高中奥林匹克物理竞赛解题方法13:降维法
不等式的降维打击解题方法知乎
不等式的降维打击解题方法知乎在数学的世界里,不等式是一个常见且重要的概念。
而降维打击则是一种解决不等式问题的独特方法。
所谓降维打击,就是通过将问题从高维空间降至低维空间,从而简化问题,使其更容易求解。
今天,我们就来详细探讨一下降维打击在不等式解题中的应用。
一、降维打击的概念及其在不等式中的应用降维打击的核心思想是将高维空间中的问题转化为低维空间中的问题。
在不等式中,我们可以通过降维打击来寻找问题的解。
例如,对于不等式|x - a| > b,我们可以通过将其转化为两个不等式x - a > b 和-(x - a) > b 来求解。
二、降维打击解题步骤详解1.分析问题:首先,我们需要明确问题的条件,如不等式的形式、未知数的个数等。
2.降维:根据问题特点,选择合适的降维方法。
常见的降维方法有:差分法、同向不等式法、绝对值不等式法等。
3.求解降维后的不等式:将问题降至低维空间后,我们可以按照不等式的求解方法来解降维后的不等式。
4.恢复原问题:在求解降维后的不等式后,我们需要将结果恢复到原问题中,得出原问题的解。
三、实际例子分析以下是一个具体的例子来说明降维打击的应用:不等式|x - 1| - 2 > 3我们可以将其转化为以下两个不等式:x - 1 - 2 > 3 和-(x - 1) - 2 > 3解得:x < -6 和x > 10所以,原不等式的解集为:(-∞, -6) ∪ (10, +∞)四、提升降维打击技巧的建议1.熟练掌握常见的降维方法,如差分法、同向不等式法、绝对值不等式法等。
2.善于观察问题,找到问题的特点,选择合适的降维方法。
3.在解题过程中,注意降维后的不等式求解方法,尤其是区间端的处理。
4.多做练习,积累经验,提高解题速度和准确性。
总之,降维打击是一种非常有用的不等式解题方法。
通过熟练掌握降维打击的技巧,我们可以更加高效地解决不等式问题。
13.降维法
十三、降维法方法简介降维法是将一个三维图变成几个二维图,即应选两个合适的平面去观察,当遇到一个空间受力问题时,将物体受到的力分解到两个不同平面上再求解,由于三维问题不好想像,选取适当的角度,可用降维法求解,降维的优点是把不易观察的空间物理量的关系在二维图中表示出来,使我们很容易找到各物理量之间的关系,从而正确解决问题,赛题精讲例1:如图13—1所示,倾角θ=30°的粗糙斜面上放 一物体,物体重为G,静止在斜面上,现用与斜面底边平 行的力F=G/2推该物体,物体恰好在斜面内做匀速直线运 动,则物体与斜面间的动摩擦因数μ等于多少?物体匀速 运动的方向如何?解析:物体在重力、推力、斜面给的支持力和摩擦力 四个力的作用下做匀速直线运动,所以受力平衡,但这四 个力不在同一平面内,不容易看出它们之间的关系,我们 把这些力分解在两个平面内,就可以将空间问题变为平面 问题,使问题得到解决,将重力沿斜面、垂直于斜面分解,我们从上面、侧面 观察,图13—1—甲、图13—1—乙所示,如图13—1—甲所示,推力F 与重力沿斜面的分力G 1的合力F ′为:G G F F 22212=+=' F ′的方向沿斜面向下与推力成α角, 则 ︒=∴==451tan 1ααFG这就是物体做匀速运动的方向物体受到的滑动摩擦力与F ′平衡,即 2/2G F f ='=所以摩擦因数:3630cos 2/2=︒==G G F f N μ 例2:如图13—2所示,一个直径为D 的圆柱体,其侧面刻有螺距为h 的光滑的螺旋形凹槽,槽内有一小球,为使小球能自由下落,必须要以多大的加速度来拉缠在圆柱体侧面的绳子?解析:将圆柱体的侧面等距螺旋形凹槽展开成为平面上的斜槽,如图13—2—甲所示,当圆柱体转一周,相当于沿斜槽下降一个螺距h,当圆柱转n 周时,外侧面上一共移动的水平距离为22122at n D =π① 圆弧槽内小球下降的高度为221gt nh =② 解①、②两式,可得,为使螺旋形槽内小球能自由下落,圆柱体侧面绳子拉动的加速度应为hDga π=例3:如图13—3所示,表面光滑的实心圆球B 的半径 R=20cm,质量M=20kg,悬线长L=30cm ,正方形物块A 的 厚度△h=10cm,质量m=2kg,物体A 与墙之间的动摩擦因 数μ=0.2,取g=10m/s 2,求:(1)墙对物块A 的摩擦力为多大?(2)如果要物体A 上施加一个与墙平行的外力,使物体A 在未脱离圆球前贴着墙沿水平方向做加速度a =5m/s 2 匀加速直线运动,那么这个外力大小方向如何?解析:这里物体A 、B 所受的力也不在一个平面内,混起来考虑比较复杂,可以在垂直于墙的竖直平面内分析A 、B 间压力和A 对墙的压力;在与墙面平行的平面内分析A 物体沿墙水平运动时的受力情况,(1)通过受力分析可知墙对物块A 的静摩擦力大小等于物块A 的重力,(2)由于物体A 贴着墙沿水平方向做匀加速直线运动,所以摩擦力沿水平方向,合力也沿水平方向且与摩擦力方向相反,又因为物体受竖直向下的重力,所以推力F 方向应斜向上,设物体A 对墙的压力为N,则沿垂直于墙的方向,物体B 受到物体A 的支持力大小也为N,有θμtan ,Mg N N f ==而又因为43tan 53sin ==++∆=θθ所以R L R h 在与墙面平行的平面内,对物体A 沿竖直方向 做受力分析,如图13—3—甲所示有mg F =αsin沿水平方向做受力分析,有 ma f F =-αcos 由以上各式,解得 )5/5arcsin(,520)()(22==++=a N ma f mg F因此,对物体A 施加的外力F 的大小为205N,方向沿墙面斜向上且与物体A 水平运动方向的夹角为).5/5arcsin(例4:一质量m=20kg 的钢件,架在两根完全相同的平 行长直圆柱上,如图13—4所示,钢件的重心与两柱等距, 两柱的轴线在同一水平面内,圆柱的半径r=0.025m,钢件 与圆柱间的动摩擦因数μ=0.20,两圆柱各绕自己的轴线做 转向相反的转动,角速度./40s rad =ω若沿平行于柱轴的 方向施力推着钢件做速度为s m /050.00=υ的匀速运动, 求推力是多大?(设钢件不发生横向运动)解析:本题关键是搞清滑动摩擦力的方向,滑动摩擦力 的方向与相对运动的方向相反,由于钢件和圆柱都相对地面 在运动,直接不易观察到相对地面在运动,直接不易观察到 相对运动的方向,而且钢件的受力不在同一平面内,所以考 虑“降维”,即选一个合适的角度观察,我们从上往上看,画 出俯视图,如图13—4—甲所示,我们选考虑左边圆柱与钢件之间的摩擦力,先分析相对运动的方向,钢件有向前的速度0υ,左边圆住有向右的速度ωr ,则钢件相对于圆柱的速度是0υ与ωr 的矢量差,如图中△v ,即为钢件相对于圆柱的速度,所以滑动摩擦力f 的方向与△v ,的方向相反,如图13—4—甲所示,以钢件为研究对象,在水平面上受到推力F 和两个摩擦力f 的作用,设f 与圆柱轴线的夹角为θ,当推钢件沿圆柱轴线匀速运动时,应有22000)(22cos 2ωθr v v f vv ff F +=∆== ①再从正面看钢件在竖直平面内的受力可以求出F N , 如图13—4—乙所示,钢件受重力G 和两个向上的支 持力F N ,且G=2F N ,所以把N N F f GF μ==,2代入①式,得 推力N r v v mgr v v F F N 2)(22)(222002200=+⋅=+⋅=ωμωμ例5:如图13—5所示,将质量为M 的匀质链条套在一个表面光滑的圆锥上,圆锥顶角为α,设圆锥底面水平,链条静止时也水平,求链条内的张力,解析:要求张力,应在链条上取一段质量元m ∆进行研究,因为该问题是三维问题,各力不在同一平面内,所以用“降维法”作出不同角度的平面图进行研究,作出俯视图13—5—甲,设质量元m ∆两端所受张力为T,其合力为F,因为它所对的圆心角θ很小,所以2sin 2θT F =,即F=T θ,再作出正视图13—5—乙,质量元受重力m ∆g 、支持力N 和张力的合力F 而处于平衡状态,由几何知识可得:2cot 22cotαπθα⋅=⋅∆=Mg mg F 所以链条内的张力2cot 22απ⋅==MgF T例6:杂技演员在圆筒形建筑物内表演飞车走壁,演员骑摩托车从底部开始运动,随着速度增加,圈子越兜越大,最后在竖直圆筒壁上匀速率行驶,如图13—6所示,如果演员和摩托车的总质量为M,直壁半径为R,匀速率行驶的速率为v ,每绕一周上升的距离为h,求摩托车匀速走壁时的向心力,解析:摩托车的运动速度v ,可分解为水平速度v 1和竖直分速度为v 2,则向心力速度为Rv a 21=,处理这个问题的关键是将螺旋线展开为一个斜面,其倾角的余弦为22)2(2cos hR R a +=ππ,如图13—6—甲所示,所以有v hR R v v 221)2(2cos +==ππα向心加速度为:222221))2(2(h R R R v R v a +==ππ向心力 )4(422222h R RMv Ma F +==ππ 例7:A 、B 、C 为三个完全相同的表面光滑的小球,B 、C 两球各被一长为L=2.00m 的不可伸和的轻线悬挂于天花板上,两球刚好接触,以接触点O 为原点作一直角坐标系z Oxyz ,轴竖直向上,O x 与两球的连心线重合,如图13—7所示,今让A 球射向B 、C 两球,并与两球同时发生碰撞,碰撞前,A 球速度方向沿y 轴正方向,速率为s m v A /00.40=,相碰后,A 球沿y 轴负方向反弹,速率A v =0.40m/s ,(1)求B 、C 两球被碰后偏离O 点的最大位移量; (2)讨论长时间内B 、C 两球的运动情况,(忽略空气阻力,取g=10m/s 2) 解析:(1)A 、B 、C 三球在碰撞前、后的运动发生 在Oxy 平面内,设刚碰完后,A 的速度大小为A v ,B 、 C 两球的速度分别为B v 与C v ,在x 方向和y 方向的分速 度的大小分别为Bx v ,Cy Cx By v v v ,和,如图13—7—甲所示, 由动量守恒定律,有0=-Bx Cx mv mv ①A Cy By Ax mv mv mv mv -+= ②由于球面是光滑的,在碰撞过程中,A 球对B 球的作用力方向沿A 、B 两球的连心线,A 球对C 球的作用力方向沿A 、C 两球的连心线,由几何关系,得⎪⎪⎭⎪⎪⎬⎫==6tan 6tan ππCy Cx By Bx v v v v ③ 由对称关系可知 Cy Bx v v = ④解①、②、③、④式可得 s m v v Cy Bx /27.1==s m v v Cy Bx /20.2==由此解得 s m v v Cy Bx /54.2==图13—7甲设C 球在x >0, y>0, z >0的空间中的最大位移为,OQ Q 点的z 坐标为z Q ,则由机械能守恒定律可写出Q C mgz mv =221 ⑤ 所以 gv z CQ 22= 代入数值解得 z Q =0.32m而Q 点到O z 轴的距离为 )2()(22Q Q Q z L z z L L QD -=--=所以C 球离O 点的最大位移量 Q Q Lz OD z OQ 222=+= ⑥代入数值,得 m OQ 13.1= ⑦由对称性,可得B 球在0,0,0>><z y x 的空间的最大位移量OP 为m OQ OP 13.1== ⑧(2)当B 、C 两球各达到最大位移后,便做回到原点的摆动,并发生两球间的碰撞,两球第一次返回O 点碰撞前速度的大小和方向分别为s m v Bx /27.1= 方向沿正x 轴方向 By v =2.20m/s 方向沿y 轴方向s m v Cx /27.1= 方向沿正x 轴方向 Cy v =2.20m/s 方向沿y 轴方向设碰撞后的速度分别为11C B v v 和,对应的分速度的大小分别为x B v 1、y B v 1、x C v 1和y C v 1,由于两球在碰撞过程中的相互作用力只可能沿x 轴方向,故碰撞后,沿y 轴方向的速度大小和方向均保持不变(因为小球都是光滑的),即y B v 1=By v 方向沿负y 轴方向 ⑨ y C v 1=Cy v 方向沿负y 轴方向 ⑩碰撞过程中,沿x 轴方向的动量守恒,则 Cx Bx x B x C mv mv mv mv -=-11 因为Cx Bx v v = 所以x B x C v v 11=即碰撞后两球在x 方向的分速度大小也相等,方向相反,具体数值取决于碰撞过程中是否机械能损失,在A 球与B 、C 两球同时碰撞的过程中,碰撞前,三者的机械能m mv E AD 82121==碰撞后三者的机械能 12222259.6212121E E m mv mv mv E C B A <=++=表明在碰撞过程中有机械能损失,小球的材料不是完全弹性体,故B 、C 两球在碰撞过程中也有机械能损失,即)(21)(21)(212222221111Y X X X Y XB BC C B B v v m v v m v v m +<+++ ○11 由⑨、⑩和○11三式,和 Cx Bx C B v v v v x X =<=11 ○12或C B C B v v v v =<=11当B 、C 两球第二次返回O 点时,两球发生第二次碰撞,设碰撞后两球的速度分别为22C B v v 和,对应的分速度的大小分别为y C x C B B v v v v y X 22,,22和,则有y y y y C B C B v v v v 1122=== y x x x C B C B v v v v 1122=<= 或 12B B v v < 12C C v v <由此可见,B 、C 两球每经过一次碰撞,沿x 方向的分速度都要变小,即x x x x x x X C B C B C B Cx B v v v v v v v v 332211=>=>=>= ……而y 方向的分速度的大小保持不变,即y t y y y y y C B C B C B Cy B v v v v v v v v 332211======= ……当两球反复碰撞足够多次数后,沿x 方向的分速度为零,只有y 方向的分速度,设足够多的次数为n,则有 0==nx nx C B v v ○13 s m v v v y ny ny B C B /20.2=== ○14 即最后,B 、C 两球一起的Oyz 平面内摆动,经过最低点O 的速度由○14式给出,设最高点的z 轴坐标为Qn z ,则 Qn Cny mgz mv =221 得gv z Cny Qn 22=代入数值,得 m z Qn 24.0= ○15 最高点的y 坐标由下式给出:Qn Qn Qn Qn z z L z L L y )2()(22-±=--±=代入数值,得:m y Qn 95.0±= ○16 例8:一半径R=1.00m 的水平光滑圆桌面,圆心为O,有一竖直的立柱固定在桌面上的圆心附近,立柱与桌面的交线是 一条凸的平滑的封闭曲线C,如图13—8所示,一根不可伸 长的柔软的细轻绳,一端固定在封闭曲线上某一点,另一端系一质量为m=7.5×10—2kg 的小物块,将小物块放在桌面上并把绳拉直,再给小物块一个方向与绳垂直、大小为s m v /0.40=的初速度,物块在桌面上运动时,绳将缠绕在立柱上,已知当绳的张力为T 0=2.0N 时,绳即断开,在绳断开前物块始终在桌面上运动,(1)问绳刚要断开时,绳的伸直部分的长度为多少?(2)若绳刚要断开时,桌面圆心O 到绳的伸直部分与封闭曲线的接触点的连线正好与绳的伸直部分垂直,问物块的落地点到桌面圆心O 的水平距离为多少?已知桌面高度H=0.80m,物块在桌面上运动时未与立柱相碰,取重力加速度大小为10m/s 2,解析:(1)这一问题比较简单,绳断开前,绳的张力即为物块所受的向心力,因为初速度与绳垂直,所以绳的张力只改变物块的速度方向,而速度大小不变,绳刚要断开时,绳的伸直部分的长度可求出,设绳的伸直部分长为x ,则由牛顿第二定律得:xv m T 200=代入已知数值得:x =0.60m(2)选取桌面为分析平面,将物块的落地点投影到此分析平面上,然后由平抛运动的知识求解,如图13—8—甲所示,设绳刚要断开时物块位于 桌面上的P 点,并用A 点表示物块离开桌面时的位置, 先取桌面为分析平面,将物块的落地点投影到此分析 平面上,其位置用D 点表示,易知D 点应在直线PA 的延长线上,OD 即等于物块落地点与桌面圆心O 的水平距离,而AD 等于物块离开桌面后做平抛运动的 水平射程,即 gH v AD 20= 故20222)2(g H v x R x OD +-+= 代入已知数值得物块落地点到桌面圆心O 的水平距离 m OD 47.2=例9:如图13—9所示是一种记录地震装置的水平摆,摆球m 固定在边长为L,质量可忽略不计的等边三角形的顶点A 上,它的对边BC 跟竖直线成不大的夹角α,摆球可以绕固定轴图13—8BC 摆动,求摆做微小振动的周期,解析:若m 做微小振动,则其轨迹一定在过A 点,垂直于BC 的平面内的以O 为圆心,OA 为半径的圆弧上,因此我们可以作一个过A 点垂直于BC 的平面M,如图13—9—甲所示,将重力mg 沿M 平面和垂直于M 平面方向分解,则在平面M 内,m 的振动等效于一个只在重力αsin mg g m ='作用下简谐运动,摆长.2360sin L LL =︒='所以周期 αππsin 2322g Lg L T =''=例10:六个相同的电阻(阻值均为R )连成一个电 阻环,六个结点依次为1、2、3、4、5和6,如图13—10 所示,现有五个完全相同的这样的电阻环,分别称为D 1、 D 2、…、D 5,现将D 1的1、3、5三点分别与D 2的2、4、 6三点用导线连接,如图13—10—甲所示,然后将D 2的 1、3、5三点分别与D 3的2、4、6三点用导线连接……依次类推,最后将D 5的1、3、5三点分别连接到D 4的2、4、6三点上,证明:全部接好后,在D 1上的1、3、两点间的等效是电阻为R 627724, 解析:由于连接电阻R 的导线,连接环D 之间的导线均不计电阻,因此,可改变环的半径,使五个环的大小满足:D 1<D 2<…<D 5.将图13—10—甲所示的圆柱形网络变成圆台形网络,在沿与底面垂直的方向将此圆台形网络压缩成一个平面,如图13—10—乙所示的平面电路图,现将圆形电阻环变成三角形,1、3、5三点为三角形的顶点,2、4、6三点为三角形三边的中点,图13—10—乙又变为如图13—10—丙所示电路图,不难发现,图13—10—丙所示的电路相对虚直线3、6具有左右对称性,可以用多种解法求,如将电路等效为图13—10—丁, A 1B 1以内的电阻R R B A 5411=A 2B 2以内的电阻R R R R R R R R B A B A B A 1914)2()2(111122=+++=A 3B 3以内的电阻R R R R R R R R B A B A B A 7152)2()2(222233=++⋅+=A 4B 4以内的电阻R R R R R R R R B A B A B A 265194)2()2(333344=++⋅+=A 5B 5以内的电阻R RR R R R R R B A B A B A 627724)2()2(444455=++⋅+=即为D 1环上1、3两点间的等效电阻,例11:如图13—11所示,用12根阻值均为r 的相同的电阻丝构成正立方体框架,试求AG 两点间的等效电阻,解析:该电路是立体电路,我们可以将该立体电路“压扁”,使其变成平面电路,如图13—11—甲所示,考虑到D 、E 、B 三点等势,C 、F 、H 三点等势,则电路图可等效为如图13—11—乙所示的电路图,所以AG 间总电阻为 r r r r R 65363=++=例12:如图13—12所示,倾角为θ的斜面上放一木 制圆制,其质量m=0.2kg,半径为r,长度L=0.1m,圆柱 上顺着轴线OO ′绕有N=10匝的线圈,线圈平面与斜面 平行,斜面处于竖直向上的匀强磁场中,磁感应强度 B=0.5T,当通入多大电流时,圆柱才不致往下滚动?解析:要准确地表达各物理量之间的关系,最好画出正视图,问题就比较容易求解了,如图13—12—甲所示,磁场力F m 对线圈的力矩为M B =NBIL ·2r ·sin θ,重力对D 点的力矩为:M G =mgsin θ,平衡时有:M B =M G 则可解得:A NBL mg I 96.12== 例13:空间由电阻丝组成的无穷网络如图13—13所示,每段电阻丝的电阻均为r,试求A 、B 间的等效电阻R AB ,解析:设想电流A 点流入,从B 点流出,由对称性可知,网络中背面那一根无限长电阻丝中各点等电势,故可撤去这根电阻丝,而把空间网络等效为图13—13—甲所示的电路,(1)其中竖直线电阻r ′分别为两个r 串联和一个r 并联后的电阻值,所以 r r r r r 3232=⋅=' 横线每根电阻仍为r,此时将立体网络变成平面网络,(2)由于此网络具有左右对称性,所以以AB 为轴对折,此时网络变为如图13—13—乙所示的网络,其中横线每根电阻为21r r =竖线每根电阻为32r r r ='='' AB 对应那根的电阻为r r 32=' 此时由左右无限大变为右边无限大, (3)设第二个网络的结点为CD,此后均有相同的网络,去掉AB 时电路为图13—13—丙所示,再设R CD =R n -1(不包含CD 所对应的竖线电阻)则N B A R R =',网络如图13—13—丁所示,此时 1111111333222------++=+⋅+⋅=+''''+=n n n n n n n R r rR r R r R r r R r R r r R当∞→n 时,R n =R n -1 ∴ 上式变为n n n n n R r rR r R r rR r R 3432++=++=由此解得:r r R n 6213+= 即r r R B A 6213+=' 补上AB 竖线对应的电阻r 32,网络变为如图13—13—戊所示的电路, r r r r r r R r R r R B A B A AB 21212)321(21)213(221321)213(262133262133232322=++=++=+++⋅=+⋅='' 例14:设在地面上方的真空室内,存在匀强电场和匀强磁场,已知电场强度和磁感应强度的方向是相同的,电场强度的大小E=4.0V/m,磁感应强度的大小B=0.15T,今有一个带负电的质点以v =20m/s 的速度在此区域内沿垂直场强方向做匀速直线运动,求此带电质点的电量与质量之比q/m 以及磁场的所有可能方向(角度可用反三角函数表),解析:因为带负电的质点做匀速直线运动,说明此质点所受的合外力为零,又因为电场强度和磁感应强度的方向相同,所以该带电质点所受的电场力和洛仑兹力的方向垂直共面,且必受重力作用,否则所受合外力不可能为零,设质点速度方向垂直纸面向里,由此该带电质点的受力图如图13—14所示,由平衡条件有有水平方向:θθsin cos Bqv Eq = ①在竖直方向:mg Bqv Eq =+θθcos sin ②解得:34tan =θ 34arctan =θ q/m=2 同理,当质点速度方向垂直纸面向外时受力情况如图13—14—甲,由平衡条件可解出θ值与上式解出的一样,只是与纸平面的夹角不同,故此带电质点的电量与质量之比为2,磁场的所有可能方向与水平方向的夹角都是 34tan 34arctan ==θθ或针对训练1.如图13—15所示,一个重1000N的物体放在倾角为30°的斜面上,物体与斜面间的摩擦系数μ为1/3,今有一个与斜面最大倾斜线成30°角的力F作用于物体上,使物体在斜面上保持静止,求力F的大小,2.斜面倾角θ=37°,斜面长为0.8m,宽为0.6m,如图13—16所示,质量为2kg的木块与斜面间的动摩擦因数为μ=0.5,在平行于斜面方向的恒力F的作用下,沿斜面对角线从A 点运动到B点(g=10m/s2,sin37°=0.6),求:(1)力F的最小值是多大?(2)力F取最小值时木块的加速度,3.质量为0.8kg的长方形木块静止在倾角为30°的斜面上,若用平行于斜面沿水平方向大小等于3N的力推物体,它仍保持静止,如图13—17所示,则木块所受摩擦力大小为,方向为,4.如图13—18,四面体框架由电阻同为R的6个电阻连接而成,试求任意两个顶点AB间的等效电阻,5.如图13—19所示三棱柱由电阻同为R的电阻线连接而成,试求AB两个顶点间的等效电阻,6.将同种材料粗细均匀的电阻丝连接成立方体的形状,如图13—20所示,每段电阻丝电阻均为r,试求:(1)AB两点间等效电阻R AG;(2)AD两点间等效电阻R AD,。
高中物理竞赛(解题方法:整体法)
高中奥林匹克物理竞赛解题方法、整体法方法简介整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合作为一个融洽加以研究的思维形式。
整体思维是一种综合思维,也可以说是一种综合思维,也是多种思维的高度综合,层次深、理论性强、运用价值高。
因此在物理研究与学习中善于运用整体研究分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。
灵活运用整体思维可以产生不同凡响的效果,显现“变”的魅力,把物理问题变繁为简、变难为易。
赛题精讲例1如图1—1所示,人和车的质量分别为m和M,人用水平力F拉绳子,图中两端绳子均处于水平方向,不计滑轮质量及摩擦,若人和车保持相对静止,且水平地面是光滑的,则车的加速度为________________________________________________ .解析:要求车的加速度,似乎需将车隔离出来才能求解,事实上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看做一个整体,对整体用牛顿第二定律求解即可将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力向重力与支持力平衡,水平方向绳的拉力为2F,所以有:2F=(M+m)a,解得:2FaMm例2用轻质细线把两个质量未知的小球悬挂起来,如图1 —2所示,今对小球a持续施加一个向左偏下30°的恒力,并对小球b持续施加一个向右偏上30°的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是•在竖直方解析<R)(A)表示平衡状态的图是哪一个,(D)求出两条轻质细绳对小球a和小球b的拉1-1力的方向,只要拉力方向求出后,。
图就确定了。
先以小球a、b及连线组成的系统为研究对象,系统共受五个力的作用,即两个重力(m a+m b)g,作用在两个小球上的恒力F a、F b和上端细线对系统的拉力T i.因为系统处于平衡状态,所受合力必为零,由于F a、F b大小相等,方向相反,可以抵消,而(m a+m b)g的方向竖直向下,所以悬线对系统的拉力T i的方向必然竖直向上.再以b球为研究对象,b球在重力m b g、恒力F b和连线拉力T2三个力的作用下处于平衡状态,已知恒力向右偏上30°,重力竖直向下,所以平衡时连线拉力T2的方向必与恒力F b和重力m b g的合力方向相反,如图所示,故应选A., OB竖直向下,表面光滑,OA上两环间由一根质量可忽略、不何伸长P环向左移动一段距离,两环再次达OA杆对例3有一个直角架AOB , OA水平放置,表面粗糙,套有小环P, OB上套有小环Q,两个环的质量均为m,〕的细绳相连,并在某一位置平衡,如图1 —4所示.现将到平衡,那么将移动后的平衡状态和原来的平衡状态相比,上的拉力T的变化情况是A . N不变,T变大B.C. N变大,T变小D.解析先把P、Q看成一个整体,受力如图则绳对两环的拉力为内力,不必考虑,又因竖直方向上对Q无力的作用,所以整体在竖直方向上只受重力和OA杆对它的支持力,所以N不变,始终等于P、Q的重力之和。
从一道题看奥赛所涉及的解题方法和技巧
从一道题看奥赛所涉及的解题方法和技巧题:设湖岸MN 是一条直线,有一小船自岸边的A 点沿与湖岸成α=15°角的方向匀速向湖中驶去,有一个人自A 点同时出发,,他先沿岸走一段再入水中游泳去追小船.已知人在岸上走的速度为v1 =4m/s ,在水中游泳的速度为v2=2m/s ,试求小船的速度至多为多大时,这人才能追上小船?方法1:微元法如图,设人在D 点入水并在B 点刚好能追上小船,这表明:此时人追上小船所用时间最少,对应的小船速度最大.D 点两侧各有入水点C 和E ,使得在该处入水追船所用时间相等.现设C 、E 是D 点两侧附近无限靠近D 点的两点,并设分别从C 、E 点入水追小船所用总时间相等.现在BC 段截取BF=BE ,那么∠BFE =90°.由于从C 、E 点入水追小船所用总时间相等,所以,人在CE 段走与在CF 段游泳所用时间相等.于是因为C 、E 两点无限靠近D 点,所以∠BDN =θ=60°,作BK ⊥BD 交MN 于K ,于是DK=2BD.又因为v1=2v2,则人游DK 段与走DK 段所用时间相等.所以人自出发经D 点再到B 点与人由A 点一直走到K 点所用时间相同,并都等于小船从A 到B 所用的最少时间.即有 在⊿ABK 中,用正弦定理可得: 那么方法2:类比法设想MN 为甲和乙两种介质的分界面,光在甲中的速度为v1,在乙中的速度为v2,据费马原理可知,B →D →A 是光从B 传到A 费时最少的路径,而β是临界角. 这可类比本题人从A 经D 到B 的追船情况.由此得: 下面解法与方法1相同.最后可得: 21v CF v CE =21cos ==CE CF θ︒=60θ1max v AK v AB =21135sin 30sin =︒︒=AK AB )/(2222211max s m v v v ===︒==30arcsin 12v v β)/(22max s m v =方法3:图解法如图,设人开始运动就一直游泳,那么他能到达的区域是以A 为圆心、以v2t 为半径的半圆中的任何一点,若他一直沿湖岸走,那么他在t 时间内可以到达AK =v1t 中的任何一点,若他先沿岸走一段再入水追船,那么他可以在t 时间内到达图中⊿AEF 中的任何一点.所以,他若能追上船,船也必须在t 时间内到达这区域.由于题设小船沿α角的方向运动,所以沿此方向的直线与EK 线的交点B 是船以最大速度运动且又能被人追上的地点.在Rt ⊿AEK 中,因为AK=2AE ,所以∠AKE =30°,于是,∠ABK =180 °-15 °- 30°=135°在⊿ABK 中,据正弦定理得: 而所以:方法4:矢量图解法设人先沿岸走一段,再入水追船,以船为参考系,由于人和船是同时由A 点出发的,则人在沿岸走时,船看到人正在由船所在位置逐渐“离去”,离去的相对速度u 1为:要人能追上船,即人能回到船上,则其返回的相对速度u 2必须沿u 1的反方向,返回的相对速度u 2为: 作图:(1)以MN 线上的A 点为起点作矢量v 1得K 点;(2)以A 点为圆心,以v2的大小为半径作圆;(3)作直线AC ,使它与MN 线的夹角为α=15°;设K 点与圆上的任一点E 的连线与AC线的交点为B ,则AB 表示船速,BK 表示人相对船的“离开”速度u 1,而BE 表示人相对船的“返回”速度u 2.显然,当KE 与圆相切时,AB 线最长,表示船速最大,由此有作图步骤:(4)作KE 与圆相切于E 点,并与AC 相交于B 点.由于AK=AE ,所以,∠AKF =30°,∠ABE =45°.因而⊿ABE 为等腰直角三角形,那21135sin 30sin =︒︒=AK AB 1max 1max v v t v t v AK AB ==)/(2222211max s m v v v ===v v u -=11vv u -=22方法5:等效法设人在B 点追上船,则人到达B 点可能有很多途径,如A →C →B ,A →D →B,A →E →B 等,这些途径中耗时最少的途径对应着允许的最大船速,作∠NAP =30°,并分别作CK,DH,EF 垂直AP ,其中设BDH 为直线,又设想MN 线下方也变成湖水区域,则因为AC=2CK,所以人由K 点游泳到C 点所用时间与人在岸上走由A 点到C 点所用时间是相等的.故人按题设情况经路径A →C →B 所用时间与假想人全部在水中游泳游过路径K →C →B 所用时间相等,同理,人按题设情况经路径A →D →B所用时间与假想人全部在水中游泳游过路径H→D →B 所用时间相等,人按题设情况经路径A→E →B 所用时间与假想人全部在水中游泳游过路径F →E →B 所用时间相等,显然,在这些途径中,因为HDB 是直线,因此所用时间最少.由以上分析可知,人沿等效途径HDB 游泳就费时最少地刚好追上船,这对应着最大船速,设为vmax ,则有因为⊿AHB 是等腰直角三角形,所以故得方法6:极值法(利用三角函数)如图,设人沿岸走到D 点时,船航行到C 点,此时人入水游泳就刚好能在B 点追上船. 在⊿ACD 中应用正弦定理得又设此时船速为v ,人由A 点走到D 点耗时为t ,则 由以上两式得 又在⊿CDB 中应用正弦定理得设人游过DB 段所用时间为t ’,则 由以上两式得由(1)、(2)式,并注意v 1=2v 2,可得 又由于,要v 尽可能大,即需AC/AD 尽可能大,而θ越大,则AC 越大,由于 )/(2222max s m v v ==2max v BH v AB =BHAB 2=)/(2222max s m v v ==AC AD =--)sin()sin(αθθπvtAC t v AD ==,1BC BD =--)sin(sin βθπθt v CB t v BD '='=,2)2()sin(sin 2v v =+βθθ)1()sin(sin 1v v =-αθθ)3()sin(2)sin(αθβθ-=+1v v AD AC =α为恒量,则θ越大,则θ-α也越大,且(θ-α)为锐角,则sin (θ-α)随(θ-α)增大而增大,故得sin (θ-α)最大时,θ最大,由(3)式可见,当sin (θ+β)=1时,sin (θ-α)有最大值为1/2,此时对应的θ值为450,此时得β=450,于是⊿CDB 是等腰直角三角形,则有所以: 方法7:极值法(利用一元二次函数判别式)如图,设船出发后经时间t 被人追上.则船的位移为s=v t ,又设人在岸上走用时为kt (0<k<1),位移为s1=k v 1t,人在湖中游用时为(1-k)t (0<k<1),位移为s2=(1-k)v 2t.那么,据余弦定理有:把s 、s1、s2的表达式及v 1、v 2的值代入并整理可得于是有要这方程有实数解,其判别式⊿应满足:由此可解得:或由本题的物理情景可知只能取: 方法8:极值法(利用一元二次函数判别式)如图,设人在岸上D 处入水追船,运动方向与湖岸成θ角,并在B 点处追上船,这人由A →D →B 用时为t .则 上式表明:t 与θ有关,且在d 、L 、v 1、v 2一定时,由θ决定,研究函数 两边平方得: 整理后得:此方程有实数解的条件是:判别式⊿≧0,即有由此解得:所以: 由(3)、(4)式得: 这表明当θ=60°时,函数y 有最小值,由(1)式知此时t 有最小值,对应的船速有最大值.)/(2222max s m v v ==αcos 2121222ss s s s -+=︒-+=-15cos 816)1(4222kv v k k 2213432230cos 115cos +=+=︒+=︒0)4(]8)26(2[1222=-+-+-v k v k 0)4(48]8)26(2[22≥---+=∆v v 22≤v )13(22+≥v )/(22max s m v =θθsin cot 21v d v d L t +-=)1()sin cos sin 1(121d v v v L θθθ-+=)2(sin cos sin 112θθθv v y -=θθθ2222122221212sin cos cos 2v v v v v v y +-=)3()cos 1(cos cos 2222212222121θθθ-+-=v v v v v v 0)1(cos 2cos )(222212122222212=-+-+v y v v v v v v y θθ0)1()(442222122222122221≥-+-v y v v v v y v v 222122212v v v v y -≥)4(222122212min v v v v y -=21cos 12==v v θ︒=60θ)315(cot )3132(15cot 1121min+︒=-+︒=v d v v v d t )315(cot 15sin sin 1min min max+︒︒===v t d t AB v θ。
物理习题中的三维问题的处理方法
图1B物理习题中的三维问题的处理方法湖南省浏阳市一中(410300)张学明同学们一般习惯于解答一维问题(如直线运动)和二维问题(如平抛运动),对于三维问题往往感到比较困难,其原因在于三维问题要求有比较强的空间想象能力。
如何处理三维问题呢?降维法是一种常见的处理方法。
1利用三视图,将三维问题转化为二维护问题三视图是从三个不同的侧面观察和描述立体图形的一种重要手段。
它包括正视图形、侧视图、俯视图。
通过三视图可以将三维问题转化为二维问题。
例1:如图1,一个矩形线圈abcd 绕其对称轴OO ’轴在水平向右的匀强磁场中以角速度ω旋转,已知磁场的磁感应强度为B ,线圈的电阻为R ,ab=L 1,bc=L 2。
线圈的起始位置与磁场方向平行。
当线圈旋转600的角度时,求线圈所受的安培力矩M.解析:为了便于求解,我们采取俯视图(图2) (1)在转到600的位置时,线圈的感应电动势230sin 22101ωL BL v BL E ==, 感应电流RL BL i 221ω=故安培力矩RL L B i L BL L i BL LF M 22222222122121ω====2利用等效法将三维问题二维问题例2:如图,质量为m ,带电量为q 的粒子,从坐标轴原点O沿+y 方向以速度v 匀强磁场,电场强度为E ,磁感应强度为B 。
当带电粒子从原点O 出发到第一次与xoz 平面相交于P 点,OP 间的距离为多大?用运动的分解的等效方法将其转化为二维问题。
粒子在平行于xoy 平面内作匀速圆周运动,内作初速度为0的匀加速运动。
作圆周运动的半径为R =qB m T π2=,粒子到达P 点时,所用的时间qB m t π=,在轴方向的位移为qBmvR x 22==A CBO ’ α在oy 方向的位移2(21qBm m Eq y π=故OP 之间的距离2222222224)2(qB v m q B m E y x OP +=+=π3选择适当的截面图,将三维问题转化为二维问题例3:三个半径为r ,质量相等的球放在一个半球形碗内,现把第四个半径也为r 质量也相同的球放在这三个球的正上方,要使四个球都静止,大的半球形碗的半径应该满足什么条件?解:设A 、B 、C 、D 为四个球的球心,构成一个正四面体。
物理竞赛思维进阶指南
物理竞赛思维进阶指南《物理竞赛思维进阶指南》嘿,朋友,想要在物理竞赛里崭露头角可不容易,不过别怕,我来给你指指路。
一、基本注意事项首先呢,基础知识得扎实。
这就像盖房子,地基不牢啥都白搭。
我一开始也是对基本概念理解得模模糊糊的,像牛顿定律那些,想着大概懂了就好,结果到后面解题到处碰壁。
所以啊,物理公式、概念一定要对着书反复看,看明白了还得自己推导推导。
这就好比骑自行车,光看别人骑可不行,你得自己上去蹬一蹬才知道感觉。
还有就是数学工具要掌握好。
物理竞赛里经常要用到微积分这些高端玩意儿。
像我当时看到那些复杂的数学运算就头疼,但你没办法,必须得把它拿下。
因为数学就像你的武器库,没有趁手的家伙事儿,怎么上战场呢?二、实用建议一定要多做题,但不是盲目刷。
要精做、做透。
每做一道题,就把它涉及的知识点都梳理一遍。
我那时候就是挑那些经典的竞赛题目集来做,做完一道题,我就对着答案一点点分析。
如果做错了或者没做出来,我就把自己的思路和答案的思路对比,看看卡在哪了。
这里有个诀窍,你可以准备个小本子,把每次做错题的错误原因,新学到的技巧都记下来,常常地翻看。
这就像是你跟题目交朋友,要知道它的脾气。
再就是要多参加一些物理讨论小组或者学术社团。
我当时就拉着班上几个喜欢物理的同学一起讨论题目。
大家你一言我一语,不同的思路碰出火花。
有时候别人一句话就能点醒你,那种感觉可妙了。
三、容易忽视的点知识面不能太窄,不能只盯着竞赛题目那点东西。
兴趣要广泛点,去了解点物理史,看看物理学家们的故事。
我那时候就忽视了这个,觉得它没什么用,后来发现物理史里面蕴含着大量的思维方式转变的例子。
就像普朗克提出量子的概念,他打破了传统的思维定式。
这对我们在竞赛中遇到那种创新型的题目很有启发的。
而且有些竞赛题还真就会涉及到物理史方面的小知识,不能不重视啊。
四、特殊情况有时候你会遇到那种完全看不懂的题,这时候可别慌。
我在参赛的时候就遇到过。
那大多数情况是你被表面现象迷惑了。
高中奥林匹克物理竞赛解题方法整体法
第一讲:整体法方法简介 整体法是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合作为一个融洽加以研究的思维形式。
整体思维是一种综合思维,也可以说是一种综合思维,也是多种思维的高度综合,层次深、理论性强、运用价值高。
因此在物理研究与学习中善于运用整体研究分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。
令活运用整体思维可以产生不同凡响的效果,显现“变”的魅力,把物理问题变繁为简、变难为易。
例1 如图所示,人和车的质量分别为m 和M ,人用水平力F 拉绳子,图中两端绳子均处于水平方向, 不计滑轮质量及摩擦,若人和车保持相对静止,且水平地面是光滑的,则车的加速度为 . 例2 用轻质细线把两个质量未知的小球悬挂起来,如图所示,今对小球a 持续施加一个向左偏下30°的恒力,并对小球b持续施加一个向右偏上30°的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是( )例3 有一个直角架AOB ,OA水平放置,表面粗糙,OB 竖直向下,表面光滑,OA 上套有小环P ,OB 上套有小环Q ,两个环的质量均为m ,两环间由一根质量可忽略、不何伸长的细绳相连,并在某一位置平衡,如图所示.现将P 环向左移动一段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态相比,OA杆对P 环的支持力N 和细绳上的拉力T 的变化情况是( )A .N 不变,T 变大B .N 不变,T 变小C .N 变大,T 变小D .N 变大,T 变大例4 如图所示,质量为M 的劈块,其左右劈面的倾角分别为0130=θ、0245=θ质量分别为m 1=3kg 和m 2=2.0kg 的两物块,同时分别从左右劈面的顶端由静止开始下滑,劈始终在水平面保持静止,各相互接触面之间的动摩擦因数均为μ=,求:两物块下滑过程中(m 1和m 2均未达到底端前)劈块受到地面的摩擦力。
高中奥林匹克物理竞赛解题方法 (2)
高中奥林匹克物理竞赛解题方法七、对称法方法简介由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中. 应用这种对称性它不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中称为对称法. 利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题.赛题精析例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A,抛出点离水平地面的高度为h,距离墙壁的水平距离为s, 小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s,如图7—1所示. 求小球抛出时的初速度.解析:因小球与墙壁发生弹性碰撞, 故与墙壁碰撞前后入射速度与反射速度具有对称性, 碰撞后小球的运动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理, 效果上相当于小球从A ′点水平抛出所做的运动. 根据平抛运动的规律:⎪⎩⎪⎨⎧==2021gt y t v x 因为抛出点到落地点的距离为3s,抛出点的高度为h代入后可解得:hg s y g x v 2320== 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B,间距为d, 一个小球以初速度0v 从两墙正中间的O 点斜向上抛出, 与A 和B 各发生一次碰撞后正好落回抛出点O, 求小球的抛射角θ.解析:小球的运动是斜上抛和斜下抛等三段运动组成, 若按顺序求解则相当复杂,如果视墙为一平面镜, 将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解.图7—1物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有 ⎩⎨⎧==⎪⎩⎪⎨⎧-==0221sin cos 200y d x gt t v y t v x 落地时θθ 代入可解得20202arcsin 2122sin v dg v dg ==θθ所以抛射角 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物?解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可.由题意作图7—3, 设顶点到中心的距离为s,则由已知条件得 a s 33=由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为v v v 2330cos ==' 由此可知三角形收缩到中心的时间为 v a v s t 32='=此题也可以用递推法求解,读者可自己试解.例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m,内外半径几乎同为R. 槽内A 、B 两处分别放有一个质量也为m 的小球,AB 间的距离为槽的直径. 不计一切摩擦. 现将系统置于光滑水平面上,开始时槽静止,两小球具有垂直于AB 方向的速度v ,试求两小球第一次相距R 时,槽中心的速度0v .解析:在水平面参考系中建立水平方向的x 轴和y 轴.由系统的对称性可知中心或者说槽整体将仅在x 轴方向上运动。
降维思维法
第六讲降维思维法一、降维思维含义降维法是将一个三维图变成几个二维图,即应选两个合适的平面去观察,优点是把不易观察的空间物理量的关系在二维图中表示出来,从而容易找到各物理量之间的关系正确解决问题。
(实质:划立体为平面-------高中只有平面规律)二、降维思维分类1、“力”的降维:分解定律---平行四边形例1:如图13—1所示,倾角θ=30°的粗糙斜面上放一物体,物体重为G,静止在斜面上。
现用与斜面底边平行的力F=G/2推该物体,物体恰好在斜面内做匀速直线运动,则物体与斜面间的动摩擦因数μ等于多少?物体匀速运动的方向如何?2、“运动”的降维:分解定律---平行四边形例2:杂技演员在圆筒形建筑物内表演飞车走壁。
演员骑摩托车从底部开始运动,随着速度增加,圈子越兜越大,最后在竖直圆筒壁上匀速率行驶,如图13—6所示。
如果演员和摩托车的总质量为M,直壁半径为R,匀速率行驶的速率为v,每绕一周上升的距离为h,求摩托车匀速走壁时的向心力。
课后作业 姓名______________1、如图所示,表面光滑的实心圆球B 的半径R=20cm ,质量M=20kg ,悬线长L=30cm 。
正方形物块A 的厚度△h=10cm ,质量m=2kg ,物体A 与墙之间的动摩擦因数μ=0.2,取g=10m/s 2。
求:(1)墙对物块A 的摩擦力为多大?(2)如果要物体A 上施加一个与墙平行的外力,使物体A 在未脱离圆球前贴着墙沿水平方向做加速度a =5m/s 2 匀加速直线运动,那么这个外力大小方向如何?2、一质量m=20kg 的钢件,架在两根完全相同的平行长直圆柱上,如图所示,钢件的重心与两柱等距,两柱的轴线在同一水平面内,圆柱的半径r=0.025m ,钢件与圆柱间的动摩擦因数μ=0.20。
两圆柱各绕自己的轴线做转向相反的转动,角速度./40s rad =ω若沿平行于柱轴的方向施力推着钢件做速度为s m /050.00=υ的匀速运动,求推力是多大?3、如图所示,将质量为M 的匀质链条套在一个表面光滑的圆锥上,圆锥顶角为α,设圆锥底面水平,链条静止时也水平,求链条内的张力。
奥赛物理题选难度分级
奥赛物理题选难度分级
高中奥林匹克物理竞赛题挺难的,难到个什么程度,和高物理竞赛训练的能力,抽象来说就是对于一些现象,先找到一些关键的变量用来描述这些现象,再建立模型来看看这些变量之间满足的关系。
长期思考复杂问题的你,比普通人思维更加缜密,更加有条理。
长期处理困难问题的你,抗压能物理竞赛训练的能力,抽象来说就是对于一些现象,先找到一些关键的变量用来描述这些现象,再建立模型来看看这些变量之间满足的关系。
长期思考复杂问题的你,比普通人思维更加缜密,更加有条理。
其实说难度当然有1.以高考物理为基础2.学超纲内容,与大学接轨3.竞赛花时间比高考物理少,但内容更深4.开始难懂,易放弃5.自学难,需要好的老师与同伴但有破解之法1.基础学扎实2.坚持,多讨论3.有良好师资力量4.有恒心5.有自豪感。
平时考试与竞赛并无太大关系,当然前者是基础需要训练?其实你要先考虑下自己是不是真的有足够的能力比如试卷最后一题你经常能做出来而且思路比较清晰,对于难题你是否有巧妙的与众不同的思想。
然后,以上确认之后再根据自己情况加大训练力度...
高中奥林匹克物理竞赛解题方法:隔离法就是从整个系统中将某一部分物体隔离出来,然后单独分析被隔离部分的受力情况和运动情况,从而把复杂的问题转化为简单的一个个小问题求解。
一般的说搞学科竞赛是都是一些学校的传统,打开国奖的名单,得金牌的就是那么几个学校再转,我是学化学和生物,不过有很多同学是学物理的,还是蛮了解的。
打个比方吧,要能进复赛,高考理综的物理你最低要考100分左右,一般高考理综物理的最后一个大题的难度在预赛中最多只能算中难度一下的,比如2009年全国二卷理综的最后一题在预赛中算得上是中难度的题目。
物理竞赛解题方法
高中奥林匹克物理竞赛解题方法一、整体法整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合作为一个融洽加以研究的思维形式。
整体思维是一种综合思维,也可以说是一种综合思维,也是多种思维的高度综合,层次深、理论性强、运用价值高。
因此在物理研究与学习中善于运用整体研究分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。
灵活运用整体思维可以产生不同凡响的效果,显现“变”的魅力,把物理问题变繁为简、变难为易。
例7 有一轻质木板AB 长为L ,A 端用铰链固定在竖直墙上,另一端用水平轻绳CB 拉住。
板上依次放着A 、B 、C 三个圆柱体,半径均为r ,重均为G ,木板与墙的夹角为θ,如图1—8所示,不计一切摩擦,求BC 绳上的张力。
二、隔离法隔离法就是从整个系统中将某一部分物体隔离出来,然后单独分析被隔离部分的受力情况和运动情况,从而把复杂的问题转化为简单的一个个小问题求解。
隔离法在求解物理问题时,是一种非常重要的方法,学好隔离法,对分析物理现象、物理规律大有益处。
例9 如图2—9所示,四个相等质量的质点由三根不可伸长的绳子依次连接,置于光滑水平面上,三根绳子形成半个正六边形保持静止。
今有一冲量作用在质点A ,并使这个质点速度变为u ,方向沿绳向外,试求此瞬间质点D 的速度.解析 要想求此瞬间质点D 的速度,由已知条件可知得用动量定理,由于A 、B 、C 、D 相关联,所以用隔离法,对B 、C 、D 分别应用动量定理,即可求解.以B 、C 、D 分别为研究对象,根据动量定理:对B 有:I A —I B cos60°=m B u …………①I A cos60°—I B =m B u 1…………②对C 有:I B —I D cos60°=m C u 1……③I B cos60°—I D =m c u 2…………④对D 有:I D =m D u 2……⑤由①~⑤式解得D 的速度u u 1312三、微元法微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
2021届一轮复习 物理解题方法导练 降维法(含解析)
1.如图所示,倾斜放置的圆盘绕着中轴匀速转动,圆盘的倾角为37°,在距转动中心 处放一个小木块,小木块跟随圆盘一起转动,小木块与圆盘间的动摩擦因数为 ,假设木块与圆盘的最大静摩擦力与相同条件下的滑动摩擦力相同。若要保持小木块不相对圆盘滑动,圆盘转动的角速度最大不能超过( )
A.2 rad/sB.8 rad/sC. D.
(1)击打白球后,白球与黑球发生碰撞,可以使黑球进入不同的洞口。请在以下两种情况下,画出白球的初速度方向以及碰前瞬间的位置,作图时请画出必要的辅助线。
a.使黑球进入1号洞(在图2中作图);
b.使黑球进入2号洞(在图3中作图)。
(2)黑球进入2号洞的情况比进入1号洞的情况复杂一些。在处理复杂的物理问题时,常将其分解为简单的问题,如运动的分解、力的分解等等。将这些矢量在相互垂直的x、y两个方向上进行分解,然后分别进行研究。在黑球进入2号洞的情境下,若已知两球的质量均为m,碰前瞬间白球的速度大小为v0,碰后瞬间黑球的速度大小为v,v0与v方向的夹角θ= 53o,求两球碰撞过程中损失的机械能。(已知:sin53o= 0.8,cos53o= 0.6)
(______)
11.动量定理可以表示为,其中力F和动量p都是矢量.在运动动量定理处理二维问题时,可以在相互垂额直的x、y两个方向上分别研究.
如图所示,质量为m的小球斜射钢板上,入射的角度是,碰撞后弹出的角度也时,碰撞前后的速度发小都时v,碰撞过程中忽略小球所受重力,碰撞时间为已知.求小球对钢板的作用力F.
D.地面对杆的支持力与杆的重力是一对作用力和反作用力
5.如图所示,倾角θ的斜面上有一重为G的物体,在与斜面底边平行的水平推力作用下在斜面上做匀速直线运动,则
A.物体可能沿水平方ቤተ መጻሕፍቲ ባይዱ运动
高中数学降维打击42计
高中数学降维打击42计摘要:1.降维打击的定义和概念2.降维打击在高中数学中的应用3.降维打击的策略和方法4.降维打击的实际案例5.降维打击对高中数学教学的启示正文:降维打击是一个科学术语,它指的是在高维空间中对低维空间进行攻击或竞争,使其失去竞争力或毁灭。
在高中数学教学中,降维打击指的是教师通过降低问题的难度,使得学生更容易理解和解决,从而提高学生的学习效果。
降维打击在高中数学中有着广泛的应用。
例如,在解决复杂的几何问题时,教师可以通过将问题转化为简单的代数问题来降低问题的难度。
在解决代数问题时,教师可以通过使用图形来帮助学生理解问题的含义和解决方法。
这些方法都可以帮助学生更好地理解和解决数学问题。
降维打击的策略和方法包括以下几个方面:1.降低问题的难度:教师可以通过简化问题的条件或要求,使得问题更容易解决。
2.转换问题的形式:教师可以通过将问题转化为学生熟悉的形式,使得学生更容易理解和解决。
3.使用图形或实际例子:教师可以通过使用图形或实际例子来帮助学生理解问题的含义和解决方法。
4.提供提示或提示:教师可以通过提供提示或提示来帮助学生找到解决问题的关键。
降维打击的实际案例如下:例如,在解决一个复杂的几何问题时,教师可以将问题转化为一个简单的代数问题,然后通过解方程来求解几何问题。
再例如,在解决一个代数问题时,教师可以通过使用图形来帮助学生理解问题的含义和解决方法。
降维打击对高中数学教学有着重要的启示。
首先,降维打击可以帮助学生更好地理解和解决数学问题。
其次,降维打击可以提高学生的学习效果,增强学生的学习信心。
降维法与对称法
第六节 降维法与对称法一.方法介绍1.对称法由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中.应用这种对称性不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中称为对称法.物理中对称现象比比皆是,对称的结构、对称的作用、对称的电路、对称的物像等等.一般情况下,对称表现为研究对象在结构上的对称性、物理过程在时间上和空间上的对称性、物理量在分布上的对称性及作用效果的对称性等.我们可以通过人为地填补、分割等办法使原来不对称的事物也可以用对称性来分析。
对称法作为一种具体的解题方法,虽然高考命题没有单独正面考查,但是在每年的高考命题中都有所渗透和体现,从侧面体现考生的直观思维能力和客观的猜想推理能力.既有利于高校选拔能力强素质高的优秀人才,又有利于中学教学对学生的学科素质和美学素质的培养.作为一种重要的物理思想和方法,相信在今后的高考命题中必将有所体现.2.降维法降维法是将一个三维图变成几个二维图的思维方法,例如当遇到一个空间受力问题时,将物体受到的力分解到两个不同平面上再求解。
由于三维问题不好想像,选取适当的角度,可用降维法求解。
降维的优点是把不易观察的空间物理量的关系在二维图中表示出来,使我们很容易找到各物理量之间的关系,从而正确解决问题。
二.对称法的典型应用1、镜物对称及拓展应用例1.如图所示,设有两面垂直于地面的光滑墙A 和B ,两墙水平距离为1.0 m ,从距地面高19.6 m 处的一点C 以初速度为5.0 m/s ,沿水平方向投出一小球,设球与墙的碰撞为弹性碰撞,求小球落地点距墙A 的水平距离.球落地前与墙壁碰撞了几次?(忽略空气阻力)命题意图:考查考生综合分析、推理归纳的能力.B 级要求.错解分析:部分陷于逐段分析求解的泥潭,而不能依对称性将整个过程等效为一个平抛的过程,依水平位移切入求解.[解析]:如图所示,设小球与墙壁碰撞前的速度为v ,因为是弹性碰撞,所以在水平方向上的原速率弹回,即v ⊥′=v ⊥;又墙壁光滑,所以在竖直方向上速率不变,即v ‖′=v ‖,从而小球与墙壁碰撞前后的速度v 和v ′关于墙壁对称,碰撞后的轨迹与无墙壁时小球继续前进的轨迹关于墙壁对称,以后的碰撞亦然,因此,可将墙壁比作平面镜,把小球的运动转换为统一的平抛运动处理,由h =21gt 2和n =d t v 0可得碰撞次数n =d v 0g h 2 =15×8.96.192 次=10次. 由于n 刚好为偶数,故小球最后在A 墙脚,即落地点距离A 的水平距离为零.2.简谐运动中的对称性例2 如图所示,轻弹簧的一端固定在地面上,另一端与木块B 相连,木图27-4块A 放在木块B 上,两木块质量均为m , 在木块A 上施有竖直向下的力F ,整个装置处于静止状态。
高中奥林匹克物理竞赛解题方法-降维法13-3
例10:六个相同的电阻(阻值均为R )连成一个电阻环,六个结点依次为1、2、3、4、5和6,如图13—10所示。
现有五个完全相同的这样的电阻环,分别称为D 1、D 2、…、D 5。
现将D 1的1、3、5三点分别与D 2的2、4、6三点用导线连接,如图13—10—甲所示。
然后将D 2的1、3、5三点分别与D 3的2、4、6三点用导线连接……依次类推,最后将D 5的1、3、5三点分别连接到D 4的2、4、6三点上。
证明:全部接好后,在D 1上的1、3、两点间的等效是电阻为R 627724。
解析:由于连接电阻R 的导线,连接环D 之间的导线均不计电阻,因此,可改变环的半径,使五个环的大小满足:D 1<D 2<…<D 5.将图13—10—甲所示的圆柱形网络变成圆台形网络,在沿与底面垂直的方向将此圆台形网络压缩成一个平面,如图13—10—乙所示的平面电路图。
现将圆形电阻环变成三角形,1、3、5三点为三角形的顶点,2、4、6三点为三角形三边的中点,图13—10—乙又变为如图13—10—丙所示电路图。
不难发现,图13—10—丙所示的电路相对虚直线3、6具有左右对称性。
可以用多种解法求。
如将电路等效为图13—10—丁。
A 1B 1以内的电阻R R B A 5411= A 2B 2以内的电阻R R R R R R R R B A B A B A 1914)2()2(111122=+++=A 3B 3以内的电阻R RR R R R R R B A B A B A 7152)2()2(222233=++⋅+= A 4B 4以内的电阻R RR R RR R R B A B A B A 265194)2()2(333344=++⋅+= A 5B 5以内的电阻R R R R RR R R B A B A B A 627724)2()2(444455=++⋅+= 即为D 1环上1、3两点间的等效电阻。
例11:如图13—11所示,用12根阻值均为r 的相同的电阻丝构成正立方体框架。
高中物理奥林匹克竞赛解题方法解物理竞赛题的数学技巧
解物理竞赛题的数学技巧在生物理竞赛中,不难发现这样一类试题:题目描述的物理情境并不陌生,所涉及的物理知识也并不复杂,若能恰当地运用数学技巧求解,问题就可顺利得到解决.然而,选手在处理这类问题时,往往由于不能灵活运用数学技巧而前功尽弃.辅导教师在对参赛选手进行物理知识传授、物理方法渗透的同时,利用某些典型的物理问题去传授和强化他们的数学技巧,提高他们运用数学解决物理问题的能力是十分必要的.笔者通过实例剖析,就解物理竞赛题中的数学技巧作一简要探讨.一、引入参数方程,简解未知量多于方程数的问题例1(第15届全国生物理竞赛试题) 1mol理想气体缓慢的经历了一个循环过程,在p-V图中这一过程是一个椭圆,如图1所示.已知此气体若处在与椭圆中心O′点所对应的状态时,其温度为T0=300K,求在整个循环过程中气体的最高温度T1和最低温度T2各是多少.图1分析与解由题给条件,可列出两个相对独立的方程.即气体循环过程的椭圆方程和理想气体的状态方程,即,①pV=RT.②①、②两方程中含三个未知量p、V、T,直接对①、②两式进行演算,要求出循环过程中的最高温度T1或最低温度T2,是较为困难的.现根据①式引入含参数定义的方程为②式则转化为T=(1/R)(p0+(p0/2)sinα)(V0+(V0/2)cosα即T=[1+(1/2)(sinα+cosα)+(1/4)sinαcosα]T0,③(上式中T0=p0V0/R,为O′点对应的温度)因为sinα+cosα=sin((π/4)+αsinαcosα=((sinα+cosα)2-1)/2,④而-1≤sin((π/4)+α)≤1,所以-≤sinα+cosα≤,当sinα+cosα≤,取sinα+cosα=时,由④式知sinαcosα=1/2,将上式代入③式得T≤[1+(1/2)×+(1/4)×(1/2)]T0,即最高温度T1=549K.当sinα+cosα≥-,取sinα+cosα=-时,由④式知sinαcosα=1/2,代入③式,得T≥[1+(1/2)(-+(1/4)·(1/2))]T0,即最低温度T2=125K.二、实施近似处理,解决物理规律不明显的问题例2如图2所示,两个带电量均为Q的正点电荷,固定放置在x轴上的A、B两处,点A、B到原点的距离都等于r,若在原点O放置另一带正电的点电荷,其带电量为q.当限制点电荷q在哪些方向上运动时,它在原点O处才是稳定的?图2分析与解设限制点电荷q在与x轴成θ角的y轴上运动.当它受扰动移动到P点,即沿y轴有微小的位移y(=y)时,A、B两处的点电荷对q的库仑力分别为fA、fB.则q在y轴上的合力为fy=k(Qq/)cosα-k(Qq/)cosβ,由余弦定理知=r2+y2+2rycosθ,=r2+y2-2rycosθ.又由三角形知,cosα=(rcosθ+y)/,cosβ=(rcosθ-y)/,故fy=kQq(rcosθ+y)/(r2+y2-2rycosθ)3/2-(kQq(rcosθ-y)/(r2+y2-2rycosθ)3/2).上式已表示出fy与θ、y间的定量关系.可它们满足的规律并不明显.怎样将合力fy与方向角θ、位移y之间的物理规律显现出来?由于y很小,故y的二次项可略去,得fy=k(Qq/r3即fy=k(Qq/r3)[(rcosθ+y)(1+(2y/r)cosθ)-3/2-(rcosθ-y)(1-(2y/r)cosθ)-3/2],根据二项式展开式(1+t)S=1+St+(S(S-1)/2!)t2+…+((S(S-1)…(S-n+1))/n!)tn+……,(其中S为任意实数)有(1+(2y/r)cosθ)-3/2=1+(-3/2)((2y/r)cosθ)+((-3/2)((-3/2)-1)/2!)((2y/r)cosθ)2+……,(1-(2y/r)cosθ)-3/2=1+(-3/2)((-2y/r)cosθ)+((-3/2)((-3/2)-1)/2!)((-2y/r)cosθ)2+……,又由于y<<r,或(2y/r)cosθ<<1,故((2y/r)cosθ)的二次项及二次项以上高次项可略去,得fy=k(Qq/r3)[(rcosθ+y)(1-(3y/r)cosθ)-(rcosθ-y)(1+(3y/r)cosθ)],=-k(2Qq/r3)(3cos2θ-1)y.由此可见,当(3cos2θ-1)>0时,fy<0,即合力方向指向原点,与位移方向相反,即fy具有回复力的特征.因而点电荷q是稳定的.图3根据3cos2θ-1>0,即cosθ>/3时,得-arccos(/3)<θ<arccos(/3或当cosθ<-/3时,得π-arcos(/3)<θ<π+arccos(/3).故当限制点电荷q在如图3的阴影区域运动时,它在原点O处才是稳定的.三、利用特殊值,求解一般性问题特殊值是指物理量在某一特殊情况下的取值.物理量在一般情况下的量值之间必然与特殊值之间存在一定的联系.我们若能确定某一特殊值,则往往可以借助数学技巧来求出一般情况下该物理量的量值.例3 一个空心的环形圆管沿一条直径截成两部分,一半竖立在铅垂平面内,如图4所示,管口连线在一水平线上.今向管内装入与管壁相切的2m个小滚珠,左、右侧顶部的滚珠都与圆管截面相切.已知单个滚珠重G,并设系统中处处无摩擦.求从左边起第n个和第(n+1)个滚珠之间的相互压力Qn.图4分析与解研究一般性问题——分析第n个滚珠的受力情况,此滚珠受四个力的作用:重力G,管壁对它的弹力Tn,第(n-1)个滚珠对它的压力Qn-1及第(n+1)个滚珠对它的压力Qn.由于Tn的量值未知,且不为本题所求,故选取如图5所示的与Tn方向共线的轴作为y轴建立直角坐标系.图5 图6由平衡条件知x轴方向的合力为零,得Qn-1cosα+Gcosβ-Qncosα=0,由几何知识,得α=θ/2(其中θ=π/2mβ=((n-1)π/2m)+α,故Qn-Qn-1=.①根据①式,如何求得Qn?对第1个滚珠进行受力分析,如图6所示,得到一特殊值,即Q1=,②故可对①式进行递推,得Q2-Q1=,Q3-Q2=,……Qn-Qn-1=.将上面所列等式左、右两边分别相加,得Qn-Q1=[cos(3π/4m)+cos(5π/4m)+…+cos((2n-1)π/4m)]·G/cos(π/4m把②式代入,得Qn=[cos((2k-1)π/4 m)]·G/cos(π/4m).而cos((2k-1)π/4m)=(1/2sin(π/4m))2cos((kπ/2m)-(π/4m))sin(π/4m)=(1/2sin(π/4m))[sin(kπ/2m)-sin((k-1)π/2m)],又[sin(kπ/2m)-sin((k-1)π/2m)]=[sin(π/2m)-0]+[sin(2π/2m)-sin(π/2m)]+[sin(3π/2m)-sin(2π/2m)]+…+[sin(nπ/2m)-sin((n-1)π/2m)]=sin(nπ/2m故Qn=(sin(nπ/2m)/sin(π/2m))·G。
物理学奥林匹克竞赛的准备技巧
物理学奥林匹克竞赛的准备技巧物理学奥林匹克竞赛是一项极具挑战性和专业性的竞赛,对于有志于在物理学领域深入探索的学生来说,是一个展示自己才华和能力的重要平台。
然而,要在这样的竞赛中取得优异成绩并非易事,需要充分的准备和系统的学习。
以下是一些实用的准备技巧,希望能对您有所帮助。
一、扎实的基础知识物理学的基础知识是参加竞赛的基石。
要确保对力学、热学、电磁学、光学、近代物理等各个板块的基本概念、定理和公式有深入的理解和掌握。
不仅要知其然,还要知其所以然,能够从原理上推导和解释各种物理现象。
例如,在力学中,要清晰地理解牛顿运动定律、动能定理、动量定理等;在电磁学中,掌握库仑定律、安培定律、法拉第电磁感应定律等。
对于这些基础知识,可以通过反复阅读教材、做课后习题以及总结归纳来加深理解。
二、深入的拓展学习仅仅掌握课本知识是远远不够的,还需要进行拓展学习。
推荐阅读一些大学物理教材,如《大学物理学》《物理学基础》等,了解更深入、更前沿的物理知识和研究方法。
同时,关注物理学领域的最新研究成果和应用,通过科普杂志、学术论文等途径拓宽视野。
例如,了解量子力学在通信技术中的应用、相对论在天体物理学中的应用等。
三、大量的习题训练做题是巩固知识、提高解题能力的重要手段。
可以选择历年的物理学奥林匹克竞赛真题以及相关的辅导书籍进行练习。
在做题过程中,要注重解题思路和方法的总结,学会举一反三。
对于难题,不要轻易放弃,要多思考、多尝试,培养自己的耐心和毅力。
做完题目后,要认真对照答案进行分析,找出自己的不足之处,并加以改进。
四、实验技能的培养物理学是一门实验科学,实验技能在竞赛中也占有重要地位。
要熟悉常见的物理实验仪器和实验方法,能够独立完成一些基础实验,并对实验数据进行准确的处理和分析。
可以利用学校的实验室资源,积极参加实验课程和课外实验活动。
如果条件允许,还可以自己设计一些简单的实验,培养创新能力和实践能力。
五、数学工具的运用物理学中常常需要运用到数学工具,如微积分、线性代数、概率论等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圣才学习网高中奥林匹克物理竞赛解题方法十三、降维法方法简介降维法是将一个三维图变成几个二维图,即应选两个合适的平面去观察,当遇到一个 空间受力问题时,将物体受到的力分解到两个不同平面上再求解。
由于三维问题不好想像, 选取适当的角度, 可用降维法求解。
降维的优点是把不易观察的空间物理量的关系在二维图 中表示出来,使我们很容易找到各物理量之间的关系,从而正确解决问题。
赛题精讲例 1:如图 13—1 所示,倾角θ=30°的粗糙斜面上放 一物体,物体重为 G,静止在斜面上。
现用与斜面底边平 行的力 F=G/2 推该物体,物体恰好在斜面内做匀速直线运 动,则物体与斜面间的动摩擦因数μ等于多少?物体匀速 运动的方向如何? 解析:物体在重力、推力、斜面给的支持力和摩擦力 四个力的作用下做匀速直线运动,所以受力平衡。
但这四 个力不在同一平面内,不容易看出它们之间的关系。
我们 把这些力分解在两个平面内,就可以将空间问题变为平面 问题,使问题得到解决。
将重力沿斜面、垂直于斜面分解。
我们从上面、侧面 观察,图 13—1—甲、图 13—1—乙所示。
如图 13—1—甲所示,推力 F 与重力沿斜面的分力 G1 的合力 F′为:F ′ = F 2 + G12 =2 G 2F′的方向沿斜面向下与推力成α角, 则 tan α =G1 =1 F∴ α = 45°这就是物体做匀速运动的方向 物体受到的滑动摩擦力与 F′平衡,即 所以摩擦因数: μ =f = F ′ = 2G / 2f 2G / 2 6 = = FN G cos 30° 3例 2:如图 13—2 所示,一个直径为 D 的圆柱体,其侧面刻有螺距为 h 的光滑的螺旋形 凹槽,槽内有一小球,为使小球能自由下落,必须要以多大的加速度来拉缠在圆柱体侧面的 绳子?中华物理竞赛网圣才学习网解析:将圆柱体的侧面等距螺旋形凹槽展开成为平面上的斜槽,如图 13—2—甲所示, 当圆柱体转一周,相当于沿斜槽下降一个螺距 h,当圆柱转 n 周时,外侧面上一共移动的水 平距离为 2πD 1 n = at 2 ① 2 2 1 2 gt 2②圆弧槽内小球下降的高度为 nh =解①、②两式,可得,为使螺旋形槽内小球能自由下落,圆柱体侧面绳子拉动的加速度 应为 a =πDgh例 3:如图 13—3 所示,表面光滑的实心圆球 B 的半径 R=20cm,质量 M=20kg,悬线长 L=30cm。
正方形物块 A 的 厚度△h=10cm,质量 m=2kg,物体 A 与墙之间的动摩擦因 数μ=0.2,取 g=10m/s2。
求: (1)墙对物块 A 的摩擦力为多大? (2)如果要物体 A 上施加一个与墙平行的外力,使物体 A 在未脱离圆球前贴着墙沿水 平方向做加速度 a=5m/s2 匀加速直线运动,那么这个外力大小方向如何? 解析:这里物体 A、B 所受的力也不在一个平面内,混起来考虑比较复杂,可以在垂直 于墙的竖直平面内分析 A、B 间压力和 A 对墙的压力;在与墙面平行的平面内分析 A 物体 沿墙水平运动时的受力情况。
(1)通过受力分析可知墙对物块 A 的静摩擦力大小等于物块 A 的重力。
(2)由于物体 A 贴着墙沿水平方向做匀加速直线运动, 所以摩擦力沿水平方向, 合力也沿水平方向且与摩 擦力方向相反。
又因为物体受竖直向下的重力,所以推力 F 方向应斜向上。
设物体 A 对墙的压力为 N,则沿垂直于墙的方向,物体 B 受到物体 A 的支持力大小也 为 N,有 f = μN , 而N = Mg tan θ 又因为 sin θ =Δh + R 3 = L+R 5所以 tan θ =3 4在与墙面平行的平面内,对物体 A 沿竖直方向 做受力分析,如图 13—3—甲所示有F sin α = mg沿水平方向做受力分析,有 F cos α f = ma 由以上各式,解得F = (mg ) 2 + ( f + ma) 2 = 20 5 N , a = arcsin( 5 / 5)因此,对物体 A 施加的外力 F 的大小为 20 5 N,方向沿墙面斜向上且与物体 A 水平中华物理竞赛网圣才学习网运动方向的夹角为 arcsin( 5 / 5). 例 4:一质量 m=20kg 的钢件,架在两根完全相同的平 行长直圆柱上,如图 13—4 所示,钢件的重心与两柱等距, 两柱的轴线在同一水平面内,圆柱的半径 r=0.025m,钢件 与圆柱间的动摩擦因数μ=0.20。
两圆柱各绕自己的轴线做 转向相反的转动,角速度 ω = 40rad / s. 若沿平行于柱轴的 方向施力推着钢件做速度为 υ 0 = 0.050m / s 的匀速运动,求推力是多大?(设钢件不发生横向运动) 解析:本题关键是搞清滑动摩擦力的方向,滑动摩擦力 的方向与相对运动的方向相反,由于钢件和圆柱都相对地面 在运动,直接不易观察到相对地面在运动,直接不易观察到 相对运动的方向,而且钢件的受力不在同一平面内,所以考 虑“降维” ,即选一个合适的角度观察。
我们从上往上看,画 出俯视图,如图 13—4—甲所示。
我们选考虑左边圆柱与钢件之间的摩擦力, 先分析相对运动的方向, 钢件有向前的速度υ0 , 左边圆住有向右的速度 rω ,则钢件相对于圆柱的速度是 υ 0 与 rω 的矢量差, 如图中△v,即为钢件相对于圆柱的速度,所以滑动摩擦力 f 的方向与△v,的方向相反,如图 13—4—甲 所示。
以钢件为研究对象,在水平面上受到推力 F 和两个摩擦力 f 的作用,设 f 与圆柱轴线的 夹角为θ,当推钢件沿圆柱轴线匀速运动时,应有F = 2 f cosθ = 2 fv0 =2f Δvv02 v 0 + ( rω ) 2①再从正面看钢件在竖直平面内的受力可以求出 FN, 如图 13—4—乙所示,钢件受重力 G 和两个向上的支 持力 FN,且 G=2FN, 所以把 FN =G , f = μFN 代入①式,得 2 v02 v 0 + ( rω ) 2推力 F = 2 μFN = 2μv0 mg = 2N 2 2 v 0 + ( rω ) 2例 5:如图 13—5 所示,将质量为 M 的匀质链条套在一个表面光滑的圆锥上,圆锥顶 角为α,设圆锥底面水平,链条静止时也水平,求链条内的张力。
解析:要求张力,应在链条上取一段质量元 Δm 进行研究。
因为该问题是三维问题,各 力不在同一平面内,所以用“降维法”作出不同角度的平面图进行研究。
作出俯视图 13—5—甲,设质量元 Δm 两端所受张力为 T,其合力为 F,因为它所对的 圆心角θ很小,所以 F = 2T sin θ ,即 F=Tθ。
2中华物理竞赛网圣才学习网再作出正视图 13—5—乙,质量元受重力 Δm g、支持力 N 和张力的合力 F 而处于平衡 状态,由几何知识可得: F = Δmg cotα2 F Mg α 所以链条内的张力 T = = cot 2 2π 2=θ α Mg cot 2π 2例 6:杂技演员在圆筒形建筑物内表演飞车走壁。
演员骑摩托车从底部开始运动,随着 速度增加,圈子越兜越大,最后在竖直圆筒壁上匀速率行驶,如图 13—6 所示。
如果演员和 摩托车的总质量为 M,直壁半径为 R,匀速率行驶的速率为 v,每绕一周上升的距离为 h, 求摩托车匀速走壁时的向心力。
解析:摩托车的运动速度 v,可分解为水平速度 v1 和竖直分速度为 v2,则向心力速度为a=v12 。
处理这个问题的关键是将螺旋线展开为一个斜面,其倾角的余弦为 Rcos a =2πR (2πR) 2 + h 2,如图 13—6—甲所示。
所以有 v1 = v cos α =2πR (2πR ) 2 + h 2v向心加速度为: a =v12 v 2 2πR = ( )2 2 2 R R (2πR) + h向心力F = Ma = Mv 24π 2 R (4π 2 R 2 + h 2 )例 7:A、B、C 为三个完全相同的表面光滑的小球,B、C 两球各被一长为 L=2.00m 的 不可伸和的轻线悬挂于天花板上,两球刚好接触,以接触点 O 为原点作一直角坐标系Oxyz, z 轴竖直向上,Ox 与两球的连心线重合,如图 13—7 所示。
今让 A 球射向 B、C 两中华物理竞赛网圣才学习网球, 并与两球同时发生碰撞。
碰撞前, 球速度方向沿 y 轴正方向, A 速率为 v A0 = 4.00m / s 。
相碰后,A 球沿 y 轴负方向反弹,速率 v A =0.40m/s。
(1)求 B、C 两球被碰后偏离 O 点的最大位移量; (2)讨论长时间内 B、C 两球的运动情况。
(忽略空气阻力,取 g=10m/s2) 解析: (1)A、B、C 三球在碰撞前、后的运动发生 在 Oxy 平面内,设刚碰完后,A 的速度大小为 v A ,B、 C 两球的速度分别为 v B 与 vC ,在 x 方向和 y 方向的分速 度的大小分别为 v Bx , v By 和vCx , vCy ,如图 13—7—甲所示, 由动量守恒定律,有 mvCx mv Bx = 0 ①mv Ax = mv By + mvCy mv A ②由于球面是光滑的,在碰撞过程中,A 球对 B 球的作用力方向沿 A、B 两球的连心线, A 球对 C 球的作用力方向沿 A、C 两球的连心线,由几何关系,得π v Bx = v By tan 6 π vCx = vCy tan 6 由对称关系可知③v Bx = vCy④ 图 13—7 甲解①、②、③、④式可得 v Bx = vCy = 1.27 m / sv Bx = vCy = 2.20m / s由此解得v Bx = vCy = 2.54m / s设 C 球在 x>0, y>0, z>0 的空间中的最大位移为 OQ, Q 点的 z 坐标为 zQ,则由机械能守 恒定律可写出1 2 mvC = mgz Q 22 vC 2g⑤所以zQ =代入数值解得zQ=0.32m而 Q 点到 Oz 轴的距离为QD = L2 ( L z Q ) 2 = z Q (2 L z Q )2 OQ = z Q + OD 2 = 2 Lz Q所以 C 球离 O 点的最大位移量⑥中华物理竞赛网圣才学习网代入数值,得OQ = 1.13m⑦由对称性,可得 B 球在 x < 0, y > 0, z > 0 的空间的最大位移量 OP 为OP = OQ = 1.13m⑧(2)当 B、C 两球各达到最大位移后,便做回到原点的摆动,并发生两球间的碰撞, 两球第一次返回 O 点碰撞前速度的大小和方向分别为v Bx = 1.27m / s v By =2.20m/s vCx = 1.27m / s vCy =2.20m/s方向沿正 x 轴方向 方向沿 y 轴方向 方向沿正 x 轴方向 方向沿 y 轴方向设碰撞后的速度分别为 v B1 和vC1 , 对应的分速度的大小分别为 v B1x 、v B1 y 、vC1x 和 vC1 y , 由于两球在碰撞过程中的相互作用力只可能沿 x 轴方向,故碰撞后,沿 y 轴方向的速度大小 和方向均保持不变(因为小球都是光滑的) ,即v B1 y = v By vC1 y = vCy方向沿负 y 轴方向 方向沿负 y 轴方向⑨ ⑩碰撞过程中,沿 x 轴方向的动量守恒,则 因为 v Bx = vCx 所以 vC1x = v B1xmvC1x mv B1x = mv Bx mvCx即碰撞后两球在 x 方向的分速度大小也相等,方向相反,具体数值取决于碰撞过程中是 否机械能损失。