圆柱、圆锥练习课
圆柱圆锥练习题和答案
圆柱圆锥练习题和答案一、选择题1. 圆柱的体积公式是()A. V = πr²hB. V = πr² + hC. V = πr² - hD. V = πrh2. 圆锥的体积公式是()A. V = 1/3πr²hB. V = 3πr²hC. V = πr²h/3D. V = πr²h3. 圆柱的表面积公式是()A. S = 2πrh + 2πr²B. S = πrh + πr²C. S = 2πrhD. S = πr²4. 圆锥的侧面展开图是()A. 圆形B. 长方形C. 扇形D. 三角形5. 圆柱和圆锥的底面都是()A. 圆形B. 长方形C. 扇形D. 三角形二、填空题6. 一个圆柱的底面半径为3厘米,高为5厘米,其体积是_________立方厘米。
7. 一个圆锥的底面半径为4厘米,高为9厘米,其体积是_________立方厘米。
8. 一个圆柱的底面周长为12.56厘米,高为4厘米,其表面积是_________平方厘米。
9. 一个圆锥的底面半径为2厘米,高为6厘米,其表面积是_________平方厘米。
三、计算题10. 一个圆柱形容器的底面直径为20厘米,高为30厘米,求其容积。
11. 一个圆锥形沙堆,底面半径为5米,高为3米,如果将沙堆铺在长10米,宽6米的长方形地面上,求铺成的沙堆高度。
四、解答题12. 一个圆柱形油桶,底面半径为0.8米,高为1.5米,求油桶的表面积和体积。
13. 一个圆锥形漏斗,底面半径为0.6米,高为0.9米,求漏斗的体积。
答案:1. A2. A3. A4. C5. A6. 141.37. 75.368. 150.729. 37.6810. 圆柱形容器的容积为3.14 × (20/2)² × 30 = 3000π 立方厘米。
11. 圆锥形沙堆的体积为1/3 × 3.14 × 5² × 3 = 78.5π 立方米。
冀教版数学六年级下册第四单元《圆柱和圆锥》课时练
4.1 认识圆柱1.下面哪些物体是圆柱?在下面的括号里画“√”。
2.填空题。
(1)把一个棱长6厘米的正方体削成一个最大的圆柱,圆柱的底面直径是( )厘米,高是( )厘米。
(2)一个圆柱的底面直径是3厘米,高也是3厘米,侧面展开的长方形的长是( )厘米,宽是( )厘米。
(3)一个圆柱的底面周长是16分米,高是8分米,侧面积是( )平方分米。
(4)一个圆柱的底面直径是10厘米,高是8厘米,侧面积是( )平方厘米。
(5)一个圆柱的底面半径是0.3米,高是0.5米,侧面积是( )平方米。
3.判断题。
(对的画“√”,错的画“✕”)(1)圆柱的高只有一条。
( )(2)圆柱两个底面的直径相等。
( )(3)圆柱的底面周长和高相等时,展开后的侧面一定是个正方形。
( )(4)圆柱的侧面是一个曲面。
( )(5)圆柱的侧面展开图可能是正方形。
( )4.解决问题。
(1)用一张长15厘米、宽8厘米的长方形纸围一个圆柱,这个圆柱的侧面积是多少平方厘米?(2)一个圆柱,它的底面周长是12.56厘米,高是10厘米,它的侧面积是多少平方厘米?(3)广告公司制作了一个底面直径是1.5米、高是2.5米的圆柱形灯箱。
它的侧面最多可以张贴多大面积的海报?(4)大厅的柱子高3米,底面周长是3.14米。
给5根这样的柱子刷油漆,每平方米用油漆0.5千克,一共要用油漆多少千克?附答案:1. 第2、4个是圆柱。
2. (1)6 6 (2)9.42 3 (3)128 (4)251.2 (5)0.9423. (1)✕(2)√(3)✕(4) √(5) √4. (1)15×8=120(平方厘米)(2)12.56×10=125.6(平方厘米)(3)3.14×1.5×2.5=11.775(平方米)(4)3.14×3×5×0.5=23.55(千克)4.2 圆柱的表面积1.求出下面圆柱的侧面积和表面积。
苏教版小学数学六年级下学期精品课件-《圆柱和圆锥》(练习讲评3个课时)
圆柱转化过程
用字母V表示圆柱的体积,S表示圆柱的底面积,h 表示圆柱的高,圆柱的体积公式就可以写成 ( V=Sh )。(补充练习p12 2)
V=πr2h
4、一根木料如下图,求这根木料的体积。(单位:m) (补充习题p12 3)
V=πr2h =π×(0.2÷2)2×3 =0.03π(立方米)
答:这根木料的体积是0.03π立方米。
7、一座圆锥形的帐篷,底面周长是18.84米,高2.7米。(补充习题 p17 6)
(1)帐篷的占地面积是多少平方米?
半径:18.84÷3.14÷2 =3(米)
S底=πr2 =π×32 =9π(平方米)
答:占地面积是9π平方米。
(2)帐篷内的空间是多少立方米?
V=
1 3
Sh
=
1 3
×9π×2.7
圆锥形帐篷
S底=πr2
=π×(2÷2)2
√
=π(平方厘米)
S表=6π+π×2=8π(平方厘米)
7、一台压路机的前轮是圆柱形,轮宽2米,直径1.2米。前轮转动 一周,压路的面积是多少平方米?(补充习题第9页 第5题)
S侧=πdh =π×1.2×2 =2.4π(平方米)
答:前轮转动一周,压路的面积是2.4π平方米。
600π×1=600π(吨)
答:蓄水池最多能蓄水600π吨。
6、填空。(补充习题p16 1)
(1)一个圆柱和一个圆锥底面积相等,高也相等。圆柱的体积是15立方厘米,圆锥的 体积是( 5 )立方厘米。如果圆锥的体积是15立方厘米,圆柱的体积是( 45 ) 立方厘米。
(2)等底等高的圆锥和圆柱,它们的体积比是( 1:3 )。 注意前项和后项的顺序
二、选择。
1、等底等高的圆柱、正方体、长方体的体积相比较,( )。
高中数学必修二 8 3 2 圆柱、圆锥、圆台、球的表面积和体积 练习(含答案)
8.3.2 圆柱、圆锥、圆台、球的表面积和体积一、选择题1.若圆锥的高等于底面直径,则它的底面积与侧面积之比为A.1∶2B.1C.1D2【答案】C【解析】设圆锥底面半径为r,则高h=2r,∴其母线长l=r.∴S侧=πrl=πr2,S底=πr故选C.2.(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.3π4C.π2D.π4【答案】B 【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2 AC AB==,结合勾股定理,底面半径2r==,由圆柱的体积公式,可得圆柱的体积是223ππ1π24V r h⎛⎫==⨯⨯=⎪⎪⎝⎭,故选B.3.圆柱的底面半径为1,母线长为2,则它的侧面积为()A.2πB.3πC.πD.4π【答案】D【解析】圆柱的底面半径为r=1,母线长为l=2,则它的侧面积为S侧=2πrl=2π×1×2=4π.故选:D.4.圆台的上、下底面半径和高的比为1:4:4,母线长为10,则圆台的侧面积为().A.81πB.100πC.14πD.169π【答案】B【解析】设圆台上底半径为r,则其下底半径为4r,高为4r,结合母线长10,可求出r=2.然后由圆台侧面积公式得,.5.(多选题)一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R相等,下列结论正确的是()A.圆柱的侧面积为22RπB.圆锥的侧面积为22RπC.圆柱的侧面积与球面面积相等D.圆柱、圆锥、球的体积之比为3:1:2【答案】CD【解析】依题意得球的半径为R,则圆柱的侧面积为2224R R Rππ⨯=,∴A错误;圆锥的侧面积为2R Rπ=,∴B错误;球面面积为24Rπ,∵圆柱的侧面积为24Rπ,∴C正确;2322V R R Rππ=⋅=圆柱,2312233V R R Rππ⋅==圆锥,343V R=π球33324:2::3:1:233:V V V R R Rπππ∴==圆柱圆锥球,∴D正确.故选:CD.6.(多选题)如图所示,ABC 的三边长分别是3AC =,4BC =,5AB =,过点C 作CD AB ⊥,垂足为D .下列说法正确的是( )A .以BC 所在直线为轴,将此三角形旋转一周,所得旋转体的侧面积为15πB .以AC 所在直线为轴,将此三角形旋转一周,所得旋转体的体积为36πC .以AC 所在直线为轴,将此三角形旋转一周,所得旋转体的侧面积为25πD .以AC 所在直线为轴,将此三角形旋转一周,所得旋转体的体积为16π【答案】AD【解析】以BC 所在直线为轴旋转时,所得旋转体为底面半径为3,母线长为5,高为4的圆锥 ∴侧面积为3515ππ⨯⨯=,体积为2134123ππ⨯⨯⨯=,∴A 正确,B 错误;以AC 所在直线为轴旋转时,所得旋转体为底面半径为4,母线长为5,高为3的圆锥侧面积为4520ππ⨯⨯=,体积为2143163ππ⨯⨯⨯=,∴C 错误,D 正确.故选:AD .二、填空题7. 已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为____. 【答案】92π 【解析】设正方体边长为a ,则226183a a =⇒= ,外接球直径为34427923,πππ3382R V R ====⨯=.8.如图,若球O 的半径为5,一个内接圆台的两底面半径分别为3和4(球心O 在圆台的两底面之间),则圆台的体积为______.【答案】259π3【解析】解:作经过球心的截面(如图),由题意得13O A =,24O B =,5OA OB ==,则14OO =,23OO =,127O O =,所以()22π259347π33V ⨯⨯==.9.已知圆柱的上、下底面的中心分别为12,O O ,过直线12O O 的平面截该圆柱所得的截面是面积为4的正方形,则该圆柱的表面积为_______.【答案】6π【解析】由题意,圆柱的截面是面积为4的正方形,可得其边长为2,可得圆柱的底面半径为1r =,母线2l =,所以该圆柱的表面积为221222212216S S S rl r πππππ=+=+=⨯⨯+⨯=。
第2单元圆柱和圆锥第1、2、3课时(同步练习)-苏教版数学六年级下册
第1课时圆柱和圆锥的认识1.下面的几何体中,.哪些是圆柱?哪些是圆锥?是圆柱的在()里画“O”,是圆锥的在()里画“△”。
2.判一判。
(1)同一个圆柱的两个底面完全一样。
()(2)圆锥只有1条高,圆柱也只有1条高。
()(3)上下两个底面是等圆的物体一定是圆柱。
()(4)以直角三角形的任意一条边所在直线为轴,旋转一周后所形成的立体图形都是圆锥。
()3.下面是甲、乙、丙三位同学测量圆锥高的方法,()同学正确。
4.下面各圆柱的截面或侧面展开图分别是什么形状?连一连。
5.如图,甲、乙两个长方体木块,各有两个空洞,选择()既能堵住甲中的三角形空洞,又都堵住甲中的圆形空洞;选择()既能堵住乙中的长方形空洞,又能堵住乙中的圆形空洞。
6.如图,货架上正好摆满了底面直径为32厘米、高为60厘米的油桶,则这个货架的长至少是()厘米,宽至少是()厘米,高至少是()厘米。
(木板厚度不计)7.将下列四个平面图形旋转,从左到右分别形成的立体图形应是()。
A.①②③④B.③①④②C.③①②④D.①③④②第2课时圆柱的侧面积和表面积1.填一填。
(1)一个圆柱的侧面展开后是一个长13厘米、宽8厘米的长方形,这个圆柱的底面周长是()厘米,高是()厘米,侧面积是()平方厘米。
(2)把一个圆柱的侧面沿高展开,得到一个正方形,这个圆柱的底面半径是5厘米,那么圆柱的高是()厘米。
(3)一个圆柱的底面半径是3厘米,高是5厘米,它的侧面积是()平方厘米,表面积是()平方厘米。
(4)把一个底面直径是4厘米、高是5厘米的圆柱沿底面直径切割成相同的两块,表面积增加了()平方厘米。
(5)把一个棱长是2分米的正方体削成一个最大的圆柱,它的侧面积是()平方分米。
2.求下面圆柱的表面积。
3.一种圆柱形油桶,底面半径是4分米,高是1米。
做这样的一对油桶,至少需要铁皮多少平方分米?4.下图是一个圆柱形水池,水池的内壁和底面都要贴上瓷砖,水池的底面积直径为6米,池深1.2米。
圆柱圆锥练习题以及答案
圆柱圆锥练习题以及答案圆柱圆锥练习题以及答案圆柱和圆锥是几何学中常见的几何体,它们具有广泛的应用。
在学习几何学时,我们经常会遇到与圆柱和圆锥相关的练习题。
下面,我将给大家提供一些圆柱和圆锥的练习题以及相应的答案,希望能帮助大家更好地理解和掌握这些概念。
练习题一:计算圆柱的体积已知一个圆柱的底面半径为5cm,高度为10cm,求其体积。
解答:圆柱的体积公式为V = πr²h,其中r为底面半径,h为高度。
将已知数据代入公式,可得V = 3.14 × 5² × 10 = 785 cm³。
因此,该圆柱的体积为785立方厘米。
练习题二:计算圆锥的体积已知一个圆锥的底面半径为8cm,高度为12cm,求其体积。
解答:圆锥的体积公式为V = (1/3)πr²h,其中r为底面半径,h为高度。
将已知数据代入公式,可得V = (1/3) × 3.14 × 8² × 12 = 803.84 cm³。
因此,该圆锥的体积为803.84立方厘米。
练习题三:计算圆柱的表面积已知一个圆柱的底面半径为6cm,高度为15cm,求其表面积。
解答:圆柱的表面积由底面积和侧面积组成。
底面积为πr²,侧面积为2πrh。
将已知数据代入公式,底面积为3.14 × 6² = 113.04平方厘米,侧面积为2 ×3.14 × 6 × 15 = 565.2平方厘米。
因此,该圆柱的表面积为113.04 + 565.2 = 678.24平方厘米。
练习题四:计算圆锥的表面积已知一个圆锥的底面半径为10cm,高度为16cm,求其表面积。
解答:圆锥的表面积由底面积、侧面积和底面到顶点的距离构成。
底面积为πr²,侧面积为πrl,其中l为底面到顶点的距离。
根据勾股定理,l = √(r² + h²)。
圆柱圆锥复习课优质ppt课件
宽高 长=底长面周长
圆柱的侧面积、表面积
侧面积:S=底面周长×高=C×h
其中: (C=πd=2πr)
表面积:S=底面积(2个)+侧面积
其中: S=πr2
注意:底面积不一定是两个!
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
9.一个圆柱体的底面积
是105平方分米, 高是40
厘米, 体积是( 420 ) 立方分米.
二、判断
• 圆柱的侧面展开后一定是长方形.
•
×( )
2. 6立方厘米比5平方厘米显然要大.
(×)
3. 一个物体上、下两个面是相等的
圆面,那么,它一定是圆柱形物体.
(×)
4. 把两张相同的长方形纸,分别卷成两个
1、 25.12÷3.14÷2=4(米)
1
3
×(3.14×4×4)×1.5
=25.12(立方米)
1.5×25.12=37.68(吨)
答:这堆沙重37.68吨.
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
4.求下列圆 底面面积:3.14×4×4=50.24(平方厘米) 圆柱体积:50.24×12=602.88(立方厘米) 答:圆柱的体积是602.88立方厘米. 2、底面半径:1.2÷2=0.6(厘米) 底面面积:3.14×0.6×0.6=1.1304(平方 厘米)
圆柱圆锥练习题以及答案
圆柱圆锥练习题以及答案一、选择题1. 一个圆柱的底面半径为3厘米,高为5厘米,其体积为:A. 141.3立方厘米B. 282.6立方厘米C. 94.2立方厘米D. 47.1立方厘米2. 一个圆锥的底面半径为4厘米,高为9厘米,其体积为:A. 75.36立方厘米B. 100.48立方厘米C. 50.24立方厘米D. 37.68立方厘米3. 圆柱的侧面积公式是:A. 2πr²B. πr²C. 2πrhD. πrh4. 圆锥的侧面积公式是:A. πr²B. πrlC. πr²+πrlD. 2πrh二、填空题1. 一个圆柱的底面直径为6厘米,高为10厘米,其侧面积为______平方厘米。
2. 一个圆锥的底面半径为5厘米,高为12厘米,其体积为______立方厘米。
三、解答题1. 一个圆柱形水桶的底面直径为40厘米,高为60厘米,求这个水桶的容积。
2. 一个圆锥形沙堆,底面半径为3米,高为4米,如果每立方米沙重1.5吨,求这堆沙的重量。
四、计算题1. 一个圆柱形油桶,底面直径为50厘米,高为80厘米,求油桶的表面积。
2. 一个圆锥形粮仓,底面直径为20米,高为15米,如果每立方米粮食重750千克,求粮仓的容积以及能装多少千克的粮食。
答案:一、选择题1. B2. B3. C4. C二、填空题1. 376.82. 188.4三、解答题1. 水桶的容积为:V=πr²h=π×(20)²×60=37680立方厘米。
2. 圆锥形沙堆的体积为:V=1/3πr²h=1/3×π×(3)²×4=12.56立方米。
沙堆的重量为:12.56×1.5=18.84吨。
四、计算题1. 油桶的表面积为:A=2πr(h+r)=2π×25(80+25)=4712.5平方厘米。
2. 圆锥形粮仓的体积为:V=1/3πr²h=1/3×π×(10)²×15=1570立方米。
2019_2020学年高中数学第一章立体几何初步1.1.3.1圆柱、圆锥、圆台练习(含解析)新人教B版必修2
第1课时圆柱、圆锥、圆台A.直线绕定直线旋转形成柱面B.半圆绕定直线旋转形成球体C.有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台D.圆柱的任意两条母线所在的直线是相互平行的答案 D解析两直线平行时,直线绕定直线旋转才形成柱面,故A错误;半圆以直径所在直线为轴旋转才形成球体,故B错误;C不符合棱台的定义.所以应选D.2.下列命题正确的是( )A.梯形绕一边所在直线旋转得到的旋转体是圆台B.夹在圆柱的两个平行截面间的几何体是圆柱C.棱锥截去一个小棱锥后剩余部分是棱台D.圆锥截去一个小圆锥后剩余部分是圆台答案 D解析绕梯形的一边所在直线旋转得到的旋转体也可能是组合体.当夹在圆柱的两个平行截面不与圆柱的底面平行时,不是圆柱.用与棱锥的底面不平行的平面截去一个小棱锥后,剩余部分不是棱台.圆锥是直角三角形绕其一条直角边所在的直线旋转而成的,圆锥截去一个小圆锥后剩余部分是圆台.A.10 B.20C.30 D.40答案 B解析如图轴截面为矩形,所以面积为(2+2)×5=20.4.下列说法中,不正确的是 ( ) A .圆桂的侧面展开图是一个矩形 B .圆锥中过轴的截面是一个等腰三角形C .等腰直角三角形绕它的一条边所在的直线旋转一周形成的曲面围成的几何体是圆锥D .圆台中平行于底面的截面是圆面 答案 C解析 等腰直角三角形绕它的一条直角边所在的直线旋转一周才能形成圆锥,此处必须说明是绕它的一条直角边所在的直线.若换成直角三角形的斜边,则旋转后产生的几何体不是圆锥,而是两个圆锥的组合体,且这两个圆锥同底.5.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积为392 cm 2,母线与轴的夹角为45°,求这个圆台的高、母线长和底面半径.解 圆台的轴截面如图所示,根据题意可设圆台的上、下底面半径分别为x cm 和3x cm ,即A′O′=x cm ,AO =3x cm(O′,O 分别为上、下底面圆心),过A′作AB 的垂线,垂足为点D .在Rt△AA′D 中,∠AA′D=45°,AD =AO -A′O′=2x cm , 所以A′D=AD =2x cm ,又S 轴截面=12(A′B′+AB)·A′D=12×(2x+6x)×2x=392 (cm 2),所以x =7.综上,圆台的高OO′=14 cm ,母线长AA′=2OO′=14 2 cm ,上、下底面的半径分别为7 cm 和21 cm .一、选择题1.下列命题正确的个数为( )①圆柱的轴是过圆柱上、下底面圆的圆心的直线;②圆柱的母线是连接圆柱上底面上一点和下底面上一点的直线;③矩形的任意一条边所在直线都可以作为轴,其他边绕其旋转形成圆柱;④矩形绕任何一条直线旋转,都可以围成圆柱.A .1B .2C .3D .4 答案 B解析 根据圆柱的定义可知命题①③正确,命题②④错误.2.一个圆锥的母线长为2,圆锥的轴截面的面积为3,则母线与轴的夹角为( ) A .30° B.60°C .30°或60° D.60°或75° 答案 C解析 设圆锥的高为h ,则底面圆的半径为4-h 2,由题意,得S =12h×24-h 2=3,平方整理得h 4-4h 2+3=0,解得h 2=1或h 2=3,∴h=1或h =3.母线与轴的夹角为30°或60°.3.上、下底面面积分别为36π和49π,母线长为5的圆台,其两底面之间的距离为( ) A .4 B .3 2 C .2 3 D .2 6 答案 D解析 设圆台的母线为l ,高为h ,上、下两底面圆的半径分别为r ,R ,则满足关系式l 2=h 2+(R -r)2,根据题意可得h =26,即两底面之间的距离为26.4.“两底面直径之差等于母线长”的圆台( ) A .是不存在的B .其母线与高线必成60°角C .其母线与高线必成30°角D .其母线与高线所成的角不是定值 答案 C解析 设圆台上、下底面半径分别为r 1,r 2,母线长为l ,则由题意可得2r 2-2r 1=l ,∴r 2-r 1l =12, 再设母线与高线所成的角为θ,∴sinθ=12,θ=30°.5.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比为1∶3,则截面把圆锥的母线分为上下两段的比是( )A .1∶3B .1∶9C .1∶ 3D .(1+3)∶2 答案 D解析 圆锥的上底面半径与下底面半径之比为1∶3,故截去小圆锥的母线与大圆锥的母线之比为1∶3,截面把圆锥的母线分为上下两段的比是1∶(3-1)=(1+3)∶2.二、填空题6.圆锥轴截面的顶角为120°,过顶点的截面三角形的最大面积为2,则圆锥的母线长为________.答案 2解析 对于该圆锥,过顶点的截面三角形中面积最大的三角形为等腰直角三角形,其腰为母线,所以母线长为2.7.用一张(6×10) cm 2的矩形硬纸卷成圆柱的侧面,则圆柱轴截面的面积等于________,轴截面的周长等于________.答案60π cm 212+20π cm 或20+12πcm 解析 若圆柱的母线长为6,则底面直径为10π,轴截面的面积为60π cm 2,周长为⎝ ⎛⎭⎪⎫12+20πcm ;若圆柱的母线长为10,则底面直径为6π,轴截面的面积为60π cm 2,周长为⎝⎛⎭⎪⎫20+12π cm .8.给出下列命题:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是________.答案②④解析由圆柱、圆锥、圆台的定义及母线的性质可知②④正确,①③错误.三、解答题9.轴截面为正方形的圆柱叫做等边圆柱,已知某等边圆柱的轴截面面积为16 cm2,求其底面周长和高.解如图所示,作出等边圆柱的轴截面ABCD,由题意知,四边形ABCD为正方形,设圆柱的底面半径为r,则AB=AD=2r.由题意可得轴截面的面积S=AB×AD=2r×2r=4r2=16,解得r=2.所以其底面周长C=2πr=2π×2=4π(cm),高h=2r=4(cm).10.如图所示,已知圆锥SO中,底面半径r=1,母线长l=4,M为母线SA上的一个点,且SM=x,从点M拉一根绳子,围绕圆锥侧面转到点A.求:(1)绳子的最短长度的平方f(x);(2)绳子最短时,顶点到绳子的最短距离;(3)f(x)的最大值.解将圆锥的侧面沿SA展开在平面上,如图所示,则该图为扇形,且弧AA′的长度L 就是圆O的周长,∴L=2πr=2π.∴∠ASM=L2πl×360°=2π2π×4×360°=90°.(1)由题意知绳子长度的最小值为展开图中的AM,其值为AM=x2+16(0≤x≤4).∴f(x)=AM 2=x 2+16(0≤x≤4).(2)绳子最短时,在展开图中作SR⊥AM,垂足为R ,则SR 的长度为顶点S 到绳子的最短距离,在△SAM 中,∵S △SAM =12SA·SM=12AM·SR,∴SR=SA·SM AM =4xx 2+16(0≤x≤4),即绳子最短时,顶点到绳子的最短距离为4xx 2+16(0≤x≤4). (3)∵f(x)=x 2+16(0≤x≤4)是增函数, ∴f(x)的最大值为f(4)=32.。
人教版六年级数学下册第三单元《圆柱与圆锥》第一讲讲义-含解析(知识精讲+典型例题+同步练习+进门考)
人教版六年级数学下册第三单元《圆柱与圆锥上》知识点1圆柱的表面积猫小咪和猫小喵发现了一大瓶鱼罐头,他们在密谋着如何解决掉这瓶罐头。
提问鱼罐头的包装盒属于哪种立体图形?认识圆柱总结:1.圆柱的上下两个底面面积相等。
2.周围的面(除底面外)叫做侧面。
思考:将圆柱沿侧面展开后得到什么图形?思考1.圆柱的侧面积=底面周长×高。
S侧=2πrh。
2.圆柱的表面积=圆柱的侧面积+两个底面圆的面积。
S表=2πrh+2πr²思考:一个圆柱体底面半径是1厘米,高是5厘米,那么它的侧面积和表面积分别是多少?(π取3.14)步骤:圆柱的表面积分为几个部分?三部分:两个底面积和一个侧面积。
两个底面积是多少?S底=3.14×1²×2=6.28平方厘米。
侧面积是多少?侧面积=底面周长×高。
S侧=3.14×1×2×5=31.4平方厘米。
圆柱体的表面积是多少?6.28+31.4=37.68平方厘米。
思考:如果把圆柱横着切一刀,它的表面积有什么变化?总结:切一刀表面积增加两个圆的面积。
思考:把一根长1米的圆柱分成3段,表面积增加了48平方厘米,原来圆柱的表面积是多少平方厘米?(π取3)步骤:分成三段增加几个面?(3-1)×2=4个。
圆柱的底面半径是多少厘米?48÷4=12平方厘米。
12÷3=4 4=2×2。
所以半径是2厘米。
原来圆柱的表面积是多少?1米=100厘米2×3×2×100=1200平方厘米1200+12×2=1224平方厘米思考:把一张长方形铁皮按图剪开,正好能制成一个圆柱形水桶(有盖),那么这个水桶的表面积是多少平方厘米?(π取3.14,接头处忽略不计)步骤:水桶的表面积包含哪几部分?两个底面圆的面积和侧面积。
圆柱的底面周长等于右侧小长方形的长还是宽?等于小长方形的长。
苏教版六年级数学下册第二单元圆柱和圆锥全套专项练习
第1课时圆柱和圆锥的认识一、指出下面图形中哪些是圆柱,并指出圆柱的底面、侧面和高。
二、读出下面各圆柱的有关数据。
(图中单位:厘米)三、判断:对的打“√”,错的打“×”。
①圆柱体的高只有一条。
()②上下两个底面相等的圆形物体一定是圆柱体。
()③圆柱体底面周长和高相等时,沿着它的一条高剪开,侧面是一个正方形。
()四、根据圆锥的特征,判断下面图形中哪些是圆锥?五、说出下面各圆锥的高:六、下面图形以红色线为轴旋转后会得到圆锥吗,如果是说出圆锥的高和底面半径。
第2课时圆柱的表面积一、填空1.把圆柱体的侧面展开,得到一个(),它的()等于圆柱底面周长,()于圆柱的高。
2.一个圆柱体,底面周长是94.2厘米,高是25厘米,它的侧面积是()平方厘米。
3.一个圆柱体,底面半径是2厘米,高是6厘米,它的侧面积是()平方厘米。
4.一个圆柱体的侧面积是12.56平方厘米,底面半径是2分米,它的高是()厘米。
5.把一张长8分米,宽5分米的白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是()平方分米。
6.把一张边长为5.5厘米的正方形白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是()平方分米。
二、判断1.圆柱的侧面展开后一定是长方形。
()2.6立方厘米比5平方厘米显然要大。
()3.一个物体上、下两个面是相等的圆面,那么,它一定是圆柱形物体。
()4.把两张相同的长方形纸,分别卷成两个形状不同的圆柱筒,并装上两个底面,那么制的圆柱的高、侧面积、表面积一定相等。
()三、求下面各圆柱体的侧面积1.底面半径是3厘米,高是15厘米。
2.底面直径是2.5分米,高是4分米。
3.底面周长是6分米,高是3.5分米。
四、应用题1.一个圆柱体的高是12厘米,底面半径是3厘米。
它的侧面积是多少?它的表面积是多少?2.一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?3.一个圆柱体,高减少2厘米,表面积就减少18.84平方厘米,这个圆柱的上、下两个底面和是多少平方厘米?4.把一段长20分米的圆柱形木头沿着底面直径劈开,表面积增加80平方分米,原来这段圆柱形木头的表面积是多少?第3课时练习课一、填空题。
素描教案(圆锥圆柱)
素描教案(圆锥圆柱)第一章:素描基础1.1 课程介绍本章节主要介绍素描的基本概念、工具材料以及基本技法。
通过本章的学习,让学生了解并掌握素描的基础知识,为后续的圆锥和圆柱的素描打下基础。
1.2 教学目标了解素描的基本概念熟悉素描的工具材料掌握素描的基本技法1.3 教学内容素描的概念与分类素描的工具材料介绍素描的基本技法(线条、阴影、质感等)1.4 教学活动讲解与示范:教师讲解素描的基本概念、工具材料和基本技法,并进行现场示范。
实践练习:学生跟随教师的指导,进行素描练习,掌握基本技法。
第二章:圆锥的认识与绘制2.1 课程介绍本章节主要让学生了解圆锥的基本特征,学习绘制圆锥的方法和技巧。
通过本章的学习,学生能够独立绘制出各种形态的圆锥。
2.2 教学目标了解圆锥的基本特征掌握绘制圆锥的方法和技巧2.3 教学内容圆锥的定义与特征绘制圆锥的基本步骤与技巧不同形态的圆锥绘制方法2.4 教学活动讲解与示范:教师讲解圆锥的定义与特征,示范绘制圆锥的基本步骤与技巧。
实践练习:学生跟随教师的指导,进行圆锥的绘制练习。
第三章:圆柱的认识与绘制3.1 课程介绍本章节主要让学生了解圆柱的基本特征,学习绘制圆柱的方法和技巧。
通过本章的学习,学生能够独立绘制出各种形态的圆柱。
3.2 教学目标了解圆柱的基本特征掌握绘制圆柱的方法和技巧3.3 教学内容圆柱的定义与特征绘制圆柱的基本步骤与技巧不同形态的圆柱绘制方法3.4 教学活动讲解与示范:教师讲解圆柱的定义与特征,示范绘制圆柱的基本步骤与技巧。
实践练习:学生跟随教师的指导,进行圆柱的绘制练习。
第四章:圆锥与圆柱的组合绘制4.1 课程介绍本章节主要让学生学习如何将圆锥和圆柱进行组合绘制,培养学生的创新意识和审美能力。
通过本章的学习,学生能够灵活运用圆锥和圆柱的绘制技巧,创作出富有创意的作品。
4.2 教学目标掌握圆锥与圆柱的组合绘制方法培养学生的创新意识和审美能力4.3 教学内容圆锥与圆柱组合的创意方法组合绘制的基本步骤与技巧优秀作品的欣赏与分析4.4 教学活动讲解与示范:教师讲解圆锥与圆柱组合的创意方法,示范组合绘制的基本步骤与技巧。
《圆柱和圆锥的体积》练习课教学设计-2
《圆柱和圆锥的体积》练习课教学设计教学内容:《圆柱和圆锥的体积》练习课。
教学目标:(一)知识与技能:通过练习,让学生进一步掌握圆柱和圆锥体积的计算方法,理解等底等高的圆柱和圆锥之间的关系,熟练地综合运用公式解决有关生活中的实际问题。
(二)过程与方法:通过练习,让学生感受圆柱圆锥体积计算的实用性,培养学生分析、综合等思维能力。
(三)情感与态度:培养学生乐于学习,勇于学习的情趣。
教学重点:1、进一步掌握等底等高的圆柱和圆锥之间的关系。
2、运用所学知识解决生活中有关圆柱圆锥的实际问题。
教学难点:灵活解决有关圆柱圆锥体积计算的实用性。
教法:引导法、激励法、谈话法。
学法:比较法、练习法、归纳法、合作讨论法。
教具:多媒体课件设计意图:这节是《圆柱和圆锥的体积》练习课,涉及到的知识面较广,而且相关的一些实际问题也比较复杂,所以在设计这节练习课时,以“智慧城堡”为主线,通过“以练促忆”、“以练促辨”、“以练促串”、“以练促升”这几个环节,让学生在“记一记、判一判、填一填、算一算、动一动、想一想”中,掌握和理解圆柱和圆锥体积的区别及相互联系,同时,通过使用课件,激发学生的学习兴趣,拓展学生思维,解决生活中有关圆柱圆锥的实际问题,提高课堂教学效率。
教学过程:一、导入新课炎热的夏天,小明和小强去超市买冰淇淋。
圆锥形的冰淇淋标价是0.8 元,圆柱形的标价 2 元。
于是他们两个为买哪一种形状的冰淇淋争执起来。
同学们,你们能帮他们解决到底买哪种形冰淇淋更合算吗?(圆柱形和圆圆锥形的雪糕是等底等高的)二、以练促忆(一)、回忆圆柱圆锥的体积计算公式:(二)1、求圆柱和圆锥的体积。
(只列式不计算)①S=9.42 h=4mV 圆柱=V 圆锥=②r=3dm h=1dmV 圆柱=V 圆锥=(三)、圆柱与圆锥的练习题:1、等底等高的圆柱和圆锥,V 柱=45 立方厘米V 锥=?立方厘米2、等底等高的圆柱和圆锥,V 柱=?立方分米V 锥=30 立方分米3、底面积相等,圆锥高是圆柱高的3倍,V柱=18立方分米V锥=? 立方分米4、底面积相等,圆锥高是圆柱高的 3 倍,V 柱=?立方分米V 锥=42 立方分米5、高相等,圆锥的底面积是圆柱的 3倍,V 柱二?立方分米V 锥 =27立方分米(三)、把下面这个长方体削成一个尽可能大的圆柱体,共有几种削法,哪一种削法的体积最大。
圆柱和圆锥练习2
第19讲圆柱和圆锥例题1、如图,有甲、乙两个容器,甲容器注满水后倒入乙容器中,乙容器里水深是多少厘米?【练习1】1.小明星期天请6位同学来家做客,他选用一盒采用长方体(如图1)包装的饮料招待同学们,给每个同学倒上一满杯(如图2)后,他自己还有饮料喝吗?2、有甲、乙两个圆柱形容器,它们的底面直径分别为4厘米和8厘米,高分别为36厘米和10厘米,我们先向甲容器中倒满水,然后将甲容器中的水全部倒入乙容器中。
问乙容器中的水面离容器口还有多少厘米?3、一个底面半径为10cm,高为12cm的圆锥体铁块,可铸成完整的长方体(长5cm、宽4cm、高4cm)铁块多少块?例题2、如图,一个底面直径是10厘米的圆柱形容器装满水。
先将一个底面直径是8厘米的圆锥形铁块放入容器中,铁块全部浸入水中,再将铁块取出,这时水面的高度下降了3.2厘米。
圆锥形铁块的高为多少厘米?【练习2】1、一个直径是20cm的圆柱形玻璃杯中装有水,水里放有一个底面直径是6cm,高是10cm的圆锥形铁块。
当把圆锥形铁块取出来后,玻璃杯中的水面会下降多少厘米?2、一个底面半径是8厘米的圆柱形玻璃容器里装有一部分水,水中浸没着一个高为12厘米的圆锥铅锤。
当铅锤从水中取出后,水面下降了0.5厘米。
这个圆锥体的底面积是多少平方厘米?3、如图所示,一个底面半径为5厘米,高为28厘米的圆柱形水桶装满水,另一个圆锥形空水桶,它的上口周长为56.52厘米,现在把圆柱形水桶里的水往圆锥形水桶里倒,当圆锥形水桶装满时,圆柱形水桶里还剩下13厘米高的水,求圆锥形水桶的高。
(结果保留两位小数)例题3、一个圆柱和一个圆锥的体积比是3:4,底面半径比是2:3,求圆柱和圆锥的高之比。
【练习3】1、用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组合成如下图所示竖放的密闭容器。
在这个容器内注入一些水,能填满圆锥,还能填部分的圆柱,经测量,圆柱部分的水高5cm。
若将这个容器倒立,则水的高度是多少厘米?2、一个圆柱和一个圆锥的底面积相等,体积的比是1:2。
人教六年级数学下册圆锥的体积(练习课)
稻谷的占地面积
米稻谷重650kg,每千克稻谷售价
稻谷的质量
为2.8元,这些稻谷能卖多少钱?
①稻谷的体积:
②稻谷的质量:
平均每公顷产稻谷多少千克? ③每公顷的质量:
①稻谷的体积: ②稻谷的质量: ③每公顷的质量:
×3.14×(23)²×2=4.71(m³) 4.71×650 = 3061.5(kg) 3061.5÷0.4=7653.75(kg)
答:平均每公顷产稻谷7653.75kg。
4. 考考你
把一个棱长是6厘米的正方体木块,加工成一个最大
的圆锥,圆锥的体积是多少立方厘米? 可以画一个
简单的示意
×3.14×(62)²×6=56.52(cm³)
图帮助我们 思考哦!
答:圆锥的体积是56.52立方厘米。
现在可以按下暂停键,独立解答
状元成才路
12
3
V圆柱
V圆锥∶V圆柱∶V削=1∶3∶2
综合练习,提升能力 1. 一个圆锥形谷堆,高1.5米,占地面积16平方米,将 其装入粮仓,正好占粮仓容积的15%,求粮仓的容积。 (得数保留整数) 单位“1”
①谷堆体积:
×16×1.5=8(m³)
②求粮仓的容积: 8÷15% ≈ 53(m³) 答:粮仓的容积约是53m³。
圆柱
h=V圆锥 ×3 ÷ S
专项练习,归纳方法 1. 算一算
V圆锥=
1 3
V圆柱
(1)一个圆柱的体积是6cm³,与它等底等高的圆
锥的体积是多少立方厘米?6÷3=2(cm³)
(2)有一个圆柱和一个圆锥,它们的底面半径相
等,高也相等,圆锥的的体积是18dm³,圆柱的体
积是多少立方分米?
18×3=54(dm³)
【一课一练】人教版小学数学六年级下册第三单元《圆柱与圆锥)》-第1课时圆柱的认识-附答案
第1课时圆柱的认识1.圆柱有条高,圆锥有高.【答案】无数;一条2.用手摸一摸,圆柱上下两个面,它们的大小.【答案】相等3.一个长为6厘米,宽为4厘米的长方形,以长为轴旋转一周,将会得到一个底面直径是厘米,高为厘米的体。
【答案】8;6;圆柱;4.圆柱的两个底面是两个大小的圆,如果一个圆柱的底面周长和高相等,那么它的侧面展开是一个。
【答案】相等;正方形5.圆柱的上、下底面是两个面积相等的形.圆柱的侧面是一个,沿着高展开后可能是一个形,也可能是一个形.【答案】圆;曲面;长方;正方6.一个圆柱形油桶,侧面展开是一个正方形,已知这个油桶的底面半径是5分米,那么油桶的高是分米.【答案】31.47.如图是的表面展开图,它的高是厘米,侧面积是平方厘米,表面积是平方厘米,体积是立方厘米。
【答案】圆柱;3;18.84;25.12;9.428.如果将圆柱形蛋糕平行于底面进行切割,切面是两个完全相同的,它与圆柱的面完全相同;如果将蛋糕沿底面直径垂直于底面进行切割,切面是两个完全相同的形或形,长方形的长和宽(或正方形的边长)分别是圆◆基础知识达标柱的和。
【答案】圆;底;长方;正方;底面直径;高9.如下图,以这个长方形的宽为轴,旋转一周,得到体,它的底面半径是cm,高是cm。
【答案】圆柱;6;310.一水桶底面周长是47.1cm,底面半径有cm。
【答案】7.511.圆柱体的上下两个圆形底面()A.一样大B.不一样大C.不确定【答案】A12.下面四组图形的关系中,错误的一组是()。
A.B.C.D.【答案】C13.如下图:长方形的铁片与()搭配起来能做成圆柱(单位:厘米)。
◆课后能力提升A.B.C.D.【答案】C14.一个长方形的长是8厘米,宽是5厘米,以它的长为轴旋转一周,能够形成一个()。
A.长方体B.正方体C.圆锥D.圆柱【答案】D15.()滚得快,而且它的两个相对的面是平平的.A.球体B.长方体C.圆柱体D.正方体【答案】C16.圆柱的高有条,圆锥的高有条。
六年级下数学一课一练-圆柱、圆锥(1)-人教新课标(带解析)
40.甲乙两个圆锥,底面积相等,高是比是4:5,它们的体积比是多少?
41.把一个长3分米的圆柱,平均分成两段圆柱,表面积增加6.28平方分米。原来这个圆柱体积是多少立方分米?
42.一个圆和一个圆锥等底等高,体积相差6.28立方分米。圆柱和圆锥的体积各是多少?
(1)d=12cm,r=6cm,h=7cm
V锥=V=sh÷3=π×r×r×h÷3
=3.14×6×6×7÷3
C侧=π×d×h×5=3.14×1.2×2×5=37.68(平方米)
答:每分可以压37.68平方米大的路面。
19.长是42厘米、宽是28厘米、高是12厘米,表面积是4032平方厘米。
【解析】纸箱的长是6个直径组成的,宽是4个直径组成的,高是饮料的高12cm
a=4×7=42(cm),b=4×7=28(cm),h=12(cm)
5.一个圆柱的底面直径是2厘米,高是2厘米,侧面展开是一个_____形,它的面积是_________,底面积是。
6.做一个底面直径是20厘米,高是50厘米的圆柱形通风管,至少需要_________平方厘米的铁皮。
7.一个圆柱,侧面展开后是一个边长9.42分米的正方形.这个圆柱的底面直径是多少分米?
8.一个圆柱的展开图如图所示,求该圆柱的表面积。
2.A
【解析】圆柱的展开图,侧面是长方形(或正方形)底面是两个圆,并且底面圆的周长等于长方形的长,高是长方形的宽。三个选项中底面圆的直径是3,底面周长是3.14×3=9.42,三个选项的高都是2,所以选择A。
3.246.49平方分米
【解析】圆柱体的侧面是一个正方形,说明圆柱的底面圆的周长与圆柱的高相等。底面圆的周长等于3.14×5=15.7(分米),即正方形的边长是15.7分米,所以面积是15.7×15.7=146.49(平方分米)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9、一个直角三角形的两条直角边 , 分别以它的两条直角边所在直线为轴旋转 一周,得到两个几何体,它们的表面积相应 地记为 A. C. ,则有(C ) B. D. 无法确定
10、用一张边长为20cm的正方形纸片围 成一个圆柱的侧面,则这个圆柱的底面 半径为( B )
A. B. C. D.
11、圆锥的底面圆的半径为3cm,高为4cm,则 它的表面积为( D ) A. B. C. D.
6、用一块圆心角为300°的扇 形铁皮做一个圆锥形的烟囱 帽,圆锥的底面直径为1米, 则这扇形铁皮的半径是 0.6 __________ 米。
7 、若矩形 ABCD 两邻边不等,分别以直 线AB、BC为轴旋转一周得两个圆柱,观 察这两个圆柱的底面和侧面,则有( C) A. S底、S侧都等; B. S底等, S侧 不等 C. S底不等、 S侧 等; D. S底、S侧 都不等
由图1得: 由图2得:
1、若圆柱的底面半径为
2
,
高为3,则它的侧面积 12 为___________ (平方单位)。
小结:
圆柱的侧面积=底面圆的周长×母线长
2、如图,某厂有一圆锥形的烟囱帽, 其底面半径和高的比为4:3,则它的侧 面展开图的中心角是 288 度。
?
3 5 4
8π
5n 8 180
优游 优游
lqu48hmo
简单的“送行”仪式。那天傍晚,已经年迈且身体欠佳的舅舅和舅母在大表弟郭栋夫妇和他们的儿女,还有表妹郭美妞儿的陪 同下过来烧纸祭奠。伤心不已的舅舅和舅母流着眼泪反复念叨着:“应该把梁儿叫回来送送姑父的„„去年姐姐过世那会儿就 没有回来„„”耿正兄妹们赶快轮番劝慰起来。耿正说:“二表弟现在是在外省任职哇,这路途遥远来去很不方便的。再者说 了,他国事在身,怎么可以为了给姑姑、姑父奔丧就擅自离任呢?”耿英也说:“舅舅舅母何必为了这个而过意不去呢。等二 表弟一家人以后回来省亲的时候,顺便给姑姑和姑父上上坟也一样哇!”舅舅和舅母无奈地擦着眼泪点头。舅母说:“谁说不 是呢,只能是这样了哇。”送舅舅一家人出来时,耿正特别嘱咐大表弟郭栋夫妇说:“明儿个出殡,你们一定要劝止两位老人, 千万不要再过来送了!哭别,无论是对于生者,还是逝者,都是一种熬煎哇!”看到大表弟夫妇都点头同意了,耿正又对表妹 郭美妞儿说:“明儿个你也不要过来送了!学堂里那么多的学生需要照看呢,你和二壮够忙活的了!”送走舅舅一家人之后, 耿正又对帮着张罗丧事的青山、青海、二壮、妞儿夫妇们说:“你们明儿个也只送到东山路口边上哇,这边人手已经很多了。 爹生前和俺们说过好多次,他希望自个儿乘坐着大骡车,安安静静地上山去!你们也知道,东山的路很宽,很好走,骡车可以 一直送到坟地的!”又特别对二壮说:“你明儿个还是早早去学堂哇,一定不要再过来帮忙送殡了!这几天俺们这边这些代课 的总是这个去了,那个不去的,把你和美妞儿累得够呛呢!”二壮点头答应了,但其他人却说什么也不同意,一定要坚持送到 坟地去,还说:“埋殡好了以后,俺们还要给老人家再磕三个头呢!”话说到这个份儿上,耿正也就不好再说什么了。2第百 四十回 耿兰远嫁再返北|(耿兰远嫁五年后,举家北上重归来;为爱永留北方地,从此再未踏故土。)耿老爹的次女耿兰生性 聪明善良,而又非常倔强要强。经过三年的忘我刻苦努力之后,她终于学有所成,站在了“耿家小学堂”一年级启蒙教育的讲 台上,成为一名深受小学童们喜欢的女先生。尽管对三哥李尚武的思念与日俱增,但坚强的耿兰丝毫不让思念之苦影响到自己 的教学事业。她非常喜欢教故乡的小娃儿们读书写字,也特别珍惜站在讲台上的分分秒秒,只是在每天晚上的闲暇时刻,总愿 意在油灯下一副又一副地绣着永远也绣不完的花鞋垫,把自己对心上人的思念,一针一线地绣入在一副又一副的花鞋垫里。四 年之后的腊月初,耿老爹的义子李尚武还赶着那头棕色大骡,拉着一车江南特产和丰厚的聘礼再次来到“三六九镇”。虽说四 年多的时间过去了,但这头通人性的大骡子无疑还认识这条千里迢
12 、 圆 柱 的 母 线 长 为 10cm , 侧 面 积 为 ,则圆柱的底面半径为( A ) A. 3cm B. 6cm C. 9cm D. 12cm
13 、已知一个圆锥的侧面展开图是半径 为r的半圆,则该圆锥的表面积为( C) A. B. C. D.
14、用一张边长为 和 的矩形卷成一个 3π或4πcm 。 圆柱,则这个圆柱的母线长是__________ 15、将一块半径为R cm,圆心角为n°的扇形 铁皮做成一个圆锥形的烟囱帽,则这个圆锥的 nR cm 底面半径是_____________ 。 360 16、圆锥的底面积为 ,母线长为5cm, 15π 。 则它的侧面展开图的面积为_______ 17、已知圆锥母线长为 ,底面半 径 ,则它的侧面展开扇形的圆心角为 _______柱体的石柱侧面,现量 得石柱底面周长约为0.9m, 柱高约为3m,那么至少需用 该材料 2.7 m2.
4、如图,是一个圆锥形零件 经过轴的剖面图,按图中标明 的数据,计算锥角α≈_______ 461 ° (精确到 °)
5、底面半径为r的圆锥,若 侧面积是底面积的1.5倍,则 1.5r 母线长等于__________ , 展开的扇形的圆心角等于 240° __________ 。