概率复习案1
初中数学《概率初步-复习课》教案
“三部五环”教学模式设计《第25章复习课》教学设计1.教材内容义务教育课程标准实验教科书(人教版)《数学》八年级上册第25章单元小结。
2.知识背景分析在现代社会里,人们面临着更多的机会和选择,常常需要在不确定情境中做出合理的决策。
统计观念、概率思想已成为人们进行信息处理的必要数学观念,而概率(与统计)是课程改革中新增的唯一一块培养学生从不确定的角度观察、认识社会,让学生了解可能性是普遍的,有助于他们理解社会的数学内容。
学生已学完本章,通过小结,可使所学知识系统化。
3.学情背景分析教学对象是九年级学生,学生已经学习本章知识,本节课的重点在于查缺补漏,使所学知识系统化。
4.学习目标4.1知识与技能目标全面复习本章内容,使所学知识系统化。
4.2过程与方法目标通过复习,培养学生归纳总结能力。
4.3情感态度与价值观目标通过练习,培养学生探究问题、分析问题、解决问题的能力。
5、学习重、难点5.1学习重点系统复习本章知识,查缺补漏。
5.2学习难点解答练习,提高学生解决实际问题的能力。
6.教法设计与学法指导6.1 教法选择根据本节教材内容特点,针对八年级学生的认知结构和心理特征,本节教学注重学生自我反思,经历观察、归纳、总结的过程,全面系统掌握本章知识。
6.2学法指导在本节课为复习课,注重指导学生自我反思、归纳总结,指导学生用数学建模思想解决实际问题。
7.学习环境与资源设计7.1学习环境:多媒体教室。
7.2学习资源:教材、教学课件(多媒体课件)。
8.教学评价设计为了最大限度地做到面向全体学生,充分关注学生的个性差异,在本节教学中,力求通过学生自评、生生互评和教师概括引领、激励测进式点评有机结合的评价方式帮助学生认识自我、建立自信,使其逐步养成独立思考、自主探索、合作交流的学习习惯。
评价方式为:随堂提问、作品展评、作业反馈。
9.教学流程设计10.教学过程设计甲乙4.桌子上放有6张扑克牌,全都正面朝下,其中恰有两张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K,则红方胜,否则蓝方胜.你愿意充当红方还是蓝方?与同伴实际做一做.活动5 推荐作业,延伸新知必做题:复习题25 1、3题选做题:复习题25 2、5题[师生互动]教师提出要求,学生按要求选择完成作业。
概率复习
概率练习(1)1、 连续三次抛掷一枚硬币,则恰有两次出现正面的概率是 ___ .2.甲、乙两人独立地解同一题,甲解决这个问题的概率是0.4,乙解决这个问题的概率是0.5,那么其中至少有一人解决这个问题的概率是 . 3.方程382828xx C C -=的解集为 .4.设随机变量X 的概率分布如下表所示,且E (X )=2.5,则a= .5.一射击运动员对同一目标独立地射击四次,,若此射击运动员每次射击命中的概率为23,则至少命中一次的概率为 .6.随机抛掷5次均匀硬币,正好出现3次正面向上的概率为 . 7.从装有3个红球,3个白球的袋中随机取出2个球,设其中有ξ个红球,则)1(≥ξP = _____8.将数字1,2,3,4任意排成一列,如果数字k 恰好出现在第k 个位置上,则称之为一个巧合,则巧合个数ξ的数学期望是 ___ .9.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:请小王同学计算ξ的数学期望.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小王给出了正确答案E ξ= .10.位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P 移动五次后位于点(2,3)的概率是___________.11.一个口袋装有5个红球,3个白球,这些球除颜色外完全相同,某人一次从中摸出3个球, 其中白球的个数为X .⑴求摸出的三个球中既有红球又有白球的概率; ⑵求X 的分布列及X 的数学期望.12.在一次面试中,每位考生从4道题d c b a ,,,中任抽两题做,假设每位考生抽到各题的可能性相等,且考生相互之间没有影响。
(1)若甲考生抽到b a ,题,求乙考生与甲考生恰好有一题相同的概率;(2)设某两位考生抽到的题中恰好有X 道相同,求随机变量X 的概率分布和期望)(X E .13. 中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q (简称血酒含量,单位是毫克/100毫升),当2080Q ≤<时,为酒后驾车;当80Q ≥时,为醉酒驾车. 淮安市公安局交通管理部门于2014年4月的一天对某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量,其中查处酒后驾车的有6人,查处醉酒驾车的有4人,依据上述材料回答下列问题: (1)分别写出违法驾车发生的频率和醉酒驾车占违法驾车总数的百分数; (2)从违法驾车的10人中抽取4人,求抽取到醉酒驾车人数ξ的分布列和期望;(3)饮酒后违法驾驶机动车极易发生交通事故,假设酒后驾车和醉酒驾车发生交通事故的概率分别是0.2和0.5,且每位驾驶员是否发生交通事故是相互独立的,依此计算被查处的10名驾驶员中至少有一人发生交通事故的概率14.某市公租房的房源位于C B A ,,三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的。
高三数学人教版A版数学(理)高考一轮复习教案随机事件的概率1
第四节 随机事件的概率事件与概率了解随机事件发生的不确定性和频率的稳定性,了解概率的意 义,了解频率与概率的区别. 了解两个互斥事件的概率加法公式. 知识点一 概率与频率1.在相同条件下,大量重复进行同一试验时,随机事件A 发生的频率会在某个常数附近摆动,即随机事件A 发生的频率具有稳定性.我们把这个常数叫作随机事件A 的概率,记作P (A ).2.频率反映了一个随机事件出现的频繁程度,但频率是随机的,而概率是一个确定的值,因此,人们用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值.3.概率的几个基本性质 (1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率:P (A )=1. (3)不可能事件的概率:P (A )=0.易误提醒 易将概率与频率混淆,频率随着试验次数变化而变化,而概率是一个常数.[自测练习]1.给出下列三个命题,其中正确命题有________个.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③随机事件发生的频率就是这个随机事件发生的概率.解析:①错,不一定是10件次品;②错,37是频率而非概率;③错,频率不等于概率,这是两个不同的概念.答案:02.某城市2015年的空气质量状况如下表所示:污染指数T 30 60 100 110 130 140 概率P1101613730215130100<T ≤150时,空气质量为轻微污染,则该城市2015年空气质量达到良或优的概率为________.解析:由题意可知2015年空气质量达到良或优的概率为P =110+16+13=35.答案:35知识点二 互斥事件和对立事件 事件定义性质互斥事件在一个随机试验中,我们把一次试验下不能同时发生的两个事件A 与B 称作互斥事件P (A +B )=P (A )+P (B ),(事件A ,B是互斥事件);P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n )(事件A 1,A 2,…,A n 任意两个互斥)对立事件在一个随机试验中,两个试验不会同时发生,并且一定有一个发生的事件A 和A 称为对立事件P (A )=1-P (A )易误提醒 互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.[自测练习]3.装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是( )“①两球都不是白球;②两球恰有一个白球;③两球至少有一个白球”. A .①② B .①③ C .②③D .①②③解析:从口袋内一次取出2个球,这个试验的基本事件空间Ω={(白,白),(红,红),(黑,黑),(红,白),(红,黑),(黑,白)},包含6个基本事件,当事件A “两球都为白球”发生时,①②不可能发生,且A 不发生时,①不一定发生,②不一定发生,故非对立事件,而A 发生时,③可以发生,故不是互斥事件.答案:A4.运动会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为( )A.310B.58C.710D.25解析:从1,2,3,4,5中任取三个数的结果有10种,其中选出的火炬手的编号相连的事件有:(1,2,3),(2,3,4),(3,4,5),∴选出的火炬手的编号相连的概率为P =310.答案:A考点一 事件的关系|1.一个均匀的正方体玩具的各个面上分别标有数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A 表示向上的一面出现奇数点,事件B 表示向上的一面出现的点数不超过3,事件C 表示向上的一面出现的点数不小于4,则( )A .A 与B 是互斥而非对立事件 B .A 与B 是对立事件C .B 与C 是互斥而非对立事件D .B 与C 是对立事件解析:根据互斥事件与对立事件的意义作答,A ∩B ={出现点数1或3},事件A ,B 不互斥也不对立;B ∩C =∅,B ∪C =Ω,故事件B ,C 是对立事件.答案:D2.设条件甲:“事件A 与事件B 是对立事件”,结论乙:“概率满足P (A )+P (B )=1”,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P (A )+P (B )=1.设掷一枚硬币3次,事件A :“至少出现一次正面”,事件B :“3次出现正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件.答案:A3.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A .至多有一张移动卡B .恰有一张移动卡C.都不是移动卡D.至少有一张移动卡解析:至多有一张移动卡包含“一张移动卡,一张联通卡”、“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,故选A.答案:A集合法判断互斥事件与对立事件的方法1.由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.2.事件A的对立事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.考点二随机事件的概率|(2015·高考陕西卷)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:日123456789101112131415 期天晴雨阴阴阴雨阴晴晴晴阴晴晴晴晴气日161718192021222324252627282930 期天晴阴雨阴阴晴阴晴晴晴阴晴晴晴雨气...(2)西安市某学校拟从4月份的一个晴天..开始举行连续2天的运动会,估计运动会期间不下雨...的概率.[解](1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为1315.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为78.以频率估计概率,运动会期间不下雨的概率为78.1.某中学部分学生参加全国高中数学竞赛取得了优异成绩,指导老师统计了所有参赛同学的成绩(成绩都为整数,试题满分120分),并且绘制了条形统计图(如图所示),则该中学参加本次数学竞赛的人数为________,如果90分以上(含90分)获奖,那么获奖的概率大约是________.解析:由题图可知,参加本次竞赛的人数为4+6+8+7+5+2=32;90分以上的人数为7+5+2=14,所以获奖的频率为1432=0.437 5,即本次竞赛获奖的概率大约是0.437 5.答案:32 0.437 5考点三 互斥事件与对立事件的概率|某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C .求:(1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. [解] (1)P (A )=11 000,P (B )=101 000=1100, P (C )=501 000=120.(2)因为事件A ,B ,C 两两互斥,所以P (A ∪B ∪C )=P (A )+P (B )+P (C )=11 000+1100+120=611 000.故1张奖券的中奖概率为611 000. (3)P (A ∪B )=1-P (A +B )=1-⎝⎛⎭⎫11 000+1100=9891 000.故1张奖券不中特等奖且不中一等奖的概率为9891 000.求复杂互斥事件概率的两种方法(1)直接求法:将所求事件分解为一些彼此互斥的事件的和,运用互斥事件概率的加法公式计算.(2)间接求法:先求此事件的对立事件,再用公式P (A )=1-P (A )求得,即运用逆向思维(正难则反),特别是“至多”“至少”型题目,用间接求法就会较简便.2.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.(1)求该地1位车主至少购买甲、乙两种保险中的一种的概率; (2)求该地1位车主甲、乙两种保险都不购买的概率.解:记A 表示事件:该车主购买甲种保险;B 表示事件:该车主购买乙种保险但不购买甲种保险;C 表示事件:该车主至少购买甲、乙两种保险中的一种;D 表示事件:该车主甲、乙两种保险都不购买.(1)由题意得P (A )=0.5,P (B )=0.3,又C =A ∪B , 所以P (C )=P (A ∪B )=P (A )+P (B )=0.5+0.3=0.8.(2)因为D 与C 是对立事件,所以P (D )=1-P (C )=1-0.8=0.2. 31.正难则反思想求互斥事件的概率【典例】 某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量 1至4件5至8件 9至12件13至16件17件及以上顾客数(人) x 30 25 y 10 结算时间(分钟/人)11.522.53(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)[思路点拨] 若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解.[解] (1)由已知得25+y +10=55,x +30=45, 所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110.P (A )=1-P (A 1)-P (A 2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.[思想点评] (1)要准确理解题意,善于从图表信息中提炼数据关系,明确数字特征含义. (2)正确判定事件间的关系,善于将A 转化为互斥事件的和或对立事件,切忌盲目代入概率加法公式.(3)需准确理解题意,特别留心“至多…”“至少…”“不少于…”等语句的含义.[跟踪练习] 某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为( )A .0.95B .0.97C .0.92D .0.08解析:记抽检的产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,这三个事件彼此互斥,因而所求概率为P (A )=1-P (B )-P (C )=1-5%-3%=92%=0.92.答案:CA 组 考点能力演练1.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件解析:根据对立事件与互斥事件的关系知,甲是乙的必要但不充分条件. 答案:B2.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为( )A .0.5B .0.3C .0.6D .0.9解析:依题设知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5. 答案:A3.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A .“至少有一个黑球”与“都是黑球”B .“至少有一个黑球”与“都是红球”C .“至少有一个黑球”与“至少有一个红球”D .“恰有一个黑球”与“恰有两个黑球”解析:A 中的两个事件是包含关系,不是互斥事件;B 中的两个事件是对立事件;C 中的两个事件都包含“一个黑球一个红球”的事件,不是互斥关系;D 中的两个事件是互斥而不对立的关系.故选D.答案:D4.(2016·云南一检)在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( )A.34 B.58 C.12D.14解析:分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,符合题意的取法有2种,故所求概率P =12.答案:C5.(2015·孝感二模)某天下课以后,教室里还剩下2位男同学和2位女同学.如果他们依次走出教室,则第2位走出的是男同学的概率为( )A.12B.13C.14D.15解析:已知2位女同学和2位男同学走出的所有可能顺序有(女,女,男,男),(女,男,女,男),(女,男,男,女),(男,男,女,女),(男,女,男,女),(男,女,女,男),所以第2位走出的是男同学的概率P =36=12.答案:A6.(2016·温州十校联考)记一个两位数的个位数字与十位数字的和为A .若A 是不超过5的奇数,从这些两位数中任取一个,其个位数为1的概率为________.解析:根据题意,个位数字与十位数字之和为奇数且不超过5的两位数有:10,12,14,21,23,30,32,41,50,共9个,其中个位是1的有21,41,共2个,因此所求的概率为29.答案:297.口袋内装有一些大小相同的红球、黄球、白球,从中摸出一个球,摸出红球或白球的概率为0.65,摸出黄球或白球的概率是0.6,那么摸出白球的概率是________.解析:设摸出红球、白球、黄球的事件分别为A 、B 、C ,由条件知P (A ∪B )=P (A )+P (B )=0.65,P (B ∪C )=P (B )+P (C )=0.6, 又P (A ∪B )=1-P (C ),∴P (C )=0.35, ∴P (B )=0.25. 答案:0.258.中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得女子乒乓球单打冠军的概率为________.解析:由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为37+14=1928.答案:19289.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):(1)(2)试估计生活垃圾投放错误的概率.解:(1)厨余垃圾投放正确的概率约为“厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400400+100+100=23. (2)设生活垃圾投放错误为事件A ,则事件A 表示生活垃圾投放正确.事件A 的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )约为400+240+601 000=0.7,所以P (A )约为1-0.7=0.3.10.经统计,在某储蓄所一个营业窗口等候的人数及相应的概率如下:求:(2)至少3人排队等候的概率是多少?解:记“无人排队等候”为事件A ,“1人排队等候”为事件B ,“2人排队等候”为事件C ,“3人排队等候”为事件D ,“4人排队等候”为事件E ,“5人及5人以上排队等候”为事件F ,则事件A 、B 、C 、D 、E 、F 互斥.(1)记“至多2人排队等候”为事件G ,则 G =A ∪B ∪C ,所以P (G )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.1+0.16+0.3=0.56. (2)法一:记“至少3人排队等候”为事件H ,则H =D ∪E ∪F ,所以P (H )=P (D ∪E ∪F )=P (D )+P (E )+P (F )=0.3+0.1+0.04=0.44.法二:记“至少3人排队等候”为事件H ,则其对立事件为事件G ,所以P (H )=1-P (G )=0.44.B 组 高考题型专练1.(2014·高考陕西卷)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解:(1)设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得P (A )=1501 000=0.15,P (B )=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100辆,而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24辆,所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P (C )=0.24.2.(2015·高考北京卷)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解:(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.。
第三章复习导学案北师大版九年级上册数学 第三章复习导学案1
第三章 概率的进一步认识一、复习目标1、回顾本章内容,用所学的概率知识去解决某些现实问题,再自我归纳和总结实验频率与理论概率的关系。
2、能运用树状图和列表法计算简单事件发生的概率,能用试验或模拟试验的方法,估计一些复杂的随机事件发生的概率。
3、学会与人合作,进一步发展学生合作交流的意识和能力。
4、形成解决问题的一些策略,体验解决问题的多样性,发展实践能力和创新精神。
二、复习重、难点:用所学的概率知识去解决某些现实问题,理解实验频率和理论概率的关系。
三、复习过程:(一)、知识指导与梳理:(二)、知识回顾:1、事件发生的可能性也称为事件发生的 。
在考察中,每个对象出现的次数称为 ,而每个对象出现的次数与总次数的比值称为 。
2、当实验次数很大时,可以用一个事件发生的 来估计这一事件发生的 。
3、利用 或 可以清晰地表示出某个事件发生的所有可能出现的结果。
4、用实验的方法统计下列事件发生的概率:(1)、掷一枚均匀的硬币,正面朝上的概率为 。
(2)、掷一枚均匀的正六面体骰子,3点朝上的概率为 。
(3)、掷一枚均匀的正六面体骰子,每次实验掷两次,两次朝上的骰子点数之和为5的概率为 。
(三)、例题解析:1.某同学报名参加运动会,有以下5个项目可供选择:径赛项目:100m ,200m ,400m(分别用A 1 、A 2 、A 3表示);田赛项目:跳远 ,跳高(分别用B 1 、B 2表示). 现实生活中存在大量的随机事件件随机事件发生的可能性有大小随机事件发生的可能性(概率)的计算概率的应用 理论计算 试验估算只涉及一步实验的随机事件发生的概率涉及两步或两步以上实验的随机事件发生的的概率列表法树状图法⑴ 该同学从5个项目中任选一个,恰好是田赛项目的概率为 ;⑵ 该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.2.小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树形图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利(四):当堂检测1、从其中含有4个次品的1000个螺钉中任取1个,它是次品的概率是 。
概率复习
概率复习第一讲古典概型例1.一个口袋里共有2个红球和8个黄球,从中随机地接连取3个球,每次取一个.设{恰有一个红球}A =,{第三个球是红球}B =.求在下列条件下事件B A ,的概率. (1)不放回抽样; (2)放回抽样.例2.某班有甲、乙两个学习小组,两组的人数如下:现采用分层抽样的方法(层内采用简单随机抽样)从甲、乙两组中共抽取3名同学进行学业检测.(Ⅰ)求从甲组抽取的同学中恰有1名女同学的概率;(Ⅱ)记X 为抽取的3名同学中男同学的人数,求随机变量X 的分布列和数学期望.练习提升:1.将一枚硬币抛两次,恰好出现一次正面的概率是 ( )A.21 B.41 C.43 D.312.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上和概率是 ( ) A .5216 B . 25216 C . 31216 D . 912163.在5张卡片上分别写上数字1,2,3,4,5然后把它们混合,再任意排成一行,则得到的数能被5或2整除的概率是 ( ) A .0.2 B .0.4 C .0.6 D .0.8 4.从5名男医生和4名女医生中选出4名代表,至少有一男一女的概率是 . 5.“你低碳了吗?”这是某市为倡导建设资源节约型社会而发布的公益广告里的一句话.活动组织者为了解这则广告的宣传效果,随机抽取了100名年龄段在[10,20),[20,30), ,[50,60)的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄段在[30,40)的人数;(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,求[50,60)年龄段抽取的人数;(Ⅲ)从按(Ⅱ)中方式得到的8人中再抽取3人作为本次活动的获奖者,记X 为年龄在[50,60)年龄段的人数,求X 的分布列及数学期望.6.以下茎叶图记录了甲、乙两组四名同学的植树棵树。
概率复习[1]
同.若从中随机摸出一个球,摸到黄球的概率 是 4 ,则_____________. 5
中考链接
13、(2009广州)有红、白、蓝三种颜色的小
球各一个,它们除颜色外没有任何其他区别.现
将3个小球放入编号为①、②、③的三个盒子里, 规定每个盒子里放一个且只能放一个小球. (1)请用树状图或其它适当的形式列举出3个 小球放入盒子的所有可能情况;
巩固练习
将分别标有数字1,2,3的二张卡片 洗匀后,背面朝上 放在桌面上. (1)随机地抽取一张,求P(奇数); (2)随机地抽取一张作为十位上的数字 (不放回)再抽取一张作为个位上的数字, 能组成哪些两位数?恰好是“31”的概率 为多少?
中考链接
12、(2009中山)在一个不透明的布袋中装有2 个白球和n个黄球,它们除颜色不同外,其余均相
(一)确定事件和随机事件
必然事件 : 一定会发生 确定事件
不可能事件: 一定不发生
随机事件:不一定发生 (但发生的可能性的大小不同)
确定事件
必然事件发生的概率为1, 记做 :P(必然事件)=1
不可能事件发生的概率为0, 记做 :P(不可能事件)=0
随机事件
如果A为随机事件, 那么 : 0<P(A)<1
m 事件A包含的可能结果数 概率的定义 P( A) n 所有可能结果总数
一般地,如果在一次试验中,有n种可能的结果,并
且它们发生的 可能性 都相等,事件A包含其中的m
种结果,那么事件A发生的概率为P(A)= 。
一般地,在大量重复试验中,如果事件A发生的频 m 率 会 稳定 在某个常数 P附近,那么事件A发 n 生的概率P(A)= 。
(2)求红球恰好被放入②号盒子的概率.
概率复习1
概率初步检测题本检测题满分:100分,时间:90分钟一、选择题(每小题3分,共30分)1.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机地从袋子中摸出3个球.下列事件是必然事件的是( ) A.摸出的3个球中至少有1个球是黑球 B.摸出的3个球中至少有1个球是白球 C.摸出的3个球中至少有2个球是黑球 D.摸出的3个球中至少有2个球是白球2从分别写有数字4-,3-,2-,1-,0,1,2,3,4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是( ) A .19 B .13 C .12 D .233.如图所示,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯同时发光的概率为( ) A.错误!未找到引用源。
16 B.13 C. 12D.234. 随机掷两枚硬币,落地后全部正面朝上的概率是( ) A.1 B.12 C.13 D.145.有一个正方体,6个面上分别标有1到6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为( ) A.13 B.16 C.12 D.146.将一颗骰子(正方体)连掷两次,得到的点数都是4的概率是( ) A.61 B.41 C.161 D.361 7.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( ) A.54 B.53 C.52 D.51 8.甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是()A.甲B.乙C.丙D.不能确定9.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋中随机摸出一球,记下颜色,然后把它放回口袋中.不断重复上述过程.小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45B.48C.50D.5510.做重复试验:抛掷同一枚啤酒瓶盖错误!未找到引用源。
古典概型(视导)
课题:概率复习------古典概型一、教学目标:1.理解古典概率模型及其概率计算公式,会分析、列举随机事件包含的基本事件,并求其发生的概率;2.通过把实际问题转化为古典概型,逐步培养学生在解决概率问题中,对分类与整合、化归与转化等思想方法的运用能力。
二、教学重点:对古典概型及其概率计算公式的理解与应用;三、教学难点:将实际问题转化为古典概型问题。
四、教学过程:(一)自我检测1.判断下列命题是否正确,说明理由。
(1)袋中装有大小均匀的三个红球、两个黑球、一个白球,现从中摸取一个小球,事件A“取出的球为红球”,事件B“取出的球为黑球”,事件C“取出的球为白球”,则事件A、B、C彼此互斥;(2)从班级20名男同学及23名女同学中任选一人做代表,每个同学当选的可能性相同。
事件A“选出的同学为男生”发生的概率为20/43;(3)先后抛两枚硬币,可能出现“两个正面”、“两个反面”、“一正一反”3个试验结果,因此,“正面恰好出现一次”的概率为1/3。
2.将一枚均匀的骰子连续抛掷两次,则向上的点数之和为5的概率为______。
(二)知识梳理1.基本事件:试验中出现的每一个结果称为一个基本事件,基本事件有如下特点:(1)任何两个基本事件彼此_______;(2)任何事件(除不可能事件)都可以表示为_________________.2.古典概型的特点:(1)试验包含的基本事件个数________;(2)每个基本事件出现的可能性_________。
3.古典概型的概率公式:设一次试验中所有可能出现的结果有n个,且每个结果出现的可能性都相等,某事件A包含的结果有m个,那么事件A发生的概率为________。
(三)典例分析例1.一个袋中装有四个形状大小完全相同的球,球的标号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的标号之和不大于4的概率;(2)先从袋中随机取一个球,该球的标号为m,将其放回袋中,然后再从袋中随机取一个球,该球的标号为n,求n<m的概率。
概率复习1
相似图形:1.比例基本性质及运用(1)线段成比例及有关概念的意义: 叫做成比例线段,简称比例线段 (2)比例的性质,如果a :b=c :d ,那么 ;反之亦成立。
注意:灵活地运用比例线段的多种不同的变化形式,例由a c =b d 推出b d=a c等,但无论怎样变化,它们都保持ad=bc 的基本性质不变.2. 相似三角形的性质和判定(1)相似三角形定义: 做相似三角形, 叫做相似比.相似比为1的两个三角形 。
(2)相似三角形的性质:① .② .③ .④ . (3)相似三角形的判定:① . ② . ③ .④直角三角形 . 3.相似多边及位似图形(1) 定义: 叫做相似多边形.(2) 相似多边形的性质:①相似多边形的周长的比等于 ;②相似多边形的对应对角线的比等于 ;③相似多边形的面积的比等于 .(3) 位似图形的定义: 叫做位似图形,这个点叫做 ,这时的相似比又叫做 (4)位似图形的性质:① . ② . ③ .4.相似的应用: 相似形的性质与识别在日常生活中有非常广泛的应用,如可应用其对应边成比例来求一些线段的长;可运用相似三角形的原理来进行测量等;物长与影长注意:(1)证线段等积式或等比式成立需注意两个方面:①等积式和等比式的相互转化,利用积相等作为中间过渡进行验证;②相似三角形目标的确定,方法是: ,如果出现点在同一直线上时考虑 代换或 代换 (2)注意使用倒推分析法典型习题1.已知三个数1,2, 3 ,请你再添上一个(只填一个)数,使它们能构成一个比例式,则这个数是 。
2. 如图,AD ⊥BC 于D ,CE ⊥AB 于E ,交 AD 于F ,图中相似三角形的对数是( )A .3B .4C .5D .63. 在比例尺为1:8000的南京市城区地图上,太平南路的长度约为25 cm ,它的实际长度约为( )A .320cmB .320mC .2000cmD .2000m 4. 如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x ,那么x 的值【 】 A. 只有1个B. 可以有2个C. 可以有3个D. 有无数个5.如图,D 是△ABC 的边BC 上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD 的面积为a ,则△ACD 的面积为【 】A .aB .1a 2C .1a 3D .2a 36.如图,△ABO 缩小后变为△A′B′O,其中A 、B 的对应点分别为A′、B′,A′、B′均在图中格点上,若线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P′的坐标为【 】A 、m n 2⎛⎫ ⎪⎝⎭,B 、(m ,n )C 、n m 2⎛⎫ ⎪⎝⎭,D 、m n 22⎛⎫ ⎪⎝⎭,7. 如图所示,在△ABC 中,BC=6,E 、F 分别是AB 、AC 的中点,动点P 在射线EF 上,BP 交CE 于D ,∠CBP 的平分线交CE 于Q ,当CQ=13CE 时,EP+BP= .8. 如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm ,到屏幕的距离为60cm ,且幻灯片中的图形的高度为6cm ,则屏幕上图形的高度为 cm .9.在△ABC 中,P 是AB 上的动点(P 异于A ,B ),过点P 的一条直线截△ABC,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P 的△ABC 的相似线.如图,∠A=36°,AB=AC ,当点P 在AC 的垂直平分线上时,过点P 的△ABC 的相似线最多有 条.10. 如图,矩形ABCD 中,E 为DC 的中点,AD :AB=3:2,CP :BP=1:2,连接EP 并延长,交AB 的延长线于点F ,AP 、BE 相交于点O .下列结论:①EP 平分∠CEB ;②BF 2=PB •EF ;③PF •EF=2AD 2;④EF •EP=4AO •PO .其中正确的是( )A .①②③B .①②④C .①③④D .③④11. 如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(6,0)B .(6,3)C .(6,5)D .(4,2)12如图,四边形ABCD 中,AC 平分∠DAB,∠ADC=∠ACB=90°,E 为AB 的中点, (1)求证:AC 2=AB•AD;(2)求证:CE∥AD; (3)若AD=4,AB=6,求ACAF的值.相似图形:1.比例基本性质及运用(1)线段成比例及有关概念的意义: 叫做成比例线段,简称比例线段 (2)比例的性质,如果a :b=c :d ,那么 ;反之亦成立。
高二数学期末复习之一概率与统计
高二数学期末复习之一概率与统计第一部分.复习目标:1. 了解典型分布列:0~1分布,二项分布,几何分布。
2. 了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。
3. 在实际中经常用期望来比较两个类似事件的水平,当水平相近时,再用方差比较两个类似事件的稳定程度。
4. 了解正态分布的意义,能借助正态曲线的图像理解正态曲线的性质。
5. 了解标准正态分布的意义和性质,掌握正态总体),(2σμN 转化为标准正态总体N (0,1)的公式)()(σμ-Φ=x x F 及其应用。
6. 通过生产过程的质量控制图,了解假设检验的基本思想。
第二部分.内容小结: (Ⅰ)基础知识详析㈠随机事件和统计的知识结构:㈡随机事件和统计的内容提要 1.主要内容是离散型随机变量的分布列、期望与方差,抽样方法,总体分布的估计,正态分布和线性回归。
2.随机变量的概率分布(1)离散型随机变量的分布列:两条基本性质①,2,1(0=≥i p i ...); ②P 1+P 2+ (1)(2)连续型随机变量概率分布:由频率分布直方图,估计总体分布密度曲线y=f(x);总体分布密度函数的两条基本性质: ①f(x) ≥0(x ∈R);②由曲线y=f(x)与x 轴围成面积为1。
3.随机变量的数学期望和方差 (1)离散型随机变量的数学期望:++=2211p x p x E ε…;反映随机变量取值的平均水平。
(2)离散型随机变量的方差:+-+-=222121)()(p E x p E x D εεε…+-+n n p E x 2)(ε…;反映随机变量取值的稳定与波动,集中与离散的程度。
(3)基本性质:b aE b a E +=+εε)(;εεD a b a D 2)(=+。
4.三种抽样方法。
5.二项分布和正态分布(1)记ε是n 次独立重复试验某事件发生的次数,则ε~B (n ,p );其概率,2,1,0,1()(=-==-k p q q p C k P kn k k n n …),n 。
非常全面的概率论与数理统计复习材料
为 21 的倍数的概率 p2;
解:p1=错误!=错误!, p2= 错误!= 错误!
前提是如果在某一区域任取一 例 1 把长度为 a 的棒任意折成三段,求它们可以构成一个三角形的概率;
点,而所取的点落在中任意两 解:设折得的三段长度分别为 x,y 和 a-x-y,那么,样本空间,S={x,y|0xa,0ya,0a-x-ya};
A、A=
B、AB= C、A错误!=
D、B=错误!
运 A1,A2,…,An 构成的一个完备事件组或分斥指 A1,A2,…,An 两两互不相容,且错误!Ai=
算
交换律 A∪B=B∪A A∩B=B∩A 运
结合律 A∪B∪C=A∪B∪C A∩B∩C=A∩B∩C 算
分配律 A∪B∩C=AC∪BC A∩B∪C=A∪C∩B∪C 法
题 例 3 某物品成箱出售,每箱 20 件,假设各箱中含 0、1 件次品的概率分别为和,一顾客在购买时,他可以开箱,从箱中任取
三件检查,当这三件都是合格品时,顾客才买下该箱物品,否则退货;试求:1 顾客买下该箱的概率 ;
2 顾客买下该箱物品,问该箱确无次品的概率 ;
解:设事件 A0—箱中 0 件次品, A1—箱中 1 件次品,事件 B—买下该箱;由已知 PA0=, PA1=,
必然事件---每次试验中必定发生的事件; 不可能事件--每次试验中一定不发生的事件;
事 包含 AB 件 相等 A=B 之 对立事件,也称 A 的逆事件 间 互斥事件 AB=也称不相容事件 的 A,B 相互独立 PAB=PAPB 关
例 1 事件 A,B 互为对立事件等价于 D A、A,B 互不相容 B、A,B 相互独立 C、A∪B=Ω D、A,B 构成对样本空间的一个剖分 例 2 设 PA=0,B 为任一事件,则 C A、A= B、AB C、A 与 B 相互独立 D、A 与 B 互不相容
大学概率论与数理统计必过复习资料及试题解析(绝对好用)汇总
《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系 2.运算规则(1)(2)(3)(4)3.概率满足的三条公理及性质:(1)(2)(3)对互不相容的事件,有(可以取)(4)(5)(6),若,则,(7)(8) 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1)定义:若,则(2)乘法公式:若为完备事件组,,则有(3)全概率公式:(4) Bayes公式: 7.事件的独立性:独立(注意独立性的应用)第二章随机变量与概率分布 1.离散随机变量:取有限或可列个值,满足(1),(2)(3)对任意, 2.连续随机变量:具有概率密度函数,满足(1)(2);(3)对任意,4.分布函数,具有以下性质(1);(2)单调非降;(3)右连续;(4),特别;(5)对离散随机变量,;(6)为连续函数,且在连续点上, 5.正态分布的概率计算以记标准正态分布的分布函数,则有(1);(2);(3)若,则;(4)以记标准正态分布的上侧分位数,则 6.随机变量的函数(1)离散时,求的值,将相同的概率相加;(2)连续,在的取值范围内严格单调,且有一阶连续导数,,若不单调,先求分布函数,再求导。
第三章随机向量1.二维离散随机向量,联合分布列,边缘分布,有(1);(2 (3), 2.二维连续随机向量,联合密度,边缘密度,有(1);(2)(4)(3);,3.二维均匀分布,其中为的面积 4.二维正态分布且; 5.二维随机向量的分布函数有(1)关于单调非降;(2)关于右连续;(3);(4),,;(5);(6)对二维连续随机向量, 6.随机变量的独立性独立(1)离散时独立(2)连续时独立(3)二维正态分布独立,且7.随机变量的函数分布(1)和的分布的密度(2)最大最小分布第四章随机变量的数字特征 1.期望 (1) 离散时 (2) 连续时,;,; (3) 二维时, (4);(5);(6);(7)独立时, 2.方差(1)方差,标准差(2);(3);(4)独立时, 3.协方差(1);;;(2)(3);(4)时,称不相关,独立不相关,反之不成立,但正态时等价;(5)4.相关系数;有, 5.阶原点矩,阶中心矩第五章大数定律与中心极限定理 1.Chebyshev不等式 2.大数定律3.中心极限定理(1)设随机变量独立同分布,或,或或,(2)设是次独立重复试验中发生的次数,,则对任意,或理解为若,则第六章样本及抽样分布 1.总体、样本(1)简单随机样本:即独立同分布于总体的分布(注意样本分布的求法);(2)样本数字特征:样本均值(,);样本方差)样本标准样本阶原点矩,样本阶中心矩 2.统计量:样本的函数且不包含任何未知数 3.三个常用分布(注意它们的密度函数形状及分位点定义)(1)分布,其中标准正态分布,若且独立,则;(2)分布,其中且独立;(3)分布,其中性质 4.正态总体的抽样分布(1);(2 ;(3 且与独立;(4);,(5)(6)第七章参数估计 1.矩估计:(1)根据参数个数求总体的矩;(2)令总体的矩等于样本的矩;(3)解方程求出矩估计 2.极大似然估计:(1)写出极大似然函数;(2)求对数极大似然函数(3)求导数或偏导数;(4)令导数或偏导数为0,解出极大似然估计(如无解回到(1)直接求最大值,一般为min或max) 3.估计量的评选原则,则为无偏;(2) 有效性:两个无偏估计中方差小的有效; (1)无偏性:若《概率论与数理统计》期末试题(2)与解答一、填空题(每小题3分,共15分) 1.设事件仅发生一个的概率为0.3,且,则生的概率为 2.设随机变量服从泊松分布,且,则______.3.设随机变量在区间上服从均匀分布,则随机变量在区间密度为4.设随机变量相互独立,且均服从参数为的指数分布,_________,5.设总体的概率密度为是来自的样本,则未知参数的极大似然估计量为解:1.即所以 .2.由知即解得,故 . 3.设的分布函数为的分布函数为,密度为则因为,所以,即故另解在上函数严格单调,反函数为所以4.,故 .5.似然函数为解似然方程得的极大似然估计为二、单项选择题(每小题3分,共15分) 1.设为三个事件,且相互独立,则以下结论中不正确的是(A)若,则与也独立. (B)若,则(C)若,则与也独立. 与也独立(D)若,则与也独立.() 2.设随机变量的分布函数为,则的值为(A).(B)(C). (D). ()3.设随机变量和不相关,则下列结论中正确的是(A)与独立. (B)(C). (D). () 4.设离散型随机变量和的联合概率分布为若独立,则的值为(A). (A). . ()(C)(D) 5.设总体的数学期望为为来自的样本,则下列结论中正确的是(A)X1是的无偏估计量. (B)X1是的极大似然估计量. (C)X1是的相合(一致)估计量. (D)X1不是的估计量.()解:1.因为概率为1的事件和概率为0的事件与任何事件独立,所以(A),(B),(C)都是正确的,只能选(D)事实上由图可见A与C不独立2.所以 3.由不相关的等价条件知应选(B). 4.若独立则有应选(A). 2 , 9 故应选(A) 5.,所以X1是的无偏估计,应选(A). 三、(7分)已知一批产品中90% 0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率. 解:设‘任取一产品,经检验认为是合格品’ ‘任取一产品确是合格品’则(1)(2) .四、(12分)从学校乘汽车到火车站的途中有3 件是相互独立的,并且概率都是2/5. 设为途中遇到红灯的次数,求的分布列、分布函数、数学期望和方差. 解:的概率分布为即的分布函数为五、(10分)设二维随机变量在区域匀分布. 求(1)关于的边缘概率密度;(2)的分布函数与概率密(1)的概率密度为(2)利用公式其中当或时时故的概率密度为的分布函数为或利用分布函数法六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标和纵坐标互独立,且均服从分布. 求(1)命中环形区域的概率;(2)命中点到目标中心距离1);(2). 七、(11分)设某机器生产的零件长度(单位:cm),今抽取容量为16 样本,测得样本均值,样本方差. (1)求的置信度为0.95 区间;(2)检验假设(显著性水平为0.05). (附注)解:(1)的置信度为下的置信区间为所以的置信度为0.95的置信区间为(9.7868,10.2132)(2)的拒绝域为,因为,所以接受《概率论与数理统计》期末试题(3)与解答一、填空题(每小题3分,共15分)(1)设事件与相互独立,事件与互不相容,事件与互不相容,,,则事件、、中仅发生或仅概率为(2)甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中各取个球,发现它们是同一颜色的,则这颜色是黑色的概率为(3)设随机变量的概率密度为现对察,用表示观察值不大于0.5的次数,则___________. (4)设二维离散型随机变量的分布列为若,则(5)设是总体的样本,是样本方差,若,(注:, , , )解:(1)因为与不相容,与不相容,所以,故同理 . . (2)设‘四个球是同一颜色的’,‘四个球都是白球’,‘四个球都是黑球’则 . 所求概率为所以(3)其中,,(4)的分布为这是因为,由得,故(5)即,亦即 . 二、单项选择题(每小题3分,共15分)(1)设、、为三个事件,且,则有(A)(B)(C)(D)(2)设随机变量的概率密度为且,则在下列各组数中应取(A)(B)(C).(D)(3)设随机变量与相互独立,其概率分布分别为则有())(A)(B)(C)(D)()(4)对任意随机变量,若存在,则等于(A)(B)(C)(D)()(5)设为正态总体的一个样本,表示样本均值,则的置信度为的置信区间为(B)(C)()(D)解(1)由知,故(A)应选C. (2)即时故当应选(3)应选(4)应选(5)因为方差已知,所以的置信区间为应选D. 三、(8分)装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都是一等品,求丢失的也是一等品的概率。
《概率的进一步认识》总复习教案
本章复习【知识与技能】回顾本章内容,用所学的概率知识去解决某些现实问题,再归纳和总结试验频率与理论概率的关系.【过程与方法】学会与人合作,进一步发展学生合作交流的意识和能力.【情感态度】形成解决问题的一些策略,体验解决问题的多样性,发展实践能力和创新精神.【教学重点】用所学的概率知识去解决某些现实问题.【教学难点】用所学的概率知识去解决某些现实问题.一、知识结构【教学说明】通过回顾知识点,使学生掌握各知识点之间的联系.二、释疑解惑,加深理解1.用树状图或表格求概率.回顾:用树状图或表格求概率时应注意什么情况?2.用频率估计概率.如何用频率估计概率?【教学说明】让学生通过知识性内容的小结,了解本章所学内容,如何用所学知识解决实际问题.三、典例精析,复习新知1.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是()A.1/3B.5/12C.1/12D.1/2解析:让黄灯亮的时间处于总时间即为抬头看信号灯时,是黄灯的概率.每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒共60秒,所以是黄灯的概率是5/60=1/12.故选C.解答:C2.以下说法合理的是()A.小明在10次抛图钉的试验中发现有3次钉尖朝上,由此他说钉尖朝上的概率是30%B.抛掷一枚普通的正方体骰子,出现6的概率是1/6的意思是每6次就有1次掷得6C.某彩票的中奖机会是2%,那么如果买100张彩票一定有2张中奖D.在一次课堂上进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.51解析:概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.A选项,10次抛图钉的试验太少,错误;B选项,概率是反映事件发生机会的大小的概念,机会大也不一定发生,错误;C选项,概率是反映事件发生机会的大小的概念,机会大也不一定发生,错误;D选项,根据概率的统计定义,可知正确.解答:D3.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是()A.2/5B.3/10C.3/20D.1/5解析:列举出所有情况,看转盘停止后,指针都落在奇数上的情况数占总情况数的多少即可.列表得:所以两个转盘的组合有20种结果,其中有6种指针都落在奇数,所以指针都落在奇数上的概率是6/20=3/10,故选B.解答:B4.小明每天骑自行车上学都要经过三个安装有红绿灯的路口,假如每个路口红灯和绿灯亮的时间相等,那么,小明从家随时出发去学校,他至少遇到一次红灯的概率是多少?不遇红灯的概率是多少?分析:用列举法列举出符合题意的各种情况的个数,再根据概率公式解答即可.解:A表示红灯,B表示绿灯,根据题意画出树状图,如图所示:他至少遇到一次红灯的概率是7/8;不遇红灯的概率是1/8.【教学说明】通过例题的分析和讲解,突出本章内容的重点、难点和解题的方法.在整节课中起到画龙点睛的作用.四、复习训练,巩固提高1.某学校的初二(1)班,有男生20人,女生24人,其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则抽到一名走读女生的概率是_______.解析:本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.共44名学生,其中女生24人,有20人住宿,即4人走读.故抽到一名走读女生的概率是4/44=1/11.解答:1/112.小明与小亮在一起做游戏时需要确定做游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定,请问在一个回合中两个人都出“布”的概率是______.解析:小明与小亮在用“锤子、剪刀、布”的方式确定时共9种结果,故在一个回合中两个人都出“布”的概率是1/9.解答:1/93.中央电视台《幸运52》栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是________.解析:本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.∵某观众前两次翻牌均获得若干奖金,即现在还有18个商标牌,其中有奖的有3个,∴他第三次翻牌获奖的概率是3/18=1/6.解答:1/64.口袋里有红球4个、绿球5个和黄球若干个,任意摸出一个球是绿色的概率是1/3.求:(1)口袋里黄球的个数;(2)任意摸出一个球是红色的概率.分析:(1)设口袋中有黄球m个,根据概率的求法求任意摸出一个球是绿色的概率,将1/3代入即可求出m的值;(2)口袋里有红球4个,共有15个球任意摸出一个球是红色的概率为4/15.解:(1)设口袋中有黄球m个,任意摸出一个球是绿色的概率是5/(4+5+m)=1/3,解可得m=6,即有6个黄球;(2)口袋里有红球4个,共有4+5+6=15个球,故任意摸出一个球是红色的概率为4/15.5.将分别标有数字1、2、3的三张硬纸片,反面一样,现把三张硬纸片搅均反面朝上.(1)随机抽取一张,恰好是奇数的概率是多少?(2)先抽取一张作为十位数(不放回),再抽取一张作为个位数,能组成哪些两位数,将它们全部列出来,并求所组成的两位数中大于20的概率.分析:根据概率的求法,找准两点:①符合条件的情况数目;②全部情况的总数,二者的比值就是其发生的概率.解:(1)根据题意分析可得:有分别标有数字1、2、3的三张硬纸片,其中奇数有2个,故随机抽取一张,恰好是奇数的概率为2/3;(2)共有12、13、21、23、31、32六种情况,大于20的有4个,故其概率为2/3.6.某校九年级1,2班联合举行毕业晚会,组织者为了使晚会气氛热烈、有趣,策划时计划整场晚会以转盘游戏的方式进行,每个节目开始时,两班各派一人先进行游戏,胜者获得一件奖品,负者表演一个节目.1班的文娱委员利用分别标有数字1,2,3和4,5,6,7的两个转盘(如图)设计了一个游戏方案,两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时,1班代表胜,否则2班代表胜,你认为该方案对双方是否公平?为什么?分析:本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可:解:该方案对双方是公平的.理由如下:列表如下:由上表可知,该游戏所有可能的结果共有12种,其中两数字之和为偶数的有6种,和为奇数的也有6种.所以1班代表获胜的概率为P1=6/12,2班代表获胜的概率为P2=6/12,即P1=P2,所以该游戏方案对双方是公平的.【教学说明】通过练习,巩固概率的基础知识,加深对概率知识、方法及应用的认识.通过老师的辅导,帮助学生对本节内容进行查漏补缺.五、师生互动,课堂小结你有什么收获?请同学们自己谈谈.【教学说明】师生共同小结.在小结时教师根据学生完成以上练习的情况穿插点评.1.布置作业:教材“复习题”中第2、4、5题.2.完成创优作业中本课时部分.本节课复习课,力求串起全章主要知识点,达到复习目的.使学生具备随机观念,从而能明智地应付变化和不确定性,是概率教学的主要目标.随机观念的培养需要一个长期的过程,教学中以学生自主活动和合作交流为主,使学生在活动中加深对知识的理解,并能进一步应用.。
概率复习课教案初中
概率复习课教案初中课程目标:1. 巩固学生对概率基本概念的理解;2. 加深学生对概率计算方法的掌握;3. 提高学生解决实际问题的能力。
教学内容:1. 概率的基本概念;2. 概率的计算方法;3. 实际问题中的应用。
教学过程:一、导入(5分钟)1. 复习概率的定义:概率是指某个事件发生的可能性。
2. 复习概率的取值范围:概率的取值范围在0到1之间,包括0和1。
二、概率的基本计算方法(15分钟)1. 复习必然事件的概率:必然事件的概率为1。
2. 复习不可能事件的概率:不可能事件的概率为0。
3. 复习随机事件的概率:随机事件的概率大于0且小于1。
4. 复习独立事件的概率:独立事件的概率等于各自概率的乘积。
三、实际问题中的应用(20分钟)1. 举例讲解如何运用概率解决实际问题,如抛硬币、抽奖、骰子等。
2. 让学生尝试解决一些简单的实际问题,如计算抛两次硬币出现正面的概率。
四、课堂练习(15分钟)1. 布置一些有关概率的练习题,让学生独立完成。
2. 对学生的练习进行讲解和指导,纠正错误。
五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结概率的基本概念和计算方法。
2. 强调概率在实际生活中的重要性,鼓励学生学会运用概率解决实际问题。
教学评价:1. 课堂练习的正确率;2. 学生对实际问题中概率应用的掌握程度;3. 学生对概率知识的综合运用能力。
教学资源:1. 概率的相关教材或教辅;2. 练习题;3. 教学PPT或黑板。
教学建议:1. 在课堂上鼓励学生积极参与,提问回答问题;2. 注重培养学生的动手能力,多让学生实际操作;3. 注重培养学生的逻辑思维能力,引导学生学会分析问题;4. 因材施教,针对不同学生的学习情况给予适当的指导。
高考数学专题复习讲义 概率 人教版
高考数学专题复习讲义 概率 人教版1. 设只有颜色不同的3只球,每只球都以同样的可能性落入5个格子的每一个格子中,试求:(1)某指定的3个格子中各有一只球的概率; (所求概率为P(A)=35!3=1256)(2)3只球各在一个格子中的概率. (所求概率P(B)=333355C A =2512。
)2.一袋中装有a 只黑球,b 只白球,它们大小相同,编号不同,现在把球随机地一只一只摸出来,求第k次模出的球是黑球的概率(1≤k ≤a +b ). (b a a A aA b a ba b a b a +=++-+-+11) 3.将大小相同但颜色不同的8只白乒乓球和2只黄乒乓球装入不透明的袋中,每次任意抽取一个辨别颜色,测试后不放回袋中,求下列事件的概率;(1)抽三次,第三只是白乒乓球; (P (A )=543102918=A A C 或P (A )=54108=) (2)直到第6只时才把两只黄乒乓球找出来. (P (B )=610124815A C A A =91) 4.从甲口袋内模出1个白球的概率是41,从乙口袋内模出1个白球的概率是51,从两个口袋内各模出1个球,那么53是两个球 ( B ) 5.甲坛子中有3个白球,2个黑球;乙坛子中有1个白球,3个黑球;从这两个坛子中分别摸出1个球,假设每一个球被摸出的可能性都相等。
问:(1)它们都是白球的概率是多少?(2)它们都是黑球的概率是多少?(3)甲坛子中摸出白球,乙坛子中摸出黑球的概率是多少?解:(1)显然,一次试验中可能出现的结果有n=15C 14C =20个,而这个事件包含的结果有m=1113C C =3,根据等可能事件的概率计算公式得:P 1=203=n m 。
(2)同(1)可得:P 2=10320614151312==C C C C 。
(3)同理:P 3=20914151313=C C C C ; 6. 同时投掷四枚均匀硬币一次,求:(1)恰有两枚“正面向上”的概率: (P(A)=83166=.) (2)至少有两枚“正面向上”的概率。
初中数学概率知识点总复习(1)
初中数学概率知识点总复习(1)一、选择题1.下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,-2的中位数是4D.“367人中有2人同月同日出生”为确定事件【答案】D【解析】【分析】根据可能性的大小、全面调查与抽样调查的定义及中位数概念、必然事件、不可能事件、随机事件的概念进行判断即可.【详解】A、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;B、可能性是1%的事件在一次试验中可能发生,此选项错误;C、数据3,5,4,1,-2的中位数是3,此选项错误;D、“367人中有2人同月同日出生”为必然事件,此选项正确;故选D.【点睛】本题主要考查可能性的大小、全面调查与抽样调查的定义及中位数概念、随机事件,熟练掌握基本定义是解题的关键.2.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.12B.13C.49D.59【答案】C【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是4 9 .故答案选:C.【点睛】本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.3.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.4.岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是()A.12B.13C.16D.19【答案】B【分析】先画树状图(国学诗词组、篮球足球组、陶艺茶艺组分别用A、B、C表示)展示所有9种等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可.【详解】画树状图为:(国学诗词组、篮球足球组、陶艺茶艺组分别用A. B. C表示)共有9种等可能的结果数,其中小斌和小宇两名同学选到同一课程的结果数为3,所以小斌和小宇两名同学选到同一课程的概率=31 93 ,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.5.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.45【答案】B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.6.下列事件是必然事件的是()A.某彩票中奖率是1%,买100张一定会中奖B.长度分别是3,5,6cm cm cm的三根木条能组成一个三角形C.打开电视机,正在播放动画片D.2018年世界杯德国队一定能夺得冠军【答案】B【解析】【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.A、某彩票中奖率是1%,买100张一定会中奖,属于随机事件,不符合题意;B、由于6-5<3<5+6,所以长度分别是3cm,5cm,6cm的三根木条能组成一个三角形,属于必然事件,符合题意;C、打开电视机,正在播放动画片,属于随机事件,不符合题意;D、2018年世界杯德国队可能夺得冠军,属于随机事件,不符合题意.故选:B.【点睛】此题考查必然事件、不可能事件、随机事件的概念,理解概念是解题关键.7.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.136B.16C.112D.13【答案】A【解析】【分析】本题是一个由三步才能完成的事件,共有6×6×6=216种结果,每种结果出现的机会相同,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,即可求出a,b,c正好是直角三角形三边长的概率.【详解】P(a,b,c正好是直角三角形三边长)=61 21636故选:A【点睛】本题考查概率的求法,概率等于所求情况数与总情况数之比.本题属于基础题,也是常考题型.8.在一个不透明的布袋中,红色、黑色、白色的小球共有50个,除颜色外其他完全相同.乐乐通过多次摸球试验后发现,摸到红色球、黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是()A.20 B.15 C.10 D.5【答案】B【解析】【分析】由频率得到红色球和黑色球的概率,用总数乘以白色球的概率即可得到个数.【详解】白色球的个数是50(127%43%)?-=15个,【点睛】此题考查概率的计算公式,频率与概率的关系,正确理解频率即为概率是解题的关键.9.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程根据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其他垃圾现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.16B.18C.112D.116【答案】C【解析】【分析】根据题意,由列表法得到投放的所有结果,然后正确的只有1种,即可求出概率.【详解】解:由列表法,得:∴共有12种等可能的结果数,其中将两包垃圾随机投放到其中的两个垃圾箱中,能实现对应投放的结果为1种,∴投放正确的概率为:112 P=;故选择:C.【点睛】本题考查了列表法与树状图法求概率,解题的关键是正确求出所有等可能的结果数.10.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(),m n在函数6yx=图象的概率是()A.12B.13C.14D.18【解析】【分析】根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.【详解】Q点(),m n在函数6yx=的图象上,6mn∴=.列表如下:m﹣1﹣1﹣1222333﹣6﹣6﹣6 n23﹣6﹣13﹣6﹣12﹣6﹣123 mn﹣2﹣36﹣26﹣12﹣36﹣186﹣12﹣18mn的值为6的概率是41 123=.故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出mn=6的概率是解题的关键.11.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.B.C.D.【答案】B【解析】【分析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.故选B.考点:简单概率计算.12.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件【答案】C【解析】【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选C.【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.13.如图,由四个直角边分别是6和8的全等直角三角形拼成的“赵爽弦图”,随机往大正方形区域内投针一次,则针扎在小正方形GHEF部分的概率是()A.34B.14C.124D.125【答案】D【解析】【分析】求出AB,HG的边长,进而得到正方形GHEF的面积和四个小直角三角形的面积,求出比值即可.【详解】解:∵AH=6,BH=8,勾股定理得AB=10,∴HG=8-6=2,S△AHB=24,∴S正方形GHEF=4,四个直角三角形的面积=96,∴针扎在小正方形GHEF 部分的概率是1004=125故选D. 【点睛】本题考查了几何概型的实际应用,属于简单题,将概率问题转换成求图形的面积问题是解题关键.14.某人随意投掷一枚均匀的骰子,投掷了n 次,其中有m 次掷出的点数是偶数,即掷出的点数是偶数的频率为mn,则下列说法正确的是 ( ) A .m n 一定等于12 B .m n 一定不等于12C .m n 一定大于12 D .投掷的次数很多时,m n 稳定在12附近 【答案】D 【解析】某人随意投掷一枚均匀的骰子,投掷了n 次,其中有m 次掷出的点数是偶数,即掷出的点数是偶数的频率为m n, 则投掷的次数很多时mn稳定在12附近, 故选D.点睛:本题考查了频率估计概率的知识点,根据在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近判断即可.15.有大小、形状、颜色完全相同的四个乒兵球,球上分别标有数字2,3,5,6,将这四个球放入不透明的袋中搅匀,不放回地从中随机连续抽取两个,则这两个球上的数字之积为奇数的概率是( ) A .16B .13C .23D .14【答案】A 【解析】 【分析】根据题意先画出树状图,得出所有等可能的情况数和两个球上的数字之积为奇数的情况数,然后根据概率公式即可得出答案. 【详解】根据题意画树状图如下:∵一共有12种等可能的情况数,这两个球上的数字之积为奇数的有2种情况,∴这两个球上的数字之积为奇数的概率是21= 126.故选A.【点睛】此题考查的是树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.16.下列事件中,属于确定事件的是()A.抛掷一枚质地均匀的骰子,正面向上的点数是6B.抛掷一枚质地均匀的骰子,正面向上的点数大于6C.抛掷一枚质地均匀的骰子,正面向上的点数小于6D.抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次【答案】B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、抛掷一枚质地均匀的骰子,正面向上的点数是6是随机事件;B、抛掷一枚质地均匀的骰子,正面向上的点数大于6是不可能事件;C、抛一枚质地均匀的骰子,正面向上的点数小于6是随机事件;D、抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次是随机事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则0a<是不可能事件;④16的平方根是4±4=±;其中正确的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】①根据概率的定义即可判断;②根据无理数的概念即可判断;③根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断. 【详解】①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;②无理数是无限不循环小数,不只包含开方开不尽的数,故错误; ③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确;④16的平方根是4±,用式子表示是4±,故错误; 综上,正确的只有③, 故选:A . 【点睛】本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.18.下列说法中正确的是( ).A .“打开电视,正在播放《新闻联播》”是必然事件B .一组数据的波动越大,方差越小C .数据1,1,2,2,3的众数是3D .想了解某种饮料中含色素的情况,宜采用抽样调查 【答案】D 【解析】试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B 、一组数据的波动越大,方差越大,故本选项错误;C 、数据1,1,2,2,3的众数是1和2,故本选项错误;D 、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确. 故选D .考点:全面调查与抽样调查;众数;方差;随机事件.19.下列事件是必然发生事件的是( ) A .打开电视机,正在转播足球比赛 B .小麦的亩产量一定为1000公斤C .在只装有5个红球的袋中摸出1球,是红球D .农历十五的晚上一定能看到圆月 【答案】C【解析】试题分析:必然事件就是一定发生的事件,即发生的概率是1的事件.A.打开电视机,正在转播足球比赛是随机事件;B.小麦的亩产量一定为1000公斤是随机事件;C.在只装有5个红球的袋中摸出1球,是红球是必然事件;D.农历十五的晚上一定能看到圆月是随机事件.故选C.考点: 随机事件.20.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29 B .13 C .49 D .59【答案】C【解析】【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率.【详解】解不等式组得:7x a x ≤⎧⎨>-⎩, 由不等式组至少有四个整数解,得到a≥﹣3,∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5,分式方程去分母得:﹣a ﹣x+2=x ﹣3,解得:x =52a - , ∵分式方程有非负整数解,∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个,∴P =49故选:C .【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.。
【概率论期末考试】复习题1
2020学年概率论与数理统计期末复习含答案综合题1.设有两个口袋,甲袋装有2个白球,1个黑球,乙袋装有1个白球,2个黑球。
由甲袋任取一球放入乙袋,再从乙袋中取出一球,求(1)从乙袋取到白球的概率;(2)如果知道从乙袋取出的是白球,则从甲袋取出放入乙袋的球,黑白哪种颜色的可能性更大?解:设A=“从甲取到白球”,B=“从乙取到白球”,则有=U B AB AB(1)由已知,可算得以下概率2111(),(),(|),(|),3324P A P A P B A P B A ====由全概率公式,得5()()(|)()(|)12P B P A P B A P A P B A =+=(2)由贝叶斯公式,可得:()4()1(|),(|)()5()5P AB P AB P A B P A B P B P B ==== 即,如果知道从乙袋取出的是白球,则从甲袋取出放入乙袋的球,白色的可能性更大。
2. 设随机变量X 的概率分布为f x A x x ()=<<⎧⎨⎩,,其它010,以Y 表示对X 的三次独立重复观察中事件{}X ≤12出现的次数,试确定常数A 并求概率P Y {}=2. .解:由归一性⎰⎰+∞∞-===2)(110AAxdx dx x f所以A =2。
即⎩⎨⎧<<=其它,,0102)(x x x f412)()21(}21{21021====≤⎰⎰∞-xdx dx x f F X P 所以)413(~,B Y ,从而}2{=Y P =64943)41(223=⨯C3.某人上班路上所需时间(30,100)X N :(单位:min ),已知上班时间是8:30,他每天7:50出门,求:(1)某天迟到的概率;(2)一周(以5天计)最多迟到一次的概率.解:(1)因为上班时间服从(30,100)X N :,所以迟到的概率为4030(40)1(40)1()1(1)0.158710P X F -≥=-=-Φ=-Φ= (2)设一周内迟到次数为Y ,则(5,0.1587)Y B :,至多迟到一次的概率为 (1)(1)(0)P Y P Y P Y ≤==+=4550.15870.84130.84130.819=⨯⨯+=4.箱中装有10件产品,其中8件正品,2件次品,从中任取2件,X 表示取到的次品数,求(1)X 的分布律;(2)X 的分布函数;(3)(02)P X <≤.解:(1)2821028045C P X C ===(), 同理可得(2)0 028145()44 12451 x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≤⎩02(3) 17(02)(2)(1)45P X F F <≤=-=5.离散型随机向量(,)X Y 有如下的概率分布:(1) 求随机变量,X Y 的边缘分布;(2)问随机变量,X Y 是否独立?并说明理由;(3)计算(0)P XY ≠ 解:(1) X 有分布Y有分布(2)因为===≠===⨯,P X Y P X P Y0(2,0)(2)(0)0.30.1所以X,Y不独立.(3) (0)0.6P XY≠=6. 设二维随机变量(X,Y)的分布律为求:(1)(X,Y)关于X的边缘分布律;(2)X+Y解:(1)X的分布律为(2)X+Y的可能取值为:-1,0,1,2,且由联合分布律,可求得:+=-==-==P X Y P X Y(1)(1,0)0.2同理:(0)(1,1)(0,0)0.2 P X Y P X Y P X Y+===-=+=== +====+===P X Y P X Y P X Y(1)(0,1)(1,0)0.5P X Y P X Y+=====(2)(1,1)0.1∴+的分布律为X Y7.设二维随机变量(X ,Y )的分布律为XY -1 0 10 0.2 0.1 0.3 1 0.1 0.2 0.1求:(1)(X ,Y ) 解:(1)Y 的分布律为Y 0 1 P0.60.4(2)X Y -的可能取值为:2,10,1,--, 且由联合分布律,可求得: (2)(1,1)0.1P X Y P X Y -=-==-== 5 同理: (1)(0,1)(1,0)0.4P X Y P X Y P X Y -=-===+=-==(0)(1,1)(0,0)0.2P X Y P X Y P X Y -===-=+===(1)(1,0)0.3P X Y P X Y -=====的分布律为∴-X Y8. 设二维随机变量(X ,Y )的联合分布律为1) 求X 和Y 的边缘分布;2) X 与Y 是否相互独立? 3)计算(2)P XY < 解 ( 2 5 8 P {Y=y i } 0.4 0.15 0.30 0.350.8 0.80.05 0.12 0.03 0.2 {}i P X x =0.2 0.420.38(2) 因{2}{0.4}0.20.8P X P Y ===⨯g 0.160.15(2,0.4),=≠===P X Y 故X 与Y 不独立. (3) 因 (2)0.150.050.2<=+=P XYX Y - -2 -1 0 12 P0.10.40.20.3Y X2 5 8 0.4 0.80.15 0.30 0.35 0.05 0.12 0.03XY9. 已知随机变量ξ只取-1,0,1,2四个值,相应的概率依次为c 21,c 43,c85,c167,确定常数c ,并计算}0|1{≠<ξξP 和ξE . 解: 由于c 21+c 43+c 85+c167=1,因此1637=c .32.0}0{}1{}0{}0,1{}0|1{=≠-==≠≠<=≠<ξξξξξξξP P P P P37113716167285143021)1(=⋅⎪⎭⎫ ⎝⎛⋅+⋅+⋅+⋅-=ξE10. 某柜台做顾客调查,设每小时到达柜台的顾额数X 服从泊松分布,则()X P λ:,若已知12P X P X ===()(),且该柜台销售情况Y (千元)满足22Y X =+.试求:(1) 参数λ的值;(2) 一小时内至少有一个顾客光临的概率;(3) 该柜台每小时的平均销售情况E Y (). 解: (1)由题意12121!2!PX ee P X λλλλ--=====()()222!λλλ∴=∴=(2)在一小时内至少有一个顾客光临的概率为022211(0)110!P X P X e e --≥=-==-=-()(3)22()()()D X E X EX =-Q 222()()()6E X EX D X λλ∴=+=+=2()(2)628()E Y E X ∴=+=+=千元11.某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望.解: 令A k ={在第k 次射击时击中目标},A 0={4次都未击中目标}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.随机事件与概率
(1)在条件S 下一定会发生的事件,叫做相对于条件S 的必然事件;肯定不会发生的事件,叫做相对于条件S 的不可能事件;必然事件和不可能事件统称为相对于条件S 的确定事件.
(2) 在条件S 下可能发生也可能不发生的事件,叫做相对于条件S 的随机事件.一般用大写字母A ,B ,C 等表示随机事件,简称为事件.
(3)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的
次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n A n
为事件A 出现的频率. (4)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A )稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率,简称为A 的概率.
(5) 频率与概率有本质的区别,不可混为一谈.频率随着试验次数的改变而变化,概率却是一个常数,它是频率的科学抽象.当试验次数越来越多时,频率向概率靠近,只要次数足够多,所得频率就可以近似地当作随机事件的概率.
例1.给出下列事件:①明天进行的某场足球赛的比分是;②下周一某地的最高气温与最低气温相差;③同时掷两颗骰子,向上一面的两个点数之和不小于2;④射击1次,命中靶心;⑤当为实数时,.其中,必然事件有 ;不可能事件有 ;随机事件有 .
变式训练:下列结论正确的是________.(填序号)
① 事件A 的概率为P(A),则必有0<P(A)<1;
② 事件A 的概率P(A)=0.999,则事件A 是必然事件;
③ 用某种药物对患有胃溃疡的500名病人治疗,结果有380人有明显的疗效,现在胃溃疡的病人服用此药,则估计有明显疗效的可能性为76%;
④ 某奖券中奖率为50%,则某人购买此券10张,一定有5张中奖.
例2.袋中有100个大小相同的红球、白球和黑球,从中任取一球,摸出红球、白球的概率分别是和,那么黑球共有 个.
变式训练:从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量不小于30克的概率为________.
例3.一个口袋中装有5个白球与3个黑球,从中任意取出一只球.
(1)“取出的球是红球”是什么事件,它的概率是多少?
(2)“取出的球是黑球”是什么事件,它的概率是多少?
(3)“取出的球是白球或黑球”是什么事件,它的概率是多少?
3:110C x 2440x x ++<0.400.35
例4
(1)
(2) 这位射击运动员射击一次,击中10环的概率为多少?
(1
(2)若再用此仪器测量该建筑物一次,求测得资料为70的概率.
例5、从装有2个红球和2个黑球的口袋内任取2个球,那么下列事件中:
①至少有1个黑球与都是黑球;②至少有1个黑球与至少有1个红球;
③恰有1个黑球与恰有2个黑球;④至少有1个黑球与都是红球。
是互斥事件的有_____________;是对立事件的有_____________.
变式训练:1.一枚均匀的正方体玩具的各个面上分别标以数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则( )
A.A与B是互斥而非对立事件
B.A与B是对立事件
C.B与C是互斥而非对立事件
D.B与C是对立事件
2.从装有5个红球和3个白球的口袋内任取3个球,则互斥而不对立的事件有.
①至少有一个红球,都是红球②至少有一个红球,都是白球
③至少有一个红球,至少有一个白球④恰有一个红球,恰有两个红球
3.给出下列命题:①对立事件一定是互斥事件;②A,B是两个事件,则P(A+B)=P(A)+P(B);
③若事件A,B,C两两互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则事件A,B 是对立事件.其中所有不正确命题的序号为.
二.古典概型概率
练习:判断下列命题是否正确:
(1)掷两枚硬币,等可能出现“两个正面”“两个反面”“一正一反”三种结果;
(2)某袋中装有大小均匀的三个红球、两个黑球、一个白球,任取一球,那么每种颜色的球被摸到的可能性相同;
(3) 从中任取一个数,取到的数小于与不小于的可能性相同;
(4) 分别从3名男同学、4名女同学中各选一名代表,男、女同学当选的可能性相同;
(5) 五人抽签,甲先抽签,乙后抽,那么乙与甲抽到某号中奖签的可能性不同. 例1、盒子中有大小相同的3只白球,2只红球.
(1)若从中一次取出两球,求至少有一个红球的概率
(2)若从中取出一球,不放回再取一球,求取出两球中恰有一个白球的概率
(3)若从中取出一球,放回后再取一球,求两球都是白球的概率.
例2、在甲、乙两个盒子中分别装有标号为1、2、3、4、5的五个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.
(1) 求事件“取出的两个球上标号为相邻整数”的概率;
(2) 求事件“取出的两个球上标号之和能被3整除”的概率.
变式训练:1.(2014陕西,文6)从正方形4个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )
A.15
B.25
C.35
D.45 2.(2014课标全国Ⅰ,文13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .
3.一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是 .
4,3,2,1,0,1,2----00
4..(2014四川,文16)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.
(1)求“抽取的卡片上的数字满足a+b=c”的概率;
(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.
古典概型的交汇问题
类型一古典概型与平面向量的交汇
例3连掷两次骰子得到的点数分别为m和n,记向量a=(m,n)与向量b=(1,-1)的夹角为θ.则θ∈0,π
2
的概率是( )
A.5
12B.1
2
C.7
12
D.5
6
类型二古典概型与直线、圆的交汇
例4连掷骰子两次得到的点数分别记为a和b,则使直线3x-4y=0与圆(x-a)2-(y-b)2=4相切的概率为.
类型三古典概型与函数的交汇
例5设a∈{2,4},b∈{1,3},函数f(x)=1
2
ax2+bx+1.
(1)求f(x)在区间(-∞,-1]上是减函数的概率;
(2)从f(x)中随机抽取两个,求它们在(1,f(1))处的切线互相平行的概率.
变式训练:将一枚骰子先后抛掷2次,观察向上的点数,求:
(1)两数中至少有一个奇数的概率;
(2)以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15的外部或圆上的概率.
古典概型与统计的综合问题
例6(2014福建,文20)根据世行2013年新标准,人均GDP低于1035美元为低收入国家;人均GDP 为1035~4085美元为中等偏下收入国家;人均GDP为4085~12616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:
(1)
(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.
变式训练:(2017·成都模拟)某省2016年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等级划分标准为:85分及以上,记为A等;分数在[70,85)内,记为B 等;分数在[60,70)内,记为C等;60分以下,记为D等,同时认定A,B,C等为合格,D等为不合格,已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出甲校样本的频率分布直方图如图1所示,乙校的样本中等级为C,D的所有数据的茎叶图如图2所示.
(1)求图中x的值,并根据样本数据比较甲、乙两校的合格率;
(2)在乙校的样本中,从成绩等级为C,D的学生中随机抽取2名学生进行调研,求抽出的2名学生中至少有1名学生成绩等级为D的概率.。