B x y 为直径的圆的方程1212()()()()0x x x x y y y y --+--=; 11.点和圆的位置关系的判断通常用几何法(计算圆心到直线距离).点00(,)P x y 及圆的方程 222()()x a y b r -+-=.①22200()()x a y b r -+->⇔点P 在圆外;②22200()()x a y b r -+-<⇔点P 在圆内;③22200()()x a y b r -+-=⇔点P 在圆上.12.圆上一点的切线方程:点00(,)P x y 在圆222x y r +=上,则过点P 的切线方程为:200x x y y r +=; 过圆222()()x a y b r -+-=上一点00(,)P x y 切线方程为200()()()()x a x a y b y b r --+--=.13.过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与x 轴垂直的直线. 14.直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解 决弦长问题.①d r >⇔相离 ②d r =⇔相切 ③d r <⇔相交15.圆与圆的位置关系,经常转化为两圆的圆心距与两圆的半径之间的关系.设两圆的圆心距为d , 两圆的半径分别为,r R :d R r >+⇔两圆相离;d R r =+⇔两圆相外切; ||R r d R r -<<+⇔两 圆相交;||d R r =-⇔两圆相内切; ||d R r <-⇔两圆内含;0d =⇔两圆同心.16.过圆1C :221110x y D x E y F ++++=,2C :222220x y D x E y F ++++=交点的圆(相交弦)系方程 为2222111222()()0x y D x E y F x y D x E y F λ+++++++++=.1λ=-时为两圆相交弦所在直线方程. 17.解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成 直角三角形,切线长定理、割线定理、弦切角定理等等).18.求解线性规划问题的步骤是:(1)根据实际问题的约束条件列出不等式;(2)作出可行域,写出目标 函数(判断几何意义);(3)确定目标函数的最优位置,从而获得最优解. 八.圆锥曲线方程1.椭圆焦半径公式:设00(,)P x y 为椭圆22221(0)x y a b a b+=>>上任一点,焦点为1(,0)F c -,2(,0)F c ,则1020,PF a ex PF a ex =+=-(“左加右减”);2.双曲线焦半径:设00(,)P x y 为双曲线22221(0,0)x y a b a b-=>>上任一点,焦点为1(,0)F c -,2(,0)F c ,则:⑴当P 点在右支上时,1020||,||PF a ex PF a ex =+=-+;⑵当P 点在左支上时,10||PF a ex =--, 20||PF a ex =-;(e 为离心率).另:双曲线22221(0,0)x y a b a b -=>>的渐近线方程为22220x y a b-=.3.抛物线焦半径公式:设00(,)P x y 为抛物线22(0)y px p =>上任意一点,F 为焦点,则02||p PF x =+;22(0)y px p =->上任意一点,F 为焦点,则02||p PF x =-+.4.共渐近线ba y x =±的双曲线标准方程为2222x y a b λ-=(λ为参数,0λ≠).5.两个常见的曲线系方程: ⑴过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).⑵共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b <时,表示椭圆;当2222min{,}max{,}a b k a b <<时,表示双曲线.6.直线与圆锥曲线相交的弦长公式AB =或12|AB x x =-12]|y y -(弦端点1122(,),(,)A x y B x y ,由方程(,)0y kxc b F x y =+⎧⎨=⎩消去 y 得到02=++c bx ax ,0∆>,k 为斜率). 这里体现了解几中“设而不求”的思想; 7.椭圆、双曲线的通径(最短弦)为22b a,焦准距为2bcp =,抛物线的通径为2p ,焦准距为p ;双曲线22221(0,0)x y a b a b-=>>的焦点到渐近线的距离为b ; 8.中心在原点,坐标轴为对称轴的椭圆,双曲线方程可设为221Ax By +=(对于椭圆0,0A B >>);9.抛物线22(0)y px p =>的焦点弦(过焦点的弦)为AB ,11(,)A x y 、22(,)B x y ,则有如下结论: ⑴12||AB x x p =++;⑵2124px x =,212y y p =-; ⑶112||||pAF BF +=.10.椭圆22221(0)x y a b a b+=>>左焦点弦12||2()AB a e x x =++,右焦点弦12||2()AB a e x x =-+.11.对于22(0)y px p =≠抛物线上的点的坐标可设为200(,)2y y p ,以简化计算.12.圆锥曲线中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解.在椭圆22221x y a b+=中,以00(,)P x y 为中点的弦所在直线斜率2020b x k a y =-;在双曲线22221x y a b -=中,以00(,)P x y 为中点的弦所在直线斜率2020b x k a y =;在抛物线22(0)y px p =>中,以00(,)P x y 为中点的弦所在直线的斜率0py k =.13.求轨迹方程的常用方法:⑴直接法:直接通过建立x 、y 之间的关系,构成(,)0F x y =,是求轨迹的最基本的方法.⑵待定系数法:可先根据条件设所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可. ⑶代入法(相关点法或转移法).⑷定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程. ⑸交轨法(参数法):当动点(,)P x y 坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑 将x 、y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程. 14.解析几何与向量综合的有关结论:⑴给出直线的方向向量(1,)u k = 或(,)u m n = .等于已知直线的斜率k 或nm;⑵给出+与AB 相交,等于已知+过AB 的中点;⑶给出0=+,等于已知P 是MN 的中点;⑷给出()AP AQ BP BQ λ+=+,等于已知Q P ,与AB 的中点三点共线;⑸给出以下情形之一: ①//; ②存在实数λ,使AB AC λ=; ③若存在实数,αβ,且1αβ+=;使OC OA OB αβ=+,等于已知C B A ,,三点共线.⑹给出1OA OBOP λλ++= ,等于已知P 是AB 的定比分点,λ为定比,即PB AP λ=⑺给出0=⋅,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=⋅m ,等于已 知AMB ∠是钝角或反向共线,给出0>=⋅m ,等于已知AMB ∠是锐角或同向共线.⑻给出||||()MA MBMA MB MP λ+=,等于已知MP 是AMB ∠的平分线. ⑼在平行四边形ABCD 中,给出0)()(=-⋅+,等于已知ABCD 是菱形.⑽在平行四边形ABCD 中,给出||||AB AD AB AD +=-,等于已知ABCD 是矩形.⑾在ABC ∆中,给出222==,等于已知O 是ABC ∆的外心(三角形的外心是外接圆 的圆心,是三角形三边垂直平分线的交点).⑿在ABC ∆中,给出=++,等于已知O 是ABC ∆的重心(三角形的重心是三角形 三条中线的交点).⒀在ABC ∆中,给出OA OC OC OB OB OA ⋅=⋅=⋅,等于已知O 是ABC ∆的垂心(三角形的垂心 是三角形三条高的交点).⒁在ABC ∆中,给出+=OA OP ||||()AB AC AB AC λ+ )(+∈R λ等于已知AP 通过ABC ∆的内心.⒂在ABC ∆中,给出0=⋅+⋅+⋅c b a 等于已知O 是ABC ∆的内心(三角形内切圆 的圆心,三角形的内心是三角形三条角平分线的交点).⒃在ABC ∆中,给出12()AD AB AC =+,等于已知AD 是ABC ∆中BC 边的中线.九.直线、平面、简单几何体1.从一点O 出发的三条射线OA 、OB 、OC .若AOB AOC ∠=∠,则点A 在平面BOC 上的射影在 BOC ∠的平分线上;2.立平斜三角余弦公式:(图略)AB 和平面所成的角是1θ,AC 在平面内,AC 和AB 的射影1AB 成2θ, 设3BAC θ∠=,则123cos cos cos θθθ=;3.异面直线所成角的求法:⑴平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线. ⑵补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在 于容易发现两条异面直线间的关系;4.直线与平面所成角:过斜线上某个特殊点作出平面的垂线段,是产生线面角的关键.5.二面角的求法:⑴定义法;⑵三垂线法;⑶垂面法;⑷射影法:利用面积射影公式cos S S θ=射斜 其中θ为平面角的大小,此方法不必在图形中画出平面角;6.空间距离的求法:⑴两异面直线间的距离,高考要求是给出公垂线,所以一般先利用垂直作出公垂 线,然后再进行计算.⑵求点到直线的距离,一般用三垂线定理作出垂线再求解.⑶求点到平面的距离,一是用垂面法,借助面面垂直的性质来作.因此,确定已知面的垂面是关键; 二是不作出公垂线,转化为求三棱锥的高,利用等体积法列方程求解.7.用向量方法求空间角和距离:⑴求异面直线所成的角:设a 、b分别为异面直线a 、b 的方向向量,则两异面直线所成的角||||||arccos a b a b α⋅⋅=.⑵求线面角:设l 是斜线l 的方向向量,n 是平面α的法向量,则斜线l 与平面α所成的角||||||arcsin l n l n α⋅⋅=. ⑶求二面角(法一)在α内a l ⊥ ,在β内 b l ⊥ ,其方向如图(略),则二面角l αβ--的平面角||||arccos a ba b α⋅⋅=.(法二)设1n ,2n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角1212||||arccos n n n n α⋅⋅=.(4)求点面距离:设n是平面α的法向量,在α内取一点B ,则A 到α的距离|||||cos |||AB n d AB n θ⋅==(即AB 在n 方向上投影的绝对值). 8.正棱锥的各侧面与底面所成的角相等,记为θ,则cos S S θ=侧底.9.正四面体(设棱长为a )的性质:①全面积2S =;②体积312V =;③对棱间的距离2d =;④相邻面所成二面角13arccos α=;⑤外接球半径4R =;⑥内切球半径12r =;⑦正四面体内任一点到各面距离之和为定值3h =.10.直角四面体的性质:(直角四面体—三条侧棱两两垂直的四面体).在直角四面体O ABC -中,,,OA OB OC 两两垂直,令,,OA a OB b OC c ===,则⑴底面三角形ABC 为锐角三角形; ⑵直角顶点O 在底面的射影H 为三角形ABC 的垂心;⑶2BOC BHC ABC S S S ∆∆∆= ; ⑷2222AOB BOC COA ABC S S S S ∆∆∆∆++=;⑸1111OHabc=++;⑹外接球半径R=R 11.已知长方体的体对角线与过同一顶点的三条棱所成的角分别为,,αβγ因此有22cos cos αβ+。

相关文档
最新文档