海南嘉积中学09-10高一下学期期末考试数学文
海南省海南中学09-10学年高一上学期期末考试(数学)
海南省海南中学09-10学年高一上学期期末考试(数学)海南中学2022—2022学年第一学期期末考试
高一数学试题
班级:姓名:座号:分数:
一、选择题(本大题共12小题,每小题3分,共36分。每小题给出的四个选项
中,只有一项是符合题目要求的。)
1、in120的值是()
12
12
A.B.C.
32
D.
32
2、函数yin某co某的周期是()A.
12
B.C.2D.4
是梯形,AD∥BC,则OABCAB
等于()
3、如图1,四边形ABCD
A.CDB.OCC.DAD.CO
4、如果点P(tan,co)位于第二象限,那么角所在象限是()
A.第一象限B.第二象限
C.第三象限D.第四象限
C
5、已知平面向量a(1,1),b(1,1),则向量A.(2,1)B.(2,1)C.(1,0)
6、将函数yin(某
3
12
a
32
b的坐标是()
D.(1,2)
)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),
再将所得的函数图象向左平移AyinCyin(
12
12
3
个单位,最后所得到的图象对应的解析式是()
12某
某Byin(某
2
)
6
)Dyin(2某
6
)
7、化简in50(13tan10)的值为()
A.1
B.1
C.
12
D.
12
8、已知图2是函数y2in(某)
π
的图象上的一段,则(2
)
A.
1011
,
π6
B.
1011
,
π6
C.2,
π6
D.2,
π6
2
9.已知|a|2|b|0,且关于某的方程某|a|某ab0有实根,则a与b的夹角的取值
范围是()
2
A.[0,]
B.[,]
C.[,]
D.[,]
6
3
3
3
6
10.已知O为原点,点A、B的坐标分别为,(0,a)其中常数a0,点P 在线段AB(a,0)上,且AP=tAB(0t1),则OA·OP的最大值为()
高一下期末数学试卷含答案解析
故选:B.
11.已知点P为线段y=2x,x∈[2,4]上任意一点,点Q为圆C:(x﹣3)2+(y+2)2=1上一动点,则线段|PQ|的最小值为( )
A. ﹣1B. C. D.
【考点】直线与圆的位置关系.
【分析】用参数法,设出点P(x,2x),x∈[2,4],求出点P到圆心C的距离|PC|,计算|PC|的最小值即可得出结论.
B.棱台的上下底面一定相似,但侧棱长不一定相等
C.顶点在底面的投影为底面中心的棱锥为正三棱锥
D.圆锥是直角三角形绕其一边旋转而成的旋转体
【考点】棱台的结构特征;旋转体(圆柱、圆锥、圆台).
【分析】根据旋转体和正棱锥的概念判断,圆柱、圆锥、圆台的旋转轴是否正确.
【解答】解:∵圆台是直角梯形绕直角腰所在的直线旋转而成,∴A错误;
三、解答题:本大题共6小题,共70分。解答写出文字说明、证明或验算步骤
17.已知直线l1:2x﹣y+1=0,l2:ax+4y﹣2=0.
(Ⅰ)若l1⊥l2,求a的值;
(Ⅱ)若l1∥l2,求a的值,并求出l1与l2间的距离.
18.如图,已知平面APD⊥平面ABCD,AB∥CD,CD=AD=AP=4,AB=2,AD⊥AP,CB=2 .
(Ⅰ)在线段AB1上是否存在一点M,使得DM∥平面ABC,若存在,求出AM的长.若不存在,请说明理由;
海南省嘉积中学高一数学下学期教学质量监测试题(二)文 新人教A版
2012-2013学年度第二学期高中教学质量监测(二)
高一年级数学试题(文科)
(时间:120分钟 满分:150分)
欢迎你参加这次测试,祝你取得好成绩!
一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有
一项是符合题目要求的) 1、不等式(1)(2)0x x +-<的解集为( )
A .{}|12x x -<<
B .
{}|12x x x <->或
C .
{}|12x x <<
D .
{}|21x x -<<
2、已知等差数列{}n a 中,54a =,前9项和9S =( )
A .108
B .72
C .36
D .18
3、在ABC ∆中,若角A ,B ,C 成等差数列,则角B =( )
A .90°
B .60°
C .45°
D .30°
4、若实数a ,b 满足2=+b a ,则b
a 33+的最小值为( )
A .18
B .12
C .9
D .6
5、已知圆锥的正视图是边长为2的等边三角形,则该圆锥体积为 ( ) A .
π22 B .π2 C .π3
3 D .π3
6、如图,B A O '''∆是OAB ∆水平放置的直观图,则OAB ∆的面积为( ) A .12 B .6 C .26 D .23
7、数列{}n a 前n 项和为n S ,若)
1(1
+=n n a n ,则5S =( )
A .
51 B .65 C .30
1 D .54 8、在OAB ∆中,31sin =
A ,3
3
cos =B ,1=a ,则b =( )
A .
33 B .23 C .6
海南省琼海市嘉积中学2023-2024学年高一下学期教学质量监测三(月考)数学试题及答案
海南省琼海市嘉积中学2023-2024学年高一下学期教学质量监
测三(月考)数学试题及答案
一、单选题
1.若复数z 满足5z =,则z 的虚部是( )
A
B .C
D .
2.观察下面的几何体,哪些是棱柱?( )
A .(1)(3)(5)
B .(1)(2)(3)(5)
C .(1)(3)(5)(6)
D .(3)(4)(6)(7)
3.一个圆锥底面积是侧面积的一半,那么它的侧面展开图圆心角为( ). A .
3π
4
B .5π6
C .π3
D .π
4.设αβ,是两个不同平面,m n l ,,是三条不同直线,则下列命题为真命题的是( ) A .若l β⊂,m α⊂,//l m ,则//αβ B .若m n ⊥,m α⊥,则//n α
C .若l m ⊥, l n m n αα⊥⊂⊂,,,则 l α⊥
D .若//l α,l //β,m αβ=I ,则//l m
5.已知向量(a =r ,(2,b =-r ,则a r 与b r
的夹角为( )
A .
6π B .56
π
C .
3
π D .
34
π 6.如图,,A B 两点在河的两岸,在B 同侧的河岸边选取点C ,测得BC 的距离
10m,75,60ABC ACB ∠∠==o o ,则,A B 两点间的距离为( )
A .
B .
C .
D .
7.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛
⎫=+>>< ⎪⎝⎭
的部分图象如图所示,则
π6f ⎛⎫
⎪⎝⎭
的值为( )
A B C D .1
8.南宋时期,秦九韶就创立了精密测算雨量、雨雪的方法,他在《数书九章》载有“天池盆测雨”题,使用一个圆台形的天池盆接雨水.观察发现体积一半时的水深大于盆高的一半,体积一半时的水面面积大于盆高一半时的水面面积,若盆口半径为a ,盆底半径为()0b b a <<,根据如上事实,可以抽象出的不等关系为( )
人教版高一下学期期末考试数学试题与答案解析(共五套)
人教A版高一下学期期末考试数学试卷(一)
(测试时间:120分钟满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
一、单选题(本大题共8小题,共40.0分)
1.复数为虚数单位在复平面内对应的点位于
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
2.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为
A. B. C. D.
3.已知一个三棱柱的高为3,如图是其底面用斜二测画法画出的水平放置的直观图,其中,则此三棱柱的体积为
A. 2
B. 4
C. 6
D. 12
4.已知非零向量,,若,且,则与的夹角为
A. B. C. D.
5.设为平面,a,b为两条不同的直线,则下列叙述正确的是
A. 若,,则
B. 若,,则
C. 若,,则
D. 若,,则
6.已知圆锥的顶点为P,母线PA,PB所成角的余弦值为,PA与圆锥底面所成角为,若的面积为,则该圆锥的体积为
A. B. C. D.
7.已知数据的方差为4,若,则新数据的方差为
A. 16
B. 13
C.
D.
8.在中,A,B,C所对的边分别是a,b,c,若,且
,则
A. 3
B. 4
C. 5
D. 6
二、多选题(本大题共4小题,共20.0分)
9.有甲乙两种报纸供市民订阅,记事件E为“只订甲报纸”,事件F为“至少订一种报纸”,事件G为“至多订一种报纸”,事件H为“不订甲报纸”,事件I为“一种报纸也不订”下列命题正确的是
高一下学期期末考试数学试卷含答案
2022年高一年级下期期末数学试卷
一、
单选题:本题共8小题,每小题5分,共40分。
1.若复数z =(i 为虚数单位),则|z |=( ) A . B .1
C .5
D .
2.已知全集R U =,集合}32|{<<-=x x A ,}1{{<=x x B ,则=)(B C A U ( ). A .}12|{<<-x x B .}31|{<<x x C .}31|{<≤x x
D .}2|{-≤x x
3.在ABC ∆中,6a =,4b =,120A =︒,则cos B = ( ) A .
32 B .63 C .33 D .23
4.如图,△A 'B 'C '是水平放置的△ABC 的斜二测直观图,△A 'B ′C ′为
等腰直角三角形,其中O ′与A ′重合,A 'B ′=6,则△ABC 的面积是( ) A .9 B .9
C .18
D .18
5.已知||=6,||=4,与的夹角为60°,则(+2)•(﹣3)=( ) A .﹣72
B .72
C .84
D .﹣84
6.已知4
3
2a =,25
4b =,13
25c =,则
(A )b a c << (B )a b c << (C )b c a << (D )c a b <<
7.在长方体1111ABCD A B C D -中, 1AB BC ==,12AA =,E 为1CC 的中点,则异面直线1BC 与
AE 所成角的余弦值为( )
A 1510.0 D 68.已知三棱锥S-ABC 中,SA ⊥平面ABC ,SA=4,BC=23BAC=60°,则三棱锥S-ABC 外接球的表面积为( )
高一下学期期末考试数学试题(含答案)
3
3
高一下学期期末数学试卷
第Ⅰ卷(选择题 共50分)
一、选择题(本大题共 10 小题,每小题 5 分,共 50 分。在每小题给出的四个选项中,
只有一项是符合题目要求的)
1. 已知α是第二限角,则下列结论正确的是
A .sinα•cosα>0
B .sinα•tanα<0
C .cosα•tanα<0
D .以上都有可能
( )
2.化简 AB + BD - AC - CD =
(
)
A . 0
B . AD
C . BC
D . DA
3.若 P (-3,4) 为角α终边上一点,则 cos α=
(
)
A. -
B. 4
5
5 C. - D. - 4
4 3
4. 若 a = 1, b = 2, 且 a , b 的夹角为120 则 a + b 的值
(
)
A .1
B . 3
C . 2
D . 2
π
5. 下列函数中,最小正周期是
A. y = tan 2x
的偶函数为
(
) 2
B. y = cos(4x + π
C. y = 2 cos 2
2x -1 2
D. y = cos 2x
6. 将函数 y = sin(3x + π 的图象向左平移π
) 个单位,再将所得图象上所有点的横坐标缩短到原 6 6
1
来的 倍(纵坐标不变),则所得图象的函数解析式为
( )
2
A. y =
sin( 3 x + 2π
2 3
B. y = sin(6x + π
3
C. y = sin 6x
D. y = sin(6x +
2π
3
7. 如右图,该程序运行后的输出结果为
(
)
A .0
B .3
C .12
D .-2
)
)
) )
8. 函数 y =cos(
π π
-2x )的单调递增区间是
高一数学下册期末试卷及答案
高一数学下册期末试卷及答案
【导语】心无旁骛,全力以赴,争分夺秒,坚强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!作者高一频道为大家推荐《高一数学下册期末试卷及答案》期望对你的学习有帮助!
一挑选题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知是第二象限角,,则()
A.B.C.D.
2.集合,,则有()
A.B.C.D.
3.下列各组的两个向量共线的是()
A.B.
C.D.
4.已知向量a=(1,2),b=(x+1,-x),且a⊥b,则x=()
A.2
B.23
C.1
D.0
5.在区间上随机取一个数,使的值介于到1之间的概率为
A.B.C.D.
6.为了得到函数的图象,只需把函数的图象
A.向左平移个单位
B.向左平移个单位
C.向右平移个单位
D.向右平移个单位
7.函数是()
A.最小正周期为的奇函数
B.最小正周期为的偶函数
C.最小正周期为的奇函数
D.最小正周期为的偶函数
8.设,,,则()
A.B.C.D.
9.若f(x)=sin(2x+φ)为偶函数,则φ值多是()
A.π4
B.π2
C.π3
D.π
10.已知函数的值为4,最小值为0,最小正周期为,直线是其图象的一条对称轴,则下列各式中符合条件的解析式是
A.B.
C.D.
11.已知函数的定义域为,值域为,则的值不多是()
A.B.C.D.
12.函数的图象与曲线的所有交点的横坐标之和等于
A.2
B.3
C.4
D.6
第Ⅱ卷(非挑选题,共60分)
二、填空题(每题5分,共20分)
13.已知向量设与的夹角为,则=.
14.已知的值为
高一数学下学期期末试卷及参考答案
试题
一、选择题:(共15个小题,每小题4分,共60分.在每个小题给出的四个选项中,只有一项是符合要求的)
1.已知全集U=R,A=,B={-|ln-<0},则A∪B=()
A.{-|﹣1≤-≤2}
B.{-|﹣1≤-<2}
C.{-|-<﹣1或-≥2}
D.{-|0
2.已知,那么cosα=()
A.B.C.D.
3.已知D为△ABC的边BC的中点,△ABC所在平面内有一个点P,满足=+,则的值为()
A.B.C.1D.2
4.△ABC中,AB=2,AC=3,∠B=60°,则cosC=()
A.B.C.D.
5.已知△ABC是边长为1的等边三角形,则(﹣2)?(3﹣4)=()
A.﹣
B.﹣
C.﹣6﹣
D.﹣6+
6.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=()
A.63
B.45
C.36
D.27
7.已知角α是第二象限角,且|cos|=﹣cos,则角是()
A.第一象限角
B.第二象限角
C.第三象限角
D.第四象限角
8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为()
A.5
B.4
C.3
D.2
9.对任意一个确定的二面角α﹣l﹣β,a和b是空间的两条异面直线,在下面给出的四个条件中,能使a和b所成的角也确定的是()
A.a∥a且b∥β
B.a∥a且b⊥β
C.a?α且b⊥β
D.a⊥α且b⊥β
10.定义2×2矩阵=a1a4﹣a2a3,若f(-)=,则f(-)的图象向右平移个单位得到函数g(-),则函数g(-)解析式为()
A.g(-)=﹣2cos2-
[独家]海南省嘉积中学10-11第二学年高一质量检测(数学B卷)
2010-2011学年度第二学期高中教学质量监测(一)
高一数学科试题(B 卷)
(时间:120分钟 满分:150分)
欢迎你参加这次测试,祝你取得好成绩!
注意事项:
1、 请考生把试题卷的答案写在答题卷上,并在方框内答题,答在框外不得分;
2、 禁止使用计算器作答。
一、选择题。(本大题共12题,每小题5分,满分60分。在每小题给出的四个选项中,只有一
项是符合题目要求的)
1、过点M (-2,m ),N (m ,4)的直线的斜率等于1,则m 的值为( )
A 、1
B 、4
C 、1或3
D 、1或4
2、下列四个命题中真命题是 ( )
A 、经过定点P o (x 0,y 0)的直线都可以用方程y -y 0=k(x -x 0)表示
B 、经过任意两个不同点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2
-y 1)表示
C 、不经过原点的直线都可以用方程
1b
y a x =+表示 D 、经过定点A (0,b )的直线都可以用方程1b y a x =+表示 3、已知1l :3x+4y+10=0,:2l :6x+8y+7=0,则1l 与2l 间的距离为 ( )
A 、
53 B 、513 C 、1013 D 、103 4、两圆x 2+y 2-6x+16y -48=0与x 2+y 2+4x -8y -44=0的位置关系是 ( )
A 、外离
B 、相切
C 、相交
D 、内含
5、已知圆心在点M (3,1),且经过点P (2,4)的圆的方程为( )
A 、(x -3)2+(y -1)2=26
海南省海口市海南中学2022-2023学年高一下学期期末考试数学试题(教师版)
海南中学2022-2023学年第二学期期末考试
高一数学试题卷
命题:甘洁慧
审核:余书胜
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共22小题,共150分,考试时间120分钟.注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
第Ⅰ卷(共60分)
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.已知i 是虚数单位,复数()()242i
z x x =-++是纯虚数,则实数x 的值为()
A.2
B.-2
C.
2
± D.4
【答案】A 【解析】
【分析】因为x 是实数,所以复数z 的实部是24x -,虚部是2x +,直接由实部等于0,虚部不等于0求解x 的值.
【详解】解:由2
(4)(2)i z x x =-++是纯虚数,得240
20
x x ⎧-=⎨+≠⎩,解得2x =.
故选:A.
2.已知()3,2a = ,()6,b x =- ,若a 与b
共线,则x =(
)
A.4-
B.4
C.9
D.9
-【答案】A 【解析】
【分析】根据平面向量共线的坐标表示即可求解.【详解】因为(3,2),(6,),a b x a ==-
与b
共线,
所以32(6)x =⨯-,解得4x =-.故选:A.
3.过两直线1:340l x y -+=和2:250l x y ++=的交点和原点的直线方程为()
海南省部分学校2023-2024学年高一下学期7月期末考试 数学含答案
海南省2023—2024学年高一年级学业水平诊断(二)
数学(答案在最后)
考生注意:
1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦千净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知向量()1,3a =
与
()
4,b m m =- 共线,则实数m =(
)
A.8
B.6
C.2
D.1
2.若复数z 满足()i 2i 0z +-=,则z 在复平面内对应的点位于()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3.已知sin 4
α=
,且π0,2α⎛⎫∈ ⎪⎝⎭,则()cos πα-=(
)
A.
1
4
B.
4
C.14
-
D.4.习近平总书记提出的总体国家安全观强调“大安全”理念,在总体国家安全观提出十周年之际,某校为调查学生对总体国家安全观的了解情况,从高一、高二、高三的学生中按人数比例用分层随机抽样的方法抽取部分学生,若从高一、高二、高三抽取的学生人数分别为,40,m m ,已知该校高中生共有1600人,高一学生有600人,则m =()A .
60
B.50
C.40
D.30
5.海南椰雕不仅仅是一门传统手艺,更是一段传承千年的文化史.图(1)是一个椰雕工艺台灯,其灯罩的几何模型如图(2)所示,相当于球O 被一个平面截得的一部分,若AB 是截面圆O '的直径,2π
高一数学下册期末试卷及答案
高一数学下册期末试卷及答案
心无旁骛,全力以赴,争分夺秒,顽强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!下面给大家分享一些关于高一数学下册期末试卷及答案,希望对大家有所帮助。
一.选择题
1.若函数f(x)是奇函数,且有三个零点x1、x2、x3,则x1+x2+x3的值为( )
A.-1
B.0
C.3
D.不确定
[答案] B
[解析] 因为f(x)是奇函数,其图象关于原点对称,它有三个零点,即f(x)的图象与x轴有三个交点,故必有一个为原点另两个横坐标互为相反数.
∴x1+x2+x3=0.
2.已知f(x)=-x-x3,x∈[a,b],且f(a)?f(b)<0,则f(x)=0在[a,
b]内( )
A.至少有一实数根
B.至多有一实数根
C.没有实数根
D.有惟一实数根
[答案] D
[解析] ∵f(x)为单调减函数,
x∈[a,b]且f(a)?f(b)<0,
∴f(x)在[a,b]内有惟一实根x=0.
3.(09?天津理)设函数f(x)=13x-lnx(x>0)则y=f(x)( )
A.在区间1e,1,(1,e)内均有零点
B.在区间1e,1,(1,e)内均无零点
C.在区间1e,1内有零点;在区间(1,e)内无零点
D.在区间1e,1内无零点,在区间(1,e)内有零点
[答案] D
[解析] ∵f(x)=13x-lnx(x>0),
∴f(e)=13e-1<0,
f(1)=13>0,f(1e)=13e+1>0,
∴f(x)在(1,e)内有零点,在(1e,1)内无零点.故选D.
4.(2010?天津文,4)函数f(x)=ex+x-2的零点所在的一个区间是( )
海南省嘉积中学09-10学年高一下学期期末考试(文科数学)
海南省嘉积中学09-10学年高一下学期期
末考试(文科数学) work Information Technology Company.2020YEAR
高一年级数学科试题(文科)
(时间:120分钟 满分:150分)
欢迎你参加这次测试,祝你取得好成绩! 一、选择题(每小题5分,共60分)
1、等比数列{}n a 中,1a =32,q=2
1
-
,则6a =( ) A.1 B.-1 C.2 D.21
2、等差数列{}n a 中,2a =3,8a =9,则前9项和9S =( ) A .45 B.52 C.54 D.108
3、在△ABC 中,a =2, b=6,C=60°,则三角形的面积S=( )
A .33 B.23 C.36 D.6 4、不等式1692++x x ≥0的解集为( )
A .⎭⎬⎫⎩⎨⎧-≠31|x x
B .⎭
⎬⎫
⎩⎨⎧-31 C.φ D.R
5、等差数列{}n a 中,3054321=++++a a a a a ,则=3a ( )
A .5 B.6 C.8 D.10 6、已知6=+y x ,且x,y 都是正数,则xy 的最大值为( )
A .5 B.8 C.9 D.12 7、在△ABC 中,已知ab c b a =-+222,则C ∠=( )
A.120°
B.60°
C.45°
D.30° 8、在△ABC 中105=∠A °,︒=∠45B ,22=b ,则c=( )
A.1
B.2
C.2
D.3
9、设y x ,满足⎪⎩
⎪
⎨⎧≥+≤+≥-1210y x y x y x 则y x z +=5的最大值为( )
高一下学期期末考试数学试题及答案
高一数学下学期期末考前训练
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共 150 分.考试时间 120 分钟.
第I 卷 选择题 (共60 分)
一、选择题(每小题5分,共60分。下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡
上)
1.不等式
01
3
22≤+-+x x x 的解集为()
A .}113|{≤≤-≥x x x 或
B .}113|{≤<-≥x x x 或
C .}
113|{≤≤--≤x x x 或D .}
113|{≤<--≤x x x 或2.从标有1,2,3,4,5,6的6张纸片中任取2张,那么这2张纸片数字之积为6的概率是()
A .
15
B .
115
C .
215
D .
13
3用秦九韶算法计算多项式在当
时的值,有如下的说法:
①要用到6次乘法和6次加法;②要用到6次加法和15次乘法;③
;
④
。
其中正确的是()
A .①③
B .①④
C .②④
D .①③④
4、执行程序框图,则输出的T 等于()
A.B.C.D.
5.总体由编号为01,02,…,19,20的20个个体组成。
利用下面的随机数表选取5个个体,选取方法是从随
机数表第1行的第5列和第6列数字开始由左到右依
次选取两个数字,则选出来的第5个个体的编号为()
78166572080263140702436997280198
32049234493582003623486969387481
A.08
B.07
C.02
D.01
6.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:
2023-2024学年海南省海口市海南中学高一(下)期末数学试卷(含答案)
2023-2024学年海南省海口市海南中学高一(下)期末数学试卷
一、单选题:本题共8小题,每小题5分,共40分。在每小题给出的选项中,只有一项是符合题目要求的。
1.已知复数z 满足z =1−3i
1−i ,则复数|z|=( )
A.
3
B.
5
C. 2
2
D.
10
2.若{a ,b ,c }构成空间的一组基底,则下列向量不共面的为( )A. a ,a +b ,a +c B. a ,b ,a +2b C. a ,a−c ,a +c
D. b ,a +c ,a +b +c
3.若非零向量a ,b 满足|a |=3|b |,(2a +3b )⊥b ,则a 与b 的夹角为( )A. π
6
B. π
3
C. 2π
3
D. 5π
6
4.已知点A(1,−1,2)在平面α上,其法向量n =(2,−1,2),则下列点不在α上的是( )A. (2,3,3)
B. (3,7,4)
C. (−1,−7,1)
D. (−2,0,1)
5.一帆船要从A 处驶向正东方向200海里的B 处,当时有自西北方向吹来的风,风速为15
2海里/小时,如
果帆船计划5小时到达目的地,则船速的大小应为( )
A. 5
34海里/小时
B. 6 34海里/小时
C. 7 34海里/小时
D. 8
34海里/小时
6.设A(−2,2)、B(1,1),若直线ax +y +1=0与线段AB 有交点,则a 的取值范围是( )A. (−∞,−3
2]∪[2,+∞) B. [−3
2,2)C. (−∞,−2]∪[32,+∞)
D. [−2,3
2]
7.如图,在△ABC 中,AB =AC = 3,D 是边BC 的中点,以AD 为折痕把△ACD 折叠,使点C 到达点C′的位置,则当三棱锥C′−ABD 体积最大时,其外接球的表面积为( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
嘉积中学高一年级数学科试题(文
科)
(时间:120分钟满分:150分)欢迎你参加这次测试,祝你取得好成绩!
一、选择题(每小题5分,共60分)
1、等比数列a n中,
A.1
B.-1 a1 =32, q=
1,则a6=(
)
1
2
C.2
D.
2、等差数列a n 中,a2=3, a8=9,则前9 项和S g =()
A . 45 B.52 C.54 D.108
3、在厶ABC中,a =2, b=6,C=60 ° ,则三角形的面积S=()
A . 3 .. 3 B. 3 2 C. 6.3 D.6
4、不等式9x26x 1>0的解集为()
A . x | x 1
B
1
C. D. R
3 3
5、等差数列a n中,a1 a2 a3 a4 a5 30,则a3 ( )
A . 5 B.6 C.8 D.10
6、已知x y 6,且x,y 都是正数,则xy的最大值为()
A . 5 B.8 C.9 D.12
7、在厶ABC中,已知a2b2 c2 ab ,则C=()
A.120 °
B.60 o
C.45 o
D.30
8、在厶ABC中 A 105 ° , B 45 ,b 2、2 ,则c= ( )
A.1
2 C.2 D. B
..
a
b
13、若实数a,b 满足a+b=2,则3 3的最小值为 ______________
14、 不等式2x 2 x 6 v 0的解集为 _________________________ 。
15、 各项均为正数的等比数列
a n 中,若a 5 a 6 8,则log 2a1 log 2a2 log 2a10
16、 数列 a n 中,a n ---------------- ,前n 项和为 S,则S 2009= ________________
n (n 1)
三、解答题(共74分)
17、 (本小题12分)
已知a n 是等差数列,且a 2 1,a 5 5
① 求a n 的通项a n 。
② 求a n 的前n 项和S n 的最大值。
9、设x, y 满足 x y 1
x 2y 1
则z
5x y 的最大值为()
A.3
B.4
C.5
D.6
10、若数列a n 中满足a 1 2,a
n 1
1
,
则 a 2010
()
a n
A.2
B.1
C.
1
D.
2
-1
a
11.在△ ABC 中若
b
C
则厶ABC 是()
cosC
cos A cosB
A. 等边三角形 直角三角形 C. 钝角三角形
B.
D. 等腰直角三角形
12、两个等差数列 a n
,b n 的前n 项和分别为
2n 3n 3
则 a
5 ()
2 b 5
A.2
3
B. C. D.
、填空题(每小题 4分,共16分)
18、(本小题12分)
在锐角△ ABC中,a,b,c分别为角A, B, C所对的边,且..3a 2csin A。
①求角C的大小。
②若C=.-7,且△ ABC的面积为土?,求a b的值。
2
19、(本小题12分)
已知数列a n满足a n 1
①求a2 ,a3的值。
②求a n。
a n 3n,且a1 1
20、(本小题12分)
求和S n x 2x2 3x3 21、(本小题12分)
n c nx (x 0)
一海轮以20海里/小时的速度向正东航行, 它在A点时测得灯塔P在船的北偏东60°方向上, 2小时
后船到达B点时测得灯塔P在船的北偏东45°方向上。求:
①船在B点时与灯塔P的距离。
②已知以点P为圆心,55海里为半径的圆形水城内有暗礁,那么这船继续向正东航行,有无触礁的危险?
22、在等比数列a n中,a n >0,公比q (0,1),且a?a4 2a3a§a6 25,又a3与的等比中项为
2。
①求数列a n的通项公式。
②设b n log 2 a n,数列b n前n项和为S,求S。
③当§ 蛍§1最大时,求n的值。
1 2 n
高一数学科参考答案(文科)
、选择题BCADB CBCCD AC 二、填空题
13、6
3
14
、{ x 卜
2009 2010 三、解答题 17、解:(1)由已知得a1 a1 d 1 4d 5 (2 分) 3 d 2 (4分)• a n a1 (n 1)d 2n 5 (4分) (2:)& a 1 a n 门 2 = n2 4n (8分) = 2 (n 2) 4 (10 分) •••当n 2时,S n取得最大值4。(12分) 18、解:1) 、3a 2csin A .3 2Rsi nA 2 2Rs in C?si nA i C屈si nC 2 △ ABC为锐角三角形 C—( 5 分) 3 、1 33 2) S absi nC 2 2 ab 6 (7分)由余弦定理得到 C 2 a2b22abcosC (a b)22ab 2ab cosC (9分) 7 (a b)218 (a b)225 a b 5 (12 分) 19、解:(1) a n 1 a n3n