小学五年级奥数:质数、合数和分解质因数专题

合集下载

小学五年奥数-质数合数分解质因数

小学五年奥数-质数合数分解质因数

质数、合数和分解质因数【知能大展台】一个自然数,如果只有1和它本身这两个约数,这样的数叫做质数(或素数)一个自然数,如果除了1和它本身还有别的约数,这样的数叫做合数。

1既不是质数,也不是合数。

每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

【试金石】例1:三个质数的和是80,这三个质数的积最大是多少?【分析】由于三个数的和是偶数,所以这三个数中必有一个是偶数,在质数中只有2是偶数,所以三个数中一定有2。

另外两个质数的和是78,要使乘积尽可能的大,那么这两个质数的差值应尽可能的小。

显然,和是78的两个质数中,以41和37的差最小,即这两个数的积最大。

【解答】80=2+37+412×37×41=3034答:这三个质数的积最大是3034。

【智力加油站】【针对性训练】三个质数的和是62,这三个质数的积最大是多少?【试金石】例2:班主任李老师带领五年(一)班同学去植树,学生按人数恰好平均分成三组,已知李老师与学生共种了312棵树,老师与学生、每人种的树一样多,并且不超过10棵。

这个班共有学生多少人?每人种树多少棵?【分析】种树总数=每人种树棵数×师生总人数即:312=每人种树棵数×(1+学生人数)由于学生人数是3的倍数,再加上李老师一人,则师生总人数被3除余1。

因此先将312分解质因数312=2×2×2×3×13,然后按题意进行组合使之成为两数之积。

【解答】312=2×2×2×3×13若312=24×13,13为师生总人数,则每人种树24棵,与题意不相符。

若312=6×52,52为师生总人数,则每人种树6棵。

答:这个班共有学生51人,每人种6棵。

【智力加油站】【针对性训练】小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号大6,小青买的电影票是几排几座?【试金石】例3在做一道两位数乘以两位数的乘法题时,小马虎把一乘数中的数字5看成8,由此得乘积为1872.那么原来的乘积是多少?【分析】1872=2×2×2×2×3×3×13=口口×口口,其中某个口为8,验证只有:1872=48×39,1872=78×24满足.【解答】当为1872=48×39时,小马虎错把5看成8,也就是错把45看成48,所以正确的乘积应该是45×39=1755.当为1872=78×24时,小马虎错把5看成8,也就是错把75看成78,所以正确的乘积应该是75×24=1800.答:原来的积为1755或1800.【智力加油站】【针对性训练】在下面算式的框内,各填入一个数字,使算式成立。

小学奥数质数合数分解质因数

小学奥数质数合数分解质因数

本讲中的知识点在小学课本内已经有所涉及,并且多以判断题考察。

质数合数的出现是对自然数的另一种分类方式,但是相对于奇数偶数的划分要复杂许多。

质数本身的无规律性也是一个研究质数结构的难点。

在奥数数论知识体系中我们要帮助孩子树立对质数和合数的基本认识,在这个基础之上能够会与之前的一些知识点结合运用。

分解质因数法是一个数论重点方法,本讲另一个授课重点在于让孩子对这个方法能够熟练并且灵活运用。

1. 质数与合数 一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.2. 质因数与分解质因数质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.互质数:公约数只有1的两个自然数,叫做互质数.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.3. 唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯L 其中为质数,12k a a a <<<L L 为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.4. 部分特殊数的分解5-5质数合数分解质因数教学目标知识点拨111337=⨯⨯⨯⨯;=⨯;199535719=⨯⨯⨯;1998233337=⨯;1000173137=⨯;100171113=⨯⨯;1111141271=⨯⨯⨯.=⨯⨯⨯;10101371337200733223=⨯⨯;20082222515. 判断一个数是否为质数的方法根据定义如果能够找到一个小于p的质数q(均为整数),使得q能够整除p,那么p就不是质数,所以我们只要拿所有小于p的质数去除p就可以了;但是这样的计算量很大,对于不太大的p,我们可以先找K,再列出所有不大于K的质数,用这些质数去除p,如没有能够除尽的那一个大于且接近p的平方数2么p就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.例题精讲模块一、质数合数的基本概念的应用【例 1】下面是主试委员会为第六届“华杯赛”写的一首诗:美少年华朋会友,幼长相亲同切磋;杯赛联谊欢声响,念一笑慰来者多;九天九霄志凌云,九七共庆手相握;聚起华夏中兴力,同唱移山壮丽歌.请你将诗中56个字第1行左边第一字起逐行逐字编为1—56号,再将号码中的质数由小到大找出来,将它们对应的字依次排成一行,组成一句话,请写出这句话.【巩固】(2008年南京市青少年“科学小博士”思维训练)炎黄骄子菲尔兹奖被誉为“数学界的诺贝尔奖”,只奖励40岁以下的数学家.华人数学家丘成桐、陶哲轩分别于1982年、2006年荣获此奖.我们知道正整数中有无穷多个质数(素数),陶哲轩等证明了这样一个关于质数分布的奇妙定理:对任何正整数k,存在无穷多组含有k个等间隔质数(素数)的数组.例如,3k=时,3,5,7是间隔为2的3个质数;5,11,17是间隔为6的3个质数:而,,是间隔为12的3个质数(由小到大排列,只写一组3个质数即可).【巩固】(2003年“祖冲之杯”邀请赛)大约1500年前,我国伟大的数学家祖冲之,计算出π的值在3.1415926和3.1415927之间,成为世界上第一个把π的值精确到7位小数的人.现代人利用计算机已经将π的值计算到了小数点后515亿位以上.这些数排列既无序又无规律.但是细心的同学发现:由左起的第一位3是质数,31也是质数,但314不是质数,在3141,31415,314159,3141592,31415926,31415927中恰有一个是质数,是哪个?【巩固】(2004年全国小学奥林匹克)自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有多少个?【例 2】两个质数之和为39,求这两个质数的乘积是多少.【解析】因为和为奇数,所以这两个数必为一奇一偶,所以其中一个是2,另一个是37,乘积为74.我们要善于抓住此类题的突破口。

五年级奥数专题-分解质因数

五年级奥数专题-分解质因数

五年级奥数专题-分解质因数分解质因数(一)【专题导引】一个自然数的因数中,为质数的因数叫做这个数的质因数.把一个合数,用质因数相乘的形式表示出来,叫做分解质因数.例如:24=2×2×2×3,75=3×5×5.我们数学课本上介绍的分解质因数,是为求最大公因数、最小公倍数服务的.其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题.【典型例题】【例1】把18个苹果平均分成若干份,每份大于1个,小于18个.一共有多少种不同的分法?【试一试】1、有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人,有哪几种分法?2、195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?【例2】写出若干个连续的自然数,使它的积是15120.【试一试】1、有一个长方体,它的长、宽、高是三个连续的自然数,且体积是39270立方厘米,求这个长方体的表面积.2、有4个孩子,恰好一个比一个大1岁,4人的年龄积是3024,问这4个孩子中最大的几岁?【例3】将下面八个数平均分成两组,使这两组数的乘积相等.2、5、14、24、27、55、56、99【试一试】1、有三个自然数a、b、c,已知a×b=30,b×c=35,c×a=42,求a×b×c的积是多少?2、把40、44、45、63、65、78、99、105这八个数平均分成两组,使两组四个数的乘积相等.【例4】王老师带领一班同学去植树,学生恰好分成4组,如果王老师和学生每人植树一样多,那么他们一共植了539棵.这个班有多少个学生?每人植树多少棵?【试一试】1、3月12日是植树节,李老师带领同学排成两路人数相等的纵队去植树,已知李老师和同学们每人植树的棵数相等,一共植了111棵树,求有多少个同学?2、小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号数大6,小青买的电影票是几排几座?【﹡例5】下面的算式里,□里数字各不相同,求这四个数字的和.□□×□□=1995【﹡试一试】1、在下面算式的框内,各填入一个数字,使算式成立.□□□×□=19952、下面四张小纸片各盖住一个数字,如果这四个数字是连续的偶数,请写出这个完整的算式.□□×□□=1288课外作业家长签名:1、100以内的质数有哪些?2、54÷()=()……4,在括号内填入适当的数,使等式成立,共有几种不同的填法?3、甲数比乙数大9,两个数的积是792,求甲、乙两数分别是多少?4、四个连续奇数的积是19305,这四个奇数各是多少?5、把30、33、42、52、65、66、67、78、105九个数分成三组,使每个组的数的乘积相等,写出这三组数.6、把一篮苹果分给4人,使四人的苹果数一个比一个多2,且他们的苹果个数之积是1920,这篮苹果共有几个?﹡7、在下面算式里,四个小纸片各盖住一个数字,被盖住的四个数字总和是多少?第三讲 分解质因数(二)【专题导引】许多题目,特别是一些竞赛题,初看起来很玄妙,但它们都与乘积有关,对于这类题目,我们可以用分解质因数的方法来解.因此,掌握并灵活应用分解质因数的知识,能解答许多一般方法不能解答的与积有关的应用题.【典型例题】【例1】三个质数的和是80,这三个数的积最大可以是多少?【试一试】1、如果A +B=70,A ×B =1161,那么A -B 等于多少?1、把1、2、3、4、5、6、7、8、9九张卡片分给甲、乙、丙三人,每人各3张.甲说:“我的三个数的积是48.”乙说:“我的三个数的和是16.”丙说:“我的三个数的积是63.”问甲、乙、丙各拿了哪几张卡片?【例2】一个两位数除310余37,这个数可以是( )或( ).× 6 5 3 1【试一试】1、237除以一个两位数,所得的余数是6,请写出适合于这个条件的所有两位数.2、5100除以一个三位数,余数是95,这个三位数最大是多少?【例3】某班同学在班主任老师带领下去种树,学生恰好平均分成三组,如果师生每人种树一样多,一共种了1073棵.那么,平均每人种了多少棵?【试一试】1、一个长方体的长、宽、高是三个连续的自然数.已知这个长方体的体积是9240立方厘米,那么,这个长方体的表面积是多少?2、老师用216元买一种钢笔若干支,如果每支钢笔便宜1元钱,那么他就能多买3支.问:每支钢笔原价多少元?【例4】把186155和187221约分.【试一试】把下面的几个分数约分.1、 6946 2、 117143【﹡例5】小明用2.16元买了一种画片若干张,如果每张画片的价钱便宜1分钱,那么他还能多买3张.问小明买了多少张画片?【﹡试一试】1、求2310的约数中,除它本身以外最大的约数是多少?2、自然数a 乘以2376,所得的积正好是自然数b 的平方.求a 最小是多少?课 外 作 业家长签名:1、在下面括号内填上15以内适当的质数.10=( )+( )=( )×( )=( )-( )2、如果A ×B=50,它们的和最大是多少?3、长方形的面积是375平方米,已知它的宽比长少10米,长和宽的和是多少米?4、有一块长方形的场地,它是由319块1平方分米的水泥方砖铺成的,求这块长方形场地的周长.5、王老师带同学们擦玻璃,同学们恰好平均分成3组.如果师生每人擦的块数同样多,一共擦111块,那么,平均每人擦了多少块?6、把下面的几个分数约分.(1)323247 (2)253161﹡7、将750元奖金平均分给若干个获奖者,如果每人所得的钱数化成角为单位的数就正好是得钱人数的12倍.求获奖人数和每人分得的钱数.。

五年级奥数专题-分解质因数

五年级奥数专题-分解质因数

五年级奥数专题-分解质因数分解质因数(一)【专题导引】一个自然数的因数中,为质数的因数叫做这个数的质因数.把一个合数,用质因数相乘的形式表示出来,叫做分解质因数.例如:24=2×2×2×3,75=3×5×5.我们数学课本上介绍的分解质因数,是为求最大公因数、最小公倍数服务的.其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题.【典型例题】【例1】把18个苹果平均分成若干份,每份大于1个,小于18个.一共有多少种不同的分法?【试一试】1、有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人,有哪几种分法?2、195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?【例2】写出若干个连续的自然数,使它的积是15120.【试一试】1、有一个长方体,它的长、宽、高是三个连续的自然数,且体积是39270立方厘米,求这个长方体的表面积.2、有4个孩子,恰好一个比一个大1岁,4人的年龄积是3024,问这4个孩子中最大的几岁?【例3】将下面八个数平均分成两组,使这两组数的乘积相等.2、5、14、24、27、55、56、99【试一试】1、有三个自然数a、b、c,已知a×b=30,b×c=35,c×a=42,求a×b×c的积是多少?2、把40、44、45、63、65、78、99、105这八个数平均分成两组,使两组四个数的乘积相等.【例4】王老师带领一班同学去植树,学生恰好分成4组,如果王老师和学生每人植树一样多,那么他们一共植了539棵.这个班有多少个学生?每人植树多少棵?【试一试】1、3月12日是植树节,李老师带领同学排成两路人数相等的纵队去植树,已知李老师和同学们每人植树的棵数相等,一共植了111棵树,求有多少个同学?2、小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号数大6,小青买的电影票是几排几座?【﹡例5】下面的算式里,□里数字各不相同,求这四个数字的和.□□×□□=1995【﹡试一试】1、在下面算式的框内,各填入一个数字,使算式成立.□□□×□=19952、下面四张小纸片各盖住一个数字,如果这四个数字是连续的偶数,请写出这个完整的算式.□□×□□=1288课外作业家长签名:1、100以内的质数有哪些?2、54÷()=()……4,在括号内填入适当的数,使等式成立,共有几种不同的填法?3、甲数比乙数大9,两个数的积是792,求甲、乙两数分别是多少?4、四个连续奇数的积是19305,这四个奇数各是多少?5、把30、33、42、52、65、66、67、78、105九个数分成三组,使每个组的数的乘积相等,写出这三组数.6、把一篮苹果分给4人,使四人的苹果数一个比一个多2,且他们的苹果个数之积是1920,这篮苹果共有几个?﹡7、在下面算式里,四个小纸片各盖住一个数字,被盖住的四个数字总和是多少?第三讲 分解质因数(二)【专题导引】许多题目,特别是一些竞赛题,初看起来很玄妙,但它们都与乘积有关,对于这类题目,我们可以用分解质因数的方法来解.因此,掌握并灵活应用分解质因数的知识,能解答许多一般方法不能解答的与积有关的应用题.【典型例题】【例1】三个质数的和是80,这三个数的积最大可以是多少?【试一试】1、如果A +B=70,A ×B =1161,那么A -B 等于多少?1、把1、2、3、4、5、6、7、8、9九张卡片分给甲、乙、丙三人,每人各3张.甲说:“我的三个数的积是48.”乙说:“我的三个数的和是16.”丙说:“我的三个数的积是63.”问甲、乙、丙各拿了哪几张卡片?【例2】一个两位数除310余37,这个数可以是( )或( ).× 6 5 3 1【试一试】1、237除以一个两位数,所得的余数是6,请写出适合于这个条件的所有两位数.2、5100除以一个三位数,余数是95,这个三位数最大是多少?【例3】某班同学在班主任老师带领下去种树,学生恰好平均分成三组,如果师生每人种树一样多,一共种了1073棵.那么,平均每人种了多少棵?【试一试】1、一个长方体的长、宽、高是三个连续的自然数.已知这个长方体的体积是9240立方厘米,那么,这个长方体的表面积是多少?2、老师用216元买一种钢笔若干支,如果每支钢笔便宜1元钱,那么他就能多买3支.问:每支钢笔原价多少元?【例4】把186155和187221约分.【试一试】把下面的几个分数约分.1、 6946 2、 117143【﹡例5】小明用2.16元买了一种画片若干张,如果每张画片的价钱便宜1分钱,那么他还能多买3张.问小明买了多少张画片?【﹡试一试】1、求2310的约数中,除它本身以外最大的约数是多少?2、自然数a 乘以2376,所得的积正好是自然数b 的平方.求a 最小是多少?课 外 作 业家长签名:1、在下面括号内填上15以内适当的质数.10=( )+( )=( )×( )=( )-( )2、如果A ×B=50,它们的和最大是多少?3、长方形的面积是375平方米,已知它的宽比长少10米,长和宽的和是多少米?4、有一块长方形的场地,它是由319块1平方分米的水泥方砖铺成的,求这块长方形场地的周长.5、王老师带同学们擦玻璃,同学们恰好平均分成3组.如果师生每人擦的块数同样多,一共擦111块,那么,平均每人擦了多少块?6、把下面的几个分数约分.(1)323247 (2)253161﹡7、将750元奖金平均分给若干个获奖者,如果每人所得的钱数化成角为单位的数就正好是得钱人数的12倍.求获奖人数和每人分得的钱数.。

五年级数学质数合数、分解质因数专项题奥数难题课件

五年级数学质数合数、分解质因数专项题奥数难题课件

• 例4:三个不同的质数相加,和为40,这三个质数的乘积可能是多 少?请全部写出来。
• 40=2+38 38=7+31=19+19
• 19和19相同,不成立
• 40=2+7+31 • • 2×7×31=434
• 练习
• 1.三个不同的质数相加和为28,这三个质数可能是多少?请全 部写出来。
• 2.三个不同质数相加和为52,这三个质数的乘积可能是多少? 请全部写出来。
质数合数、分解质因数
五年级
• 例1:在三张卡片上分别写上1、3、5,如果随意从其中至少取出 一张组成一个数,其中有几个质数?将它们写出来。
可以抽取的卡片有一张、两张或三张 所以组成的数有: 一位数:1,3,5 两位数:13,15,31,35,51,53 三位数:135,153,315,351,513,531
去掉1和所有合数
质数有:3, 5,13, 31, 53
• 练习
• 1.从1、4、7这3个数字中选出1个、2个、3个,按任意次序排列, 可得到不同的一位数、两位数、三位数,将其中的质数都写出来。
• 2.三张卡片上分别写上1、2、3,从中任意抽出一张、两张或三张, 分别组成一位数、两位数、三位数,其中哪些是质数?哪些是合 数?
总结
• 1.分解质因数:短除法、试除法。 • 2.拆数:解质因数。
第一步:
2 100 2 50 5 25
5
• 第二步: 100=2×2×5×5
119÷7=17 119=7×17
• 练习 • 1.把60分解质因数。 • 2.把221分解质因数。
• 例3:如果两个质数的和是26,这两个质数的乘积可能是多少?请 全部写出来。

小学五年级奥数题:质数合数分解质因数

小学五年级奥数题:质数合数分解质因数

小学五年级奥数题:质数合数分解质因数质数合数分解质因数是五年级奥数的难点,许多同学见到类似题目就十分头痛,下面就是小编为大家整理的质数合数分解质因数习题,希望对大家有所帮助!习题一难度:中难度一个5位数,它的各位数字和为43,且能被11整除,求所有满足条件的5位数?解答:5位数数字和最大的为9×5=45,这样43的可能性只有9,9,9,9,7或9,9,9,8,8。

这样我们接着用11的整除特征,发现符合条件的有99979,97999,98989符合条件。

习题二将4个不同的数字排在一起,可以组成24个不同的四位数(4×3×2×1=24)。

将这24个四位数按从小到大的顺序排列的话,第二个是5的倍数;按从大到小排列的话,第二个是不能被4整除的偶数;按从小到大排列的第五个与第二十个的差在3000-4000之间。

请求出这24个四位数中最大的一个。

解答:不妨设这4个数字分别是a>b>c>d那么从小到大的第2个就是dcba,它是5的倍数,因此b=0或5,注意到b>c>d,所以b=5;从大到小排列的第2个是abdc,它是不能被4整除的偶数;所以c 是偶数,c从小到大的第二十个是adbc,第五个是dacb,它们的差在3000-4000之间,所以a=d+4;因为a>b,所以a至少是6,那么d最小是2,所以c就只能是4。

而如果d=2,那么abdc的末2位是24,它是4的倍数,和条件矛盾。

因此d=3,从而a=d+4=3+4=7。

这24个四位数中最大的一个显然是abcd,我们求得了a=7,b=5,c=4,d=3所以这24个四位数中最大的一个是7543。

习题三已知□△×△□×□〇×☆△=□△□△□△,其中□、△、〇、☆分别表示不同的数字,那么四位数〇△□☆是多少?解答:因为□△□△□△ □△ ,所以在题述等式的两边同时约去□△即得△□×□〇×☆△ 。

小学奥数 数论 质数合数分解质因数 分解质因数(二).题库版

小学奥数  数论  质数合数分解质因数    分解质因数(二).题库版

1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数(1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征. (4).分解质因数的方法:短除法例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式. 例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;知识点拨教学目标5-3-4.分解质因数200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分数的拆分【例 1】 算式“1希+1望+1杯=1”中,不同的汉字表示不同的自然数,则“希+望+杯”= 。

【考点】分数的拆分 【难度】1星 【题型】填空【关键词】2007年,希望杯,第五届,五年级,初赛,第19题,6分【解析】 三个分数中一定有大于三分之一的,那个数是二分之一,剩下的两个数必有一个大于四分之一,即是三分之一,那么剩下的只能是六分之一.希+望+杯=2+3+6=11【答案】11【例 2】 3个质数的倒数之和是16611986,则这3个质数之和为多少. 【考点】分数的拆分 【难度】3星 【题型】解答 【解析】 设这3个质数从小到大为a 、b 、c ,它们的倒数分别为1a 、1b 、1c ,计算它们的和时需通分,且通分后的分母为a b c ⨯⨯,求和得到的分数为F abc,如果这个分数能够约分,那么得到的分数的分母为a 、b 、c 或它们之间的积.现在和为16611986,分母198623331=⨯⨯,所以一定是2a =,3b =,331c =,检验满足.所以这3个质数的和为23331336++=.【答案】23331336++=【例 3】 一个分数,分母是901,分子是一个质数.现在有下面两种方法:⑴ 分子和分母各加一个相同的一位数;⑵ 分子和分母各减一个相同的一位数.用其中一种方法组成一个新分数,新分数约分后是713.那么原来分数的分子是多少. 【考点】分数的拆分 【难度】3星 【题型】解答【解析】 因为新分数约分后分母是13,而原分母为901,由于90113694÷=,所以分母是加上9或者减去4.若是前者则原来分数分子为7709481⨯-=,但4811337=⨯,不是质数;若是后者则原来分数分子是6974487⨯+=,而487是质数.所以原来分数分子为487.【答案】487【例 4】 将1到9这9个数字在算式()()()()()()1-=的每一个括号内各填入一个数字,使得算式成立,并且要求所填每一个括号内数字均为质数?【考点】分数的拆分 【难度】4星 【题型】填空【解析】 本题中括号内所填的数字要求为个位质数,那么只能是2,3,5,7.将原始代入字母分析有例题精讲1b d cb ad a c a c a c--==⨯⨯,即有1cb ad -=,那么很容易发现只有3×5-2×7=1。

北师大五年级奥数专题二《质数、合数与分解质因数》精编

北师大五年级奥数专题二《质数、合数与分解质因数》精编

质数、合数与分解质因数一、相关概念1、在一个自然数的因数中,是质数的因数叫做是这个自然数的质因数。

2、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

如30=2×3×524=23×3。

二、奥数知识要点:在许多数学问题的解答过程中,常常要先把一个数分解质因数,以便于研究已知数与未知数之间的关系,从而使问题得到解决。

常用的方法有以下几种:1、如果已知几个数的积要求这几个数,可以先把原数分解质因数,然后再根据题目的要求,将这些质因数重新组合成符合条件的几个数;2、如果给出几个数,要将它们分成几组,使每组中几个数的乘积相等,通常要先把这几个数分解质因数,然后对所有质因数进行分组,使得每组中各个质因数的个数都对应相等。

3、如果要求一个合数的约数共有多少个,可以把这个合数分解质因数,然后将相同质因数的个数加上1再相乘即可;如果一个数N=ɑi b j…c k,其中,ɑ、b、…、c是N的质因数,i、j、…、k是这些质因数的幂指数。

N的约数的个数等于:(i+1)(j+1)…(k+1)N的约数总和等于:(ɑi+ɑi-1+ɑi-2+…+ɑ+1)(b j+b j-1+b j-2+…+b+1)…(c k+c k-1+c k-2+…+c+1)4、要求一个连乘算式的积的末尾有几个连续的0,可以分别找出算式各乘数中所含有的质因数2和5各有多少个,取其最少的个数就是乘积末尾0的个数。

若几个质数的积是偶数,则这几个质数中一定有一个数是2。

三、题型分类题型一:积最大例1、两个质数的和是40,求这两个质数的乘积的最大值是多少?例2、把37分拆成若干个不同质数的和,有多少种不同的拆法?将每一种拆法中拆出的那些质数相乘,得到的乘积中哪个最大?试一试:把31分拆成若干个不同质数的和,有多少种不同的拆法?将每一种拆法中拆出的那些质数相乘,得到的乘积哪个最小?题型二:知积求数例1、三个连续自然数的乘积是210,求这三个数.例2、一个长方体木块,它的长、宽、高的厘米数正好是三个连续的自然数,这个长方体的体积是504立方厘米.。

小学五年奥数-质数合数分解质因数

小学五年奥数-质数合数分解质因数

质数、合数和分解质因数【知能大展台】一个自然数,如果只有1和它本身这两个约数,这样的数叫做质数(或素数)一个自然数,如果除了1和它本身还有别的约数,这样的数叫做合数。

1既不是质数,也不是合数。

每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

【试金石】例1:三个质数的和是80,这三个质数的积最大是多少?【分析】由于三个数的和是偶数,所以这三个数中必有一个是偶数,在质数中只有2是偶数,所以三个数中一定有2。

另外两个质数的和是78,要使乘积尽可能的大,那么这两个质数的差值应尽可能的小。

显然,和是78的两个质数中,以41和37的差最小,即这两个数的积最大。

【解答】80=2+37+412×37×41=3034答:这三个质数的积最大是3034。

【智力加油站】【针对性训练】三个质数的和是62,这三个质数的积最大是多少?【试金石】例2:班主任李老师带领五年(一)班同学去植树,学生按人数恰好平均分成三组,已知李老师与学生共种了312棵树,老师与学生、每人种的树一样多,并且不超过10棵。

这个班共有学生多少人?每人种树多少棵?【分析】种树总数=每人种树棵数×师生总人数即:312=每人种树棵数×(1+学生人数)由于学生人数是3的倍数,再加上李老师一人,则师生总人数被3除余1。

因此先将312分解质因数312=2×2×2×3×13,然后按题意进行组合使之成为两数之积。

【解答】312=2×2×2×3×13若312=24×13,13为师生总人数,则每人种树24棵,与题意不相符。

若312=6×52,52为师生总人数,则每人种树6棵。

答:这个班共有学生51人,每人种6棵。

【智力加油站】【针对性训练】小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号大6,小青买的电影票是几排几座?【试金石】例3在做一道两位数乘以两位数的乘法题时,小马虎把一乘数中的数字5看成8,由此得乘积为1872.那么原来的乘积是多少?【分析】1872=2×2×2×2×3×3×13=口口×口口,其中某个口为8,验证只有:1872=48×39,1872=78×24满足.【解答】当为1872=48×39时,小马虎错把5看成8,也就是错把45看成48,所以正确的乘积应该是45×39=1755.当为1872=78×24时,小马虎错把5看成8,也就是错把75看成78,所以正确的乘积应该是75×24=1800.答:原来的积为1755或1800.【智力加油站】【针对性训练】在下面算式的框内,各填入一个数字,使算式成立。

小学五年级奥数精品专项训练-分解质因数

小学五年级奥数精品专项训练-分解质因数

分解质因数(一)专题简析:一个自然数的因数中,为质数的因数叫做这个数的质因数。

把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。

例如:24=2×2×2×3,75=3×5×5。

我们数学课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的。

其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。

例题1把18个苹果平均分成若干份,每份大于1个,小于18个。

一共有多少种不同的分法?分析先把18分解质因数:18=2×3×3,可以看出:18的约数是1、2、3、6、9、18,除去1和18,还有4个约数,所以,一共有4种不同的分法。

练习一1,有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。

有哪几种分法?2,195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?3,甲数比乙数大9,两个数的积是792,求甲、乙两数分别是多少。

【答案】1.4种分法:60÷6=10(人)60÷10=6(人)60÷12=5(人)60÷15=4(人)2.5×39有两种,3×65有两种,15×13有两种,共6种排法3.792=2×2×2×3×3×11=24×33,33-24=9,符合题意例题2有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。

共有多少种分法?分析先把168分解质因数,168=2×2×2×3×7,由于每份不得少于10颗,也不能多于50颗,所以,每份有2×2×3=12颗,2×7=14颗,3×7=21颗,2×2×2×3=24颗,2×3×7=42颗,共有5种分法。

小学奥数必知质数与合数知识点讲解【三篇】

小学奥数必知质数与合数知识点讲解【三篇】

【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。

以下是为⼤家整理的《⼩学奥数必知质数与合数知识点讲解【三篇】》供您查阅。

【第⼀篇】
质数与合数
质数:⼀个数除了1和它本⾝之外,没有别的约数,这个数叫做质数,也叫做素数。

合数:⼀个数除了1和它本⾝之外,还有别的约数,这个数叫做合数。

质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。

分解质因数:把⼀个数⽤质数相乘的形式表⽰出来,叫做分解质因数。

通常⽤短除法分解质因数。

任何⼀个合数分解质因数的结果是的。

分解质因数的标准表⽰形式:N=,其中a1、a2、a3……an都是合数N的质因数,且a1
求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)
互质数:如果两个数的公约数是1,这两个数叫做互质数。

【第⼆篇】
【质数合数】
【第三篇】
 【质数与合数概念讲解】。

小学奥数:分解质因数(一).专项练习及答案解析

小学奥数:分解质因数(一).专项练习及答案解析

5-3-4.分解质因数(一).题库 教师版 page 1 of1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数 (1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯L 其中为质数,12k a a a <<<L L 为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分解质因数 【例 1】 分解质因数20034= 。

【考点】分解质因数 【难度】1星 【题型】填空【关键词】走美杯,决赛,5年级,决赛,第2题,10分【解析】 原式323753=⨯⨯⨯例题精讲知识点拨教学目标5-3-4.分解质因数(一)【答案】323753⨯⨯⨯【例 2】 三个连续自然数的乘积是210,求这三个数是多少?【考点】分解质因数 【难度】1星 【题型】填空【解析】 210分解质因数:2102357=⨯⨯⨯,可知这三个数是5、6和7。

北师大五年级奥数专题二《质数、合数与分解质因数》精编

北师大五年级奥数专题二《质数、合数与分解质因数》精编

质数、合数与分解质因数一、相关概念1、在一个自然数的因数中,是质数的因数叫做是这个自然数的质因数。

2、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

如30=2×3×524=23×3。

二、奥数知识要点:在许多数学问题的解答过程中,常常要先把一个数分解质因数,以便于研究已知数与未知数之间的关系,从而使问题得到解决。

常用的方法有以下几种:1、如果已知几个数的积要求这几个数,可以先把原数分解质因数,然后再根据题目的要求,将这些质因数重新组合成符合条件的几个数;2、如果给出几个数,要将它们分成几组,使每组中几个数的乘积相等,通常要先把这几个数分解质因数,然后对所有质因数进行分组,使得每组中各个质因数的个数都对应相等。

3、如果要求一个合数的约数共有多少个,可以把这个合数分解质因数,然后将相同质因数的个数加上1再相乘即可;如果一个数N=ɑi b j…c k,其中,ɑ、b、…、c是N的质因数,i、j、…、k是这些质因数的幂指数。

N的约数的个数等于:(i+1)(j+1)…(k+1)N的约数总和等于:(ɑi+ɑi-1+ɑi-2+…+ɑ+1)(b j+b j-1+b j-2+…+b+1)…(c k+c k-1+c k-2+…+c+1)4、要求一个连乘算式的积的末尾有几个连续的0,可以分别找出算式各乘数中所含有的质因数2和5各有多少个,取其最少的个数就是乘积末尾0的个数。

若几个质数的积是偶数,则这几个质数中一定有一个数是2。

三、题型分类题型一:积最大例1、两个质数的和是40,求这两个质数的乘积的最大值是多少?例2、把37分拆成若干个不同质数的和,有多少种不同的拆法?将每一种拆法中拆出的那些质数相乘,得到的乘积中哪个最大?试一试:把31分拆成若干个不同质数的和,有多少种不同的拆法?将每一种拆法中拆出的那些质数相乘,得到的乘积哪个最小?题型二:知积求数例1、三个连续自然数的乘积是210,求这三个数.例2、一个长方体木块,它的长、宽、高的厘米数正好是三个连续的自然数,这个长方体的体积是504立方厘米.。

五年级奥数专题 质数、合数、分解质因数(学生版)

五年级奥数专题 质数、合数、分解质因数(学生版)

学科培优数学“质数、合数、分解质因数”学生姓名授课日期教师姓名授课时长知识定位本讲中的知识点在小学课本内已经有所涉及,并且多以判断题考察。

质数合数的出现是对自然数的另一种分类方式,但是相对于奇数偶数的划分要复杂许多。

质数本身的无规律性也是一个研究质数结构的难点。

在奥数数论知识体系中我们要帮助孩子树立对质数和合数的基本认识,在这个基础之上能够会与之前的一些知识点结合运用。

分解质因数法是一个数论重点方法,本讲另一个授课重点在于让孩子对这个方法能够熟练并且灵活运用。

知识梳理一、质数与合数的基本概念1.质数:一个数除了1和它本身没有其他的约数,这个数就称为一个质数,也叫做素数2.合数:一个数除了1和它本身还有其他的约数,这个数就称为一个合数3.质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数二、质数和合数的一些性质和常用结论1. 0和1既不是质数也不是合数,因此,我们可以说,自然数可以分成三部分,即,0和1,质数,合数。

2. 最小的质数是2,最小的合数是4。

3. 常用的100以内的质数:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,8 9,97其中2是唯一的偶数,5是唯一个位上数字是5的数,其余的数字个位只为1,3,7,94. 部分特殊数的分解:=⨯1000173137=⨯=⨯⨯1111141271=⨯100171113111337=⨯⨯=⨯⨯⨯⨯200733223=⨯⨯⨯1998233337199535719=⨯⨯⨯+==⨯⨯10101371337 2008222251=⨯⨯⨯200720084015511735. 质数的判定方法判断一个数是否是质数,可以采用“连续小质数试除法”。

例如:判断251是否是质数,可以从最小的质数2开始依次除251,直到所得的商比除数小为止,可以断定251是质数。

251÷2=125...1, 251÷3=83...2, 251÷5=50...1, 251÷7=35...6, (251)17=14…13,此时除数17>商14,由此说明251是质数。

小学奥数:分解质因数(一).专项练习及答案解析

小学奥数:分解质因数(一).专项练习及答案解析

5-3-4.分解质因数(一).题库 教师版 page 1 of1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数 (1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯L 其中为质数,12k a a a <<<L L 为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分解质因数 【例 1】 分解质因数20034= 。

【考点】分解质因数 【难度】1星 【题型】填空【关键词】走美杯,决赛,5年级,决赛,第2题,10分【解析】 原式323753=⨯⨯⨯例题精讲知识点拨教学目标5-3-4.分解质因数(一)【答案】323753⨯⨯⨯【例 2】 三个连续自然数的乘积是210,求这三个数是多少?【考点】分解质因数 【难度】1星 【题型】填空【解析】 210分解质因数:2102357=⨯⨯⨯,可知这三个数是5、6和7。

五年级奥数专题-分解质因数

五年级奥数专题-分解质因数

五年级奥数专题-分解质因数分解质因数(一)【专题导引】一个自然数的因数中,为质数的因数叫做这个数的质因数。

把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。

例如:24=2×2×2×3,75=3×5×5。

我们数学课本上介绍的分解质因数,是为求最大公因数、最小公倍数服务的。

其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。

【典型例题】【例1】把18个苹果平均分成若干份,每份大于1个,小于18个。

一共有多少种不同的分法?【试一试】1、有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人,有哪几种分法?2、195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?【例2】写出若干个连续的自然数,使它的积是15120。

【试一试】1、有一个长方体,它的长、宽、高是三个连续的自然数,且体积是39270立方厘米,求这个长方体的表面积。

2、有4个孩子,恰好一个比一个大1岁,4人的年龄积是3024,问这4个孩子中最大的几岁?【例3】将下面八个数平均分成两组,使这两组数的乘积相等。

2、5、14、24、27、55、56、99【试一试】1、有三个自然数a、b、c,已知a×b=30,b×c=35,c×a=42,求a×b×c的积是多少?2、把40、44、45、63、65、78、99、105这八个数平均分成两组,使两组四个数的乘积相等。

【例4】王老师带领一班同学去植树,学生恰好分成4组,如果王老师和学生每人植树一样多,那么他们一共植了539棵。

这个班有多少个学生?每人植树多少棵?【试一试】1、3月12日是植树节,李老师带领同学排成两路人数相等的纵队去植树,已知李老师和同学们每人植树的棵数相等,一共植了111棵树,求有多少个同学?2、小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号数大6,小青买的电影票是几排几座?【﹡例5】下面的算式里,□里数字各不相同,求这四个数字的和。

小学五年级奥数知识点:质数、合数和分解质因数

小学五年级奥数知识点:质数、合数和分解质因数

小学五年级奥数知识点:质数、合数和分解质因数小学五年级奥数知识点集锦:质数、合数和分解质因数导语:下面是小编为您收集整理的小学五年级关于质数、合数和分解质因数的知识,欢迎阅读!质数、合数和分解质因数的知识点1.质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。

一个数除了1和它本身,还有别的约数,这个数叫做合数。

要特别记住:1不是质数,也不是合数。

2.质因数与分解质因数如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例:把30分解质因数。

解:30=2×3×5。

其中2、3、5叫做30的质因数。

又如12=2×2×3=22×3,2、3都叫做12的质因数。

质数、合数和分解质因数的例题例1 三个连续自然数的乘积是210,求这三个数.解:∵210=2×3×5×7∴可知这三个数是5、6和7。

例2 两个质数的'和是40,求这两个质数的乘积的最大值是多少?解:把40表示为两个质数的和,共有三种形式:40=17+23=11+29=3+37。

∵17×23=391>11×29=319>3×37=111。

∴所求的最大值是391。

答:这两个质数的最大乘积是391。

例3 自然数123456789是质数,还是合数?为什么?解:123456789是合数。

因为它除了有约数1和它本身外,至少还有约数3,所以它是一个合数。

例4 连续九个自然数中至多有几个质数?为什么?解:如果这连续的九个自然数在1与20之间,那么显然其中最多有4个质数(如:1~9中有4个质数2、3、5、7)。

如果这连续的九个自然中最小的不小于3,那么其中的偶数显然为合数,而其中奇数的个数最多有5个.这5个奇数中必只有一个个位数是5,因而5是这个奇数的一个因数,即这个奇数是合数.这样,至多另4个奇数都是质数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质数、合数和分解质因数专题练习
班级姓名
1 、两个质数的和是39,这两个质数的积是多少?
2 、三个质数的和是80,这三个质数的积最大是多少?
3、两个质数的和是40,求这两个质数的乘积最大是多少?
4 、两个质数的和是99,这两个质数的积是多少?
5、三个连续自然数的乘积是120,求这三个数。

6、小明是个中学生,他说:“这次考试,我的名次乘以我的年龄再乘以我的考试分数,结果是2910。

”你能算出小明的名次、年龄与他这次考试的分数吗?
7、学校举行跳绳比赛,取得前4名的同学恰好一个比一个大一岁,四人年龄的乘积是11880,这四个同学的年龄各是多少?
8、写出两个都是质数的连续自然数。

9、写出两个既是奇数,又是合数的数。

10、判断:
(1)任何一个自然数,不是质数就是合数。

()
(2)偶数都是合数,奇数都是质数。

()
(3)7的倍数都是合数。

()
(4)20以内最大的质数乘以10以内最大的奇数,积是171。

()
(5)只有两个约数的数,一定是质数。

()
(6)两个质数的积,一定是质数。

()
(7)2是偶数也是合数。

()
(8)1是最小的自然数,也是最小的质数。

()
(9)除2以外,所有的偶数都是合数。

()
(10)最小的自然数,最小的质数,最小的合数的和是7。

()
11、在()内填入适当的质数。

10=()+() 10=()×()
20=()+()+() 8=()×()×()
12、分解质因数。

65= 56= 94= 76=
135= 105= 87= 93=
13、两个质数的和是18,积是65,这两个质数分别是()和()。

14、一个两位质数,交换个位与十位上的数字,所得的两位数仍是质数,这个数
可以是()、()、()、()、()、()。

15、用10以内的质数组成一个三位数,使它能同时被3、5整除,这个数最小是(),最大是()。

相关文档
最新文档