华师版初中数学九年级下册试题及答案 (2)

合集下载

【华东师大版】九年级数学下期末试卷(含答案)

【华东师大版】九年级数学下期末试卷(含答案)

一、选择题1.如图是由五个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D .2.下面的三视图对应的物体是( )A .B .C .D .3.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和左视图,那么组成该几何体所需小正方体的个数最少为( )A .4B .5C .6D .74.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A .232x x ++B .22x +C .221x x ++D .223x x +5.如图是由5个相同的正方体搭成的几何体,其左视图是( )A .B .C .D .6.已知,一个小球由桌面沿着斜坡向上前进了10cm ,此时小球距离桌面的高度为5cm ,则这个斜坡的坡度i 为( )A .2B .1:2C .1:2D .1:37.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,延长PO 交⊙O 于点C ,若60APB ∠=︒,6PC =,则AC 的长为( )A .4B .22C .23D .338.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B 25C 5D .129.如图,ABC 中,6AB AC AE AC DE ==⊥,,垂直平分AB 于点D ,则EC 的长为( )A .23B .43C .22D .4210.在平面直角坐标系中,正方形1111D C B A 、1122D E E B 、2222A B C D 、2343D E E B 、3333A B C D …按如图所示的方式放置,其中点1B 在y 轴上,点1C 、1E 、2C 、3E 、4E 、3C …在x 轴上,已知正方形1111D C B A 的边长为1,1160B C O ∠=︒,112233B C B C B C …则正方形2019201920192019A B C D 的边长是( )A .201812⎛⎫⎪⎝⎭B .201912⎛⎫⎪⎝⎭C .20193⎛⎫ ⎪ ⎪⎝⎭D .201833⎛⎫⎪ ⎪⎝⎭11.如图在ABC 中,其中D 、E 两点分别在AB 、AC 上,且31AD =,29DB =,30AE =,32EC =.若50A ∠=︒,则图中1∠、2∠、3∠、4∠的大小关系正确的是( ).A .13∠=∠B .24∠∠=C .23∠∠=D .14∠<∠12.已知点()1,3M -在双曲线ky x=上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,1二、填空题13.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60︒角时,第二次是阳光与地面成30角时,两次测量的影长相差8米,则树高______米.(结果保留根号)14.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,则树的高度为___.15.如图,将19个棱长为a 的正方体按如图摆放,则这个几何体的表面积是_____.16.如图所示,ABO 中,AB OB ⊥,OA=2,AB=1,把ABO 绕点O 旋转150°后得到11A B O ,则点1A 的坐标为_______17.已知3<cosA <sin70°,则锐角A 的取值范围是_________ 18.如图,在菱形ABCD 中,过点C 作CE BC ⊥交对角线BD 于点E ,且DE CE =,若AB 6=,则DE =_________.19.在梯形ABCD 中,//AD BC ,两条对角线AC 、BD 相交于点O ,:1:9AODCOBSS=,那么BOC DOC S S =△△:__________.20.函数25(1)ny n x -=+是反比例函数,且图象位于第二、四象限内,则n =____.三、解答题21.阅读材料,解决下面的问题:(1)如图2,连接正六面体中相邻面的中心,可得到一个柏拉图体. ①它是正 面体,有 个顶点, 条棱;②已知该正多面体的体积与原正方体体积的比为1:6,若原正方体的棱长为3cm ,该正多面体的体积为 cm 3;(2)如图3,用6个棱长为1的小正方体搭成一个几何体.小明要再用一些完全相同的小正方体搭一个几何体.若要使新搭的几何体恰好能与原几何体拼成一个无空隙的正六面体,则小明至少需要 个小正方体,他所搭几何体的表面积最小是 ;(3)小华用4个棱长为1的小正四面体搭成一个如图4所示的造型,可以看做是一个不完整的大四面体.小华发现此造型中间空缺部分也是一个柏拉图体!请写出该柏拉图体的名称: .22.如图所示的几何体是由若干个相同的小正方体组成的.(1)填空:这个几何体由 个小正方体组成; (2)画出它的三个视图.(作图必须用黑色水笔描黑)23.如图,在四边形ABCD 中,90A C ∠=∠=︒,DE ,BF 分别平分ADC ∠,ABC ∠,并交线段AB ,CD 于点E ,F (点E ,B 不重合),在线段BF 上取点M ,N (点M 在BN 之间),使2BM FN =.当点P 从点D 匀速运动到点E 时,点Q 恰好从点M 匀速运动到点N ,记QN x =,PD y =,已知5103y x =-+,当Q 为BF 中点时,53y =.(1)判断DE 与BF 的位置关系,并说明理由: (2)求DE ,BF 的长; (3)若30AED ∠=︒①当DP DF =时,通过计算比较BE 与BQ 的大小关系;②连接PQ ,当PQ 所在直线经过四边形ABCD 的一个项点时,求所有满足条件的x 的值. 24.为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min ;完成2间办公室和1间教室的药物喷洒要11min .(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y (单位:mg /m 3)与时间x (单位:min )的函数关系如图所示:校医进行药物喷洒时y 与x 的函数关系式为y =2x ,药物喷洒完成后y 与x 成反比例函数关系,两个函数图象的交点为A (m ,n ).当教室空气中的药物浓度不高于1mg /m 3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.25.解答下列各题.(1)计算:20170(1)9(3)2cos30π--+︒. (2)解方程:(3)(1)3--=x x . 26.25864sin 453︒【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】主视图就是正面看去所得图形,左起第一列为两个小正方形,第二列只有一个小正方形.【详解】解:主视图从左往右,每一列的小正方形数量分别为2、1,故选择B.【点睛】本题考查了主视图的概念.2.D解析:D【解析】解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D满足这两点.故选D.点睛:本题主要考查学生对图形的三视图的了解及学生的空间想象能力.3.B解析:B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】由题中所给出的主视图知物体共三列,且左侧一列高两层,中间一列高1层,右侧一列最高两层;由左视图可知左侧两,右侧一层,所以图中的小正方体最少3+2=5块.故选B.【点睛】本题主要考查三视图的相关知识:主视图主要确定物体的长和高,左视图确定物体的宽和高,俯视图确定物体的长和宽.4.A解析:A【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【详解】∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2.故选A.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.5.A解析:A【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.6.D解析:D【分析】过B作BC⊥桌面于C,由题意得AB=10cm,BC=5cm,再由勾股定理得AC=53然后由坡度的定义即可得出答案.【详解】解:如图,过B作BC⊥桌面于C,由题意得:AB=10cm,BC=5cm,∴AC=222210553AB BC-=-=,∴这个斜坡的坡度i=BCAC =53=1:3,故选:D.【点睛】本题考查了解直角三角形的应用-坡度坡角问题以及勾股定理;熟练掌握坡度的定义和勾股定理是解题的关键.7.C解析:C【分析】如图,设CP交⊙O于点D,连接OA、AD.由切线的性质易证△AOP是含30度角的直角三角形,所以该三角形的性质求得半径=2;然后在等边△AOD中得到AD=OA=2;最后通过解直角△ACD来求AC的长度.【详解】解:如图,设CP交⊙O于点D,连接OA、AD.设⊙O的半径为r.∵PA 、PB 是⊙O 的切线,∠APB=60°, ∴OA ⊥AP ,∠APO=12∠APB=30°. ∴OP=2OA ,∠AOP=60°, ∴PC=2OA+OC=3r=6,则r=2,易证△AOD 是等边三角形,则AD=OA=2, 又∵CD 是直径, ∴∠CAD=90°, ∴∠ACD=30°,∴AC=tan 30?AD=23故选:C . 【点睛】本题考查了切线的性质,圆周角定理.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.8.D解析:D 【分析】连接AC ,根据网格图不难得出=90CAB ∠︒,求出AC 、BC 的长度即可求出ABC ∠的正切值. 【详解】 连接AC ,由网格图可得:=90CAB ∠︒, 由勾股定理可得:AC 2AB =2 ∴tan ABC ∠=21222AC AB ==. 故选:D . 【点睛】本题主要考查网格图中锐角三角函数值的求解,根据网格图构造直角三角形是解题关键.9.B解析:B 【分析】根据线段垂直平分线的性质得到AE=BE ,由等腰三角形的性质得到∠B=∠BAE ,根据三角形的外角的性质得到∠AEC=∠B+∠BAE=2∠B ,求得∠C=30°,根据三角函数的定义即可得到结论. 【详解】∵DE 垂直平分AB 于点D , ∴AE=BE , ∴∠B=∠BAE ,∴∠AEC=∠B+∠BAE=2∠B , ∵AB=AC , ∴∠AEC=2∠C , ∵AE ⊥AC , ∴∠EAC=90°, ∴∠C=30°,∴CE=cos30AC ==︒ 故选:B . 【点睛】本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形外角的性质以及特殊角的三角函数值.注意掌握数形结合思想的应用.10.D解析:D 【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案. 【详解】解:∵∠B 1C 1O=60°,B 1C 1//B 2C 2//B 3C 3, ∴∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°, ∴D 1E 1=C 1D 1sin30°=12, 则B 2C 2= 2230B E cos= 12= 1,同理可得:B 3C 3= 13= 2(3,故正方形A n B n C n D n 的边长是:1n -.则正方形2019201920192019A B C D 的边长是:2018. 故选D .【点睛】 此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.11.C解析:C【分析】根据31AD =,30AE =,可得21∠<∠;根据题意,通过计算AB 和CD ,可得12AD AE AC AB ,即证明ADE ACB ∽,即可得到各个角度的大小关系. 【详解】∵31AD =,30AE =∴21∠<∠∵31AD =,29DB =,30AE =,32EC =∴60AB AD BD =+=,62AC AE EC =+= ∴12AD AE AC AB ∵50A ∠=︒∴ADE ACB ∽∴14∠=∠,23∠∠= ∴13∠>∠,24∠<∠故选:C .【点睛】本题考查了相似三角形的知识;解题的关键是熟练掌握相似三角形的性质,从而完成求解. 12.A解析:A【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上,∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键.二、填空题13.【分析】设出树高利用所给角的正切值分别表示出两次影子的长然后作差建立方程即可【详解】如图在中设AB 为x ∴同理:∵两次测量的影长相差8米∴∴则树高为米故答案为:【点睛】本题考查了平行投影的应用太阳光线 解析:43【分析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.【详解】如图在Rt ABC 中,设AB 为xtan ∠=AB ACB BC , ∴tan tan 60AB x BC ACB ==∠︒, 同理:tan 30x BD =, ∵两次测量的影长相差8米,∴8tan 30tan 60x x -=︒︒, ∴43x , 则树高为3故答案为:3【点睛】本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.14.6+【解析】【分析】延长AC交BF延长线于D点则BD即为AB的影长然后根据物长和影长的比值计算即可【详解】延长AC交BF延长线于D点则∠CFE=30°作CE⊥BD于E在Rt△CFE中∠CFE=30°解析:6+3【解析】【分析】延长AC交BF延长线于D点,则BD即为AB的影长,然后根据物长和影长的比值计算即可.【详解】延长AC交BF延长线于D点,则∠CFE=30°,作CE⊥BD于E.在Rt△CFE中,∠CFE=30°,CF=4,∴CE=2,EF=23.在Rt△CED中,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,CE=2,CE:DE=1:2,∴DE=4,∴BD=BF+EF+ED=12+23.在Rt△ABD中,AB12=BD12=(12+23)=6+3.故答案为(6+3)米.【点睛】本题考查了相似三角形的性质.解决本题的关键是作出辅助线得到AB的影长.15.54a2【分析】求这个几何体的表面积就要数出这个几何体中小正方体漏在外面的面的个数从前后左右上下方向上来数然后用一个面的面积乘面的个数即可【详解】解:从前后左右上下方向看到的面数分别为:101088解析:54a2【分析】求这个几何体的表面积,就要数出这个几何体中小正方体漏在外面的面的个数,从前、后、左、右、上、下方向上来数,然后用一个面的面积乘面的个数即可.【详解】解:从前、后、左、右、上、下方向看到的面数分别为:10,10,8,8,9,9所以表面积为(10+10+8+8+9+9 )a2=54a2,故答案为:54a2.【点睛】本题主要考查组合体的表面积,分析图形,掌握表面积的计算公式是解题的关键. 16.或(-20)【分析】需要分类讨论:在把绕点顺时针旋转和逆时针旋转后得到时点的坐标【详解】解:中∴如图1当绕点顺时针旋转后得到△过作轴交于点则则可得:即有因为在第三象限则的坐标是;如图2当绕点逆时针旋 解析:()1,3--或(-2,0)【分析】需要分类讨论:在把ABO 绕点O 顺时针旋转150︒和逆时针旋转150︒后得到11A B O 时点1A 的坐标.【详解】解:ABO ∆中,AB OB ⊥,2OA =,1AB =,∴sin 21OB AOB OA ∠==, 30AOB ∴∠=︒.如图1,当ABO ∆绕点O 顺时针旋转150︒后得到△11A B O ,过1A 作1AC y ⊥轴交于C 点则1150150309030AOC AOB BOC ∠=︒-∠-∠=︒-︒-︒=︒, 则可得:111AOB AOB AOC ≅≅ 即有2222213OC OB OA AB =-=-=,11AC AB == 因为1A 在第三象限,则1A 的坐标是(1,3)-;如图2,当ABO ∆绕点O 逆时针旋转150︒后得到△11A B O ,则1150********AOB AOB ∠=︒+∠=︒+︒=︒, 即1A 在x 轴上,并有:12OA OAB ==,因为1A 在第二象限,则1A 的坐标是(2,0)-;综上所述,点1A 的坐标为(1,3)-或(2,0)-. 故答案是:(1,3)-或(2,0)-.【点睛】本题考查了坐标与图形变化-旋转.能进行分类讨论,是解题的关键.17.20°<∠A <30°【详解】∵<cosA <sin70°sin70°=cos20°∴cos30°<cosA <cos20°∴20°<∠A <30°解析:20°<∠A <30°.【详解】 ∵3cosA <sin70°,sin70°=cos20°, ∴cos30°<cosA <cos20°,∴20°<∠A <30°.18.【分析】根据菱形的性质及等腰三角形的性质可知∠BEC=2∠EDC=2∠EBC 从而可求∠EBC=30°在Rt △BCE 中可求EC 值由DE=EC 可求DE 的长【详解】∵四边形ABCD 是菱形∴CD=BC=AB 2【分析】根据菱形的性质及等腰三角形的性质可知∠BEC=2∠EDC=2∠EBC ,从而可求∠EBC=30°,在Rt △BCE 中可求EC 值,由DE=EC 可求DE 的长.【详解】∵四边形ABCD 是菱形,∴6,∴∠EDC=∠EBC ,∵DE=CE ,∴∠EDC=∠ECD ,∴∠BEC=2∠EDC=2∠EBC ,在Rt △BCE 中,∠EBC+∠BEC=90°,∴∠EBC=30°,∴BC tan303EC=⋅︒==∴,.【点睛】本题主要考查了菱形的性质、等腰三角形的判定和性质、解直角三角形的应用;熟练掌握菱形的性质,得出∠EBC=30°是解题的关键.19.3:1【分析】根据在梯形ABCD中AD∥BC易得△AOD∽△COB且S△COB:S△AOD=9:1可求=3:1则S△BOC:S△DOC=3:1【详解】解:根据题意AD∥BC∴△AOD∽△COB∵S△解析:3:1【分析】根据在梯形ABCD中,AD∥BC,易得△AOD∽△COB,且S△COB:S△AOD=9:1,可求BOOD=3:1,则S△BOC:S△DOC=3:1.【详解】解:根据题意,AD∥BC,∴△AOD∽△COB,∵S△AOD:S△COB=1:9,∴BOOD=3:1,则S△BOC:S△DOC=3:1,故答案为:3:1.【点睛】本题考查了相似三角形的性质与判定,掌握相似三角形面积的比等于相似比的平方是解题的关键.20.-2【分析】根据反比例函数的定义与性质解答即可【详解】根据反比函数的解析式y=(k≠0)故可知n+1≠0即n≠-1且n2-5=-1解得n=±2然后根据函数的图像在第二四三象限可知n+1<0解得n<-解析:-2.【分析】根据反比例函数的定义与性质解答即可.【详解】根据反比函数的解析式y=kx(k≠0),故可知n+1≠0,即n≠-1,且n2-5=-1,解得n=±2,然后根据函数的图像在第二、四三象限,可知n+1<0,解得n<-1,所以可求得n=-2.故答案为:-2【点睛】本题考查反比例函数的定义与性质,熟记定义与性质是解题的关键.三、解答题21.(1)①八;6;12;②92;(2)21;50;(3)正八面体【分析】(1)①根据图2的特点即可求解;②先求出原正方体的体积,根据比值即可求出该正多面体的体积;(2)根据题意需搭建为3×3的正方体,根据几何体的特点即可求解;(3)根据这个柏拉图体有6个顶点即可得到为正八面体.【详解】(1)如图2,连接正六面体中相邻面的中心,可得到一个柏拉图体.①它是正八面体,有6个顶点,12条棱;②已知该正多面体的体积与原正方体体积的比为1:6,若原正方体的棱长为3cm,则原正方体的体积为33=27∴该正多面体的体积为1927=62cm3;(2)如图,新搭的几何体俯视图及俯视图上的小正方体的个位数如下,则至少需要1+2×4+3×4=21个小正方体,他所搭几何体的表面积最小是2×9+2×8+2×8=50;(3)由图可知这个柏拉图体有6个顶点,故为正八面体;故答案为:(1)①八;6;12;②92;(2)21;50;(3)正八面体.【点睛】此题主要考查立方体的特点及性质,解题的关键是根据题意理解柏拉图体的特点、三视图的应用.22.(1)7个,(2)图形见详解【分析】(1)前排有2个,后排有5个,据此解题,(2)主视图要将几何体从前往后压缩,使看到的面全部落在一个竖立的平面内;左视图要从正面的左面看,要正对着几何体,视线要与放置几何体的平面平行,并合理想象;俯视图要从正上方往下看,每一竖列的图形最顶的一个面,它们无高低之分使看到的面都落在同一个平面内.【详解】解:(1)前排有2个,后排有5个,∴这个几何体由7个小正方体组成,(2)如图【点睛】本题考查了图形的三视图,属于简单题,熟悉三视图的画法是解题关键.23.(1)DE∥BF,见解析;(2)DE=10;BF=18;(3)①BQ<BE;②x=6或x=11 16或x=21 8【分析】(1)推出∠AED=∠ABF,即可得出DE∥BF;(2)求出DE=10,MN=6,把53y=代入5103y x=-+,解得x=5,即NQ=5,得出QM=1,由FQ=QB,BM=2FN,得出FN=4,BM=8,即可得出结果;(3)①连接EM并延长交BC于点H,易证四边形DFME是平行四边形,得出DF=EM,求出∠DEA=∠FBE=∠FBC=30°,∠ADE=∠CDE=∠FME=60°,∠MEB=∠FBE=30°,得出∠EHB=90°,DF=EM=BM=8,MH=4,EH=12,由勾股定理得HB=3BE=3DP=DF时,求出BQ=645,即可得出BQ<BE;②(Ⅰ)当PQ经过点D时,y=0,则x=6;(Ⅱ)当PQ经过点C时,由FQ∥DP,得出△CFQ∽△CDP,则FQ CFDP CD=,即可求出x=1116;(Ⅲ)当PQ经过点A时,由PE∥BQ,得出△APE∽△AQB,则PE AEBQ AB=,求出AE=53AB=133,即可得出x=218,由图可知,PQ不可能过点B.【详解】解:(1)DE与BF的位置关系为:DE∥BF,理由如下:如图1所示:∵∠A=∠C=90°,∴∠ADC+∠ABC=360°-(∠A+∠C)=180°,∵DE、BF分别平分∠ADC、∠ABC,∴∠ADE=12∠ADC,∠ABF=12∠ABC,∴∠ADE+∠ABF=12×180°=90°,∵∠ADE+∠AED=90°,∴∠AED=∠ABF,∴DE∥BF;(2)令x=0,得y=10,∴DE=10,令y=0,得x=6,∴MN=6,把y=53代入5103y x=-+,解得:x=5,即NQ=5,∴QM=6-5=1,∵Q是BF中点,∴FQ=QB,∵BM=2FN,∴FN+5=1+2FN,解得:FN=4,∴BM=8,∴BF=FN+MN+MB=18;(3)①连接EM并延长交BC于点H,如图2所示:∵FM=4+6=10=DE,DE∥BF,∴四边形DFME是平行四边形,∴DF=EM,EH∥CD,∴∠MHB=∠C=90°,∵∠A=90°,∠AED=30°∴AD=12DE=5,∴∠DEA=∠FBE=∠FBC=30°,∴∠ADE=60°,∴∠ADE=∠CDE=∠FME=60°,∴∠DFM=∠DEM=120°,∴∠MEB=180°-120°-30°=30°,∴∠MEB=∠FBE=30°,∴DF=EM=BM=8,∴MH=12BM=4,∴EH=8+4=12,由勾股定理得:HB=2243BM MH-=,∴BE=2283EH HB+=,当DP=DF时,51083x-+=,解得:x=65,∴BQ=14-x=645,∵645<83,∴BQ<BE;②(Ⅰ)当PQ经过点D时,如图3所示:y=0,则x=6;(Ⅱ)当PQ经过点C时,如图4所示:∵BF=18,∠FCB=90°,∠CBF=30°,∴CF=12BF=9,∴CD=9+8=17,∵FQ∥DP,∴△CFQ∽△CDP,∴FQ CFDP CD=,49517103xx+=-+,解得:x=1116;(Ⅲ)当PQ经过点A时,如图5所示:∵PE∥BQ,∴△APE∽△AQB,∴PE AEBQ AB=,由勾股定理得:2253DE AD-=∴AB=8353133=∴510(10)53314133xx--+=-x=218,由图可知,PQ不可能过点B;综上所述,当x=6或x=1116或x=218时,PQ所在的直线经过四边形ABCD的一个顶点.【点睛】本题是四边形综合题,主要考查了平行四边形的判定与性质、勾股定理、角平分线的性质、平行线的判定与性质、相似三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强,难度较大,熟练掌握平行四边形的判定与性质是解题的关键. 24.(1)校医完成一间办公室和一间教室的药物喷洒各要3min 和5min ;(2)一班学生能安全进入教室,计算说明过程见解析.【分析】(1)设校医完成一间办公室和一间教室的药物喷洒各要min x 和min y ,再根据题干信息建立二元一次方程组,然后解方程组即可得;(2)先求出完成11间教室的药物喷洒所需时间,再根据一次函数的解析式求出点A 的坐标,然后利用待定系数法求出反比例函数的解析式,最后根据反比例函数的解析式求出55x =时,y 的值,与1进行比较即可得.【详解】(1)设校医完成一间办公室和一间教室的药物喷洒各要min x 和min y则3219211x y x y +=⎧⎨+=⎩解得35x y =⎧⎨=⎩ 答:校医完成一间办公室和一间教室的药物喷洒各要3min 和5min ;(2)一间教室的药物喷洒时间为5min ,则11个房间需要55min当5x =时,2510y =⨯=则点A 的坐标为(5,10)A 设反比例函数表达式为k y x =将点(5,10)A 代入得:105k =,解得50k = 则反比例函数表达式为50y x =当55x =时,50155y =< 故一班学生能安全进入教室.【点睛】本题考查了二元一次方程组的应用、反比例函数与一次函数的综合等知识点,较难的是题(2),依据题意,正确求出反比例函数的解析式是解题关键.25.(1)12)10x =,24x =.【分析】(1)根据零指数幂的意义,算术平方根,以及特殊锐角的三角函数值代入计算即可; (2)先将原方程去括号、移项,整理后再运用因式分解法解方程.【详解】解:(1)20170(1)(3)2cos30π-+-+︒1312=-+-+131=-+-+1=. (2)由原方程得:2433x x -+=,240x x -=,(4)0x x -=,∴10x =,24x =.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).同时还考查了特殊角三角函数值.26.【分析】先代入特殊角三角函数值和进行二次根式的混合运算,再进行合并即可得到结果.【详解】4sin 45︒=4==【点睛】此题考查了二次根式的混合运算以及特殊角三角函数值,在进行此类运算时,一般先把二次根式化为最简二次根式的形式再运算.。

【华东师大版】九年级数学下期末试卷(附答案)

【华东师大版】九年级数学下期末试卷(附答案)

一、选择题1.下图是一些完全相同的小立方块搭成的几何体的三视图,那么搭成这个几何体所用的小立方块的最多个数是()A.9 B.8 C.7 D.62.如图,身高为1.6m的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m",CA=0.8m,则树的高度为()A.4.8m B.6.4m C.8m D.10m3.下列四个几何体中,主视图是三角形的是()A.B.C.D.4.如图所示是某几何体从三个方向看到的图形,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥5.某个几何体的三视图如图所示,该几何体是( )A .B .C .D . 6.国家电网近来实施了新一轮农村电网改造升级工程,解决了农村供电“最后1公里”问题,电力公司在 改造时把某一输电线铁塔建在了一个坡度为1:0.75的山坡CD 的平台BC 上(如图),测得52.5,5AED BC ︒∠==米,35CD =米,19DE =米,则铁塔AB的高度约为( )(参考数据:52.50.79,52.50.61,52.5 1.30sin cos tan ︒︒︒≈≈≈)A .7.6 米B .27.5 米C .30.5 米D .58.5 米 7.如图,将一副三角尺如图所示叠放在一起,则BE CE 的值是( )A .3B .3C .2D .3 8.三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A .34B .43C .35D .459.如图,在Rt ABC ∆中,90ACB ∠=︒,22AC BC ==CD AB ⊥于点D .点P 从点A 出发,沿A D C →→的路径运动,运动到点C 停止,过点P 作PE AC ⊥于点E ,作PF BC ⊥于点F .设点P 运动的路程为x ,四边形CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A .B .C .D .10.如图,平行四边形ABCD 中,AB ⊥AC ,AB =3,BC =7,对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转,分别交B C ,AD 于点E ,F ,下列说法:①在旋转过程中,AF =CE . ②OB =AC ,③在旋转过程中,四边形ABEF 的面积为212,④当直线AC 绕点O 顺时针旋转30°时,连接BF ,DE 则四边形BEDF 是菱形,其中正确的是( )A .①②④B .① ②C .①②③④D .② ③ ④ 11.在ABC 中,D ,E 分别为,BC AC 上的点,且2AC EC =,连结,AD BE ,交于点F ,设:,:x CD BD y AF FD ==,则( )A .1y x =+B .1x y x +=C .413y x =+D .21x y x -=- 12.如图,在平面直角坐标系中,平行四边形OABC 的顶点A 在反比例函数1k y x =(x>0) 的图像上,顶点B 在反比例函数2k y x=(x>0)的图像上,点C 在x 轴的正半轴上.若平行四边形OABC 的面积为8,则k 2-k 1的值为( )A.4 B.8 C.12 D.16二、填空题13.广场上一个大型艺术字板块在地上的投影如图所示,则该投影属于_____.(填写“平行投影”或“中心投影”)14.如图,一几何体的三视图如图:那么这个几何体是______.15.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.16.在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象过点P(1,1),与x轴交于点A,与y轴交于点B,且tan∠ABO=2,那么点A的坐标是_____.17.在Rt△ABC中,∠C=90°,AB=2AC,则∠A=__°,∠B=___°.18.如图,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=4,OC=10,∠A=60°,线段EF垂直平分OD,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E'关于x轴对称,连接BP、E'M,则BP+PM+ME'的长度的最小值为______.19.如图,在平行四边形ABCD 中,E 在AD 上,21AE ED =,CE 交BD 于F ,则:BCF DCF S S =△△__________.20.下列y 关于x 的函数中,y 随x 的增大而增大的有_____.(填序号)①y =﹣2x+1,②y 1x=,③y =(x+2)2+1(x >0),④y =﹣2(x ﹣3)2﹣1(x <0) 三、解答题21.如图,若干个完全相同的小正方体堆成一个几何体.(1)请在图中方格中画出该几何体的左视图和俯视图.(2)用若干小立方体搭一个几何体,使得它的左视图和俯视图与你在方格中所画的一 致,则这样的几何体最多要 个小立方块.(3)若小正方体的棱长为1cm ,如果将图1中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,求需喷漆部分的面积.22.如图,将一个大立方体挖去一个小立方体,请画出它的三种视图.23.位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP 上架设测角仪,先在点M 处测得观星台最高点A 的仰角为22°,然后沿MP 方向前进16m 到达点N 处,测得点A 的仰角为45°.测角仪的高度为1.6m 求观星台最高点A 距离地面的高度(结果精确到0.1m .参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,2≈1.41).24.如图1,在ABC 中,10AB AC ==,3tan 4B =,点D 为BC 边上的动点(点D 不与点B ,C 重合).以D 为顶点作ADE B ∠=∠,射线DE 交AC 边于点E ,过点A 作AF AD ⊥交射线DE 于点F ,连接CF .(1)求证:ABD DCE ∽△△ ;(2)当//DE AB 时(如图2),求AE 的长;(3)点D 在BC 边上运动的过程中,当AEF 是等腰三角形时,直接写出BD 的长. 25.如图,已知()()4,2,4A B n --、是一次函数y kx b =+的图象与反比例函数m y x =的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)连接,OA OB ,求AOB ∆的面积;(3)根据图象直接写出使不等式m kx b x+>成立的x 的取值范围______________________.26.已知:直线3y kx k =+,交x 轴于B ,交y 轴于A ,且3OA OB =.(1)如图1,求直线AB 的解析式;(2)如图2,点D 在AO 上且AD t =连接BD ,过BD 作DE BD ⊥于D ,过A 作AE y ⊥轴于A ,E 点的横坐标为m ,求m 与t 的函数关系式;(3)如图3,在(2)的条件下,点P 在BD 的延长线上,P 的横坐标为t ,点F 在EA 的延长线上,点N 在AD 上,连接FN ,连接PF 并延长交直线AB 于点M ,若E BPM ∠=,2ANF ADE ∠=∠,2AN DN =,求点M 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据俯视图可看出最底层小正方体的个数及形状,再从左视图看出每一层小正方体可能的数量,并再俯视图中标出个数,即可得出答案.【详解】根据左视图在俯视图中标注小正方形最多时的个数如图所示:1+1+2+2+2+1=9,故选A.【点睛】本题考查根据三视图判断小正方形的个数,根据左视图在俯视图中标注小正方形的个数是关键,需要一定的空间想象力.2.C解析:C【解析】解:因为人和树均垂直于地面,所以和光线构成的两个直角三角形相似,设树高x米,则1.6ACAB x=,即0.8 1.60.8 3.2x=+∴x=8故选C.3.B解析:B【解析】主视图是三角形的一定是一个锥体,只有B是锥体.故选B.4.D解析:D【解析】试题∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个圆,∴此几何体为圆锥.故选D.5.D解析:D【解析】【分析】根据几何体的三视图判断即可.【详解】由三视图可知:该几何体为圆锥.故选D.【点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.6.C解析:C【分析】延长AB交ED于G,过C作CF⊥DE于F,得到GF=BC=5,设DF=3k,CF=4k,解直角三角形得到结论.【详解】解:延长AB交ED于G,过C作CF⊥DE于F,则四边形BGFC是矩形∴GF=BC=5,∵山坡CD的坡度为1:0.75,∴设DF=3k,CF=4k,∴CD=5k=35,∴k=7,∴DF=21,BG=CF=28,∴EG=GF+DF+DE=5+21+19=45,∵∠AED=52.5°,∴AG=EG•tan52.5°=45×1.30=58.5,∴AB=AG-BG=30.5米,答:铁塔AB的高度约为30.5米.故选:C.【点睛】本题考查了解直角三角形的应用-坡度坡角问题和解直角三角形的应用-坡度坡角问题,难度适中,通过作辅助线,构造直角三角形,利用三角函数求解是解题的关键.7.B解析:B【分析】设AC=AB=x,求得3tan3ACCD xD===,根据相似三角形的性质即可得到结论.【详解】解:设AC=AB=x,则3tan3ACCD xD===,∵∠BAC=∠ACD=90°,∴∠BAC+∠ACD=180°,∴AB∥CD,∴△ABE∽△DCE,∴33BE AB CE CD x===, 故选:B .【点睛】本题主要考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.8.D解析:D【分析】根据锐角三角函数的定义得出cosα=BC AB进而求出即可. 【详解】解:如图所示:∵AC=3,BC=4,∴AB=5,∴cosα=45BC AB =. 故选:D .【点睛】 此题主要考查了锐角三角函数的定义以及勾股定理,正确构造直角三角形是解题关键. 9.A解析:A【分析】分两段来分析:①点P 从点A 出发运动到点D 时,写出此段的函数解析式,则可排除C 和D ;②P 点过了D 点向C 点运动,作出图形,写出此阶段的函数解析式,根据图象的开口方向可得答案.【详解】解:∵90ACB ∠=︒,22AC BC ==∴45A ∠=︒,4AB =,又∵CD AB ⊥,∴2AD BD CD ===,45ACD BCD ∠=∠=︒,∵PE AC ⊥,PF BC ⊥,∴四边形CEPF 是矩形,I .当P 在线段AD 上时,即02x <≤时,如解图1∴2sin 2AE PE AP A x ===, ∴2222CE x =-, ∴四边形CEPF 的面积为2221222222y x x x x ⎛⎫=-=-+ ⎪ ⎪⎝⎭,此阶段函数图象是抛物线,开口方向向下,故选项CD 错误;II .当P 在线段CD 上时,即24x <≤时,如解图2:依题意得:4CP x =-,∵45ACD BCD ∠=∠=︒,PE AC ⊥,∴sin CE PE CP ECP ==⨯∠,∴())24sin 4542CE PE x x ==-︒=-, ∴四边形CEPF 的面积为()222144822x x x y ⎤-=-+⎥⎣⎦=,此阶段函数图象是抛物线,开口方向向上,故选项B 错误;故选:A .【点睛】本题考查了动点问题的函数图象,分段写出函数的解析式并数形结合进行分析是解题的关键.10.A解析:A【分析】①通过证明AOF COE ≅△△即可判断;②分别利用勾股定理求出OB,AC 的长度即可得出答案;③先利用ABC 的面积求出AG 的长度,然后利用梯形的面积公式求解即可;④易证四边形BEDF 是平行四边形,然后通过角度得出90DOF ∠=︒,然后证明DOF DOE ≅,则有DF DE =,则可证明结论.【详解】∵四边形ABCD 是平行四边形,,//,AO CO AD BC AD BC ∴== ,AFO CEO ∴∠=∠ .在AOF 和COE 中,AFO CEO AOF COE AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩()AOF COE AAS ∴≅,AF CE OF OE ∴==,故①正确;∵AB ⊥AC ,90BAC ∴∠=︒ .∵AB =3,BC=7,222AC BC AB ∴=-= ,112AO AC ∴== , 222OB AO AB ∴=+=,OB AC ∴=,故②正确;过点A 作AG BC ⊥交BC 于点G ,1122ABC S AB AC BC AG =⋅=⋅ , 3222177AB AC AG BC ⋅⨯∴===, 11221()73227ABEF S AF BE AG ∴=+⋅==四边形,故③错误; 连接DE,BF ,,AF CE AD BC ==,DF BE ∴= .∵//DF BE ,∴四边形BEDF 是平行四边形.3sin AB AOB OB ∠== , 60AOB ∴∠=︒ .30AOF ∠=︒,180603090DOF ∴∠=︒-︒-︒=︒,90DOE ∴∠=︒.在DOF △和DOE △中,FO OE DOF DOE DO DO =⎧⎪∠=∠⎨⎪=⎩()DOF DOE SAS ∴≅,DF DE ∴=,∴四边形BEDF 是菱形,故④正确;所以正确的有:①②④,故选:A .【点睛】本题主要考查平行四边形的性质,全等三角形的判定及性质,勾股定理和锐角三角函数,掌握平行四边形的性质,全等三角形的判定及性质,勾股定理和锐角三角函数是解题的关键.11.A解析:A【分析】过D 作DG ∥AC 交BE 于G ,可得△BDG ∽△BCE ,△DGF ∽△AEF ,根据相似三角形的性质可得x 与y 的数量关系.【详解】解:如图,过D 作DG ∥AC 交BE 于G ,∴△BDG ∽△BCE ,△DGF ∽△AEF , ∴BD DG BC CE =,DG DF AE AF =, ∵AC =2EC ,∴AE =CE , 则BD DF BC AF= ∴BD DF BD CD AF =+, ∴BD CD AF BD DF+=, ∵x =CD :BD ,y =AF :FD ,∴1+x =y , ∴y =x +1,故选:A ..【点睛】本题考查相似三角形的性质和应用,恰当作辅助线构建相似三角形是解题的关键. 12.B解析:B【分析】 根据A ,B 分别在1k y x =和2k y x=的图象上且A ,B 的纵坐标相同设点的坐标,再根据平行四边形OABC 的面积为8建立等量关系从而求解.【详解】 解:∵A ,B 分别在1k y x =和2k y x=的图象上,且A ,B 的纵坐标相同 ∴设1211,,,k k m k A m B m k m ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭∴2118OABC k m k S m k m⎛⎫=-= ⎪⎝⎭四化简得:218k k -=故答案选:B【点睛】本题考查反比例图象与四边形结合,难度正常,根据解析式设点的坐标并表示线段长度是解题关键.二、填空题13.中心投影【解析】【分析】找出光源即可得出结果【详解】如图可知该投影属于中心投影故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行而中心投影的投影线交于一点主要从形成投影 解析:中心投影【解析】【分析】找出光源即可得出结果.【详解】如图可知,该投影属于中心投影.故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行,而中心投影的投影线交于一点.主要从形成投影的光线来比较两者的区别.14.圆锥【解析】试题分析:由主视图和左视图为三角形判断出是锥体由俯视图是圆形可判断出这个几何体应该是圆锥故答案为圆锥考点:由三视图判断几何体解析:圆锥【解析】试题分析:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥.故答案为圆锥.考点:由三视图判断几何体.15.16【分析】易得△AOB ∽△ECD 利用相似三角形对应边的比相等可得旗杆OA 的长度【详解】解:∵OA ⊥DACE ⊥DA ∴∠CED=∠OAB=90°∵CD ∥OE ∴∠CDA=∠OBA ∴△AOB ∽△ECD ∴解解析:16【分析】易得△AOB ∽△ECD ,利用相似三角形对应边的比相等可得旗杆OA 的长度.【详解】解:∵OA ⊥DA ,CE ⊥DA ,∴∠CED=∠OAB=90°,∵CD ∥OE ,∴∠CDA=∠OBA ,∴△AOB ∽△ECD , ∴CE OA 16OA ,DE AB 220==, 解得OA=16.故答案为16. 16.(﹣10)或(30)【分析】依题意得即可得一次函数解析式为所以由tan ∠ABO =2得到且可解得或进而求得结论【详解】解:∵一次函数的图象经过点∴即∴一次函数解析式为∴一次函数与x 轴y 轴的交点坐标为( 解析:(﹣1,0)或(3,0)【分析】依题意得1k b =+,即1b k =-,可得一次函数解析式为1y kx k =+-,所以1k OA k -=,1OB k =-,由tan ∠ABO =2得到121k k k -=-且1k ≠可解得12k =或12k =-,进而求得结论. 【详解】解:∵一次函数y kx b =+的图象经过点()1,1P ,∴1k b =+,即1b k =-,∴一次函数解析式为1y kx k =+-,∴一次函数1y kx k =+-与x 轴、y 轴的交点坐标为(1k k-,0)、(0,1k -),∴1k OA k -=,1OB k =-, ∵tan 2OA ABO OB ∠==, ∴121k k k-=-且1k ≠, 解得,12k =或12k =-, 当12k =时,OA=1,此时点A 在x 轴负半轴上,所以点A 坐标为(﹣1,0), 当12k =-时,OA=3,此时点A 在x 轴正半轴上,所以点A 坐标为(3,0), ∴A 点的坐标是1,0或3,0故答案为:(﹣1,0)或(3,0).【点睛】本题考查了一次函数图象上点的坐标特征,解答本题的关键是求出函数图象与x 轴、y 轴的交点坐标.解决本题时要注意点A 的坐标有两种情况,不要漏解.17.6030【分析】在Rt △ABC 中根据AB =2AC 可得出∠B =30°∠A =60°【详解】解:如图在Rt △ABC 中∵∠C =90°AB =2AC ∴sin ∠B ==∴∠B =30°∴∠A =90°﹣∠B =90°﹣3解析:60 30【分析】在Rt △ABC 中,根据AB =2AC ,可得出∠B =30°,∠A =60°.【详解】解:如图,在Rt △ABC 中,∵∠C =90°,AB =2AC ,∴sin ∠B =AC AB=12, ∴∠B =30°, ∴∠A =90°﹣∠B =90°﹣30°=60°.故答案为:60,30.【点睛】此题考查有一个角是30°的直角三角形的性质,根据三角函数求解较简单.18.【分析】连接OP先确定OD的长和B点坐标然后证明四边形OPME是平行四边形可得OP=EM因为PM是定值推出PB+ME=OP+PB的值最小时即当OPB共线时BP+PM+ME的长度最小最后根据两点间的距解析:22123【分析】连接OP,先确定OD的长和B点坐标,然后证明四边形OPME'是平行四边形,可得OP=EM,因为PM是定值,推出PB+ME'=OP+PB的值最小时,即当O、P、B共线时BP+PM+M E的长度最小,最后根据两点间的距离公式和线段的和差解答即可.【详解】解:如图:连接OP在Rt△ADO中,∠A=60°,AD=4,∴OD=4tan60°3∴A(-4,3∵四边形ABCD是平行四边形,∴AB=OC=10,∴DB=10-4=6∴B(6,3∵线段EF垂直平分OD∴OE=13,∠PEO=∠EOM=∠PM0=90°,2∴四边形OMPE是矩形,∴3,∵OE=0E'∴PM=OE',PM//OE',∴四边形OPME'是平行四边形,∴0P=EM ,∵是定值,∴PB+ME'=OP+PB 的值最小时,BP+PM+ME 的长度最小,∴当0、P 、B 共线时,BP+PM+ME 的长度最小∴BP+PM+ME 的最小值为=故答案为【点睛】本题属于四边形综合题,主要考查了平行四边形的判定和性质、垂直平分线的性质、最短路径问题、锐角三角函数等知识,掌握并灵活应用两点之间线段最短是解答本题的关键. 19.3【分析】证明可得结合三角形面积公式即可求得结果【详解】在平行四边形ABCD 中∵∴∵∴故答案为:3【点睛】本题考查了三角形相似的性质与判定解答本题的关键是熟练运用相似三角形的性质与判定解析:3 【分析】 证明DEFBCF ,可得31BF CB DF ED ==,结合三角形面积公式即可求得结果. 【详解】在平行四边形ABCD 中,AD BC =,//AD BC , ∵21AE ED =,AE ED AD +=,∴13ED AD = ∵//AD BC ,13DF ED ED BF BC AD ∴===. ∴3BCF DGF S BF S DF ==. 故答案为:3.【点睛】本题考查了三角形相似的性质与判定,解答本题的关键是熟练运用相似三角形的性质与判定.20.③④【分析】根据一次函数二次函数反比例函数的性质即可一一判断【详解】解:y 随x 的增大而增大的函数有③④故答案为③④【点睛】本题主要考查一次函数二次函数反比例函数的性质解决本题的关键是熟练掌握一次函数解析:③④【分析】根据一次函数、二次函数、反比例函数的性质即可一一判断.【详解】解:y随x的增大而增大的函数有③④,故答案为③④.【点睛】本题主要考查一次函数、二次函数、反比例函数的性质,解决本题的关键是熟练掌握一次函数,二次函数,反比例函数图像性质.三、解答题21.(1)见解析;(2)14;(3)230cm【分析】(1)从上面看得到从左往右3列正方形的个数依次为3,2,1,依此画出图形即可;从左面看得到从左往右3列正方形的个数依次为3,2,1,;依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最多个数相加即可;(3)数一数有多少个正方形露在外面即可求得面积.【详解】解:(1)如图所示:(2)由俯视图易得最底层有6个小立方块,第二层最多有5个小立方块,第三层最多有3个小立方块,所以最多有6+5+3=14个小立方块.故答案为:14;(3)若将图1中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,30cm,则需要喷6×2+6×2+6=30个小正方形,面积为230cm.故需喷漆部分的面积为2【点睛】本题考查了作图-三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,俯视图决定底层立方块的个数,易错点是由左视图得到其余层数里最多的立方块个数.22.见解析【分析】直接利用三视图的观察角度分别得出视图即可.【详解】如图所示:.【点睛】此题考查几何体的三视图的画法,能会看几何体根据几何体得到各面的形状是解题的关键,注意不可见的棱线需要画成虚线.23.约为12.3m【分析】过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,于是得到BC=MN=16m,DE=CN=BM=1.6m,求得CE=AE,设AE=CE=x,得到BE=16+x,解直角三角形即可得到答案.【详解】过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,∴BC=MN=16m,DE=CN=BM=1.6m,∵∠AEC=90°,∠ACE=45°,∴△ACE是等腰直角三角形,∴CE=AE,设AE=CE=x,∴BE=16+x,∵∠ABE=22°,∴tan22°=AEBE =16xx≈0.40,解得:x≈10.7(m),经检验x≈10.7是原分式方程的解∴AD≈10.7+1.6=12.3(m),答:观星台最高点A距离地面的高度约为12.3m.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.24.(1)见解析;(2)12532AE =;(3)11或394或252 【分析】(1)由等腰三角形的性质可得B ACB ∠=∠,由外角的性质可得BAD CDE ∠=∠,可证明结果;(2)作AM BC ⊥于M ,证明C ABD BA ∽△△,可求出BD 的长,再由平行线分线段成比例计算即可;(3)作AH BC ⊥于H ,证明BADCDE △△,得到AD AB DE CD=,分类讨论即可; ;【详解】解:(1)证明:∵AB AC =,∴B ACB ∠=∠,∵ADE CDE B BAD ∠+∠=∠+∠,ADE B ∠=∠,∴BAD CDE ∠=∠,∴BAD DCE ∽△△;(2)如图2中,作AM BC ⊥于M .图2在Rt ABM 中,设4BM k =,∵3tan 4AM B BM==,∴tan 3AM BM B k =⋅=, 由勾股定理,得到222AB AM BM =+,∴22210(3)(4)k k =+,∴2k =或-2(舍弃),∴6AM =,8BM =,∵AB AC =,AM BC ⊥,∴22216BC BM k ==⨯=,∵//DE AB ,∴BAD ADE ∠=∠,∵ADE B ∠=∠,B ACB ∠=∠,∴BAD ACB ∠=∠,∵ABD CBA ∠=∠,∴C ABD BA ∽△△,∴AB DB CB AB =,∴2254AB DB CB ==, ∵//DE AB ,∴AE BD AC BC =,∴12532AC BD AE BC ⨯== . (3)作AH BC ⊥于H ,∵AB AC =,AH BC ⊥, ∴182BH CH BC ===, 由勾股定理可得:22221086AH AB BH -=-=, ∴3tan 4==AH B BH , ∴3tan 4AF ADF AD ∠==, 设3AF x =,则AD=4x , 由勾股定理可得:225DF AD AF x =-=, ∵AB AC =,∴B C ∠=∠,根据ADC BAD B ∠=∠+∠,ADE B ∠=∠,∴BAD CDE ∠=∠,∴BAD CDE △△, ∴AD AB DE CD=, ①当F 在DE 延长线,FA=FE 时,532DE x x x =-=, ∴1042x CD x=, ∴5CD =,∴11BD BC CD =-=;当EA=EF 时, 2.5DE EF x ==, ∴1042.5x CDx =, ∴254CD =, ∴394BD BC CD ==; 当AE=AF 时,75DE x =,∴410775x CD x =, ∴72CD =, ∴252BD BC CD ==; ②当F 在线段DE 上时,AFE ∠是钝角,只有3FA FE x ==,则8DE x =,∴1048x CDx =, ∴20CD =>16,不符合题意;∴当△AEF 时等腰三角形时,BD 的长为11或394或252. 【点睛】本题主要考查了相似三角形综合,准确分析计算是解题的关键.25.(1)一次函数的解析式是2y x =--;(2)6AOB S ∆=;(3)x 的取值范围是4x <-或02x <<.【分析】(1)把A 的坐标代入反比例函数解析式求得m 的值,从而求得反比例函数解析式,然后把B 的坐标代入n 的值,再利用待定系数法求得一次函数的解析式;(2)求得AB 与x 轴的交点,然后根据三角形的面积公式求解;(3)一次函数的值大于反比例函数的值的x 的取值范围就是一次函数的图象在反比例函数图象上方的自变量的取值范围.【详解】解:(1)把()4,2-代入m y x =得24m =-,则8m =-, 则反比例函数的解析式是8y x =-; 把(),4n -代入8y x=-得824n =-=-, 则B 的坐标是()2,4-,根据题意得:2442k b k b =-+⎧⎨-=+⎩,解得12k b =-⎧⎨=-⎩, 则一次函数的解析式是2y x =--;(2)设AB 与x 轴的交点是C ,则C 的坐标是()2,0-,则2OC =,11222,24422AOC BOC S S ∆∆=⨯⨯==⨯⨯=, 则6AOB S ∆=;(3)由函数图象可知x 的取值范围是4x <-或02x <<.【点睛】本题考待定系数法求函数的解析式以及函数与不等式的关系,理解求一次函数的值大于反比例函数的值的x 的取值范围就是一次函数的图象在反比例函数图象上方的自变量的取值范围是关键.26.(1)y=3x+9;(2)m=2133t t -;(3)M(1,10).【分析】(1)先设OB b =,表示出A 、B 的坐标,代入求解即可;(2)根据lBD lDE k k ⋅= -1,得出93t -·t m =-1,变形求解即可; (3)首先得出直线BD 的解析式,再得出直线NF 为:y=222mt m t -,设F(n ,9),得出直线FD ,再根据直线AB 求解即可.【详解】解:(1)设OB b =,∴B(-b,0),∵OA=3OB ,∴A(0,3b),∵A 、B 在直线y=kx+k 上,代入得3033bk k k b -+=⎧⎨=-⎩, 解得:33k b =⎧⎨=⎩,∴y=3x+9; (2)由(1)知A(0,9),B(-3,0),∵AE ⊥y 轴,∴E(m ,9),∵AD=t ,∴D(0,9-t),∵BD ⊥DE ,∴lBD lDE k k ⋅= -1,而lBD k =93t -,lDE k =t m, ∴93t -·t m=-1, ∴-t²+9t+3m=0, ∴m=2133t t -;(3)由(2)和(1)知:直线BD 为:y=993t x t -+- , ∵P 在直线BD 上且横坐标为t , ∴P(t ,26273t t -++), ∵AN=2DN ,∴N(0,9-t),∵∠ANF=2∠ADE 且lDE k =t m,则直线NF 为:y=222mt m t - , 设F(n ,9),则22223t mt n m t =-,解得n=223m t m-, ∴F(223m t m-,9), 由F 、P 得FP l :y=222222()933m t m t x m t mt m---+--①, 由(1)得:AB l :y=3x+9②,∵∠E=∠BPM ,∴tan ∠E=tan ∠BPM③,由M 为AB 和PF 的交点,联立①②③得:M(1,10).【点睛】本题考查了一次函数的性质、待定系数法等知识,解题的关键是学会利用参数、构建方程解决问题.。

最新整理初中数学试题试卷华东师大九年级下期二次函数单元测试卷有答案[下学期]华师大版.doc

最新整理初中数学试题试卷华东师大九年级下期二次函数单元测试卷有答案[下学期]华师大版.doc

26.1二次函数(A 卷)(100分 60分钟)一、选择题:(每题4分,共28分)1.若函数2221()m m y m m x --=+是二次函数,那么m 的值是A.2B.-1或3C.3D.1-2.满足函数y=x 2-4x-4的一个点是( )A.(4,4)B.(3,-1);C.(-2,-8)D. 1171,24⎛⎫- ⎪⎝⎭3.无论m 为何实数,二次函数y=x 2-(2-m)x+m 的图象总是过定点( )A.(1,3)B.(1,0);C.(-1,3)D.(-1,0)4.在函数中,自变量x 的取值范围是( ) A.x≠1 B.x>0; C.x>0且x≠1 D.x≥0且x≠15.在直角坐标系中,坐标轴上到点P(-3,-4)的距离等于5的点共有( ) A.1个 B.2个 C.3个 D.4个6.在函数,自变量x 的取值范围是( )A.x>-2且x≠-3;B.x>-2且x≠3;C.x≥-2且x≠±3;D.x≥-2且x≠3 7.下列函数中,是二次函数的是( )A.y=8x 2+1 B.y=8x+1; C.y=8x D.y=28x二、填空题:(每题5分,共45分)y=-x+2x>1y=x 2-1≤x ≤1y=x+2x<-1输入x 值(1) (2) (3)8.形如_______________的函数叫做二次函数.9.如图1所示,某校小农场要盖一排三间长方形的羊圈,打算一面利用一堵旧墙, 其余各面用木棍围成栅栏,该校计划用木棍围出总长为24m 的栅栏. 设每间羊圈的B ACDx B 长为xm.(1)请你用含x 的关系式来表示围成三间羊圈所利用的旧墙的总长度L=_______,三间羊圈的总面积S=____________;(2)S 可以看成x 的_________,这里自变量x 的取值范围是_________; (3)请计算,当羊圈的长分别为2m 、3m 、4m 和5m 时,羊圈的总面积分别为_____、_____、______、______,在这些数中,x 取_____m 时,面积S 最大.10.如图2所示,长方体的底面是边长为xcm 的正方形,高为6cm,请你用含x 的代数式表示这个长方体的侧面展开图的面积S=________,长方体的体积为V=__________,各边长的和L=__________,在上面的三个函数中,_______是关于x 的二次函数.11.根据如图3所示的程序计算函数值.(1)当输入的x 的值为23时,输出的结果为________; (2)当输入的数为________时,输出的值为-4.12.如图4所示,要用总长为20m 的铁栏杆,一面靠墙, 围成一个矩形的花圃, 若设AB 的长为xm,则矩形的面积y=_______________.13.某商店将每件进价为8元的某种商品每件10元出售,一天可销出约100件. 该店想通过降低售价、增加销售量的办法来提高利润.经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件,将这 种商品的售价降低x 元时, 则销售利润y=_________.14.函数中,自变量x 的取值范围是___________.15.y=(m 2-2m-3)x 2+(m-1)x+m 2是关于x 的二次函数要满足的条件是_______.16.如图5所示,有一根长60cm 的铁丝,用它围成一个矩形,写出矩形面积S(cm 2)与它的一边长x(cm)之间的函数关系式____________. 三、解答题:(27分)17.(12分)心理学家发现,在一定的时间范围内,学生对概念的接受能力y 与提出概念所用的时间x(单位:分钟)之间满足函数关系y=-0.1x 2+2.6x+43(0≤x≤30),y的值越大,表示接受能力越强.(1)若用10分钟提出概念,学生的接受能力y 的值是多少?(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.18.(15分)已知正方形的周长是Ccm,面积是Scm 2.(1)求S 与C 之间的函数关系式;(2)当S=1cm 2时,求正方形的边长;(3)当C 取什么值时,S≥4cm 2?BRACD PGl26.1 二次函数(B 卷)(100分 90分钟)一、学科内综合题:(每题6分,共18分)1.如图所示,在直角梯形ABCD 中,∠A=∠D=90°,截取AE=BF=DG=x.已知AB=6,CD=3,AD=4.求四边形CGEF 的面积S 关于x 的函数表达式和x 的取值范围.x x BF ACD E x G2.如图所示,在△ABC 中是AC 上与A 、C 不重合的一个动点,过P 、B 、C 的⊙O 交AB 于D.设PA=x,PC 2+PD 2=y,求y 与x 的函数关系式,并确定x 的取值范围.3.如图所示,有一边长为5cm 的正方形ABCD 和等腰三角形PQR,PQ= PR= 3cm, QR=8cm,点B 、C 、Q 、R 在同一条直线L 上,当C 、Q 两点重合时,等腰三角形PQR 以1cm/ 秒的速度沿直线L 按箭头所示的方向开始匀速运动,t 秒后正方形ABCD 与等腰△PQR重合部分的面积为Scm 2.解答下列问题:(1)当t=3时,求S 的值;(2)当t=5时,求S 的值;(3)当5≤t≤8时,求S 与t 之间的函数关系式.BRA CD PQ lB HRAC D PQ G l二、学科间综合题:(7分)4.一个人的血压与其年龄及性别有关,对女性来说,正常的收缩压p(毫米汞柱) 与年龄x(岁)大致满足关系式p=0.01x 2+0.05x+107;对男性来说,正常的收缩压p( 毫米汞柱)与年龄x(岁)大致满足关系式p=0.006x 2-0.02x+120.(1)利用公式计算你的收缩压;(2)如果一个女性的收缩压为120毫米汞柱,那么她的年龄大概是多少岁?(1毫米汞柱=133.3224帕)(3)如果一个男性的收缩压为130毫米汞柱,那么他的年龄大概是多少岁?三、应用题:(每题9分,共36分)5.如图所示,在矩形ABCD中,AB=6厘米,BC=12厘米,点P在线段AB上,P从点A 开始沿AB边以1厘米/秒的速度向点B移动.点E为线段BC的中点,点Q从E点开始,沿EC以1厘米/秒的速度向点C移动.如果P、Q同时分别从A、E出发,写出出发时间t与△BPQ的面积S的函数关系式,求出t的取值范围.QA6.某化工材料经销公司购进了一批化工原料共7000千克, 购进价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现,单价定为70元时,日均销售60千克;单价每降低1元,每天多售出2千克. 在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).设销售单价为x元,日均获利为y元.请你求出y关于x的二次函数关系式,并注明x的取值范围.7.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162-3x. 请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.8.某公司试销一种成本单价为500元/件的新产品, 规定试销时的销售单价不低于成本单价,又不高于800元/件.试销时,发现销售量y(件)与销售价x(元/件)的关系可近似看作一次函数y=kx+b(k≠0),如图所示.(1)根据图象,求一次函数y=kx+b的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元, 试用销售单价表示毛利润S./件)四、创新题:(每题10分,共20分) (一)教材中的变型题9.(教材P4第3题变题)已知二次函数y=ax 2+(km+c),当x=3时,y=15;当x=-2时,y=5,试求y 与x 之间的函数关系式.(二)多变题10.如图所示,在边长为4的正方形EFCD 上截去一角,成为五边形ABCDE, 其中AF=2,BF=1,在AB 上取一点P,设P 到DE 的距离PM=x,P 到CD 的距离PN=y,试写出矩形PMDN 的面积S 与x 之间的函数关系式.FEB ACD PN五、中考题:(19分)11.(2002,昆明,8分)某广告公司设计一幅周长为12米的矩形广告牌, 广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.(1)求出S 与x 之间的函数关系式,并确定自变量x 的取值范围.(2)为使广告牌美观、大方,要求做成黄金矩形,请你按要求设计,并计算出可获得的设计费是多少?(精确到元)12.(2004,黄冈,11分)心理学家研究发现,一般情况下, 学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的注意力逐步增强, 中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散.经过实验分析可知, 学生的注意力y 随时间t 的变化规律有如下关系式:224100(0100)240(1020)7380(2040)t y t y t t t ⎧-++<≤⎪=<≤⎨⎪-+<≤⎩(1)讲课开始后第5分钟时与讲课开始后第25分钟时比较, 何时学生的注意力更集中?(2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?(3)一道数学难题,需要讲解24分钟,为了效果较好,要求学生的注意力最低达到180,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?26.1 二次函数(C 卷)(30分 45分钟)一、实践题:(10分)1.某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元进行批量生产.已知生产每件产品的成本为40元, 在销售过程中发现,当销售单价定为100元时,年销售时为20万件;销售单价每增加10元, 年销售量将减少1万件.设第一年销售单价为x 元,销售量为y 万件,获利(年获利=年销售额-生产成本-投资)为z 万元.(1)试写出y 与x 之间的函数关系式;(不必写出x 的取值范围) (2)试写出z 与x 之间的函数关系式;(不必写出x 的取值范围)(3)计算销售单价为160元时的获利,并说明同样的获利,销售单价还可以定为多少元?相应的销售量分别为多少万件?二、竞赛题:(每题10分,共20分)2.已知:如图所示,BD 为⊙O 的直径,且BD=8,¼DM是圆周的14,A 为¼DM 上任意一点, 取AC=AB,交BD 的延长线于C,连结OA,并作AE⊥BD 于E,设AB=x,CD=y. (1)写出y 关于x 的函数关系式; (2)当x 为何值时,CA 是⊙O 的切线?(3)当CA 与⊙O 相切时,求tan∠OAE 的值.EBM ACD O3.如图所示,△ABC 中,BC=4,∠B=45°,AB=,M 、N 分别是AB 、AC 上的点,MN∥BC.设MN=x,△MNC 的面积为S.(1)求出S 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)是否存在平行于BC 的线段MN,使△MNC 的面积等于2?若存在,请求出MN 的长; 若不存在,请说明理由.二次函数A 卷答案:一、1.C 2.D 3.C 4.D 5.C 6.D 7.A二、8.y=ax 2+bx+c(a 、b 、c 为常数,a≠0)9.(1)-4x+24;-4x 2+24x (2)二次函数;0<x<6(3)32m 2;36m 2;32m 2;20m 2;310.24x;6x 2;8x+24;V=6x 211.(1)49 (2)6或-6 12.y=-2x 2+20x(0<x<10)13.y=-100x 2+100x+200(0≤x≤2) 14.x>3且x≠5 15.m≠-1且m≠316.S=-x 2+30x(0<x<30)三、17.解:(1)当x=10时,y=-0.1x 2+2.6x+43=-0.1×102+2.6×10+43=59.(2)当x=8时,y=0.1x 2+2.6x+43=-0.1×82+2.6×8+43=57.4, ∴用8分钟与用10分钟相比,学生的接受能力减弱了;当x=15时,y=-0.1x 2+2.6x+43=-0.1×152+2.6×15+43=59.5. ∴用15分钟与用10分钟相比,学生的接受能力增强了.18.解:(1)S=221416C C ⎛⎫= ⎪⎝⎭(2)当S=1时,由 2116S C =,得1=2116C , ∴C=4或C=-4(舍去).∴C=4,∴正方形边长为1cm.(3)∵S=2116C ,∴欲使S≥4,需2116C ≥4,∴C 2≥64.∴C≥8或C≤-8(舍去), ∴C≥8.B 卷答案: 一、1.解:S=S 梯形ABCD -S △EGD -S △EFA -S △BCF=12×(3+6)×4-12x(4-x)- 12x(6-x)-12×4x=x 2-7x+18∵0 30 40 60 xxxx>⎧⎪->⎪⎨->⎪⎪->⎩∴0<x<3,故S=x2-7x+18(0<x<3).2.解:∵AB=∴AB22 =48,AC2=62=36,BC2)2=12.∴AB2=AC2+BC2.∴△ABC为直角三角形,且∠A=30°.连结PB,则PB为⊙O的直径.∴PD⊥AB.∵在Rt△APD中,∠A=30°,PA=x,∴PD=12x,∴y=PC2+PD2=(6-x)2+22x⎛⎫⎪⎝⎭=254x-12x+36(0<x<6).3.解:(1)作PE⊥QR于E,∵PQ=PR,∴QE=RE=12QR=12当t=3时,QC=3,设PQ 与DC相交于点G.∵PE∥DC,∴△QCG∽△QEP,∴234QEPSS∆⎛⎫= ⎪⎝⎭,∵S△QEP=12×4×3=6,∴S=2327648⎛⎫⨯=⎪⎝⎭(cm2)(2)当t=5时,CR=3.设PR与DC交于G,由△RCG∽△REP可求出S△RCG=278,∴S=S△PBR-S△RCG=12-278=698(cm2)(3)当5≤t≤8时,如答图所示,QB=t-5,RC=8-t. 设PQ 交AB 于点H,由△QBH ∽△QEP,得S △QBH =23(5)8t -.设PR 交CD 于G,由△PCG∽△REP,得S △RCG =38(8-t)2.∴S=12-23(5)8t --23(8)8t -=2339171448t t -+-即关系式为S=2339171448t t -+-.二、4.解:(1)根据解答者的性别、年龄实事求是地代入即可.(2)把p=120代入p=0.01x 2+0.05x+107,得120=0.01x 2+0.05x+107.解得x 1≈-39(舍去),x 2=34. 故该女性的年龄大约为34岁.(3)把p=130代入p=0.006x 2-0.02x+120,得130=0.006x 2-0.02x+120. 解得x 1≈-39(舍去),x 2=43. 故该男性的年龄大约为43岁. 三、5.解:∵PB=6-t,BE+EQ=6+t,∴S=12PB ·BQ=12PB ·(BE+EQ)= 12(6-t)(6+t)=-12t 2+18.∴S=-12t 2+18(0≤t≤6).6.解:若销售单价为x 元,则每千克降低(70-x)元,日均多销售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意,得 y=(x-30)[60+2(70-x)]-500 =-2x2+260x-6500(30≤x≤70). 即y=-2x2+260x-6500(30≤x≤70).7.解:由题意,得每件商品的销售利润为(x-30)元,那么m 件的销售利润为y=m(x-30).又∵m=162-3x,∴y=(x -30)(162-3x),即y=-3x 2+252x-4860.∵x -30≥0,∴x≥30.又∴m≥0,∴162-3x≥0,即x≤54. ∴30≤x≤54.∴所求关系式为y=-3x 2+252x-4860(30≤x≤54).8.解:(1)由图象可知,当x=600时,y=400;当x=700时,y=300,代入y=kx+b中,得400600 300700k bk b=+⎧⎨=+⎩解得k=-1,b=1000∴y=-x+1000(500≤x≤800)(2)销售总价=销售单价×销售量=xy,成本总价=成本单价×销售量=500y,代入毛利润公式,得S=xy-500y=x(-x+1000)-500(-x+1000)=-x2+1500x-500000.∴S=-x2+1500x-500000(500≤x≤800)四、(一)9.解:把x=3,y=15;x=-2,y=5分别代入y=ax2+(xm+c),得9()15 4()5 a km ca km c++=⎧⎨++=⎩解得a=2,km+c=-3, ∴y=2x2-3.(二)10.解:如答图,S矩形PNDM=xy,且2≤x≤4.延长NP交EF于G,显然PG∥BF.故PG AGBF AF=,即4212y x--=,∴y=-12x+5,∴S=xy=-12x2+5x,即S=-12x2+5x(2≤x≤4).五、11.解:(1)由矩形的一边长为x米,得另一边长为1222x-⎛⎫⎪⎝⎭米,即(6-x)米,∴S=x(6-x)=-x2+6x,即S=-x2+6x,其中0<x<6.(2)设此黄金矩形的长为x米,宽为y米,则由题意,得2()6x y x yx y⎧=+⎨+=⎩,解得39xy⎧=⎪⎨=-⎪⎩即当把矩形的长设计为3米时,矩形将成为黄金矩形,此时S=xy=(3)(9-2);可获得的设计费为2)×1000≈8498(元).12.解:(1)当t=5时,y=195,当t=25时,y=205.∴讲课开始后第25分钟时学生的注意力比讲课开始后第5分钟时更集中.(2)当0<t≤10时,y=-t 2+24t+100=-(t-12)2+244,该图的对称轴为t=12, 在对称轴左侧,y 随x 的增大而增大,所以,当t=10时,y 有最大值240.当10<t≤20时,y=240.当20<t≤40时,y=-7t+380,y 随x 的增大而减小,故此时y<240.所以,当t=20时,y 有最大值240.所以,讲课开始后10分钟时,学生的注意力最集中,能持续10分钟.(3)当0<t≤10,令y=-t 2+24t+100=180,∴t=4.当20<t≤40时,令=-7t+380=180,∴t=28.57.所以,老师可以经过适当安排,能在学生注意力达到所需的状态下讲解完这道题目.二次函数C 卷答案: 一、1.解:(1)y=20-10010x -×1=-0.1x+30. (2)z=y ·x-40y-500-1500=(30-0.1x)x-40(30-0.1x)-2000=30x-0.1x 2-1200+4x-2000=-0.1x 2+34x-3200.(3)当x=160时,z=-0.1x 2+34x-3200=-0.1×1602+34×160-3200=-320.把z=- 320代入z=-0.1x 2+34x-3200,得-320=-0.1x 2+34x-3200,x 2-340x+28800=0,∴(x -160) (x-180)=0.∴x=160或x=180.当x=160时,y=-0.1x+30=-0.1×160+30=14(万件);当x=180时,y=-0.1x+30=-0.1×180+30=12(万件).二、2.解:(1)∵OA=OB,AB=AC,∴△AOB 和△ABC 是等腰三角形.∴∠B=∠BAO=∠C.∴△AOB∽△BAC. ∴AB OB BC AB=, 即 48x y x =+, ∴y=2184x - ∵A 为¼MD上任意一点,BM≤AB≤BD,而==∴∴y=2184x - ( (2)若OA⊥CA,则AC 为⊙O 的切线,即当OC 2=OA 2+AC 2时,OA⊥CA,∴(4+y)2=42+ x 2,即y 2+8y=x 2.由y=14x 2-8和y 2+8y=x 2两式可得y=4,∴x=即当时,CA 是⊙O 的切线.(3)由(2)得是⊙O 的切线,此时y=4,而OE=BE-OB=12∴tan∠OAE=OE AE ==. 3.解:(1)过点A 作AD⊥BC 于D,则有×sin450=32=. 设△MNC 的MN 边上的高为h,∵MN∥BC,∴343x h -=. ∴h=1234x -, ∴S=12MN ·h=21123332482x x x x -=-+g , 即S=23382x x -+ (0<x<4). (2)若存在这样的线段MN,使S △MNC =2,则方程 23382x x -+=2必有实根, 即3x 2-12x+16=0 必有实根.但△=(-12)2-4×3×16=-48<0,说明此方程无实根,所以不存在这样的线段MN.。

(华师大版)初中数学九年级下册 第27章综合测试试卷02及答案

(华师大版)初中数学九年级下册 第27章综合测试试卷02及答案

第27章综合测试一、选择题(每小题4分,共32分)1.O e 的直径为10,点P 到圆心O 的距离为3,点P 与O e 的位置关系是()A.无法确定B .点P 在O e 外C .点P 在O e 上D .点P 在O e 内2.如图,在O e 中,AB 是直径,CD 是弦,AB CD ^,垂足为E ,连结20CO AD BAD °Ð=,,,则下列说法中正确的是( )第2题图A .2AD OB=B .CE EO =C .40OCE °Ð=D .2BOC BAD Ð=Ð3.圆锥的母线长为10,侧面积为60π,则这个圆锥的底面周长为()A .10πB .12πC .16πD .20π4.如图,ABC △的边AC 与O e 相交于C D ,两点,且经过圆心O ,边AB 与O e 相切,切点为B .已知30A °=∠,则C Ð的大小是( )第4题图A .30°B .45°C .60°D .40°5.如图,四边形ABCD 内接于O e ,AB 经过圆心,3B BAC Ð=Ð,则ADC Ð等于()第5题图A .100°B .112.5°C .120°D .135°6.如图,O e 的半径为1,ABC △是O e 的内接等边三角形,点D E ,在圆上,四边形BCDE 为矩形,这个矩形的面积是( )第6题图A .2B .C .32D7.正六边形的边心距为,则该正六边形的边长是( )A .B .2C .3D .8.如图,六边形ABCDEF 是正六边形,曲线1234567FK K K K K K K ……叫做“正六边形的渐开线”,其中弧1FK ,弧12K K ,弧23K K ,弧34K K ,弧45K K ,弧56K K ,……的圆心依次按点A B C DEF ,,,,,循环,其弧长分别记为123456l l l l l l ,,,,,,……当1AB =时, 2 019l 等于( )第8题图A .2 019π2B .673πC .2 019π4D .673π2二、填空题(每小题4分,共24分)9.如图,已知AB 是O e 的直径,弦CD 与AB 相交,若25BCD °Ð=,则ABD Ð=________度.第9题图10.如图所示,PA PB ,切O e 于点A B ,,点C 是O e 上的一点,且65ACB °Ð=,则P Ð=_______.第10题图11.如图,在O e 中,半径OC AB ^,垂足为点D .如果416CD AB ==,,那么OC =________.第11题图12.如图是一个几何体的三视图,则这个几何体的全面积是________ 2cm .主视图左视图俯视图第12题图13.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:()212=´+弧田面积弦矢矢.弧田(如图阴影部分面积)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为120°,半径等于4的弧田,按照上述公式计算出弧田的面积为________.第13题图14.如图,在平面直角坐标系中,P e 的圆心坐标是()()4 4a a ,>,半径为4,函数y x =的图象被P e 截得的弦AB 的长为,则a 的值是________.第14题图三、解答题(共44分)15.(6分)如图,正方形ABCD 内接于O e ,M 为»CD的中点,连结AM BM ,,求证:AM BM =.16.(6分)如图,O e 的周长等于8π cm ,正六边形ABCDEF 内接于O e .(1)求圆心O 到CD 的距离;(2)求正六边形ABCDEF 的面积.17.(8分)如图,AB 是O e 的直径,C D ,两点在O e 上,若45C °Ð=,(1)求ABD Ð的度数;(2)若30CDB °Ð=,3BC =,求O e 的半径.18.(8分)如图,在Rt ABC △中,90ACB °Ð=,以AC 为直径的O e 与AB 边交于点D ,过点D 作O e 的切线,交BC 于点E .(1)求证:EB EC =;(2)若以点O D E C ,,,为顶点的四边形是正方形,试判断ABC △的形状,并说明理由.19.(8分)如图,已知在Rt ABC △中,90ABC °Ð=,以AB 为直径的O e 与AC 交于点D ,点E 是BC 的中点,连结BD DE ,.(1)若13AD AB =,求sin C ;(2)求证:DE 是O e 的切线.20.(8分)如图,AB 为O e 的直径,C 为O e 上一点,ABC Ð的平分线交O e 于点D ,DE BC ^于点E .(1)试判断DE 与O e 的位置关系,并说明理由;(2)过点D 作DF AB ^于点F ,若3BE DF ==,求图中阴影部分的面积.四、附加题(共10分)21.(10分)已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式——海伦公式S =(其中a b c ,,是三角形的三边长,2a b c p ++=,S 为三角形的面积),并给出了证明.例如:在ABC △中,345a b c ===,,,那么它的面积可以这样计算:因为345a b c ===,,,所以62a b c P ++==,所以S ==6=.如图,在ABC △中,569BC AC AB ===,,,(1)用海伦公式求ABC △的面积;(2)求ABC △的内切圆半径r .第27章综合测试答案解析一、1.【答案】D【解析】因为O e 的直径为10,所以O e 的半径为5.因为35OP =<,所以点P 与O e 的位置关系是点在圆内.故选D.2.【答案】D【解析】因为AB CD ^,所以»»BCBD CE DE ==,,所以240BOC BAD °Ð=Ð=,所以904050OCE °°°Ð=-=.故选D.3.【答案】B【解析】设底面圆的周长为l ,根据题意,得6π21010l ´=,所以12πl =.故选B.4.【答案】A【解析】连结OB ,因为AB 与O e 相切,所以90ABO °Ð=,因为30A °Ð=,所以60AOB °Ð=,所以30C °Ð=,故选A.5.【答案】B【解析】因为AB 是O e 的直径,所以90ACB °Ð=.所以90CAB B °Ð+Ð=,因为3B BAC Ð=Ð,所以39022.5BAC BAC BAC °°Ð+Ð=Ð=,,所以67.5B °Ð=.因为四边形ABCD 内接于O e ,所以180112.5ADC B °°Ð=-Ð=.故选B.6.【答案】B【解析】如图,连结BD .因为四边形BCDE 为矩形,所以90BCD °Ð=,所以BD 是直径.因为ABC △是O e 的内接等边三角形,所以60BAC °Ð=,所以6030BDC DBC °°Ð=Ð=,,所以112CD BD ==,所以BC ==故选B.7.【答案】B【解析】如图,正六边形ABCDEF 中,O 是中心,OH 是边心距,连结OA OB ,,得60AOB °Ð=,所以OAB △为等边三角形,进而得到OAH △为直角三角形且30AOH °Ð=.因为OH =,所以12AH AB ==,.故选B.8.【答案】B 【解析】根据题意得12360π1π60π22π60π33ππ180318031803l l l ´´´=======,,则 2 019 2 019π673π3l ==.故选B.二、9.【答案】65【解析】因为AB 是直径,所以90ACB °Ð=.所以902565ACD ACB BCD °°°Ð=Ð-Ð=-=,所以65ABD ACD °Ð=Ð=.10.【答案】50°【解析】分别连结OA OB ,,因为PA PB ,切O e 于点A B ,,所以OA PA OB PB ^^,,所以90PAO PBO °Ð=Ð=,所以180P AOB °Ð+Ð=,因为65ACB °Ð=,所以130AOB °Ð=,所以18013050P °°°Ð=-=.11.【答案】10【解析】因为OC AB ^,所以18902AD AB ADO °==Ð=,.设CO x =,则4AO x DO x ==-,,在Rt ADO △中,222AO AD OD =+,即()22284x x =+-,解得10x =.所以10CO =.12.【答案】)1π【解析】由三视图可知,此几何体为圆锥,其底面半径为1 cm ,高为3 cm ,由勾股定理得圆锥母线长()cm l ==.所以()2ππ1cm S rl ==´=侧.)()21π cm S S S =+==+全底侧.13.【答案】2+【解析】如图,由题意可得4OA =.因为120AOB °Ð=,所以602422AOD OD AD CD °Ð=====-=,,.因为OC AB ^,所以2AB AD ==所以()()221122222=´+=+=+弧田面积弦矢矢.14.【答案】4+【解析】如图,作PC x ^轴于C ,交AB 于D ,作PE AB ^于E ,连结PB ,因为P e 的圆心坐标是()4 a ,,所以4OC PC a ==,,把4x =代入y x =得4y =,所以D 点坐标为()4 4,,所以4CD =,所以OCD △为等腰直角三角形,因为PE AB ^,所以PED △也为等腰直角三角形,所以1122AE BE AB ===´=在Rt △,所以2PE ==,所以PD ==,所以4a =+.三、15.【答案】证明:因为四边形ABCD 是正方形,所以AD BC =,所以»»AD BC=.因为M 为»CD中点,所以¼¼MDMC =,所以»¼»¼AD MDBC MC +=+,所以¼¼AM BM=,所以AM BM =.16.【答案】解:(1)连结OC OD ,,作OH CD ^于H ,因为O e 的周长等于8π cm ,所以半径 4 cm OC =.因为六边形ABCDEF 是正六边形,所以60COD °Ð=,所以30COH °Ð=,所以圆心O 到CD 的距离为()4cos30cm °´=.(2)正六边形ABCDEF 的面积为()2146cm 2´´=.17.【答案】解:(1)因为AB 是O e 的直径,所以90ADB °Ð=.因为45A C °Ð=Ð=,所以90904545ABD A °°°°Ð=-Ð=-=.(2)连结AC ,因为AB 是O e 的直径,所以90ADB °Ð=.因为303CAB CDB BC °Ð=Ð==,,所以6AB =.所以O e 的半径为3.18.【答案】(1)证明:如图,连结CD .因为90ACB °Ð=,所以AC BC ^,所以CB 为O e 的切线.又因为DE 是O e 的切线,所以ED EC =.所以CDE DCE Ð=Ð.因为AC 为O e 的直径,所以90ADC °Ð=,所以90BDC °Ð=,所以9090CDE EDB DCE CBD °°Ð+Ð=Ð+Ð=,,所以EDB CBD Ð=Ð,所以ED EB =,所以EB EC =.(2)解:ABC △为等腰直角三角形.理由:因为四边形ODEC 为正方形,所以90OC CE ACB °=Ð=,,因为1122OC AC CE BC ==,,所以AC BC =.所以ABC △为等腰直角三角形.19.【答案】(1)解:因为AB 为直径,所以90ADB °Ð=,所以90ABD BAD °Ð+Ð=,因为90ABC °Ð=,所以90C BAC °Ð+Ð=,所以C ABD Ð=Ð,因为1sin 3ADABD AB Ð==,所以1sin 3C =.(2)证明:连结OD ,因为AB 是O e 的直径,所以90ADB °Ð=,所以90BDC °Ð=.因为E 为BC 的中点,所以DE BE CE ==,所以EDB EBD Ð=Ð.因为OD OB =,所以ODB OBD Ð=Ð.因为90ABC °Ð=,所以90EDO EDB ODB EBD OBD ABC °Ð=Ð+Ð=Ð+Ð=Ð=,所以OD DE ^,所以DE 是O e 的切线.20.【答案】解:(1)DE 与O e 相切.理由:连结DO ,因为DO BO =,所以ODB OBD Ð=Ð.因为BD 平分ABC Ð,所以EBD DBO Ð=Ð,所以EBD BDO Ð=Ð,所以DO BE ∥.因为DE BC ^,所以OD DE ^,所以DE 与O e 相切.(2)因为BD 平分ABC DE BE DF AB Ð^^,,,所以3DE DF ==,因为BE =所以6BD ==,因为3162DF sin DBF BD Ð===,所以30DBA °Ð=,所以60DOF °Ð=.在Rt OFD △中,sin60tan60DF DF OD OF°°==,,所以3360tan 6i 0s n OD OF °°====所以132π2OFD AOD S S S =-=-=△阴影扇形四、21.【答案】解:(1)因为569BC AC AB ===,,,所以5691022BC AC AB P ++++===,所以S ==故ABC △的面积为.(2)如图,连结AO BO CO ,,,ABC OBC OAC OABS S S S =++△△△△()12r BC AC AB =++,所以()15692r =++,解得r =故ABC △的内切圆半径r。

新华师版九年级下期末测试(二)附答案

新华师版九年级下期末测试(二)附答案

新华师版九年级下期末测试(二)附答案总分120分120分钟一.选择题(共8小题,每题3分)1.下列函数是二次函数的是()A.y=2某+1B.y=﹣2某+1C.y=某+2D.y=某﹣22.下列关系式中,属于二次函数的是(某为自变量)()A.y=某3.抛物线y=2某,y=﹣2某,y=某共有的性质是()A.开口向下B.对称轴是y轴C.都有最低点D.y的值随某的增大而减小的图22222B.y=C.y=D.y=a某224.已知函数y=﹣(某﹣m)(某﹣n)(其中m<n)的图象如图所示,则一次函数y=m某+n与反比例函数y=象可能是()A.2B.C.2D.5.二次函数y=a某+b某+c(a≠0,a,b,c为常数)的图象如图,a 某+b某+c=m有实数根的条件是()A.m≥﹣2B.m≥5C.m≥0D.m>46.如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是()A.AE=BEB.=C.OE=DED.∠DBC=90°7.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为()A.2.5B.1.6C.1.5D.18.在半径为2的圆中,弦AB的长为2,则A.B.C.D.的长等于()二.填空题(共6小题,每题3分)9.如图,如果从半径为3cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径是_________cm.10.如果一个正六边形的边心距的长度为cm,那么它的半径的长度为_________cm.11.如图,已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为20厘米,AC与MN在同一直线上,开始2时点A与点N重合,让△ABC以每秒2厘米的速度向左运动,最终点A与点M重合,则重叠部分面积y(厘米)与时间t(秒)之间的函数关系式为_________.12.将抛物线y=﹣(某﹣3)+5向下平移6个单位,所得到的抛物线的顶点坐标为_________.13.二次函数y=某﹣m某+3的图象与某轴的交点如图,根据图中信息可得到n的值是_________.2214.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=_________度.三.解答题(共10小题)15.(6分)如图,在⊙O中,点C是的中点,弦AB与半径OC相交于点D,AB=12,CD=2.求⊙O半径的长.16.(6分)如图,⊙O的半径OD⊥弦AB于点C,联结AO并延长交⊙O于点E,联结EC.已知AB=8,CD=2.(1)求OA的长度;(2)求CE的长度.17.(6分)如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为D,直线AC交⊙C于点E、F,且CF=AC.(1)求∠ACB的度数;(2)若AC=8,求△ABF的面积.。

华师大版九年级数学下册期末综合检测试卷含答案解析

华师大版九年级数学下册期末综合检测试卷含答案解析

华师大版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.要得到y=(x-3)2-2的图象,只要将y=x2的图象()A. 由向左平移3个单位,再向上平移2个单位;B. 由向右平移3个单位,再向下平移2个单位;C. 由向右平移3个单位,再向上平移2个单位;D. 由向左平移3个单位,再向下平移2个单位.2.为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为()A. 9B. 10C. 12D. 153.如图,⊙O是△ABC的内切圆,则点O是△ABC的()A. 三条边的垂直平分线的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条高的交点4.如图,AB为⊙O的直径,CD为⊙O的弦,∠ABD=63°,则∠BCD为()A. 37°B. 47°C. 27°D. 63°5.已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是A. x1=1,x2=-1B. x1=1,x2=2C. x1=1,x2=0D. x1=1,x2=36.如图,抛物线与两坐标轴的交点分别为(-1,0),(2,0),(0,2),则当y>2时,自变量x的取值范围是()A. 0<x<B. 0<x<1C. <x<1D. -1<x<27.二次函数y=x2+5x+4,下列说法正确的是()A. 抛物线的开口向下B. 当x>﹣3时,y随x的增大而增大C. 二次函数的最小值是﹣2D. 抛物线的对称轴是x=﹣8.若一个正六边形的半径为2,则它的边心距等于( ).A. 2B. 1C.D.9.如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA = 30°,则OB的长为()A. B. 4 C. D. 210.抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于C点,其中﹣2<h<﹣1,﹣1<x B<0,下列结论①abc <0;②(4a﹣b)(2a+b)<0;③4a﹣c<0;④若OC=OB,则(a+1)(c+1)>0,正确的为()A. ①②③④B. ①②④C. ①③④D. ①②③二、填空题(共10题;共30分)11.圆锥底面圆的半径为2,母线长为5,它的侧面积等于________(结果保留π).12.如果抛物线y=ax2+5的顶点是它的最低点,那么a的取值范围是________.13.在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为________人.14.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=________度.15.如图,正六边形ABCDEF内接于圆O,半径为4,则这个正六边形的边心距OM为________16.(2017•莱芜)圆锥的底面周长为,母线长为2,点P是母线OA的中点,一根细绳(无弹性)从点P 绕圆锥侧面一周回到点P,则细绳的最短长度为________.17.在同圆中,若,则AB ________2CD(填>,<,=).18.已知函数y=(k+2)是关于x的二次函数,则k=________ .19.如图,AD是⊙O的直径,弦BC⊥AD,连接AB、AC、OC,若∠COD=60°,则∠BAD=________ .20.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为________。

华师版九年级数学下册期末学情评估 附答案 (2)

华师版九年级数学下册期末学情评估 附答案 (2)

华师版九年级数学下册期末学情评估一、选择题(本题共10小题,每小题4分,共40分)1.下列函数是二次函数的是()A.y=2x+1 B.y=2x C.y=3x2+1 D.y=1x2+12.以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量3.如图,点A,B,C在⊙O上,∠BAC=54°,则∠BOC的度数为() A.27°B.108°C.116°D.128°(第3题)(第7题)4.把二次函数y=x2-2x+3化为顶点式,结果正确的是() A.y=(x-1)2+4 B.y=(x+1)2-4C.y=(x+1)2+2 D.y=(x-1)2+25.将抛物线y=12(x-4)2+5向上平移2个单位,得到新抛物线的表达式是()A.y=12(x-4)2+7 B.y=12(x-2)2+5C.y=12(x-6)2+5 D.y=12(x-4)2+36. 小新家4月份前6天的用米量如下表:用米量(kg)0.60.80.9 1.0天数122 1 估计小新家4月份用米量为()A.24 kg B.25 kg C.26 kg D.27 kg7.如图是一个石拱门的截面示意图,已知它是一段优弧,小松测得AB为8 m,石拱门的顶部C到地面AB的距离也为8 m,则这个石拱门所在圆的半径为()A.4 m B.5 m C.6 m D.8 m8.一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是() A.1003π B.2003π C.1005π D.2005π9.在同一平面直角坐标系中,函数y=12x2+kx与y=kx+k(k≠0)的图象可以是()10.函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,且x1>1,x2-x1=4,当1≤x≤3时,该函数的最小值m与b的关系式是()A.m=2b+5 B.m=4b+8C.m=6b+15 D.m=-b2+4二、填空题(本题共6小题,每小题4分,共24分)11.抛物线y=x2+3与y轴的交点坐标是__________.12.某校共有1 000名学生.为了解学生的中长跑成绩分布情况,随机抽取100名学生的中长跑成绩,画出条形统计图,如图.根据所学的统计知识可估计该校中长跑成绩优秀的学生人数是________.(第12题)(第13题)13.如图,△ABC中,∠ABC=90°,AB=2,AC=4,点O为BC的中点,以O 为圆心,OB为半径作半圆,交AC于点D,则图中阴影部分的面积是________.14.如图,在四边形ABCD中,AB=BC=BD.设∠ABC=α,则∠ADC=________(用含α的代数式表示).(第14题)(第15题)15.如图,⊙O的半径是2,直线l与⊙O相交于A,B两点,M,N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB的面积的最大值是________.16.已知抛物线y=-x2+6x-5的顶点为P,对称轴l与x轴交于点A,N是P A 的中点.M(m,n)在抛物线上,M关于直线l的对称点为B,M关于点N的对称点为C.当1≤m≤3时,线段BC的长随m的增大而发生的变化是:________________________________.(“变化”是指增减情况及相应m的取值范围)三、解答题(本题共9小题,共86分)17.(8分)一个二次函数的图象经过(-3,0),(-1,0),(0,-3)三点,求这个二次函数的表达式.18.(8分)如图,⊙O的直径AB垂直弦CD于点M,且点M是半径OB的中点,CD=6,求直径AB的长.(第18题)19.(8分)某中学九年级部分同学参加全国初中数学竞赛,指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了频数分布直方图,如图所示,请根据直方图回答下列问题:(1)该中学参加本次数学竞赛的有多少名同学?(2)如果成绩在90分以上(含90分)的同学获奖,那么该中学参赛同学的获奖率是多少?(3)图中还提供了其他信息,例如该中学没有获得满分的同学等,请再写出两条信息.(第19题)20.(8分)如图,已知线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边均相切.(第20题)21. (8分)某超市茶叶专柜经销一种安溪铁观音茶叶,每千克成本为100元,市场调查发现,在一段时间内,每天的销售量y (kg)随销售单价x(元/kg)的变化而变化,具体的变化(一次函数关系)如下表:销售单价x(元/kg)120140160180销售量y(kg)1201008060(1)求y与x的函数关系式;(2)设这种茶叶在这段时间内的销售利润为W元,那么当该茶叶的销售单价为多少元/kg时,可获得最大利润?最大利润为多少元?22.(10分)如图,四边形ABCD中,AD∥BC,∠BAD=90°,CB=CD,连结BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.(1)试判断CD与⊙B的位置关系,并说明理由;(2)若AB=23,∠BCD=60°,求图中阴影部分的面积.(第22题)23.(10分)如图,点D在以AB为直径的⊙O上,过点D作⊙O的切线交AB的延长线于点C,AE⊥CD交直线CD于点E,交⊙O于点F,连结AD,FD.(1)求证:∠DAE=∠DAC;(2)求证:DF·AC=AD·DC;(3)若sin C=14,AD=410,求EF的长.(第23题)24.(12分)阅读下面的材料:我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+By+C=0(A,B,C是常数,且A,B均不为0).如图①,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是d=|A×m+B×n+C|A2+B2.例:求点P(1,2)到直线y=512x-16的距离d′时,先将y=512x-16化为5x-12y-2=0,再由上述距离公式求得d′=|5×1+(-12)×2+(-2)|52+(-12)2=2113.解答下列问题:如图②,已知直线y=-43x-4与x轴交于点E,与y轴交于点F,抛物线y=x2-4x+5上的一点M(3,2).(1)求点M到直线EF的距离;(2)点P是抛物线上一动点,求出使△PEF面积最小时点P的坐标及△PEF面积的最小值.(第24题)25.(14分)如图①,抛物线y=ax2+bx-2(a≠0)与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C,直线y=-x与该抛物线交于E,F两点.(1)求抛物线的表达式;(2)P是直线EF下方抛物线上的一个动点,作PH⊥EF于点H,求PH的最大值;(3)如图②,以点C为圆心,1为半径作圆,⊙C上是否存在点M,使得△BCM是以CM为直角边的直角三角形?若存在,直接写出点M的坐标;若不存在,请说明理由.(第25题)答案一、1.C 2.A 3.B 4.D 5.A 6.B 7.B 8.C 9.C 10.C二、11.(0,3) 12.270 13.53-2π4 14.180°-α2 15.4 216.当1≤m ≤3-2时,BC 的长随m 的增大而减小;当3-2<m ≤3时,BC 的长随m 的增大而增大. 三、17.解:设这个二次函数的表达式是y =ax 2+bx +c ,把(-3,0),(-1,0),(0,-3)代入y =ax 2+bx +c ,得⎩⎨⎧9a -3b +c =0,a -b +c =0,c =-3,解得⎩⎨⎧a =-1,b =-4,c =-3.所以所求的二次函数的表达式是y =-x 2-4x -3. 18.解:如图,连结OC .(第18题)∵直径AB ⊥CD ,∴CM =DM =12CD =3. ∵M 是OB 的中点,∴OM =12OB =12OC .由勾股定理,得OC 2=OM 2+CM 2, ∴OC 2=14OC 2+32, ∴OC =23(负值舍去), ∴直径AB 的长为4 3.19.解:(1)4+6+8+7+5+2=32(名),所以该中学参加本次数学竞赛的有32名同学. (2)由题图可知,该中学参赛同学的获奖率为 7+5+232×100%=43.75%. (3)该中学参赛同学的成绩均不低于60分,成绩在80~90分的人数最多.(答案不唯一,合理即可)20.解:①作∠ACB 的平分线CD ,②在CD 上截取CO =a ,③作OE ⊥CA 于点E ,以O 为圆心,OE 的长为半径作圆. 如图所示,⊙O 即为所求.(第20题)21.解:(1)由题可设y =kx +b (k ≠0),将(120,120),(140,100)代入上式,得⎩⎨⎧120k +b =120,140k +b =100,解得⎩⎨⎧k =-1,b =240. 所以y =-x +240.(2)由题可得,W =(x -100)(-x +240), 整理,得W =-x 2+340x -24 000=-(x -170)2+4 900. 所以当x =170时,W 可取得最大值,W 最大=4 900.即当该茶叶的销售单价为170元/kg 时,可获得最大利润,最大利润为4 900元.22.解:(1)CD 与⊙B 相切.理由:如图,过点B 作BF ⊥CD 于点F ,∴∠BFD =90°.(第22题)∵AD ∥BC ,∴∠ADB =∠CBD .∵CB =CD ,∴∠CBD =∠CDB ,∴∠ADB =∠CDB .又∵BD =BD ,∠BAD =∠BFD =90°,∴△ABD ≌△FBD ,∴BF =BA ,即点F 在⊙B 上,∴CD 与⊙B 相切.(2)∵∠BCD =60°,CB =CD ,∴△BCD 是等边三角形,∴∠CBD =60°,∴∠ADB =60°,∴∠ABD =90°-∠ADB =30°.∵AB =23,∴AD =AB ·tan ∠ABD =23×tan 30°=2,∴阴影部分的面积为S △ABD -S 扇形ABE =12×23×2-30×π×(23)2360=23-π. 23.(1)证明:连结OD .∵DC 为⊙O 的切线,∴OD ⊥CD ,即∠ODC =90°.∵AE ⊥CD ,∴∠AED =90°,∴∠AED =∠ODC ,∴AE ∥OD ,∴∠ODA =∠DAE .∵OD =OA ,∴∠ODA =∠DAC ,∴∠DAE =∠DAC .(2)证明:设∠DAE =α,由(1)可知∠CAD =∠ODA =∠DAE =α.连结BD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ABD =90°-α.∵四边形ABDF 为⊙O 的内接四边形,∴∠AFD +∠ABD =180°,∴∠AFD =90°+α.∵∠CDO =90°,∴∠ADC =90°+α,∴∠AFD =∠ADC .在△AFD 和△ADC 中,∠AFD =∠ADC ,∠F AD =∠DAC ,∴△AFD ∽△ADC ,∴DF CD =AD AC ,即DF ·AC =AD ·DC .(3)解:设OD =x ,在Rt △COD 中,sin C =14,∴OC =4x .根据勾股定理,得CD =15x .∵OD ∥AE ,∴△COD ∽△CAE ,∴OD AE =OC AC =CD CE ,即x AE =4x 5x =15x CE ,∴AE =54x ,CE =5154x , ∴DE =154x .由(2)可知△AFD ∽△ADC ,∴AD AC =AF AD ,即4105x =AF 410, ∴AF =32x .在Rt △ADE 中,AE 2+DE 2=AD 2,∴2516x 2+1516x 2=160,∴x =8(负值舍去).∴AF =32x =4,AE =54x =10,∴EF =AE -AF =10-4=6.24.解:(1)将y =-43x -4化为4x +3y +12=0,由题中距离公式可得点M 到直线EF 的距离为|4×3+3×2+12|42+32=6. (2)设P (t ,t 2-4t +5),则点P 到直线EF 的距离d ″=|4t +3(t 2-4t +5)+12|42+32=|3t 2-8t +27|5 =⎪⎪⎪⎪⎪⎪3⎝ ⎛⎭⎪⎫t -432+6535=35⎝ ⎛⎭⎪⎫t -432+133. ∴当t =43时,d ″最小,为133.当t =43时,t 2-4t +5=⎝ ⎛⎭⎪⎫432-4×43+5=139, 此时P ⎝ ⎛⎭⎪⎫43,139. 在y =-43x -4中,令x =0,则y =-4,∴F (0,-4).令y =0,则x =-3,∴E (-3,0)∴EF =32+42=5,∴△PEF 面积的最小值为12×5×133=656.25.解:(1)∵抛物线y =ax 2+bx -2(a ≠0)与x 轴交于A (-3,0),B (1,0)两点,∴⎩⎨⎧9a -3b -2=0,a +b -2=0,解得⎩⎪⎨⎪⎧a =23,b =43,∴抛物线的表达式为y =23x 2+43x -2.(2)将直线EF 向左平移至直线l ,使l 与抛物线只有一个交点,记为P ′,当点P 在点P ′处时,PH 最大,过点O 作OD ⊥l 于点D ,设直线l 交x 轴于点G ,则PH 最大=OD .∵直线EF 的表达式为y =-x ,∴设直线l 的表达式为y =-x +m ①.由(1)知抛物线的表达式为y =23x 2+43x -2②,联立①②,化简得23x 2+73x -2-m =0,∴Δ=499-4×23×(-2-m )=0, 解得m =-9724,∴直线l 的表达式为y =-x -9724.令y =0,得x =-9724,∴G ⎝ ⎛⎭⎪⎫-9724,0,∴OG =9724,在Rt △ODG 中,易得OD =OG2=97248,∴PH 最大=97248.(3)存在.点M 的坐标为⎝ ⎛⎭⎪⎫-35,-65或(1,-2)或⎝ ⎛⎭⎪⎫-255,55-2或⎝ ⎛⎭⎪⎫255,-55-2.。

【华东师大版】九年级数学下期末试卷(带答案)

【华东师大版】九年级数学下期末试卷(带答案)

一、选择题1.如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是()A.9 B.10 C.11 D.122.如图,是一个由若干个小正方体组成的几何体的三视图.则该几何体最多可由多少个小正方体组合而成?( )A.11个B.14个C.13个D.12个3.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离()A.始终不变B.越来越远C.时近时远D.越来越近4.如图所示,所给的三视图表示的几何体是()A.圆锥B.四棱锥C.三棱锥D.三棱柱5.如图是有一些相同的小正方体构成的立体图形的三视图.这些相同的小正方体的个数是()A.4 B.5 C.6 D.76.如图,为方便行人推车过天桥,市政府在10m高的天桥两端分别修建了50m长的斜道.用科学计算器计算这条斜道的倾斜角,下列按键顺序正确的是()A .sin0.2=B .2ndF sin0.2=C .tan0.2=D .2ndF tan0.2=7.如图,在平面直角坐标系中,Rt OAB 的斜边OA 在第一象限,并与x 轴的正半轴夹角为30度,C 为OA 的中点,BC=1,则A 点的坐标为( )A .()3,3B .()3,1C .()2,1D .()2,3 8.如图,在Rt ABC ∆中,90ACB ∠=︒,22AC BC ==,CD AB ⊥于点D .点P 从点A 出发,沿A D C →→的路径运动,运动到点C 停止,过点P 作PE AC ⊥于点E ,作PF BC ⊥于点F .设点P 运动的路程为x ,四边形CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A .B .C .D .9.如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x 轴的正半轴上,矩形的另一个顶点D 在y 轴的正半轴上,矩形的边,,AB a BC b DAO x ==∠=.则点C 到x 轴的距离等于( )A .cos sin a x b xB .cos cos a x b xC .sin cos a x b xD .sin sin a x b x 10.如图,等边ABC 边长为a ,点O 是ABC 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE 形状不变;②ODE 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .111.如图,练习本中的横格线都平行且相邻两条横格线间的距离都相等,同一条直线上的三个点A ,B ,C 都在横格线上.若线段AB =6,则线段AC 的长为( )A .12B .18C .24D .3012.如图,正方形ABCD 的顶点A ,B 分别在x 轴和y 轴上与双曲线18y x=恰好交于BC 的中点E ,若2OB OA =,则ABO S △的值为( )A .6B .8C .12D .16第II 卷(非选择题) 请点击修改第II 卷的文字说明参考答案二、填空题13.一个几何体由几个大小相同的小正方体搭成,这个几何体的俯视图和左视图如图所示,则这个几何体中小正方体的个数最少是________个.14.由若干个相同的小正方体搭成的一个几何体从正面和从左面看到的形状图如图所示,则所需的小正方体的个数最多是______个.15.写出两个三视图形状都一样的几何体:__________、__________.16.如图,某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C 处测得A ,B 两点的俯角分别为45和30.若飞机离地面的高度CH 为1200米,且点H ,A ,B 在同一水平直线上,则这条江的宽度AB 为______米(结果保留根号).17.在ABCD 中,若30B ∠=︒,BC 10cm =,6AB cm =,则ABCD 的面积是__________.18.已知直角三角形一个锐角60°,斜边长为4,那么此直角三角形斜边上的的高是________.19.已知线段=AB 6,点c 是线段AB 的黄金分割点,AC BC >.那么AC BC -=________.20.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点A 在反比例函数221a a y x++=的图象上.若点C 的坐标为(2,2)--,则a 的值为_______.三、解答题21.如图1,国庆期间某广场旗杆附近搭建了一座花篮.图2为从该场景抽象出的数学模型,已知花篮高度5=AB m ,某一时刻花篮在阳光下的投影3BC m =.(1)请你用尺规作图法在图2中作出此时旗杆DE 在阳光下的投影EF ;(不写作法,保留作图痕迹)(2)在测量AB 的投影时,同时测出旗杆DE 在阳光下的投影6EF m ,请你计算DE 的长.22.在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆AB=2米,它的影子BC=1.6米,木杆PQ 的影子有一部分落在墙上,PM=1.2米,MN=0.8米,求木杆PQ 的长度.23.如图,在△ABC 中,BD 、CE 是△ABC 的高,连接DE .(1)求证:ABD ∽ ACE ;(2)若∠BAC =60°,BC =2DE 的长.24.作图题:如图所示,图中的小方格都是边长为1的正方形,△ABC 与△A 'B 'C '是以点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O ;(2)△A 'B 'C '与△ABC 的位似比是 ;(3)以位似中心O 为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A 'B 'C '关于点O 中心对称的△A "B "C ",并直接写出△A "B "C "各顶点的坐标. 25.如图,在平面直角坐标系xOy 中,直线y =2x +2与函数y =k x (k ≠0)的图象交于A ,B 两点,且点A 的坐标为(1,m ).(1)求k ,m 的值;(2)直接写出关于x 的不等式2x +2>k x的解集; (3)若Q 在x 轴上,△ABQ 的面积是6,求Q 点坐标.26.已知:直线3y kx k =+,交x 轴于B ,交y 轴于A ,且3OA OB =.(1)如图1,求直线AB 的解析式;(2)如图2,点D 在AO 上且AD t =连接BD ,过BD 作DE BD ⊥于D ,过A 作AE y ⊥轴于A ,E 点的横坐标为m ,求m 与t 的函数关系式;(3)如图3,在(2)的条件下,点P 在BD 的延长线上,P 的横坐标为t ,点F 在EA 的延长线上,点N 在AD 上,连接FN ,连接PF 并延长交直线AB 于点M ,若E BPM ∠=,2ANF ADE ∠=∠,2AN DN =,求点M 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据主视图与俯视图得出答案.【详解】解:根据几何体的主视图和俯视图,可以得出那个主视图看最少5个,那个俯视图看,最左边正方形前后可以有三列,分别有三个故最多有332=11⨯+个.故选C .【点睛】本题考查了三视图的应用,根据从俯视图看,最左边正方形前后可以有三列,分别有三个从而得出答案是解决问题的关键.2.A解析:A【分析】根据画三视图的方法,得到各行构成几何体的小正方体的个数,相加即可.【详解】综合三视图,第一行:第1列没有,第2列没有,第3列有1个;第二行:第1列有2个,第2列有2个,第3列有1个;第三行:第1列3个,第2列有2个,第3列没有;一共有:1+2+2+1+3+2=11个,故选:A.【点睛】此题考查了几何体三视图的应用问题,解题的关键是根据三视图得出几何体结构特征.3.D解析:D【解析】分析:由题意易得,小阳和小明离光源是由远到近的过程,根据中心投影的特点,即可得到身影越来越短,而两人之间的距离始终与小阳的影长相等,则他们两人之间的距离越来越近.详解:因为小阳和小明两人从远处沿直线走到路灯下这一过程中离光源是由远到近的过程,所以他在地上的影子会变短,所以他们两人之间的距离越来越近.故选D.点睛:考查了中心投影的特点和规律.中心投影的特点是,等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.4.D解析:D【解析】分析:由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.详解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为三棱柱.故选D.点睛:考查了由三视图判断几何体,用到的知识点为:由左视图和俯视图可得几何体是柱体,锥体还是球体,由主视图可确定几何体的具体形状.5.B解析:B【解析】根据题意可知:第一行第一列只能有1个正方体,第二列有3个正方体,第一行第3列有1个正方体,共需正方体1+3+1=5.故选B .6.B解析:B【分析】 先利用正弦的定义得到10sin 0.250A ==,然后利用计算器求锐角∠A . 【详解】 ∵ 10sin 0.250A ==, ∴ 用计算器求值的顺序为20.2ndFsin =,故选:B .【点睛】本题考查了锐角三角函数及计算器的应用,掌握科学计算器的应用是解决本题的关键. 7.B解析:B【分析】根据题画出图形,再根据直角三角形斜边上的中线等于斜边的一半可得AB 的值,再根据勾股定理可得OB 的值,进而可得点A 的坐标.【详解】解:如图,过A 点作AD x ⊥轴于D 点,Rt OAB ∆的斜边OA 在第一象限,并与x 轴的正半轴夹角为30.30AOD ∴∠=︒,12AD OA ∴=, C 为OA 的中点,1AD AC OC BC ∴====,2OA ∴=,3OD ∴=,则点A 的坐标为:(31).故选:B .【点睛】本题考查了解直角三角形、坐标与图形性质、直角三角形斜边上的中线,解决本题的关键是综合运用以上知识.8.A解析:A【分析】分两段来分析:①点P 从点A 出发运动到点D 时,写出此段的函数解析式,则可排除C 和D ;②P 点过了D 点向C 点运动,作出图形,写出此阶段的函数解析式,根据图象的开口方向可得答案.【详解】解:∵90ACB ∠=︒,22AC BC ==, ∴45A ∠=︒,4AB =,又∵CD AB ⊥,∴2AD BD CD ===,45ACD BCD ∠=∠=︒,∵PE AC ⊥,PF BC ⊥,∴四边形CEPF 是矩形,I .当P 在线段AD 上时,即02x <≤时,如解图1∴2sin 2AE PE AP A x ===, ∴222CE x =-, ∴四边形CEPF 的面积为2221222222y x x x x ⎛⎫=-=-+ ⎪ ⎪⎝⎭,此阶段函数图象是抛物线,开口方向向下,故选项CD 错误;II .当P 在线段CD 上时,即24x <≤时,如解图2:依题意得:4CP x =-,∵45ACD BCD ∠=∠=︒,PE AC ⊥,∴sin CE PE CP ECP ==⨯∠,∴()()24sin 4542CE PE x x ==-︒=-, ∴四边形CEPF 的面积为()222144822x x x y ⎡⎤-=-+⎢⎥⎣⎦=,此阶段函数图象是抛物线,开口方向向上,故选项B 错误;故选:A .【点睛】本题考查了动点问题的函数图象,分段写出函数的解析式并数形结合进行分析是解题的关键.9.A解析:A【分析】作CE ⊥y 轴于E .解直角三角形求出OD ,DE 即可解决问题.【详解】作CE ⊥y 轴于E .在Rt △OAD 中,∵∠AOD=90°,AD=BC=b ,∠OAD=x ,∴OD=sin OAD sin AD b x ∠=,∵四边形ABCD 是矩形,∴∠ADC=90°,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=x , ∴在Rt △CDE 中,∵CD=AB=a ,∠CDE=x , ∴DE= cos CDE cos CD a x ∠=,∴点C 到x 轴的距离=EO=DE+OD=cos sin a x b x ,故选:A .【点睛】本题考查了解直角三角形的应用,矩形的性质,正确作出辅助线是解题的关键.10.A解析:A【分析】连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和OE ,然后三角形的面积公式可得S △ODE2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC2即可判断②和③;求出BDE 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC 是等边三角形,点O 是ABC 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120°∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH ∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠∴∴S △ODE =12DE·OH=3OE 2 ∴OE 最小时,S △ODE 最小, 过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE′=12BC=12a 在Rt △OBE′中 OE′=BE′·tan ∠OBE′=12a 33 ∴S △ODE 的最小值为34OE′2=2348a ∵△ODB ≌△OEC ∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =1223 ∵2348=1423 ∴S △ODE ≤14S 四边形ODBE 即ODE 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE =2312a ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE 的周长最小 ∵3OE∴OE 最小时,DE 最小而OE 的最小值为3 ∴DE 33=12a∴BDE的周长的最小值为a+12a=1.5a,故④正确;综上:4个结论都正确,故选A.【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.11.C解析:C【分析】根据已知图形构造相似三角形,进而得出△ABD∽△ACE,即可求出AC的长.【详解】解:如图所示:过点A作平行线的垂线,交点分别为D,E,可得:△ABD∽△ACE,则AB AD AC AE=,即628 AC=,解得:AC=24,故选:C.【点睛】此题主要考查了相似三角形的应用,根据题意得出△ABD∽△ACE是解题关键.12.C解析:C【分析】过点B作x轴的平行线,过点A,C分别作y轴的平行线,两线相交于M,N,证明△ABM≌△BCN,可得BN=AM=2a,CN=BM=a,所以点C坐标为(2a,a),BC的中点E的坐标为(a,1.5a),把点E代入双曲线18yx=可得a的值,进而得出S△ABO的值.【详解】如图,过点B作x轴的平行线,过点A,C分别作y轴的平行线,两线相交于M,N,∵四边形ABCD为正方形,∴∠ABC=90°,AB=BC,∴∠ABM=90°-∠CBN=∠BCN,∵∠M=∠N=90°,∴△ABM≌△BCN(AAS),∵OB=2OA,∴设OA=a,OB=2a,则BN=AM=2a,CN=BM=a,∴点C坐标为(2a,a),∵E为BC的中点,B(0,2a),∴E(a,1.5a),把点E代入双曲线18yx得1.5a2=18,a2=12,∴S△ABO=12a•2a=12,故选:C.【点睛】此题考查反比例函数k的几何意义,三角形全等的判定和性质,解题的关键是构造全等三角形表示出点E的坐标.二、填空题13.5【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由左视图可得第二层所须小正方体最少的个数相加即可得答案【详解】由俯视图和左视图可知此几何体有2层第一层有4个小正方体第二层最少有1个小正解析:5【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层所须小正方体最少的个数,相加即可得答案.【详解】由俯视图和左视图可知此几何体有2层,第一层有4个小正方体,第二层最少有1个小正方体,∴这个几何体中小正方体的个数最少是5个,故答案为:5【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.14.7【分析】根据主视图和左视图得出这个几何体的组成即可得出答案【详解】由题意得:这个几何体是由2行2列组成所需的小正方体的个数最多的搭配是其中数字表示所在行列的小正方体的个数则故答案为:7【点睛】本题解析:7【分析】根据主视图和左视图得出这个几何体的组成即可得出答案.【详解】由题意得:这个几何体是由2行2列组成,所需的小正方体的个数最多的搭配是3121,其中,数字表示所在行列的小正方体的个数,则31217+++=,故答案为:7.【点睛】本题考查了三视图中的主视图和左视图,掌握理解三视图的相关概念是解题关键.15.球;正方体【分析】找到从物体正面左面和上面看得到的图形全等的几何体即可答案不唯一【详解】解:三视图形状都一样的几何体为球正方体故答案为球正方体(答案不唯一)【点睛】考查三视图的有关知识注意三视图都相解析:球;正方体.【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可,答案不唯一,【详解】解:三视图形状都一样的几何体为球、正方体.故答案为球、正方体(答案不唯一).【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球或正方体.16.【解析】【分析】在和中利用锐角三角函数用CH表示出AHBH的长然后计算出AB的长【详解】由于在中米在米米故答案为【点睛】本题考查了解直角三角形的应用——仰角俯角问题题目难度不大解决本题的关键是用含C解析:)12001【解析】【分析】在Rt ACH和Rt HCB中,利用锐角三角函数,用CH表示出AH、BH的长,然后计算出AB的长.【详解】由于CD//HB ,CAH ACD 45∠∠∴==,B BCD 30∠∠==,在Rt ACH 中,CAH 45∠∴=,AH CH 1200∴==米,在Rt HCB ,CH tan B HB ∠=, CH 1200HB 12003(tan B tan303∠∴====米), ()AB HB HA 120031200120031∴=-=-=-米, 故答案为()120031-. 【点睛】本题考查了解直角三角形的应用——仰角、俯角问题,题目难度不大,解决本题的关键是用含CH 的式子表示出AH 和BH .17.【分析】连接AC 利用求出的面积再求出的面积【详解】解:连接AC 如图:∵∴;∴故答案为:30【点睛】本题考查了解直角三角形平行四边形的性质以及求三角形的面积解题的关键是利用求出三角形的面积解析:30【分析】连接AC ,利用1sin 2ABC S AB BC B ∆=••求出ABC ∆的面积,再求出ABCD 的面积. 【详解】解:连接AC ,如图:∵30B ∠=︒,BC 10cm =,6AB cm =,∴111sin 61015222ABC S AB BC B ∆=••=⨯⨯⨯=; ∴215230ABCD ABC S S ∆==⨯=.故答案为:30.【点睛】本题考查了解直角三角形,平行四边形的性质,以及求三角形的面积,解题的关键是利用1sin 2ABC S AB BC B ∆=••求出三角形的面积. 18.【分析】由直角三角形中30°角所对的直角边等于斜边的一半可求出30°角对应的直角边再由勾股定理可知求出另一直角边进而求出斜边上的高【详解】解:如下图所示BC=4∠B=30°∠C=60°由直角三角形中解析:3【分析】由直角三角形中30°角所对的直角边等于斜边的一半,可求出30°角对应的直角边,再由勾股定理可知求出另一直角边,进而求出斜边上的高.【详解】解:如下图所示,BC=4,∠B=30°,∠C=60°由直角三角形中,30°角所对的直角边等于斜边的一半知:AC=12BC=2由勾股定理知:2222=422 3.-=-=AB BC AC在Rt△ABH中,AH=123.3【点睛】本题考查了直角三角形中30°角所对的直角边等于斜边的一半、勾股定理等相关知识,熟练掌握直角三角形的性质是解题的关键.19.【分析】根据黄金比值为进行计算即可得到答案【详解】解:∵点C为线段AB的黄金分割点AB=6∴AC=×6=3-3BC=6-(3-3)=9-3AC-BC=3-3-(9-3)=6-12;故答案为:【点睛】解析:512【分析】51-进行计算即可得到答案.【详解】解:∵点C为线段AB的黄金分割点,AB=6,∴51-5,BC=6-(35-3)=9-35,AC-BC=35-3-(9-35)=65-12;故答案为:6512-【点睛】本题考查的是黄金分割的知识和二次根式的计算,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.20.1或-3【分析】由题意根据反比例函数中值的几何意义即函数图像上一点分别作关于xy 轴的垂线与原点所围成的矩形的面积为据此进行分析求解即可【详解】解:由题意图形分成如下几部分∵矩形的对角线为∴即∵根据矩 解析:1或-3【分析】由题意根据反比例函数中k 值的几何意义即函数图像上一点分别作关于x 、y 轴的垂线与原点所围成的矩形的面积为k ,据此进行分析求解即可.【详解】解:由题意图形分成如下几部分,∵矩形ABCD 的对角线为BD ,∴DCB ABD S S =,即164253S S S S S S ++=++,∵根据矩形性质可知1234,S S S S ==,∴56S S =,∵2521S a a =++,点C 的坐标为()2,2--,∴26214S a a =++=,解得a =1或-3.故答案为:1或-3.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题21.(1)见解析;(2)10m【分析】(1)根据投影定义作图即可;(2)根据(1)的图形,证明△ABC ∽△DEF ,列得AB DE BC EF =,代入数值求解即可. 【详解】解:(1)如图EF 就是DE 的投影.(2)由作图可知//AC DF ,ACB DFE ∴∠=∠,90ABC DEF ∠=∠=︒, ∴△ABC ∽△DEF,AB DE BC EF∴=,即536DE =, 10()DE m ∴=.答:DE 的长为10m .【点睛】此题考查相似三角形的实际应用,相似三角形的判定及性质,平行投影的画法及应用,正确理解平行投影是解题的关键.22.2.3米【分析】先根据同一时刻物高与影长成正比求出QD 的影长,再根据此影长列出比例式即可【详解】解:如图,过点N 作ND ⊥PQ 于D ,则DN=PM ,∴△ABC ∽△QDN ,AB QD BC DN∴=. ∵AB=2米,BC=1.6米,PM=1.2米,NM=0.8米,2 1.21.6AB DN QD BC ⨯===1.5(米),∴PQ=QD+DP=QD+NM=1.5+0.8=2.3(米).答:木杆PQ 的长度为2.3米.【点睛】此题考查相似三角形的应用和平行投影,解题关键在于掌握运算法则23.(1)见解析;(2)【分析】(1)找出公共角即可求出相似(2)根据~ABD ACE ∆∆得出一个比例式AE AD AC AB=,再根据两边对应成比例且夹角相等得出~ADE ABC ∆∆,再结合60的余弦值即可求出答案.【详解】解:(1)证明:,BD CE 是ABC ∆的高90ADB AEC ∴∠=∠=A A ∠=∠~ABD ACE ∴∆∆(2)~ABD ACE ∆∆AB AD AC AE ∴= AE AD AC AB∴= A A ∠=∠~ADE ABC ∴∆∆DE AD BC AB∴= 60BAC ∠=1cos 2AD BAC AB ∴∠== 又6BC ==DE ∴=【点睛】本题主要考察了相似三角形,三角函数等知识点,能找出根据第一个相似三角形的比例式来证第二个相似三角形是解题关键.24.(1)画图见解析;(2)1:2;(3)画图见解析;A "(6,0),B "(3,-2),C "(4,-4)【分析】(1)连接CC′并延长,连接BB′并延长,两延长线交于点O ;(2)由OB=2OB′,即可得出△A′B′C′与△ABC的位似比为1:2;(3),连接B′O并延长,使OB″=OB′,延长A′O并延长,使OA″=OA′,C′O并延长,使OC″=OC′,连接A″B″,A″C″,B″C″,则△A″B″C″为所求,从网格中即可得出△A″B″C″各顶点的坐标.【详解】解:(1)图中点O为所求;(2)△A′B′C′与△ABC的位似比等于1:2;故答案为:1:2;(3)△A″B″C″为所求;A″(6,0);B″(3,-2);C″(4,-4).【点睛】此题考查了作图-位似变换,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.25.(1)m=4,k=4;(2)﹣2<x<0或x>1;(3)(﹣3,0)或(1,0).【分析】(1)将点A坐标代入直线解析式可求m的值,再将点A坐标代入反比例函数解析式可求k的值;(2)解析式联立成方程组,解方程组求得B的坐标,然后根据函数的图象即可求得不等式2x+2>kx的解集.(3)由直线解析式求得直线与x轴的交点坐标,然后设出Q的坐标,根据三角形面积公式得到12•|a+1|•(2+4)=6,解得a的值,即可求得点Q的坐标.【详解】解:(1)∵点A(1,m)在直线y=2x+2上,∴m=2×1+2=4,∴点A的坐标为(1,4),代入函数y=kx(k≠0)中,得4=1k,∴k =4.(2)解224y x y x =+⎧⎪⎨=⎪⎩得14x y =⎧⎨=⎩或22x y =-⎧⎨=-⎩, ∴B (﹣2,﹣2),∴关于x 的不等式2x +2>k x的解集是﹣2<x <0或x >1. (3)在y =2x +2中令y =0,解得x =﹣1,则直线与x 轴的交点是(﹣1,0). 设点Q 的坐标是(a ,0).∵△ABQ 的面积是6, ∴12•|a +1|•(2+4)=6, 则|a +1|=2,解得a =1或﹣3.则点Q 的坐标是(﹣3,0)或(1,0).【点睛】本题考查了一次函数与反比例函数的交点问题、坐标与图形性质、待定系数法求解析式、三角形的面积公式、解方程(组),解答的关键是熟练运用相关知识,利用数形结合方法求不等式的解集,以及利用Q 点坐标表示△ABQ 的面积.26.(1)y=3x+9;(2)m=2133t t -;(3)M(1,10).【分析】(1)先设OB b =,表示出A 、B 的坐标,代入求解即可;(2)根据lBD lDE k k ⋅= -1,得出93t -·t m=-1,变形求解即可; (3)首先得出直线BD 的解析式,再得出直线NF 为:y=222mt m t -,设F(n ,9),得出直线FD ,再根据直线AB 求解即可.【详解】解:(1)设OB b =,∴B(-b,0),∵OA=3OB ,∴A(0,3b),∵A 、B 在直线y=kx+k 上,代入得3033bk k k b -+=⎧⎨=-⎩, 解得:33k b =⎧⎨=⎩,∴y=3x+9;(2)由(1)知A(0,9),B(-3,0),∵AE ⊥y 轴,∴E(m ,9),∵AD=t ,∴D(0,9-t),∵BD ⊥DE ,∴lBD lDE k k ⋅= -1,而lBD k =93t -,lDE k =t m, ∴93t -·t m=-1, ∴-t²+9t+3m=0, ∴m=2133t t -;(3)由(2)和(1)知:直线BD 为:y=993t x t -+- , ∵P 在直线BD 上且横坐标为t , ∴P(t ,26273t t -++), ∵AN=2DN ,∴N(0,9-t),∵∠ANF=2∠ADE 且lDE k =t m,则直线NF 为:y=222mt m t - , 设F(n ,9),则22223t mt n m t =-,解得n=223m t m-, ∴F(223m t m-,9), 由F 、P 得FP l :y=222222()933m t m t x m t mt m---+--①, 由(1)得:AB l :y=3x+9②,∵∠E=∠BPM ,∴tan ∠E=tan ∠BPM③,由M 为AB 和PF 的交点,联立①②③得:M(1,10).【点睛】本题考查了一次函数的性质、待定系数法等知识,解题的关键是学会利用参数、构建方程解决问题.。

【华东师大版】九年级数学下期末试卷(及答案)

【华东师大版】九年级数学下期末试卷(及答案)

一、选择题1.下图是一些完全相同的小立方块搭成的几何体的三视图,那么搭成这个几何体所用的小立方块的最多个数是()A.9 B.8 C.7 D.62.如图,用八个同样大小的小立方体粘成一个大正方体,得到的几何体从正面、从左面和从上面看到的形状图如图,若小明从八个小立方体中取走若干个,剩余小立方体保持位置不动,并使得到的新几何体从三个方向看到的形状图不变,则他取走的小立方体最多可以是()A.0个B.1个C.4个D.3个3.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是().A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是44.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.5.如图所示的几何体的俯视图为( )A .B .C .D .6.已知,一个小球由桌面沿着斜坡向上前进了10cm ,此时小球距离桌面的高度为5cm ,则这个斜坡的坡度i 为( )A .2B .1:2C .1:2D .1:3 7.如图,为方便行人推车过天桥,市政府在10m 高的天桥两端分别修建了50m 长的斜道.用科学计算器计算这条斜道的倾斜角,下列按键顺序正确的是( )A .sin0.2=B .2ndF sin0.2=C .tan0.2=D .2ndF tan0.2=8.下列说法中,正确的有( )个①a 为锐角,则1sina cosa +>;②314172︒+︒=︒cos cos cos ﹔③在直角三角形中,只要已知除直角外的两个元素,就可以解这个三角形﹔④坡度越大,则坡角越大,坡越陡; ⑤1302==︒sinA ; ⑥当Rt ABC ∆的三边长扩大为2倍时,则sinA 的值也相应扩大2倍. A .1 B .2 C .3 D .49.小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA 的高度与拉绳PB 的长度相等,小明先将PB 拉到'PB 的位置,测得(''PB C a B C ∠=为水平线),测角仪/B D 的高度为1米,则旗杆PA 的高度为( )A .11sin a +米B .11cos a -米C .11sin a -米D .11cos a +米 10.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E .F 分别在BC 和CD 上,下列结论:①CE=CF ;②∠AEB=75︒;③BE+DF=EF ;④正方形对角线AC=1+3,其中正确的序号是( )A .①②④B .①②C .②③④D .①③④ 11.下列四个选项中的三角形,与图中的三角形相似的是( )A .B .C .D .12.函数y kx k =-+与k y x=在同一坐标系中的图象可能是( ) A . B . C . D .二、填空题13.如图,圆柱形容器高为18cm ,底面周长为24cm ,在杯内壁离杯底4cm 的点B 处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外币A 处到达内壁B 处的最短距离为_______.14.如图,一几何体的三视图如图:那么这个几何体是______.15.图中几何体的主视图是( ).A B C D16.小芳同学在学习了图形的镶嵌和拼接以后,设计了一幅瓷砖贴纸(图1),它是由图2这种基本图形拼接而成。

综合内容与测试 试卷 华师大版数学九年级下册word版含答案 (2)

综合内容与测试 试卷 华师大版数学九年级下册word版含答案 (2)

综合内容与测试试卷华师大版数学九年级下册(一)判断题(每小题2分,共10分)1.把一个角的一边反向延长,则可得到这个角的邻补角……………………………()【提示】根据叙述,画出相应的图形即可判断.【答案】√.2.对顶角相等,但不互补;邻补角互补,但不相等…………………………………()【提示】两直线互相垂直时,对顶角相等且互补,邻补角互补且相等.【答案】×.3.如果直线a⊥b,且b⊥c,那么a⊥c……………………………………………()【提示】画图,a⊥b,则∠1=90°,b⊥c,则∠2=90°.∴∠1=∠2.∴a∥c.【答案】×.【点评】由此题可知平面内垂直于同一直线的两直线互相平行,垂直关系没有传递性.4.平面内两条不平行的线段..必相交…………………………………………………()【提示】仔细读题,想想线段的特征,线段有两个端点,有一定的长度,它们可以延长后相交,但本身可以既不平行,也不相交.【答案】×.【点评】平面内两条不平行的线段可以相交,也可以不相交,但平面内两条不平行的线段的延长线一定相交.5.命题有真命题、假命题,定理也有真定理假定理…………………………………()【提示】前一句话是对的,后一句话是错的.假命题不能成为定理,定理都是真命题.【答案】×.(二)填空题(每小题3分,共27分)6.如图,直线AB、CD相交于点O,∠1=∠2.则∠1的对顶角是_____,∠4的邻补角是______.∠2的补角是_________.【提示】注意补角和邻补角的区别,前者只要求满足数量关系,即两角和为180°,而后者既要求满足数量关系又要求满足位置关系,即互补相邻.【答案】∠1;∠1和∠3;∠BOE或∠4.7.如图,直线AB和CD相交于点O,OE是∠DOB的平分线,若∠AOC=76°,则∠EOB=_______.【提示】根据“对顶角相等”和“角平分线的定义”来求.【答案】38°.8.如图,OA⊥OB,OC⊥OD.若∠AOD=144°,则∠BOC=______.【提示】由OA⊥OB,OC⊥OD,可得∠AOB=∠COD=90°,一周角为360°.【答案】36°.9.如图,∠1的内错角是,它们是直线、被直线所截得的.【答案】∠AEC和∠B,DF、DC(DF、BC)、AB.10.如图,AB∥CD、AF分别交AB、CD于A、C.CE平分∠DCF,∠1=100°,则∠2=.【提示】先证∠DCF=∠1=100°,再用“角平分线家义”来求∠2.【答案】50°.11.如图,∠1=82°,∠2=98°,∠3=80°,则∠4=.【提示】先判定AC∥BD.再利用平行线的性质求∠4的度数.【答案】80°.12.如图,直线AB∥CD∥EF,则∠+∠-∠=.【提示】∵AB∥CD,∴∠ADC=∠.∵∠ACD+∠CDF+∠=360°,∴∠+∠CDF=360°.∴∠+∠360°-∠CDF.∵CD∥EF,∴∠CDF+∠=180°.∴∠+∠-∠360°-∠CDF-∠360°-(∠CDF+∠).∴∠+∠-∠180°.【答案】180°.13.“如果n是整数,那么2n是偶数”其中题设是,结论是,这是命题(填真或假).【提示】“如果”开始的部分是题设,“那么”开始的部分是结论.【答案】n是整数,2n是偶数,真.14.把命题“直角都相等”改写为“如果…,那么…”的形式是______________________.【答案】如果几个角是直角,那么这几个角都相等.(三)选择题(每题3分,共18分)15.下列命题中,是真命题的是…………………………………………………………()(A)相等的两个角是对顶角.(B)有公共顶点的两个角是对顶角.(C)一条直线只有一条垂线.(D)过直线外一点有且只有一条直线垂直于已知直线.【答案】D.16.如图,OA⊥OB,OC⊥OD,垂足均为O.则∠BOC+∠AOD等于…………()(A)150°(B)160°(C)170°(D)180°【提示】延长BO到E.∵OA⊥OB,∴OA⊥OE.又OC⊥O(D)∴∠AOC+∠COE=∠AOC+∠AOD=90°.由同角的余角相等知:∠COE=∠AOD.∴∠BOC+∠AOD=∠BOC+∠COE=180°.【答案】D.17.如图,下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是…………………………………()(A)①、②、③(B)①、②、④(C)②、③、④(D)①、②、③、④【提示】可将涉及的一对角从整个图形中分离出来,单独观察.如①②③④这样可排除图中其它线的干扰,便于确定两角的相对位置.易知①、②、③正确.【答案】A.18.如图,图中的同位角共有……………………………………………………………()(A)6对(B)8对(C)10对(D)12对【提示】可采用17题的方法.两条直线被第三条直线所截,同位角有四对,图中有三组两条直线被第三条直线所截,均共有同位角4×3=12对.【答案】D.19.如图,下列推理正确的是…………………………………………………………()(A)∵∠1=∠2,∴AD∥BC (B)∵∠3=∠4,∴AB∥CD(C)∵∠3=∠5,∴AB∥DC (D)∵∠3=∠5,∴AD∥BC【答案】C.20.如图,AB∥CD.若∠2是∠1的两倍,则∠2等于……………………………()(A)60°(B)90°(C)120°(D)150°【提示】由AB∥CD,可得∠3+∠2=180°.∵∠1=∠3,∴∠1+∠2=180°.∵∠2=2∠1,∴3∠1=180°.∴∠1=60°.∴∠2=2×60°=120°.【答案】D.(四)画图(本题6分)21.如图,分别作出线段AB、BC、的垂直平分线,设交点为O,连结OA、OB、OC.量得OA=()mm,OB=()mm,OC=()mm.则OA、OB、OC的关系是.【答案】18,18,18.OA=OB=OC.(五)完成下列推理,并填写理由(每小题8分,共16分)22.如图,∵∠ACE=∠D(已知),∴∥().∴∠ACE=∠FEC(已知),∴∥().∵∠AEC=∠BOC(已知),∴∥().∵∠BFD+∠FOC=180°(已知),∴∥().【答案】CE,DF,同位角相等,两直线平行;EF,AD,内错角相等,两直线平行;AE、BF,同位角相等,两直线平行;EC,DF,同旁内角互补,两直线平行.23.如图,∠B=∠D,∠1=∠2.求证:AB∥CD.【证明】∵∠1=∠2(已知),∴∥(),∴∠DAB+∠=180°().∵∠B=∠D(已知),∴∠DAB+∠=180°(),∴AB∥CD().【答案】AD,BC,内错角相等两直线平行;B,两直线平行,同旁内角互补;D,等量代换,同旁内角互补,两直线平行.(六)计算或证明(第24、25、26每小题6分,第27题5分,共23分)24.如图,a∥b,c∥d,∠1=113°,求∠2、∠3的度数.【提示】由a∥b,∠1=113°,可求∠2.由c∥d和求出的∠2的度数可求∠4.然而求出∠3.【答案】∠2=113°.∠3=67°.∵a∥b(已知).∴∠2=∠1=113°(两直线平行,内错角相等).∵c∥d(已知).∴∠4=∠2=113°(两直线平行,同位角相等).∵∠3+∠4=180°(邻补角定义),∴∠3=67°(等式性质).25.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.【提示】证明∠BAD=∠2.【证明】∵AD∥EF(已知),∴∠1=∠BAD(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠BAD=∠2(等量代换).∴AB∥DG(内错角相等,两直线平行).26.已知:如图,D是BC上的一点.DE∥AC,DF∥AB.求证:∠A+∠B+∠C=180°.【提示】由DE∥AC,DF∥AB,先证:∠A=∠EDF,再证∠A+∠B+∠C=180°.【证明】∵DE∥AC(已知),∴∠BED=∠A,∠BDE=∠C(两直线平行,同位角相等).∵DF∥AB(已知),∴∠BED=∠EDF(两直线平行,内错角相等),∠FDC=∠B(两直线平行,同位角相等).∴∠EDF=∠A(等量代换).∵∠BDE+∠EDF+∠FDC=180°(平角定义),∴∠C+∠A+∠B=180°(等量代换).即∠A+∠B+∠C=180°.27.如图,如果D是BC的中点,那么B、C两点到直线AD的距离相等.试写出已知,求证,并补全图形(不证明).【提示】B、C两点的直线AD的距离,是点到直线的距离.即相应的“垂线段”的长度.可用三角尺画出图形.【答案】图形如图所示,已知:BD=CD,且BE⊥AD,CF⊥AD,垂足分别为E、F.求证:BE=CF.。

华师大新版九年级(下) 中考题同步试卷:26.2 二次函数的图象与性质(02)

华师大新版九年级(下) 中考题同步试卷:26.2 二次函数的图象与性质(02)

华师大新版九年级(下)中考题同步试卷:26.2 二次函数的图象与性质(02)一、选择题(共17小题)1.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)2.已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.可能在y轴右侧且在直线x=2的左侧D.可能在y轴左侧且在直线x=﹣2的右侧3.对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A.1B.2C.3D.44.在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2C.y=﹣2x2﹣2D.y=2(x﹣2)2 5.二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,﹣3)B.顶点坐标是(1,﹣3)C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D.当x<0时,y随x的增大而减小6.若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1B.m>0C.m>﹣1D.﹣1<m<07.设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A.(1,0)B.(3,0)C.(﹣3,0)D.(0,﹣4)8.如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A.a=b+2k B.a=b﹣2k C.k<b<0D.a<k<09.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1B.m=3C.m≤﹣1D.m≥﹣110.二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4B.x=﹣4C.x=2D.x=﹣211.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数C.反比例函数D.二次函数12.数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x2+1与y=的交点的横坐标x0的取值范围是()A.0<x0<1B.1<x0<2C.2<x0<3D.﹣1<x0<0 13.已知二次函数y=a(x﹣1)2﹣c的图象如图所示,则一次函数y=ax+c的大致图象可能是()A.B.C.D.14.下列三个函数:①y=x+1;②;③y=x2﹣x+1.其图象既是轴对称图形,又是中心对称图形的个数有()A.0B.1C.2D.315.已知二次函数y=﹣x2+2x+3,当x≥2时,y的取值范围是()A.y≥3B.y≤3C.y>3D.y<316.在同一平面坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.17.一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是()A.b=2a+k B.a=b+k C.a>b>0D.a>k>0二、填空题(共10小题)18.抛物线y=x2+2x+3的顶点坐标是.19.定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1<y2,称该函数为增函数,根据以上定义,可以判断下面所给的函数中,是增函数的有(填上所有正确答案的序号)①y=2x;②y=﹣x+1;③y=x2(x>0);④y=﹣.20.下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y的值随x的值增大而增大的函数有个.21.二次函数y=﹣x2+2x﹣3图象的顶点坐标是.22.二次函数y=x2+2x的顶点坐标为,对称轴是直线.23.函数y=x2+2x+1,当y=0时,x=;当1<x<2时,y随x的增大而(填写“增大”或“减小”).24.已知二次函数y=(x﹣2)2+3,当x时,y随x的增大而减小.25.二次函数y=x2﹣2x+3图象的顶点坐标为.26.对于两个二次函数y1,y2,满足y1+y2=2x2+2x+9.当x=m时,二次函数y1的函数值为5,且二次函数y2有最小值3.请写出两个符合题意的二次函数y2的解析式(要求:写出的解析式的对称轴不能相同).27.二次函数y=x2﹣4x﹣3的顶点坐标是(,).三、解答题(共3小题)28.已知点A(﹣2,n)在抛物线y=x2+bx+c上.(1)若b=1,c=3,求n的值;(2)若此抛物线经过点B(4,n),且二次函数y=x2+bx+c的最小值是﹣4,请画出点P (x﹣1,x2+bx+c)的纵坐标随横坐标变化的图象,并说明理由.29.在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a 的取值范围.30.已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.华师大新版九年级(下)中考题同步试卷:26.2 二次函数的图象与性质(02)参考答案一、选择题(共17小题)1.D;2.D;3.C;4.A;5.B;6.B;7.B;8.D;9.D;10.D;11.D;12.B;13.A;14.C;15.B;16.D;17.D;二、填空题(共10小题)18.(﹣1,2);19.①③;20.3;21.(1,﹣2);22.(﹣1,﹣1);x=﹣1;23.﹣1;增大;24.<2;25.(1,2);26.y2=(x+)2+3;y2=(x﹣)2+3;27.2;﹣7;三、解答题(共3小题)28.;29.;30.;。

(华师大版)初中数学九年级下册 期末测试(含答案)

(华师大版)初中数学九年级下册 期末测试(含答案)

期末测试一、选择题(本大题共10个小题,每题3分,共30分) 1.下列调查中,调查方式合理的是( ) A.调查某新型防火材料的防火性能,采用普查方式B.调查某县销往广州市的马铃薯的质量情况,采用抽样调查方式C.试航前对我国第一艘国产航母各系统的检查,采用抽样调查方式D.调查中央电视台2019年五四运动100周年晚会的收视情况,采用普查方式2.将一抛物线向右平移3个单位,再向下平移5个单位,得到新抛物线的表达式为22y x =,则原抛物线的表达式为( ) A.2 2(3)5y x =-- B.22(3)5y x =++ C.22(3)5y x =-+D.2 2(3)5y x =+-3.如图,AB 为☉O 的直径,CD 是☉O 的弦,26ADC ∠=︒,则∠CAB 的度数为( )A.26°B.74°C.64°D.54°4.对于二次函数236y x x =-,下列说法不正确的是( ) A.图象开口向上B.图象对称轴为直线1x =C.图象顶点坐标为(1,3-)D.最小值为35.如图,AB 是半圆O 的直径,点D 是AC 的中点,50ABC ∠=︒,则DAB ∠等于( )A.55°B.60°C.65°D.70°6.一次函数y ax b =+和反比例函数cy x=在同一平面直角坐标系中的图象如图所示,则二次函数2y ax bx c =++的图象大致为( )A. B. C. D.7.如图,半径为1的☉O 与正五边形ABCDE 相切于点A ,C ,则劣弧AC 的长为( )A.25πB.23πC.34πD.45π8.已知二次函数2273y x x =-+,若y 随x 的增大而增大,则x 的取值范围是( ) A.74x >B.74x <C.74x -< D.74x -> 9.有一张如图1所示的矩形纸片ABCD ,其中 4 cm AD =,上面有一个以AD 为直径的半圆(其中O 为圆心),正好与对边BC 相切。

最新华东师大版九年级数学下册全册单元测试题(含答案)

最新华东师大版九年级数学下册全册单元测试题(含答案)

最新华东师大版九年级数学下册全册单元测试题第26章达标检测卷1 .抛物线y=2(x+3)2—4的顶点坐标是( )A. (3, - 4)B. (-3, - 4)C. (3, 4)D. (—3, 4) 2 .将抛物线y=(x —1)2+3向左平移1个单位,得到的抛物线与 y 轴的交点坐标是( )A. (0, 2)B. (0, 3)C. (0, 4) D, (0, 7)3 .已知函数y=1x2-x-4,当函数值y 随x 的增大而减小时,x 的取值范围是( )A. xv 1B. x>1C. x>- 2D. - 2<x<44 .二次函数y=ax 2+bx+ c 的图象如图,点 C 在y 轴的正半轴上,且 OA=OC,则()D,以上都不是A. 13B. ,10C. .t5D. 146 .二次函数y=x 2+x+c 的图象与x 轴有两个交点 A(x 1,0), B(x 2, 0),且x 1<x 2,点P(m, n)是图象上 一点,那么下列判断正确的是( )A .当 n<0 时,m<0B .当 n>0 时,m>x 2 C.当 n<0 时,x [<m<x 2D.当 n>0 时,m<x 17 .抛物线y=ax 2+bx+c 与x 轴的两个交点为(一1, 0), (3, 0),其形状与抛物线 y=—2x 2相同,则 抛物线y=ax 2+ bx+c 对应的函数表达式为()A . y=- 2x 2-x+3 B. y=- 2x 2 + 4x+5 C . y=— 2x2+4x+ 8D . y= - 2x 2 + 4x+ 68 .函数y= ax+b 和y = ax 2+bx+c 在同一直角坐标系内的图象大致是()5.若抛物线y= 2ax 6x 经过点(2, 0),则抛物线顶点到坐标原点的距离为 ( )(第4题)9.如图,从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式为h= 30t-5t2,那么小球从抛出至回落到地面所需要的时间是()A. 6 sB. 4 sC. 3 sD. 2 s(第9题)10.抛物线y= ax2+bx+ c上部分点的横坐标x,纵坐标y的对应值如下表x …-3 -2 —1 0 1 …y …—12 -2 4 6 4 …给出下列说法:①抛物线与y轴的交点为(0, 6);②抛物线的对称轴在y轴的右侧;③抛物线一定经过点(3, 0);④当x<0时,函数值y随x的增大而减小.从表中可知,上述说法正确的有()A.1个B. 2个C. 3个D. 4个二、填空题(每题3分,共30分)11.二次函数y=2x2-x- 3的图象的开口向,对称轴是直线,顶点坐标是12.如果将抛物线y=x2+2x—1向上平移,使它经过点A(0, 3),那么所得新抛物线对应的函数表达式是.13.已知二次函数y=ax2+bx+ c,当x=3时,函数取得最大值,为4,当x=0时,y=- 14,则此函数的关系式是.14.已知抛物线y=ax2+bx+c(aw0)与x轴的两个交点的坐标是(5, 0), (—2, 0),则方程a x2+ bx+ c =0(aw 0)的解是.15.已知二次函数y=x2+2mx+2,当x> 2时,y随x的增大而增大,则实数m的取值范围是16.开口向下的抛物线y= a(x+1)(x—9)与x轴交于A、B两点,与y轴交于点C,若/ ACB=90°,则a 的值为.17.如图,某涵洞的截面边缘是抛物线,在图中建立适当的直角坐标系,抛物线对应的函数表达式为y=-1O[x2,当涵侗水面览AB为12 m时,水面到涵侗顶点O的距离为 .(第17题)(第18题)(第19题)(第20题)18.二次函数y=ax2+bx+c(aw。

【华东师大版】九年级数学下期末试题附答案

【华东师大版】九年级数学下期末试题附答案

一、选择题1.如图,∠APD=90°,AP=PB=BC=CD ,则下列结论成立的是( )A .△PAB ∽△PCA B .△ABC ∽△DBA C .△PAB ∽△PDAD .△ABC ∽△DCA2.如图,水杯的俯视图是( )A .B .C .D .3.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A .232x x ++B .22x +C .221x x ++D .223x x +4.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是( )A .12πB .6πC .12π+D .6π+5.如图所示的立体图形的主视图是( )A .B .C .D .6.国家电网近来实施了新一轮农村电网改造升级工程,解决了农村供电“最后1公里”问题,电力公司在 改造时把某一输电线铁塔建在了一个坡度为1:0.75的山坡CD 的平台BC 上(如图),测得52.5,5AED BC ︒∠==米,35CD =米,19DE =米,则铁塔AB的高度约为( )(参考数据:52.50.79,52.50.61,52.5 1.30sin cos tan ︒︒︒≈≈≈)A .7.6 米B .27.5 米C .30.5 米D .58.5 米7.在Rt ABC 中,90,C a b c ∠=︒、、分别是A B C ∠∠∠、、的对边,如果3,4a b ==,那么下列等式中正确的是( )A .4sin 3A =B .4cos 3A =C .4tan 3A = D .4cot 3A = 8.如图,O 是ABC 的外接圆,60BAC ∠=︒,若O 的半径OC 为1,则弦BC 的长为( )A .12B 3C .1D 39.如图,在平面直角坐标系中,Rt OAB 的斜边OA 在第一象限,并与x 轴的正半轴夹角为30度,C 为OA 的中点,BC=1,则A 点的坐标为( )A .()3,3B .()3,1C .()2,1D .()2,310.在Rt △ABC 中,∠C =90°,AB =13,AC =5,则sin A 的值为( ) A .513B .1213C .512D .12511.如图,11AOB 与22A OB 位似,位似中心为O 且11AOB 与22A OB 在原点O 的两侧,若11AOB 与22A OB 的周长之比为1:2,点1A 的坐标为()1,2-,则点1A 的对应点2A 的坐标为( )A .()1,4-B .()2,4-C .()4,2-D .()2,1-12.如图,已知正比例函数y 1=x 与反比例函数y 2=9x的图像交于A 、C 两点,AB ⊥x 轴,垂足为B , CD ⊥x 轴,垂足为D .给出下列结论:①四边形ABCD 是平行四边形,其面积为18;②AC =32;③当-3≤x<0或x≥3时,y 1≥y 2;④当x 逐渐增大时,y 1随x 的增大而增大,y 2随x 的增大而减小.其中正确的结论有( )A .①④B .①③④C .①③D .①②④二、填空题13.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高______米.(结果精确到1米.3≈1.732,2≈1.414)14.由n 个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的个数是________.15.如图,将19个棱长为a 的正方体按如图摆放,则这个几何体的表面积是_____.16.如图所示,ABO 中,AB OB ,OA=2,AB=1,把ABO 绕点O 旋转150°后得到11A B O ,则点1A 的坐标为_______17.如图所示,菱形ABCD 的边长为8,且AE ⊥BC 于E ,AF ⊥CD 于F ,∠B=60°,则菱形的面积为____.18.如图,∠EFG =90°,EF =10,OG =17,cos ∠FGO =0.6,则点F 的坐标是_______.19.如图,在正方形ABCD 中,15AB =,点,E F 分别为AB ,DC 上的点,将正方形沿EF 折叠,使点A 落在A '处,点D 落在D 处,FD '交BC 于点G ,A D ''交BC 于点H ,若10DF =,203CG =,则BH 的长为___________.20.点A(a ,b)是一次函数y=2x-3与反比例函数9y x=的交点,则2a 2b-ab 2=_____. 三、解答题21.在桌面上,有若干个完全相同的小正方体堆成的一个几何体,如图所示.(1)请依次画出从正面、左面、上面看这个几何体得到的形状图;(2)如果保持从上面和正面观察到的形状图不变,那么最多可以添加______个小正方体. 22.用5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是 立方单位,表面积是 平方单位(包括底面积); (2)请在方格纸中用实线画出它的三个视图.23.如图,一座山的一段斜坡BD 的长度为6010米,且这段斜坡的坡度i =1:3(沿斜坡从B 到D 时,其升高的高度与水平前进的距离之比).已知在地面B 处测得山顶A 的仰角为30°,在斜坡D 处测得山顶A 的仰角为45°.求山顶A 到地面BC 的高度AC 是多少米?(结果保留根号)24.如图,AB 是ABC 的内接圆O 的直径,点D 在半圆上,DC 与AB 交于点E ,12∠=∠,过点C 作CF DC ⊥交DB 的延长线于点F ,交圆O 于点G .(1)当105DF =,:1:2AE EC =时,求圆O 的半径.(2)在(2)的条件下,连接DG 交BC 于点M ,则:OMB DGF S S =△△______.(直接写出答案)25.如图,过直线2y x =上的点A 作x 轴的垂线,垂足为点B (4,0),与双曲线交于点C ,且点A 、C 关于x 轴对称.(1)求该双曲线的解析式;(2)如果点D 在直线2y x =上,且DAB ∆是以AB 为腰的等腰三角形,求点D 的坐标; (3)如果点E 在双曲线上,且ABE ∆的面积为20,求点E 的坐标.26.因东坡文化远近闻名的遗爱湖公园,“国庆黄金周”期间,游人络绎不绝,现有一艘游船载着游客在遗爱湖中游览.当船在A 处时,船上游客发现岸上M 处的临皋亭和N 处的遗爱亭都在东北方向;当游船向正东方向行驶600m 到达B 处时,游客发现遗爱亭在北偏西15°方向;当游船继续向正东方向行驶400m 到达C 处时,游客发现临皋亭在北偏西60°方向.求临皋亭M 处与遗爱亭N 处之间的距离(计算结果保留根号).【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据相似三角形的判定,采用排除法,逐条分析判断. 【详解】∵∠APD =90°,而∠PAB ≠∠PCA ,∠PBA ≠∠PAC ,∴无法判定△PAB 与△PCA 相似,故A 错误;同理,无法判定△PAB 与△PDA ,△ABC 与△DCA 相似,故C 、D 错误; ∵∠APD =90°,AP =PB =BC =CD ,∴AB =PA ,AC =PA ,AD =PA ,BD =2PA ,∴=,∴,∴△ABC∽△DBA,故B正确.故选B.【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.2.A解析:A【解析】【分析】找到从上面看所得到的图形即可.【详解】根据几何体的三视图,可知该几何体的俯视图是一个圆和一条线段.故选A.3.A解析:A【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【详解】∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2.故选A.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.4.B解析:B【解析】【分析】根据三视图确定该几何体是圆柱体,再根据主视图上的数据计算圆柱体的侧面积即可.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1,高是3.所以该几何体的侧面积为2π×1×3=6π.故选:B.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.5.A解析:A【解析】解:此立体图形从正面看所得到的图形为矩形,里面有一条竖线且为实线,故选A.点睛:此题主要考查了简单几何体的三视图,关键是注意所有的看到的棱都应表现在三视图中.6.C解析:C【分析】延长AB交ED于G,过C作CF⊥DE于F,得到GF=BC=5,设DF=3k,CF=4k,解直角三角形得到结论.【详解】解:延长AB交ED于G,过C作CF⊥DE于F,则四边形BGFC是矩形∴GF=BC=5,∵山坡CD的坡度为1:0.75,∴设DF=3k,CF=4k,∴CD=5k=35,∴k=7,∴DF=21,BG=CF=28,∴EG=GF+DF+DE=5+21+19=45,∵∠AED=52.5°,∴AG=EG•tan52.5°=45×1.30=58.5,∴AB=AG-BG=30.5米,答:铁塔AB的高度约为30.5米.故选:C.【点睛】本题考查了解直角三角形的应用-坡度坡角问题和解直角三角形的应用-坡度坡角问题,难度适中,通过作辅助线,构造直角三角形,利用三角函数求解是解题的关键.7.D解析:D【分析】分别算出∠A 的各个三角函数值即可得到正确选项. 【详解】解:由题意可得:2222345c a b =+=+=,∴3434sin ,cos ,tan ,,5543a b a b A A A cotA c c b a ======== ∴正确答案应该是D , 故选D . 【点睛】本题考查锐角三角函数的定义,正确理解锐角三角函数的定义是解题关键.8.D解析:D 【分析】先作OD ⊥BC 于D ,由于∠BAC =60°,根据圆周角定理可求∠BOC =120°,又OD ⊥BC ,根据垂径定理可知∠BOD =60°,BD =12BC ,在Rt △BOD 中,利用特殊三角函数值易求BD ,进而可求BC . 【详解】解:如右图所示,作OD ⊥BC 于D , ∵∠BAC =60°, ∴∠BOC =120°, 又∵OD ⊥BC , ∴∠BOD =60°,BD =12BC , ∴BD =sin60°×OB =3, ∴BC =2BD =23, 故答案是23.【点睛】本题考查了圆周角定理、垂径定理、特殊三角函数计算,解题的关键是作辅助线OD ⊥BC ,并求出BD .9.B解析:B 【分析】根据题画出图形,再根据直角三角形斜边上的中线等于斜边的一半可得AB 的值,再根据勾股定理可得OB 的值,进而可得点A 的坐标.【详解】解:如图,过A 点作AD x ⊥轴于D 点,Rt OAB ∆的斜边OA 在第一象限,并与x 轴的正半轴夹角为30.30AOD ∴∠=︒,12AD OA ∴=, C 为OA 的中点,1AD AC OC BC ∴====,2OA ∴=,3OD ∴=,则点A 的坐标为:(31).故选:B .【点睛】本题考查了解直角三角形、坐标与图形性质、直角三角形斜边上的中线,解决本题的关键是综合运用以上知识.10.B解析:B【分析】先根据勾股定理求出BC=12,再利用余弦函数的定义即可求解.【详解】解:在Rt △ABC 中,由勾股定理得,BC 22AB AC -12,∴sin A =1213BC AB =, 故选:B .【点睛】 此题考查勾股定理以及锐角三角函数的定义,解题关键在于计算出BC 的长度.11.B解析:B【分析】根据位似变换的概念得到△A 1OB 1∽△A 2OB 2,△A 1OB 1与△A 2OB 2的相似比为1:2,根据位似变换的性质计算,得到答案.【详解】解:∵△A1OB1与△A2OB2位似,∴△A1OB1∽△A2OB2,∵△A1OB1与△A2OB2的周长之比为1:2,∴△A1OB1与△A2OB2的相似比为1:2,∵A1的坐标为(-1,2),△A1OB1与△A2OB2在原点O的两侧,∴点A1的对应点A2的坐标为(2,-4),故选:B.【点睛】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.12.C解析:C【分析】先求出AC两点的坐标,再根据平行四边形的判定定理与函数图象进行解答即可.【详解】解:∵正比例函数y1=x与反比例函数y2=9x的图象交于A、C两点,∴A(3,3)、C(-3,-3),AB⊥x轴,垂足为B,CD⊥x轴,垂足为D,∴AB=CD,AB∥CD,∴四边形ABCD是平行四边形.∴S▱ABCD=3×6=18,故①正确;②∵A(3,3)、C(-3,-3),∴=,故本小题错误;③由图可知,-3≤x<0或x≥3时,y1≥y2,故本小题正确;④当x逐渐增大时,y1随x的增大而增大,在每一象限内y2随x的增大而减小故本小题错误.故选:C.【点睛】本题考查的是反比例函数综合题,涉及到平行四边形的判定、一次函数及反比例函数的特点等知识,难度适中.二、填空题13.24【解析】【分析】过点C作CE⊥BD与点E可得四边形CABE是矩形知CE=AB=40AC=BE=1在Rt△CDE中DE=tan30°•CE求出DE的长由DB=DE+EB可得答案【详解】如图过点C作解析:24【解析】过点C作CE⊥BD与点E,可得四边形CABE是矩形,知CE=AB=40,AC=BE=1.在Rt△CDE 中DE=tan30°•CE求出DE的长,由DB=DE+EB可得答案.【详解】如图,过点C作CE⊥BD与点E.在Rt△CDE中,∠DCE=30°,CE=AB=40,则DE=tan30°•CE3=⨯40≈23,而EB=AC=1,∴BD=DE+EB=23+1=24(米).【点睛】本题考查了解直角三角形的应用.注意能根据题意构造直角三角形,并能借助于解直角三角形的知识求解是解答此题的关键.14.【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状从主视图和左视图可以看出每一层小正方体的层数和个数从而算出总的个数【详解】综合三视图我们可得出这个几何体的底层应该有2+1=3个小正方体;解析:5【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】综合三视图,我们可得出,这个几何体的底层应该有2+1=3个小正方体;第二层应该有1个小正方体;第三层应有1个小正方体;因此搭成这个几何体的小正方体的个数是3+1+1=5个.故答案为5.【点睛】本题主要考查了由三视图判断几何体,关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.15.54a2【分析】求这个几何体的表面积就要数出这个几何体中小正方体漏在外面的面的个数从前后左右上下方向上来数然后用一个面的面积乘面的个数即可【详解】解:从前后左右上下方向看到的面数分别为:101088解析:54a2求这个几何体的表面积,就要数出这个几何体中小正方体漏在外面的面的个数,从前、后、左、右、上、下方向上来数,然后用一个面的面积乘面的个数即可.【详解】解:从前、后、左、右、上、下方向看到的面数分别为:10,10,8,8,9,9所以表面积为(10+10+8+8+9+9 )a 2=54a 2,故答案为:54a 2.【点睛】本题主要考查组合体的表面积,分析图形,掌握表面积的计算公式是解题的关键. 16.或(-20)【分析】需要分类讨论:在把绕点顺时针旋转和逆时针旋转后得到时点的坐标【详解】解:中∴如图1当绕点顺时针旋转后得到△过作轴交于点则则可得:即有因为在第三象限则的坐标是;如图2当绕点逆时针旋 解析:()1,3--或(-2,0)【分析】需要分类讨论:在把ABO 绕点O 顺时针旋转150︒和逆时针旋转150︒后得到11A B O 时点1A 的坐标.【详解】解:ABO ∆中,AB OB ⊥,2OA =,1AB =,∴sin 21OB AOB OA ∠==, 30AOB ∴∠=︒.如图1,当ABO ∆绕点O 顺时针旋转150︒后得到△11A B O ,过1A 作1AC y ⊥轴交于C 点则1150150309030AOC AOB BOC ∠=︒-∠-∠=︒-︒-︒=︒, 则可得:111AOB AOB AOC ≅≅ 即有2222213OC OB OA AB =-=-=,11AC AB ==因为1A 在第三象限,则1A 的坐标是(1,3)--;如图2,当ABO ∆绕点O 逆时针旋转150︒后得到△11A B O ,则1150********AOB AOB ∠=︒+∠=︒+︒=︒, 即1A 在x 轴上,并有:12OA OAB ==,因为1A 在第二象限,则1A 的坐标是(2,0)-;综上所述,点1A 的坐标为(1,3)-或(2,0)-.故答案是:(1,3)-或(2,0)-.【点睛】本题考查了坐标与图形变化-旋转.能进行分类讨论,是解题的关键.17.【分析】根据已知条件解直角三角形ABE 可求出AE 的长再由菱形的面积等于底×高计算即可【详解】∵菱形ABCD 的边长为8∴AB=BC=8∵AE ⊥BC 于E ∠B=60°∴sinB=即∴AE ∴菱形的面积故答案解析:323【分析】根据已知条件解直角三角形ABE 可求出AE 的长,再由菱形的面积等于底×高计算即可.【详解】 ∵菱形ABCD 的边长为8,∴AB=BC=8,∵AE ⊥BC 于E ,∠B=60°,∴sinB=AE AB 38AE =, ∴AE 43=,∴菱形的面积843323=⨯=故答案为:323【点睛】本题考查了菱形的性质以及特殊角的三角函数值,菱形面积公式的运用.关键是掌握菱形的性质.18.【分析】先过点F 作直线交轴于点过点作于点证明根据cos ∠FGO=06以及勾股定理即可得到答案【详解】过点F 作直线交轴于点过点作于点如图:∴(两直线平行内错角相等)又∵∠EFG=90°∴∠AFE+∠H解析:(8,12)【分析】先过点F 作直线//FA OG 交y 轴于点A ,过点G 作GH FA ⊥于点H ,证明FGO ∠HFG FEA =∠=∠,根据cos ∠FGO =0.6以及勾股定理即可得到答案.【详解】过点F 作直线//FA OG 交y 轴于点A ,过点G 作GH FA ⊥于点H ,如图:∴FGO HFG ∠=∠(两直线平行,内错角相等),又∵∠EFG =90°,∴∠AFE+∠HEG =90°,又∵∠AFE+∠FEA =90°,∴HFG FEA ∠=∠,∴FGO HFG FEA ∠=∠=∠,在Rt AEF ∆中,10EF =,则10cos 100.66AE FEA =⋅∠=⨯= ∴221068AF =-=(勾股定理),∴1789FH =-=,在Rt FGH ∆中,90.615FG =÷=, ∴2215912HG =-=(勾股定理),∴(8,12)F ,故答案为:(8,12).【点睛】本题主要考查了平行的性质(两直线平行,内错角相等)、勾股定理的应用以及三角函数,熟练掌握各知识点并灵活运用是解题的关键.19.【分析】根据正方形的性质得到AB=AD=DC=BC=15∠A=∠D=∠C=∠B=90°根据折叠的性质得到∠D=∠D´=90°DF=DF´=10根据勾股定理可得FC 的长从而得到D´G 根据相似三角形的判 解析:254【分析】根据正方形的性质得到AB=AD=DC=BC=15,∠A=∠D=∠C=∠B=90°,根据折叠的性质得到∠D=∠D´=90°,DF=DF´=10,根据勾股定理可得FC 的长,从而得到D´G ,根据相似三角形的判定得到△HGD´∽△FGC ,从而得到HG GD FG GC'=,可得HG 的长,由BH=BC-HG-CG 即可得出结论.【详解】解:∵四边形ABCD 为正方形, ∴AB=AD=DC=BC=15,∠A=∠D=∠C=∠B=90°,由折叠的性质,得∠D=∠D´=90°,DF=DF´=10,在Rt △FCG 中,FC=DC-DF=15-10=5,CG=203, ∴253==, ∴D´G=D´F-FG=10-253=53, ∵∠D´=∠C=90°,∠HGD´=∠FGC ,∴△HGD´∽△FGC , ∴HG GD FG GC'=, ∴HG=255·253320123FG GD GC =='⨯, ∴BH=BC-HG-CG=15-2512-203=254. 故答案为254. 【点睛】本题考查了相似三角形的判定与性质,勾股定理,折叠的性质及正方形的性质.证得△HGD´和△FGC 相似是解题的关键.20.27【分析】根据点A(ab)是一次函数y=2x-3与反比例函数的交点将点代入函数解析式得出等量关系再将因式分解即可求算答案【详解】∵点A(ab)是一次函数y=2x-3与反比例函数的交点将点代入解析式解析:27【分析】根据点A(a ,b)是一次函数y=2x-3与反比例函数9y x=的交点,将点代入函数解析式得出等量关系,再将222a b ab -因式分解即可求算答案.【详解】∵点A(a ,b)是一次函数y=2x-3与反比例函数9y x=的交点,将点代入解析式得: 23,9b a ab =-=又∵()222=2a b ab ab a b -- ∴()2=93=27ab a b -故答案为:27【点睛】本题考查函数交点的意义,将所求式子因式分解再利用整体思想求算是解题关键.三、解答题21.(1)见解析;(2)3【分析】(1)由题意可知,主视图有3列,每列小正方数形数目分别为3,1,2;左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方数形数目分别为3,2,1.据此可画出图形;(2)保持俯视图和主视图不变,最多可往第一列前面的几何体上放2个小正方体,中间的几何体上放1个小正方体.【详解】解:(1)如图所示:(2)保持从上面和正面观察到的形状图不变,那么最多可以添加3个小立方块. 故答案为:3.【点睛】本题考查了几何体的三视图,属于常考题型,熟练掌握三视图的定义和画法是解题关键. 22.(1)5;22;(2)见解析.【分析】(1)根据几何体的形状得出立方体的体积和表面积即可;(2)主视图有3列,从左往右每一列小正方形的数量为2,1,1;左视图有2列,小正方形的个数为2,1;俯视图有3列,从左往右小正方形的个数为1,2,1.【详解】解:(1)几何体的体积:1×1×1×5=5(立方单位),表面积:小正方体被遮住的面有8个,所以表面积为:1×1×22=22(平方单位); (2)如图所示:【点睛】此题主要考查了画几何体的三视图,关键是掌握三视图所看位置.23.山顶A到地面BC的高度AC是(603+60)米.【分析】作DH⊥BC于H.设AE=x.在Rt△ABC中,根据tan∠ABC=ACBC,构建方程即可解决问题.【详解】解:作DH⊥BC于H.设AE=x米.∵DH:BH=1:3,在Rt△BDH中,DH2+(3DH)210)2,∴DH=60米,BH=180米,在Rt△ADE中,∵∠ADE=45°,∴DE=AE=x米,又∵HC=ED,EC=DH,∴HC=x米,EC=60米,在Rt△ABC中,tan30°=60 180xx ++,∴3∴AC=AE+EC=(3+60)米.答:山顶A到地面BC的高度AC是(3)米.【点睛】本题考查解直角三角形的应用-仰角俯角问题,解直角三角形的应用-坡度坡角问题仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.解此题的关键是掌握数形结合思想与方程思想的应用.24.(1)254;(2)544【分析】(1)连接AD,利用“HL”证明Rt△ADB≅Rt△ACB,推出AB⊥DC,DE=CE,再证明BE为△DCF的中位线,利用锐角三角函数的定义得到AD1BD2=,再利用勾股定理即可求得⊙O 的半径;(2)同理先求得DE=5, DC=10,利用勾股定理可求得CG=152,证明△OBM~△GCM,推出56OMMG=,推出OBMGBM56SS=,设OBM5S a=,则GBM6S a=,利用三角形的中线平分此三角形的面积,即可推出DGF44S a=,即可求得答案.【详解】(1)连接AD,∵∠1=∠2,∴AD=AC,∵AB为⊙O的直径,∴∠ADB=∠ACB=90︒,∴Rt△ADB≅Rt△ACB(HL),∴DB=CB,∠1=∠3,∴AB⊥DC,∴DE=CE,∵CF⊥DC,∴BE∥FC,∴BE为△DCF的中位线,∴DB=12DF=5∵AE:EC=1:2,∴AE AD1tan3tan1EC BD2∠∠====,∴552∴AB=()222252555522AD BD ⎛⎫+=+= ⎪⎝⎭, ∴⊙O 的半径为254; (2)连接BG ,∵CF ⊥DC ,∴∠ACG=90︒,∴DG 为⊙O 的直径,∵DE 1tan 3EB 2∠==, ∴EB=2DE ,∵222DE EB BD +=,即(222455DE DE +=, ∴DE=5,则DC=2DE=10,∵222DC CG GD +=,即22225102CG ⎛⎫+= ⎪⎝⎭, ∴CG=152, ∵BO ∥GC ,∴△OBM ~△GCM , ∴OM OB MG CG=, 则25541562OM OB MG CG ===, ∴OBM GBM 56S S =, 设OBM 5Sa =,则GBM 6S a =, ∴GBO 5611Sa a a =+=, ∵点O 为直径DG 的中点, ∴DBO GBO11S S a ==,∴DBG GBO 222S S a ==,∵点B 为线段DF 的中点,DGF DBG 244SS a ==, ∴OBM DGF 554444S a S a ==. 故答案为:544. 【点睛】 本题考查了圆周角定理,相似三角形的判定和性质,勾股定理的应用,三角形中位线的判定和性质,三角形的中线的性质等知识点,解题的关键是灵活运用所学知识解决问题. 25.(1)32y x -=;(2)48⎛⎝⎭或8⎛ ⎝⎭或1224,55⎛⎫-- ⎪⎝⎭;(3)329,9⎛⎫- ⎪⎝⎭或()1,32-【分析】(1)求出点C 的坐标,代入k y x=即可求解; (2)分两种情况讨论①8AB AD ==,②8AB BD ==求解即可; (3)设设点E 的坐标为32,b b ⎛⎫-⎪⎝⎭,利用含b 的式子表示出三角形ABE 的面积求解即可. 【详解】解:(1)由题意知:点A 横坐标为4,将4x =代入2y x =得,8y =,A ∴点坐标为(4,8),点A 、C 关于x 轴对称, ∴点C 坐标为(4,-8).设双曲线解析式为k y x =,将(4,-8)代入k y x=得,32k =- 32y x -∴=(3)DAB ∆是等腰三角形,且AB 为腰,设点D 坐标为(),2a a①8AB AD ==8AD==, 解得:45a =±点D 坐标为48⎛⎝⎭或8⎛ ⎝⎭②8AB BD ==8BD ==解得:14a =,2125a =- 点D 不能与点A 重合,14a =舍去点D 坐标为1224,55⎛⎫-- ⎪⎝⎭ (3)设点E 的坐标为32,b b ⎛⎫-⎪⎝⎭ 由题意可知,14202S ABE AB b ∆=⨯⨯-= 解得:19b =,21b =-E 点坐标为329,9⎛⎫- ⎪⎝⎭或()1,32- 【点睛】 本题考查了反比例函数和一次函数的性质及等腰三角形的性质,注意分类讨论思想的运用.26.临皋亭M 处与遗爱亭N 处之间的距离为(米.【分析】过M 作MD ⊥AC 于D ,设MD =x ,在直角三角形中,利用三角函数即可x 表示出AD 与CD ,根据AC =AD +CD 即可列方程,从而求得MD 的长,进一步求得AM 的长;过B 作BE ⊥AN 于E ,在直角三角形中,利用三角函数即可求出AE 与NE ,再求出ME ,从而求得MN .【详解】过M 作MD ⊥AC 于D ,设MD =x ,在Rt △MAD 中,∵∠MAB =45°,∴△ADM 是等腰直角三角形,∴AD =MD =x ,在Rt △MCD 中,∠MCA =90°−60°=30°,∴DC =MD÷tan30°,∵AC =600+400=1000,∴x=1000,解得:x =5001),∴MD =5001)m ,∴AMMD =500)(m ),过B 作BE ⊥AN 于E ,∵∠MAB =45°,∠BA =75°,∴∠ANB =60°,在Rt△ABE中,∵∠MAB=45°,AB=600,∴BE=AE=2AB=3002,∴ME=AM−AE=500(6−2)−3002=5006−8002,在Rt△NBE中,∵∠ANB=60°,∴NE=3BE=3×3002=1006,∴MN=1006−(5006−8002)=(8002−4006)m,即临摹亭M处与遗爱亭N处之间的距离是((8002−4006)m.【点睛】本题考查了直角三角形的应用−方向角问题,熟练掌握方向角的概念,正确作出辅助线是解题的关键.。

华师大版初中九年级下学期数学期末试题及答案

华师大版初中九年级下学期数学期末试题及答案
圆心角的大小是 ;
(
2)请将图 ① 补充完整;
(
3)该校共有 1800 名学生参赛,请你估计得分 80 分以上的
学生人数 .
(
22.
10 分)跳绳是一项很好的健身活动,如图是元元跳绳运动
时的示意图,建立 平 面 直 角 坐 标 系,甩 绳 近 似 抛 物 线 形 状,
脚底 B 、
C 相距 20cm,头顶 A 离地 174cm,相距 60cm 的
双手 D 、
点 A、
E 均离地 80cm.
B、
C、
D、
E 在 同 一 平 面 内,
脚离地面的高度忽略不计 .
元元调节绳子,使跳动时绳子刚
好经过脚底 B 、
C 两点,且甩绳形状始终保持不变 .
(
1)经过脚底 B 、
C 时绳子所在抛物线对应的函数表达式为
;
(
2)判断元元此次跳绳能否成功,并说明理由 .
°
D.
90
°
(D )
取值范围是
A.
a≠0
B.
a≥1
C.
a≤-1
下列调查中,适合采用普查方式的是
2.
D.
a≠-1
(B )
对全国中学生心理健康现状的调查
A.
对某航班旅客上飞机前的安检
B.
对冷饮市场上冰淇淋质量情况的调查
C.
了解一批签字笔的使用寿命
D.
如图,
3.
AB 是 ☉O 的 直 径,
C、
D 是 ☉O 上 的 两 点,连 结 AC、
【解决问题】(
1)在上面的解答过程中,括号内对应两个依据,分
别是:依据 1: ,依据 2:
;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中学业质量检查数 学 试 题(满分:150分; 考试时间:120分钟)毕业学校________________ 姓名__________________ 考生考号______________ 一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错、不答或答案超过一个的一律得0分.1. 3-的倒数是( ) A .31B.31- C. -3 D. 3 2. 计算()23a的结果是( )A .6a B .9a C .5aD .8a3. 如图所示几何体的左视图是( )4.函数y =x 的取值范围是( )A .2x >B .2x <C .2x ≥D .2x ≤ 5. 两个相似三角形的面积比是9:16,则这两个三角形的相似比是( ) A.9:16 B. 3:4 C.9:4 D.3:166. 如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( )A.(-4,3)B.(-4,-3)C.(-3,4)D.(-3,-4)7. 如图,正方形ABCD 的边长是3cm ,一个边长为1cm 的小正方形沿着正方形ABCD 的边 AB →BC→CD→DA→AB 连续地翻转,那么这个小正方形第一次回到起始位置时,它的方向 是下图的( )第7题图 A B C D AB C D第3题图AB α5米第14题图BCDG第16题图FB A6cm3cm 1cm第17题图AFE二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8. 计算:20100=____________.9. 2008北京奥运会主会场“鸟巢”的座席数是91000个,这个数用科学记数法表示 为__________________个.10. 方程:0252=-x 的解是__________________.11. 某同学7次上学途中所花时间(单位:分钟)分别为10,9,11,12,9,10,9.这组数据的中位数为 __.12. 将直线 向下平移3个单位所得直线的解析式为___________________. 13. 若反比例函数 的图象上有两点),1(1y A 和),2(2y B , 则1y ______2y (填“<”“=”“>”). 14. 如图,先锋村准备在坡角为030=α山坡上栽树,要求相邻两树 之间的水平距离为5米,那么这两树在坡面上的距离AB 为__________米. 15. 已知圆锥的底面半径是3,母线长是4,则圆锥的侧面积是 . 16. 矩形纸片ABCD 的边长AB=4,AD=2.将矩形纸片沿EF 折叠,使点A 与点C 重 合,折叠后在其一面着色(如图),则着色部分的面积为_____________. 17. 如图,长方体的底面边长分别为1cm 和3cm ,高为6cm . ①如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B , 那么所用细线最短需要__________cm ;②如果从点A 开始经过4个侧面缠绕3圈到达点B , 那么所用细线最短需要__________cm .三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:92)65(21+÷---19.(9分)先化简下面代数式,再求值:aa a a ---211, 其中2-=a20.(9分)如图,点E 、F 分别是菱形ABCD 中BC 、CD 边上的点(E 、F 不与B 、C 、D 重合);在不作任何辅助线的情况下,请你添加一个..适当的条件,能推出AE=AF ,并予以证明.x y 31=xy 6=21.(9分)有关部门准备对某居民小区的自来水管网系统进行改造,为此,需了解该小区的自来水用水的情况.该部门通过随机抽样,调查了其中的20户家庭,这20户家庭的月用水量见下表:月用水量(3m ) 711 15 17 19 户数34643(1)求这20户家庭的户均月用水量;(2)若该居民小区共有400户家庭,试估计该小区的月用水量.22.(9分)有三张背面完全相同的卡片,它们的正面分别写上2、3、12,把它们的背面朝上洗匀后;小丽先从中抽取一张,然后小明从余下..的卡片中再抽取一张. (1)直接写出小丽取出的卡片恰好是3的概率;(2)小刚为他们设计了一个游戏规则:若两人抽取卡片上的数字之积是有理数,则小丽获胜;否则小明获胜.你认为这个游戏规则公平吗?若不公平,则对谁有利?请用画树状图或列表法进行分析说明.23.(9分)和谐商场销售甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案.24.(9分)如图,抛物线322--=x x y 与x 轴交于AB ,两点,与y 轴交于C 点. (1)求抛物线的顶点坐标;(2) 设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重合),经过AB E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由.FG(O)BACHKFEG(O)BAC图①图②25.(13分) 如图,把两个全等的等腰直角三角板ABC和EFG(其直角边长均为4)叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合(如图①).现将三角板EFG绕O点按顺时针方向旋转(旋转角α满足条件:00<α<900),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).(1)在上述过程中,BH与CK有怎样的数量关系?证明你发现的结论;(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,①求y与x之间的函数关系式,并写出自变量x的取值范围;②当△GKH的面积恰好等于△ABC面积的516,求此时BH的长.26.(13分)如图,已知直角梯形ABCD中,AD∥BC,AB⊥BC ,AD=2,AB=8,CD=10.(1)求梯形ABCD的周长;(2)动点P从点B出发,以1cm/s的速度沿B→A→D→C方向向点C运动;动点Q从点C出发,以1cm/s的速度沿C→D→A方向向点A运动;过点Q作QF⊥BC于点F.若P、Q两点同时出发,当其中一点到达终点时整个运动随之结束,设运动时间为t秒.问:①当点P在B→A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由.②在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.四、附加题(共10分)在答题卡上相应题目的答题区域内作答.友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分最多不超过90分;如果你全卷总分已经达到或超过90分,则本题的得分不计入全卷总分.1. (5分)不等式2x<4的解集是.2. (5分)如图,D、E分别是AB、AC的中点,DE=2,则BC=.AD2010年惠安县初中学业质量检查数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分)1.B ; 2.A ; 3.D ; 4.C ; 5.B ; 6.C ; 7. A. 二、填空题(每小题4分,共40分)8. 1; 9. 9.1×104; 10. 5,521-==x x ; 11. 10; 12. 331-=x y ;13. >; 14.3310; 15. π12; 16. 5.5; 17. ① 10, ② 176. 三、解答题(共89分) 18.(本小题9分)解:原式=321)1(21+⨯--………………………………………6分 =32121++………………………………………………8分=4…………………………………………………………9分 19.(本小题9分)解:原式=)1(1)1(2---a a a a a ……………………………4分=)1()1)(1(--+a a a a ……………………………………6分=aa 1+………………………………………………7分 当2-=a 时,原式=212-+-=21……………………9分20.(本小题9分)添加的条件是:BE=DF ,……………………………………3分证明:在菱形ABCD 中,AB=AD ,∠B=∠D …………………5分 又∵BE=DF∴△ABE ≌△ADF (S.A.S )…………………………7分 ∴AE=AF ………………………………………………9分 (答案不唯一)解:(1)x = =14(3m )……………………4分∴这20户家庭的户均月用水量为143m ;…………………………………5分(2)14×400=5600(3m )………………………………………………………8分∴估计该小区的月用水量约为56003m .………………………………………9分22.(本小题9分)解:(1)小丽取出的卡片恰好是3的概率为31……………………………………3分 (2)画树状图:………………………………6分∴共有6种等可能结果,其中积是有理数的有2种、不是有理数的有4种∴3162(==小丽获胜)P ,3264==(小明获胜)P …………………8分 ∴这个游戏不公平,对小明有利………………………………………9分(若用列表法则参照给分)23.(本小题9分) 解:(1)设该商场购进甲种商品x 件,根据题意可得:2700)100(3515=-+x x ……………………………………………… 2分解得:40=x乙种商品:100-40=60(件)…………………………………………3分 答:该商场购进甲种商品40件,乙种商品60件………………… 4分 (2)设该商场购进甲种商品a 件,则购进乙种商品)100(a -件,根据题意得:⎩⎨⎧≤--+-≥--+-760)100)(3545()1520(750)100)(3545()1520(a a a a ……………………………… 6分 解得:48≤a ≤50………………………………………………………7分 ∵a 是正整数∴a =48或a =49或a =50……………………………………………… 8分 ∴进货方案有三种:方案一:购进甲种商品48件,购进乙种商品52件。

相关文档
最新文档