高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ)章章末检测B pdf版含解析
2020高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.1习题课 Word版含解析
§2.1 习题课一、选择题1.(1 22-⎡⎤⎢⎥⎣⎦的值为( ) A.2B.- 2C.22D.-222.化简3a-b3+a-2b2的结果是( )A.3b-2a B.2a-3b C.b或2a-3b D.b3.若0<x<1,则2x,(12)x,0.2x之间的大小关系是( )A.2x<0.2x<(12)x B.2x<(12)x<0.2xC.(12)x<0.2x<2x D.0.2x<(12)x<2x4.若函数则f(-3)的值为( )A.18 B.12C.2D.85.函数f(x)=a x-b的图象如图所示,其中a,b均为常数,则下列结论正确的是( )A.a>1,b>0B.a>1,b<0C.0<a<1,b>0D.0<a<1,b<06.函数f(x)=4x+12x的图象( )A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于y轴对称二、填空题7.计算:120.064--(-14)0+160.75+120.01-=___________________________________.8.已知10m=4,10n=9,则3210m n-=________.9.函数y=1-3x(x∈[-1,2])的值域是________.三、解答题10.比较下列各组中两个数的大小:(1)0.63.5和0.63.7;(2)(2)-1.2和(2)-1.4;(3)1332⎛⎫⎪⎝⎭和2332⎛⎫⎪⎝⎭;(4)π-2和(13)-1.3.11.函数f(x)=a x(a>0,且a≠1)在区间[1,2]上的最大值比最小值大a2,求a的值.能力提升12.已知f(x)=aa2-1(a x-a-x)(a>0且a≠1),讨论f(x)的单调性.13.根据函数y=|2x-1|的图象,判断当实数m为何值时,方程|2x-1|=m无解?有一解?有两解?§2.1 习题课作业设计1.C [原式=122-=12=22.] 2.C [原式=(a -b )+|a -2b |=⎩⎨⎧ b , a ≤2b ,2a -3b ,a >2b .]3.D [当0<x <1时,2x >1,(12)x <1, 对于(12)x ,(0.2)x ,不妨令x =12, 则有0.5>0.2.] 4.A [f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=f (1+2)=f (3)=2-3=18.]5.D [f(x)=a x-b的图象是由y=a x的图象左右平移|b|个单位得到的,由图象可知f(x)在R上是递减函数,所以0<a<1,由y=a x过点(0,1)得知y=a x的图象向左平移|b|个单位得f(x)的图象,所以b<0.]6.D [f(-x)=4-x+12-x=1+4x2x=f(x),∴f(x)是偶函数,图象关于y轴对称.]7.48 5=0.4-1-1+23+0.1=52-1+8+110=485.8.8 39.[-8,2 3 ]解析因为y=3x是R上的单调增函数,所以当x∈[-1,2]时,3x∈[3-1,32],即-3x∈[-9,-13],所以y=1-3x∈[-8,23].10.解(1)考查函数y=0.6x.因为0<0.6<1,所以函数y=0.6x在实数集R上是单调减函数.又因为3.5<3.7,所以0.63.5>0.63.7.(2)考查函数y=(2)x.因为2>1,所以函数y=(2)x在实数集R上是单调增函数.又因为-1.2>-1.4,所以(2)-1.2>(2)-1.4.(3)考查函数y=(32)x.因为32>1,所以函数y=(32)x在实数集R上是单调增函数.又因为13<23,所以1332⎛⎫⎪⎝⎭<2332⎛⎫⎪⎝⎭.(4)∵π-2=(1π)2<1,(13)-1.3=31.3>1,∴π-2<(13)-1.3.11.解(1)若a>1,则f(x)在[1,2]上递增,∴a2-a=a 2,即a=32或a=0(舍去).(2)若0<a<1,则f(x)在[1,2]上递减,∴a-a2=a2,即a=12或a=0(舍去).综上所述,所求a的值为12或32.12.解∵f(x)=aa2-1(a x-1a x),∴函数定义域为R,设x1,x2∈(-∞,+∞)且x1<x2,∴当a>1时,ax1<ax2,aa2-1>0∴f(x1)-f(x2)<0,f(x1)<f(x2),f(x)为增函数,当0<a<1时,,aa2-1<0∴f(x1)-f(x2)<0,f(x1)<f(x2),∴f(x)为增函数,综上,f(x)在R上为增函数.13.解函数y=|2x-1|的图象可由指数函数y=2x的图象先向下平移一个单位长度,然后再作x轴下方的部分关于x轴的对称图形,如图所示.函数y=m的图象是与x轴平行的直线,观察两图象的关系可知:当m<0时,两函数图象没有公共点,此时方程|2x-1|=m无解;当m=0或m≥1时,两函数图象只有一个公共点,此时方程|2x-1|=m有一解;当0<m<1时,两函数图象有两个公共点,此时方程|2x-1|=m有两解.。
2020高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.3 Word版含解析
§2.3 幂函数一、选择题1.下列函数中不是幂函数的是( )A.y=x B.y=x3C.y=2x D.y=x-12.幂函数f(x)的图象过点(4,12),那么f(8)的值为( )A.24B.64C.22D.1 643.下列是y=23x的图象的是( )4.图中曲线是幂函数y=x n在第一象限的图象,已知n取±2,±12四个值,则相应于曲线C1,C2,C3,C4的n依次为( )A.-2,-12,12,2B.2,12,-12,-2C.-12,-2,2,12D.2,12,-2,-125.设a=2535⎛⎫⎪⎝⎭,b=3525⎛⎫⎪⎝⎭,c=2525⎛⎫⎪⎝⎭,则a,b,c的大小关系是( )A.a>c>b B.a>b>cC.c>a>b D.b>c>a6.函数f(x)=xα,x∈(-1,0)∪(0,1),若不等式f(x)>|x|成立,则在α∈{-2,-1,0,1,2}的条件下,α可以取值的个数是( )A.0B.2C.3D.4二、填空题7.给出以下结论:①当α=0时,函数y=xα的图象是一条直线;②幂函数的图象都经过(0,0),(1,1)两点;③若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大;④幂函数的图象不可能在第四象限,但可能在第二象限.则正确结论的序号为________.8.函数y=12x+x-1的定义域是____________.9.已知函数y=x-2m-3的图象过原点,则实数m的取值范围是____________________.三、解答题10.比较1.121、121.4、131.1的大小,并说明理由.11.如图,幂函数y =x3m -7(m ∈N )的图象关于y 轴对称,且与x 轴、y 轴均无交点,求此函数的解析式.能力提升12.已知函数f (x )=(m 2+2m )·21m m x +-,m 为何值时,函数f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.13.点(2,2)在幂函数f (x )的图象上,点(-2,14)在幂函数g (x )的图象上,问当x 为何值时,有:(1)f (x )>g (x );(2)f (x )=g (x );(3)f (x )<g (x ).§2.3 幂函数作业设计1.C [根据幂函数的定义:形如y =x α的函数称为幂函数,选项C 中自变量x 的系数是2,不符合幂函数的定义,所以C 不是幂函数.]2.A [设幂函数为y=xα,依题意,12=4α,即22α=2-1,∴α=-1 2 .∴幂函数为y=12x-,∴f(8)=128-=18=122=24.]3.B [y=23x=3x2,∴x∈R,y≥0,f(-x)=3-x2=3x2=f(x),即y=23x是偶函数,又∵23<1,∴图象上凸.]4.B [作直线x=t(t>1)与各个图象相交,则交点自上而下的排列顺序恰好是按幂指数的降幂排列的.]5.A [根据幂函数与指数函数的单调性直接可以判断出来,y=25x在x>0时是增函数,所以a>c;y=(25)x在x>0时是减函数,所以c>b.]6.B [因为x∈(-1,0)∪(0,1),所以0<|x|<1.要使f(x)=xα>|x|,xα在(-1,0)∪(0,1)上应大于0,所以α=-1,1显然是不成立的.当α=0时,f(x)=1>|x|;当α=2时,f(x)=x2=|x|2<|x|;当α=-2时,f(x)=x-2=|x|-2>1>|x|.综上,α的可能取值为0或-2,共2个.]7.④解析当α=0时,函数y=xα的定义域为{x|x≠0,x∈R},故①不正确;当α<0时,函数y=xα的图象不过(0,0)点,故②不正确;幂函数y=x-1的图象关于原点对称,但其在定义域内不是增函数,故③不正确.④正确.8.(0,+∞)解析y=12x的定义域是[0,+∞),y=x-1的定义域是(-∞,0)∪(0,+∞),再取交集.9.m<-3 2解析 由幂函数的性质知-2m -3>0, 故m <-32.10.解 考查函数y =1.1x ,∵1.1>1, ∴它在(0,+∞)上是增函数.又∵12>13,∴121.1>131.1.再考查函数y =12x ,∵12>0,∴它在(0,+∞)上是增函数. 又∵1.4>1.1,∴121.4>121.1, ∴121.4>121.1>131.1.11.解 由题意,得3m -7<0. ∴m <73.∵m ∈N ,∴m =0,1或2, ∵幂函数的图象关于y 轴对称, ∴3m -7为偶数. ∵m =0时,3m -7=-7,m =1时,3m -7=-4, m =2时,3m -7=-1.故当m =1时,y =x -4符合题意.即y =x -4. 12.解 (1)若f (x )为正比例函数, 则⎩⎨⎧m 2+m -1=1,m 2+2m ≠0⇒m =1.(2)若f (x )为反比例函数, 则⎩⎨⎧m 2+m -1=-1,m 2+2m ≠0⇒m =-1.(3)若f (x )为二次函数,则⎩⎨⎧m 2+m -1=2,m 2+2m ≠0⇒m =-1±132. (4)若f (x )为幂函数,则m 2+2m =1, ∴m =-1± 2.13.解 设f (x )=x α,则由题意,得 2=(2)α,∴α=2,即f (x )=x 2. 设g (x )=x β,由题意,得14=(-2)β,∴β=-2,即g (x )=x -2.在同一平面直角坐标系中作出f (x )与g (x )的图象,如图所示. 由图象可知:(1)当x >1或x <-1时,f (x )>g (x );(2)当x =±1时,f (x )=g (x ); (3)当-1<x <1且x ≠0时,f (x )<g (x ).。
高一数学必修一配套课时作业:第二章基本初等函数(Ⅰ)2.1.1Word版含解析
4b 3 2 3 ab a3
2x- xy
13.若 x>0,y>0,且 x-
xy-2y= 0,求 y+2
的值. xy
n 1.
an与 (
n
a)n
的区别
(1) n an是实数 an 的 n 次方根,是一个恒有意义的式子,不受 n 的奇偶性限制,
a∈R,但这个式子的值受 n 的奇偶性限制:当 n 为大于 1 的奇数时, n an=a;
[2,
7 3)∪
(73,+
∞
),∴③不正确;
④中,∵ 100a=5,10b=2,
当 n 为大于 1 的偶数时, n an=|a|.
(2)( n a)n 是实数 a 的 n 次方根的 n 次幂,其中实数 a 的取值由 n 的奇偶性决定:
当 n 为大于 1 的奇数时, ( n a)n= a,a∈R;当 n 为大于 1 的偶数时, ( n a)n=a,
a≥0,由此看只要
n (
a)n 有意义,其值恒等于
11
1
1
(4)a±2 a 2 b 2 +b=( a 2 ±b 2 )2(a>0,b>0);
1
1
1
1
(5)( a 2 + b 2 )( a2 - b2 )=a- b(a>0,b>0).
第二章 基本初等函数 (Ⅰ)
§2.1 指数函数 2. 1.1 指数与指数幂的运算
知识梳理 1.xn= a(n>1,且 n∈ N*) 2.根式 根指数 被开方数
a,即 ( n a)n= a.
2.有理指数幂运算的一般思路
化负指数为正指数,化根式为分数指数幂,化小数为分数,灵活运用指数幂的
运算性质.同时要注意运用整体的观点、方程的观点处理问题,或利用已知的
高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ)章末检测A Word版含解析
章末检测(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若a<12,则化简4(2a -1)2的结果是( ) A .2a -1 B .-2a -1 C .1-2aD .-1-2a2.函数y =lg x +lg (5-3x)的定义域是( ) A .[0,53) B .[0,53] C .[1,53)D .[1,53]3.函数y =2+log 2(x 2+3)(x ≥1)的值域为( ) A .(2,+∞) B .(-∞,2) C .[4,+∞)D .[3,+∞)4.已知2x =72y =A ,且1x +1y =2,则A 的值是( ) A .7B .7 2C .±7 2D .985.若a>1,则函数y =a x 与y =(1-a)x 2的图象可能是下列四个选项中的( )6.下列函数中值域是(1,+∞)的是( ) A .y =(13)|x -1|B .y =34x -C .y =(14)x +3(12)x +1 D .y =log 3(x 2-2x +4)7.若0<a<1,在区间(-1,0)上函数f(x)=log a (x +1)是( ) A .增函数且f(x)>0 B .增函数且f(x)<0 C .减函数且f(x)>0 D .减函数且f(x)<08.已知函数f(x)=⎩⎨⎧log 3x ,x>02x ,x ≤0,则f(f(19))等于( )A .4B .14C .-4D .-149.右图为函数y =m +log n x 的图象,其中m ,n 为常数,则下列结论正确的是( )A .m<0,n>1B .m>0,n>1C .m>0,0<n<1D .m<0,0<n<110.下列式子中成立的是( ) A .log 0.44<log 0.46 B .1.013.4>1.013.5 C .3.50.3<3.40.3D .log 76<log 6711.方程log 2x +log 2(x -1)=1的解集为M ,方程22x +1-9·2x +4=0的解集为N ,那么M 与N 的关系是( )A .M =NB .M NC .MND .M ∩N =∅12.设偶函数f(x)=log a |x +b|在(0,+∞)上具有单调性,则f(b -2)与f(a +1)的大小关系为( )A .f(b -2)=f(a +1)B .f(b -2)>f(a +1)C .f(b -2)<f(a +1)D .不能确定二、填空题(本大题共4小题,每小题5分,共20分) 13.log 34log 98=________.14.函数f(x)=a x -1+3的图象一定过定点P ,则P 点的坐标是________. 15.设log a 34<1,则实数a 的取值范围是________________.16.如果函数y =log a x 在区间[2,+∞)上恒有y>1,那么实数a 的取值范围是________.三、解答题(本大题共6小题,共70分)17.(10分)(1)计算:(-3)0-120+(-2)-2-1416-; (2)已知a =12,b =132, 求[23a -()()122123b ab a ----]2的值.18.(12分)(1)设log a 2=m ,log a 3=n ,求a 2m +n 的值; (2)计算:log 49-log 212+5lg210-.19.(12分)设函数f(x)=2x+a2x-1(a为实数).(1)当a=0时,若函数y=g(x)为奇函数,且在x>0时g(x)=f(x),求函数y=g(x)的解析式;(2)当a<0时,求关于x的方程f(x)=0在实数集R上的解.20.(12分)已知函数f (x )=log a x +1x -1(a >0且a ≠1),(1)求f (x )的定义域;(2)判断函数的奇偶性和单调性.21.(12分)已知-3≤12log x ≤-32,求函数f (x )=log 2x 2·log 2x4的最大值和最小值.22.(12分)已知常数a 、b 满足a >1>b >0,若f (x )=lg(a x -b x ). (1)求y =f (x )的定义域;(2)证明y =f (x )在定义域内是增函数;(3)若f (x )恰在(1,+∞)内取正值,且f (2)=lg2,求a 、b 的值.章末检测(A)1.C [∵a <12,∴2a -1<0.于是,原式=4(1-2a )2=1-2a .]2.C[由函数的解析式得:⎩⎨⎧lg x ≥0,x >0,5-3x >0,即⎩⎪⎨⎪⎧x ≥1,x >0,x <53.所以1≤x <53.]3.C [∵x ≥1,∴x 2+3≥4, ∴log 2(x 2+3)≥2,则有y ≥4.]4.B [由2x =72y =A 得x =log 2A ,y =12log 7A , 则1x +1y =1log 2A +2log 7A =log A 2+2log A 7=log A 98=2, A 2=98.又A >0,故A =98=7 2.] 5.C [∵a >1,∴y =a x 在R 上是增函数,又1-a <0,所以y =(1-a )x 2的图象为开口向下的抛物线.] 6.C [A 选项中,∵|x -1|≥0,∴0<y ≤1; B 选项中,y =341x=14x 3,∴y >0;C 选项中y =[(12)x ]2+3(12)x +1,∵(12)x >0,∴y >1; D 选项中y =log 3[(x -1)2+3]≥1.]7.C [当-1<x <0,即0<x +1<1,且0<a <1时,有f (x )>0,排除B 、D.设u =x +1,则u 在(-1,0)上是增函数,且y =log a u 在(0,+∞)上是减函数,故f (x )在(-1,0)上是减函数.]8.B [根据分段函数可得f (19)=log 319=-2, 则f (f (19))=f (-2)=2-2=14.]9.D [当x =1时,y =m ,由图形易知m <0,又函数是减函数,所以0<n <1.] 10.D [A 选项中由于y =log 0.4x 在(0,+∞)单调递减, 所以log 0.44>log 0.46;B 选项中函数y =1.01x 在R 上是增函数, 所以1.013.4<1.013.5;C 选项中由于函数y =x 0.3在(0,+∞)上单调递增, 所以3.50.3>3.40.3;D 选项中log 76<1,log 67>1,故D 正确.] 11.B [由log 2x +log 2(x -1)=1,得x (x -1)=2, 解得x =-1(舍)或x =2,故M ={2}; 由22x +1-9·2x +4=0,得2·(2x )2-9·2x +4=0, 解得2x=4或2x=12,即x =2或x =-1,故N ={2,-1},因此有M N .] 12.C [∵函数f (x )是偶函数,∴b =0,此时f (x )=log a |x |. 当a >1时,函数f (x )=log a |x |在(0,+∞)上是增函数, ∴f (a +1)>f (2)=f (b -2);当0<a <1时,函数f (x )=log a |x |在(0,+∞)上是减函数, ∴f (a +1)>f (2)=f (b -2). 综上可知f (b -2)<f (a +1).] 13.43解析 原式=lg4lg3lg8lg9=lg4lg3×lg9lg8=2lg2×2lg3lg3×3lg2=43.14.(1,4)解析 由于函数y =a x 恒过(0,1),而y =a x -1+3的图象可看作由y =a x 的图象向右平移1个单位,再向上平移3个单位得到的,则P 点坐标为(1,4).15.(0,34)∪(1,+∞)解析 当a >1时,log a 34<0<1,满足条件; 当0<a <1时,log a 34<1=log a a ,得0<a <34. 故a >1或0<a <34.16.(1,2)解析 当x ∈[2,+∞)时,y >1>0,所以a >1,所以函数y =log a x 在区间[2,+∞)上是增函数,最小值为log a 2,所以log a 2>1=log a a ,所以1<a <2. 17.解 (1)原式=1-0+1(-2)2-()1442-=1+14-2-1=1+14-12=34. (2)因为a =12,b =132,所以 原式=231281142233a b a b --+-+⎛⎫= ⎪⎝⎭=84144130333222221----⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭. 18.解 (1)∵log a 2=m ,log a 3=n , ∴a m =2,a n =3.∴a 2m +n =a 2m ·a n =(a m )2·a n =22·3=12. (2)原式=log 23-(log 23+log 24)+2lg 510=log 23-log 23-2+25=-85.19.解 (1)当a =0时,f (x )=2x -1, 由已知g (-x )=-g (x ),则当x <0时,g (x )=-g (-x )=-f (-x )=-(2-x -1) =-(12)x +1,由于g (x )为奇函数,故知x =0时,g (x )=0, ∴g (x )=⎩⎪⎨⎪⎧2x -1, x ≥0-(12)x+1,x <0.(2)f (x )=0,即2x +a2x -1=0,整理,得:(2x )2-2x +a =0, 所以2x=1±1-4a2,又a <0,所以1-4a >1,所以2x=1+1-4a2,从而x =log 21+1-4a2.20.解 (1)要使此函数有意义,则有⎩⎨⎧ x +1>0x -1>0或⎩⎨⎧x +1<0x -1<0, 解得x >1或x <-1,此函数的定义域为 (-∞,-1)∪(1,+∞),关于原点对称. (2)f (-x )=log a-x +1-x -1=log a x -1x +1=-log a x +1x -1=-f (x ).∴f (x )为奇函数. f (x )=log ax +1x -1=log a (1+2x -1), 函数u =1+2x -1在区间(-∞,-1)和区间(1,+∞)上单调递减. 所以当a >1时,f (x )=log a x +1x -1在(-∞,-1),(1,+∞)上递减;当0<a <1时,f (x )=log ax +1x -1在(-∞,-1),(1,+∞)上递增. 21.解 ∵f (x )=log 2x 2·log 2x4 =(log 2x -1)(log 2x -2) =(log 2x )2-3log 2x +2 =(log 2x -32)2-14, ∵-3≤12log x ≤-32.∴32≤log 2x ≤3.∴当log 2x =32,即x =22时,f (x )有最小值-14;当log 2x =3,即x =8时,f (x )有最大值2.22.(1)解 ∵a x -b x >0,∴a x >b x ,∴(a b )x >1.∵a >1>b >0,∴a b >1.∴y =(a b )x 在R 上递增.∵(a b )x >(a b )0,∴x >0.∴f (x )的定义域为(0,+∞).(2)证明 设x 1>x 2>0,∵a >1>b >0, ∴1x a >2x a >1,0<1x b <2x b <1.∴-1x b >-2x b >-1.∴1x a -1x b >2x a -2x b >0. 又∵y =lg x 在(0,+∞)上是增函数, ∴lg(1x a -1x b )>lg(2x a -2x b ),即f (x 1)>f (x 2). ∴f (x )在定义域内是增函数.(3)解 由(2)得,f (x )在定义域内为增函数, 又恰在(1,+∞)内取正值,∴f (1)=0.又f (2)=lg2,∴⎩⎨⎧ lg (a -b )=0,lg (a 2-b 2)=lg2.∴⎩⎨⎧ a -b =1,a 2-b 2=2.解得⎩⎪⎨⎪⎧ a =32,b =12.。
高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.1.1 Word版含解析
第二章基本初等函数(Ⅰ)§2.1指数函数2.1.1指数与指数幂的运算课时目标 1.了解指数函数模型的实际背景,体会引入有理数指数幂的必要性.2.理解有理数指数幂的含义,知道实数指数幂的意义,掌握幂的运算.1.如果____________________,那么x叫做a的n次方根.2.式子na叫做________,这里n叫做__________,a叫做____________.3.(1)n∈N*时,(na)n=____.(2)n为正奇数时,na n=____;n为正偶数时,na n=______.4.分数指数幂的定义:(1)规定正数的正分数指数幂的意义是:mna=__________(a>0,m、n∈N*,且n>1);(2)规定正数的负分数指数幂的意义是:mna =_______________(a>0,m、n∈N*,且n>1);(3)0的正分数指数幂等于____,0的负分数指数幂________________.5.有理数指数幂的运算性质:(1)a r a s=______(a>0,r、s∈Q);(2)(a r)s=______(a>0,r、s∈Q);(3)(ab)r=______(a>0,b>0,r∈Q).一、选择题1.下列说法中:①16的4次方根是2;②416的运算结果是±2;③当n为大于1的奇数时,na对任意a∈R都有意义;④当n为大于1的偶数时,na只有当a≥0时才有意义.其中正确的是() A.①③④B.②③④C.②③D.③④2.若2<a<3,化简(2-a)2+4(3-a)4的结果是()A.5-2a B.2a-5 C.1D.-13.在(-12)-1、122-、1212-⎛⎫⎪⎝⎭、2-1中,最大的是()A.(-12)-1B.122-C.1212-⎛⎫⎪⎝⎭D.2-14.化简3a a的结果是()A.a B.1 2 aC.a2D.1 3 a5.下列各式成立的是()A.3m2+n2=()23m n+B.(ba)2=12a12bC.6(-3)2=()133- D.34=1326.下列结论中,正确的个数是() ①当a<0时,()322a=a3;②na n=|a|(n>0);③函数y=()122x--(3x-7)0的定义域是(2,+∞);④若100a =5,10b =2,则2a +b =1. A .0B .1 C .2D .3二、填空题 7.614-3338+30.125的值为________.8.若a >0,且a x=3,a y=5,则22y x a+=________.9.若x >0,则(214x +323)(214x -323)-412x -·(x -12x )=________. 三、解答题 10.(1)化简:3xy 2·xy -1·xy ·(xy )-1(xy ≠0);(2)计算:122-+(-4)02+12-1-(1-5)0·238-.11.设-3<x <3,求x 2-2x +1-x 2+6x +9的值.能力提升 12.化简:4133223384a a b b a-+÷(1-23b a )×3a .13.若x >0,y >0,且x -xy -2y =0,求2x -xyy +2xy 的值.第二章 基本初等函数(Ⅰ)§2.1 指数函数2.1.1 指数与指数幂的运算知识梳理1.x n =a(n>1,且n ∈N *) 2.根式 根指数 被开方数 3.(1)a (2)a |a | 4.(1)na m (2)1a m n (3)0 没有意义5.(1)a r +s (2)a rs (3)a r b r 作业设计1.D [①错,∵(±2)4=16, ∴16的4次方根是±2; ②错,416=2,而±416=±2.] 2.C [原式=|2-a |+|3-a |, ∵2<a <3,∴原式=a -2+3-a =1.]3.C [∵(-12)-1=-2,122-=22,1212-⎛⎫ ⎪⎝⎭=2,2-1=12,∵2>22>12>-2,∴1212-⎛⎫ ⎪⎝⎭>122->2-1>(-12)-1.] 4.B [12a =.]5.D [被开方数是和的形式,运算错误,A 选项错;(b a )2=b 2a 2,B 选项错;6(-3)2>0,()133-<0,C 选项错.故选D.]6.B [①中,当a <0时,()()3312222a a ⎡⎤=⎢⎥⎣⎦=(-a )3=-a 3,∴①不正确;②中,若a =-2,n =3,则3(-2)3=-2≠|-2|,∴②不正确; ③中,有⎩⎨⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞),∴③不正确; ④中,∵100a =5,10b =2,∴102a =5,10b =2,102a ×10b =10,即102a +b =10.∴2a +b =1.④正确.] 7.32解析 原式=(52)2-3(32)3+3(12)3=52-32+12=32. 8.9 5 解析 22y x a+=(a x )2·()12y a=32·125=9 5. 9.-23解析 原式=412x -33-412x +4=-23.10.解 (1)原式=()()11132122xy xyxy -⎡⎤⎢⎥⎣⎦·(xy )-1=13x ·2111136622y x yxy---=13x ·13x-=⎩⎨⎧1, x >0-1,x <0. (2)原式=12+12+2+1-22 =22-3.11.解 原式=(x -1)2-(x +3)2=|x -1|-|x +3|,∵-3<x <3,∴当-3<x <1时, 原式=-(x -1)-(x +3)=-2x -2; 当1≤x <3时,原式=(x -1)-(x +3)=-4. ∴原式=⎩⎨⎧-2x -2 (-3<x <1)-4(1≤x <3).12.解 原式=()111333212133338242aa b a b b a aa--÷++×13a13.解 ∵x -xy -2y =0,x >0,y >0, ∴(x )2-xy -2(y )2=0, ∴(x +y )(x -2y )=0, 由x >0,y >0得x +y >0, ∴x -2y =0,∴x =4y , ∴2x -xy y +2xy =8y -2y y +4y =65.。
高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.1习题课 Word版含解析
§2.1习题课课时目标 1.提高学生对指数与指数幂的运算能力.2.进一步加深对指数函数及其性质的理解.3.提高对指数函数及其性质的应用能力.1.下列函数中,指数函数的个数是()①y=2·3x;②y=3x+1;③y=3x;④y=x3.A.0B.1C.2D.32.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)等于()A.-3B.-1C.1D.33.对于每一个实数x,f(x)是y=2x与y=-x+1这两个函数中的较小者,则f(x)的最大值是()A.1B.0C.-1D.无最大值4.将22化成指数式为________.5.已知a=40.2,b=80.1,c=(12)-0.5,则a,b,c的大小顺序为______________.6.已知12x+12x =3,求x+1x的值.一、选择题1.(122-⎡⎤⎢⎥⎣⎦的值为( )A.2B .- 2 C.22D .-222.化简3(a -b )3+(a -2b )2的结果是( ) A .3b -2a B .2a -3b C .b 或2a -3b D .b3.若0<x <1,则2x ,(12)x,0.2x 之间的大小关系是( ) A .2x <0.2x <(12)x B .2x <(12)x <0.2x C .(12)x <0.2x <2x D .0.2x <(12)x <2x 4.若函数则f (-3)的值为( )A.18B.12 C .2D .85.函数f (x )=a x -b 的图象如图所示,其中a ,b 均为常数,则下列结论正确的是( )A .a >1,b >0B .a >1,b <0C .0<a <1,b >0D .0<a <1,b <06.函数f (x )=4x +12x 的图象( ) A .关于原点对称 B .关于直线y =x 对称C.关于x轴对称D.关于y轴对称二、填空题7.计算:120.064--(-14)0+160.75+120.01-=___________________________________.8.已知10m=4,10n=9,则3210m n-=________.9.函数y=1-3x(x∈[-1,2])的值域是________.三、解答题10.比较下列各组中两个数的大小:(1)0.63.5和0.63.7;(2)(2)-1.2和(2)-1.4;(3)1332⎛⎫⎪⎝⎭和2332⎛⎫⎪⎝⎭;(4)π-2和(13)-1.3.11.函数f(x)=a x(a>0,且a≠1)在区间[1,2]上的最大值比最小值大a2,求a的值.能力提升12.已知f(x)=aa2-1(a x-a-x)(a>0且a≠1),讨论f(x)的单调性.13.根据函数y=|2x-1|的图象,判断当实数m为何值时,方程|2x-1|=m无解?有一解?有两解?§2.1习题课双基演练1.B[只有③中y=3x是指数函数.]2.A[因f(x)为定义在R上的奇函数,所以f(0)=0,即1+b=0,b=-1.所以f(-1)=-f(1)=-(2+2-1)=-3.]3.A[当x≤0时,f(x)=2x;当x>0时,f(x)=-x+1.显然,其最大值是1.]4.23 4解析5.b<a<c解析a=20.4,b=20.3,c=20.5.又指数函数y=2x在R上是增函数,∴b<a<c.则x+x-1=7,即x+1x=7.作业设计1.C [原式=122-=12=22.] 2.C [原式=(a -b )+|a -2b |=⎩⎨⎧b , a ≤2b ,2a -3b ,a >2b .]3.D [当0<x <1时,2x >1,(12)x <1, 对于(12)x ,(0.2)x ,不妨令x =12, 则有0.5>0.2.]4.A [f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=f (1+2)=f (3)=2-3=18.] 5.D [f (x )=a x -b 的图象是由y =a x 的图象左右平移|b |个单位得到的,由图象可知f (x )在R 上是递减函数,所以0<a <1,由y =a x 过点(0,1)得知y =a x 的图象向左平移|b |个单位得f (x )的图象,所以b <0.] 6.D [f (-x )=4-x +12-x =1+4x2x =f (x ),∴f (x )是偶函数,图象关于y 轴对称.] 7.485=0.4-1-1+23+0.1=52-1+8+110=485. 8.839.[-8,23]解析 因为y =3x 是R 上的单调增函数,所以当x ∈[-1,2]时,3x ∈[3-1,32],即-3x ∈[-9,-13],所以y =1-3x ∈[-8,23].10.解 (1)考查函数y =0.6x .因为0<0.6<1,所以函数y =0.6x 在实数集R 上是单调减函数.又因为3.5<3.7,所以0.63.5>0.63.7.(2)考查函数y =(2)x .因为2>1,所以函数y =(2)x 在实数集R 上是单调增函数.又因为-1.2>-1.4,所以(2)-1.2>(2)-1.4.(3)考查函数y =(32)x .因为32>1,所以函数y =(32)x在实数集R 上是单调增函数.又因为13<23,所以1332⎛⎫ ⎪⎝⎭<2332⎛⎫ ⎪⎝⎭.(4)∵π-2=(1π)2<1,(13)-1.3=31.3>1, ∴π-2<(13)-1.3.11.解 (1)若a >1,则f (x )在[1,2]上递增, ∴a 2-a =a2,即a =32或a =0(舍去).(2)若0<a <1,则f (x )在[1,2]上递减, ∴a -a 2=a 2,即a =12或a =0(舍去).综上所述,所求a 的值为12或32. 12.解 ∵f (x )=a a 2-1(a x -1a x ), ∴函数定义域为R ,设x 1,x 2∈(-∞,+∞)且x 1<x 2,∴当a>1时,ax1<ax2,aa2-1>0∴f(x1)-f(x2)<0,f(x1)<f(x2),f(x)为增函数,当0<a<1时,,aa2-1<0∴f(x1)-f(x2)<0,f(x1)<f(x2),∴f(x)为增函数,综上,f(x)在R上为增函数.13.解函数y=|2x-1|的图象可由指数函数y=2x的图象先向下平移一个单位长度,然后再作x轴下方的部分关于x轴的对称图形,如图所示.函数y=m的图象是与x轴平行的直线,观察两图象的关系可知:当m<0时,两函数图象没有公共点,此时方程|2x-1|=m无解;当m=0或m≥1时,两函数图象只有一个公共点,此时方程|2x-1|=m有一解;当0<m<1时,两函数图象有两个公共点,此时方程|2x-1|=m有两解.。
高一数学人教A版必修一 习题 第二章 基本初等函数(Ⅰ) 2 章末高效整合 Word版含答案
(本栏目内容,在学生用书中以独立形式分册装订)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).函数=(+)+(-)-的定义域是( ).(-).(-).(].()解析:由题意得(\\(+>,->,))解之,得-<<.答案:.函数=(+)+的图象过定点( ).().().(-).(-)解析:令+=,得=-,得=,∴函数的图象过定点(-).答案:.已知幂函数()满足=,则()的图象所分布的象限是( ).第一、三象限.第一、二象限.只在第一象限.第一、四象限解析:设()=,则=,=-.∴()=-,因此()的图象在第一、二象限.答案:.已知=,=,则等于( )..解析:∵=,=,∴=,=,∴==.答案:.已知()=-(≤≤,为常数)的图象经过点(),则()的值域为( ).[].[].[,+∞).[] 解析:由()过定点()可知=,因()=-在[]上是增函数,()=()=,()=()=,可知正确.答案:.设=,=,=,则( ).<<.<<.<<.<<解析:∵=<=,<=<=,=>=,∴>>.答案:.已知()=(+)(>,且≠),若∈(-)时,()<,则()是( ).减函数.增函数.不单调的函数.常数函数解析:∵∈(-)时,+∈(),此时,()<.∴>.∴()在定义域(-,+∞)上是增函数.答案:.设()=,∈,那么()是( ).奇函数且在(,+∞)上是增函数.偶函数且在(,+∞)上是增函数.奇函数且在(,+∞)上是减函数.偶函数且在(,+∞)上是减函数解析:∵(-)=-==(),∴()是偶函数.∵>,∴()=在(,+∞)上是减函数,故选.答案:.函数=+的图象关于直线=对称的图象大致是( )解析:∵=+的图象过点()且单调递减,故它关于直线=对称的图象过点()且单调递减,故选.答案:.已知函数()是奇函数,当>时, ()=(>且≠),且=-,则的值为( )..解析:∵==(-)=-()=-=-,∴=,解得=±,又>,∴=.。
高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.2习题课 Word版含解析
§2.2习题课课时目标 1.巩固对数的概念及对数的运算.2.提高对对数函数及其性质的综合应用能力.1.已知m=0.95.1,n=5.10.9,p=log0.95.1,则这三个数的大小关系是() A.m<n<p B.m<p<nC.p<m<n D.p<n<m2.已知0<a<1,log a m<log a n<0,则()A.1<n<m B.1<m<nC.m<n<1 D.n<m<13.函数y=x-1+1lg(2-x)的定义域是()A.(1,2) B.[1,4] C.[1,2) D.(1,2]4.给定函数①y=12x,②y=()12log1x+,③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是()A.①②B.②③C.③④D.①④5.设函数f(x)=log a|x|,则f(a+1)与f(2)的大小关系是________________________.6.若log32=a,则log38-2log36=________.一、选择题1.下列不等号连接错误的一组是()A.log0.52.7>log0.52.8 B.log34>log65C .log 34>log 56D .log πe>log e π2.若log 37·log 29·log 49m =log 412,则m 等于( )A.14B.22C.2D .43.设函数若f (3)=2,f (-2)=0,则b 等于( )A .0B .-1C .1D .24.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为( )A .(-∞,-14)B .(-14,+∞)C .(0,+∞)D .(-∞,-12) 5.若函数若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1) 6.已知f (x )是定义在R 上的奇函数,f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式f (log 18x )<0的解集为( )A .(0,12)B .(12,+∞)C .(12,1)∪(2,+∞)D .(0,12)∪(2,+∞)二、填空题7.已知log a(ab)=1p,则log abab=________.8.若log236=a,log210=b,则log215=________.9.设函数若f(a)=18,则f(a+6)=________.三、解答题10.已知集合A={x|x<-2或x>3},B={x|log4(x+a)<1},若A∩B=∅,求实数a的取值范围.11.抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg2≈0.3010)能力提升12.设a>0,a≠1,函数f(x)=log a(x2-2x+3)有最小值,求不等式log a(x-1)>0的解集.13.已知函数f(x)=log a(1+x),其中a>1.(1)比较12[f(0)+f(1)]与f(12)的大小;(2)探索12[f(x1-1)+f(x2-1)]≤f(x1+x22-1)对任意x1>0,x2>0恒成立.1.比较同真数的两个对数值的大小,常有两种方法:(1)利用对数换底公式化为同底的对数,再利用对数函数的单调性和倒数关系比较大小;(2)利用对数函数图象的相互位置关系比较大小.2.指数函数与对数函数的区别与联系指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)是两类不同的函数.二者的自变量不同.前者以指数为自变量,而后者以真数为自变量;但是,二者也有一定的联系,y=a x(a>0,且a≠1)和y=log a x(a>0,且a≠1)互为反函数.前者的定义域、值域分别是后者的值域、定义域.二者的图象关于直线y=x对称.§2.2习题课双基演练1.C [0<m <1,n >1,p <0,故p <m <n .]2.A [∵0<a <1,∴y =log a x 是减函数.由log a m <log a n <0=log a 1,得m >n >1.]3.A [由题意得:⎩⎨⎧ x -1≥0,2-x >0,lg (2-x )≠0,解得:1<x <2.]4.B [①y =x 在(0,1)上为单调递增函数,∴①不符合题意,排除A ,D.④y =2x +1在(0,1)上也是单调递增函数,排除C ,故选B.]5.f (a +1)>f (2)解析 当a >1时,f (x )在(0,+∞)上递增,又∵a +1>2,∴f (a +1)>f (2);当0<a <1时,f (x )在(0,+∞)上递减;又∵a +1<2,∴f (a +1)>f (2).综上可知,f (a +1)>f (2).6.a -2解析 log 38-2log 36=log 323-2(1+log 32)=3a -2-2a =a -2.作业设计1.D [对A ,根据y =log 0.5x 为单调减函数易知正确.对B ,由log 34>log 33=1=log 55>log 65可知正确.对C ,由log 34=1+log 343>1+log 365>1+log 565=log 56可知正确.对D ,由π>e>1可知,log e π>1>log πe 错误.]2.B [左边=lg7lg3·2lg3lg2·lg m 2lg7=lg m lg2,右边=-lg22lg2=-12,∴lg m =lg2-12=lg 22,∴m =22.]3.A [∵f (3)=2,∴log a (3+1)=2,解得a =2,又f (-2)=0,∴4-4+b =0,b =0.]4.D [令y =2x 2+x ,其图象的对称轴x =-14<0, 所以(0,12)为y 的增区间,所以0<y <1,又因f (x )在区间(0,12)内恒有f (x )>0,所以0<a <1.f (x )的定义域为2x 2+x >0的解集,即{x |x >0或x <-12}, 由x =-14>-12得,(-∞,-12)为y =2x 2+x 的递减区间,又由0<a <1,所以f (x )的递增区间为(-∞,-12).]5.C [①若a >0,则f (a )=log 2a ,f (-a )=12log a ,∴log 2a >12log a =log 21a∴a >1a ,∴a >1.②若a <0,则f (a )=12log (-a ),f (-a )=log 2(-a ),∴12log (-a )>log 2(-a )=12log (-1a ),∴-a <-1a ,∴-1<a <0,由①②可知,-1<a <0或a >1.]6.C [∵f (x )在(0,+∞)上是增函数,且f (13)=0,在(0,+∞)上f (18log x )<0⇒f (18log x )<f (13)⇒0<18log x <13⇒18log 1<18log x <18log 1318⎛⎫ ⎪⎝⎭⇒12<x <1;同理可求f (x )在(-∞,0)上是增函数,且f (-13)=0,得x >2.综上所述,x ∈(12,1)∪(2,+∞).]7.2p -1解析 ∵log ab a =p ,log ab b =log ab ab a =1-p ,∴log ab a b =log ab a -log ab b=p -(1-p )=2p -1.8.12a +b -2解析 因为log 236=a ,log 210=b ,所以2+2log 23=a,1+log 25=b .即log 23=12(a -2),log 25=b -1,所以log 215=log 23+log 25=12(a -2)+b -1=12a +b -2.9.-3解析 (1)当a ≤4时,2a -4=18,解得a =1,此时f (a +6)=f (7)=-3;(2)当a >4时,-log 2(a +1)=18,无解.10.解 由log 4(x +a )<1,得0<x +a <4,解得-a <x <4-a ,即B ={x |-a <x <4-a }.∵A ∩B =∅,∴⎩⎨⎧-a ≥-2,4-a ≤3,解得1≤a ≤2, 即实数a 的取值范围是[1,2].11.解 设至少抽n 次才符合条件,则a ·(1-60%)n <0.1%·a (设原来容器中的空气体积为a ).即0.4n <0.001,两边取常用对数,得n ·lg 0.4<lg 0.001,所以n >lg 0.001lg 0.4.所以n >-32lg2-1≈7.5. 故至少需要抽8次,才能使容器内的空气少于原来的0.1%.12.解 设u (x )=x 2-2x +3,则u (x )在定义域内有最小值. 由于f (x )在定义域内有最小值,所以a >1.所以log a (x -1)>0⇒x -1>1⇒x >2,所以不等式log a (x -1)>0的解集为{x |x >2}.13.解 (1)∵12[f (0)+f (1)]=12(log a 1+log a 2)=log a 2,又∵f (12)=log a 32,且32>2,由a >1知函数y =log a x 为增函数,所以log a 2<log a 32. 即12[f (0)+f (1)]<f (12).(2)由(1)知,当x 1=1,x 2=2时,不等式成立.接下来探索不等号左右两边的关系:12[f (x 1-1)+f (x 2-1)]=log a x 1x 2,f (x 1+x 22-1)=log a x 1+x 22,因为x 1>0,x 2>0,所以x 1+x 22-x 1x 2=(x 1-x 2)22≥0, 即x 1+x 22≥x 1x 2. 又a >1, 所以log a x 1+x 22≥log a x 1x 2,即12[f (x 1-1)+f (x 2-1)]≤f (x 1+x 22-1).综上可知,不等式对任意x1>0,x2>0恒成立.。
高中数学(人教版A版必修一)配套课件:第二章 基本初等函数(Ⅰ) 第二章 章末复习课
超级记忆法-记忆规律
第四个记忆周期是 1天 第五个记忆周期是 2天 第六个记忆周期是 4天 第七个记忆周期是 7天 第八个记忆周期是15天 这五个记忆周期属于长期记忆的范畴。 所以我们可以选择这样的时间进行记忆的巩固,可以记得更扎实。
如何利用规律实现更好记忆呢?
超级记忆法--场景法
解析 f(x)=12x 在 x∈(-∞,0)上为减函数,g x=log1 x 为偶函数, 2
x∈(0,+∞)时g x=log1 x 为减函数,所以在(-∞,0)上为增函数.
2
解析答案
1 2345
4.已知 P=2-32,Q=253,R=123,则 P,Q,R 的大小关系是( B ) A.P<Q<R B.Q<R<P C.Q<P<R D.R<Q<P 解析 由函数 y=x3 在 R 上是增函数知,253<123,
跟踪训练3 函数f(x)=loga(1-x)+loga(x+3)(0<a<1). (1)求函数f(x)的定义域; 解 要使函数有意义,则有1x+-3x>>00, , 解得-3<x<1,∴定义域为(-3,1).
解析答案
(2)若函数f(x)的最小值为-2,求a的值.
解 函数可化为f(x)=loga[(1-x)(x+3)]=loga(-x2-2x+3)=loga[-(x +1)2+4]. ∵-3<x<1,∴0<-(x+1)2+4≤4. ∵0<a<1,∴loga[-(x+1)2+4]≥loga4.
解析答案
1
2.函数 y=x3 的图象是( B )
1 2345
解析 ∵0<13<1.
1
∴在第一象限增且上凸,又 y=x3 为奇函数,过(1,1),故选B.
高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.1.2(二) Word版含解析
2.1.2 指数函数及其性质(二) 课时目标 1.理解指数函数的单调性与底数a 的关系,能运用指数函数的单调性解决一些问题.2.理解指数函数的底数a 对函数图象的影响.1.下列一定是指数函数的是( )A .y =-3xB .y =x x (x >0,且x ≠1)C .y =(a -2)x (a >3)D .y =(1-2)x2.指数函数y =a x 与y =b x 的图象如图,则( )A .a <0,b <0B .a <0,b >0C .0<a <1,b >1D .0<a <1,0<b <13.函数y =πx 的值域是( )A .(0,+∞)B .[0,+∞)C .RD .(-∞,0)4.若(12)2a +1<(12)3-2a ,则实数a 的取值范围是( )A .(1,+∞)B .(12,+∞)C .(-∞,1)D .(-∞,12) 5.设13<(13)b <(13)a <1,则( )A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a6.若指数函数f (x )=(a +1)x 是R 上的减函数,那么a 的取值范围为( )A .a <2B .a >2C .-1<a <0D .0<a <1一、选择题1.设P ={y |y =x 2,x ∈R },Q ={y |y =2x ,x ∈R },则( )A .Q PB .Q PC .P ∩Q ={2,4}D .P ∩Q ={(2,4)}2.函数y =16-4x 的值域是( )A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)3.函数y =a x 在[0,1]上的最大值与最小值的和为3,则函数y =2ax -1在[0,1]上的最大值是( )A .6B .1C .3D.324.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数5.函数y =f (x )的图象与函数g (x )=e x +2的图象关于原点对称,则f (x )的表达式为( )A .f (x )=-e x -2B .f (x )=-e -x +2C .f (x )=-e -x -2D .f (x )=e -x +26.已知a =1335-⎛⎫ ⎪⎝⎭,b =1235-⎛⎫ ⎪⎝⎭,c =1243-⎛⎫ ⎪⎝⎭,则a ,b ,c 三个数的大小关系是( ) A .c <a <b B .c <b <aC .a <b <cD .b <a <c二、填空题7.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.8.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是________________.9.函数y =2212x x -+⎛⎫ ⎪⎝⎭的单调递增区间是________.三、解答题 10.(1)设f (x )=2u ,u =g (x ),g (x )是R 上的单调增函数,试判断f (x )的单调性;(2)求函数y =2212xx --的单调区间.11.函数f (x )=4x -2x +1+3的定义域为[-12,12].(1)设t =2x ,求t 的取值范围;(2)求函数f (x )的值域.能力提升12.函数y =2x -x 2的图象大致是()13.已知函数f (x )=2x -12x +1.(1)求f [f (0)+4]的值;(2)求证:f (x )在R 上是增函数;(3)解不等式:0<f (x -2)<1517.1.比较两个指数式值的大小主要有以下方法:(1)比较形如a m与a n的大小,可运用指数函数y=a x的单调性.(2)比较形如a m与b n的大小,一般找一个“中间值c”,若a m<c且c<b n,则a m<b n;若a m>c且c>b n,则a m>b n.2.了解由y=f(u)及u=φ(x)的单调性探求y=f[φ(x)]的单调性的一般方法.2.1.2指数函数及其性质(二)知识梳理1.C 2.C 3.A4.B[∵函数y=(12)x在R上为减函数,∴2a+1>3-2a,∴a>1 2.]5.C[由已知条件得0<a<b<1,∴a b<a a,a a<b a,∴a b<a a<b a.]6.C作业设计1.B[因为P={y|y≥0},Q={y|y>0},所以Q P.]2.C[∵4x>0,∴0≤16-4x<16,∴16-4x∈[0,4).]3.C[函数y=a x在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a0+a1=3,解得a=2,因此函数y=2ax-1=4x-1在[0,1]上是单调递增函数,当x=1时,y max=3.]4.B[∵f(-x)=3-x+3x=f(x),g (-x )=3-x -3x =-g (x ).]5.C [∵y =f (x )的图象与g (x )=e x +2的图象关于原点对称,∴f (x )=-g (-x )=-(e -x +2)=-e -x -2.]6.A [∵y =(35)x 是减函数,-13>-12,∴b >a >1.又0<c <1,∴c <a <b .]7.19解析 假设第一天荷叶覆盖水面面积为1,则荷叶覆盖水面面积y 与生长时间的函数关系为y =2x -1,当x =20时,长满水面,所以生长19天时,荷叶布满水面一半.8.(-∞,-1)解析 ∵f (x )是定义在R 上的奇函数,∴f (0)=0.当x <0时,f (x )=-f (-x )=-(1-2x )=2x -1.当x >0时,由1-2-x <-12,(12)x >32,得x ∈∅;当x =0时,f (0)=0<-12不成立; 当x <0时,由2x-1<-12,2x <2-1,得x <-1. 综上可知x ∈(-∞,-1).9.[1,+∞)解析 利用复合函数同增异减的判断方法去判断.令u =-x 2+2x ,则y =(12)u 在u ∈R 上为减函数,问题转化为求u =-x 2+2x 的单调递减区间,即为x ∈[1,+∞).10.解 (1)设x 1<x 2,则g (x 1)<g (x 2).又由y =2u 的增减性得,即f (x 1)<f (x 2),所以f (x )为R 上的增函数.(2)令u =x 2-2x -1=(x -1)2-2,则u 在区间[1,+∞)上为增函数.根据(1)可知y =在[1,+∞)上为增函数.同理可得函数y 在(-∞,1]上为单调减函数.即函数y 的增区间为[1,+∞),减区间为(-∞,1].11.解 (1)∵t =2x 在x ∈[-12,12]上单调递增,∴t ∈[22,2].(2)函数可化为:f (x )=g (t )=t 2-2t +3,g (t )在[22,1]上递减,在[1,2]上递增,比较得g (22)<g (2).∴f (x )min =g (1)=2,f (x )max =g (2)=5-2 2.∴函数的值域为[2,5-22].12.A [当x →-∞时,2x →0,所以y =2x -x 2→-∞, 所以排除C 、D.当x =3时,y =-1,所以排除B.故选A.]13.(1)解 ∵f (0)=20-120+1=0, ∴f [f (0)+4]=f (0+4)=f (4)=24-124+1=1517. (2)证明 设x 1,x 2∈R 且x 1<x 2,则22x >12x >0,22x -12x >0,即f (x 1)<f (x 2),所以f (x )在R 上是增函数.(3)解 由0<f (x -2)<1517得f (0)<f (x -2)<f (4),又f (x )在R 上是增函数,∴0<x -2<4,即2<x <6,所以不等式的解集是{x |2<x <6}.。
2020高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.1.2(二) Word版含解析
2.1.2 指数函数及其性质(二)1.下列一定是指数函数的是( )A.y=-3x B.y=x x(x>0,且x≠1)C.y=(a-2)x(a>3) D.y=(1-2)x2.指数函数y=a x与y=b x的图象如图,则( )A.a<0,b<0B.a<0,b>0C.0<a<1,b>1D.0<a<1,0<b<13.函数y=πx的值域是( )A.(0,+∞) B.[0,+∞)C.R D.(-∞,0)4.若(12)2a+1<(12)3-2a,则实数a的取值范围是( )A.(1,+∞) B.(12,+∞)C.(-∞,1) D.(-∞,1 2 )5.设13<(13)b<(13)a<1,则( )A.a a<a b<b a B.a a<b a<a bC.a b<a a<b a D.a b<b a<a a6.若指数函数f(x)=(a+1)x是R上的减函数,那么a的取值范围为( ) A.a<2 B.a>2C.-1<a<0 D.0<a<1一、选择题1.设P={y|y=x2,x∈R},Q={y|y=2x,x∈R},则( )A.Q P B.Q PC.P∩Q={2,4}D.P∩Q={(2,4)}2.函数y=16-4x的值域是( )A.[0,+∞) B.[0,4]C.[0,4) D.(0,4)3.函数y=a x在[0,1]上的最大值与最小值的和为3,则函数y=2ax-1在[0,1]上的最大值是( )A.6B.1C.3D.3 24.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( )A.f(x)与g(x)均为偶函数B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数D.f(x)为奇函数,g(x)为偶函数5.函数y=f(x)的图象与函数g(x)=e x+2的图象关于原点对称,则f(x)的表达式为( )A.f(x)=-e x-2B.f(x)=-e-x+2C.f(x)=-e-x-2D.f(x)=e-x+26.已知a=1335-⎛⎫⎪⎝⎭,b=1235-⎛⎫⎪⎝⎭,c=1243-⎛⎫⎪⎝⎭,则a,b,c三个数的大小关系是( )A.c<a<b B.c<b<a C.a<b<c D.b<a<c二、填空题7.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.8.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<-12的解集是________________.9.函数y=2212x x-+⎛⎫⎪⎝⎭的单调递增区间是________.三、解答题10.(1)设f(x)=2u,u=g(x),g(x)是R上的单调增函数,试判断f(x)的单调性;(2)求函数y=2212x x--的单调区间.11.函数f(x)=4x-2x+1+3的定义域为[-12,12].(1)设t=2x,求t的取值范围;(2)求函数f(x)的值域.能力提升12.函数y=2x-x2的图象大致是( )2.1.2 指数函数及其性质(二) 知识梳理1.C 2.C 3.A4.B [∵函数y=(12)x在R上为减函数,∴2a+1>3-2a,∴a>12 .]5.C [由已知条件得0<a<b<1,∴a b<a a,a a<b a,∴a b<a a<b a.]6.C作业设计1.B [因为P={y|y≥0},Q={y|y>0},所以Q P.]2.C [∵4x>0,∴0≤16-4x<16,∴16-4x∈[0,4).]3.C [函数y=a x在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a0+a1=3,解得a=2,因此函数y=2ax-1=4x-1在[0,1]上是单调递增函数,当x=1时,y max=3.]4.B [∵f(-x)=3-x+3x=f(x),g(-x)=3-x-3x=-g(x).]5.C [∵y=f(x)的图象与g(x)=e x+2的图象关于原点对称,∴f(x)=-g(-x)=-(e-x+2)=-e-x-2.]6.A [∵y=(35)x是减函数,-13>-12,∴b>a>1.又0<c<1,∴c<a<b.]7.19解析假设第一天荷叶覆盖水面面积为1,则荷叶覆盖水面面积y与生长时间的函数关系为y=2x-1,当x=20时,长满水面,所以生长19天时,荷叶布满水面一半.8.(-∞,-1)解析∵f(x)是定义在R上的奇函数,∴f(0)=0.当x<0时,f(x)=-f(-x)=-(1-2x)=2x-1.当x>0时,由1-2-x<-12,(12)x>32,得x∈∅;当x=0时,f(0)=0<-12不成立;当x<0时,由2x-1<-12,2x<2-1,得x<-1.综上可知x∈(-∞,-1).9.[1,+∞)解析利用复合函数同增异减的判断方法去判断.令u=-x2+2x,则y=(12)u在u∈R上为减函数,问题转化为求u=-x2+2x的单调递减区间,即为x∈[1,+∞).10.解(1)设x1<x2,则g(x1)<g(x2).又由y=2u的增减性得,即f(x1)<f(x2),所以f(x)为R上的增函数.(2)令u=x2-2x-1=(x-1)2-2,则u在区间[1,+∞)上为增函数.根据(1)可知y=在[1,+∞)上为增函数.同理可得函数y在(-∞,1]上为单调减函数.即函数y的增区间为[1,+∞),减区间为(-∞,1].11.解(1)∵t=2x在x∈[-12,12]上单调递增,∴t∈[22,2].(2)函数可化为:f(x)=g(t)=t2-2t+3,g(t)在[22,1]上递减,在[1,2]上递增,比较得g(22)<g(2).∴f(x)min=g(1)=2,f(x)=g(2)=5-2 2.max∴函数的值域为[2,5-22].12.A [当x→-∞时,2x→0,所以y=2x-x2→-∞,所以排除C、D.当x=3时,y=-1,所以排除B.故选A.]。
高中数学 人教A版必修一 第二章基本初等函数课后作业含答案
必修一 第二章课后习题第一节 指数与指数幂的运算(一) 一、基础过关 1.44)2(-运算的结果是 ( )A .2B .-2C .±2D .不确定2. 若2<a <3,化简442)3()1(a a -+-的结果是 ( )A .5-2aB .2a -5C .1D .-13. 若a +(a -2)0有意义,则a 的取值范围是 ( )A .a ≥0B .a =2C .a ≠2D .a ≥0且a ≠24. 已知xy ≠0且4x 2y 2=-2xy ,则有 ( )A .xy <0B .xy >0C .x >0,y >0D .x <0,y <05. 化简332)4()4(-+-ππ的结果为________.6. 若x <0,则|x |-x 2+x 2|x |=________.7. 写出使下列各式成立的x 的取值范围:(1)3⎝⎛⎭⎫1x -33=1x -3;(2)(x -5)(x 2-25)=(5-x )x +5.8. 计算下列各式的值:(1)n(3-π)n (n >1,且n N ∈ *);(2)2n(x -y )2n(n >1,且n N ∈*);(3)5+26+7-43-6-4 2.二、能力提升9.3(-6)3+4(5-4)4+3(5-4)3的值为 ( )A .-6B .25-2C .2 5D .610.当2-x 有意义时,化简x 2-4x +4-x 2-6x +9的结果是 ( )A .2x -5B .-2x -1C .-1D .5-2x11.已知a R ∈,n N ∈*,给出四个式子:①6(-2)2n ;②5a 2;③6(-3)2n +1;④9-a 4,其中没有意义的是________.(只填式子的序号即可) 12.已知a <b <0,n >1,n N ∈*,化简n (a -b )n +n(a +b )n .三、探究与拓展13.若x >0,y >0,且x -xy -2y =0,求2x -xyy +2xy 的值.第一节 指数与指数幂的运算(二) 一、基础过关 1.32)027.0(-的值是 ( )A .1009B .9100C .103D .3102. 设2121--aa =m ,则a 2+1a等于 ( )A .m 2-2B .2-m 2C .m 2+2D .m 23. 在1212112)21(2)21(-----、、、中,最大的数是 ( )A .(-12)-1B .212- C .21)21(- D .2-14. 化简3a a 的结果是 ( )A .aB .21a C .a 2D .31a5.614-3338+30.125的值为________. 6. 若a >0,且a x=3,a y=5,则22y x a+=________.7. (1)化简:3xy 2·xy -1·xy ·(xy )-1(xy ≠0);(2)计算:212-+(-4)02+12-1-(1-5)0·328.8.计算:1241811313231+-+---x x x x x二、能力提升9. 下列各式成立的是 ( )A .3m 2+n 2=32)(n m + B .(ba)2=2121b a C .6(-3)2=31)3(- D .34=31210.如果x =1+2b ,y =1+2-b ,那么用x 表示y 等于 ( )A .x +1x -1B .x +1xC .x -1x +1D .xx -111.若x >0,则)(4)32)(32(212123412341x x x x x ---+-=________.12.根据已知条件求下列值:(1)已知x =12,y =23,求x +y x -y -x -y x +y;(2)已知a ,b 是方程x 2-6x +4=0的两根,且a >b >0,求a -ba +b的值.三、探究与拓展13.已知)55(2111n nx --=,n N ∈*,求(x +1+x 2)n 的值.第一节 指数函数及其性质(一) 一、基础过关1. 下列以x 为自变量的函数中,是指数函数的是 ( )A .y =(-4)xB .y =λx (λ>1)C .y =-4xD .y =a x +2(a >0且a ≠1)2. 函数f (x )=(a 2-3a +3)a x 是指数函数,则有 ( )A .a =1或a =2B .a =1C .a =2D .a >0且a ≠1 3. 函数y =x12的值域是 ( )A .(0,+∞)B .(0,1)C .(0,1)∪(1,+∞)D .(1,+∞)4. 如果某林区森林木材蓄积量每年平均比上一年增长11.3%,经过x 年可以增长到原来的y 倍,则函数y=f (x )的图象大致为( )5. 函数f (x )=a x 的图象经过点(2,4),则f (-3)的值为____. 6. 函数y =8-23-x (x ≥0)的值域是________.7. 比较下列各组数中两个值的大小:(1)0.2-1.5和0.2-1.7;(2)31)41(和32)41(;(3)2-1.5和30.2.8. 判断下列函数在(-∞,+∞)内是增函数,还是减函数:(1)y =4x;(2)y =⎝⎛⎭⎫14x;(3)32xy =二、能力提升9. 设函数f (x )=⎩⎪⎨⎪⎧2x , x <0,g (x ), x >0.若f (x )是奇函数,则g (2)的值是 ( )A .-14B .-4 C.14D .410.函数y =a |x |(a >1)的图象是( )11.若⎪⎩⎪⎨⎧+-=2)24()(xxa a x f 11≤>x x 是R 上的单调递增函数,则实数a 的取值范围为________. 12.求函数222)21(+-=x x y (0≤x ≤3)的值域.三、探究与拓展13.当a >1时,求证函数y =a x +1a x -1是奇函数.第一节 指数函数及其性质(二) 一、基础过关1.32)31(,34,⎝⎛⎭⎫13-2的大小关系为 ( ) A .32)31(<⎝⎛⎭⎫13-2<34 B .32)31(<34<⎝⎛⎭⎫13-2 C .⎝⎛⎭⎫13-2<32)31(<34 D .⎝⎛⎭⎫13-2<34<32)31( 2. 若(12)2a +1<(12)3-2a ,则实数a 的取值范围是 ( )A .(1,+∞)B .(12,+∞)C .(-∞,1)D .(-∞,12)3. 函数y =a x 在[0,1]上的最大值与最小值的和为3,则函数y =2ax -1在[0,1]上的最大值是 ( )A .6B .1C .3D .324. 已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如下图所示,则函数g (x )=a x+b 的图象是 ()5. 春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天. 6. 函数y =1-3x (x ∈[-1,2])的值域是________. 7. 比较下列各组中两个数的大小:(1)0.63.5和0.63.7;(2)(2)-1.2和(2)-1.4;(3)31)23(和3223⎪⎭⎫ ⎝⎛;(4)π-2和(13)-1.3.8. 函数f (x )=a x(a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a2,求a 的值.二、能力提升9. 已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于 ( )A .2 B.154 C.174D .a 210.设13<(13)b <(13)a <1,则 ( )A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a11.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x,则不等式f (x )<-12的解集是________.12.已知f (x )=a a 2-1(a x -a -x )(a >0且a ≠1),讨论f (x )的单调性.三、探究与拓展13.已知定义域为R 的函数f (x )=b -2x2x +a是奇函数.(1)求a ,b 的值;(2)用定义证明f (x )在(-∞,+∞)上为减函数.(3)若对于任意t R ∈,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的范围.第二节 对 数 一、基础过关1. 有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =100;④若e =ln x ,则x =e 2.其中正确的是 ( ) A .①③ B .②④ C .①② D .③④2. (log 29)·(log 34)等于 ( )A.14B.12C .2D .4 3. 方程2log 3x =14的解是 ( )A .x =19B .x =33C .x = 3D .x =94. 若log a 5b =c ,则下列关系式中正确的是 ( )A .b =a 5cB .b 5=a cC .b =5a cD .b =c 5a 5. 已知log 7[log 3(log 2x )]=0,那么21-x=________.6. 若log 2(log x 9)=1,则x =________.7.(1)先将下列式子改写成指数式,再求各式中x 的值:①log 2x =-25;②log x 3=-13.(2)已知6a =8,试用a 表示下列各式: ①log 68;②log 62;③log 26. 8. 求下列各式中x 的取值范围:(1)log (x -1)(x +2);(2)log (x +3)(x +3).二、能力提升9. (12)-1+log 0.54的值为 ( )A .6B .72C .8D .3710.若log a 3=m ,log a 5=n ,则a 2m+n的值是 ( )A .15B .75C .45D .225 11.已知lg a =2.431 0,lg b =1.431 0,则ba =______________.12.计算下列各式:(1)10lg 3-10log 41+2log 26; (2)22+log 23+32-log 39.三、探究与拓展13.已知log a b =log b a (a >0,a ≠1;b >0,b ≠1),求证:a =b 或a =1b .第二节 对数运算 一、基础过关1. log 23·log 32的值为 ( )A .1B .-1C .2D .-22. 计算:log 916·log 881的值为 ( )A .18B .118C .83D .383. 若log 513·log 36·log 6x =2,则x 等于 ( )A .9B .19C .25D .1254. 已知3a =5b =A ,若1a +1b=2,则A 等于 ( )A .15B .15C .±15D .225 5. 若log a 2=m ,log a 5=n ,则a 3m +n =________.6. (lg 5)2+lg 2·lg 50=________.7. (1)计算:lg 12-lg 58+lg 12.5-log 89·log 34;(2)已知3a =4b =36,求2a +1b 的值.8. 计算下列各式的值:(1)12lg 3249-43lg 8+lg 245;(2)lg 52+23lg 8+lg 5·lg 20+(lg 2)2.二、能力提升9. 已知log 89=a ,log 25=b ,则lg 3等于 ( )A .a b -1B .32(b -1)C .3a2(b +1)D .3(a -1)2b10.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则(lg ab)2的值等于 ( )A .2B .12C .4D .1411.2log 510+log 50.25+(325-125)÷425=________.12.若a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值.三、探究与拓展13.一种放射性物质不断变化为其他物质,每经过一年的剩余质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13?(结果保留1位有效数字)(lg 2≈0.301 0,lg 3≈0.477 1)第二节 对数函数及其性质(一) 一、基础过关1. 函数y =log 2x -2的定义域是 ( )A .(3,+∞)B .[3,+∞)C .(4,+∞)D .[4,+∞)2. 设集合M ={y |y =(12)x ,x ∈[0,+∞)},N ={y |y =log 2x ,x ∈(0,1]},则集合M ∪N 等于 ( )A .(-∞,0)∪[1,+∞)B .[0,+∞)C .(-∞,1]D .(-∞,0)∪(0,1) 3. 若)12(log 1)(21+=x x f ,则f (x )的定义域为 ( )A .⎝⎛⎭⎫-12,0B .⎝⎛⎭⎫-12,+∞C .⎝⎛⎭⎫-12,0∪(0,+∞)D .⎝⎛⎭⎫-12,2 4. 已知x =ln π,y =log 52,z =21-e,则 ( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x5. 如果函数f (x )=(3-a )x ,g (x )=log a x 的增减性相同,则a 的取值范围是________. 6. 已知函数y =log a (x -3)-1的图象恒过定点P ,则点P 的坐标是________. 7. 求下列函数的定义域与值域:(1)y =log 2(x -2); (2)y =log 4(x 2+8).8. 设函数f (x )=ln(x 2+ax +1)的定义域为A .(1)若1∈A ,-3∉A ,求实数a 的取值范围;(2)若函数y =f (x )的定义域为R ,求实数a 的取值范围.二、能力提升9. 函数f (x )=log a |x |+1(0<a <1)的图象大致为 ()10.若log a 23<1,则a 的取值范围是 ( )A .(0,23)B .(23,+∞)C .(23,1)D .(0,23)∪(1,+∞)11.函数f (x )=log 3(2x 2-8x +m )的定义域为R ,则m 的取值范围是________. 12.已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,且a ≠1).(1)设a =2,函数f (x )的定义域为[3,63],求函数f (x )的最值. (2)求使f (x )-g (x )>0的x 的取值范围.三、探究与拓展13.若不等式x 2-log m x <0在(0,12)内恒成立,求实数m 的取值范围.第二节 对数函数及其性质(二) 一、基础过关1. 若函数y =f (x )的定义域是[2,4],则)(log 21x f y =的定义域是 ( )A .[12,1]B .[4,16]C .[116,14] D .[2,4]2. 当a >1时,函数y =log a x 和y =(1-a )x 的图象只可能是 ()3. 设a =log 54,b =(log 53)2,c =log 45,则 ( )A .a <c <bB .b <c <aC .a <b <cD .b <a <c4. 函数y =3x (-1≤x <0)的反函数是 ( )A .y =x 31log (x >0) B .y =log 3x (x >0) C .y =log 3x (13≤x <1) D .y =x 31log (13≤x <1)5. 函数f (x )=lg (2x -b ),若x ≥1时,f (x )≥0恒成立,则b 应满足的条件是________. 6. 不等式)24(log 121++x x >0的解集为________.7. 已知函数f (x )=lg(x +1).若0<f (1-2x )-f (x )<1,求x 的取值范围.8. 已知f (x )=log a (3-ax )在x ∈ [0,2]上单调递减,求a 的取值范围.二、能力提升9. 已知函数y =log 2(x 2-2kx +k )的值域为R ,则k 的取值范围是 ( )A .0<k <1B .0≤k <1C .k ≤0或k ≥1D .k =0或k ≥110.函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为 ( )A .14B .12C .2D .411.函数y =log a x 当x >2时恒有|y |>1,则a 的取值范围是________. 12.已知函数f (x )=21log 1-axx -1的图象关于原点对称,其中a 为常数. (1)求a 的值;(2)若当x ∈(1,+∞)时,f (x )+21log (x -1)<m 恒成立.求实数m 的取值范围.三、探究与拓展13.已知f (x )=2+log 3x ,x ∈[1,9],求y =[f (x )]2+f (x 2)的最大值以及y 取最大值时x 的值.习题课一、基础过关 1. 函数f (x )=3x1-x+lg(2x -1)的定义域为 ( ) A .(-∞,1) B .(0,1] C .(0,1) D .(0,+∞)2. 设2a =5b =m ,且1a +1b=2,则m 的值为 ( )A.10 B .10 C .20 D .1003. 设a =log 32,b =ln 2,c =215-,则 ( )A .a <b <cB .b <c <aC .c <a <bD .c <b <a4. 下列函数中既不是奇函数也不是偶函数的是 ( )A .y =2|x |B .y =lg(x +x 2+1)C .y =2x +2-x D .y =lg1x +15. 已知函数f (x )=log a x (a >0且a ≠1)满足f (9)=2,则a =________.6. 已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x , x ≤0.若f (a )=12,则a =______.7. 已知f (x )=log a x (a >0,a ≠1),当0<x 1<x 2时,试比较f ⎝⎛⎭⎫x 1+x 22与12[f (x 1)+f (x 2)]的大小.8. 求证:函数f (x )=log 2x1-x 在(0,1)上是增函数.二、能力提升9. 函数f (x )=log a |x |(a >0且a ≠1)且f (8)=3,则有 ( )A .f (2)>f (-2)B .f (1)>f (2)C .f (-3)>f (-2)D .f (-3)>f (-4) 10.已知a >0,a ≠1,函数y =a x 与y =log a (-x )的图象只能是 ()11.已知函数f (x )=lg ax +a -2x 在区间[1,2]上是增函数,则实数a 的取值范围是________.12.已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a >1时,求使f (x )>0的x 的解集.三、探究与拓展13.已知函数f (x )=lg(a x -b x )(a >1>b >0). (1)求y =f (x )的定义域;(2)在函数y =f (x )的图象上是否存在不同的两点,使得过这两点的直线平行于x 轴; (3)当a ,b 满足什么条件时,f (x )在(1,+∞)上恒取正值.第三节 幂函数一、基础过关1. 幂函数f (x )的图象过点(4,12),那么f (8)的值为 ( )A .24 B .64 C .2 2 D .1642. 函数y =21x -1的图象关于x 轴对称的图象大致是 ()3. 下列是y =32x 的图象的是()4. 设a =5253⎪⎭⎫ ⎝⎛,b =5352⎪⎭⎫⎝⎛,c =5252⎪⎭⎫⎝⎛,则a ,b ,c 的大小关系是 ( )A .a >c >bB .a >b >cC .c >a >bD .b >c >a 5. 给出以下结论:①当α=0时,函数y =x α的图象是一条直线;②幂函数的图象都经过(0,0),(1,1)两点;③若幂函数y =x α的图象关于原点对称,则y =x α在定义域内y 随x 的增大而增大; ④幂函数的图象不可能在第四象限,但可能在第二象限. 则正确结论的序号为________. 6. 函数y =21x +x-1的定义域是________.7. 写出下列函数的定义域,并指出它们的奇偶性:(1)y =x 2+x -2;(2)y =2121-+xx ;(3)f (x )=4121)(3x x -+8. 已知函数f (x )=(m 2+2m )·xm 2+m -1,m 为何值时,函数f (x )是: (1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.二、能力提升9. 函数f (x )=x α,x ∈ (-1,0)∪(0,1),若不等式f (x )>|x |成立,则在α∈{-2,-1,0,1,2}的条件下,α可以取值的个数是 ( ) A .0 B .2 C .3 D .410.如图是函数y =nm x (m ,n N ∈ *,m 、n 互质)的图象,则 ()A .m ,n 是奇数,且m n <1B .m 是偶数,n 是奇数,且mn >1C .m 是偶数,n 是奇数,且m n <1D .m 是奇数,n 是偶数,且mn >111.若2121)23()1(---<+a a ,则a 的取值范围是________.12.已知幂函数f (x )的图象过点(2,2),幂函数g (x )的图象过点⎝⎛⎭⎫2,14. (1)求f (x ),g (x )的解析式; (2)当x 为何值时,①f (x )>g (x );②f (x )=g (x );③f (x )<g (x ).三、探究与拓展13.已知幂函数f (x )=xm -3(m N∈ *)的图象关于y 轴对称,且在(0,+∞)上是减函数,求满足33)23()1(m m a a ---<+的a 的取值范围.第二章章末检测一、选择题1. 下列函数中,在区间(0,+∞)上为增函数的是 ( )A .y =ln(x +2)B .y =-x +1C .y =⎝⎛⎭⎫12xD .y =x +1x2. 若a <12,则化简4(2a -1)2的结果是 ( )A .2a -1B .-2a -1C .1-2aD .-1-2a3. 函数y =lg x +lg(5-3x )的定义域是 ( )A .[0,53)B .[0,53]C .[1,53)D .[1,53]4.已知集合A ={x |y =lg(2x -x 2)},B ={y |y =2x ,x >0},R 是实数集,则(∁R B )∩A 等于( )A .[0,1]B .(0,1]C .(-∞,0]D .以上都不对5. 幂函数的图象过点⎝⎛⎭⎫2,14,则它的单调递增区间是 ( ) A .(0,+∞) B .[0,+∞) C .(-∞,0) D .(-∞,+∞)6. 函数y =2+log 2(x 2+3)(x ≥1)的值域为 ( )A .(2,+∞)B .(-∞,2)C .[4,+∞)D .[3,+∞)7. 比较1.315.1、23.1、1.312的大小关系是 ( )A .23.1<1.312<1.315.1 B .1.315.1<23.1<1.312C .1.315.1<1.312<23.1 D .1.312<1.315.1<23.18. 函数y =a x -1a(a >0,且a ≠1)的图象可能是 ()9. 若0<x <y <1,则 ( )A .3y <3xB .log x 3<log y 3C .log 4x <log 4yD .(14)x <(14)y10.若偶函数f (x )在(-∞,0)内单调递减,则不等式f (-1)<f (lg x )的解集是 ( )A .(0,10)B .⎝⎛⎭⎫110,10C .⎝⎛⎭⎫110,+∞D .⎝⎛⎭⎫0,110∪(10,+∞) 11.方程log 2x +log 2(x -1)=1的解集为M ,方程22x +1-9·2x +4=0的解集为N ,那么M 与N 的关系是( )A .M =NB .M NC .M ND .M ∩N =∅12.设偶函数f (x )=log a |x +b |在(0,+∞)上具有单调性,则f (b -2)与f (a +1)的大小关系为 ( )A .f (b -2)=f (a +1)B .f (b -2)>f (a +1)C .f (b -2)<f (a +1)D .不能确定 二、填空题13.函数f (x )=a x -1+3的图象一定过定点P ,则P 点的坐标是________.14.函数f (x )=log 5(2x +1)的单调增区间是________.15.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是______.16.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为________. 三、解答题17.化简下列各式:(1)[(0.06451)-2.5]32-3338-π0;(2)2lg 2+lg 31+12 lg 0.36+14lg 16.18.已知f (x )为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式f (x )=14x -a2x (a ∈R ).(1)写出f (x )在[0,1]上的解析式;(2)求f (x )在[0,1]上的最大值.19.已知x >1且x ≠43,f (x )=1+log x 3,g (x )=2log x 2,试比较f (x )与g (x )的大小.20.已知函数f (x )=2x -12|x |.(1)若f (x )=2,求x 的值;(2)若2tf (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.21.已知函数f (x )=ax -1(a >0且a ≠1).(1)若函数y =f (x )的图象经过P (3,4)点,求a 的值; (2)若f (lg a )=100,求a 的值;(3)比较f ⎝⎛⎭⎫lg 1100与f (-2.1)的大小,并写出比较过程.22.已知f (x )=10x -10-x10x +10-x.(1)求证f (x )是定义域内的增函数; (2)求f (x )的值域.必修一第二章答案第一节 指数与指数幂的运算(一) 1.A 2.C 3.D 4.A 5.0 6.17. 解 (1)由于根指数是3,故1x -3有意义即可,此时x -3≠0,即x ≠3.(2)∵(x -5)(x 2-25)=(x -5)2(x +5)=(5-x )x +5,∴⎩⎪⎨⎪⎧x +5≥0x -5≤0,∴-5≤x ≤5. 8. 解 (1)当n 为奇数时,n(3-π)n =3-π;当n 为偶数时,n(3-π)n =π-3. (2)2n(x -y )2n =|x -y |,当x ≥y 时,2n(x -y )2n =x -y ;当x <y 时,2n(x -y )2n =y -x .(3)5+26+7-43-6-4 2=(3)2+23·2+(2)2+22-2×23+(3)2- 22-2×22+(2)2=(3+2)2+(2-3)2-(2-2)2 =|3+2|+|2-3|-|2-2| =3+2+2-3-(2-2)=2 2. 9.A 10.C 11.③12.解 当n 是奇数时,原式=(a -b )+(a +b )=2a ;当n 是偶数时,原式=|a -b |+|a +b |=(b -a )+(-a -b )=-2a . 所以n(a -b )n+n(a +b )n=⎩⎪⎨⎪⎧2a ,n 为奇数-2a ,n 为偶数.13.解 ∵x -xy -2y =0,x >0,y >0,∴(x )2-xy -2(y )2=0, ∴(x +y )(x -2y )=0, 由x >0,y >0得x +y >0, ∴x -2y =0,∴x =4y ,∴2x -xy y +2xy =8y -2y y +4y =65. 第一节 指数与指数幂的运算(二)1.A 2.C 3.C 4.B 5.32 6.9 57. 解 (1)原式=[xy 2·(xy -1)12]13·(xy )12·(xy )-1=x 13·y 23|x |16|y |-16·|x |-12·|y |-12=x 13·|x |-13=⎩⎪⎨⎪⎧1, x >0-1, x <0.(2)原式=12+12+2+1-22=22-3.8. 解 原式=(x 13-1)(x 23+x 13+1)x 13-1-(2x 13+1)(4x 23-2x 13+1)4x 23-2x 13+1=(x 23+x 13+1)-(2x 13+1)=x 23+x 13+1-2x 13-1=x 23-x 13. 9.D 10.D 11.-2312.解 (1)x +y x -y -x -y x +y=(x +y )2x -y -(x -y )2x -y =4xyx -y .将x =12,y =23代入上式得:原式=412×2312-23=413-16=-2413=-83; (2)∵a ,b 是方程x 2-6x +4=0的两根,∴⎩⎪⎨⎪⎧a +b =6ab =4,∵a >b >0,∴a >b .⎝ ⎛⎭⎪⎫a -b a +b 2=a +b -2ab a +b +2ab =6-246+24=210=15, ∴a -ba +b=15=55. 13.解 ∵1+x 2=1+14(51n -5-1n )2=1+14(52n -2+5-2n)=14(52n +2+5-2n )=⎣⎡⎦⎤12⎝⎛⎭⎫51n +5-1n 2, ∴1+x 2=12⎝⎛⎭⎫51n+5-1n , ∴x +1+x 2=12⎝⎛⎭⎫51n -5-1n +12⎝⎛⎭⎫51n +5-1n =51n . ∴(x +1+x 2)n =⎝⎛⎭⎫51n n =5. 第一节 指数函数及其性质(一) 1.B 2.C 3.C 4.D 5.18 6.[0,8)7. 解 (1)考查函数y =0.2x .因为0<0.2<1,所以函数y =0.2x 在实数集R 上是单调减函数. 又因为-1.5>-1.7, 所以0.2-1.5<0.2-1.7.(2)考查函数y =(14)x .因为0<14<1,所以函数y =(14)x 在实数集R 上是单调减函数.又因为13<23,所以(14)13>(14)23.(3)2-1.5<20,即2-1.5<1;30<30.2, 即1<30.2,所以2-1.5<30.2.8. 解 (1)因为4>1,所以函数y =4x 在(-∞,+∞)内是增函数;(2)因为0<14<1,所以函数y =⎝⎛⎭⎫14x 在(-∞,+∞)内是减函数; (3)由于2x 3=(32)x ,并且32>1,所以函数y =2x3在(-∞,+∞)内是增函数.9.A 10.B 11.[4,8) 12.解 令t =x 2-2x +2,则y =⎝⎛⎭⎫12t,又t =x 2-2x +2=(x -1)2+1, ∵0≤x ≤3,∴当x =1时,t min =1; 当x =3时,t max =5. 故1≤t ≤5, ∴⎝⎛⎭⎫125≤y ≤⎝⎛⎭⎫121, 故所求函数的值域为⎣⎡⎦⎤132,12.13.证明 由a x -1≠0,得x ≠0,故函数定义域为{x |x ≠0},易判断其定义域关于原点对称.又f (-x )=a -x +1a -x -1=(a -x +1)a x (a -x -1)a x =1+a x 1-a x=-f (x ),∴f (-x )=-f (x ).∴函数y =a x +1a x -1是奇函数.第一节 指数函数及其性质(二)1.A 2.B 3.C 4.A 5.19 6.[-8,23]7. 解 (1)考查函数y =0.6x.因为0<0.6<1,所以函数y =0.6x 在实数集R 上是单调递减函数. 又因为3.5<3.7,所以0.63.5>0.63.7. (2)考查函数y =(2)x . 因为2>1,所以函数y =(2)x 在实数集R 上是单调递增函数. 又因为-1.2>-1.4, 所以(2)-1.2>(2)-1.4.(3)考查函数y =(32)x .因为32>1,所以函数y =(32)x 在实数集R 上是单调递增函数.又因为13<23,所以(32)13<(32)23.(4)∵π-2=(1π)2<1,(13)-1.3=31.3>1, ∴π-2<(13)-1.3.8. 解 (1)若a >1,则f (x )在[1,2]上递增,∴a 2-a =a2,即a =32或a =0(舍去).(2)若0<a <1,则f (x )在[1,2]上递减, ∴a -a 2=a 2,即a =12或a =0(舍去).综上所述,所求a 的值为12或32.9.B 10.C 11.(-∞,-1) 12.解 ∵f (x )=a a 2-1(a x -1a x ),∴函数定义域为R ,设x 1,x 2∈(-∞,+∞)且x 1<x 2, f (x 1)-f (x 2)=a a 2-1(ax 1-1ax 1-ax 2+1ax 2)=a a 2-1(ax 1-ax 2+1ax 2-1ax 1)=aa 2-1(ax 1-ax 2+ax 1-ax 2ax 1ax 2)=a a 2-1(ax 1-ax 2)(1+1ax 1ax 2). ∵1+1ax 1ax 2>0,∴当a >1时,ax 1<ax 2,aa 2-1>0,∴f (x 1)-f (x 2)<0,f (x 1)<f (x 2), ∴f (x )为增函数,当0<a <1时,ax 1>ax 2,aa 2-1<0,∴f (x 1)-f (x 2)<0,f (x 1)<f (x 2), ∴f (x )为增函数,综上,f (x )在R 上为增函数. 13.解 (1)∵f (x )为R 上的奇函数,∴f (0)=0,b =1.又f (-1)=-f (1),得a =1. (2)任取x 1,x 2∈R ,且x 1<x 2, 则f (x 1)-f (x 2)=1-2x 12x 1+1-1-2x 22x 2+1=(1-2x 1)(2x 2+1)-(1-2x 2)(2x 1+1)(2x 1+1)(2x 2+1)=2(2x 2-2x 1)(2x 1+1)(2x 2+1)∵x 1<x 2,∴2x 2-2x 1>0,又(2x 1+1)(2x 2+1)>0,f (x 1)-f (x 2)>0 ∴f (x )为R 上的减函数.(3)∵t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立, ∴f (t 2-2t )<-f (2t 2-k )∵f (x )是奇函数,∴f (t 2-2t )<f (k -2t 2),由f (x )为减函数, ∴t 2-2t >k -2t 2.即k <3t 2-2t 恒成立,而3t 2-2t =3(t -13)2-13≥-13.∴k <-13.第二节 对 数1.C 2.D 3.A 4.A 5.246.3 7. 解 (1)①因为log 2x =-25,所以x =2-25=582.②因为log x 3=-13,所以x -13=3,所以x =3-3=127.(2)①log 68=a .②由6a =8得6a =23,即6a3=2,所以log 62=a3.③由6a 3=2得23a =6,所以log 26=3a.8. 解 (1)由题意知⎩⎪⎨⎪⎧x +2>0,x -1>0,x -1≠1.解得x >1且x ≠2,故x 的取值范围是(1,2)∪(2,+∞).(2)由题意知⎩⎪⎨⎪⎧x +3>0x +3≠1,解得x >-3且x ≠-2.故x 的取值范围是(-3,-2)∪(-2,+∞). 9.C 10.C 11.11012.解 (1)10lg 3-10log 41+2log 26=3-0+6=9.(2)22+log 23+32-log 39=22×2log 23+323log 39=4×3+99=12+1=13.13.证明 令log a b =log b a =t ,则a t =b ,b t =a ,∴(a t )t =a ,则at 2=a ,∴t 2=1,t =±1. 当t =1时,a =b ,当t =-1时,a =1b ,所以a =b 或a =1b第二节 对数运算1.A 2.C 3.D 4.B 5.40 6.1 7. 解 (1)lg 12-lg 58+lg 12.5-log 89·log 34=lg(12×85×12.5)-2lg 33lg 2·2lg 2lg 3=1-43=-13.(2)由3a =4b =36得:a =log 336,b =log 436, 所以2a +1b=2log 363+log 364=log 36(32×4)=1.8. 解 (1)方法一 原式=12(lg 25-lg 72)-43lg 232+lg(72×5)12=52lg 2-lg 7-2lg 2+lg 7+12lg 5=12lg 2+12lg 5=12(lg 2+lg 5)=12. 方法二 原式=lg 427-lg 4+lg 7 5 =lg42×757×4=lg(2×5)=12.(2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2 =2lg 10+(lg 5+lg 2)2=2+(lg 10)2=2+1=3. 9.C 10.A 11.65-312.解 原方程可化为2(lg x )2-4lg x +1=0.设t =lg x ,则方程化为2t 2-4t +1=0, ∴t 1+t 2=2,t 1·t 2=12.又∵a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根, ∴t 1=lg a ,t 2=lg b , 即lg a +lg b =2,lg a ·lg b =12.∴lg(ab )·(log a b +log b a )=(lg a +lg b )·(lg b lg a +lg alg b )=(lg a +lg b )·(lg b )2+(lg a )2lg a ·lg b =(lg a +lg b )·(lg a +lg b )2-2lg a ·lg blg a ·lg b =2×22-2×1212=12,即lg(ab )·(log a b +log b a )=12.13.解 设这种放射性物质最初的质量是1,经过x 年后,剩余量是y ,则有y =0.75x .依题意,得13=0.75x ,即x =lg13lg 0.75=-lg 3lg 3-lg 4=lg 32lg 2-lg 3=0.477 12×0.301 0-0.477 1≈4.∴估计约经过4年,该物质的剩余量是原来的13.第二节 对数函数及其性质(一)1.D 2.C 3.C 4.D 5.(1,2) 6.(4,-1) 7. 解 (1)由x -2>0,得x >2,所以函数y =log 2(x -2)的定义域是(2,+∞),值域是R . (2)因为对任意实数x ,log 4(x 2+8)都有意义, 所以函数y =log 4(x 2+8)的定义域是R . 又因为x 2+8≥8,所以log 4(x 2+8)≥log 48=32,即函数y =log 4(x 2+8)的值域是[32,+∞).8.解 (1)由题意,得⎩⎪⎨⎪⎧1+a +1>09-3a +1≤0,所以a ≥103.故实数a 的取值范围为[103,+∞).(2)由题意,得x 2+ax +1>0在R 上恒成立,则Δ=a 2-4<0,解得-2<a <2. 故实数a 的取值范围为(-2,2). 9.A 10.D 11.m >812.解 (1)当a =2时,函数f (x )=log 2(x +1)为[3,63]上的增函数,故f (x )max =f (63)=log 2(63+1)=6, f (x )min =f (3)=log 2(3+1)=2.(2)f (x )-g (x )>0,即log a (1+x )>log a (1-x ), ①当a >1时,1+x >1-x >0,得0<x <1. ②当0<a <1时,0<1+x <1-x ,得-1<x <0. 13.解 由x 2-log m x <0,得x 2<log m x ,要使x 2<log m x 在(0,12)内恒成立,只要y =log m x 在(0,12)内的图象在y =x 2的上方,于是0<m <1.在同一坐标系中作y =x 2和y =log m x 的草图,如图所示.∵x =12时,y =x 2=14,∴只要x =12时,y =log m 12≥14=log m m 14.∴12≤m 14,即116≤m .又0<m <1, ∴116≤m <1,即实数m 的取值范围是[116,1). 第二节 对数函数及其性质(二)1.C 2.B 3.D 4.C 5.b ≤1 6.(-∞,log 2(2-1))7. 解 由⎩⎪⎨⎪⎧2-2x >0,x +1>0得-1<x <1.由0<lg(2-2x )-lg(x +1) =lg2-2x x +1<1得1<2-2xx +1<10. 因为x +1>0,所以x +1<2-2x <10x +10,解得-23<x <13.由⎩⎪⎨⎪⎧-1<x <1,-23<x <13得-23<x <13.8. 解 由a >0可知u =3-ax 为减函数,依题意则有a >1.又u =3-ax 在[0,2]上应满足u >0, 故3-2a >0,即a <32.综上可得,a 的取值范围是1<a <32.9.C 10.B 11.[12,1)∪(1,2]12.解 (1)∵函数f (x )的图象关于原点对称,∴函数f (x )为奇函数, ∴f (-x )=-f (x ),即log 121+ax -x -1=-log 121-ax x -1=log 12x -11-ax ,解得a =-1或a =1(舍).(2)f (x )+log 12(x -1)=log 121+x x -1+log 12(x -1)=log 12(1+x ),当x >1时,log 12(1+x )<-1,∵当x ∈(1,+∞)时,f (x )+log 12(x -1)<m 恒成立,∴m ≥-1.13.解 ∵f (x )=2+log 3x ,∴y =[f (x )]2+f (x 2)=(2+log 3x )2+2+log 3x 2=(2+log 3x )2+2+2log 3x =(log 3x )2+6log 3x +6=(log 3x +3)2-3. ∵函数f (x )的定义域为[1,9], ∴要使函数y =[f (x )]2+f (x 2)有意义,必须满足⎩⎪⎨⎪⎧1≤x 2≤9,1≤x ≤9,∴1≤x ≤3,∴0≤log 3x ≤1.∴6≤y =(log 3x +3)2-3≤13. 当log 3x =1,即x =3时,y =13.∴当x =3时,函数y =[f (x )]2+f (x 2)取得最大值13. 习题课1.C 2.A 3.C 4.D 5.3 6.2或-1 7. 解 因为f ⎝⎛⎭⎫x 1+x 22-12[f (x 1)+f (x 2)]=log a x 1+x 22-12[log a x 1+log a x 2]=log a x 1+x 22-log a x 1x 2,又0<x 1<x 2,∴x 1+x 2-2x 1x 2=(x 1-x 2)2>0,即x 1+x 2>2x 1x 2,即x 1+x 22>x 1x 2.于是当a >1时,f ⎝⎛⎭⎫x 1+x 22>12[f (x 1)+f (x 2)];同理0<a <1时,f ⎝⎛⎭⎫x 1+x 22<12[f (x 1)+f (x 2)].8. 证明 设0<x 1<x 2<1,则f (x 2)-f (x 1)=log 2x 21-x 2-log 2x 11-x 1=log 2x 2(1-x 1)(1-x 2)x 1=log 2x 2x 1·1-x 11-x 2.∵0<x 1<x 2<1,∴x 2x 1>1,1-x 11-x 2>1.则log 2x 2x 1·1-x 11-x 2>0,∴f (x 2)>f (x 1).故函数f (x )在(0,1)上是增函数. 9.C 10.B 11.(1,2)12.解 (1)f (x )=log a (x +1)-log a (1-x ),则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1.故所求函数f (x )的定义域为{x |-1<x <1}.(2)由(1)知f (x )的定义域为{x |-1<x <1},且f (-x )=log a (-x +1)-log a (1+x ) =-[log a (x +1)-log a (1-x )]=-f (x ),故f (x )为奇函数.(3)f (x )=log a (x +1)-log a (1-x )=log a x +11-x =log a (-1+21-x).当a >1时,f (x )在定义域{x |-1<x <1}内是增函数,所以f (x )>0⇔x +11-x >1.解得0<x <1.所以使f (x )>0的x 的解集是{x |0<x <1}.13.解 (1)由a x -b x >0,得(a b )x >1,且a >1>b >0,得ab>1,所以x >0,即f (x )的定义域为(0,+∞).(2)任取x 1>x 2>0,a >1>b >0,则ax 1>ax 2>0,bx 1<bx 2,所以ax 1-bx 1>ax 2-bx 2>0, 即lg(ax 1-bx 1)>lg(ax 2-bx 2).故f (x 1)>f (x 2). 所以f (x )在(0,+∞)上为增函数.假设函数y =f (x )的图象上存在不同的两点A (x 1,y 1),B (x 2,y 2),使直线平行于x 轴,则x 1≠x 2,y 1=y 2,这与f (x )是增函数矛盾.故函数y =f (x )的图象上不存在不同的两点使过两点的直线平行于x 轴.(3)因为f (x )是增函数,所以当x ∈(1,+∞)时,f (x )>f (1),这样只需f (1)=lg(a -b )≥0,即当a ≥b +1时,f (x )在(1,+∞)上恒取正值. 第三节 幂函数1. A 2.B 3.B 4.A 5.④ 6.(0,+∞) 7. 解 (1)y =x 2+x -2=x 2+1x2,∴此函数的定义域为(-∞,0)∪(0,+∞). ∵f (-x )=(-x )2+1(-x )2=x 2+1x 2=f (x ), ∴此函数为偶函数. (2)y =x 12+x -12=x +1x ,∴此函数的定义域为(0,+∞). ∵此函数的定义域不关于原点对称, ∴此函数为非奇非偶函数. (3)f (x )=x 12+3(-x )14=x +34-x ,∴⎩⎪⎨⎪⎧x ≥0-x ≥0,∴x =0, ∴此函数的定义域为{0}, ∴此函数既是奇函数又是偶函数. 8. 解 (1)若f (x )为正比例函数,则⎩⎪⎨⎪⎧m 2+m -1=1,m 2+2m ≠0⇒m =1. (2)若f (x )为反比例函数,则⎩⎪⎨⎪⎧m 2+m -1=-1,m 2+2m ≠0⇒m =-1. (3)若f (x )为二次函数,则⎩⎪⎨⎪⎧m 2+m -1=2,m 2+2m ≠0⇒m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1, ∴m =-1±2. 9.B 10.C 11.⎝⎛⎭⎫23,3212.解 (1)设f (x )=x α,∵其图象过点(2,2),故2=(2)α,解得α=2,∴f (x )=x 2.设g (x )=x β,∵其图象过点⎝⎛⎭⎫2,14,∴14=2β,解得β=-2,∴g (x )=x -2. (2)在同一坐标系下作出f (x )=x 2与g (x )=x -2的图象,如图所示.由图象可知:f (x ),g (x )的图象均过点(-1,1)与(1,1).∴①当x >1或x <-1时,f (x )>g (x ); ②当x =1或x =-1时,f (x )=g (x ); ③当-1<x <1且x ≠0时,f (x )<g (x ). 13.解 ∵函数在(0,+∞)上递减,∴m -3<0,解得m <3.∵m ∈N *,∴m =1,2. 又函数的图象关于y 轴对称, ∴m -3是偶数,而2-3=-1为奇数,1-3=-2为偶数,∴m =1. 而f (x )=x -13在(-∞,0),(0,+∞)上均为减函数,∴(a +1)-13<(3-2a )-13等价于a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a .解得a <-1或23<a <32.故a 的取值范围为{a |a <-1或23<a <32}.第二章章末检测答案1.A 2.C 3.C 4.B 5.C 6.C 7.D 8.D 9.C 10.D 11.B 12.C 13.(1,4) 14.⎝⎛⎭⎫-12,+∞ 15.(-1,0)∪(1,+∞)16.15417.解 (1)原式=⎩⎨⎧⎭⎬⎫⎣⎡⎦⎤⎝⎛⎭⎫641 00015-5223-⎝⎛⎭⎫27813-1=⎣⎡⎦⎤⎝⎛⎭⎫410315×⎝⎛⎭⎫-52×23-⎣⎡⎦⎤⎝⎛⎭⎫32313-1=52-32-1=0. (2)原式=2lg 2+lg 31+12lg 0.62+14lg 24=2lg 2+lg 31+lg 2×310+lg 2=2lg 2+lg 31+lg 2+lg 3-lg 10+lg 2=2lg 2+lg 32lg 2+lg 3=1.18.解 (1)∵f (x )为定义在[-1,1]上的奇函数,且f (x )在x =0处有意义,∴f (0)=0,即f (0)=140-a20=1-a =0.∴a =1.设x ∈[0,1],则-x ∈[-1,0]. ∴f (-x )=14-x -12-x =4x -2x .又∵f (-x )=-f (x ),∴-f (x )=4x -2x .∴f (x )=2x -4x . (2)当x ∈[0,1],f (x )=2x -4x =2x -(2x )2, ∴设t =2x (t >0),则f (t )=t -t 2.∵x ∈[0,1],∴t ∈[1,2].当t =1时,取最大值,最大值为1-1=0. 19.解 f (x )-g (x )=1+log x 3-2log x 2=1+log x 34=log x 34x ,当1<x <43时,34x <1,∴log x 34x <0;当x >43时,34x >1,∴log x 34x >0.即当1<x <43时,f (x )<g (x );当x >43时,f (x )>g (x ).20.解 (1)当x <0时,f (x )=0;当x ≥0时,f (x )=2x -12x .由条件可知2x -12x =2,即22x -2·2x -1=0,解得2x =1±2.∵2x >0,∴x =log 2(1+2).(2)当t ∈[1,2]时,2t⎝⎛⎭⎫22t -122t +m ⎝⎛⎭⎫2t -12t ≥0, 即m (22t -1)≥-(24t-1). ∵22t -1>0,∴m ≥-(22t+1). ∵t ∈[1,2],∴-(1+22t)∈[-17,-5], 故m 的取值范围是[-5,+∞). 21.解 (1)∵函数y =f (x )的图象经过P (3,4),∴a 3-1=4,即a 2=4.又a >0,所以a =2.(2)由f (lg a )=100知,a lg a -1=100.∴lg a lg a -1=2(或lg a -1=log a 100).∴(lg a -1)·lg a =2.∴lg 2a -lg a -2=0, ∴lg a =-1或lg a =2, ∴a =110或a =100.(3)当a >1时,f ⎝⎛⎭⎫lg 1100>f (-2.1); 当0<a <1时,f ⎝⎛⎭⎫lg 1100<f (-2.1). 因为,f ⎝⎛⎭⎫lg 1100=f (-2)=a -3, f (-2.1)=a-3.1,当a >1时,y =a x 在(-∞,+∞)上为增函数, ∵-3>-3.1,∴a -3>a-3.1.即f ⎝⎛⎭⎫lg 1100>f (-2.1);当0<a <1时,y =a x 在(-∞,+∞)上为减函数, ∵-3>-3.1,∴a -3<a-3.1,即f ⎝⎛⎭⎫lg 1100<f (-2.1).22.(1)证明 因为f (x )的定义域为R ,且f (-x )=10-x -10x10-x +10x=-f (x ),所以f (x )为奇函数.f (x )=10x -10-x 10x +10-x =102x -1102x+1=1-2102x +1. 令x 2>x 1,则 f (x 2)-f (x 1)=(1-2102x 2+1)-(1-2102x 1+1)=2·102x 2-102x 1(102x 2+1)(102x 1+1).因为y =10x 为R 上的增函数, 所以当x 2>x 1时,102x 2-102x 1>0. 又因为102x 1+1>0,102x 2+1>0. 故当x 2>x 1时,f (x 2)-f (x 1)>0, 即f (x 2)>f (x 1). 所以f (x )是增函数.(2)解 令y =f (x ).由y =102x -1102x +1,解得102x =1+y1-y .因为102x >0,所以-1<y <1. 即f (x )的值域为(-1,1).。
人教a版必修1章末检测:第二章《基本初等函数(ⅰ)》(含答案)
第二章 章末检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.函数y =ln(x -1)的定义域是( )A .(1,2)B .[1,+∞)C .(1,+∞)D .(1,2)∪(2,+∞)2.若x log 23=1,则3x +9x 的值为( )A .3 B.52 C .6 D.123.已知a >0且a ≠1,下列四组函数中表示相等函数的是( )A .y =log a x 与y =(log x a )-1B .y =a log a x 与y =xC .y =2x 与y =log a a 2xD .y =log a x 2与y =2log a x4.若函数y =a x +m -1 (a >0,a ≠1)的图象在第一、三、四象限内,则( )A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <15.已知函数f (log 4x )=x ,则f ⎝⎛⎭⎫12等于( )A.14B.12 C .1 D .26.已知函数y =log a (3a -1)的值恒为正数,则a 的取值范围是( )A .a >13 B.13<a ≤23C .a >1 D.13<a <23或a >17.已知函数f (x )={ log 3x (x >0)x (x ≤0),则f [f (19)]的值是( )A .9 B.19C .-9D .-198.已知f (x )={ (3a -1)x +4a (x <1)a x (x ≥1)是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,13C.⎣⎡⎭⎫17,13D.⎣⎡⎭⎫17,19.已知0<a <1,x =log a 2+log a 3,y =12log a 5,z =log a 21-log a 3,则() A .x >y >z B .z >y >xC .y >x >zD .z >x >y10.关于x 的方程a x =log 1a x (a >0,且a ≠1)( )A .无解B .必有唯一解C .仅当a >1时有唯一解D .仅当0<a <1时有唯一解11.函数y =lg(21-x-1)的图象关于( ) A .x 轴对称 B .y 轴对称C .原点对称D .y =x 对称12.设函数f (x )=⎩⎨⎧ 2-x -1 (x ≤0)x 12 (x >0), 若f (x 0)>1,则x 0的取值范围是( )A .(-1,1)B .(-1,+∞)C .(-∞,-2)∪(0,+∞)D .(-∞,-1)∪(1,+∞)二、填空题(本大题共4小题,每小题4分,共16分)13.函数y =log (2x -1)3x -2的定义域是__________________.14.函数f (x )=log 12(x 2-3x +2)的递增区间是__________. 15.已知函数f (x )=a -12x +1,若f (x )是奇函数,则a =________. 16.给出函数f (x )=⎩⎨⎧⎝⎛⎭⎫12x (x ≥4)f (x +1) (x <4), 则f (log 23)=________.三、解答题(本大题共6小题,共74分)17.(12分)计算:(1)⎝⎛⎭⎫-338-23+(0.002)-12-10(5-2)-1+(2-3)0; (2)2lg 5+23lg 8+lg 5·lg 20+lg 22.18.(12分)若函数f (x )=log a (x +1)(a >0且a ≠1)的定义域和值域均为[0,1],求a 的值.19.(12分)已知函数f (x )=-2x 12,求f (x )的定义域,并证明在f (x )的定义域内,当x 1<x 2时,f (x 1)>f (x 2).20.(12分)已知函数f (x )=log a (x +1),g (x )=log a (1-x )(a >0,且a ≠1),令F (x )=f (x )-g (x ).(1)求函数y =F (x )的定义域;(2)判断函数y =F (x )的奇偶性.21.(12分)已知函数f (x )=3x ,且f (a )=2,g (x )=3ax -4x .(1)求g (x )的解析式;(2)当x ∈[-2,1]时,求g (x )的值域.22.(14分)设f (x )=log 12(1-ax x -1)为奇函数,a 为常数. (1)求a 的值;(2)证明f (x )在(1,+∞)内单调递增;(3)若对于[3,4]上的每一个x 的值,不等式f (x )>(12)x +m 恒成立,求实数m 的取值范围.第二章 章末检测 答案1.C2.C [x log 23=1⇒log 23x =1,∴3x =2,9x =(3x )2=22=4,∴3x +9x =6.]3.C [对A ,解析式不同,定义域不同;对B ,定义域不同;对D ,定义域不同;对C ,是相等函数.]4.B [由函数y =a x +m -1 (a >0,a ≠1)的图象在第一、三象限知a >1.又过第四象限内,∴a 0+m -1<0,则有m <0.]5.D [令log 4x =12,则x =412=2.] 6.D [由y >0得:⎩⎪⎨⎪⎧ a >13a -1>1 或⎩⎪⎨⎪⎧0<a <10<3a -1<1, 解得a >1或13<a <23.] 7.B8.C [当x =1时,log a x =0,若为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立. 令g (x )=(3a -1)x +4a ,则g (x )>0在x <1上恒成立,故3a -1<0且g (1)≥0,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0.⇒17≤a <13,故选C.] 9.C [x =log a 2+log a 3=log a 6,y =12log a 5=log a 5,z log a 21-log a 3=log a 213=log a 7, ∵0<a <1,∴y =log a x 在定义域上是减函数.∴y >x >z .]10.B [在同一平面直角坐标系中分别画出函数y =a x ,y =log 1ax 的图象. 由图象可知方程a x =log 1ax 必有唯一解.] 11.C [f (x )=lg(21-x -1)=lg 1+x 1-x, f (-x )=lg 1-x 1+x =-f (x ),所以y =lg(21-x-1)的图象关于原点对称,故选C.] 12.D [当x ≤0时,由2-x -1>1得x <-1;当x >0时,由x 12>1得x >1.] 13.(23,1)∪(1,+∞) 解析 由题意得0<2x -1<1或2x -1>1,且必须满足3x -2>0,∴x 的取值范围是(23,1)∪(1,+∞). 14.(-∞,1)15.12解析 方法一 函数f (x )=a -12x +1的定义域为R ,且为奇函数, ∴f (0)=0,即a -120+1=0,∴a =12. 方法二 f (-x )=a -12-x +1=a -2x1+2x, ∵f (x )为奇函数,∴f (x )=-f (-x ),∴a -12x +1=-a +2x1+2x. ∴2a =2x +12x +1=1,∴a =12. 16.124解析 ∵log 23<4,∴f (log 23)=f (log 23+1)=f (log 23+3)=f (log 224),∵log 224>4,∴f (log 224)=⎝⎛⎭⎫12log 224=124. 17.解 (1)原式=(-1)-23⎝⎛⎭⎫338-23+⎝⎛⎭⎫1500-12-105-2+1 =⎝⎛⎭⎫278-23+50012-10(5+2)+1 =49+105-105-20+1=-1679. (2)原式=2lg 5+23lg 23+lg 5·lg(4×5)+lg 22 =2lg 5+2lg 2+2lg 5·lg 2+lg 25+lg 22=2(lg 5+lg 2)+2lg 5·lg 2+lg 25+lg 22=2+(lg 5+lg 2)2=2+1=3.18.解 当a >1时,函数f (x )在区间[0,1]上为增函数, ∴⎩⎪⎨⎪⎧ f (0)=0f (1)=1,解得a =2. 当0<a <1时,函数f (x )在区间[0,1]上为减函数,∴⎩⎪⎨⎪⎧ f (0)=1f (1)=0,方程组无解. 综上可知a =2.19.解 ∵f (x )=-2x 12=-2x , ∴函数f (x )的定义域为[0,+∞),当0≤x 1<x 2时,f (x 1)-f (x 2)=-2x 121+2x 122 =2(x 2-x 1)=2x 2-x 1x 2+x 1, ∵0≤x 1<x 2,∴x 2-x 1>0,x 2+x 1>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).20.解 (1)由⎩⎪⎨⎪⎧x +1>01-x >0,解得-1<x <1, 故函数F (x )的定义域是(-1,1).(2)因为函数F (x )的定义域关于原点对称,且F (-x )=log a (-x +1)-log a (1+x )=log a 1-x 1+x =-log a 1+x 1-x=-[log a (x +1)-log a (1-x )]=-F (x ),所以F (x )是奇函数.21.解 (1)由f (a )=2,得3a =2,a =log 32, ∴g (x )=(3a )x -4x =(3log 32)x -4x=2x -4x =-(2x )2+2x . (2)设2x =t ,∵x ∈[-2,1],∴14≤t ≤2. g (t )=-t 2+t =-(t -12)2+14,由g (t )在t ∈[14,2]上的图象可得, 当t =12,即x =-1时,g (x )有最大值14; 当t =2,即x =1时,g (x )有最小值-2.故g (x )的值域是[-2,14]. 22.(1)解 ∵f (x )是奇函数,∴f (-x )=-f (x ),∴log 12(1+ax -x -1)=-log 12(1-ax x -1) ⇔1+ax -x -1=x -11-ax>0 ⇒1-a 2x 2=1-x 2⇒a =±1.检验a =1(舍),∴a =-1.(2)证明 任取x 1>x 2>1,∴x 1-1>x 2-1>0,∴0<2x 1-1<2x 2-1⇒ 0<1+2x 1-1<1+2x 2-1⇒0<x 1+1x 1-1<x 2+1x 2-1⇒log 12x 1+1x 1-1>log 12x 2+1x 2-1, 即f (x 1)>f (x 2),∴f (x )在(1,+∞)内单调递增.(3)解 f (x )-(12)x >m 恒成立. 令g (x )=f (x )-(12)x ,只需g (x )min >m , 用定义可以证明g (x )在[3,4]上是增函数,∴g (x )min =g (3)=-98, ∴m <-98时原式恒成立. 即m 的取值范围为(-∞,-98).。
高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.1.2(一) Word版含解析
2.1.2指数函数及其性质(一)课时目标 1.理解指数函数的概念,会判断一个函数是否为指数函数.2.掌握指数函数的图象和性质.1.指数函数的概念一般地,__________________叫做指数函数,其中x是自变量,函数的定义域是____.2.指数函数y=a x(a>0,且a≠1)的图象和性质a>10<a<1图象定义域R值域(0,+∞)性质过定点过点______,即x=____时,y=____函数值的变化当x>0时,________;当x<0时,________当x>0时,________;当x<0时,________单调性是R上的__________是R上的__________一、选择题1.下列以x为自变量的函数中,是指数函数的是()A.y=(-4)x B.y=πxC.y=-4x D.y=a x+2(a>0且a≠1)2.函数f(x)=(a2-3a+3)a x是指数函数,则有()A.a=1或a=2B.a=1C.a=2D.a>0且a≠13.函数y=a|x|(a>1)的图象是()4.已知f(x)为R上的奇函数,当x<0时,f(x)=3x,那么f(2)的值为()A.-9B.1 9C.-19D.95.右图是指数函数①y=a x;②y=b x;③y=c x;④y=d x的图象,则a、b、c、d与1的大小关系是()A.a<b<1<c<dB.b<a<1<d<cC.1<a<b<c<dD.a<b<1<d<c6.函数y=(12)x-2的图象必过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限题号12345 6二、填空题7.函数f(x)=a x的图象经过点(2,4),则f(-3)的值为________.8.若函数y=a x-(b-1)(a>0,a≠1)的图象不经过第二象限,则a,b必满足条件________________.9.函数y=8-23-x(x≥0)的值域是________.三、解答题10.比较下列各组数中两个值的大小:(1)0.2-1.5和0.2-1.7;(2)1314⎛⎫⎪⎝⎭和2314⎛⎫⎪⎝⎭;(3)2-1.5和30.2.11.2000年10月18日,美国某城市的日报以醒目标题刊登了一条消息:“市政委员会今天宣布:本市垃圾的体积达到50000m3”,副标题是:“垃圾的体积每三年增加一倍”.如果把3年作为垃圾体积加倍的周期,请你完成下面关于垃圾的体积V(m3)与垃圾体积的加倍的周期(3年)数n的关系的表格,并回答下列问题.1 50000×2 2 50000×22… … n50000×2n(1) (2)根据报纸所述的信息,你估计3年前垃圾的体积是多少? (3)如果n =-2,这时的n ,V 表示什么信息?(4)写出n 与V 的函数关系式,并画出函数图象(横轴取n 轴). (5)曲线可能与横轴相交吗?为什么?能力提升12.定义运算a ⊕b =⎩⎨⎧a (a ≤b )b (a >b ),则函数f (x )=1⊕2x 的图象是( )13.定义在区间(0,+∞)上的函数f (x )满足对任意的实数x ,y 都有f (x y )=yf (x ).(1)求f(1)的值;(2)若f(12)>0,解不等式f(ax)>0.(其中字母a为常数).1.函数y=f(x)与函数y=f(-x)的图象关于y轴对称;函数y=f(x)与函数y=-f(x)的图象关于x轴对称;函数y=f(x)与函数y=-f(-x)的图象关于原点对称.2.函数图象的平移变换是一种基本的图象变换.一般地,函数y =f (x -a )的图象可由函数y =f (x )的图象向右(a >0)或向左(a <0)平移|a |个单位得到.2.1.2 指数函数及其性质(一)知识梳理1.函数y =a x (a >0,且a ≠1) R 2.(0,1) 0 1 y >1 0<y <1 0<y <1 y >1 增函数 减函数 作业设计1.B [A 中-4<0,不满足指数函数底数的要求,C 中因有负号,也不是指数函数,D 中的函数可化为y =a 2·a x ,a x 的系数不是1,故也不是指数函数.]2.C [由题意得⎩⎪⎨⎪⎧a 2-3a +3=1,a >0且a ≠1.解得a =2.]3.B [该函数是偶函数.可先画出x ≥0时,y =a x 的图象,然后沿y 轴翻折过去,便得到x <0时的函数图象.]4.C [当x >0时,-x <0,∴f (-x )=3-x , 即-f (x )=(13)x, ∴f (x )=-(13)x .因此有f (2)=-(13)2=-19.]5.B [作直线x =1与四个指数函数图象交点的坐标分别为(1,a )、(1,b )、(1,c )、(1,d ),由图象可知纵坐标的大小关系.]6.D [函数y =(12)x 的图象上所有的点向下平移2个单位,就得到函数y =(12)x -2的图象,所以观察y =(12)x -2的图象知选D.]7.18解析 由题意a 2=4,∴a =2.f (-3)=2-3=18.8.a >1,b ≥2解析 函数y =a x -(b -1)的图象可以看作由函数y =a x 的图象沿y 轴平移|b -1|个单位得到.若0<a <1,不管y =a x 的图象沿y 轴怎样平移,得到的图象始终经过第二象限;当a >1时,由于y =a x 的图象必过定点(0,1),当y =a x 的图象沿y 轴向下平移1个单位后,得到的图象不经过第二象限.由b -1≥1,得b ≥2.因此,a ,b 必满足条件a >1,b ≥2. 9.[0,8) 解析 y =8-23-x=8-23·2-x =8-8·(12)x=8[1-(12)x ]. ∵x ≥0,∴0<(12)x ≤1, ∴-1≤-(12)x <0,从而有0≤1-(12)x <1,因此0≤y <8. 10.解 (1)考查函数y =0.2x . 因为0<0.2<1,所以函数y =0.2x 在实数集R 上是单调减函数. 又因为-1.5>-1.7, 所以0.2-1.5<0.2-1.7.(2)考查函数y =(14)x .因为0<14<1,所以函数y =(14)x 在实数集R 上是单调减函数. 又因为13<23,所以(3)2-1.5<20,即2-1.5<1;30<30.2,即1<30.2, 所以2-1.5<30.2.11.解 (1)由于垃圾的体积每3年增加1倍,24年后即8个周期后,该市垃圾的体积是50000×28=12800000(m 3).(2)根据报纸所述的信息,估计3年前垃圾的体积是50000×2-1=25000(m 3).(3)如果n =-2,这时的n 表示6年前,V 表示6年前垃圾的体积. (4)n 与V 的函数关系式是V =50000×2n ,图象如图所示.(5)因为对任意的整数n,2n >0,所以V =50000×2n >0,因此曲线不可能与横轴相交.12.A [由题意f (x )=1⊕2x =⎩⎪⎨⎪⎧1, x ≥0;2x ,x <0.]13.解 (1)令x =1,y =2,可知f (1)=2f (1),故f (1)=0. (2)设0<x 1<x 2,∴存在s ,t 使得x 1=(12)s ,x 2=(12)t , 且s >t ,又f (12)>0, ∴f (x 1)-f (x 2)=f [(12)s ]-f [(12)t ] =sf (12)-tf (12)=(s -t )f (12)>0, ∴f (x 1)>f (x 2).故f(x)在(0,+∞)上是减函数.又∵f(ax)>0,x>0,f(1)=0,∴0<ax<1,当a=0时,x∈∅,当a>0时,0<x<1a,当a<0时,1a<x<0,不合题意.故x∈∅. 综上:a≤0时,x∈∅;a>0时,不等式解集为{x|0<x<1 a}.。
高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.2.1第2课时 Word版含解析.doc
第2课时对数的运算课时目标 1.掌握对数的运算性质及其推导.2.能运用对数运算性质进行化简、求值和证明.3.了解换底公式并能用换底公式将一般对数化成自然对数和常用对数.1.对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:(1)log a(M·N)=____________________;(2)log a MN=____________________;(3)log a M n=__________(n∈R).2.对数换底公式log a b=log c blog c a(a>0,且a≠1,b>0,c>0,且c≠1);特别地:log a b·log b a=____(a>0,且a≠1,b>0,且b≠1).一、选择题1.下列式子中成立的是(假定各式均有意义)()A.log a x·log a y=log a(x+y)B.(log a x)n=n log a xC.log a xn=log anxD.log a xlog a y=log a x-log a y2.计算:log916·log881的值为()A.18B.118C.83D.383.若log 513·log 36·log 6x =2,则x 等于( ) A .9B.19C .25D.1254.已知3a =5b =A ,若1a +1b =2,则A 等于( ) A .15B.15 C .±15D .2255.已知log 89=a ,log 25=b ,则lg3等于( ) A.a b -1B.32(b -1)C.3a2(b +1)D.3(a -1)2b6.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则(lg ab )2的值等于( ) A .2B.12C .4D.14二、填空题7.2log 510+log 50.25+(325-125)÷425=_____________________________________. 8.(lg5)2+lg2·lg50=________.9.2008年5月12日,四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M =23lg E -3.2,其中E (焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川大地震所释放的能量相当于________颗广岛原子弹. 三、解答题10.(1)计算:lg 12-lg 58+lg12.5-log 89·log 34; (2)已知3a =4b =36,求2a +1b 的值.11.若a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值.能力提升12.下列给出了x与10x的七组近似对应值:组.()A.二B.四C.五D.七13.一种放射性物质不断变化为其他物质,每经过一年的剩余质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13?(结果保留1位有效数字)(lg2≈0.3010,lg3≈0.4771)1.在运算过程中避免出现以下错误:log a(MN)=log a M·log a N.log a MN=log a Mlog a N.log a N n=(log a N)n.log a M±log a N=log a(M±N).2.根据对数的定义和运算法则可以得到对数换底公式:知识梳理1.(1)log a M +log a N (2)log a M -log a N (3)n log a M 2.1 作业设计 1.C2.C [log 916·log 881=lg16lg9·lg81lg8=4lg22lg3·4lg33lg2=83.] 3.D [由换底公式,得-lg3lg5·lg6lg3·lg xlg6=2,lg x =-2lg5,x =5-2=125.] 4.B [∵3a =5b =A >0, ∴a =log 3A ,b =log 5A .由1a +1b =log A 3+log A 5=log A 15=2, 得A 2=15,A =15.]5.C [∵log 89=a ,∴lg9lg8=a . ∴log 23=32a .lg3=log 23log 210=log 231+log 25=3a 2(b +1).]6.A [由根与系数的关系可知lg a +lg b =2, lg a lg b =12.于是(lg ab )2=(lg a -lg b )2=(lg a +lg b )2-4lg a lg b =22-4×12=2.] 7.65-3解析 原式=2(log 510+log 50.5)+(325425-125425)=2log 5(10×0.5)+2131322255---=2+165-5=65-3. 8.1解析 (lg5)2+lg2·lg50=(lg5)2+lg2(lg5+lg10) =(lg5)2+lg2·lg5+lg2=lg5(lg5+lg2)+lg2 =lg5+lg2=1. 9.1000解析 设里氏8.0级、6.0级地震释放的能量分别为E 2、E 1, 则8-6=23(lg E 2-lg E 1),即lg E 2E 1=3.∴E 2E 1=103=1000,即汶川大地震所释放的能量相当于1000颗广岛原子弹. 10.解 (1)方法一 lg 12-lg 58+lg12.5-log 89·log 34 =lg(12×85×12.5)-2lg33lg2·2lg2lg3=1-43=-13. 方法二 lg 12-lg 58+lg12.5-log 89·log 34 =lg 12-lg 58+lg 252-lg9lg8·lg4lg3=-lg2-lg5+3lg2+(2lg5-lg2)-2lg33lg2·2lg2lg3 =(lg2+lg5)-43=1-43=-13.(2)方法一 由3a =4b =36得:a =log 336,b =log 436, 所以2a +1b =2log 363+log 364=log 36(32×4)=1. 方法二 因为3a =4b=36,所以136a =3,136b=4,所以(136a)2·136b=32×4, 即2136a b+=36,故2a +1b =1.11.解 原方程可化为2(lg x )2-4lg x +1=0. 设t =lg x ,则方程化为2t 2-4t +1=0, ∴t 1+t 2=2,t 1·t 2=12.又∵a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根, ∴t 1=lg a ,t 2=lg b , 即lg a +lg b =2,lg a ·lg b =12. ∴lg(ab )·(log a b +log b a ) =(lg a +lg b )·(lg b lg a +lg a lg b )=(lg a +lg b )·(lg b )2+(lg a )2lg a ·lg b =(lg a +lg b )·(lg a +lg b )2-2lg a ·lg blg a ·lg b=2×22-2×1212=12,即lg(ab )·(log a b +log b a )=12.12.A [由指数式与对数式的互化可知, 10x =N ⇔x =lg N , 将已知表格转化为下表:∵lg2+lg5=0.30103+0.69897=1,∴第一组、第三组对应值正确.又显然第六组正确,∵lg8=3lg2=3×0.30103=0.90309,∴第五组对应值正确.∵lg12=lg2+lg6=0.30103+0.77815=1.07918,∴第四组、第七组对应值正确.∴只有第二组错误.]13.解设这种放射性物质最初的质量是1,经过x年后,剩余量是y,则有y=0.75x.依题意,得13=0.75x,即x=lg13lg0.75=-lg3lg3-lg4=lg32lg2-lg3=0.47712×0.3010-0.4771≈4.∴估计约经过4年,该物质的剩余量是原来的1 3.。
高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.2.2(二) Word版含解析
2.2.2 对数函数及其性质(二)课时目标 1.进一步加深理解对数函数的性质.2.掌握对数函数的性质及其应用.1.函数y =log a x 的图象如图所示,则实数a 的可能取值是( ) A .5B.15 C.1e D.122.下列各组函数中,表示同一函数的是( ) A .y =x 2和y =(x )2 B .|y |=|x |和y 3=x 3 C .y =log a x 2和y =2log a x D .y =x 和y =log a a x3.若函数y =f (x )的定义域是[2,4],则y =f (12log x )的定义域是( )A .[12,1] B .[4,16] C .[116,14] D .[2,4]4.函数f (x )=log 2(3x +1)的值域为( ) A .(0,+∞) B .[0,+∞) C .(1,+∞) D .[1,+∞)5.函数f (x )=log a (x +b )(a >0且a ≠1)的图象经过(-1,0)和(0,1)两点,则f (2)=________.6.函数y =log a (x -2)+1(a >0且a ≠1)恒过定点____________.一、选择题1.设a =log 54,b =(log 53)2,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c2.已知函数y =f (2x )的定义域为[-1,1],则函数y =f (log 2x )的定义域为( ) A .[-1,1]B .[12,2]C .[1,2]D .[2,4]3.函数f (x )=log a |x |(a >0且a ≠1)且f (8)=3,则有( ) A .f (2)>f (-2) B .f (1)>f (2) C .f (-3)>f (-2) D .f (-3)>f (-4)4.函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为( )A.14B.12C .2D .4 5.已知函数f (x )=lg 1-x1+x,若f (a )=b ,则f (-a )等于( ) A .b B .-b C.1b D .-1b6.函数y =3x (-1≤x <0)的反函数是( ) A .y =13log x (x >0)B .y =log 3x (x >0)C .y =log 3x (13≤x <1) D .y =13log x (13≤x <1)二、填空题7.函数f (x )=lg(2x -b ),若x ≥1时,f (x )≥0恒成立,则b 应满足的条件是________.8.函数y =log a x 当x >2时恒有|y |>1,则a 的取值范围是______________. 9.若log a 2<2,则实数a 的取值范围是______________. 三、解答题10.已知f (x )=log a (3-ax )在x ∈[0,2]上单调递减,求a 的取值范围.11.已知函数f (x )=121log 1axx --的图象关于原点对称,其中a 为常数. (1)求a 的值;(2)若当x ∈(1,+∞)时,f (x )+12log (1)x -<m 恒成立.求实数m 的取值范围.能力提升12.设函数f(x)=log a x(a>0,a≠1),若f(x1x2…x2010)=8,则f(x21)+f(x22)+…+f(x22010)的值等于()A.4B.8C.16D.2log4813.已知log m4<log n4,比较m与n的大小.1.在对数函数y =log a x (a >0,且a ≠1)中,底数a 对其图象的影响无论a 取何值,对数函数y =log a x (a >0,且a ≠1)的图象均过点(1,0),且由定义域的限制,函数图象穿过点(1,0)落在第一、四象限,随着a 的逐渐增大,y =log a x (a >1,且a ≠1)的图象绕(1,0)点在第一象限由左向右顺时针排列,且当0<a <1时函数单调递减,当a >1时函数单调递增.2.比较两个(或多个)对数的大小时,一看底数,底数相同的两个对数可直接利用对数函数的单调性来比较大小,对数函数的单调性由“底”的范围决定,若“底”的范围不明确,则需分“底数大于1”和“底数大于0且小于1”两种情况讨论;二看真数,底数不同但真数相同的两个对数可借助于图象,或应用换底公式将其转化为同底的对数来比较大小;三找中间值,底数、真数均不相同的两个对数可选择适当的中间值(如1或0等)来比较.2.2.2 对数函数及其性质(二)双基演练 1.A2.D [y =log a a x =x log a a =x ,即y =x ,两函数的定义域、值域都相同.] 3.C [由题意得:2≤12log x ≤4,所以(12)2≥x ≥(12)4,即116≤x ≤14.]4.A [∵3x +1>1,∴log 2(3x +1)>0.] 5.2解析 由已知得log a (b -1)=0且log a b =1, ∴a =b =2.从而f (2)=log 2(2+2)=2.6.(3,1)解析 若x -2=1,则不论a 为何值,只要a >0且a ≠1,都有y =1. 作业设计1.D [因为0<log 53<log 54<1,1<log 45, 所以b <a <c .]2.D [∵-1≤x ≤1, ∴2-1≤2x ≤2,即12≤2x ≤2. ∴y =f (x )的定义域为[12,2]即12≤log 2x ≤2,∴2≤x ≤4.]3.C [∵log a 8=3,解得a =2,因为函数f (x )=log a |x |(a >0且a ≠1)为偶函数,且在(0,+∞)为增函数,在(-∞,0)上为减函数,由-3<-2,所以f (-3)>f (-2).]4.B [函数f (x )=a x +log a (x +1),令y 1=a x ,y 2=log a (x +1),显然在[0,1]上,y 1=a x 与y 2=log a (x +1)同增或同减.因而[f (x )]max +[f (x )]min =f (1)+f (0)=a +log a 2+1+0=a ,解得a =12.] 5.B [f (-x )=lg1+x 1-x =lg(1-x 1+x )-1=-lg 1-x1+x=-f (x ),则f (x )为奇函数, 故f (-a )=-f (a )=-b .]6.C [由y =3x (-1≤x <0)得反函数是y =log 3x (13≤x <1), 故选C.] 7.b ≤1解析 由题意,x ≥1时,2x -b ≥1. 又2x ≥2,∴b ≤1. 8.[12,1)∪(1,2]解析 ∵|y |>1,即y >1或y <-1,∴log a x >1或log a x <-1, 变形为log a x >log a a 或log a x <log a 1a当x =2时,令|y |=1, 则有log a 2=1或log a 2=-1, ∴a =2或a =12. 要使x >2时,|y |>1.如图所示,a 的取值范围为1<a ≤2或12≤a <1.9.(0,1)∪(2,+∞)解析 log a 2<2=log a a 2.若0<a <1,由于y =log a x 是减函数,则0<a 2<2,得0<a <2,所以0<a <1;若a >1,由于y =log a x 是增函数, 则a 2>2,得a > 2.综上得0<a <1或a > 2.10.解 由a >0可知u =3-ax 为减函数,依题意则有a >1. 又u =3-ax 在[0,2]上应满足u >0, 故3-2a >0,即a <32.综上可得,a 的取值范围是1<a <32.11.解 (1)∵函数f (x )的图象关于原点对称, ∴函数f (x )为奇函数, ∴f (-x )=-f (x ), 即12log 1+ax -x -1=-12log 1-ax x -1=12log x -11-ax , 解得a =-1或a =1(舍). (2)f (x )+12log (x -1)=12log 1+xx -1+12log (x -1)=log(1+x),12log(1+x)<-1,当x>1时,12log(x-1)<m恒成立,∵当x∈(1,+∞)时,f(x)+12∴m≥-1.12.C[∵f(x1x2…x2010)=log a(x1x2…x2010)=8,f(x21)+f(x22)+…+f(x22010)=log a(x21x22…x22010)=2log a(x1x2…x2010)=2×8=16.]13.解数形结合可得0<n<m<1或1<n<m或0<m<1<n.。
高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.3 Word版含解析
§2.3幂函数课时目标 1.通过具体问题,了解幂函数的概念.2.从描点作图入手,画出y=x,y=x2,y=x3,y=12x,y=x-1的图象,总结出幂函数的共性,巩固并会加以应用.1.一般地,______________叫做幂函数,其中x是自变量,α是常数.2.在同一平面直角坐标系中,画出幂函数y=x,y=x2,y=x3,y=12x,y=x-1的图象.3.结合2中图象,填空.(1)所有的幂函数图象都过点________,在(0,+∞)上都有定义.(2)若α>0时,幂函数图象过点____________,且在第一象限内______;当0<α<1时,图象上凸,当α>1时,图象______.(3)若α<0,则幂函数图象过点________,并且在第一象限内单调______,在第一象限内,当x从+∞趋向于原点时,函数在y轴右方无限地逼近于y轴,当x趋于+∞时,图象在x轴上方无限逼近x轴.(4)当α为奇数时,幂函数图象关于______对称;当α为偶数时,幂函数图象关于______对称.(5)幂函数在第____象限无图象.一、选择题1.下列函数中不是幂函数的是( ) A .y =x B .y =x 3 C .y =2x D .y =x -12.幂函数f (x )的图象过点(4,12),那么f (8)的值为( ) A.24B .64 C .22D.1643.下列是y =23x 的图象的是( )4.图中曲线是幂函数y =x n 在第一象限的图象,已知n 取±2,±12四个值,则相应于曲线C 1,C 2,C 3,C 4的n 依次为( ) A .-2,-12,12,2 B .2,12,-12,-2 C .-12,-2,2,12 D .2,12,-2,-125.设a=2535⎛⎫⎪⎝⎭,b=3525⎛⎫⎪⎝⎭,c=2525⎛⎫⎪⎝⎭,则a,b,c的大小关系是()A.a>c>b B.a>b>cC.c>a>b D.b>c>a6.函数f(x)=xα,x∈(-1,0)∪(0,1),若不等式f(x)>|x|成立,则在α∈{-2,-1,0,1,2}的条件下,α可以取值的个数是()A.0B.2C.3D.4二、填空题7.给出以下结论:①当α=0时,函数y=xα的图象是一条直线;②幂函数的图象都经过(0,0),(1,1)两点;③若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大;④幂函数的图象不可能在第四象限,但可能在第二象限.则正确结论的序号为________.8.函数y=12x+x-1的定义域是____________.9.已知函数y=x-2m-3的图象过原点,则实数m的取值范围是____________________.三、解答题10.比较1.121、121.4、131.1的大小,并说明理由.11.如图,幂函数y =x 3m -7(m ∈N )的图象关于y 轴对称,且与x 轴、y 轴均无交点,求此函数的解析式.能力提升12.已知函数f (x )=(m 2+2m )·21m m x +-,m 为何值时,函数f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.13.点(2,2)在幂函数f(x)的图象上,点(-2,14)在幂函数g(x)的图象上,问当x为何值时,有:(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)<g(x).§2.3幂函数知识梳理1.函数y=xα 3.(1)(1,1)(2)(0,0),(1,1)递增下凸(3)(1,1)递减(4)原点y轴(5)四作业设计1.C[根据幂函数的定义:形如y=xα的函数称为幂函数,选项C中自变量x 的系数是2,不符合幂函数的定义,所以C不是幂函数.]2.A[设幂函数为y=xα,依题意,12=4α,即22α=2-1,∴α=-1 2.∴幂函数为y=12x-,∴f(8)=128-=18=122=24.]3.B[y=23x=3x2,∴x∈R,y≥0,f(-x)=3(-x)2=3x2=f(x),即y=23x是偶函数,又∵23<1,∴图象上凸.]4.B[作直线x=t(t>1)与各个图象相交,则交点自上而下的排列顺序恰好是按幂指数的降幂排列的.]5.A [根据幂函数与指数函数的单调性直接可以判断出来,y =25x 在x >0时是增函数,所以a >c ;y =(25)x 在x >0时是减函数,所以c >b .] 6.B [因为x ∈(-1,0)∪(0,1),所以0<|x |<1. 要使f (x )=x α>|x |,x α在(-1,0)∪(0,1)上应大于0, 所以α=-1,1显然是不成立的. 当α=0时,f (x )=1>|x |; 当α=2时,f (x )=x 2=|x |2<|x |; 当α=-2时,f (x )=x -2=|x |-2>1>|x |. 综上,α的可能取值为0或-2,共2个.] 7.④解析 当α=0时,函数y =x α的定义域为{x |x ≠0,x ∈R },故①不正确;当α<0时,函数y =x α的图象不过(0,0)点,故②不正确;幂函数y =x -1的图象关于原点对称,但其在定义域内不是增函数,故③不正确.④正确. 8.(0,+∞)解析 y =12x 的定义域是[0,+∞),y =x -1的定义域是(-∞,0)∪(0,+∞),再取交集.9.m <-32解析 由幂函数的性质知-2m -3>0, 故m <-32.10.解 考查函数y =1.1x ,∵1.1>1, ∴它在(0,+∞)上是增函数.又∵12>13,∴121.1>131.1.再考查函数y =12x ,∵12>0, ∴它在(0,+∞)上是增函数. 又∵1.4>1.1,∴121.4>121.1, ∴121.4>121.1>131.1.11.解 由题意,得3m -7<0. ∴m <73.∵m ∈N ,∴m =0,1或2, ∵幂函数的图象关于y 轴对称, ∴3m -7为偶数. ∵m =0时,3m -7=-7, m =1时,3m -7=-4, m =2时,3m -7=-1.故当m =1时,y =x -4符合题意.即y =x -4. 12.解 (1)若f (x )为正比例函数,则⎩⎪⎨⎪⎧m 2+m -1=1,m 2+2m ≠0⇒m =1.(2)若f (x )为反比例函数,则⎩⎪⎨⎪⎧m 2+m -1=-1,m 2+2m ≠0⇒m =-1.(3)若f (x )为二次函数,则⎩⎪⎨⎪⎧m 2+m -1=2,m 2+2m ≠0⇒m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1, ∴m =-1±2.13.解 设f (x )=x α,则由题意,得 2=(2)α,∴α=2,即f (x )=x 2. 设g (x )=x β,由题意,得14=(-2)β,∴β=-2,即g (x )=x -2.在同一平面直角坐标系中作出f (x )与g (x )的图象,如图所示. 由图象可知:(1)当x >1或x <-1时, f (x )>g (x );(2)当x =±1时,f (x )=g (x ); (3)当-1<x <1且x ≠0时,f (x )<g (x ).。
高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.2.2(一)
2.2.2对数函数及其性质(一)课时目标 1.掌握对数函数的概念、图象和性质.2.能够根据指数函数的图象和性质得出对数函数的图象和性质,把握指数函数与对数函数关系的实质.1.对数函数的定义:一般地,我们把______________________叫做对数函数,其中x是自变量,函数的定义域是________.2.对数函数的图象与性质定义y=log a x (a>0,且a≠1)底数a>10<a<1图象定义域________值域________单调性在(0,+∞)上是增函数在(0,+∞)上是减函数共点性图象过点________,即log a1=0函数值特点x∈(0,1)时,y∈________;x∈[1,+∞)时,y∈________x∈(0,1)时,y∈________;x∈[1,+∞)时,y∈________对称性函数y=log a x与y=1logax的图象关于____对称3.对数函数y=log a x(a>0且a≠1)和指数函数__________________互为反函数.一、选择题1.函数y =log 2x -2的定义域是( ) A .(3,+∞) B .[3,+∞) C .(4,+∞) D .[4,+∞)2.设集合M ={y |y =(12)x ,x ∈[0,+∞)},N ={y |y =log 2x ,x ∈(0,1]},则集合M ∪N 等于( )A .(-∞,0)∪[1,+∞)B .[0,+∞)C .(-∞,1]D .(-∞,0)∪(0,1)3.已知函数f (x )=log 2(x +1),若f (α)=1,则α等于( ) A .0B .1C .2D .34.函数f (x )=|log 3x |的图象是( )5.已知对数函数f (x )=log a x (a >0,a ≠1),且过点(9,2),f (x )的反函数记为y =g (x ),则g (x )的解析式是( ) A .g (x )=4x B .g (x )=2x C .g (x )=9x D .g (x )=3x6.若log a 23<1,则a 的取值范围是( ) A .(0,23) B .(23,+∞) C .(23,1) D .(0,23)∪(1,+∞)题号12345 6答案二、填空题7.如果函数f(x)=(3-a)x,g(x)=log a x的增减性相同,则a的取值范围是______________.8.已知函数y=log a(x-3)-1的图象恒过定点P,则点P的坐标是________.9.给出函数则f(log23)=________.三、解答题10.求下列函数的定义域与值域:(1)y=log2(x-2);(2)y=log4(x2+8).11.已知函数f(x)=log a(1+x),g(x)=log a(1-x),(a>0,且a≠1).(1)设a=2,函数f(x)的定义域为[3,63],求函数f(x)的最值.(2)求使f(x)-g(x)>0的x的取值范围.能力提升12.已知图中曲线C1,C2,C3,C4分别是函数y=log a1x,y=log a2x,y=log a3x,y=log a4x的图象,则a1,a2,a3,a4的大小关系是()A.a4<a3<a2<a1B.a3<a4<a1<a2C.a2<a1<a3<a4D.a3<a4<a2<a113.若不等式x2-log m x<0在(0,12)内恒成立,求实数m的取值范围.1.函数y =log m x 与y =log n x 中m 、n 的大小与图象的位置关系.当0<n <m <1时,如图①;当1<n <m 时,如图②;当0<m <1<n 时,如图③.2.由于指数函数y =a x (a >0,且a ≠1)的定义域是R ,值域为(0,+∞),再根据对数式与指数式的互化过程知道,对数函数y =log a x (a >0,且a ≠1)的定义域为(0,+∞),值域为R ,它们互为反函数,它们的定义域和值域互换,指数函数y =a x 的图象过(0,1)点,故对数函数图象必过(1,0)点.2.2.2 对数函数及其性质(一)知识梳理1.函数y =log a x (a >0,且a ≠1) (0,+∞) 2.(0,+∞) R (1,0) (-∞,0) [0,+∞) (0,+∞) (-∞,0] x 轴 3.y =a x (a >0且a ≠1) 作业设计1.D [由题意得:⎩⎨⎧log 2x -2≥0,x >0.解得x ≥4.]2.C [M =(0,1],N =(-∞,0],因此M ∪N =(-∞,1].] 3.B [α+1=2,故α=1.]4.A [y =|log 3x |的图象是保留y =log 3x 的图象位于x 轴上半平面的部分(包括与x 轴的交点),而把下半平面的部分沿x 轴翻折到上半平面而得到的.] 5.D [由题意得:log a 9=2,即a 2=9,又∵a >0,∴a =3. 因此f (x )=log 3x ,所以f (x )的反函数为g (x )=3x .]6.D [由log a 23<1得:log a 23<log a a . 当a >1时,有a >23,即a >1; 当0<a <1时,则有0<a <23.综上可知,a 的取值范围是(0,23)∪(1,+∞).] 7.(1,2)解析 由题意,得⎩⎨⎧ 0<3-a <1,0<a <1或⎩⎨⎧3-a >1,a >1,解得1<a <2.8.(4,-1)解析 y =log a x 的图象恒过点(1,0),令x -3=1,则x =4; 令y +1=0,则y =-1. 9.124解析 ∵1<log 23<log 24=2,∴3+log 23∈(4,5), ∴f (log 23)=f (log 23+1)=f (log 23+2)=f (log 23+3)=f (log 224)=222log 241log log 24241222-⎛⎫== ⎪⎝⎭=124.10.解 (1)由x -2>0,得x >2,所以函数y =log 2(x -2)的定义域是(2,+∞),值域是R .(2)因为对任意实数x ,log 4(x 2+8)都有意义, 所以函数y =log 4(x 2+8)的定义域是R . 又因为x 2+8≥8,所以log 4(x 2+8)≥log 48=32,即函数y =log 4(x 2+8)的值域是[32,+∞).11.解 (1)当a =2时,函数f (x )=log 2(x +1)为[3,63]上的增函数, 故f (x )max =f (63)=log 2(63+1)=6,f (x )min =f (3)=log 2(3+1)=2.(2)f (x )-g (x )>0,即log a (1+x )>log a (1-x ), ①当a >1时,1+x >1-x >0,得0<x <1. ②当0<a <1时,0<1+x <1-x ,得-1<x <0.12.B [作x 轴的平行线y =1,直线y =1与曲线C 1,C 2,C 3,C 4各有一个交点,则交点的横坐标分别为a 1,a 2,a 3,a 4.由图可知a 3<a 4<a 1<a 2.] 13.解 由x 2-log m x <0,得x 2<log m x ,在同一坐标系中作y =x 2和y =log m x 的草图,如图所示.要使x 2<log m x 在(0,12)内恒成立,只要y =log m x 在(0,12)内的图象在y =x 2的上方,于是0<m <1. ∵x =12时,y =x 2=14,∴只要x =12时,y =log m 12≥14=log m 14m . ∴12≤14m ,即116≤m .又0<m <1,∴116≤m <1,即实数m 的取值范围是[116,1).小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是( )
A.f(-4)>f(1)
B.f(-4)=f(1)
C.f(-4)<f(1)
D.不能确定
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)
13.已知函数 f(x)=Error!,则 f(2+log23)的值为______. 3-x
14.函数 f(x)=loga3+x(a>0 且 a≠1),f(2)=3,则 f(-2)的值为________. 15.函数 y= log1 (x2 3x 2) 的单调递增区间为______________.
11 ∴(2)3.1<(1.5)3.1<23.1,故选 D.]
log232 2 7.A [∵log89=log223=3log23,
2 ∴原式=3.] 8.B [∵ab>0,∴a、b 同号.
当 a、b 同小于 0 时①②不成立;
当 ab=1 时④不成立,故只有③对.] x+3
9.C [y=lg 10 =lg(x+3)-1,
∴M∩N={x|0≤x<4}.] 2.B [当 x=0 时,ymin=30-1=0, 当 x=2 时,ymax=32-1=8, 故值域为[0,8].]
9x+1
3.D [由 f(3x)=log2 2 ,
3x+1
1
得 f(x)=log2 2 ,f(1)=log2 2=2.]
4.B [ 21log2 5 =2· 2log2 5 =2×5=10.]
即 y+1=lg(x+3).故选 C.] 10.D [分别作出 y=2x 与 y=x2 的图象.
知有一个 x<0 的交点,另外,x=2,x=4 时也相交,故选 D.]
11.B [∵f(x)=2x-4(x≥0),∴令 f(x)>0,得 x>2.又 f(x)为偶函数且 f(x-2)>
2 A.3 C.2
3 B.2
D.3
8.已知 ab>0,下面四个等式中:
①lg(ab)=lga+lgb; a
②lgb=lga-lgb; 1a a
③2lg(b)2=lgb; 1
④lg(ab)=logab10. 其中正确命题的个数为( )
A.0
B.1
C.2
D.3
x+3 9.为了得到函数 y=lg 10 的图象,只需把函数 y=lgx 的图象上所有的点( )
5.B [由 100a=5,得 2a=lg5,
由 10b=2,得 b=lg2,∴2a+b=lg5+lg2=1.]
1
1
6.D [∵1.53.1 =1.5-3.1=(1.5)3.1, 1
1
23.1 =2-3.1=(2)3.1, 又幂函数 y=x3.1 在(0,+∞)上是增函数, 11 2<1.5<2,
D.3
1、 23.1 的大小关系是( )
1
1
A.23.1< 23.1 <1.53.1
1
1
B.1.53.1 <23.1< 23.1
1
1
C.1.53.1 < 23.1 <23.1
1
1
D. 23.1 <1.53.1 <23.1
log89 7.式子log23的值为( )
-2x+b 22.(12 分)已知定义域为 R 的函数 f(x)=2x+1+2是奇函数. (1)求 b 的值; (2)判断函数 f(x)的单调性; (3)若对任意的 t∈R,不等式 f(t2-2t)+f(2t2-k)<0 恒成立,求 k 的取值范 围.
章末检测(B)
1.C [由题意,得 M={x|x<4},N={y|y≥0},
18.(12 分)已知函数 f(x)=2a·4x-2x-1. (1)当 a=1 时,求函数 f(x)在 x∈[-3,0]的值域; (2)若关于 x 的方程 f(x)=0 有解,求 a 的取值范围.
4 19.(12 分)已知 x>1 且 x≠3,f(x)=1+logx3,g(x)=2logx2,试比较 f(x)与 g(x)的 大小.
1 20.(12 分)设函数 f(x)=log2(4x)·log2(2x),4≤x≤4, (1)若 t=log2x,求 t 的取值范围; (2)求 f(x)的最值,并写出最值时对应的 x 的值.
1+x 21.(12 分)已知 f(x)=loga1-x(a>0,a≠1). (1)求 f(x)的定义域; (2)判断 f(x)的奇偶性并予以证明; (3)求使 f(x)>0 的 x 的取值范围.
2 x1
16.设 0≤x≤2,则函数 y= 4 2 -3·2x+5 的最大值是________,最小值是 ________.
三、解答题(本大题共 6 小题,共 70 分) 17.(10 分)已知指数函数 f(x)=ax(a>0 且 a≠1). (1)求 f(x)的反函数 g(x)的解析式; (2)解不等式:g(x)≤loga(2-3x).
A.[2,8]
B.[0,8]
C.[1,8]
D.[-1,8]
9x+1 3.已知 f(3x)=log2 2 ,则 f(1)的值为( )
A.1
B.2
1
C.-1
D.2
4. 21log2 5 等于( )
A.7
B.10
9
C.6
D.2
5.若 100a=5,10b=2,则 2a+b 等于( )
A.0
B.1
C.2
章末检测(B)
(时间:120 分钟 满分:150 分)
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分) 1.已知函数 f(x)=lg(4-x)的定义域为 M,函数 g(x)= 0.5x-4的值域为 N,
则 M∩N 等于( )
A.M
B.N
C.[0,4)
D.[0,+∞)
2.函数 y=3|x|-1 的定义域为[-1,2],则函数的值域为( )
A.向左平移 3 个单位长度,再向上平移 1 个单位长度
B.向右平移 3 个单位长度,再向上平移 1 个单位长度
C.向左平移 3 个单位长度,再向下平移 1 个单位长度
D.向右平移 3 个单位长度,再向下平移 1 个单位长度 10.函数 y=2x 与 y=x2 的图象的交点个数是( )
A.0
B.1
C.2
D.3
11.设偶函数 f(x)满足 f(x)=2x-4(x≥0),则{x|f(x-2)>0}等于( )
A.{x|x<-2 或 x>4}
B.{x|x<0 或 x>4}
C.{x|x<0 或 x>6} D.{x|x<-2 或 x>2} 12.函数 f(x)=a|x+1|(a>0,a≠1)的值域为[1,+∞),则 f(-4)与 f(1)的关系