2003-01237386SAR图像的线性及非线性变形图

合集下载

SAR图像小波域多尺度模型

SAR图像小波域多尺度模型

SAR图像小波域多尺度模型
袁小红;朱兆达
【期刊名称】《南京航空航天大学学报》
【年(卷),期】2009(041)004
【摘要】针对面向ATR应用的SAR图像压缩需要将图像压缩与图像自动分析相结合,本文研究小波域SAR图像MAR模型并应用于图像鉴别.与SAR复图像分辨单元相干平均形成多尺度图像序列建立多尺度模型不同,本文对SAR对数检测图像小波变换形成多尺度图像序列建立MAR模型.通过实例辨识了SAR图像中自然杂波(草地)与人造物(战略目标)模型,应用该模型推导了小波域多分辨率判别,对MSTAR图像鉴别实验验证了模型的有效性.其中db2小波域多分辨率判别鉴别性能好而计算复杂度低.小波域多分辨率判别可用在图像压缩有损量化前鉴别出人造物与自然杂波.
【总页数】6页(P510-515)
【作者】袁小红;朱兆达
【作者单位】南京航空航天大学信息科学与技术学院,南京,210016;南京航空航天大学信息科学与技术学院,南京,210016
【正文语种】中文
【中图分类】TP75
因版权原因,仅展示原文概要,查看原文内容请购买。

SAR成像及成像算法

SAR成像及成像算法

滤波后的时域信号为
ha s, BrWa s e
j 4 r s /
sin c Br 2r s / c


(2.1.6)
可见,距离压缩后的信号仍然是距离向和方位向的二维信号,距离向 和方位向的耦合仍然没有解除。 2.1.2 距离徙动 从(2.1.6)式可以看出, 经距离压缩后不同的点目标响应出现在不同的 距离向上,这是由距离徙动造成的。根据 SAR 的多普勒历程,有
gr r sin
斜距分辨率为:
c 2B 其中, B 为雷达发射波形的频带宽度。 1.3.2 方位分辨率 SAR 处理之前的方位向分辨率为波束宽度在地面的投影,即
(1.3.1)
r
(1.3.2)
Pa' R c bw
0.886 R La
(1.3.3)
该式成为真实孔径雷达分辨率。而以距离为量纲的合成孔径雷达分辨 率可成:
2.1 RDA(Range-Doppler Algorithm)
R-D 算法基于匹配滤波的原理,将 SAR 成像中的二维联合处理简化为 两个一维的级联 R-D 算法的参考函数选择为接收信号频谱的复共轭,时域 上是接收信号的逆时复共轭。R-D 算法的实现步骤为,先对每个回波信号 进行距离向压缩,然后在 R-D 域中对距离向压缩后的数据进行距离徙动校 正,在大斜视角情况下再进行二次距离压缩,最后进行方位向压缩 . 2.1.1 距离向压缩 根据 SAR 的成像原理,得到 SAR 回波信号
T1 f K
1/2
e j sgn K /4e j f
2
/K
(2.1.3)
其时域形式为
T1 e j K
2

SAR图像中桥梁的识别方法研究

SAR图像中桥梁的识别方法研究
i j
3
方向比值法处理
根据 SAR 图像成像特点和桥梁的几何特性 , 在 8 个方向
作如下处理。 首先 , 检测可能含有桥梁的候选区即感兴 趣区域。选取 如图 3 所示 的方 向 , 对每 一方向 在窗 口内对 其 k 个数 据求 和, 即 A i =
k
j= 1
! pj , i =
1 ∀ 8, pj 为 像素幅度 , 由 此可得 到 8

1 2 3 4 5 6



Way J, Atwood Smith E. The Evolution of Synthetic Apert ure Radar Systems and Their Progression to t he EOS SAR . IEEE Trans. on GRS, 1991: 962~ 985. Hendri A, Quegan S, Wood J. The Visibil ity of Linear Feat ures in SAR Images. In Proc. IEEE Int . Geoscience Remote Sensing Symp. , 1988: 1517~ 1520. 王运锋 , 王建国 , 赵志钦等 数学形态学在 SAR 图像目标识别中的应用 系统工程与电子技术 , 2001, 23( 3) : 23~ 27. 王运锋 遥感图像处理与目标识别 典型战略目标特征提取与识别技术 : [ 硕士论文 ] 成都 : 电子科技大学 , 1998 何友 , 关键 , Hermann Rohling. 一种基于排序和平均的新的恒虚警检测器 现代雷达 , 1995( 4) : 32~ 36. Cont e E, Lops M . Clutter Mpa CFA R Detect ion for Range Spread Targets in Non Gaussian Clutter. Part & 、 Part ∋ . IEEE Trans. on AES, 1997: 432~ 454.

(完整版)各种SAR成像算法总结,推荐文档

(完整版)各种SAR成像算法总结,推荐文档

sr
(t)
Wa
t
R(t) c
st
t
2R(t) c
(1.20)
n
Wa
t
R(t) c
p
t
nPRT
2R(t) c
其中, 为目标的后向散射特性,Wa (A) 为方位向的天线方向性函数, c 为 光速。
sr (t) 经正交解调后的复信号 s(t) 可以表示为:
s(t)
n
Wa
t
R(t) c
s0
t
1.2 SAR 回波信号模型
1.1 节分析了 SAR 成像的基本原理,本节推导 SAR 回波信号的数学模型,
给出 SAR 信号处理的理论基础。
chirp 信号是 SAR 系统中最常用的发射信号形式。假设雷达发射的 chirp 脉
冲串 st (t) 为:
n
st (t) p(t nPRT ) n
(1.19)
1.1 SAR 成像原理
本节以基本的正侧视条带工作模式为例,对 SAR 的成像原理进行分析和讨
论。
正侧视条带 SAR 的空间几何关系如下图所示。图中,αoβ 平面为地平面,
oγ 垂直于 αoβ 平面。SAR 运动平台位于 S 点,其在地面的投影为 G 点。SAR
运动平台的运动方向 Sx 平行于 oβ,速度大小为 va 。SAR 天线波束中心与地面 的交点为 C,CG 与运动方向 Sx 垂直;S 与 C 的距离为 Rs , B1SB2 称为天线波 束的方位向宽度,大小为 a 。P 为测绘带内的某一点,一般情况下取斜距平面 CSP 进行分析,称 SAR 运动的方向 Sx 为方位向(或方位维),称天线波束指向
量 fd (t) 为:
fd

SAR图像尺度不变特征提取方法研究

SAR图像尺度不变特征提取方法研究
-( x2 +y2 ) 2 σ2
( 1)
,σ 为 尺 度 参 数,σ
取不同值, 即可得到一组多尺度图像序列。 设图像 I' 与 I 图像满足 I ( x, 其尺度变换可 y ) = I' ( tx, ty ) , 表述为 L' ( x' , y' , σ' ) * I ( x' , y' , y' ) σ' ) = G ( x' , ( 2)
2201
的取值较小, 则该点处于灰度均匀区域, 若取值为 负, 则该点在边缘上, 若为大于某阈值 T 的局部最大 则该点处的像素灰度在各个方向变化都很大 , 可 值, 。 , 、 、 视为特征点 如前文所述 对于图像旋转 平移 加 Harris 算子提取的特征点具有最优的稳 噪等变化, 定性。为了进一步使提取的特征点具有尺度不变 性, 以满足尺度不变特征定位要求, 首先将其拓展到 。 多尺度图像域 设 L ( x, y, y ) 经过尺度 σ i ) 为由原始图像 I ( x, 变换得到的一组多尺度图像序列,n 为尺度采样个 s 为尺 数, 尺度参数序列 σ i = s σ0 , σ0 为起始尺度, 度变化因子( 可取为 1. 2
尺度不变特征是图像处理中一类非常重要的图 像特征, 在图像配准、 目标识别等领域有着广泛的应 [14 ] 。 然而与光学图像相比, SAR 图像噪声 用前景 干扰明显增强, 导致光学图像处理领域常用尺度不
收稿日期: 2010-09-25 ; 修回日期: 2010-11-10
070223 ) ; 国家自然科学基金项目( 60972121 ) 。 基金项目: 教育部新世纪优秀人才支持计划项目( NCET第一作者简介: 王广学( 1981 — Email: wgxradar@ 126. com。 ), 男。国防科技大学信息与通信工程专业博士研究生, 主要研究方向为 SAR 图像处理。

SAR图像sarscape详细处理过程

SAR图像sarscape详细处理过程

SAR图像sarscape详细处理过程SAR图像sarscape详细处理过程来自ENVI-IDL技术殿堂的博客SAR系统可以通过多种方式获得图像,如单通道或双通道模式(如HH、HH / HV或VV / VH)、干涉(单轨或多轨)模式、极化模式(HH,HV,VH,VV)、干涉及极化组合采集模式,不同的获取模式对应了不同的处理方法,可分为以下四种:雷达强度图像处理雷达干涉测量(InSAR/DInSAR)极化雷达处理(PolSAR)极化雷达干涉测量(PoIInSAR)本文介绍的是雷达强度图像的处理。

1 处理流程如下图是利用SARscape雷达图像基本处理工具,基于不同雷达数据情况,执行雷达图像处理和应用的流程图。

单雷达图像处理与应用流程图单一传感器,单一模式,多时相雷达图像处理与应用流程图单/多传感器,多模式,多时相雷达图像处理与应用流程图2 处理流程关键技术下面介绍流程中相关技术。

(1) 聚焦处理对雷达系统的RAW数据中每个点的反射绿利用经过优化的调焦算法实现数据快速聚焦处理,直接输出单视复数产品数据(SLC数据)。

(2) 多视处理为了得到最高空间分辨率的SAR图像,SAR信号处理器使用完整的合成孔径和所有的信号数据,如单视复数(SLC)SAR图像产品,使得SAR图像包含很多的斑点噪声。

多视处理的目的是为了抑制SAR 图像的斑点噪声。

Multilooking工具支持距离向多视和方位向多视,处理得到的多视强度图像是距离向和/或方位向像元分辨率的平均值。

为了提高多视图像的辐射分辨率,降低了空间分辨率。

Multilooking工具支持SLC 强度数据或距离向强度数据的输入。

对SLC图像(*_slc)多视处理的结果(右边*_pwr)(3) 图像配准提供Coregistration工具,使用交叉相关技术实现覆盖同一地区的多幅雷达影像的自动配准,以达到亚像素配准精度,整个过程采用全自动的方式。

(4) 滤波Filtering工具提供一系列滤波用于去除雷达图像的斑点噪声,可用于单波段雷达图像和多时相雷达图像。

SAR图像处理

SAR图像处理

SAR图像处理班级:学号:姓名:一:SAR图像概述:SAR是一种可成像的雷达,它所用的雷达波段大约是300MHz到30GHz。

比如一般用的波段是1~10GHz的合成孔径雷达,大气对这种波段的影响不大。

也就是说如果天上有一个合成孔径雷达卫星,白天黑夜、大气的云雾雨雪等天气变化对雷达看到的结果影响甚微,可忽略不计。

所以合成孔径雷达是一种全天时、全天候的雷达,它所成的图像就是SAR图像了。

SAR图像的场景和照相机拍出来的场景类似,只不过波段不同看到的事物也不一样。

SAR都是斜视的,而光学的可以垂直照射。

二 SAR图像成像原理雷达是通过发射微波,接收地面目标反射的回波来获得信息的一种主动微波遥感,而且主要采用侧视雷达。

侧视雷达的工作原理是把天线安装在飞行器的侧面,在垂直于航线的一侧或两侧发射雷达波束,这个波束在航向上很窄,在距离向上很宽,覆盖了地面上一个很窄的条带,随着飞行器向前移动,不断地发射这样的波束,并接收相应的地面窄带上各种地物的回波信号。

这样,雷达波束在目标区域上扫过,获得该地区的连续带状。

平行于飞行航线的方向称为方位向,垂直于航线的方向称为距离向。

图像的灰度与后向散射波强相关,反映地表的粗糙性、介电常数等性质。

侧视雷达又可以分为真实孔径侧视雷达和合成孔径侧视雷达。

真实孔径雷达是一种以天线的真实孔径工作的侧视雷达,这种雷达的方位向分辨率比较低,要提高方位向分辨率,只有加大天线的孔径,尽量缩短观测距离和采用较短波长的电磁波,但是在实际应用中,这些办法受到很多因素的限制,因此要想进一步提高方位向分辨率,往往采用合成孔径技术。

合成孔径雷达(SAR)作为一种高分辨成像雷达,其基本思想是:将同时处于天线主波束内的真实孔径雷达不能区分的多个目标的多普勒频率和相位同时加以记录和处理,然后再根据多普勒频率和相位的不同来识别相邻的目标。

也就是说,利用飞行器的移动,将真实孔径雷达的小天线依次携带到相应于线性天线阵列的各个阵元应该放置的位置上,而在每个位置上发射一个雷达信号并接收其回波加以存储,当发射单元移动一个波束宽度的距离后,存储的信号与一个实际线性天线阵诸阵元所接收到的天线信号非常相似。

SAR图像的特征

SAR图像的特征




3,硬目标是那种既不占有相当面积,又不限 制在分辨单元之内的地物,其回波信号在图像 上往往表现为一系列亮点或一定形状的亮线, 大多数人工目标如桥梁、输电线、房屋等都属 于这一类目标。 它们的回波信号很强,其原因主要是:有与雷 达波束相垂直的平面;有角反射效应;有相应 于入射波频率的谐振效应;有合适指向的线导 体。




1,透视收缩是面向雷达波束的斜面投影到斜距平面时距离 压缩增强现象,归根结底还是距离压缩。 2,图像上前坡总是比后坡距离压缩明显,透视收缩表明较 大的回波面积集中体现在较小的图像区域,在强度图像上, 前坡比后坡明亮。 3,当入射角为零时,山顶、山腰、山底的回波集中到一点, 出现最大透视收缩。 4,图像的透视收缩比率(θ为当地入射角):
微波图像的特点
§1 §2 §3 §4
侧视雷达图像的参数 侧视雷达图像的几何特点 侧视雷达图像的信息特点 典型地物的散射特性
第一节 侧视雷达参数



工作参数:波长、极化方式、俯角(入射角)、 照射带宽、显示方式(地距、斜距) 飞行参数:高度,星下点,姿态,倾角,成像 时间,轨道,帧,景 图像参数:分辨率(平均分辨率,体分辨率)

雷达成像在方位向和距 离向分辨率是不统一的。



方位分辨率 当载波波长、天线孔径和 轨道高度一定时,方位分 辨率是一个常数。 距离分辨率 脉冲宽度、波速一定时, 距离分辨率与雷达俯角或 当地入射角有关。


距离压缩原理示意图
距离压缩现象雷达影像

雷达图像距离压缩规律




1,距离压缩是斜距成像的雷达影像在距离向呈图 像压缩的几何失真现象。; 2,由于距离向目标当地入射角处处不相等,所以 在距离向目标分辨率处处不同; 3,靠近星下点的目标成像压缩现象严重,远离星 下点的目标压缩现象较轻微; 4,如果对山地成像,即便地距显示也不能保证图 像无几何形变。换言之,山地必有几何形变。

SAR图像的检测和分类方法

SAR图像的检测和分类方法

Pij =
p
d ,θ i,j
L
(1)
∑p
d ,θ i,j
i,j
Pid,,θj 为灰度 i 和 j 共现的频率 , 该频率由距离 d 和
方向角θ决定. 分子为满足 d 、θ条件 , 灰度分别为
i 和 j 的点对数目 ; 分母为满足 d 、θ条件的所有点
对数目.
灰度共生矩阵是描述在θ方向上 , 相隔 d 像元
图 2 C 均值算法框图
Rij归入最近的一类 , 重新计算类均值 ; 如此重复循 环 ,每次计算完所有样本时计算一次误差函数 ,如果 误差函数不改变 ,则计算结束 ,得到分类结果.
3 实验结果及分析
采用灰度共生矩阵的单一统计量为特征进行分
类 ,得到分类结果 ,计算出各类间距和各类的类内方
差 ,从而从实验上得到各个统计量的性能情况 ,然后
图 1 基于灰度共生矩阵的特征向量提取算法框图
标 ,熵和相关的聚类效果最好.
212 聚类算法
表 2 给出了单一统计量进行分类得到的类间
采用 C 均值聚类算法进行聚类[6 ] , 其算法框图 距. 可以看出 ,对于陆地和河流的分类 ,和方差和熵
如图 2 所示. 在 C 均值聚类算法中 , 采用的特征向 的分类效果最好 ;对于河流和人造目标 ,对比度 、和
较小. 相反 ,对于细纹理则相对具有较大的 con 值.
在有的文献中称之为惯性矩.
③相关 (cor) 定义为
∑∑
( i - μx) ( j - μy) P ( i , j | d ,θ) σxσy
i
j
(4)
∑ ∑ ∑ 其中 , μx = i P ( i , j | d , θ) ; μy = j ·

SAR成像理论及Matlab仿真-第一讲ppt课件

SAR成像理论及Matlab仿真-第一讲ppt课件

10
电子科技大精学选
2020/5/20
1.1 SAR发展简史
TerraSAR-X卫星系德国首颗雷达成像卫星,由德 国政府机构德国航空中心(DLR)和EADS Astrium 公司、Infoterra公司根据公私合营的模式共同开发。
11
电子科技大精学选
2020/5/20
1.2 SAR的定义
将装载着雷达的飞行器沿一定方向以速度 v匀速 直线前进,同时以固定的重复频率发射并接收信 号,并将接收信号的幅度和相位信息存储起来, 将它们按阵列回波作合成处理,利用这种合成阵 列方式工作的雷达称为合成孔径雷达(SAR, Synthetic Aperture Radar)。
参数设计
(1) 距离维参数
最小及最大斜距
Rmin
X
c
Wr 2
2
H
2
Rmax
X
c
Wr 2
2
H
2
距离向采样点数
Nr 2(RmaxcRmin)Tp
fs
38
电子科技大精学选
2020/5/20
2.5 SAR回波Matlab仿真实验
参数设计
(2) 方位维参数
合成孔径长度
Ls Rca
合成孔径时间
6
电子科技大精学选
2020/5/20
1.1 SAR发展简史
1960年4月,美国在华盛顿机场进行机载合成 孔径成像雷达实验取得成功,诞生了国际上第一 部合成孔径雷达。
7
电子科技大精学选
2020/5/20
1.1 SAR发展简史
1978年6月,美国从范登堡基地成功发射世界 上第一颗合成孔径雷达卫星—Seasat卫星,开辟 了星载SAR的新纪元,使合成孔径雷达卫星成为 空间对地观测发展的热点。

SAR图像变化检测的多尺度方法研究

SAR图像变化检测的多尺度方法研究

图 1! 高斯尺度空间序列 图像 2) 高 斯尺度为 1 的变化 检测
图 2! 高斯尺度为 1 时比值法和 EK LD 法在样本窗口 改变下的变化检测结果 3) 高 斯尺度为 2 的变化 检测
或现象时采用的 空间 或时间 单位 , 也 可指 某一 现象或 过程 在空间和时间上 所涉 及的范 围和 发生频 率 , 包 括时间 上的 尺度和 空 间上 的 尺 度 , 在 图 像 处理 当 中 主 要 涉及 空 间 尺 度 [ 6] 。世界上物体的一个 共同 内在特 性是 它们 仅在特 定的 尺度上才是有意 义的 实体 , 在 不同的 尺度 上物 体的展 现形 式是不同的。这说 明尺度 的概 念和多 尺度 描述 方式是 至关 重要的 , 多尺度 更满 足人类 视觉 的易读 性和 认知要 求 , 并 能在有限的图面上尽可 能多的反映相对重要的物体 [ 7] 。 随着对图像 处理精 确度 要求的 不断 提高 , 尺 度空 间理 论首先从计算机 视觉 领域发 展起 来 , 属于 图像 解译过 程的 前端。最早期的工作由 R osen feld 和 Thurston 在 1971 年开展 于边缘检测 中 , 他们 尝试在 不同 尺度上 应用 算子 , 由 此发 现了尺度的优 势。类似 的还有 K linger ( 1971), U hr( 1972 ), H anson 和 R ise m an( 1974) 以及 T an i m o to和 P avlid is( 1975 ), 他们都专注于用 不同 尺度的 分辨 率来表 示图 像 , 即多 个方 法的降采样 [ 8] 。在 SAR 图像中 , 尺度 和分辨 率是密 切相关 的 , 空间分辨率的 大小反 映了 空间细 节水 平以 及和背 景环 境的分离能 力 , 大尺 度时分 辨率 较低 , 小 尺度时 分辨 率较 高 [ 9] 。通常情况 下 , 尺度增 大时 所表 达的信 息减 少 , 但并 不是呈简单的比 例变 化。在某 一空间 尺度 上认 为变化 的区 域在另一尺度上可能就 认为无明显变化。 尺度对于变 化检测 结果 的重要 影响 已毋庸 置疑 , 但以 往的观点都着重 于分 析图像 的多 尺度表 述 , 并 未考虑 过尺 度和所用变化检 测方 法之间 的联 系。首先 考虑 样本窗 口尺 度 , SAR 图像所具有的统 计特 性使单 一的 像素 点并不 具有 实际意义 , 解译和 处理图 像都 建立在 一定 数量 像元的 集合 上 , 因此我们在应用各种检测算 法时都会取 一个样本窗 口 , 以窗口包含的像 素为 一整体 运行 算法 , 样 本窗 口遍历 整个 图像后得到最终 的变 化检测 结果。因 此样 本窗 口的大 小作 为一种尺度会直接 影响到 算法 的准确 性从 而决 定变化 检测 结果的优劣。第二 个会改 变变 化检测 方法 效果 的是经 过分 辨率尺度 降低 后 的图 像 , 改 变图 像 分辨 率的 方 法有 很 多 , 都可以得到一系 列分 辨率尺 度不 同的图 像 , 有 的改变 图像 的大小有的则保 持不 变 , 方法 原理不 同得 到图 像的效 果也 不同。以下研究将 从变化 检测 方法对 于这 些尺 度变化 是否 具有稳定性展开。

SAR图像变化检测课件

SAR图像变化检测课件
息,造成聚类噪点多,效果不理想。
前辈们也对FCM算法进行了一些改 进:
• 如:
• (1)上课时老师讲的修改FCM的目标函数,增加了邻域信 息对像素的影响;
• (2)或者先利用像素邻域信息生成一副加权图像,然后对 新图像进行聚类分割;
• (3)或者直接修改距离函数改进FCM算法;
• (4)或者在像素隶属度的计算中加入邻域信息。
方法 虚检数 对数比 1083 均值比 4790 小波融合 1031
漏检数 准确率
936 98.37% 274 95.91% 898 98.44%
墨西哥:
方法 虚检数 对数比 199 均值比 311 小波融合 290
漏检数 准确率
1262 97.77% 950 98.08% 931 98.14%
D=|log(X1)-log(X2)|
特点:背景区域加强,变化区域 减弱,变化区域与不变化区域差 别不明显。
均值比算子:

聚类算法
FCM
• 它是一种典型的区域分割算法,但是在每次的迭代过程中。 是以单个像素为单位,没有考虑到像素的邻域信息,所以 它在含有噪音的图像分割时,效果并不理想。
• 优点:实现简单,聚类速度快。 • 缺点:单纯的考虑了图像的像素信息,未考虑像素领域信
实验数据集
• Berne:
• Mexico:
• Ottawa:
• Sardinia:
Berne:
(a)
(dtawa:
• (a) (d)
(b)
(c)
方法 虚检数 对数比 155 均值比 1869 小波融合 117 老师课件 207
漏检数 准确率
2091 97.79% 226 97.94% 167 98.84% 611 99.14%

SAR技术ppt课件精选全文完整版

SAR技术ppt课件精选全文完整版

SAR是一种微波全息
为了保证全息图不发生畸变,要采用运动补偿。 用一部分SAR原始数据就能处理出完整的图像,
只是分辨率降低,这是多视处理和SCANSAR的 依据。 SAR全息图方位向和距离向二维不对称,因此成 像处理时方位向和距离向二维处理方法有区别。 SAR原始数据的动态范围比目标和图像动态范围 小很多,这对原始数据的压缩很有利。
偏航控制(星上)* 杂波锁定(地面) 自聚焦(地面) 距离徙动校正(地面)
实 时 成 像 处 理 (星 上 ) * 地面成像处理 图 像 记 录 (地 面 ) 数传(原始数据或图象)
第二章 合成孔径雷达技术
6 SAR系统类型 7 SAR系统总体指标 8 雷达主要技术指标 9 SAR成像处理原理
6 SAR系统类型
工作方式的组合。 分辨率: 距离分辨率、方位分辨率、高程分辨率、
辐射分辨率。 成像带宽: 与分辨率是一对矛盾。 工作距离: 与分辨率有密切关系。 (4) 系统灵敏度:检测弱目标的能力,与所有参数都有关。 (5) 系统定标精度(辐射精度):内定标精度,外定标精度等。
7.1 SAR工作平台
(1) 机载SAR的工作平台是各种飞机,性能参数: ● 飞机型号 ● 飞行高度 ● 飞行速度 ● 运动误差 ● 安装空间和位置 ● 载荷能力 ● 供电能力
7.4.2 分辨率的理论基础
δ函数(冲激函数)定义:
(x) (当x 0时) (x) 0 (当x 0时)
并且 (x)dx 1
δ函数描述的是:位置在 x = 0处,宽度无限窄,幅度无 穷大,但能量有限(积分等于1)的一个脉冲信号。冲 激函数是一个理想“点”目标的数学模型。
(1) 系统的冲激响应
⑵ 扫描成像模式: SCAN SAR模式,超宽成像带、 低分辨率的成像工作模式

SAR图像——百度解答

SAR图像——百度解答

SAR(Synthetic:[sin'θetik] Aperture:['æpətjuə] Radar;:['reidɑ:] SAR,合成孔径雷达)SAR是一种可成像的雷达,它所用的雷达波段大约是300MHz到30GHz。

比如一般用的波段是1~10GHz的合成孔径雷达,大气对这种波段的影响不大。

也就是说如果天上有一个合成孔径雷达卫星,白天黑夜、大气的云雾雨雪等天气变化对雷达看到的结果影响甚微,可忽略不计。

所以合成孔径雷达是一种全天时、全天候的雷达,它所成的图像就是SAR图像了。

SAR图像的场景和照相机拍出来的场景类似,只不过波段不同看到的事物也不一样。

SAR都是斜视的,而光学的可以垂直照射。

SAR卫星方面,我记得最早发射的是加拿大的Radarsat,且有后续计划。

美国有航天飞机上载的SIR-C等合成孔径雷达。

日本现在有ALOS卫星上载的PALSAR合成孔径雷达(1.27GHz)。

德国的有TerraSAR系列。

据我所知,现在分辨率最高的是德国的X波段SAR系统,数据不好弄到;日本的PALSAR的SAR图像可以到官方网站下载到示例数据。

加拿大的Radarsat和美国的SIR-C数据也是可以到网上下载到的。

机载SAR方面,几乎数的上的雷达强国都有自己的系统。

机载SAR图像有日本的,法国的,德国的,美国的,但是在网络上找这种图像要费点功夫,不是很容易!中国虽然也有,但公开的资料较少,公开的图像资料就更少了。

SAR图像处理软件推荐欧空局的一个免费开源关键PolSARpro(我用过的),可以到欧空局网站上下载,里面的pdf有更详细的介绍SAR及其图像处理等内容。

inSAR技术基于Photoshop插件架构的合成孔径雷达(SAR)图像处理与评估系统主要功能.以图像评估插件的开发为例对关键技术进行了分析.结果表明,采用Photoshop插件方式,可以避免复杂的内存管理编程和用户界面设计,充分利用Photoshop的图形处理功能,减少了工作量,并提高系统稳定性和可用性.所以sar是基于photoshop插件的合成孔径雷达SAR(Synthetic Aperture Radar,合成孔径雷达)问:机载合成孔径雷达sar 多久能生一幅图像就是说采图周期怎么算?最佳答案我们按照最简单的条带式来说,每次生成的是一块图像,这块图像在距离向是全部的范围,在方位向则需要根据你系统的运算能力选择合适的长度。

SAR图像线特征分析与自动提取

SAR图像线特征分析与自动提取

CH EN Si1, 2 , YANG Jian1 , SONG Xiao2quan2
( 1 . Dep t. of Electr onic Engineer ing , Tsinghua Univ. , B eij ing 100084 , China; 2 . Beij ing I nst . of T r acking a nd T elecommunica tion Technology, Beijing 100094 , China )
了 提出方法 的有效性。
关键词: 合成孔径雷达; 线特征; 局部方向参数; 多尺度
中图分类号: TN 959. 3
文献标志码: A
DOI: 10. 3969/ j. issn. 10012506X. 2010. 09. 18
Analysis and automatic extraction of linear features in synthetic aperture radar images
共性的简单总结, 从实际应用需要的角度归纳了 SAR 图像线特征自动提取方法应满足的基本要求和应遵循的合
理思路。提出了一种由粗到细的自动提取方法, 定义一组局部方向参数描述图像的局部纹理方向特征, 通过多尺
度分析实现快速粗提取, 在后处理中进行细化并获得知识表达。在日本 PI2SAR 实际数据图像上进行的实验表明
第 32 卷 第 9 期 2010 年 9 月
文章编号: 10012506X( 2010)0921868207
系 统工程与 电子技术 Systems Engineer ing and Electr onics
Vol. 32 No. 9 September 2010
SAR 图像线特征分析与自动提取

弹载SAR图像几何失真校正误差分析

弹载SAR图像几何失真校正误差分析

第29卷第2期 电 子 与 信 息 学 报 Vol.29No.2 2007年2月 Journal of Electronics & Information Technology Feb. 2007弹载SAR 图像几何失真校正误差分析俞根苗①②邓海涛② 吴顺君①①(西安电子科技大学雷达信号处理国家重点实验室 西安 710071)②(华东电子工程研究所 合肥 230031)摘 要:该文主要讨论了弹载侧视合成孔径雷达(SAR)在导弹下降飞行过程中所获取图像的几何失真校正及其误差分析问题。

由于要求成像的过程中,弹体的高度在不断减小,SAR 图像存在严重的几何失真,该文根据成像过程中的几何关系,说明了采用子孔径RD 算法获得的SAR 图像几何失真的校正方法,着重对校正后图像的几何失真误差进行了分析,通过成像处理仿真试验验证了几何校正方法以及误差分析的正确性。

关键词:合成孔径雷达;几何失真校正;误差分析;弹载SAR中图分类号:TN958 文献标识码:A 文章编号:1009-5896(2007)02-0383-04Error Analysis of Geometric Distortion Correctionof Missile-Borne SAR ImageYu Gen-miao①②Deng Hai-tao ② Wu Shun-jun①①(National Key Lab of Radar Signal Processing , Xidian University , Xi’ an 710071, China ) ②(East China Research Institute of Electronic and Engineering , Hefei 230031, China )Abstract : The paper concerns the error analysis of image geometric distortion correction for missile-borne side-looking SAR. Because of the decrease of altitude during SAR operation, the SAR image obtained by common used imaging algorithm is seriously distorted. In the paper, the geometric distortion correction method of the SAR image related to subaperture RD algorithm is presented. Especially, the errors of geometric distortion correction are analyzed. The effectiveness of the method and error analysis of the geometric distortion correction are demonstrated by simulation.Key words : Synthetic Aperture Radar(SAR); Geometric distortion correction; Error analysis; Missile borne SAR1 引言组合导航系统是精确制导武器的重要发展方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Linear and Nonlinear Terrain Deformation Maps From a Reduced Set of Interferometric SAR Images Oscar Mora,Member,IEEE,Jordi J.Mallorqui,Member,IEEE,and Antoni Broquetas,Member,IEEEAbstract—In this paper,an advanced technique for the gener-ation of deformation maps using synthetic aperture radar(SAR) data is presented.The algorithm estimates the linear and nonlinear components of the displacement,the error of the digital elevation model(DEM)used to cancel the topographic terms,and the atmo-spheric artifacts from a reduced set of low spatial resolution inter-ferograms.The pixel candidates are selected from those presenting a good coherence level in the whole set of interferograms and the resulting nonuniform mesh tessellated with the Delauney trian-gulation to establish connections among them.The linear compo-nent of movement and DEM error are estimated adjusting a linear model to the data only on the ter on,this infor-mation,once unwrapped to retrieve the absolute values,is used to calculate the nonlinear component of movement and atmospheric artifacts with alternate filtering techniques in both temporal and spatial domains.The method presents high flexibility with respect the required number of images and the baselines length.However, better results are obtained with large datasets of short baseline in-terferograms.The technique has been tested with European Re-mote Sensing SAR data from an area of Catalonia(Spain)and val-idated with on-field precise leveling measurements.Index Terms—Differential interferometry(DInSAR),digital el-evation model(DEM),nonlinear movement,subsidence,synthetic aperture radar(SAR),terrain deformation.I.I NTRODUCTIONT HE DETECTION of earth surface movements using re-mote sensing techniques has shown excellent results in the last years of research[1]–[17].The first steps in differential synthetic aperture radar(SAR)interferometry(DInSAR)were made combining a pair of short-baseline SAR images enough separated in time to generate the associated interferogram.If the topographic phase can be neglected,due to the short spa-tial baseline,in front of the one caused by deformation,or it is removed using an external digital elevation model(DEM), the unwrapped interferometric phase shows the spatial distri-bution and magnitude of the displacement.This technique was successfully used to monitor single deformation episodes like the ones caused by earthquakes[1],[2]or volcanoes[3],due to the short time gap necessary between both SAR acquisitions,Manuscript received September30,2002;revised May16,2003.This work was supported by the European Space Agency(ESA)under the EO Project of Category1A03.421and the Spanish CICYT under projects TIC1999-1050-C03-01and TIC2002-04451-C02-01.O.Mora was with the Departament of Teoria del Senyal i Comunicacions (TSC),Universitat Politècnica de Catalunya(UPC).He is now with the Institut Cartogràfic de Catalunya(ICC),08038Barcelona,Spain(e-mail: omora@icc.es).J.J.Mallorqui and A.Broquetas are with the Departament of Teoria del Senyal i Comunicacions(TSC),Universitat Politècnica de Catalunya(UPC), 08034Barcelona,Spain(e-mail:mallorqui@tsc.upc.es;toni@tsc.upc.es). Digital Object Identifier10.1109/TGRS.2003.814657which reduces the temporal decorrelation and allows working with a dense grid of pixels.Differential interferometry has also been used to monitor landslides in alpine zones above the tree line,because on surfaces with sparse vegetation and bare soil or rock the coherence is preserved over long periods[4].Never-theless,in the most general cases when monitoring low-velocity deformations differential interferograms are forced to have a large temporal baseline and consequently the temporal decor-relation degrades the interferometric phase making almost im-possible the extraction of useful information unless large co-herent areas are present.An additional limitation,common to both short and large temporal baseline differential interfero-grams,is the presence of atmospheric artifacts that degrade the quality of the displacement estimation.Note that usual changes in the troposphere from one day to another can produce different time delays in the propagation of the signal resulting in phase patterns similar to the deformation ones.In order to overcome these inherent limitations,various techniques have been pub-lished during the last years to study the temporal evolution of deformations from large datasets of images[5]–[17].The phase gradient approach to stacking interferograms[5] is used to construct averages and differences of interferograms without phase unwrapping,allowing the study of surface change detection by increasing fringe clarity and decreasing the er-rors introduced by the atmospheric contribution.The method has been applied to study fault creeps for earthquake physics and hazard mitigation[6].In order to minimize the effects of the DEM inaccuracies and the spatial decorrelation,some tech-niques work with small baseline interferograms generated from the image dataset,which can cause the presence of different sub-sets of interferograms with no common images.Initially,only one deformation time series for each subset were obtained[7], [8].The technique has been extended to the subset problem by means of the singular value decomposition(SVD)method[9], which applies a minimum-norm criterion to the velocity defor-mation estimation[10].This technique requires the unwrapping of the interferograms over the sparse-grid formed by the pixels with coherence over a given threshold.The method calculates the time sequence deformation and estimates the DEM error and the atmospheric artifacts present in the interferograms,in a similar way as the Permanent Scatterers technique[13].A complementary approach,also based on the application of the SVD method to link independent SAR acquisitions datasets, was presented in[11].Instead of looking for large scale defor-mations with reduced spatial resolutions,the algorithm was able to monitor localized deformation phenomena at high resolution of highly coherent structures,like buildings.0196-2892/03$17.00©2003IEEEThe technique of the Permanent Scatterers(PS)also uses large stacks of images to generate the differential interferograms with respect a common master image for each available acqui-sition,even if the baseline is larger than the critical one and the generated interferogram highly affected by spatial decorrelation [12].The high dispersion of baseline values and the limited ac-curacy of the available DEM make impossible the usage of a coherence criterion to select the pixels with good phase quality, since with the largest baselines the topographic component has to be accurately removed from the interferometric phase prior coherence computation.With the PS technique,pixels are se-lected from the study of its amplitude stability along the whole set of images,which requires a minimum of30images and its proper radiometric calibration for a reliable selection;therefore, the maximum resolution of the SAR images is preserved[12].A linear model is adjusted to the data to estimate the deforma-tion linear velocity and the DEM error for each selected pixel. Finally,the nonlinear component of movement and the atmo-spheric phase screen for each image is computed with a com-bined spatio-temporal filtering[13].Recently,the PS technique has been used to combine nonhomogeneous datasets,not ac-quired within the same track frame and mode,over the same area[14].In the preliminary results,160descending mode im-ages from two different tracks and30ascending mode images were combined increasing the spatial density of radar bench-marks.The PS technique has also been applied on landslides monitoring where correlation is usually low,and the detection of isolated stable scatterers is crucial[15].The algorithm presented in this paper is also able to retrieve the linear and nonlinear components of movement from a set of low-resolution interferograms,estimating at the same time the DEM error and the atmospheric artifacts.The basis for the linear estimation of movement is the adjustment of a linear model,which considers the linear velocity of displacement and the DEM error,to the available data in a similar way as done in the preceding methods[10],[12],[13].The pixel selection criterion is based on its coherence stability in the stack of interferograms,in consequence the final product will have lower resolution than the original images and interferograms with short baselines will be preferred but this restriction is not compulsory.Besides this,the generation of the interferograms does not require establishing a master image,allowing free combinations of all available images.These two characteristics enable the algorithm to work with a small number of images, if compared with the requirements of the PS technique for instance[12].Preliminary experiments provided good defor-mation maps from a reduced set of only seven images[16], these results were very similar to the ones obtained later on from a larger dataset of20images of the same zone[17].This flexibility allows the user to generate deformation maps at a reduced cost and once a problematic zone is detected to plan the acquisition of more images.The method adjusts a linear model to phase increments between two neighboring pixels linked with the Delauney triangulation[18],avoiding the need of a sparse grid phase unwrapping of the interferograms. Once the linear velocity of deformation and the DEM error have been retrieved,the algorithm continues with the nonlinear movement and the atmospheric artifacts estimation.In essence the algorithm takes advantage of the different behavior of the atmospheric artifacts in time and space with respect the non-linear movement to isolate their respective contributions to the phase.Although the approach is similar in philosophy to all the methods previously noted,the practical implementation is dif-ferent and oriented to strengthen the algorithm robustness.A combination of temporal and spatial filters sequentially applied are able to extract the atmospheric artifacts and the low-and highpass components of the nonlinear movement.As the in-terferograms were generated freely from the available images, the SVD method[10]is used to retrieve the temporal sequence suitable for the temporal filtering.One of the advantages of the algorithm is that there is no need to unwrap the noisy differen-tial interferograms,which can be a difficult step and a potential source of errors.In addition the SVD method provides a min-imum norm solution and allows the connection among noncon-nected subsets of interferograms,however some fast nonlinear movements could be underestimate.The coupling of the atmos-phere and the nonlinear movement,as both can present a similar phase behavior,is a common limitation in all methods.In summary the processing main steps of the proposed algo-rithm are:selection of the image set covering the desired time interval,formation of the optimal inteferogram pairs depending on the maximum spatial baseline allowed,identification of the pixels candidates(those presenting a good phase quality)with a criterion based on its coherence stability along the interfer-ograms stack,triangulation of the selected pixels to establish phase relations among them,and the adjustment of a linear model,which considers linear deformation and DEM error,to those phase relations for the whole set of interferograms.Once the linear movement has been estimated,the algorithm isolates the nonlinear component of movement from the atmospheric artifacts applying successive spatial and temporal filters. Finally,the results are integrated and interpolated to generate the movement maps.The paper is organized as follows.Section II explains the extraction of the linear component of movement and the DEM error from the interferograms and Section III the nonlinear component and the atmospheric artifacts.Once the theoret-ical aspects have been discussed,Section IV introduces the European Remote Sensing(ERS)dataset used to validate the algorithm and Section V shows the results obtained in three different experiments.Finally,conclusions and open problems are addressed in Section VI.II.E XTRACTION OF L INEAR D EFORMATIONWhen generating an interferogram by combining two SAR images,its phase variation between neighboring pixels can be expressed as[22]MORA et al.:LINEAR AND NONLINEAR TERRAIN DEFORMATION MAPS2245 and spatial decorrelation and thermal noise.Three of the termsare analytically well known((4)wherethe inci-denceangle;are the height and velocity incrementsbetween neighboring pixels respectively;and(5)As the DEM used to cancel the topography is notperfect,is the phase component associated to the heighterror(6)whereis used to obtain the maximumlikelihood estimator of the coherence magnitude[22]and pro-vides an estimation of the accuracy of the pixel’s phase for eachinterferogram not dependent on the number of images available.The required estimation window worsens the spatial resolutionand can cause the loss of isolated scatterers which could be de-tected with the amplitude criteria.In our algorithm,pixelsonFig.1.Example of Delaunay triangulations.multilooked images are selected from their coherence stability.A mean coherence image is generated from the whole stack ofcoherence maps in the followingway:is the number of interferograms.All pixels with a meancoherence over a selection threshold are accepted as candidatesfor the next step of the algorithm.A minimum value of mean co-herence of0.25has been probed suitable for most of the cases.Note that this step is only a selection of candidates,and someof them will be rejected later if they do not adjust to the linearmodel.The size of the spatial window to calculate coherencesets the final resolution of the deformation maps.In our exper-iments,an averaging window of4az-imuth)has been probed enough for a good compromise betweenestimation of coherence and final resolution.If window dimen-sions are too small,the computed coherence will overestimatephase quality[22],and most of the pixels selected will be re-jected on the next steps of the algorithm.We have to rememberthat the coherence is calculated once the fringes related with to-pography and flat earth have been eliminated;then,spatial co-herence can be considered a good estimator.The phase of individual pixels is not of practical utility due tothe presence of different phase offsets among differential inter-ferograms.These offsets could be calculated over high-coher-ence stable areas not affected by deformation and atmosphericartifacts,but in this case,additional input information wouldbe required.This problem can be overcome relating two neigh-boring pixels,(2246IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,VOL.41,NO.10,OCTOBER 2003wherethinterferogram;the spatial baseline of thethe incidenceangle;the nonlinear component ofvelocity;is the number of interferograms.This function is equalto one when the adjustment to data is perfect and zero in case of total decorrelation.The maximization of the function is equiv-alent to find the bidimensional frequency of the complex sinu-soid derived from the phase term (10).For each relation estab-lished by the Delauney triangulation,the values of this sinu-soid are known over an irregular grid defined by the availablepairs of temporal and spatialbaselines,.A reduced set of interferograms can cause an erroneous estimation of the unknown frequencies as different combinations of velocity and DEM error can generate similar phases.The larger the number of interferograms,the better will be the estimation as the range of multiple solutions is reduced.There is not a clear minimum number of images as results depends on each case,but we found that seven interferograms can provide good results and it is very difficult to work with less than five.Other interesting considera-tions about the maximization of (11)and its implicit constraints can be found in [13].Once this maximization process has been done for each re-lationship,the result is the following set of velocity and topo-graphic errorincrements:(12)(14)where indexMORA et al.:LINEAR AND NONLINEAR TERRAIN DEFORMATION MAPS2247yout of the linear deformationalgorithm.Fig.3.Impact of the DEM errors on the phase error as a function of the baseline length.and the DEM error even from a reduced set of images.It is also important to notice that orbit errors can be considered as a phase plane over a 100-km distance;therefore,under the point of view of the algorithm they will be treated as atmosphere [23].III.N ONLINEAR D EFORMATIONAfter calculating the linear deformation map,it is possible to obtain the nonlinear component to complete the study of dis-placement.Adding this nonlinear component to the linear term a detailed plot of the evolution of the deformation is obtained,as shown in Fig.4.The first step is the calculation of the phase residues obtained by subtracting the previously estimated linear deformation and the DEM error from the original differential interferometric phases,as shown in the followingequation:.Both terms can be isolated taking advantage of their different frequency characteristics in space and time.Atmospheric per-turbations are considered as a low spatial frequency signal in each interferogram due to its approximately 1-km correlation distance [21];but for a given pixel its atmospheric contribu-tion can be considered as a white process in time,because for each acquisition date atmospheric conditions can be considered a random variable.For instance,the characteristics of tropo-sphere are different from one day to another.On the other hand,the nonlinear movement presents a narrower correlation window in space and a lowpass behavior in time.Taking into account all these considerations,the estimation of the atmospheric artifacts can be implemented with a filtering process in both spatial and time domains.Note that complete separation in frequency will not be possible due to the white process behavior of atmospheric artifacts.The spatial lowpass filtering is carried out applying a two-di-mensional moving averaging window of1-km(18)whereis the nonlinear component of the dis-placement at spatial low resolution (SLR),and it is assumed thatatmosphere2248IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,VOL.41,NO.10,OCTOBER2003 obtained do not follow the temporal order required by the filter.The formation of the interferograms can be expressed in the fol-lowingway:and(20)whereare the interferometric phases of the SLRnonlinear displacement generated in the followingway:is the interferometric phase of theSHR nonlinear displacement,andMORA et al.:LINEAR AND NONLINEAR TERRAIN DEFORMATION MAPS2249yout of the nonlinear deformation algorithm.The same considerations pointed out when SVD was applied before are still valid.Finally,the complete evolution of defor-mation is obtained considering all the components previouslyestimated100m.A commercial DEM of thezone,provided by the Institut Cartogràfic de Catalunya(ICC),has been used to remove the topographic component.Fig.6shows the interferometric phase and coherence obtained fromthe pair formed with the images acquired July23,1997,andAugust12,1998.The large coherent areas correspond to urbanzones,where coherence is better preserved,while the rest of theimage mostly corresponds to vegetated areas with lower coher-ence due to temporal decorrelation.TABLE IL IST OF THE SAR I MAGES U SED IN T HIS STUDYTABLE IIL IST OF THE S ET OF24S HORT B ASELINE INTERFEROGRAMSV.R ESULTSThe first step of the processing is the selection of thosepixels that present coherence stability in time.In this case,pixels having a mean coherence value higher than0.25havebeen selected.The result is a set of1437pixels distributed allover the image.Obviously,the density of points is higher inthe urban areas than in the vegetated ones.All these pixels arerelated using the Delaunay triangulation(Fig.7).2250IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,VOL.41,NO.10,OCTOBER2003Fig.6.(Left)SAR amplitude image,(center)interferometric phase,and (right)coherence map of the zone understudy.Fig.7.Selected points using (left)the coherence criterion and (right)the Delaunay Triangulations before removing the links over 1-km length.After processing the data using the algorithm for linear de-formation estimation,the remaining number of points after the quality test,which checks its linearity,is 1236from the initial 1437selected.In addition to noisy pixels,some very nonlin-early moving quality points could have been eliminated and con-sequently lost.An important assumption of the method is that only nonlinear points free of strong abrupt deformations will pass all the quality filters.As it can be observed on the LOS (or slant-range )deformation velocity map in Fig.8,only two small areas located in the upper left corner of the image present a subsidence velocity larger than 1cm per year.The lower area,labeled as A,belongs to a suburb were subsidence has been causing structural damages in several buildings.The result over the bigger town in the lower part of the image (D),which cor-responds to a stable area,shows the good behavior of the al-gorithm.Detailed deformation velocity maps over these two areas are shown in Fig.9.The results over the suburb (A)have been validated with precise leveling measurements provided by ICC,who has been monitoring the zone.These measurements showed a maximum of subsidence of about 2cm per year pro-jected in the slant range direction in the same geographical posi-tion where the maximum of 1.8cm per year (LOS)has been de-tected.Note that the horizontal deformation component cannot be calculated using only one orbital direction.For example,this term could be estimated using ascending and descending orbits [14].Once the linear deformation has been obtained,the nonlinear deformation estimation algorithm has been applied to retrieve the full deformation evolution.Fig.10shows the four points(A,Fig.8.Slant range deformation velocity map (cm per year)of the area understudy.Fig.9.Detailed deformation maps of the two towns,the left one affected by localized subsidence and the right one stable.The maximum deformation (white)corresponds to a velocity of 1.8cm per year.B,C,and D)depicted in Fig.8.Point A,with the largest defor-mation,presents a very linear trend of displacement from 1992to 1998,but after 1998the deformation seems to be smaller.On the other hand,point B shows a linear trend during the whole period of time.Points C and D,located in stable urban areas,do not present remarkable movements,as it was expected.To better evaluate the flexibility of the algorithm with respect the dataset requirements in both number of images and spatial baseline length,two additional tests have been carried out.The first one consisted in the reduction of the number of SAR im-ages available,while keeping the short spatial baseline restric-tion on the selection of the interferometric pairs.In this case,10differential interferograms were generated using only 14of the SAR images available (see Table III).The second test has also reduced the number of SAR images to 14,but has increased the spatial baseline range in the 16interferograms from 6up to 402m (see Table IV).For both cases,the obtained deformation ve-locity maps are shown in Fig.11.The reduction of the dataset but keeping the low spatial baseline restriction on interfero-gram generation causes a slight reduction on the final number of points where deformation have been calculated,1015with 10interferograms compared with the 1236with 24interferograms.Despite this,reduction is not noticeable over large urban areas where coherence is high;it can cause the loss of isolated pixels embedded in low-coherence areas.As expected,the larger theMORA et al.:LINEAR AND NONLINEAR TERRAIN DEFORMATION MAPS2251Fig.10.Deformation evolution of points detailed in Fig.9.TABLE IIIL IST OF THE R EDUCED S ET OF T EN S HORT B ASELINE INTERFEROGRAMSnumber of SAR short baseline interferograms the better the re-sults.Fig.12shows a comparison between deformation evolu-tion plots using 24and 10short baseline differential interfero-grams.Note the great agreement between both results.On the other hand,the effect of increasing the spatial baselines becomes more important.For the large baseline test,the number of points is reduced drastically,falling down to 478from the initial 1236even over cities.Taking into account that we maintain low spa-tial resolution (multilooked data)a high number of points are lost due to spatial decorrelation.As a consequence,the deforma-tion areas are not detected in this case.When increasing spatial baseline to the limit of critical value,only point-like scatterers remain with enough quality.In this case,the selection criteria based on coherence cannot be used.TABLE IVL ISTOF THES ET OF 16C OMBINED L ARGE ANDS HORTB ASELINE INTERFEROGRAMSFig.11.Deformation maps using ten short baseline,up to 25m,(left)interferograms and (right)16large baseline,up to 402m,interferograms.parison of deformation plots obtained with 24short baseline interferograms (crosses)and ten short baseline interferograms (diamonds).VI.C ONCLUSIONA method with flexible requirements for the estimation of linear and nonlinear surface displacements from a set of differ-ential interferograms has been presented.The number of SAR images required for a good performance of the algorithm can be considered low,if compared with other methods of the literature,basically due to the pixel selection criterion,based on a coher-ence threshold,and the nonrestricted generation of the interfer-ometric pairs not constrained to follow any specific rule like all the combinations done with the same master image.These prop-erties make the algorithm very convenient for detecting terrain2252IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,VOL.41,NO.10,OCTOBER2003 movements from small datasets of images,allowing identifyingthe problematic zones at a reduced cost.Even though a reducedset of only seven images can provide a good estimation of thelinear component of movement,the redundancy provided by theusage of larger datasets extends the penetration of the algorithmfurther into more difficult areas largely affected by temporaldecorrelation.The benefits of increasing the number of imagesare more noticeable when retrieving the nonlinear componentof movement,as this feature is closely related with the temporalsampling imposed by the image selection.The pixel candidates selection criterion based on coherencelimits the final resolution of the obtained deformation maps tothe size of the used window,around100MORA et al.:LINEAR AND NONLINEAR TERRAIN DEFORMATION MAPS2253Oscar Mora (M’98)received the Electrical En-gineer Degree from the Escola Tècnica Superior d’Enginyeria de Telecomunicacióde Barcelona (ETSETB),Universitat Politècnica de Catalunya (UPC),Barcelona,Spain,in 1997.He joined the Active Remote Sensing Group in 1999in the frame of Ph.D.work in the field of SAR differential interferometry.From September to December 2001,he was with the Istituto per il Rilevamento Elettromagnetico dell’Ambiente (IREA),Naples,Italy,in the frame of his Ph.D.work.His research is based on the study and development of new orbital SAR differential interferometric techniques for the monitoring of terrain surface displacements,such as the ones produced by volcanoes,earthquakes,or human activities.Recently,he joined the Institut Cartogràfic de Catalunya (ICC),Barcelona,Spain,for continuing his research activities in the field of SARinterferometry.Jordi J.Mallorquí(S’90–M’96)was born in Tarragona,Spain,in 1966.He received the Ingeniero degree in telecommunication engineering and the Doctor Ingeniero degree in telecommunications engineering,in 1990and 1995,respectively,both from the Universitat Politècnica de Catalunya (UPC),Barcelona,Spain.In 1991,he joined the Department of Signal Theory and Communications as a Ph.D.student.In 1993,he became an Assistant Professor,and since 1997,he has been an Associate Professor atthe Telecommunications Engineering School of UPC.His teaching activity involves microwaves,radio navigation,and remote sensing.He spent a sabbatical year at the Jet Propulsion Laboratory,Pasadena,CA,in 1999,working on interferometric airborne SAR calibration algorithms.He is cur-rently working on the application of SAR interferometry to terrain subsidence monitoring with orbital and airborne data,vessel detection and classification from SAR images,and three-dimensional electromagnetic simulation of SAR systems.He has published more than 60papers on microwave tomography,electromagnetic numerical simulation,SAR processing,interferometry,and differentialinterferometry.Antoni Broquetas (S’84–M’90)was born in Barcelona,Spain,in 1959.He received the Ingeniero degree in telecommunication engineering and the Doctor Ingeniero degree,in 1985and 1989,respectively,both from the Universitat Politècnica de Catalunya (UPC),Barcelona,Spain.In 1986,he was a Research Assistant with Portsmouth Polytechnic,Porstmouth,U.K.,where he was involved in propagation studies.In 1987,he joined the Department of Signal Theory and Communications,School of Telecommunication En-gineering,UPC.He was Subdirector of Research at the Institute of Geomatics,Barcelona,Spain.He is currently a Full Professor in UPC,where he is involved in research on radar imaging and remote sensing.He has published more than 150papers on microwave tomography,radar,ISAR and SAR systems,SAR processing,and interferometry.。

相关文档
最新文档