高等数学普通公式定理全集

合集下载

高等数学基本公式与定理

高等数学基本公式与定理

高等数学常用公式与定理

一、代数运算

1.()2

2

2

=2a b a ab b ±±+;

2.()3

3

2

2

3

=33a b a a b ab b ++++;

3.()3

3

2

2

3

=33a b a a b ab b --+-;

4.2

2

=()()a b a b a b -+-;

5.3

3

2

2

=()()a b a b a ab b ++-+;

6.3

3

2

2

=()()a b a b a ab b --++;

二、指数运算

1.n m n

m a a a ⋅=+;2.m n

m

n a

a a =-;3.()()n

m m

n

nm a a a ==;

4.()n m

m n m

n a a a

=

=(最后一个式子0>a )

三、对数运算

1.N

a M

a MN

a

log log log +=;

2.N

a M

a N M

a log log log -=;3.M

a M a

N N

log log =;4.M

a

N

a

N

M

log log log =;5.0log 1

=a ,特别有01ln =;6.1log =a

a ,特别有1ln =e ;7.C C a a

=log ,特别有C e C =ln ;

8.()0log >=C a

C C

a ,特别有C e C ln =;

四、三角函数运算

1.平方关系:

1cos sin 22=+x x ;x x 22sec 1tan =+;x

x 22csc 1cot =+2.倍角关系:

x x x cos sin 22sin =;

1cos 2sin 21sin cos 2cos 2222-=-=-=x x x x x ;

3.半角关系:

高等数学公式大全

高等数学公式大全

高等数学宝典(上篇)——公式大全

(含微分方程、复变函数)

一. 初等数学

1. 三角函数 (1) 相互联系

,1cos sin 22=+x x ,sec 1tan 22x x =+ .csc 1cot 22x x =+ ,1csc sin =⋅x x ,1sec cos =⋅x x .1cot tan =⋅x x ,tan cos sin x x x = .cot sin cos x x

x

= 奇变偶不变, 符号看象限:

⎩⎨

⎧±±=±±±=±=+

,3 ,1 ,0 )(,4 ,2 ,0 )()2(n cof n f n

f αααπ其中“±”号由角)2(απ+n 所处的象限确定. (2) 和角公式

,sin cos cos sin )sin(βαβαβα±=±,sin sin cos cos )cos(βαβαβα∓=±

tan tan 1tan tan )tan(β

αβ

αβα∓±=±

(3) 积化和差

)],sin()[sin(21cos sin βαβαβα−++= )],cos()[cos(21

cos cos βαβαβα−++=

)].cos()[cos(2

1

sin sin βαβαβα−−+−=

(4) 和差化积

2cos

2sin

2sin sin β

αβ

αβα−+=+ 2sin

2cos

2sin sin β

αβ

αβα−+=−

,2cos 2cos 2cos cos βαβαβα−+=+ .2

sin 2sin 2cos cos β

αβαβα−+−=−

(5) 降幂公式

22cos 1sin 2αα−=

.2

2cos 1cos 2αα+= (6) 半角公式

高等数学公式、定理 最全版

高等数学公式、定理 最全版

高等数学公式

导数公式:

基本积分表:

三角函数的有理式积分:

2

22212211cos 12sin u du

dx x tg u u u x u u x +==+-=+=, , , 

a

x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22=

'='⋅-='⋅='-='='2

2

22

11

)(11

)(11

)(arccos 11

)(arcsin x arcctgx x arctgx x x x x +-

='+=

'--

='-=

'⎰

⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C

a x x a x dx C shx chxdx C chx shxdx C

a a dx a C

x ctgxdx x C x dx tgx x C

ctgx xdx x dx C tgx xdx x dx x

x

)ln(ln csc csc sec sec csc sin sec cos 222

22

22

2C a

x

x a dx C x a x

a a x a dx C a x a

x a a x dx C a x

arctg a x a dx C

ctgx x xdx C tgx x xdx C

x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2

高等数学公式大全

高等数学公式大全

体积公式

圆柱体的体积公式:体积=底面积×高,如果用h代表圆柱体的高,则圆柱=S底×h

长方体的体积公式:体积=长×宽×高

如果用a、b、c分别表示长方体的长、宽、高则

长方体体积公式为:V长=abc

正方体的体积公式:体积=棱长×棱长×棱长.

如果用a表示正方体的棱长,则

正方体的体积公式为V正=a·a·a=a³

锥体的体积=底面面积×高÷3V圆锥=S底×h÷3

台体体积公式:V=[S上+√(S上S下)+S下]h÷3

圆台体积公式:V=(R²+R r+r²)hπ÷3

球缺体积公式=πh²(3R-h)÷3

球体积公式:V=4πR³/3

棱柱体积公式:V=S底面×h=S直截面×l(l为侧棱长,h为高)

棱台体积:V=〔S1+S2+开根号(S1*S2)〕/3*h

注:V:体积;S1:上表面积;S2:下表面积;h:高。

------

几何体的表面积计算公式

圆柱体:

表面积:2πRr+2πRh体积:πRRh(R为圆柱体上下底圆半径,h为圆柱体高)圆锥体:

表面积:πRR+πR[(hh+R R)的平方根]体积:πRRh/3(r为圆锥体低圆半径,h为其高,平面图形

名称符号周长C和面积S

正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中

s=(a+b+c)/2S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)四边形d,D-对角线长α-对角线夹角S=dD/2·sinα平行四边形a,b-边长h-a边的高α-两边夹角S=ah=abs inα菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sinα梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2=mh圆r-半径d-直径C=πd=2πrS=πr2=πd2/4扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360)S=πr2×(a/360)弓形l-弧长S=r2/2·(πα/180-sinα)

高等数学公式定理全集(完整编辑版)

高等数学公式定理全集(完整编辑版)

高等数学公式

导数公式:

基本积分表:

三角函数的有理式积分:

2

22212211cos 12sin u du

dx x tg u u u x u u x +==+-=+=, , , 

a

x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22=

'='⋅-='⋅='-='='2

2

22

11

)(11

)(11

)(arccos 11

)(arcsin x arcctgx x arctgx x x x x +-

='+=

'--

='-=

'⎰

⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C

a x x a x dx C shx chxdx C chx shxdx C

a a dx a C

x ctgxdx x C x dx tgx x C

ctgx xdx x dx C tgx xdx x dx x

x

)ln(ln csc csc sec sec csc sin sec cos 222

22

22

2C a

x

x a dx C x a x

a a x a dx C a x a

x a a x dx C a x

arctg a x a dx C

ctgx x xdx C tgx x xdx C

x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2

(完整word版)高数公式大全(费了好大的劲),推荐文档

(完整word版)高数公式大全(费了好大的劲),推荐文档

高等数学公式汇总

第一章 一元函数的极限与连续

1、一些初等函数公式:

sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1

cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβ

αβ

αβαβαβαββα

αβαβαβαβαβαβ

±=±±=±±=⋅⋅±=

±±=±±=±m m m 和差角公式:

sin sin 2sin

cos

22sin sin 2cos sin

22cos cos 2cos cos

22cos cos 2sin sin

22

αβ

αβ

αβαβαβ

αβαβαβ

αβαβαβ

αβ+-+=+--=+-+=+--=和差化积公式: 1

sin cos [sin()sin()]

21

cos sin [sin()sin()]21

cos cos [cos()cos()]

21

sin sin [cos()cos()]

2

αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:

2222222222sin 22sin cos cos 22cos 1

12sin cos sin 2tan tan 21tan cot 1

cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααα

αααααααα

==-=-=-=

--=

==+=

=-=+倍角公式:

22222222sin cos 1;tan 1sec ;cot 1csc ;1sin 2

高等数学十大定理公式

高等数学十大定理公式

高等数学十大定理公式

高等数学十大定理公式有有界性、最值定理、零点定理、费马定理、罗尔定理、拉格朗日中值定理、柯西中值定理、泰勒定理(泰勒公式)、积分中值定理(平均值定理)。

1、有界性

|f(x)|≤K

2、最值定理

m≤f(x)≤M

3、介值定理

若m≤μ≤M,∃ξ∈[a,b],使f(ξ)=μ

4、零点定理

若f(a)⋅f(b)<0∃ξ∈(a,b) ,使f(ξ)=0

5、费马定理

设f(x)在x0处:1,可导2,取极值,则f′(x0)=0

6、罗尔定理

若f(x)在[a,b] 连续,在(a,b) 可导,且f(a)=f(b) ,则∃ξ∈(a,b) ,使得f′(ξ)=0

7、拉格朗日中值定理

若f(x)在[a,b] 连续,在(a,b) 可导,则∃ξ∈(a,b) ,使得f(b)−f(a)=f′(ξ)(b−a)

8、柯西中值定理

若f(x)、g(x)在[a,b] 连续,在(a,b) 可导,且g′(x)≠0 ,则

∃ξ∈(a,b) ,使得f(b)−f(a)g(b)−g(a)=f′(ξ)g′(ξ)

9、泰勒定理(泰勒公式)

n阶带皮亚诺余项:条件为在$x_0$处n阶可导

$f(x)=f(x_0)f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+...+\dfra c{f^{(n)}(x_0)}{n!}(x-x_0)^n+o((x-x_0)^n)\ ,x\xrightarrow{} x_0$ n阶带拉格朗日余项:条件为n+1阶可导

$f(x)=f(x_0)f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+...+\dfra c{f^{(n)}(x_0)}{n!}(x-x_0)^n+\dfrac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0 )^{n+1}\ ,x\xrightarrow{} x_0$

高数常用公式定理

高数常用公式定理

高等数学公式

导数公式:

基本积分表:

三角函数的有理式积分:

2

22212211cos 12sin u

du

dx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:

a

x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2

2=

'='⋅-='⋅='-='='2

2

22

11

)(11

)(11

)(arccos 11

)(arcsin x arcctgx x arctgx x x x x +-

='+=

'--

='-=

'⎰

⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C

a x x a x dx C shx chxdx C chx shxdx C

a a dx a C

x ctgxdx x C

x dx tgx x C

ctgx xdx x dx C tgx xdx x dx x

x

)ln(ln csc csc sec sec csc sin sec cos 222

22

22

2C a

x

x a dx C x a x

a a x a dx C a x a

x a a x dx C a x

arctg a x a dx C

ctgx x xdx C tgx x xdx C

x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2

(完整)高等数学公式大全(几乎包含了所有),推荐文档

(完整)高等数学公式大全(几乎包含了所有),推荐文档

高等数学公式大全

1、导数公式:

2、基本积分表:

3、三角函数的有理式积分:

2

22212211cos 12sin u du

dx x tg u u u x u u x +=

=+-=+=, , , a

x x a

a a ctgx x x tgx x x x

ctgx x tgx a x x ln 1

)(log ln )(csc )(csc sec )(sec csc )(sec )(22=

'='⋅-='⋅='-='='2

2

22

11

)(11

)(11

)(arccos 11

)(arcsin x arcctgx x arctgx x x x x +-

='+=

'--

='-=

'⎰

⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C

a x x a x dx C shx chxdx C chx shxdx C

a a dx a C

x ctgxdx x C x dx tgx x C

ctgx xdx x dx C tgx xdx x dx x

x

)ln(ln csc csc sec sec csc sin sec cos 222

22

22

2C a

x

x a dx C x a x

a a x a dx C a x a

x a a x dx C a x

arctg a x a dx C

ctgx x xdx C tgx x xdx C

x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2

高等数学必背公式定理全套汇编

高等数学必背公式定理全套汇编

高等数学公式

导数公式:

基本积分表:

三角函数的有理式积分:

2

22212211cos 12sin u du

dx x tg u u u x u u x +==+-=+=, , , 

a

x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22=

'='⋅-='⋅='-='='2

2

22

11

)(11

)(11

)(arccos 11

)(arcsin x arcctgx x arctgx x x x x +-

='+=

'--

='-=

'⎰

⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C

a x x a x dx C shx chxdx C chx shxdx C

a a dx a C

x ctgxdx x C x dx tgx x C

ctgx xdx x dx C tgx xdx x dx x

x

)ln(ln csc csc sec sec csc sin sec cos 222

22

22

2C a

x

x a dx C x a x

a a x a dx C a x a

x a a x dx C a x

arctg a x a dx C

ctgx x xdx C tgx x xdx C

x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2

高等数学公式所有大全

高等数学公式所有大全

=
ex ex
− +
e−x e−x
arshx = ln(x + x2 +1)
archx = ± ln(x + x2 −1) arthx = 1 ln 1+ x
2 1− x
lim sin x = 1 x→0 x lim(1+ 1 )x = e = 2.718281828459045... x→∞ x
三角函数公式: ·诱导公式:
p};
x 参数方程: y
z
= = =
x0 y0 z0
+ mt + nt + pt
ቤተ መጻሕፍቲ ባይዱ二次曲面:
1、椭球面:x a
2 2
+
y2 b2
+
z2 c2
=1
2、抛物面:x2 + y 2 = z(, p,q同号) 2 p 2q
3、双曲面:
单叶双曲面:x 2 a2
+
y2 b2

z2 c2
=1
双叶双曲面:x 2 a2
y
0
,
z
0
)
F y
(
x0
,
y0
,
z
0
)
F z
(
x0
,
y0
,
z0

高等数学公式定理 最全版

高等数学公式定理 最全版

高等数学公式

导数公式:

基本积分表:

三角函数的有理式积分:

2

22212211cos 12sin u du

dx x tg u u u x u u x +==+-=+=, , , 

a

x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22=

'='⋅-='⋅='-='='2

2

22

11

)(11

)(11

)(arccos 11

)(arcsin x arcctgx x arctgx x x x x +-

='+=

'--

='-=

'⎰

⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C

a x x a x dx C shx chxdx C chx shxdx C

a a dx a C

x ctgxdx x C x dx tgx x C

ctgx xdx x dx C tgx xdx x dx x

x

)ln(ln csc csc sec sec csc sin sec cos 222

22

22

2C a

x

x a dx C x a x

a a x a dx C a x a

x a a x dx C a x

arctg a x a dx C

ctgx x xdx C tgx x xdx C

x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2

高等数学公式大全(几乎包含了所有)

高等数学公式大全(几乎包含了所有)

高等数学公式大全

1、导数公式:

2、基本积分表:

3、三角函数的有理式积分:

2

22212211cos 12sin u du

dx x tg u u u x u u x +==+-=+=, , , 

a

x x a

a a ctgx x x tgx x x x ctgx x tgx a x x ln 1

)(log ln )(csc )(csc sec )(sec csc )(sec )(22=

'='⋅-='⋅='-='='2

2

22

11

)(11

)(11

)(arccos 11

)(arcsin x arcctgx x arctgx x x x x +-

='+=

'--

='-=

'⎰

⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C

a x x a x dx C shx chxdx C chx shxdx C

a a dx a C

x ctgxdx x C x dx tgx x C

ctgx xdx x dx C tgx xdx x dx x

x

)ln(ln csc csc sec sec csc sin sec cos 222

22

22

2C a

x

x a dx C x a x

a a x a dx C a x a

x a a x dx C a x

arctg a x a dx C

ctgx x xdx C tgx x xdx C

x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2

高等数学公式定理(全)

高等数学公式定理(全)

·平方关系:

sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

·积的关系:

sinα=tanα*cosα

cosα=cotα*sinα

tanα=sinα*secα

cotα=cosα*cscα

secα=tanα*cscα

cscα=secα*cotα

·倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

直角三角形ABC中,

角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边

正切等于对边比邻边, ·三角函数恒等变形公式

·两角和与差的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sin β

tan(α+β)=(tanα+tanβ)/(1-tan α·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tan α·tanβ)

·三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cos α·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cos α·sinβ·sinγ-sinα·cosβ·sinγ

-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ

-tanα·tanβ·tanγ)/(1-tanα·tan β-tanβ·tanγ-tanγ·tanα)

高数常用公式定理

高数常用公式定理

高等数学公式

导数公式:

基本积分表:

三角函数的有理式积分:

2

22212211cos 12sin u

du

dx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:

a

x x a

a a ctgx x x tgx x x x ctgx x tgx a x x ln 1

)(log ln )(csc )(csc sec )(sec csc )(sec )(22

=

'='⋅-='⋅='-='='2

2

22

11

)(11

)(11

)(arccos 11

)(arcsin x arcctgx x arctgx x x x x +-

='+=

'--

='-=

'⎰

⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C

a x x a x dx C shx chxdx C chx shxdx C

a a dx a C

x ctgxdx x C

x dx tgx x C

ctgx xdx x dx C tgx xdx x dx x

x

)ln(ln csc csc sec sec csc sin sec cos 222

22

22

2C a

x

x a dx C x a x

a a x a dx C a x a

x a a x dx C a x

arctg a x a dx C

ctgx x xdx C tgx x xdx C

x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2

(完整版)高等数学公式汇总(大全)

(完整版)高等数学公式汇总(大全)

高等数学公式汇总(大全)

一 导数公式:

二 基本积分表:

三 三角函数的有理式积分:

2

22212211cos 12sin u

du

dx x tg u u u x u u x +==+-=+=, , , 四 一些初等函数:

a

x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22

=

'='⋅-='⋅='-='='2

2

22

11

)(11

)(11

)(arccos 11

)(arcsin x arcctgx x arctgx x x x x +-

='+=

'--

='-=

'⎰

⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C

a x x a x dx C shx chxdx C chx shxdx C

a a dx a C

x ctgxdx x C

x dx tgx x C

ctgx xdx x dx C tgx xdx x dx x

x

)ln(ln csc csc sec sec csc sin sec cos 222

22

22

2C a

x

x a dx C x a x

a a x a dx C a x a

x a a x dx C a x

arctg a x a dx C

ctgx x xdx C tgx x xdx C

x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数常用公式

平方立方:

22222222

332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++=

21221)(9)()(),(2)

n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥L

三角函数公式大全

两角和公式

sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB

tan(A+B) =tanAtanB -1tanB

tanA +

tan(A-B) =tanAtanB 1tanB

tanA +-

cot(A+B) =cotA cotB 1

-cotAcotB +

cot(A-B) =cotA

cotB 1

cotAcotB -+

倍角公式

tan2A =A

tan 12tanA

2-

Sin2A=2SinA•CosA Cos2A =

Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A

三倍角公式

sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA

tan3a = tana ·tan(3π+a)·tan(3

π

-a)

半角公式 sin(

2

A )=2cos 1A -

cos(

2

A

)=2cos 1A +

tan(

2

A

)=A A cos 1cos 1+-

cot(2

A )=A A cos 1cos 1-+

tan(

2

A )=A A sin cos 1-=A A cos 1sin +

和差化积

sina+sinb=2sin 2b a +cos 2b

a -

sina-sinb=2cos 2b a +sin 2b

a -

cosa+cosb = 2cos 2b a +cos 2b

a -

cosa-cosb = -2sin 2b a +sin 2

b

a -

tana+tanb=

b

a b a cos cos )

sin(+

积化和差

sinasinb = -21

[cos(a+b)-cos(a-b)] cosacosb = 21

[cos(a+b)+cos(a-b)]

sinacosb = 21

[sin(a+b)+sin(a-b)]

cosasinb = 2

1

[sin(a+b)-sin(a-b)]

诱导公式

sin(-a) = -sina cos(-a) = cosa sin(

-a) = cosa cos(2π

-a) = sina

sin(2π

+a) = cosa

cos(2

π

+a) = -sina

sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa

tgA=tanA =a a

cos sin

万能公式

sina=

2

)2(tan 12tan

2a

a + cosa=

2

2

)2(tan 1)2(tan 1a

a

+- tana=

2

)2

(tan 12tan

2a

a -

其他非重点三角函数

csc(a) =a sin 1

sec(a) =a

cos 1

双曲函数

sinh(a)=2e -e -a

a

cosh(a)=2

e e -a

a +

tg h(a)=

)

cosh()sinh(a a

其它公式

a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a

b ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=

b

a ] 1+sin(a) =(sin

2a +cos 2a )2 1- sin(a) = (sin 2a -cos 2

a

)2

公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα

公式六: 2

π±α及23π±α与α的三角函数值之间的关系:

sin (2

π+α)= cosα cos (2

π+α)= -sinα tan (2

π+α)= -cotα cot (2

π+α)= -tanα sin (2

π-α)= cosα cos (2

π-α)= sinα tan (2π-α)= cotα

cot (2π

-α)= tanα

sin (23π+α)= -cosα

cos (2

3π+α)= sinα

tan (23π+α)= -cotα

cot (23π+α)= -tanα

sin (23π-α)= -cosα

cos (23π-α)= -sinα

tan (23π-α)= cotα

cot (23π-α)= tanα

(以上k ∈Z)

相关文档
最新文档