Distributed Wireless Sensor Network Localization Via Sequential Greedy Optimization Algorithm
无线传感器网络在计算机网络中的应用
无线传感器网络在计算机网络中的应用随着科技的不断发展,无线传感器网络(Wireless Sensor Network,简称WSN)逐渐成为计算机网络领域的热门话题。
WSN是由大量分布式的传感器节点组成的网络,节点之间通过无线通信进行数据传输和协作。
WSN的应用范围广泛,包括环境监测、智能交通、农业、医疗等领域。
本文将着重探讨WSN在计算机网络中的应用。
首先,WSN在环境监测领域发挥着重要作用。
传感器节点可以被部署在各种环境中,例如森林、湖泊、城市等地方。
这些节点能够实时感知环境的温度、湿度、气体浓度等信息,并将这些数据通过无线通信传输到数据中心进行分析和处理。
通过WSN,我们可以实时监测环境的变化,及时采取相应的措施,保护生态环境的平衡和可持续发展。
其次,WSN在智能交通系统中的应用也日益重要。
传感器节点可以被安装在道路、交通信号灯、车辆等位置,实时感知交通状况并进行数据传输。
通过WSN,我们可以实时监测道路的拥堵情况、交通信号灯的状态,从而优化交通流量,提高交通效率。
此外,WSN还可以用于智能车辆的自动驾驶系统,通过传感器节点感知周围环境,实现车辆的自主导航和避障功能。
农业领域也是WSN的重要应用领域之一。
通过在农田中部署传感器节点,可以实时监测土壤湿度、温度、光照等信息,帮助农民科学合理地进行灌溉、施肥等农业活动。
此外,WSN还可以用于监测农作物的生长情况,及时发现并处理病虫害等问题,提高农作物的产量和质量。
通过WSN的应用,农业生产可以更加智能化和高效化。
在医疗领域,WSN也发挥着重要的作用。
通过在患者身上植入或佩戴传感器节点,可以实时监测患者的生理指标,如心率、血压、体温等。
这些数据可以通过无线通信传输到医疗中心,医生可以实时监测患者的健康状况,并及时采取相应的治疗措施。
此外,WSN还可以用于远程医疗,通过传感器节点和视频通信技术,医生可以远程对患者进行诊断和治疗,为偏远地区的患者提供更好的医疗服务。
无线传感器网络的优化配置指南
无线传感器网络的优化配置指南无线传感器网络(Wireless Sensor Network,WSN)是一种由大量分布式传感器节点组成的网络,用于监测和收集环境中的物理量。
它具有灵活性、低成本和易部署等优点,被广泛应用于环境监测、智能交通、农业等领域。
然而,由于节点资源有限、信号传输受限等原因,WSN的配置和优化成为了一个重要的研究方向。
本文将介绍无线传感器网络的优化配置指南,帮助读者更好地设计和部署WSN。
一、节点布局优化节点布局是WSN配置的重要环节,它直接影响到传感器网络的监测能力和性能。
在进行节点布局时,需要考虑以下几个因素:1. 覆盖范围:节点应被合理地布局在监测区域内,以实现对目标区域的全面覆盖。
在选择节点位置时,需要考虑监测区域的大小、形状以及目标物体的分布情况。
2. 能量消耗:节点的能量是有限的,因此在布局时需要考虑节点之间的距离和通信能耗。
过远的节点距离会导致信号衰减和能量消耗增加,而过近的节点距离会造成冗余和能量浪费。
3. 网络拓扑:节点之间的连接方式也需要考虑。
常见的拓扑结构有星型、网状和集群等。
选择合适的拓扑结构可以提高网络的稳定性和可靠性。
二、信道分配优化在无线传感器网络中,由于信道资源有限,节点之间的通信需要进行信道分配。
信道分配的优化可以提高网络的吞吐量和传输效率。
以下是一些信道分配的优化策略:1. 频谱分配:合理分配频谱资源可以减少信道干扰和冲突,提高网络的传输效率。
可以利用频谱分析工具,选择空闲的频段进行信道分配。
2. 功率控制:节点之间的信号传输功率应根据节点之间的距离和信道质量进行调整。
过高的功率会造成信号干扰,而过低的功率会导致通信质量下降。
3. 时隙分配:在时分多址(Time Division Multiple Access,TDMA)协议中,节点之间的通信通过时隙进行分配。
合理分配时隙可以减少冲突和碰撞,提高网络的传输效率。
三、能量管理优化能量管理是无线传感器网络中的关键问题,合理管理节点的能量可以延长网络的寿命和稳定性。
Wireless sensor network
The Greenhouse Environment Monitoring System Based on Wireless Sensor Network TechnologyΙ..INTRODUCTIONПZIGBEE TECHNOLOGYWireless sensor network(WSN) integrates the sensor network techonology, information processing technology and network communication technology with the feature of small size, low cost and easy maintenance, which has a wide application in the area of environment data collection,security monitoring and target tracking.无线传感器网络(WSN)集成了传感器网络的技术,信息处理技术和网络通信技术,具有体积小,成本低,维护方便的特点,在环境数据采集,安全监控和跟踪目标领域具有广泛的应用。
It comprises a great many wireless sensor nodes deployed in the monitoring region, and through wireless communication a multi-hop self-organizing network system is formed.它包括许多部署在监测区域的无线传感器节点,并且通过无线通信一个多跳的自组织网络系统形成了。
Its role is to coordinate the perception , acquisition and process of the information of its perceptual objects within the area covered by the network, and returned data to the observer.At present, large amount of widely-distributed electronic detection devices and implementing facilities are greatly used in greenhouse production , resulting in intertwining cables(相互交织的电缆)in the greenhouse production .目前,大量分布广泛的电子检测设备和执行设备被广泛地运用在温室生产中,导致了温室生产中存在相互交织的电缆。
无线传感器网络部署
无线传感器网络部署无线传感器网络(Wireless Sensor Network,WSN)是一种由大量分散部署的无线传感器节点组成的网络系统,用于感知和监测环境中的各种参数,并将这些信号数据传输到集中管理节点进行处理和分析。
在实际应用中,合理的无线传感器网络部署对于网络的性能和覆盖范围具有重要影响。
本文将从节点密度、节点布局和通信范围三个方面介绍无线传感器网络的部署优化方法。
一、节点密度优化节点密度是无线传感器网络部署中的重要参数之一。
节点密度过低会导致网络覆盖不到位,无法实现对目标区域的有效监测;节点密度过高则会浪费资源,增加网络的能耗和维护成本。
因此,选择合适的节点密度是优化无线传感器网络部署的关键。
节点密度的选择应该根据目标区域的特点和监测需求来确定。
例如,在一个山地区域中,可以将节点密度调高,以确保能够覆盖到较为复杂和多变的地形;而在平原地区,节点密度可以适当减少,以节约资源和能源消耗。
二、节点布局优化节点布局是无线传感器网络部署过程中的另一个重要环节。
合理的节点布局可以最大程度地利用传感器节点的能源,保证网络的可靠性和有效性。
在节点布局过程中,可以采用覆盖和重叠的策略。
覆盖是指将节点尽可能均匀地分布在目标区域中,以实现对目标区域的全面监测;而重叠是指在相邻节点之间存在一定的覆盖区域,以实现数据的冗余与容错。
此外,还可以结合目标区域的特点和节点自身的能力来确定节点的位置和朝向。
例如,在需要监测河流水质的场景中,可以将节点部署在河岸上,并使其面向河流,以便更好地感知水质。
三、通信范围优化通信范围是无线传感器网络部署中的另一个关键参数。
通信范围的选择不仅影响网络的通信质量,还直接关系到网络的能耗和传输效率。
在选择通信范围时,需要综合考虑节点之间的距离、目标区域的尺寸和通信能力等因素。
通信范围过大可能导致节点之间的冗余和能耗增加,通信范围过小则会影响网络的通信质量和传输速率。
因此,应根据实际需求和能源限制,选择合适的通信范围。
探知无线传感器网络
探知无线传感器网络文/许拥晶无线传感器网络(Wireless Sensor Network,简称WSN)由多学科高度交叉而成,综合了传感器技术、嵌入式计算机技术、现代网络及无线通信技术、分布式信息处理技术等多种技术。
无线传感器网络将实时监测和采集到的信息发送到网关节点,实现复杂的指定范围内的目标监测与跟踪,具有快速展开、抗毁性强等特点。
节点之间主要通过广播的方式进行通信,由于其节点多、规模大,其拓扑结构一般采用分层分组的层簇式方案,通过无线通信方式形成一个多跳的自组织的网络系统。
其目的是协作地感知、采集和处理网络覆盖区域中被感知对象的信息,并发送给观察者。
传感器、感知对象和观察者构成了无线传感器网络的三个要素。
无线传感器网络的三要素决定了整个网络的功能与应用范围缺一不可。
在具体应用中,根据不同的被感知对象的特点,无线传感器网络将在被监测区域中布置具备不同功能的节点,例如在军事上,通过散播节点,了解敌军部署、军队、武器贮藏地等信息,并将信息发送到军队总部,可以让高层决策者做出更准确的判断,成功地打击敌人:在森林防火中,传感器节点应具备判定温度、浓烟等级等的功能,运用这些功能,节点之间相互合作,综合判断该区域是否具有火情,以便及时通知消防人员。
无线传感器网络的系统架构包括分布式无线传感器节点(群)、接收发送器汇聚节点、任务管理节点等(如图1)。
分布式无线传感器节点(群)随机放置在监测区域内部或附近,能够通过自组织方式构成网络。
网络中每个传感器节点的地位相同,各个节点之间可独立采集相关信息,并可通过传感器节点间的互相通信共享彼此之间的信息。
传感器节点是传感网的基本组成模块,一般由传感器模块、处理器模块、无线通信模块和能量供应四部分组成(如图2)。
汇聚节点是传感器网络中的网关设备,相对于传感器节点来说,其处理能力、存储能力和通信能力更强,且无感知能力,一般拥有充足、稳定的固定电源为其供电。
汇聚节点通过无线方式连接到传感器网络,通过有线或具有可靠通信质量的无线接入网络与Internet等外部网络通信,实现两种通信协议栈之间的通信协议转换,充当基站管理设备和传感器网络之间的通信员,发布基站管理设备的监测任务,并把收集来的感知数据转发到外部网络上。
无线传感器网络综合整理
无线传感器网络1无线传感器网络简介WSN是wireless sensor network的简称,即无线传感器网络。
无线传感器网络就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统,其目的是协作地感知、采集和处理网络覆盖区域中被感知对象的信息,并发送给观察者。
传感器、感知对象和观察者构成了无线传感器网络的三个要素。
WSNs网络体系结构如图所示。
数量巨大的传感器节点以随机散播或者人工放置的方式部署在监测区域中,通过自组织方式构建网络。
由传感器节点监测到的区域内数据经过网络内节点的多跳路由传输最终到达汇聚节点(Link节点),数据有可能在传输过程中被多个节点执行融合和压缩,最后通过卫星、互联网或者无线接入服务器达到终端的管理节点。
用户可以通过管理节点对WSNs进行配置管理、任务发布以及安全控制等反馈式操作。
图1.1传感器节点功能:采集、处理、控制和通信等网络功能:兼顾节点和路由器图1.2Sink节点功能:连接传感器网络与Internet等外部网络,实现两种协议栈之间的通信协议转换,发布管理节点的监测任务,转发收集到的数据。
特点:连续供电、功能强、数量少等2无线传感器网络特点2.1硬件资源有限受体积成本限制,传感器节点的硬件资源有限,其计算能力、存储能力相对较弱。
2.2电源容量受限通常传感器节点投放在不适合电源不补给的恶劣环境和无人区,所以仅靠电池供电。
2.3对等网络各传感器地位平等,没有固定的中心节点,是一种对等网络。
2.4多跳路由网络数据的传送往往采用多跳转发的方式。
2.5动态拓扑无线传感器网络的拓扑是动态变化的,因为无线传感器的节点是移动,数量是变化的(主动和被动变化)。
2.6以数据为中心无线传感器网络是任务型网络。
在WSN中,节点虽然也有编号。
但是编号是否在整个WSN中统一取决于具体需要。
另外节点编号与节点位置之间也没有必然联系。
用户使用WSN查询事件时,将关心的事件报告给整个网络而不是某个节点。
环境监测中的无线传感器网络技术配置指南
环境监测中的无线传感器网络技术配置指南无线传感器网络(Wireless Sensor Network,WSN)是由许多分布式无线传感器节点组成的网络,用于采集环境数据并将其传输到集中的监测设备中。
在环境监测中,无线传感器网络技术扮演着至关重要的角色。
为了正确配置无线传感器网络技术,我们需要遵循以下指南。
首先,确定监测目标和布置传感器节点的位置。
在环境监测中,我们通常需要监测温度、湿度、气压、光照等指标。
根据监测目标制定布置传感器节点的方案,确保节点能够覆盖监测区域,并且距离传输节点不会过远。
其次,选择合适的传感器节点。
在市场上存在各种类型的传感器节点,每种类型都有其特定的功能和优势。
根据监测目标和布置方案选择合适的传感器节点。
例如,对于温度监测,我们可以选择温度传感器节点;对于光照监测,我们可以选择光照传感器节点。
然后,确定通信协议。
无线传感器网络中的节点之间需要进行数据传输和通信。
根据监测需求和节点之间的距离,选择合适的通信协议。
常用的无线传感器网络通信协议包括Zigbee、Bluetooth和Wi-Fi。
Zigbee适用于距离较远且节点数量较多的环境;Bluetooth适用于距离较短的环境;Wi-Fi适用于覆盖范围较广的环境。
接下来,配置传感器节点的参数。
对于每个传感器节点,需要设置其采样频率、传输间隔等参数。
采样频率表示节点对环境数据进行采样的频率,传输间隔表示节点将数据传输到集中监测设备的时间间隔。
根据需求和能源消耗情况设置这些参数,以平衡数据获取和能源使用的需求。
然后,建立无线传感器网络。
将选定的传感器节点按照监测目标和布置方案部署在监测区域内,并确保节点能够相互通信。
建立网络时需要考虑传感器节点之间的覆盖范围、信号强度和传输距离。
可以使用无线路由器或基站作为传感器网络的中心节点,接收并处理来自传感器节点的数据。
随后,进行网络测试和优化。
在正式启动监测之前,要对无线传感器网络进行测试和优化。
无线传感器网络的安装与部署步骤
无线传感器网络的安装与部署步骤无线传感器网络(Wireless Sensor Network,简称WSN)是一种由大量分布在特定区域内的无线传感器节点组成的网络系统。
它可以实时地采集、处理和传输环境中的各种信息,如温度、湿度、压力等。
无线传感器网络的安装与部署是构建一个高效、可靠的网络系统的重要环节。
本文将介绍无线传感器网络的安装与部署步骤,以帮助读者更好地理解和应用这一技术。
1. 确定网络需求在安装和部署无线传感器网络之前,首先需要明确网络的需求和目标。
这包括确定需要监测的环境参数、监测区域的大小和形状、传感器节点的数量和分布等。
通过对网络需求的准确定义,可以更好地规划和设计无线传感器网络的安装与部署方案。
2. 选择传感器节点根据网络需求,选择合适的传感器节点。
传感器节点应具有适当的功能和性能,如传感器类型、通信协议、能耗等。
同时,还需要考虑节点的可靠性和稳定性,以确保网络的正常运行。
3. 部署传感器节点将选定的传感器节点部署到监测区域内。
在部署过程中,需要考虑节点的位置和密度。
节点的位置应覆盖整个监测区域,并尽量避免节点之间的重叠。
节点的密度应根据监测区域的大小和形状来确定,以保证网络的覆盖和采集效果。
4. 网络拓扑设计设计无线传感器网络的拓扑结构,即节点之间的连接方式。
常见的拓扑结构包括星型、网状和树状结构。
选择合适的拓扑结构可以提高网络的可靠性和稳定性,并减少能量消耗。
5. 网络通信设置配置传感器节点的通信参数,包括频率、速率、传输距离等。
通信设置应根据监测区域的特点和传感器节点的分布来确定,以保证数据的可靠传输和网络的正常运行。
6. 能量管理无线传感器节点通常由电池供电,因此能量管理是部署无线传感器网络的重要环节。
需要合理规划和管理节点的能量消耗,以延长网络的寿命。
常见的能量管理策略包括节点休眠、能量平衡和能量回收等。
7. 网络监测与维护部署无线传感器网络后,需要对网络进行监测和维护。
无线传感器网络的覆盖范围扩展
无线传感器网络的覆盖范围扩展无线传感器网络(Wireless Sensor Networks, WSN)是由许多分布在空间中的无线传感器节点组成的网络系统。
它们能够感知环境中的物理和环境数据,并通过无线通信将这些数据传输到基站或其他节点,从而实现对环境的实时监测与控制。
然而,WSN的覆盖范围受到设备的通信能力和节点分布的限制,因此扩展WSN的覆盖范围成为了一个重要的研究方向。
本文将介绍几种常用的扩展WSN覆盖范围的方法,包括节点部署策略、信号增强技术和节点位置优化算法。
通过合理利用这些方法,可以提高WSN的覆盖范围和性能,满足不同应用场景的需求。
一、节点部署策略节点的部署方式直接影响着WSN的覆盖范围和性能。
常见的节点部署策略包括均匀部署和非均匀部署。
1. 均匀部署均匀部署是指将节点均匀地布置在被监测区域内。
这种部署策略可以有效地覆盖整个区域,但在一些特殊环境下,可能会导致节点过于密集或过于稀疏的问题。
因此,在实际应用中需要结合具体环境和需求进行调整。
2. 非均匀部署非均匀部署通过合理地选择节点的位置来达到覆盖范围扩展的目的。
例如,在需要对某个区域进行高密度覆盖时,可以将更多的节点部署在该区域内;而在对整个区域进行覆盖时,可以采用稀疏部署策略。
通过灵活调整节点的数量和分布,可以有效地扩展WSN的覆盖范围。
二、信号增强技术信号增强技术是一种通过改善信号传输的方式来扩展WSN覆盖范围的方法。
常见的信号增强技术包括中继节点和信号增幅设备。
1. 中继节点中继节点是指在传输路径上增加额外的节点,用于转发信号。
通过合理设置中继节点的位置,可以有效地延长信号传输距离,从而扩展WSN的覆盖范围。
中继节点的部署需要考虑节点的能量消耗和通信质量等因素,以保证整个网络的性能和稳定性。
2. 信号增幅设备信号增幅设备可以通过增加传输功率或优化传输协议来增强信号的传输能力。
通过提高信号的强度和可靠性,可以扩大WSN的覆盖范围。
WirelessSensorNetwork.ppt
WSN概述(续)
无线传感器网络(wireless sensor network, WSN)就是由部署在检测区域内大量的廉 价卫星传感器节点组成,通过无线通信方 式形成的一个多跳的自组织的网络系统, 目的是协作地感知、采集和处理网络覆盖 区域中感知的对象信息,并发送给观察者。
构成WSN的三要素: 传感器、感知对象、观察者。
WSN的协议(续)
路由协议 和传统的路由协议相比,无线传感器的路 由协议有以下特点:
☆能量优先 ☆基于局部拓扑信息 ☆以数据为中心 ☆应用相关
WSN的协议(续)
路由协议分类 ☆能量感知路由协议。 ☆基于查询的路由协议。 ☆地理位置的路由协议。 ☆可靠的路由协议。
关键技术
网络拓扑控制 网络协议 网络安全 时间同步 定位技术 数据融合 数据管理 无线通信技术 嵌入式操作系统 应用层技术
当发生坍塌时,坍塌区域内的节点发生移位,在网络 中形成空洞。当一个节点发现它的一些邻居突然消失 时(收听不到信标),判断自己成为空洞的一个边界 节点,向汇聚节点报告自己的位置。
汇聚节点计算空洞区域。
(3)人居环境监视[3]
在一个标准的电源插线板上扩充了各种 传感器和无线收发器,一个微处理器控 制所有的部件,成为一个plug节点。
传感器网络具有可快速部署、可自组织、 隐蔽性强和高容错性的特点,因此非常适 合军事上的应用。通过飞机或炮弹直接将 传感器节点散播到敌方阵地内部,或者在 公共隔离带部署传感网络,就能隐蔽而且 近距离的准确收集战场信息。
例:传感器网络已经成为美军事C4ISRT系统 必不可少的一部分。
WSN的应用(续)
可在森林的不同地方(如森林的中心 处、迎风面、背风面、向阳面等)部 署这样的传感器网络,然后利用长距 离上行链路将数据发送到汇聚节点。
无线传感器网络的节点部署与拓扑优化
无线传感器网络的节点部署与拓扑优化无线传感器网络(Wireless Sensor Networks,简称WSN)是一种由许多分布式无线传感器节点组成的网络。
这些节点被广泛应用于环境监测、农业、交通管理等领域,可以实时感知、采集、处理和传输环境信息。
节点的部署和拓扑优化是保证网络性能和可靠性的重要步骤。
节点部署是指将传感器节点布置在目标区域内的过程。
合理的节点部署方案可以提高网络的覆盖范围、信号质量和网络传输效率。
在节点部署过程中,需要考虑以下因素:目标区域的拓扑结构、传感器节点的数量、可靠通信范围、能量消耗等。
通常情况下,节点的部署方式包括随机部署、规则部署和优化部署。
随机部署是最简单的部署方式,节点随机散布在目标区域内。
这种方式适用于一些简单的场景,但缺乏规律性和高效性。
规则部署是将节点按照一定规则进行布置,例如网格部署、螺旋式部署等。
这种方式可以提供较好的覆盖范围,但在复杂的环境中可能无法满足网络要求。
针对上述问题,优化部署方法被提出来以获得较好的网络拓扑结构。
优化部署方法通常采用数学模型和算法来寻求最优的节点布置策略。
这些算法可以分为启发式算法和优化算法。
启发式算法是一种通过经验和规则进行搜索的算法。
常用的启发式算法包括遗传算法、蚁群算法和模拟退火算法等。
遗传算法模拟了生物进化的过程,通过选择、交叉和变异等操作优化节点的部署。
蚁群算法则模拟了蚂蚁寻找食物的行为,通过相互通信来优化节点的布局。
模拟退火算法则模拟了固体退火过程,通过控制参数的变化来优化节点的位置。
优化算法是一种数学规划方法,利用数学模型来寻求最优解。
优化算法包括线性规划、整数规划、非线性规划等。
这些算法适用于复杂的网络环境,可以提供较优的节点布置方案。
但是,优化算法通常需要耗费较多的计算资源和时间。
除了节点部署,拓扑优化也是提高无线传感器网络性能的关键步骤。
拓扑优化是指通过调整节点的连接关系和通信方式来提高网络的可靠性、覆盖范围和能效。
无线传感器网络的路由协议
无线传感器网络的路由协议无线传感器网络(Wireless Sensor Network,简称WSN)是由大量分布式无线传感器节点组成的网络,用于感知环境、采集数据并传输给终端节点。
由于传感器节点资源有限,传统的路由协议在WSN中不适用。
因此,研究人员开展了大量的工作,提出了许多适用于WSN的路由协议。
以下是WSN常见的路由协议:基于平面的路由协议将传感器节点所处的平面划分为不同的区域,利用区域之间的连接关系进行数据传输。
其中一种经典的基于平面的路由协议是LEACH(Low Energy Adaptive Clustering Hierarchy),它基于分簇的思想将传感器节点分为不同的簇,每个簇有一个簇首节点负责数据聚合和传输。
基于层次的路由协议是WSN中常见的一种路由方式,它将节点组织成多个层次。
每个层次中的节点具有不同的功能和职责。
经典的基于层次的路由协议包括TEEN(Threshold-sensitive Energy Efficient Sensor Network)和PEGASIS(Power-Efficient Gathering in Sensor Information Systems)。
基于多跳的路由协议允许节点通过中转节点将数据传输到目的节点,从而延长网络的传输范围。
常见的基于多跳的路由协议包括SPIN(Sensor Protocols for Information via Negotiation)和Directed Diffusion。
SPIN协议利用分布式算法对节点进行数据交换和传输,Directed Diffusion协议则通过沿着数据梯度传播的方式进行数据传输。
由于传感器节点能量有限,基于能量的路由协议非常重要。
这些协议通过考虑节点能量状态来决定数据传输路径,以延长网络的生命周期。
例如,E-SEP(Energy-Efficient Stable Election Protocol)、GEDIR (Gateway-Efficient, Deterministic and Energy-Aware Routing)和ENERGY-LL(Energy-Efficient, Low Latency Routing)都是基于能量的路由协议。
无线传感器网络的使用教程
无线传感器网络的使用教程无线传感器网络(Wireless Sensor Network,简称WSN)是一种由多个无线传感器节点组成的网络系统。
每个节点都具有感知、数据处理和通信能力,能够检测、采集并传输环境中的各种信息。
无线传感器网络在农业、环境监测、智能交通等领域有着广泛的应用前景。
本篇文章将为您介绍无线传感器网络的使用教程,帮助您了解如何搭建、配置和管理一个高效可靠的无线传感器网络。
一、搭建无线传感器网络1. 硬件准备首先,您需要购买一些无线传感器节点,并确保它们具备以下基本功能:传感器、微处理器、无线通信模块和电源管理模块。
您可以选择一些常见的传感器节点,如TelosB、MicaZ等。
另外,您还需要为无线传感器网络提供一个基站或网关,用于接收和处理传感器节点发送的数据。
2. 网络拓扑设计在搭建无线传感器网络前,您需要确定合适的网络拓扑结构。
常见的网络拓扑包括星型、树型、网状等。
选择合适的拓扑结构可提高网络的性能和可靠性。
例如,星型拓扑结构中的所有节点都与基站直接通信,可以降低网络中的多径干扰。
3. 节点部署和通信范围根据需求,合理部署传感器节点可以最大程度地提高网络的覆盖范围和性能。
需要注意的是,每个传感器节点的通信范围有限,因此在节点的部署过程中,要确保节点之间的相邻关系能够保持一定的通信距离,以免信号受到干扰。
二、配置无线传感器网络1. 节点初始化在使用无线传感器网络前,需要将每个节点进行初始化配置。
通常情况下,您需要设置节点的网络地址、通信速率、传输功率等参数。
为了方便管理,可以为每个节点设置一个唯一的标识符,以便后续的数据处理和管理。
2. 网络连接无线传感器网络通常需要与外部网络进行连接,以实现对传感器数据的监测和管理。
可以通过无线网络、以太网或者GSM等方式实现网络连接。
根据不同的需求,选择适合的网络连接方式,并进行相应的配置。
3. 数据采集与传输无线传感器网络的核心功能是实时的数据采集与传输。
无线传感器网络的节点部署策略详解
无线传感器网络的节点部署策略详解无线传感器网络(Wireless Sensor Network,WSN)是一种由大量分布式的无线传感器节点组成的网络系统,用于收集、处理和传输环境中的信息。
节点的部署策略是WSN设计中至关重要的一环,它直接关系到网络的性能和可靠性。
本文将详细介绍无线传感器网络的节点部署策略。
首先,节点的密度是节点部署策略中的一个重要因素。
节点密度指的是在一定区域内节点的数量。
节点密度的选择需要考虑到网络的需求和资源限制。
如果节点密度过低,可能导致网络覆盖不全,无法准确感知环境中的信息。
而节点密度过高,则会造成资源浪费和能量消耗过快。
因此,节点密度的选择需要综合考虑网络的需求和资源限制,以达到平衡。
其次,节点的分布方式也是节点部署策略中的一个重要因素。
节点的分布方式包括均匀分布、簇状分布和随机分布等。
均匀分布是指将节点均匀地分布在整个区域内,可以实现全覆盖,但节点之间的距离较远,通信成本较高。
簇状分布是指将节点分成若干个簇,每个簇由一个簇首节点负责,其他节点通过簇首节点进行通信,可以降低通信成本,但簇首节点容易成为网络的瓶颈。
随机分布是指节点的位置随机选择,可以灵活适应不同环境,但可能会导致网络的不均衡和覆盖不全。
节点的分布方式需要根据具体应用场景和网络需求进行选择。
此外,节点的部署策略还需要考虑节点的能量消耗和寿命。
节点的能量消耗主要来自于通信和数据处理。
在节点部署时,需要合理安排节点的位置,以减少节点之间的通信距离,降低通信能量消耗。
同时,可以采用分层的节点部署策略,将能量充足的节点部署在靠近基站的位置,而将能量较低的节点部署在远离基站的位置,以延长整个网络的寿命。
最后,节点的部署策略还需要考虑网络的容错性和鲁棒性。
容错性是指网络在节点失效或故障时仍能正常运行的能力。
鲁棒性是指网络对外界干扰和攻击的抵抗能力。
为了提高网络的容错性和鲁棒性,可以采用冗余部署策略,即在网络中增加冗余节点。
无线传感器网络的部署与维护技巧
无线传感器网络的部署与维护技巧无线传感器网络(Wireless Sensor Network, WSN)是由大量具有传感、通信和计算能力的节点组成的分布式自组织网络。
它的应用广泛,涵盖了环境监测、智能交通、农业、物流等领域。
在部署和维护无线传感器网络时,需要注意以下技巧。
首先,部署前需要进行网络规划。
网络规划是为了保证网络的稳定性和性能。
要考虑节点的空间布局和通信范围,合理安排节点的位置,以确保节点之间的通信距离不会过远,也不会过近。
同时,根据应用需求和环境特点,选择合适的传感器类型和节点数量。
规划好网络拓扑结构后,需要进行仿真和测试,以验证网络的可行性和性能。
其次,部署过程中应注意节点的供电方式和能耗管理。
由于传感器节点通常部署在无人、无电力的环境中,因此供电成为一个重要的问题。
常见的供电方式有电池、太阳能和能量收集。
在选择供电方式时,要考虑节点的功耗和寿命。
同时,还要合理设计节点的工作模式和调度算法,以降低能耗。
例如,可以根据需求决定传感器的数据采样频率,降低节点的活跃时间,延长节点的寿命。
再次,维护无线传感器网络需要定期进行节点检测和维修。
由于节点通常散落在广阔的区域内,节点的异常和故障很难及时发现。
因此,需要定期巡检节点的工作状态和传输质量。
可以借助网络管理系统或使用远程监控技术,及时掌握网络的运行情况。
一旦发现节点出现故障或异常,及时对其进行维修或更换,以保证网络的稳定运行。
此外,为了提高网络的安全性,需要采取一些安全措施。
首先,对传感器节点进行合理的加密和认证,防止未经授权的访问。
其次,采用密钥管理机制,确保数据传输的机密性和完整性。
此外,可以通过合适的访问控制策略,限制对节点的远程访问和控制,防止攻击者入侵网络。
最后,定期进行网络性能评估和优化。
通过收集和分析节点的数据,评估网络的性能指标,如传输延迟、吞吐量和能耗等。
根据评估结果,可以采取一些优化措施,如增加新节点、调整网络拓扑结构或优化路由算法等,以提高网络的性能和效率。
无线传感器网络中的分布式随机感知理论研究
无线传感器网络中的分布式随机感知理论研究随着科技的不断发展,无线传感器网络(Wireless Sensor Network,WSN)作为一种新兴的网络通信技术也被广泛应用于多个领域中,如环境监测、智能交通、医疗保健等。
在无线传感器网络中,分布式随机感知(Distributed Random Sensing,DRS)技术的应用及研究已成为当前热点领域。
一、Distributed Random Sensing技术概述Distributed Random Sensing技术是一种利用多个分布式传感器节点随机感知环境中的信息,并将采集的信息进行整合、分析和传输的技术。
该技术利用了多个节点的协同作用,实现了大规模环境信息的感知及处理,从而能够提高网络的性能和可靠性。
DRS技术相对于其他传统的感知技术,具有以下优点:(1)能够充分利用网络中传感器节点的分布式特性,减少了单个节点对网络的影响,提高了网络的鲁棒性。
(2)DRS技术采用随机化的方法,保证了网络节点的均衡负载,减少了感知节点之间的冲突和重复。
(3)DRS技术对于节点失效和阻塞情况具有强大的容错能力,能够保证网络的长期稳定运行。
二、Distributed Random Sensing算法研究当前,DRS算法的研究重点主要集中在两个方面:一是感知信息的采集,包括节点选择和感知范围的确定;二是数据处理和传输,包括节点数据的处理和整合、协议设计等。
(1)节点选择和感知范围的确定传感器节点选择是一个非常重要的问题。
在DRS技术中,节点选择旨在确定哪些节点将参与到感知过程中。
当前研究主要关注以下两种节点选择算法:①基于覆盖的节点选择。
该算法是根据节点感知范围对节点进行选择的。
选择的节点能够监控所选择的区域,以提高网络感知的效率和精度。
②基于均衡负载的节点选择。
该算法是根据节点当前负载和饱和度来进行节点选择的。
选择的节点应该能够满足所指定的感知负载条件,以保证网络感知过程平衡和均衡。
无线传感器网络优化方法
无线传感器网络优化方法无线传感器网络(Wireless Sensor Network,WSN)是由大量的分布式传感器节点组成的自组织网络。
这些节点能够感知和收集环境中的数据,并将其传输至基站或其他节点。
WSN在许多应用场景中发挥着重要作用,包括环境监测、智能交通和农业等领域。
然而,由于节点之间通信的无线信号传输存在多路径衰减、信号干扰和能耗限制等问题,因此需要一些优化方法来提高网络性能和效率。
一、能量管理优化方法能量管理是无线传感器网络中的一个重要问题,因为传感器节点通常由电池供电,并且很难更换。
因此,为了延长网络的生命周期,需要采取一些能量管理优化方法。
其中之一是基于路由的能量优化方法,通过优化数据传输路径来减少节点的能量消耗。
另一种方法是使用能量平衡算法,它可以均衡节点之间的能量消耗,防止某些节点过早地耗尽能量。
还可以采用动态功率调整的方法,根据节点之间的距离和信道状况来调整传输功率,以减少能量消耗。
二、拓扑控制优化方法拓扑控制是无线传感器网络中的另一个重要问题,它涉及节点之间的连接和通信方式。
通过优化网络的拓扑结构,可以改善网络的传输效率和可靠性。
一种常用的拓扑控制方法是基于覆盖的节点部署,通过调整节点的密度和位置来实现对感兴趣区域的全面覆盖。
另一种方法是基于多跳传输的网络拓扑控制,通过选择合适的转发节点,将数据从源节点传输到目的节点,减少网络中无效的传输。
三、网络安全优化方法网络安全是无线传感器网络中的一个关键问题,因为传感器节点通常在无人监管的环境中部署,并且可能会受到各种攻击。
为了保护网络安全,可以采取一些优化方法。
其中之一是基于密钥管理的安全优化方法,通过合理地分配和更新密钥,确保通信的机密性和完整性。
另一种方法是使用数据验证和信号检测技术,以识别和阻止潜在的攻击行为。
此外,还可以采用异常检测和入侵防御等方法,实时监测网络行为并及时采取相应的安全措施。
四、QoS优化方法服务质量(Quality of Service,QoS)是无线传感器网络中的一个重要衡量指标,它涉及到数据传输的可靠性、时延和带宽等方面。
无线传感器网络技术使用注意事项
无线传感器网络技术使用注意事项无线传感器网络(Wireless Sensor Network,简称WSN)由大量分布在特定区域内的无线传感器节点组成,用于收集、处理、传输和存储环境信息。
WSN在各种领域有广泛的应用,如环境监测、智能交通、农业等。
然而,在使用WSN技术时,我们需要注意一些问题,以确保网络的稳定性和性能。
首先,由于WSN通常部署在复杂的环境中,如建筑物内部、农田或石油钻井平台等,因此在节点部署时需要考虑环境因素。
首先,需要考虑到节点之间的通信范围,节点之间过近会引起数据碰撞和干扰,而过远则可能导致信号弱化和通信中断。
同时,节点应该避免被障碍物遮挡,以确保信号的传输质量。
此外,节点的防护措施也需要考虑,以防止物理和环境损坏。
其次,WSN使用的无线通信技术对传感器的功耗有着较大的要求。
节点的电池寿命直接影响了整个网络的使用寿命。
因此,节点的设计和选择需要考虑到功耗问题。
比如,可以采用低功耗的传感器和无线通信模块,并采用优化的通信协议来降低节点的功耗。
另外,还可以通过节能算法和休眠机制来优化节点的能量消耗。
第三,由于无线传感器节点分布范围广泛,节点数据的安全性和隐私保护也是一个重要问题。
在设计和部署WSN时,需要采取一些安全措施来保护节点和数据的安全。
比如,可以使用加密算法来保护传输的数据,限制对节点的物理访问,并定期更新节点的密钥和密码。
此外,网络中的数据传输和处理也需要考虑。
由于节点数量众多,节点之间的通信容易引起网络拥塞和数据传输延迟。
因此,需要合理规划和优化网络拓扑结构,避免瓶颈和单点故障。
同时,还需要合理分配网络资源和建立合适的路由机制,以实现高效的数据传输和处理。
最后,由于WSN通常部署在无人或难以维护的环境中,因此需要考虑到节点的可靠性和自修复能力。
节点应该具备自动识别和恢复故障的能力,以减少人工维护成本和时间。
此外,节点的数据存储和备份也应该具备冗余和容错功能,以保证数据的可靠性和完整性。
无线传感器网络中的节点选择和路由优化
无线传感器网络中的节点选择和路由优化无线传感器网络(Wireless Sensor Network,简称WSN)是一种由大量分布在空间中的无线传感器节点组成的网络系统。
它通过无线通信技术实现传感器节点之间的数据传输和信息交换,广泛应用于环境监测、智能农业、智能交通等领域。
在WSN中,节点选择和路由优化是关键问题,直接影响着网络的性能和可靠性。
节点选择是指在WSN中选择合适的节点作为数据采集和传输的执行者。
由于无线传感器节点资源受限,如能量、计算能力和存储容量有限,因此节点选择需要考虑多个因素。
首先,节点选择应考虑节点的能量消耗情况。
在WSN中,能量是节点最宝贵的资源之一,因此选择能量充足的节点作为执行者可以延长网络的寿命。
其次,节点选择还要考虑节点的位置和覆盖范围。
节点的位置决定了其对周围环境的监测能力,而覆盖范围则决定了节点之间的通信距离和传输质量。
因此,选择位置合适、覆盖范围广的节点作为执行者可以提高网络的覆盖率和数据传输质量。
最后,节点选择还要考虑节点之间的通信质量和网络拓扑结构。
选择通信质量好的节点可以提高数据传输的可靠性和稳定性,而选择网络拓扑结构合理的节点可以减少通信的延迟和冗余。
路由优化是指在WSN中选择合适的路径进行数据传输和信息交换。
由于WSN 中节点分布广泛且网络拓扑结构动态变化,因此路由优化需要考虑多个因素。
首先,路由优化应考虑网络的拓扑结构和通信质量。
选择通信质量好的路径可以提高数据传输的可靠性和稳定性,而选择网络拓扑结构合理的路径可以减少通信的延迟和冗余。
其次,路由优化还要考虑网络的能量消耗情况。
在WSN中,能量是节点最宝贵的资源之一,因此选择能量消耗较低的路径可以延长网络的寿命。
最后,路由优化还要考虑网络的安全性和隐私保护。
在WSN中,数据的安全性和隐私保护是非常重要的,因此选择安全性高、隐私保护好的路径可以保护数据的机密性和完整性。
为了解决节点选择和路由优化问题,研究者们提出了许多方法和算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3328IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 6, JUNE 2010Distributed Wireless Sensor Network Localization Via Sequential Greedy Optimization AlgorithmQingjiang Shi, Student Member, IEEE, Chen He, Member, IEEE, Hongyang Chen, and Lingge Jiang, Member, IEEEAbstract—Node localization is essential to most applications of wireless sensor networks (WSNs). In this paper, we consider both range-based node localization and range-free node localization with uncertainties in range measurements, radio range, and anchor positions. First, a greedy optimization algorithm, named sequential greedy optimization (SGO) algorithm, is presented, which is more suitable for distributed optimization in networks than the classical nonlinear Gauss-Seidel algorithm. Then a unified optimization framework is proposed for both range-based localization and range-free localization, and two convex localization formulations are obtained based on semidefinite programming (SDP) relaxation techniques. By applying the SGO algorithm to the edge-based SDP relaxation formulation, we propose a second-order cone programming (SOCP)-based distributed node localization algorithm. Two distributed refinement algorithms are also proposed by using the SGO algorithm to nonconvex localization formulations. The proposed localization algorithms all can be implemented partially asynchronously in networks. Finally, extensive simulations are conducted to demonstrate the efficiency and accuracy of the proposed distributed localization algorithms. Index Terms—Distributed optimization, range-based node localization, range-free node localization, second-order cone programming (SOCP), semidefinite programming (SDP), sequential greedy optimization (SGO) algorithm, wireless sensor network (WSN).I. INTRODUCTIONWIRELESS SENSOR NETWORKS (WSNs) consist of a large number of tiny, low-power, and randomly deployed sensor nodes that have sensing, processing, and communication capabilities [1]. Most applications of WSNs, e.g., environmental monitoring, search and rescue, target tracking, etc., require the knowledge of positions of sensor nodes. In general, for economic consideration, only a small fraction of nodes’ positions are measured by global positioning system (GPS) or manual configuration (these nodes are commonlyManuscript received October 28, 2009; accepted February 04, 2010. Date of publication March 11, 2010; date of current version May 14, 2010. The associate editor coordinating the review of this manuscript and approving it for publication was Dr. Mathini Sellathurai. This work was supported in part by the National Nature Science Foundation of China by Grants 60772100, 60832009, 60872017, by the Cooperative Research Project with Fujitsu R&D Bejing Center, and by the China Scholarship Council. This work was presented in part at the IEEE Global Communications Conference, HI, December 2009. Q. Shi, C. He, and L. Jiang are with the Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China, 200240 (e-mail: shiqj@sjtu. ; chenhe@; lgjiang@). H. Chen is with the Institute of Industrial Science, The University of Tokyo, Tokyo, Japan (e-mail: hongyang@mcl.iis.u-tokyo.ac.jp). Color versions of one or more of the figures in this paper are available online at Digital Object Identifier 10.1109/TSP.2010.2045416called anchors), especially for large-scale sensor networks. Hence, developing efficient node self-localization algorithms is necessary for wireless sensor networks. The node localization problem in sensor networks includes range-based localization and range-free localization [2]. The former relies on range (or distance) measurements between nodes that can be estimated by the received signal strength (RSS) method or the time-of-arrival (TOA) method [3], while the latter uses only connectivity information (i.e., whether a node is in the transmission range of another node) [7], [10]. Correspondingly, localization algorithms can be grouped into range-based localization algorithms and range-free localization algorithms. The range-based localization algorithms can provide higher localization accuracy than the range-free localization algorithms but the latter is cheaper and simpler since they do not require special hardware for ranging. In terms of computational paradigm, the localization algorithms can also be divided into centralized algorithms and distributed algorithms [2], [8], [9]. The centralized algorithms require transmission of all range measurements or connectivity information between nodes to a fusion center (e.g., a sink node) for processing, resulting in large communication energy and bandwidth consumption and thereby shortening the lifetime of the whole network. The distributed algorithms are energy-efficient and scalable to the size of the networks, where the whole task of node localization is cooperatively carried out by all nodes with local information exchange between neighboring nodes. Hence, distributed localization algorithms are much more attractive for large-scale sensor networks. Many localization algorithms have been proposed for sensor network localization. Among the range-free localization algorithms, [4]–[6] are heuristic, simple, and allow distributed implementation, but they are less accurate unless many anchors are used. Based on the classical multidimensional scaling (MDS) technique, a set of localization algorithms are proposed in [7], which are applicable to both range-based localization and rangefree localization, and significantly outperform the heuristic algorithms. Among these algorithms, MDS-MAP (P, R) is the best for its ability to localize irregular networks. However, it is very complicated and costly because of its kernel strategy, i.e., first building a local map for each node and then merging these local maps together to form a global. Centralized computation is necessary when merging local maps. Hence, although the MDS-MAP (P, R) can be implemented in networks, it is not suitable for large-scale networks. A metric MDS-based algorithm is proposed for range-based localization in [8]. This algorithm is very suitable for distributed implementation. However, its local convergence property implies bad localization performance if1053-587X/$26.00 © 2010 IEEESHI et al.: DISTRIBUTED WSN LOCALIZATION3329a good initialization is not available. In [9], a robust multilateration-based iterative localization algorithm is proposed for range-based localization. It is quite lightweight and very suitable for distributed implementation. However, there is no theoretic guarantee for the convergence of the algorithm. Convex optimization-based localization algorithms are popular in sensor network localization due to their global convergence property. Most of them are for range-based localization [10]–[17], [19], while a few for range-free localization [10], [18]. The common philosophy of these algorithms is formulating the localization problem as a nonlinear optimization problem and then relaxing the resulting problem as a convex optimization problem solved by efficient interior-point algorithm [27]. Two convex relaxation techniques are involved in these algorithms, second-order cone programming (SOCP) relaxation in [10], [11], and [19] and semidefinite programming (SDP) relaxation in [12]–[18]. The SDP-based algorithms are very computationally expensive for large-scale networks (more than hundreds of nodes) and require centralized computation due to their complex structures. To reduce the computational load, [16] proposes a cluster-based SDP localization algorithm. Although this algorithm can be implemented in networks, it is not a good distributed algorithm since: 1) a cluster formation algorithm is necessary at the beginning of the algorithm, resulting in extra communication cost; 2) centralized computation is needed at each cluster; and 3) it may fail when there are not sufficient anchors. An alternative way to reduce the computational load is to further relax the range-based localization problem [17]. In [17], the node-based SDP relaxation and edge-based SDP relaxation are proposed. Although these two relaxations are weaker than the general SDP relaxation [13], they are both efficient and accurate in computation. Compared to the SDP relaxation, although weaker (and thus less accurate), the SOCP relaxation has simpler structure and allows efficient distributed implementation. In [19], a totally asynchronous distributed localization algorithm is proposed using SOCP for range-based localization. The idea can be easily extended to range-free localization. However, the authors of [19] show the convergence of their algorithm numerically, not theoretically. Unlike the convex optimization-based localization algorithms, considering all constraints imposed by distance measurements and/or connectivity information, new formulations of localization problems based on nondifferentiable optimization are proposed for both range-based localization [20] and range-free localization [21]. The resulting nondifferentiable problems are solved by the normalized incremental subgradient (NIS) algorithm [20]. The NIS-based localization algorithms have much better localization performance than most previous algorithms such as the robust SDP method [14] with refinement by the dwMDS method [8], the MDS-MAP (C) method [7], etc. However, distributed implementation of these algorithms requires constructing a path across all nodes beforehand. The localization algorithms mentioned above except [15] and [19] all assume accurate anchor positions. In fact, the anchor positions cannot be exactly known due to the limit accuracy of the civilian GPS and/or manual observation errors. In addition, there is uncertainty in the nodes’ maximum radio range due to radio irregularity [6]. In this paper, both the range-based lo-calization problem and the range-free localization problem are studied, considering the uncertainties in range measurements, radio range, and anchor positions. By using a greedy optimization algorithm, we propose two distributed localization algorithms for both range-based localization and range-free localization. The proposed localization algorithms can be implemented partially asynchronously in networks. Extensive simulations are conducted to demonstrate the efficiency and accuracy of the proposed distributed localization algorithms. Our main contributions are threefold: 1) the sequential greedy optimization (SGO) algorithm is proposed and its convergence property is proved and analyzed. The SGO algorithm is a natural extension of the nonlinear Gauss-Seidel algorithm [30] but it is more suitable for distributed optimization in networks. 2) a unified optimization framework is proposed for sensor network localization and two convex localization formulations are obtained based on the SDP relaxation techniques. By using the SGO algorithm, we show for the first time that the edge-based SDP (ESDP) relaxation formulation can be solved in a distributed way in networks through solving a sequence of second-order cone programming. 3) distributed refinement algorithms that can further improve localization accuracy are proposed for both range-based localization and range-free localization by applying the SGO algorithm to nonconvex localization formulations. The remainder of this paper is organized as follows. In the next section we state the SGO algorithm and demonstrate its convergence property. In Section III, we present the unified optimization framework for sensor network localization, derive two convex formulations, and develop distributed localization algorithms using ESDP formulation as well as refinement algorithms. Section IV provides numerical experiments to illustrate the performance of the proposed localization algorithms, while Section V concludes the paper. Throughout this paper, we use upper-case bold type for matrices, lower-case bold type for vectors, regular type for scalars. denotes the -dimensional Euclidean space. denotes denotes the cardinality of the Cartesian product over sets. a set . The supscript denotes the transpose. and , respectively, denote the zero vector and the unit column vector with its th element being one, whose dimension will be clear denotes the identity matrix. For from the context. a symmetrical matrix denotes the th entry of , denotes the principal submatrix extracted from and . For symmetthe rows and columns indexed by means that is positive rical matrices and semidefinite, and denotes the Frobenius inner product of denotes compomatrices and . For vectors and denotes the componentwise mulnentwise inequality, and tiplication of vectors and . II. SEQUENTIAL GREEDY OPTIMIZATION ALGORITHM Many optimization algorithms have been developed for multivariate problems [26], [27]. Most of them fall into the category of iterative algorithms which are generally based on search directions. In contrast with general iterative optimization algorithms, there exists a special type of iterative algorithms, in3330IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 6, JUNE 2010which decision variables are partitioned into independent blocks and, at each iteration the objective function is minimized over one of blocks while fixing the rest. This type of algorithms are sometimes called alternating minimization algorithm [22], coordinate descent algorithm [28], [29], or nonlinear GaussSeidel (NGS) algorithm [30]. Note that, the first two are special cases of the last, hence, we discuss only the NGS algorithm in the sequel. The NGS algorithm is applicable to unconstrained optimization problems or problems with constraints of Cartesian product set. It works greedily in the sense that it can guarantee the objective function nonincreases at each iteration. Particularly, using the NGS algorithm, a complex multivariate problem can be broken down into a sequence of smallscale subproblems and the implementation can be easily realized [23]–[25], even in a distributed way (if subproblems are assigned to different processors). In this section, we extend the NGS algorithm to a more general form. We refer to the resulting algorithm as SGO algorithm. In the SGO algorithm, the decision variables are not strictly splitted into independent blocks as in the NGS algorithm. In other words, the SGO algorithm allows some decision variables to be updated in different subproblems. This extension is natural but is important since it makes the SGO algorithm more suitable for distributed optimization in networks. The convergence property of the SGO algorithm is analyzed and proved by using first-order Karush-Kuhn-Tucker (KKT) condition, without the assumption of convexity of the objective function and/or the constraint set. In addition, we discuss the application of the SGO algorithm for general optimization problems where the constraints are coupled (i.e., not of Cartesian product type). A. Algorithm We say an optimization problem is sparse-constrained if it can be written in the form, is a differentiable function, where is the th iterate, and is a local minimizer of found by using a certain optimization method and such that . Note that, is uniquely found once a specific optimization method is selected (i.e., the algorithmic rule is determined). For example, we can use descent methods [27], from . In this sense, [30] to reach a local minimizer of (2) is well defined. In addition, we will use the following notations when describing the algorithm. Let , and . Let , be subsets of and such that , and be the th index set whose components are the indexes of which contain . For example, if , those . In the SGO algorithm, it means that the then is not only optimized in the subproblem 1, but also variable in the subproblems 2 and 5. The SGO algorithm is described as follows. Assume a . Given obtained after the random initialization th iteration, it then sequentially performs greedy steps or subiterations in the th iteration. . . (3)and finally gets , where denotes the new obtained after the th subiteration of the th iteration (note: ); (respectively, ) denotes the variable made up indexed by the components of (respectively, ); of . B. Convergence Analysis and Discussion(1) where, is a positive integer, In general, an iterative algorithm converges means that its iterates converge. However, it cannot be established that the iterates generated by the SGO algorithm must converge, unless certain strong assumptions are made on the objective function. In what follows, we assume the SGO algorithm (3) is well defined1 and give two propositions which indicate some properties of the SGO algorithm. be the sequence generated by the Proposition 1: Let SGO algorithm (3). Then the SGO algorithm converges in the converges. sense that the sequence Proof: Let , so we have . From (3), we conclude that, are differentiable functions; and , are nonnegative integers. We assume the exists and is finite. Note that, minimum of means there is no inequality (equality) constraint on . Particand are equal to zero, the problem (1) ularly, when all the is translated into a special sparse-constrained problem, i.e., an unconstrained optimization problem. In the NGS algorithm, subproblems are sequentially miniis a strictly convex function of each . mized, assuming However, given a general , it is hard to obtain a global optimum for subproblems. Here, we will describe the SGO algorithm with a new operator “dec” instead of “min.” The new operator used in an iterative algorithm is defined as(2)1The assumption here means that an exact local minimum can be found at each step of the algorithm. However, it should be pointed out that, we only need to find an approximate local minimum at each step of the SGO algorithm in practical applications if an exact local minimum is not available in reasonable time.SHI et al.: DISTRIBUTED WSN LOCALIZATION3331Thus we have for all . This implies the is nonincreasing, and must converge since sequence is bounded below by its minimum on . Proposition 2: Assume is a limit point generated by the SGO algorithm (3) and of the sequence . Then is a KKT point of the problem (1) under some regularity conditions [31]. is a limit point of the Proof: Because and , it must hold that sequenceRemark 2: When (3) reduces toand, the SGO algorithm(7) which coincides with the iterative form of the nonlinear GaussSeidel algorithm [30]. The SGO algorithm of (7) is more often used in practice although it is a special case of (3). Remark 3: Compared to (7), the algorithm (3) can be easily exploited to devise the distributed algorithms for in-network processing. Considering for an extreme example that, two nodes in a network, each with an unknown state variable and a coupled unknown parameter that is related to both, try to estimate their state variables in a decentralized . way by minimizing a cost function of the form Using (3), each node minimizes jointly over its state variable and the coupled variable once the update of the other node’s state variable is received, implying that the message-passing on the coupled variable is not needed between two nodes. However, it is readily known that using (7) will incur more computation and/or communication overhead. Remark 4: Optimization problems with coupled constraints often appear in distributed signal processing in networks. Directly using the SGO type algorithm (i.e., sequentially optimize the objective function over some variables while fixing others) to solve such problems is possible (due to its greedy nature) but not safe. For example, the following problem: (8) , however, the SGO has unique global solution . algorithm would converge to any point such that For problems (particularly for convex problems) with coupled constraints, we can use4 barrier method (e.g., log-barrier method [27]), to eliminate all coupled constraints (respectively, all constraints) and derive a sparse-constrained (respectively, unconstrained) approximated problem. It is interesting to see that, solving the resulting approximated problem by using the SGO algorithm is equivalent to solving the primal problem using a SGO type algorithm with each subproblem being approximately (not perfectly) solved by the barrier method or other equivalent methods (e.g., primal-dual interior point method [27]). In other words, it is safe to directly use a SGO type algorithm to the problems with coupled constraints while each subproblem is approximately solved. To clarify the argument above, revisit the example above. Directly solving (8) by using the SGO algorithm with perfectly solving two subproblems will lead to an unexpected convergence point. However, by the log-barrier method, the approximated problem is(4) implying that, for each subproblem, must be at least a local at by minimizer, otherwise we can further decrease finding a local minimizer for the subproblem that doesn’t hold, which contradicts the premise that is a limit point. Under the assumption of regularity for each subproblem, the first-order necessary condition, generally known as KKT condition, holds for each subproblem, i.e., for each and , there exist Lagrange multipliers and 2 , such that (5) where the Jacobi matrix of of is with respect to and is the Jacobi matrixw.r.t . Combining the KKT conditions of all subproblems, we have (6)where . This implies that for the point , there exist Lagrange multipliers and satisfying the KKT condition of the primal problem. Therefore, is a KKT point of the primal problem.3 Proposition 2 implies that if the problem (1) is a convex optimization problem, then the limit point is a global optimum. Some remarks are made as follows. Remark 1: At the limit point , the objective function value, , is equal to the limit of the function sequence i.e., since is continuous. Hence, although the convergence of the SGO algorithm cannot be established, an approximate limit can be easily found in terms of the point of the sequence reduction amount of the objective function. Specifically, is an approximate limit point (and, thus, an approximate KKT point) holds for a given sufficiently small if and positive scalar .2When , the inequality (equality) constraints-related terms in (5) should be canceled. For example, when and 6 , (5) can be 0 0g. In this paper, for simplified as fr simplicity, we write the first-order necessary condition in a unified framework. 3This KKT point is often also a local optimum since the objective function values keep nonincreasing.m = 0 (l = 0) m =0 l =0 f () + J ( ) = ;h ( ) = x x h xwhere is a very small positive scalar which controls the approximation accuracy, and the SGO solution (which is the same4Lagrange dual method can also be used to transform a problem with coupled constraints to a sparse-constrained problem.3332IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 6, JUNE 2010as the solution achieved by directly using the SGO algorithm to (8) but each subproblem being approximately solved by the same log-barrier method) to this sparse-constrained problem is , which can arbitrarily approach the global solution of the problem by choosing an infinitely small positive . Remark 5: The order of the subproblems can be varied at different iterations. Moreover, it is not necessary to run all the subproblems at each iteration. These will make the algorithm much more suitable for asynchronous implementation5 in networks but not influence the convergence of the algorithm. III. DISTRIBUTED SENSOR NETWORK LOCALIZATION ALGORITHM In this section, we first propose a unified optimization framework for sensor network localization. Then we derive two centralized localization formulations, named FullSDP and ESDP, based on convex relaxation techniques. Next, by using the SGO algorithm, we show that the ESDP can be implemented in a distributed way with each subproblem being an SOCP. Finally, we propose distributed refinement algorithms for sensor network localization. A. Problem Formulation Assume a sensor network in ( 2 or 3) has sensor nodes in total, with anchor nodes whose locations are known sensor nodes whose locations (maybe inaccurate) and , and the maximum radio ranges of are unknown , denote the the nodes are all . Let and exact locations and the inaccurate locations of anchor nodes, re, denote the locaspectively, and let tions of sensor nodes. In range-free localization, only the connectivity information of any two nodes, i.e., whether they can communicate with each other directly (without relay), are obtained. We call such two nodes one-hop neighboring nodes, and with the set of all one-hop neighboring nodes’ index pairs is denoted by . In range-based localization, (noisy) range measurements are taken by one-hop neighboring nodes, for neighboring nodes and . In addition, we denoted by assume that the location errors of anchors are bounded by , . Then the range-based loi.e., calization problem with anchor position uncertainty is to find a such that realization ofNote that, there are constraints in total. To achieve distributed localization with high accuracy and reduce the computational complexity, we will neglect all ‘>’ constraints in range-based localization, while in range-free localization, we will neglect all ‘>’ constraints but the ones that are related to two-hop neighboring nodes. Here, two-hop neighboring nodes are the nodes that cannot directly communicate with each other but can communicate with just one relay. Hence, for node and node who are two-hop neighbors, their distance satisfies . Correspondingly, the set of their index pairs with are denoted by . Here we formulate sensor network localization problems in a unified framework as the following minimization problem:(11) and where is the one-hop neighboring nodes set is known in range-based localization; in range-free localizaand , and is unknown but tion, is the union of if and if . (11) can be interpreted as a least-squares localization formulation considering all measurement uncertainty including the uncertainty of the maximum radio range , range measurements, and anchor positions6. Moreover, it should be pointed out that, (11) will become ill-posed if the last term in the objective function is not included. B. Convex Relaxations of Sensor Network Localization The problem (11) is a very complex nonconvex problem that is difficult to solve. We below relax the problem as two convex optimization problems by using SDP relaxation techniques in [12] and [17], respectively, named FullSDP and ESDP as in [17]. For simplicity, we will use to denote the linear constraint on . Let . We first equivalently write (11) as(9) and the range-free localization problem with anchor position uncertainty is to find a realization such that By relaxing as which means (13)6The range-free localization problem is often formulated as a feasibility problem. However, the uncertainty in maximum radio range will lead to the problem infeasible, implying the method such as [18] or [10] that assume the problem has feasible solution may fail.(12)(10)5In implementing the SGO algorithm, it is not allowed that two subproblems, which contain coupled variables (i.e., when 6 ), run concurrently. Hence, “asynchronous” here doesn’t mean “totally asynchronous” [30]. To distinguish from the latter, we call it “partially asynchronous.”=0SHI et al.: DISTRIBUTED WSN LOCALIZATION3333according to Schur complement [12], [27], we then obtain the FullSDPrespectively. (16) and (17) can be further written in standard cone programming forms and solved by using some efficient convex cone programming solvers such as SeDuMi [32] or SDPT3 [33] in a centralized way. C. Distributed Localization via Edge-Based SOCP (ESOCP) Centralized solving the fullSDP or the ESDP formulation is quite computationally intensive when the problem has large size. It requires numerous memory resource, especially for the range-free localization formulation which involves two-hop constraints. In the following, we show that the ESDP formulation (15) can be solved in a distributed fashion by using the SGO algorithm. Particularly, each subproblem is an SOCP. We call such an SOCP-based localization method ESOCP. The edge-based formulation (15) can also be written as(14) whereAlso, using the edge-based SDP relaxation technique [17], we can relax (11) as the following convex optimization problem, i.e., ESDP, which decomposes the single constraint of large positive semidefinite matrix in (14) into a number of constraints of small positive semidefinite matrices.(18) For a positive semidefinite matrix, all of the leading principal minors are nonnegative. Hence, (18) is equivalent to(15) Notice that a constraint in the form of into a second-order cone constraint can be turnedHence, the FullSDP and ESDP can be equivalently written as(19) where . and are related to the node only while In (19), and are coupled variables related to both node and node . Hence, (19) is not sparse-constrained. However, it can be solved by using the SGO algorithm according to the Remarks 3 and 4. The subproblem at each anchor node is(16) and(17)(20)。