2012年新课标高考文科数学试卷含答案
2012年高考新课标全国卷文科数学试题(附答案)
2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅(2)复数z =32i i -++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A )−1 (B )0 (C )12 (D )1 (4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的 左、 右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D .45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则(A )A +B 为1a ,2a ,…,N a 的和(B )2A B +为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D )A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6(B )9(C )12(D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 (A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8(11)当0<x ≤12时,4log x a x <,则a 的取值范围是 (A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共4小题,每小题5分。
2012年新课标高考数学文科试卷带详解
2012年普通高等学校招生全国统一考试文科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1. 已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1}则 ( ) A. A ⊂≠B B. B ⊂≠A C..A =B D. A ∩B =∅ 【测量目标】不等式的运算和集合的包含关系.【考查方式】通过解不等式判断集合的包含关系. 【参考答案】B【试题解析】:由题意得,2={|20}{|12}A x x x x x --<=-<<,则B 是A 的真子集.2. 复数z =-3+i2+i 的共轭复数是 ( )A. 2+iB. 2-iC. -1+iD. -1-i 【测量目标】复数的四则运算及共轭复数的概念. 【考查方式】通过运算直接考查共轭复数. 【参考答案】D【试题解析】由题意得,()()3i 2i 3i 1i 2i 5z -+--+===-++,则1i z =--,故选D 3.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为 ( ) A. -1 B . 0 C . 2 D. 1【测量目标】线性回归方程与样本系数的的关系式. 【考查方式】通过给出方程求样本系数. 【参考答案】D【试题解析】:由题意得,根据线性相关性的检验可知,此时数据密切相关,此时数据的样本相关系数为1,故选D.4.设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 1PF 2是底角为30的等腰三角形,则E 的离心率为 ( )A. 12B. 23C. 34 D .45【测量目标】:椭圆的简单几何性质.【考查方式】将椭圆与三角函数知识结合起来考查. 【参考答案】C【试题解析】:由题意得,如图所示12212060F F P MF P ∠=⇒∠=,在直角2MF P △中,2sin60PM PF == , 又232F M a c =-,且2tan 603322PM F M a c a c==⇒=--所以34c e a ==,故选C . 5. 已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z x y =-+的取值范围是 ( ) A.(1-3,2) B.(0,2) C.(3-1,2) D.(0,1+3) 【测量目标】二元线性规划的最优解.【考查方式】利用线性约束条件通过直线平移求最值. 【参考答案】A【试题解析】由题意得,正三角形ABC 的边长为2,所以顶点C的坐标为()12C , 当取点三角形ABC 的顶点()1,3B 时目标函数取得最大值,最大值为max 2z =,当取点()12C +时,目标函数有最小值,此时最小值为min 1z =所以目标函数的取值范围为()12,故选A.6.如果执行下边的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则 ( ) A.A+B 为a 1,a 2,…,a N 的和 B.2A B+为a 1,a 2,…,a N 的算术平均数 C.A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数 D.A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数 【测量目标】程序框图的算法流程. 【考查方式】直接考查程序框图的算法. 【参考答案】C【试题解析】:由题意得,根据给定的程序框图可知,此程序框图是计算123,,,,N a a a a 的最大值与最小值的算法框图,A 表示计算123,,,,N a a a a 最大值,B 表示计算123,,,,N a a a a 的最小值,故选C.7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 ( ) A.6 B.9 C.12 D.18【测量目标】利用三视图求体积.【考查方式】通过观察三视图判断图形. 【参考答案】B【试题解析】由题意得,根据三视图的规则,原几何体表示底面为直角边长为直角三角形,高为3的三棱锥,所以几何体的体积为11139332V Sh ==⨯⨯=,故选B.8.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为 ( ) A.6π B.43π C.46π D.63π【测量目标】球体体积的计算方法.【考查方式】通过平面截球求出球的半径和体积. 【参考答案】B【试题解析】:由题意得,连接球心与截面小圆的圆心1OO ,则1OO α⊥平面,则1OO = 根据球的性质得,球的半径R == 所以球的体积为3344ππ33V R ===,故B .9.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx+φ)图像的两条相邻的对称轴,则φ=( )A.π4B.π3C.π2D.3π4【测量目标】三角函数的周期和图像.【考查方式】通过相邻对称轴的距离求出ω和ϕ. 【参考答案】A【试题解析】由题意得,直线π4x =和5π4x =是函数()f x 图象的两条相邻的对称轴, 则函数周期满足π2π12TT ω=⇒=⇒=,即函数()sin()f x x ϕ=+, 又ππππ()sin()1π,4442f k k ϕϕ=+=±⇒+=+∈Z ,即ππ,4k k ϕ=+∈Z ,当0k =时,π4ϕ=,故选A.10.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为 ( ) A. 2 B.2 2 C.4 D.8 【测量目标】等轴双曲线的概念和抛物线的相关概念. 【考查方式】等轴双曲线与抛物线结合考查. 【参考答案】C【试题解析】:由题意得,设等轴双曲线的方程为22221x y a a-=抛物线216y x =的准线方程为4x =-,代入双曲线的方程得,所以=2a =4,所以选C 11.当0<x ≤12时,4x <log a x ,则a 的取值范围是 ( )A.(0,22) B.(22,1) C.(1,2) D.(2,2) 【测量目标】对数函数与指数函数的图像与性质.【考查方式】通过不等式比较大小求出范围. 【参考答案】B【试题解析】:由题意得,当01a <<时,要使得14log ,(0)2xa x x <<…,即当102x <…时,函数4xy =在函数log a y x =图象的下方,又当12x =时,1242=,即函数4xy =过点1(,2)2,把点1(,2)2代入函数log a y x =得2a =,即12a <<,当1a >时,不符合题意,舍去,所以实数a 的取值范围是12a <<,故选B. 12.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为 ( ) A.3690 B.3660 C.1845 D.1830 【测量目标】数列的通项公式和求和公式. 【考查方式】给出数列的递推关系求和. 【参考答案】D【试题解析】:由题意得,由1(1)21n n n a a n ++-=-得21(1)21n n n a a n ++=-++=1(1)[(1)21]21n n n a n n ---+-++(1)(21)21n n a n n =-+--++即2(1)(21)21n n n a a n n ++=--++ 也有31(1)(21)23n n n a a n n +++=--+++两式相加得1232(1)44n n n n n a a a a n ++++++=--++设k 为整数,则41414243442(1)4(41)41610k k k k k a a a a k k ++++++++=--+++=+ 于是141460414243440()(1610)1830k k k k k k S aa a a k ++++===+++=+=∑∑第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.曲线y =x (3ln x +1)在点(1,1)处的切线方程为________. 【测量目标】导数的几何意义.【考查方式】通过点在曲线上求出斜率和直线. 【参考答案】43y x =-【试题解析】:由题意得,(3ln 1)3ln 3ln 4y x x x x x y x '=+=+⇒=+,所以1|4x y ='=, 由点斜式方程得14(1)y x -=-,整理得43y x =-.14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______. 【测量目标】等比数列求和公式的简单运用. 【考查方式】通过等式直接考查. 【参考答案】-2【试题解析】:设等比数列的首项为1a ,公比为q ,由题意得,3230S S +=,则221(44)0440a q q q q ++=⇒++=,解得2q =-.15.已知向量a,b 夹角为45,且|a |=1,|2a -b |=10,则|b |= . 【测量目标】平面向量的数量积与向量的模. 【考查方式】通过给出向量的模和角度直接考查.【参考答案】:【试题解析】:由题意得,222224444cos 45-=-+=-+ a b a b b a b b ,则244cos 4510-+=⇒=a b b b16.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M+m=____.【测量目标】函数奇偶性的判断和性质. 【考查方式】利用奇偶性求函数最值. 【参考答案】2【试题解析】:由题意得,函数()22222(1)sin 21sin 2sin 1111x x x x x x xf x x x x ++++++===++++,设()22sin 1x x g x x +=+,则()()222()sin()2sin ()11x x x xg x g x x x -+-+-==-=--++, 所以函数()g x 为奇函数,(步骤1)设当x a =时,()g x 有最大值()g a ,则当x a =-时,()g x 有最小值()g a -, 又()()1f x g x =+,则当x a =时,()f x 有最大值()1g a +,则当x a =-时,()f x 有最小值()1g a -+, 即()1,()1M g a m g a =+=-+,所以2M m +=(步骤2)三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知,,a b c 分别为ABC △个内角三,,A B C 所对的边,sin cos c C c A =-. (1)求A ;(2)若2a =,ABC △b ,c .【测量目标】正弦定理的运用.【考查方式】通过给出三角函数关系式直接考查.【试题解析】(1)∵sin cos c C c A -,∴sin sin sin cos C A C C A =-,(步骤1) ∵0πC <<,∴sin 0C ≠,cos 1A A -=,∴1cos )12A A -=, ∴π1sin()62A -=,(步骤2)∵0πA <<,∴π3A =.(步骤3)(2)∵1sin 2S bc A ==4bc =.①(步骤4)∵222cos a b c bc A =+-,∴228b c +=,②由①②解得2b c ==.(步骤5)18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式.(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.【测量目标】独立事件的概率分布列和期望.【考查方式】通过对实际问题的考查去求概率相关知识.【试题解析】(1)当日需求量17n …时,利润85y =;(步骤1) 当日需求量17n <时,利润1085y n =-,(步骤2)∴y 关于n 的解析式为1085,17,()85,17,y n n n y n =-<⎧∈⎨= ⎩N ….(步骤3)(2)(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元, ∴这100天的平均利润为1(5510652075168554)76.4100⨯+⨯+⨯+⨯=.(步骤4)(ii)利润不低于75元,当且仅当日需求不少于16枝, 故当天的利润不少于75元的概率为0.160.160.150.130.10.7P =++++=.(步骤5) 19.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧棱垂直底面,90ACB ∠=,112AC BC AA ==,D 是棱1AA 的中点.(1)证明:平面1BDC ⊥平面BDC ;(2)平面1BDC 分此棱柱为两部分,求这两部分体积的比.【测量目标】空间几何体内面面垂直的判定及体积公式.【考查方式】由线面垂直得到面面垂直,根据棱柱体积公式计算. . 【试题解析】(1)由题设知1BC CC ⊥,BC AC ⊥,1CC AC C = ,∴BC ⊥平面11ACC A , (步骤1) 又∵1DC ⊂平面11ACC A ,∴1DC BC ⊥,由题设知1145A DC ADC ∠=∠=,∴190CDC ∠= ,即1DC DC ⊥,(步骤2) 又∵BC DC C ⊥=, ∴1DC ⊥平面BDC , ∵1DC ⊂平面1BDC ,∴平面1BDC ⊥平面BDC .(步骤3) (2)设棱锥1B DACC -的体积为1V ,1AC =, 由题意得,1112111322V +=⨯⨯⨯=,(步骤4) 由三棱柱111ABC A B C -的体积1V =, ∴11():1:1V V V -=,∴平面1BDC 分此棱柱为两部分体积之比为1:1.(步骤5) 20.(本小题满分12分)设抛物物线C :22(0)x py p =>的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点.(1)若90BFD ∠=,ABD △的面积为p 的值及圆F 的方程;(2)若,,A B F 三点在同一条直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.【测量目标】抛物线与圆的标准方程及简单几何性质. 【考查方式】考查分类讨论的思想.【试题解析】设准线l 于y 轴的焦点为E ,圆F 的半径为r , 则FE p =,FA FB FD r ===,E 是BD 的中点, (1)∵90BFD ∠=,∴FA FB FD ===,2BD p =,(步骤1)点A 到直线l的距离d FA ==,∵ABD △的面积为∴11222ABD S BD d p ==⨯= △2) 解得2p =,∴(0,1)F , FA =,∴圆F 的方程为:22(1)8x y +-=.(步骤3) (2)∵,,A B F 三点在同一条直线m 上, ∴AB 是圆F 的直径,90ADB ∠=,由抛物线定义知12AD FA AB ==, ∴30ABD ∠=,∴m 的斜率为3或3-∴直线m 的方程为:2py x =+,(步骤4)∴原点到直线m 的距离14d p =,设直线n 的方程为:3y x b =±+,由22y x b x py⎧=+⎪⎨⎪=⎩,得220x px pb ±-=,(步骤5) ∵n 与C 只有一个公共点,∴24803p pb ∆=+=,∴6p b =-,∴直线n 的方程为:6py x =-,(步骤6) ∴原点到直线n 的距离2d p =,∴坐标原点到m ,n 距离的比值为3.(步骤7)21.(本小题满分12分)设函数()e 2xf x ax =--. (1)求()f x 的单调区间;(2)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值 【测量目标】利用导数求函数的单调区间及最值.【考查方式】直接考查单调区间及考查构造函数的思想.【试题解析】(1)()f x 的定义域为(,)-∞+∞,()e x f x a '=-,(步骤1) 若0a …时,则()0f x '>,∴()f x 在(,)-∞+∞上单调递增.(步骤2) 若0a >时,令()0f x '=,解得ln x a =,当(,ln )x a ∈-∞时,()0f x '<,当(ln ,)x a ∈+∞时,()0f x '>,∴()f x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增.(步骤3) (2)若1a =,()()1()(e 1)1x x k f x x x k x '-++=--++∴当0x >时,()()10x k f x x '-++>等价于1(0)e 1xx k x x +<+>-.① 令1()(0)e 1x x g x x x +=+>-,22(e 1)(1)e e (e 2)()1(e 1)(e 1)xx x x x x x x g x --+--'=+=--, 由(1)知,()e 2x h x x =--在(0,)+∞上单调递增.(步骤4) ∵(1)0,(2)0h h <>,∴()h x 在(0,)+∞上存在唯一零点. ∴()g x '在(0,)+∞上存在唯一零点.(步骤5) 设其零点为a ,则(1,2)a ∈.当(0,)x a ∈时,()0g x '<,当(,)x a ∈+∞时,()0g x '>, ∴()g x 在(0,)+∞上的最小值为()g a ,(步骤6) ∵()0g a '=,∴e 2aa =+,∴()1(2,3)g a a =+∈. 由于①等价于()k g a <,∴整数k 的最大值为2.(步骤7)请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号.22.(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交△ABC 的外接圆于F ,G 两点,若CF//AB ,证明:(Ⅰ)CD=BC ;(Ⅱ)△BCD ∽△GBD【测量目标】圆和相似三角形的概念和性质.【考查方式】通过性质和判定定理去求相关问题.【试题解析】(I )因为D,E 分别为AB,AC 的中点,所以DE //BC.又已知CF AB ,故四边形BCFD 是平行四边形,所以CF=BD=AD .而CF AD ,连接AF ,所以ADCF 是平行四边形,故CD=AF .(步骤1)因为CF AB ,所以BC=AF ,故CD=BC (步骤2)(II)因为FG BC ,故GB =CF .由(I )可知BD=CF ,所以GB=BD .而∠DGB=∠EFG=∠DBC,故△BCD ∽△GBD.23.(本小题满分10分)选修4—4;坐标系与参数方程已知曲线C 1的参数方程是2cos 3sin x y ϕϕ=⎧⎨=⎩ (φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A 、B 、C 、D 以逆时针次序排列,点A 的极坐标为(2,π3) (Ⅰ)求点A 、B 、C 、D 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+ |PD|2的取值范围.【测量目标】曲线参数方程与极坐标方程互化.【考查方式】通过给出方程进行互化.【试题解析】(I )由已知可得A (2cosπ3,2sin π3),B (2cos(ππ+32),2sin(ππ+32)), C (2cos(π+π3),2sin(π+π3)),D (2cos(π3π+32),2sin(π3π+32)), 即A (1B(C (1-,,D1-)(II)设P (2cos ϕ,3sin ϕ),令S =2222||||||||PA PB PC PD +++,则S =1622cos 36sin ϕϕ++16=32+202sin ϕ因为0…2sin ϕ…1,所以S 的取值范围是[32,52]24.(本小题满分10分)选修4—5:不等式选讲已知函数f (x ) = |x + a | + |x -2|.(Ⅰ)当a =-3时,求不等式f (x )≥3的解集;(Ⅱ)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.【测量目标】含有绝对值的不等式的解集.【考查方式】给出等式进行化简变换.【试题解析】(I)当a =3-时,25,2()1,2325,3x x f x x x x -+⎧⎪=<⎨⎪-⎩……<当2x …时,由()3f x …得253x -+…,解得1x …;(步骤1) 当23x <<时,()3f x …无解;(步骤2)当3x …时,由()3f x …得25x -3…;解得4x …;所以()3f x …的解集为{|1}{|4}x x x x 剠(步骤3)(II)()|4|f x x -…|4|x ⇔-|2|x --||x a +…当[1,2]x ∈时,|4|x -|2|x --||x a +…⇔4(2)x x ---||x a +…⇔2a x --…2a -…(步骤4) 由条件得21a --…且22a -…,即30a -剟故满足条件的a 的取值范围为[3,0]-.(步骤5)。
2012年全国统一高考数学试卷(文科)(新课标版)答案与解析
2012年全国统一高考数学试卷(文科)(新课标版)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•新课标)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【考点】集合的包含关系判断及应用.【专题】集合.【分析】先求出集合A,然后根据集合之间的关系可判断【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=∴B⊊A.故选B.【点评】本题主要考查了集合之间关系的判断,属于基础试题.2.(5分)(2012•新课标)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i【考点】复数代数形式的乘除运算;复数的基本概念.【专题】计算题.【分析】利用复数的分子、分母同乘分母的共轭复数,把复数化为a+bi的形式,然后求法共轭复数即可.【解答】解:复数z====﹣1+i.所以复数的共轭复数为:﹣1﹣i.故选D.【点评】本题考查复数的代数形式的混合运算,复数的基本概念,考查计算能力.3.(5分)(2012•新课标)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1 B.0 C.D.1【考点】相关系数.【专题】规律型.【分析】所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,故这组样本数据完全正相关,故其相关系数为1.【解答】解:由题设知,所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,∴这组样本数据完全正相关,故其相关系数为1,故选D.【点评】本题主要考查样本的相关系数,是简单题.4.(5分)(2012•新课标)设F1、F2是椭圆的左、右焦点,P 为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【考点】椭圆的简单性质.【专题】计算题.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选C.【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.5.(5分)(2012•新课标)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2) B.(0,2)C.(﹣1,2)D.(0,1+)【考点】简单线性规划的应用.【专题】计算题.【分析】由A,B及△ABC为正三角形可得,可求C的坐标,然后把三角形的各顶点代入可求z的值,进而判断最大与最小值,即可求解范围【解答】解:设C(a,b),(a>0,b>0)由A(1,1),B(1,3),及△ABC为正三角形可得,AB=AC=BC=2即(a﹣1)2+(b﹣1)2=(a﹣1)2+(b﹣3)2=4∴b=2,a=1+即C(1+,2)则此时直线AB的方程x=1,AC的方程为y﹣1=(x﹣1),直线BC的方程为y﹣3=()(x﹣1)当直线x﹣y+z=0经过点A(1,1)时,z=0,经过点B(1,3)z=2,经过点C(1+,2)时,z=1﹣∴故选A【点评】考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.6.(5分)(2012•新课标)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【考点】循环结构.【专题】算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.【点评】本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)(2012•新课标)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.18【考点】由三视图求面积、体积.【专题】计算题.【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选B.【点评】本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)(2012•新课标)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.π B.4πC.4πD.6π【考点】球的体积和表面积.【专题】计算题.【分析】利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球的体积.【解答】解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为:=.所以球的体积为:=4π.故选B.【点评】本题考查球的体积的求法,考查空间想象能力、计算能力.9.(5分)(2012•新课标)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】计算题.【分析】通过函数的对称轴求出函数的周期,利用对称轴以及φ的范围,确定φ的值即可.【解答】解:因为直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,所以T==2π.所以ω=1,并且sin(+φ)与sin(+φ)分别是最大值与最小值,0<φ<π,所以φ=.故选A.【点评】本题考查三角函数的解析式的求法,注意函数的最值的应用,考查计算能力.10.(5分)(2012•新课标)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x 的准线交于A,B两点,,则C的实轴长为()A.B. C.4 D.8【考点】圆锥曲线的综合.【专题】计算题;压轴题.【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x 的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.11.(5分)(2012•新课标)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)【考点】对数函数图象与性质的综合应用.【专题】计算题;压轴题.【分析】由指数函数和对数函数的图象和性质,将已知不等式转化为不等式恒成立问题加以解决即可【解答】解:∵0<x≤时,1<4x≤2要使4x<log a x,由对数函数的性质可得0<a<1,数形结合可知只需2<log a x,∴即对0<x≤时恒成立∴解得<a<1故选B【点评】本题主要考查了指数函数和对数函数的图象和性质,不等式恒成立问题的一般解法,属基础题12.(5分)(2012•新课标)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690 B.3660 C.1845 D.1830【考点】数列的求和.【专题】等差数列与等比数列.【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a11=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和.【解答】解:由于数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a11+a9=2,a12+a10=40,a15+a13=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为15×2+(15×8+)=1830,故选D.【点评】本题主要考查数列求和的方法,等差数列的求和公式,注意利用数列的结构特征,属于中档题.二.填空题:本大题共4小题,每小题5分.13.(5分)(2012•新课标)曲线y=x(3lnx+1)在点(1,1)处的切线方程为y=4x﹣3.【考点】利用导数研究曲线上某点切线方程.【专题】计算题.【分析】先求导函数,求出切线的斜率,再求切线的方程.【解答】解:求导函数,可得y′=3lnx+4,当x=1时,y′=4,∴曲线y=x(3lnx+1)在点(1,1)处的切线方程为y﹣1=4(x﹣1),即y=4x﹣3.故答案为:y=4x﹣3.【点评】本题考查导数的几何意义,考查点斜式求直线的方程,属于基础题.14.(5分)(2012•新课标)等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q=﹣2.【考点】等比数列的前n项和.【专题】计算题.【分析】由题意可得,q≠1,由S3+3S2=0,代入等比数列的求和公式可求q【解答】解:由题意可得,q≠1∵S3+3S2=0∴∴q3+3q2﹣4=0∴(q﹣1)(q+2)2=0∵q≠1∴q=﹣2故答案为:﹣2【点评】本题主要考查了等比数列的求和公式的应用,解题中要注意公比q是否为115.(5分)(2012•新课标)已知向量夹角为45°,且,则=3.【考点】平面向量数量积的运算;平面向量数量积的坐标表示、模、夹角.【专题】计算题;压轴题.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:3【点评】本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法16.(5分)(2012•新课标)设函数f(x)=的最大值为M,最小值为m,则M+m=2.【考点】导数在最大值、最小值问题中的应用.【专题】综合题;压轴题.【分析】函数可化为f(x)==,令,则为奇函数,从而函数的最大值与最小值的和为0,由此可得函数f(x)=的最大值与最小值的和.【解答】解:函数可化为f(x)==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数f(x)=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.【点评】本题考查函数的最值,考查函数的奇偶性,解题的关键是将函数化简,转化为利用函数的奇偶性解题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2012•新课标)已知a,b,c分别为△ABC三个内角A,B,C的对边,(1)求A;(2)若a=2,△ABC的面积为,求b,c.【考点】解三角形.【专题】计算题.【分析】(1)由正弦定理及两角和的正弦公式可得sinAcosC+sinAsinC=sinB+sinC=sin (A+C)+sinC=sinAcosC+sinCcosA+sinC,整理可求A(2)由(1)所求A及S=可求bc,然后由余弦定理,a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccosA可求b+c,进而可求b,c【解答】解:(1)∵acosC+asinC﹣b﹣c=0∴sinAcosC+sinAsinC﹣sinB﹣sinC=0∴sinAcosC+sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC∵sinC≠0∴sinA﹣cosA=1∴sin(A﹣30°)=∴A﹣30°=30°∴A=60°(2)由由余弦定理可得,a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccosA即4=(b+c)2﹣3bc=(b+c)2﹣12∴b+c=4解得:b=c=2【点评】本题综合考查了三角公式中的正弦定理、余弦定理、三角形的面积公式的综合应用,诱导公式与辅助角公式在三角函数化简中的应用是求解的基础,解题的关键是熟练掌握基本公式18.(12分)(2012•新课标)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20频数10 20 16 16 15 13 10(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.【考点】概率的应用;函数解析式的求解及常用方法;众数、中位数、平均数.【专题】综合题;概率与统计.【分析】(Ⅰ)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(Ⅱ)(i)这100天的日利润的平均数,利用100天的销售量除以100即可得到结论;(ii)当天的利润不少于75元,当且仅当日需求量不少于16枝,故可求当天的利润不少于75元的概率.【解答】解:(Ⅰ)当日需求量n≥17时,利润y=85;当日需求量n<17时,利润y=10n﹣85;(4分)∴利润y关于当天需求量n的函数解析式(n∈N*)(6分)(Ⅱ)(i)这100天的日利润的平均数为元;(9分)(ii)当天的利润不少于75元,当且仅当日需求量不少于16枝,故当天的利润不少于75元的概率为P=0.16+0.16+0.15+0.13+0.1=0.7.(12分)【点评】本题考查函数解析式的确定,考查概率知识,考查利用数学知识解决实际问题,属于中档题.19.(12分)(2012•新课标)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.【考点】平面与平面垂直的判定;棱柱的结构特征;棱柱、棱锥、棱台的体积.【专题】计算题;证明题.【分析】(Ⅰ)由题意易证DC1⊥平面BDC,再由面面垂直的判定定理即可证得平面BDC1⊥平面BDC;(Ⅱ)设棱锥B﹣DACC1的体积为V1,AC=1,易求V1=××1×1=,三棱柱ABC﹣A1B1C1的体积V=1,于是可得(V﹣V1):V1=1:1,从而可得答案.【解答】证明:(1)由题设知BC⊥CC1,BC⊥AC,CC1∩AC=C,∴BC⊥平面ACC1A1,又DC1⊂平面ACC1A1,∴DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,∴∠CDC1=90°,即DC1⊥DC,又DC∩BC=C,∴DC1⊥平面BDC,又DC1⊂平面BDC1,∴平面BDC1⊥平面BDC;(2)设棱锥B﹣DACC1的体积为V1,AC=1,由题意得V1=××1×1=,又三棱柱ABC﹣A1B1C1的体积V=1,∴(V﹣V1):V1=1:1,∴平面BDC1分此棱柱两部分体积的比为1:1.【点评】本题考查平面与平面垂直的判定,着重考查线面垂直的判定定理的应用与棱柱、棱锥的体积,考查分析,表达与运算能力,属于中档题.20.(12分)(2012•新课标)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【考点】圆锥曲线的综合;圆的标准方程;抛物线的简单性质.【专题】综合题;压轴题.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)(2012•新课标)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】综合题;压轴题;分类讨论;转化思想.【分析】(Ⅰ)求函数的单调区间,可先求出函数的导数,由于函数中含有字母a,故应按a 的取值范围进行分类讨论研究函数的单调性,给出单调区间;(II)由题设条件结合(I),将不等式,(x﹣k)f´(x)+x+1>0在x>0时成立转化为k<(x>0)成立,由此问题转化为求g(x)=在x>0上的最小值问题,求导,确定出函数的最小值,即可得出k的最大值;【解答】解:(I)函数f(x)=e x﹣ax﹣2的定义域是R,f′(x)=e x﹣a,若a≤0,则f′(x)=e x﹣a≥0,所以函数f(x)=e x﹣ax﹣2在(﹣∞,+∞)上单调递增.若a>0,则当x∈(﹣∞,lna)时,f′(x)=e x﹣a<0;当x∈(lna,+∞)时,f′(x)=e x﹣a>0;所以,f(x)在(﹣∞,lna)单调递减,在(lna,+∞)上单调递增.(II)由于a=1,所以,(x﹣k)f´(x)+x+1=(x﹣k)(e x﹣1)+x+1故当x>0时,(x﹣k)f´(x)+x+1>0等价于k<(x>0)①令g(x)=,则g′(x)=由(I)知,当a=1时,函数h(x)=e x﹣x﹣2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,所以h(x)=e x﹣x﹣2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3)由于①式等价于k<g(α),故整数k的最大值为2.【点评】本题考查利用导数求函数的最值及利用导数研究函数的单调性,解题的关键是第一小题应用分类的讨论的方法,第二小题将问题转化为求函数的最小值问题,本题考查了转化的思想,分类讨论的思想,考查计算能力及推理判断的能力,综合性强,是高考的重点题型,难度大,计算量也大,极易出错.22.(10分)(2012•新课标)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC 的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【考点】相似三角形的判定.【专题】证明题.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF 是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.【点评】本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.(2012•新课标)选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【考点】椭圆的参数方程;简单曲线的极坐标方程;点的极坐标和直角坐标的互化.【专题】综合题;压轴题.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]【点评】本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.(2012•新课标)已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.【考点】绝对值不等式的解法;带绝对值的函数.【专题】计算题;压轴题.【分析】(1)不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即①,或②,或③.解①可得x≤1,解②可得x∈∅,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.。
2012年全国统一高考数学试卷(文科)(新课标)(含解析版)(附详细答案)(20200621145848)
2012年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i2.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A?B B.B?A C.A=B D.A∩B=?3.(5分)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1B.0C.D.14.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2)B.(0,2)C.(﹣1,2)D.(0,1+)6.(5分)如果执行下边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π9.(5分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.10.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.811.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)12.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690B.3660C.1845D.1830二.填空题:本大题共4小题,每小题5分.13.(5分)曲线y=x(3lnx+1)在点(1,1)处的切线方程为.14.(5分)等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q= .15.(5分)已知向量夹角为45°,且,则= .16.(5分)设函数f(x)=的最大值为M,最小值为m,则M+m= .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC ﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i【考点】A1:虚数单位i、复数;A5:复数的运算.【专题】11:计算题.【分析】利用复数的分子、分母同乘分母的共轭复数,把复数化为a+bi的形式,然后求法共轭复数即可.【解答】解:复数z====﹣1+i.所以复数的共轭复数为:﹣1﹣i.故选:D.【点评】本题考查复数的代数形式的混合运算,复数的基本概念,考查计算能力.2.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A?B B.B?A C.A=B D.A∩B=?【考点】18:集合的包含关系判断及应用.【专题】5J:集合.【分析】先求出集合A,然后根据集合之间的关系可判断【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=∴B?A.故选:B.【点评】本题主要考查了集合之间关系的判断,属于基础试题.3.(5分)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1B.0C.D.1【考点】BS:相关系数.【专题】29:规律型.【分析】所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,故这组样本数据完全正相关,故其相关系数为1.【解答】解:由题设知,所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,∴这组样本数据完全正相关,故其相关系数为1,故选:D.【点评】本题主要考查样本的相关系数,是简单题.4.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选:C.【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.5.(5分)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2)B.(0,2)C.(﹣1,2)D.(0,1+)【考点】7C:简单线性规划.【专题】11:计算题.【分析】由A,B及△ABC为正三角形可得,可求C的坐标,然后把三角形的各顶点代入可求z的值,进而判断最大与最小值,即可求解范围【解答】解:设C(a,b),(a>0,b>0)由A(1,1),B(1,3),及△ABC为正三角形可得,AB=AC=BC=2即(a﹣1)2+(b﹣1)2=(a﹣1)2+(b﹣3)2=4∴b=2,a=1+即C(1+,2)则此时直线AB的方程x=1,AC的方程为y﹣1=(x﹣1),直线BC的方程为y﹣3=﹣(x﹣1)当直线x﹣y+z=0经过点A(1,1)时,z=0,经过点B(1,3)z=2,经过点C(1+,2)时,z=1﹣∴故选:A.【点评】考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【考点】E7:循环结构.【专题】5K:算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.【点评】本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.18【考点】L!:由三视图求面积、体积.【专题】11:计算题.【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选:B.【点评】本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π【考点】LG:球的体积和表面积.【专题】11:计算题.【分析】利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球的体积.【解答】解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为:=.所以球的体积为:=4π.故选:B.【点评】本题考查球的体积的求法,考查空间想象能力、计算能力.9.(5分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题.【分析】通过函数的对称轴求出函数的周期,利用对称轴以及φ的范围,确定φ的值即可.【解答】解:因为直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,所以T==2π.所以ω=1,并且sin(+φ)与sin(+φ)分别是最大值与最小值,0<φ<π,所以φ=.故选:A.【点评】本题考查三角函数的解析式的求法,注意函数的最值的应用,考查计算能力.10.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.8【考点】KI:圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选:C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.11.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)【考点】7J:指、对数不等式的解法.【专题】11:计算题;16:压轴题.【分析】由指数函数和对数函数的图象和性质,将已知不等式转化为不等式恒成立问题加以解决即可【解答】解:∵0<x≤时,1<4x≤2要使4x<log a x,由对数函数的性质可得0<a<1,数形结合可知只需2<log a x,∴即对0<x≤时恒成立∴解得<a<1故选:B.【点评】本题主要考查了指数函数和对数函数的图象和性质,不等式恒成立问题的一般解法,属基础题12.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690B.3660C.1845D.1830【考点】8E:数列的求和.【专题】54:等差数列与等比数列.【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a11=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和.【解答】解:由于数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a11+a9=2,a12+a10=40,a15+a13=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为15×2+(15×8+)=1830,故选:D.【点评】本题主要考查数列求和的方法,等差数列的求和公式,注意利用数列的结构特征,属于中档题.二.填空题:本大题共4小题,每小题5分.13.(5分)曲线y=x(3lnx+1)在点(1,1)处的切线方程为y=4x﹣3 .【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】先求导函数,求出切线的斜率,再求切线的方程.【解答】解:求导函数,可得y′=3lnx+4,当x=1时,y′=4,∴曲线y=x(3lnx+1)在点(1,1)处的切线方程为y﹣1=4(x﹣1),即y=4x﹣3.故答案为:y=4x﹣3.【点评】本题考查导数的几何意义,考查点斜式求直线的方程,属于基础题.14.(5分)等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q= ﹣2 .【考点】89:等比数列的前n项和.【专题】11:计算题.【分析】由题意可得,q≠1,由S3+3S2=0,代入等比数列的求和公式可求q【解答】解:由题意可得,q≠1∵S3+3S2=0∴∴q3+3q2﹣4=0∴(q﹣1)(q+2)2=0∵q≠1∴q=﹣2故答案为:﹣2【点评】本题主要考查了等比数列的求和公式的应用,解题中要注意公比q是否为115.(5分)已知向量夹角为45°,且,则= 3.【考点】9O:平面向量数量积的性质及其运算;9S:数量积表示两个向量的夹角.【专题】11:计算题;16:压轴题.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:3【点评】本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法16.(5分)设函数f(x)=的最大值为M,最小值为m,则M+m=2 .【考点】3N:奇偶性与单调性的综合.【专题】15:综合题;16:压轴题.【分析】函数可化为f(x)==,令,则为奇函数,从而函数的最大值与最小值的和为0,由此可得函数f(x)=的最大值与最小值的和.【解答】解:函数可化为f(x)==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数f(x)=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.【点评】本题考查函数的最值,考查函数的奇偶性,解题的关键是将函数化简,转化为利用函数的奇偶性解题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.【考点】HU:解三角形.【专题】11:计算题.【分析】(1)由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,可以求出A;(2)有三角形面积以及余弦定理,可以求出b、c.【解答】解:(1)c=asinC﹣ccosA,由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,即sinC?(sinA﹣cosA﹣1)=0,又,sinC≠0,所以sinA﹣cosA﹣1=0,即2sin(A﹣)=1,所以A=;(2)S△ABC=bcsinA=,所以bc=4,a=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,即有,解得b=c=2.【点评】本题综合考查了三角公式中的正弦定理、余弦定理、三角形的面积公式的综合应用,诱导公式与辅助角公式在三角函数化简中的应用是求解的基础,解题的关键是熟练掌握基本公式18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.【考点】36:函数解析式的求解及常用方法;BB:众数、中位数、平均数;CS:概率的应用.【专题】15:综合题;5I:概率与统计.【分析】(Ⅰ)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(Ⅱ)(i)这100天的日利润的平均数,利用100天的销售量除以100即可得到结论;(ii)当天的利润不少于75元,当且仅当日需求量不少于16枝,故可求当天的利润不少于75元的概率.【解答】解:(Ⅰ)当日需求量n≥17时,利润y=85;当日需求量n<17时,利润y=10n﹣85;(4分)∴利润y关于当天需求量n的函数解析式(n∈N*)(6分)(Ⅱ)(i)这100天的日利润的平均数为元;(9分)(ii)当天的利润不少于75元,当且仅当日需求量不少于16枝,故当天的利润不少于75元的概率为P=0.16+0.16+0.15+0.13+0.1=0.7.(12分)【点评】本题考查函数解析式的确定,考查概率知识,考查利用数学知识解决实际问题,属于中档题.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.【考点】L2:棱柱的结构特征;LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直.【专题】11:计算题;14:证明题.【分析】(Ⅰ)由题意易证DC1⊥平面BDC,再由面面垂直的判定定理即可证得平面BDC1⊥平面BDC;(Ⅱ)设棱锥B﹣DACC1的体积为V1,AC=1,易求V1=××1×1=,三棱柱ABC﹣A1B1C1的体积V=1,于是可得(V﹣V1):V1=1:1,从而可得答案.【解答】证明:(1)由题意知BC⊥CC1,BC⊥AC,CC1∩AC=C,∴BC⊥平面ACC1A1,又DC1?平面ACC1A1,∴DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,∴∠CDC1=90°,即DC1⊥DC,又DC∩BC=C,∴DC1⊥平面BDC,又DC1?平面BDC1,∴平面BDC1⊥平面BDC;(2)设棱锥B﹣DACC1的体积为V1,AC=1,由题意得V1=××1×1=,又三棱柱ABC﹣A1B1C1的体积V=1,∴(V﹣V1):V1=1:1,∴平面BDC1分此棱柱两部分体积的比为1:1.【点评】本题考查平面与平面垂直的判定,着重考查线面垂直的判定定理的应用与棱柱、棱锥的体积,考查分析,表达与运算能力,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【考点】J1:圆的标准方程;K8:抛物线的性质;KI:圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题;32:分类讨论;35:转化思想.【分析】(Ⅰ)求函数的单调区间,可先求出函数的导数,由于函数中含有字母a,故应按a的取值范围进行分类讨论研究函数的单调性,给出单调区间;(II)由题设条件结合(I),将不等式,(x﹣k)f′(x)+x+1>0在x>0时成立转化为k<(x>0)成立,由此问题转化为求g(x)=在x>0上的最小值问题,求导,确定出函数的最小值,即可得出k的最大值;【解答】解:(I)函数f(x)=e x﹣ax﹣2的定义域是R,f′(x)=e x﹣a,若a≤0,则f′(x)=e x﹣a≥0,所以函数f(x)=e x﹣ax﹣2在(﹣∞,+∞)上单调递增.若a>0,则当x∈(﹣∞,lna)时,f′(x)=e x﹣a<0;当x∈(lna,+∞)时,f′(x)=e x﹣a>0;所以,f(x)在(﹣∞,lna)单调递减,在(lna,+∞)上单调递增.(II)由于a=1,所以,(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1故当x>0时,(x﹣k)f′(x)+x+1>0等价于k<(x>0)①令g(x)=,则g′(x)=由(I)知,当a=1时,函数h(x)=e x﹣x﹣2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,所以h(x)=e x﹣x﹣2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3)由于①式等价于k<g(α),故整数k的最大值为2.【点评】本题考查利用导数求函数的最值及利用导数研究函数的单调性,解题的关键是第一小题应用分类的讨论的方法,第二小题将问题转化为求函数的最小值问题,本题考查了转化的思想,分类讨论的思想,考查计算能力及推理判断的能力,综合性强,是高考的重点题型,难度大,计算量也大,极易出错.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【考点】N4:相似三角形的判定.【专题】14:证明题.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.【点评】本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【考点】Q4:简单曲线的极坐标方程;Q8:点的极坐标和直角坐标的互化;QL:椭圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]【点评】本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】17:选作题;59:不等式的解法及应用;5T:不等式.【分析】①不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.②原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈?;,可得x≥4.取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.。
2012年全国统一高考数学试卷(文科)(新课标)(含解析版)
2012年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅2.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i3.(5分)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1B.0C.D.14.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2)B.(0,2)C.(﹣1,2)D.(0,1+)6.(5分)如果执行下边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π9.(5分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.10.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.811.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)12.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690B.3660C.1845D.1830二.填空题:本大题共4小题,每小题5分.13.(5分)曲线y=x(3lnx+1)在点(1,1)处的切线方程为.14.(5分)等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q=.15.(5分)已知向量夹角为45°,且,则=.16.(5分)设函数f(x)=的最大值为M,最小值为m,则M+m=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC ﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【考点】18:集合的包含关系判断及应用.【专题】5J:集合.【分析】先求出集合A,然后根据集合之间的关系可判断【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=∴B⊊A.故选:B.【点评】本题主要考查了集合之间关系的判断,属于基础试题.2.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i【考点】A1:虚数单位i、复数;A5:复数的运算.【专题】11:计算题.【分析】利用复数的分子、分母同乘分母的共轭复数,把复数化为a+bi的形式,然后求法共轭复数即可.【解答】解:复数z====﹣1+i.。
2012年高考新课标全国卷文科数学试题(附答案)
2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.(1)已知集合A={x |x 2−x −2〈0},B={x |−1〈x 〈1},则(A )A 错误!B (B )B 错误!A (C )A=B (D )A ∩B=∅(2)复数z =32i i -++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A)−1 (B)0 (C )错误! (D )1 (4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的 左、 右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D 。
45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A)(1-错误!,2) (B )(0,2) (C )(错误!-1,2) (D )(0,1+错误!)(6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则(A)A +B 为1a ,2a ,…,N a 的和(B)2A B +为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D)A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6(B )9(C )12(D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为错误!,则此球的体积为(A )错误!π (B)4错误!π (C )4错误!π (D)6错误!π(9)已知ω〉0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )错误! (B )错误! (C)错误! (D )错误!(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8(11)当0〈x ≤错误!时,4log x a x <,则a 的取值范围是(A )(0,错误!) (B )(错误!,1) (C )(1,错误!) (D )(错误!,2)(12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为(A )3690 (B)3660 (C)1845 (D)1830二.填空题:本大题共4小题,每小题5分。
2012年高考新课标全国卷文科数学试题(附答案)
2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ (2)复数z =32ii-++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A )−1 (B )0 (C )12(D )1(4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、 右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为 (A )12 (B )23 (C )34 D .45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3) (6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则 (A )A +B 为1a ,2a ,…,N a 的和 (B )2A B+为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D )A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数 (7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π (9)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8 (11)当0<x ≤12时,4log xa x <,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{n a }满足1(1)21nn n a a n ++-=-,则{n a }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共4小题,每小题5分。
2012高考文科数学(新课标)试题及答案(高清版)
2012年普通高等学校夏季招生全国统一考试数学文史类(全国卷新课标)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()A.A B B.B A C.A=B D.A∩B=2.复数3i2iz-+=+的共轭复数是()A.2+i B.2-iC.-1+i D.-1-i3.在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线112y x=+上,则这组样本数据的样本相关系数为()A.-1 B.0 C.12D.14.设F1,F2是椭圆E:22221x ya b+=(a>b>0)的左、右焦点,P为直线32ax=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.12B.23C.34D.455.已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC 内部,则z=-x+y的取值范围是()A.(1-B.(0,2)C.(1,2) D.(0,1+6.如果执行下边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则()A .A +B 为a 1,a 2,…,a N 的和 B .2A B +为a 1,a 2,…,a N 的算术平均数C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .188.平面α截球O 的球面所得圆的半径为1,球心O 到平面α,则此球的体积为( )A .B .C .D . 9.已知ω>0,0<φ<π,直线π4x =和5π4x =是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=( )A .π4B .π3C .π2D .3π410.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,||A B =C 的实轴长为( )A .B .C .4D .811.(文)当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A .(0,2) B .(2,1)C .(1,)D .2)12.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ) A .3 690 B .3 660 C .1 845 D .1 830第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.曲线y =x (3ln x +1)在点(1,1)处的切线方程为__________.14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =__________.15.已知向量a ,b 夹角为45°,且|a |=1,|2a -b ||b |=__________. 16.设函数22(1)sin ()1x xf x x ++=+的最大值为M ,最小值为m ,则M +m =__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C sin C -b -c=0.(1)求A ;(2)若a =2,△ABC b ,c .18.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(2))的平均数;②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.20.设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.21.设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.22.选修4—1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点.若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4—4:坐标系与参数方程已知曲线C1的参数方程是2cos3sinxyϕϕ⎧⎨⎩=,=,(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,π3 ).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.选修4—5:不等式选讲已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.1.B由题意可得,A={x|-1<x<2},而B={x|-1<x<1},故B A.2.D3i(3i)(2i)55i1i2i(2i)(2i)5z-+-+--+====-+++-,故z的共轭复数为-1-i.3.D样本相关系数越接近1,相关性越强,现在所有的样本点都在直线112y x=+上,样本的相关系数应为1.4.C设直线32ax=与x轴交于点M,则∠PF2M=60°,在Rt△PF2M中,PF2=F1F2=2c ,232a F M c =-,故22312cos6022a c F M P F c-︒===,解得34c a =,故离心率34e =.5. A 由顶点C 在第一象限且与A ,B 构成正三角形可求得点C 坐标为(1+2),将目标函数化为斜截式为y =x +z ,结合图形可知当y =x +z 过点C 时z取到最小值,此时min 1z =-y =x +z 过点B 时z 取到最大值,此时z max =2,综合可知z 的取值范围为(1-2).6.C 随着k 的取值不同,x 可以取遍实数a 1,a 2,…,a N ,依次与A ,B 比较,A 始终取较大的那个数,B 始终取较小的那个数,直到比较完为止,故最终输出的A ,B 分别是这N 个数中的最大数与最小数.7.B 由三视图可推知,几何体的直观图如下图所示,可知AB =6,CD =3,PC =3,CD 垂直平分AB ,且PC ⊥平面ACB ,故所求几何体的体积为11(63)3932⨯⨯⨯⨯=.8.B 设球O 的半径为R,则R ==34π3V R ==球.9. A 由题意可知函数f (x )的周期5ππ2()2π44T =⨯-=,故ω=1,∴f (x )=sin(x +φ).令x +φ=k π+π2,将π4x =代入可得φ=k π+π4,∵0<φ<π,∴π4ϕ=.10. C 设双曲线的方程为22221x y aa-=,抛物线的准线为x =-4,且||4A B =可得A (-4,,B (-4,-,将点A 坐标代入双曲线方程得a 2=4,故a =2,故实轴长为4.11. B 由0<x ≤12,且log a x >4x >0,可得0<a <1,由1214log 2a=,可得2a =.令f (x )=4x,g (x )=log a x ,若4x <log a x ,则说明当102x <≤时,f (x )的图象恒在g (x )图象的下方(如下图所示),此时需2a >.综上可得a 的取值范围是2,1).12. D ∵a n +1+(-1)na n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=115-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+ (234)15(10234)18302⨯+=.13.答案:4x -y -3=0解析:因为y ′=3ln x +4,故y ′|x =1=4,所以曲线在点(1,1)处的切线方程为y -1=4(x -1),化为一般式方程为4x -y -3=0.14.答案:-2解析:由S 3=-3S 2,可得a 1+a 2+a 3=-3(a 1+a 2),即a 1(1+q +q 2)=-3a 1(1+q ),化简整理得q 2+4q +4=0,解得q =-2.15.答案:解析:∵a ,b 的夹角为45°,|a |=1,∴a ·b =|a |×|b |cos45°2|b |,|2a -b |2=4-4×2|b |+|b |2=10,∴=b16.答案:2 解析:222(1)sin 2sin ()111x xx x f x x x +++==+++,设22sin ()1x x g x x +=+,则g (-x )=-g (x ),∴g (x )是奇函数.由奇函数图象的对称性知g (x )max +g (x )min =0,∴M +m =[g (x )+1]max +[g (x )+1]min =2+g (x )max +g (x )min =2.17.解:(1)由a cos C a sin C -b -c =0及正弦定理得sin A cos C sin A sin C -sin B -sin C =0. 因为B =π-A -C ,A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以π1sin()62A -=.又0<A <π,故π3A =.(2)△ABC 的面积1sin 2S bc A ==,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.18.解:(1)当日需求量n ≥17时,利润y =85. 当日需求量n <17时,利润y =10n -85. 所以y 关于n 的函数解析式为1085<17()8517n n y n n ⎧∈⎨≥⎩N -,,=.,,(2)①这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为1100(55×10+65×20+75×16+85×54)=76.4.②利润不低于75元当且仅当日需求量不少于16枝.故当天的利润不少于75元的概率为p =0.16+0.16+0.15+0.13+0.1=0.7.19.解:(1)证明:由题设知BC ⊥CC 1,BC ⊥AC , CC 1∩AC =C ,所以BC ⊥平面ACC 1A 1.又DC1平面ACC 1A 1,所以DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45°, 所以∠CDC 1=90°,即DC 1⊥DC .又DC ∩BC =C ,所以DC 1⊥平面BDC .又DC1平面BDC 1,故平面BDC 1⊥平面BDC . (2)设棱锥B -DACC 1的体积为V 1,AC =1. 由题意得1112111322V +=⨯⨯⨯=.又三棱柱ABC -A 1B 1C 1的体积V =1, 所以(V -V 1)∶V 1=1∶1.故平面BDC 1分此棱柱所得两部分体积的比为1∶1.20.解:(1)由已知可得△BFD 为等腰直角三角形,|BD |=2p ,圆F 的半径||F A =.由抛物线定义可知A 到l 的距离=||d FA =.因为△ABD 的面积为,所以1||2B D d ⋅=,即122p ⋅=解得p =-2(舍去),p =2.所以F (0,1),圆F 的方程为x 2+(y -1)2=8. (2)因为A ,B ,F 三点在同一直线m 上, 所以AB 为圆F 的直径,∠ADB =90°. 由抛物线定义知|AD |=|F A |=12|AB |,所以∠ABD =30°,m 的斜率为3或3-.当m 3时,由已知可设n :y 3x +b ,代入x 2=2py ,得x 23-2pb =0.由于n 与C 只有一个公共点,故∆=43p 2+8pb =0,解得6p b =-.因为m 的截距12p b =,1||3||b b =,所以坐标原点到m ,n 距离的比值为3.当m 的斜率为3-时,由图形对称性可知,坐标原点到m ,n 距离的比值为3.21.解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=e x -a .若a ≤0,则f ′(x )>0,所以f (x )在(-∞,+∞)上单调递增. 若a >0,则当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0,所以,f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增. (2)由于a =1,所以(x -k )f ′(x )+x +1=(x -k )(e x -1)+x +1. 故当x >0时,(x -k )f ′(x )+x +1>0等价于k <1e 1xx +-+x (x >0).①令g (x )=1e 1xx +-+x ,则22e 1e e 2()1e 1e 1xx xxxx x g'x --(--)=+=(-)(-).由(1)知,函数h (x )=e x -x -2在(0,+∞)上单调递增. 而h (1)<0,h (2)>0,所以h (x )在(0,+∞)上存在唯一的零点. 故g ′(x )在(0,+∞)上存在唯一的零点. 设此零点为α,则α∈(1,2). 当x ∈(0,α)时,g ′(x )<0;当x ∈(α,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)上的最小值为g (α).又由g ′(α)=0,可得e α=α+2,所以g (α)=α+1∈(2,3).由于①式等价于k<g(α),故整数k的最大值为2.22.证明:(1)因为D,E分别为AB,AC的中点,所以DE∥BC.又已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD=AD.而CF∥AD,连结AF,所以ADCF是平行四边形,故CD=AF.因为CF∥AB,所以BC=AF,故CD=BC.(2)因为FG∥BC,故GB=CF.由(1)可知BD=CF,所以GB=BD.而∠DGB=∠EFC=∠DBC,故△BCD∽△GBD.23.解:(1)由已知可得A(π2cos3,π2sin3),B(ππ2cos()32+,ππ2sin()32+),C(2cos(π3+π),2sin(π3+π)),D(π3π2cos()32+,π3π2sin()32+),即A(1,B(1),C(-1,,D,-1).(2)设P(2cosφ,3sinφ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos2φ+36sin2φ+16=32+20sin2φ.因为0≤sin2φ≤1,所以S的取值范围是[32,52].24.解:(1)当a=-3时,25,2, ()1,23,25, 3.x xf x xx x-+≤⎧⎪=<<⎨⎪-≥⎩当x≤2时,由f(x)≥3,得-2x+5≥3,解得x≤1;当2<x<3时,f(x)≥3无解;当x≥3时,由f(x)≥3,得2x-5≥3,解得x≥4;所以f(x)≥3的解集为{x|x≤1}∪{x|x≥4}.(2)f(x)≤|x-4||x-4|-|x-2|≥|x+a|.当x∈[1,2]时,|x-4|-|x-2|≥|x+a|4-x-(2-x)≥|x+a|-2-a≤x≤2-a.由条件得-2-a≤1且2-a≥2,即-3≤a≤0. 故满足条件的a的取值范围为[-3,0].。
2012年高考新课标全国卷文科数学试题附答案
2012年一般高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ̹B (B )B ̹A (C )A=B (D )A ∩B=Æ(2)复数z =32ii-++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i -- (3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若全部样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A )−1 (B )0 (C )12(D )1(4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、 右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为 (A )12(B )23(C )34D .45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z x y =-+的取值范围是 (A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)假如执行右边的程序框图,输入正整数N (N ≥2)与实数1a ,2a ,…,N a ,输出A ,B ,则(A )A +B 为1a ,2a ,…,N a 的与 (B )2A B+为1a ,2a ,…,N a 的算术平均数(C )A 与B 分别为1a ,2a ,…,N a 中的最大数与最小数(D )A 与B 分别为1a ,2a ,…,N a 中的最小数与最大数(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的间隔为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0ϕπ<<,直线x =4π与x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x=的准线交于A 、B 两点,||AB =C 的实轴长为 (A(B ) (C )4 (D )8 (11)当0<x ≤12时,4log x a x <,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2)(12)数列{n a }满意1(1)21n n n a a n ++-=-,则{n a }的前60项与为 (A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共4小题,每小题5分。
2012年高考试题(全国新课标)数学(文科)试卷及答案
三、解答题:解答应写出文字说明,证明过程或演算步骤。
( 17)(本小题满分 12 分)已知 a,b,c 分别为△ ABC 三个内角 A ,B ,C 的对边, c = 3asinC-ccosA (1) 求 A
(2) 若 a=2,△ ABC的面积为 3,求 b ,c.
18.(本小题满分 12 分)某花店每天以每枝 5 元的价格从农场购进若干枝玫瑰花, 出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。 (Ⅰ)若花店一天购进 17 枝玫瑰花,求当天的利润 y( 单位:元 ) 关于当天需求量 函数解析式。 (Ⅱ)花店记录了 100 天玫瑰花的日需求量(单位:枝) ,整理得下表:
开始 输入 N ,a1,a2,… ,aN
第一象限,若点( x, y)在△ ABC 内部,则 z=- x+y 的取
值范围是 ( A )(1- 3,2)
( B)(0,2)
( C)( 3- 1,2) ( D)
k=1, A=a1,B=a 1
(0 ,1+ 3) ( 6)如果执行右边的程序框图,输入正整数 数 a1,a2,… ,aN,输出 A,B ,则
(A) 2
(B)2 2
(C) 4
( D )8
(11)当 0<x≤12时, 4x<log ax,则 a 的取值范围是
( A ) (0,
2 2)
( B) ( 22,1)
(C) (1, 2) ( D) ( 2, 2)
( 12) 数列 { an} 满足 an+1+ (- 1)n an =2n- 1,则 { an} 的前 60 项和为
( A )- 1 ( B) 0
(
C)
1 2
(D)1
( 4)设
F1、 F2 是椭圆
2012年高考新课标全国卷文科数学试题(附答案)
2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ̹B (B )B ̹A (C )A=B (D )A ∩B=Æ (2)复数z =32ii-++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A )−1 (B )0 (C )12(D )1(4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、 右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为 (A )12 (B )23 (C )34 D .45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3) (6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则 (A )A +B 为1a ,2a ,…,N a 的和 (B )2A B+为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D )A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数 (7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π (9)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8 (11)当0<x ≤12时,4log x a x <,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为 (A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共4小题,每小题5分。
2012年高考新课标全国卷文科数学试题(附答案)
2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A 错误!B (B )B 错误!A (C )A=B (D )A ∩B=∅ (2)复数z =32ii-++的共轭复数是 (A )2i + (B )2i - (C)1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A)−1 (B )0 (C )错误! (D )1(4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、 右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为 (A)12 (B)23 (C )34 D 。
45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A )(1-错误!,2) (B)(0,2) (C )(错误!-1,2) (D )(0,1+错误!)(6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则(A )A +B 为1a ,2a ,…,N a 的和 (B )2A B+为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D )A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数 (7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为错误!,则此球的体积为(A )6π (B)43π (C )4错误!π (D )6错误!π (9)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )错误! (B )错误! (C )错误! (D)错误!(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8 (11)当0<x ≤12时,4log xa x <,则a 的取值范围是(A )(0,错误!) (B)(错误!,1) (C )(1,错误!) (D )(错误!,2)(12)数列{n a }满足1(1)21nn n a a n ++-=-,则{n a }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共4小题,每小题5分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密*启用前
2012年普通高等学校招生全国统一考试
文科数学
注息事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.
3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·
4.考试结束后.将本试卷和答且卡一并交回。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则
(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅
(2)复数z =-3+i 2+i 的共轭复数是
(A )2+i (B )2-i (C )-1+i (D )-1-i
3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点
图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系
数为
(A )-1 (B )0 (C )12 (D )1
(4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 1PF 2是底
角为30°的等腰三角形,则E 的离心率为( )
(A )12 (B )23 (C )34 (D )45
5、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是
(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)
(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则
(A )A+B 为a 1,a 2,…,a N 的和
(B )A +B 2为a 1,a 2,…,a N 的算术平均数
(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数
(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数
(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为
(A)6
(B)9
(C)12
(D)18
(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为
(A )6π (B )43π (C )46π (D )63π
(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则
φ=
(A )π4 (B )π3 (C )π2 (D )3π4
(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为
(A ) 2 (B )2 2 (C )4 (D )8
(11)当0<x ≤12时,4x <log a x ,则a 的取值范围是
(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2)
(12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为
(A )3690 (B )3660 (C )1845 (D )1830
第Ⅱ卷
本卷包括必考题和选考题两部分。
第13题-第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答。
二.填空题:本大题共4小题,每小题5分。
(13)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________ (14)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______
(15)已知向量a ,b 夹角为45° ,且|a |=1,|2a -b |=10,则|b |=
(16)设函数f (x )=(x +1)2+sin x x 2+1的最大值为M ,最小值为m ,则M+m =____
三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c =
3a sinC -c cosA
(1) 求A
(2) 若a =2,△ABC 的面积为3,求b ,c
18.(本小题满分12分)
某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。
如果当天卖不完,剩下的玫瑰花做垃圾处理。
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式。
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
(1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
(2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。
(19)(本小题满分12分)
如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1
2AA 1,D 是棱AA 1的中点 (I)证明:平面BDC 1⊥平面BDC
(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比。
(20)(本小题满分12分)
设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点。
B 1
C B A
D C 1 A 1
(I )若∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程;
(II )若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值。
(21)(本小题满分12分)
设函数f (x )= e x -ax -2
(Ⅰ)求f (x )的单调区间
(Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f ´(x )+x +1>0,求k 的最大值
请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号。
(22)(本小题满分10分)选修4-1:几何证明选讲
如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交△ABC 的外接圆于F ,G 两点,若CF//AB ,证明:
F
G
(Ⅰ)CD=BC ;
(Ⅱ)△BCD ∽△GBD
(23)(本小题满分10分)选修4—4;坐标系与参数方程
已知曲线C 1的参数方程是⎩⎪⎨⎪⎧
x =2cos φy =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A 、B 、C 、
D 以逆时针次序排列,点A 的极坐标为(2,π3)
(Ⅰ)求点A 、B 、C 、D 的直角坐标;
(Ⅱ)设P 为C 1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+ |PD|2的取值范围。
(24)(本小题满分10分)选修4—5:不等式选讲 已知函数f (x ) = |x + a | + |x -2|.
(Ⅰ)当a =-3时,求不等式f (x )≥3的解集;
(Ⅱ)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围。