高中数学第二章参数方程第1节第1课时参数方程的概念教学案新人教A版选修
高中数学《参数方程的概念》教案新人教A版选修
高中数学《参数方程的概念》教案新人教A版选修一、教学目标:1. 让学生理解参数方程的概念,了解参数方程与普通方程的区别和联系。
2. 培养学生运用参数方程解决实际问题的能力。
3. 通过对参数方程的学习,提高学生的数学思维能力和创新意识。
二、教学内容:1. 参数方程的定义及基本形式。
2. 参数方程与普通方程的互化。
3. 参数方程在实际问题中的应用。
三、教学重点与难点:1. 重点:参数方程的概念,参数方程与普通方程的互化。
2. 难点:参数方程在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探索参数方程的概念及应用。
2. 利用数形结合法,帮助学生直观地理解参数方程与普通方程的关系。
3. 运用实例分析法,让学生学会将实际问题转化为参数方程求解。
五、教学过程:1. 导入:引导学生回顾普通方程的知识,激发学生对参数方程的兴趣。
2. 新课讲解:讲解参数方程的定义、基本形式及与普通方程的关系。
3. 案例分析:分析参数方程在实际问题中的应用,如物体的运动轨迹、电路问题等。
4. 练习与讨论:学生分组讨论,尝试将实际问题转化为参数方程求解,教师给予指导。
5. 总结与拓展:总结本节课的主要内容,布置课后作业,引导学生深入研究参数方程的性质和应用。
六、教学评估:1. 课后作业:布置有关参数方程的概念理解、形式转换和实际应用的练习题,以巩固所学知识。
2. 课堂问答:通过提问的方式检查学生对参数方程的理解程度,以及能否将实际问题转化为参数方程。
3. 小组讨论:评估学生在小组讨论中的参与程度和合作能力,以及他们在解决问题时的创造性思维。
七、课后作业:1. 复习参数方程的概念和基本形式。
2. 完成课后练习题,包括将普通方程转化为参数方程,以及运用参数方程解决实际问题。
3. 探索参数方程在其他学科中的应用,如物理学、工程学等。
八、教学资源:1. 教材:新人教A版选修《高中数学》。
2. 多媒体课件:用于展示参数方程的图形和实例。
《参数方程》教案(新人教选修
《参数方程》教案(新人教选修)第一章:参数方程简介1.1 参数方程的概念引导学生了解参数方程的定义和特点举例说明参数方程在实际问题中的应用1.2 参数方程的表示方法介绍参数方程的表示方法,包括参数和变量的关系练习将直角坐标方程转换为参数方程第二章:参数方程的图像2.1 参数方程的图像特点分析参数方程图像的性质和特点举例说明参数方程图像的形状和变化趋势2.2 参数方程的图像绘制学习如何绘制参数方程的图像练习绘制不同类型的参数方程图像第三章:参数方程的应用3.1 参数方程在几何中的应用利用参数方程解决几何问题,如计算线段长度、角度等举例说明参数方程在圆锥曲线中的应用3.2 参数方程在物理中的应用介绍参数方程在物理学中的应用,如描述物体的运动轨迹练习解决物理问题,如求解物体在参数方程下的速度和加速度第四章:参数方程的转换4.1 参数方程与直角坐标方程的转换学习如何将参数方程转换为直角坐标方程练习将参数方程转换为直角坐标方程,并解决相关问题4.2 参数方程与其他形式的方程的转换介绍参数方程与其他形式的方程(如极坐标方程)的转换方法练习将参数方程转换为其他形式的方程,并进行问题求解第五章:参数方程的综合应用5.1 参数方程在实际问题中的应用分析实际问题,建立合适的参数方程模型练习解决实际问题,如计算曲线的长度、面积等5.2 参数方程在数学竞赛中的应用介绍参数方程在数学竞赛中的应用,如解决综合题练习解决数学竞赛中的参数方程问题第六章:参数方程与曲线积分6.1 参数方程下的曲线积分概念引入曲线积分的概念,解释其在参数方程中的应用举例说明曲线积分的计算方法6.2 参数方程下的曲线积分计算学习如何利用参数方程计算曲线积分练习计算不同类型曲线积分问题第七章:参数方程与曲面面积7.1 参数方程下的曲面面积概念引入曲面面积的概念,解释其在参数方程中的应用举例说明曲面面积的计算方法7.2 参数方程下的曲面面积计算学习如何利用参数方程计算曲面面积练习计算不同类型曲面面积问题第八章:参数方程与优化问题8.1 参数方程在优化问题中的应用引入优化问题的概念,解释参数方程在优化问题中的应用举例说明参数方程在优化问题中的解法8.2 参数方程优化问题的解决方法学习如何利用参数方程解决优化问题练习解决实际优化问题,如最短路径问题等第九章:参数方程与微分方程9.1 参数方程与微分方程的关系解释参数方程与微分方程之间的联系举例说明微分方程在参数方程中的应用9.2 参数方程微分方程的求解方法学习如何利用微分方程求解参数方程练习求解不同类型的参数方程微分方程问题第十章:参数方程的综合应用案例分析10.1 参数方程在工程中的应用案例分析分析实际工程问题,利用参数方程进行问题建模练习解决工程问题,并进行案例分析10.2 参数方程在科学研究中的应用案例分析分析实际科学研究问题,利用参数方程进行问题建模练习解决科学研究问题,并进行案例分析重点和难点解析重点一:参数方程的概念与特点学生需要理解参数方程的定义,即变量与参数之间的关系强调参数方程在解决实际问题中的应用价值重点二:参数方程的图像特点与绘制方法学生应掌握参数方程图像的性质和变化趋势练习将参数方程转换为图像,并分析图像的特点重点三:参数方程在几何和物理中的应用学生需要学会利用参数方程解决几何问题,如计算线段长度、角度等强调参数方程在物理学中的应用,如描述物体的运动轨迹重点四:参数方程的转换方法学生应掌握参数方程与直角坐标方程、极坐标方程等的转换方法练习将参数方程转换为其他形式的方程,并解决相关问题重点五:参数方程在曲线积分、曲面面积和优化问题中的应用学生需要理解参数方程在曲线积分和曲面面积计算中的作用强调参数方程在解决优化问题中的应用,如最短路径问题重点六:参数方程与微分方程的关系和求解方法学生应理解参数方程与微分方程之间的联系练习利用微分方程求解参数方程,并解决实际问题重点七:参数方程的综合应用案例分析学生需要学会将参数方程应用于工程和科学研究问题强调案例分析的重要性,通过实际问题加深对参数方程的理解本教案围绕参数方程的概念、图像、应用和转换等方面进行了详细的讲解和练习。
新人教A版高中数学教材目录(必修+选修)【很全面】
人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。
参数方程的概念》教案(新人教选修
《参数方程的概念》教案(新人教选修)教学目标:1. 理解参数方程的定义和特点;2. 学会将直角坐标方程转换为参数方程;3. 能够解决实际问题,运用参数方程。
教学重点:1. 参数方程的定义和特点;2. 直角坐标方程与参数方程的转换方法。
教学难点:1. 参数方程的实际应用。
教学准备:1. 教学课件或黑板;2. 相关练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾直角坐标系的定义和特点;2. 提问:能否用直角坐标系表示一个物体的运动轨迹?二、新课讲解(15分钟)1. 引入参数方程的概念,讲解参数方程的定义和特点;2. 举例说明参数方程在实际问题中的应用;3. 讲解如何将直角坐标方程转换为参数方程;4. 引导学生理解参数方程与直角坐标方程之间的关系。
三、课堂练习(10分钟)1. 布置练习题,让学生独立完成;2. 选几位学生上台板书解题过程,并讲解思路;3. 教师点评解题过程,指出优点和不足。
四、课堂小结(5分钟)1. 回顾本节课所学内容,总结参数方程的定义、特点和应用;2. 强调直角坐标方程与参数方程之间的转换方法。
五、课后作业(布置作业)1. 让学生完成课后练习题,巩固所学知识;2. 鼓励学生自主探究,发现参数方程在实际问题中的更多应用。
教学反思:本节课通过讲解和练习,使学生掌握了参数方程的定义、特点和应用,能够将直角坐标方程转换为参数方程。
在教学过程中,注意引导学生主动参与课堂讨论,提高学生的思维能力。
布置课后作业,让学生巩固所学知识,为后续学习打下基础。
六、案例分析:用参数方程解决实际问题(15分钟)1. 引入案例:描述一个物体的运动轨迹,如圆周运动;2. 引导学生将直角坐标方程转换为参数方程;3. 分析参数方程在解决问题中的作用,如简化计算、便于分析物体运动特点等;4. 让学生尝试解决类似案例,给予指导和建议。
七、练习与讨论:探索参数方程的性质(20分钟)1. 布置练习题,让学生独立完成;2. 组织学生进行小组讨论,分享解题思路和心得;3. 教师点评解题过程,指出优点和不足;4. 引导学生总结参数方程的性质,如对称性、周期性等。
参数方程的概念》教案(新人教选修
《参数方程的概念》教案(新人教选修)一、教学目标1. 理解参数方程的定义和特点;2. 掌握参数方程的表示方法和求解方法;3. 能够将实际问题转化为参数方程,并解决实际问题。
二、教学重难点1. 参数方程的定义和表示方法;2. 参数方程的求解方法;3. 将实际问题转化为参数方程。
三、教学准备1. 教师准备PPT,包括参数方程的定义、表示方法和求解方法的讲解;2. 准备一些实际问题,用于引导学生将问题转化为参数方程。
四、教学过程1. 引入:通过讲解PPT,引导学生了解参数方程的定义和表示方法;2. 讲解:通过PPT,详细讲解参数方程的求解方法,包括求解步骤和注意事项;3. 练习:让学生独立完成一些参数方程的求解练习题;4. 应用:引导学生将实际问题转化为参数方程,并解决实际问题。
五、课后作业1. 完成PPT上的练习题;2. 选择一个实际问题,将其转化为参数方程,并解决。
教学反思:在课后,教师应认真反思本节课的教学效果,包括学生的参与度、理解程度和应用能力。
根据学生的反馈,及时调整教学方法和策略,提高教学质量。
六、教学评估1. 课堂练习:观察学生在课堂练习中的表现,了解他们对参数方程的理解程度和应用能力;2. 课后作业:检查学生的课后作业,评估他们对参数方程的掌握情况;3. 学生反馈:收集学生的反馈意见,了解他们对本节课的教学内容和教学方法的满意度。
七、教学拓展1. 介绍其他相关的数学概念,如普通方程和函数方程等,让学生了解参数方程在数学中的地位和作用;2. 引导学生探索参数方程在实际问题中的应用,如物理、工程和经济学等领域。
八、教学计划1. 下一节课内容:介绍参数方程的进一步应用,如优化问题和动态系统等;2. 教学方法:采用案例教学法,结合实际问题,引导学生深入理解参数方程的应用;3. 教学目标:使学生能够灵活运用参数方程解决实际问题,提高他们的数学应用能力。
九、教学资源1. PPT:制作参数方程的进一步应用的PPT,包括案例分析和练习题;2. 实际问题案例:收集一些与参数方程应用相关的实际问题案例,用于课堂讲解和练习。
人教A版高中数学选修4-4课件第二章第一节《参数方程》
,(为
参数)的右
顶点,
则常数a的值为________ .
*高考链接*
1.(2013年高考湖南卷(理))在平面直
角
坐标系xOy中,
若l
:
x y
t t
,
(t为 a
参数)
过椭圆C
:
x y
3 2
cos sin
,(为
参数)的右
顶点,
则常数a的值为____3____ .
*练习1* 曲线y x2的一种参数方程是( )
A.
x
t
2
y t 4
B.
x
sin
t
y sin2 t
C
.
x
t
y t
D.
x
t
y t 2
练习2* 参数方程
x y
|
cos
2 1 (1 2
sin
一般地,在平面直角坐标系中,如果曲线
上任意一点的坐标x,y都是某个变数t的函数
x f (t),
(2)
y g(t),
并且对于t的每一个允许值,由方程组(2)所确
定的点M(x,y)都在这条曲线上,那么方程(2)
就叫做这条曲线的参数方程,联系变数x,y
的变数t叫做参变数,简称参数。相对于参数
x
sin
t
y sin2 t
(2)
x
1 2
(et
et
)
y
高中数学 第二章 参数方程 2.1 参数方程的概念教案 新人教A版选修4-4-新人教A版高二选修4-
2.1 参数方程的概念[课标要求]1、了解抛物运动轨迹的参数方程及参数的意义。
2、理解直线的参数方程及其应用;理解圆和椭圆〔椭圆的中心在原点〕的参数方程及其简单应用。
3、会进行曲线的参数方程与普通方程的互化。
一、教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析曲线的几何性质,选择适当的参数写出它的参数方程。
二、教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
三、教学方法:启发诱导,探究归纳 四、教学过程〔一〕.参数方程的概念1.问题提出:铅球运动员投掷铅球,在出手的一刹那,铅球的速度为0ν,与地面成α角,如何来刻画铅球运动的轨迹呢?2.分析探究理解: 〔1〕、斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα 〔2〕、抽象概括:参数方程的概念。
说明:〔1〕一般来说,参数的变化范围是有限制的。
〔2〕参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。
〔3〕平抛运动:为参数)t gt y t x (215001002⎪⎩⎪⎨⎧-== 〔4〕思考交流:把引例中求出的铅球运动的轨迹的参数方程消去参数t 后,再将所得方程与原方程进行比较,体会参数方程的作用。
〔二〕、应用举例:例1、曲线C 的参数方程是⎩⎨⎧+==1232t y t x (t 为参数)〔1〕判断点1M (0,1), 2M (5,4)与曲线C 的位置关系;〔2〕点3M (6,a )在曲线C 上,求a 的值。
分析:只要把参数方程中的t 消去化成关于x,y 的方程问题易于解决。
学生练习。
反思归纳:给定参数方程要研究问题可化为关于x,y 的方程问题求解。
例2、设质点沿以原点为圆心,半径为2的圆做匀速〔角速度〕运动,角速度为60πrad/s,试以时间t 为参数,建立质点运动轨迹的参数方程。
参数方程的概念曲线的参数方程》教案(新人教选修
“参数方程的概念-曲线的参数方程》教案(新人教选修”一、教学目标1. 让学生理解参数方程的概念,了解参数方程与普通方程的区别和联系。
2. 让学生掌握曲线的参数方程的求解方法,能够根据实际问题建立参数方程。
3. 培养学生的数学思维能力,提高学生分析问题和解决问题的能力。
二、教学内容1. 参数方程的概念2. 曲线的参数方程的求解方法3. 参数方程的应用三、教学重点与难点1. 教学重点:参数方程的概念,曲线的参数方程的求解方法。
2. 教学难点:参数方程的应用,曲线的参数方程的求解过程。
四、教学方法1. 采用问题驱动的教学方法,引导学生从实际问题中发现参数方程的建立过程。
2. 通过实例讲解,让学生掌握曲线的参数方程的求解方法。
3. 利用数形结合的思想,帮助学生理解参数方程与曲线的关系。
五、教学过程1. 引入:通过一个实际问题,引导学生思考如何用参数方程来表示曲线。
2. 讲解:讲解参数方程的概念,解释参数方程与普通方程的区别和联系。
3. 实例分析:分析一组曲线的参数方程,引导学生掌握求解方法。
4. 练习:让学生尝试求解一些曲线的参数方程,巩固所学知识。
5. 应用:通过一些实际问题,让学生运用参数方程解决实际问题。
6. 总结:对本节课的内容进行总结,强调参数方程的概念和求解方法。
7. 作业布置:布置一些有关参数方程的练习题,巩固所学知识。
六、教学评价1. 评价目标:通过课堂讲解、练习和作业,评价学生对参数方程的概念和曲线的参数方程求解方法的掌握程度。
2. 评价方法:课堂提问、练习解答、作业完成情况。
3. 评价内容:参数方程的概念理解、曲线的参数方程求解方法、实际问题分析与解决能力。
七、教学反思1. 在教学过程中,观察学生对参数方程概念的理解程度,是否能够正确区分参数方程与普通方程。
2. 分析学生在求解曲线参数方程时的困难点,是否能够熟练运用求解方法。
3. 反思教学方法的有效性,是否能够激发学生的学习兴趣,提高学生的参与度。
高中数学《参数方程的概念》教案新人教A版选修
高中数学《参数方程的概念》教案新人教A版选修一、教学目标:1. 让学生理解参数方程的概念,了解参数方程与普通方程的区别和联系。
2. 让学生掌握参数方程的求解方法,能够将实际问题转化为参数方程进行求解。
3. 培养学生的数学思维能力,提高学生分析问题和解决问题的能力。
二、教学内容:1. 参数方程的定义:引入参数方程的概念,让学生了解参数方程的形式。
2. 参数方程的求解方法:讲解参数方程的求解方法,引导学生掌握求解参数方程的技巧。
3. 实际问题与参数方程:通过实例让学生了解如何将实际问题转化为参数方程,并求解。
三、教学重点与难点:1. 重点:参数方程的概念、参数方程的求解方法。
2. 难点:将实际问题转化为参数方程,求解复杂参数方程。
四、教学方法:1. 采用讲授法,讲解参数方程的概念、求解方法及实际应用。
2. 采用案例分析法,让学生通过实例了解参数方程在实际问题中的应用。
3. 采用互动教学法,引导学生积极参与讨论,提高学生的理解能力。
五、教学过程:1. 引入:通过简单的生活实例,引导学生思考如何用数学模型来描述实际问题。
2. 讲解:讲解参数方程的定义,阐述参数方程与普通方程的区别和联系。
3. 案例分析:分析具体实例,引导学生掌握参数方程的求解方法。
4. 练习:布置练习题,让学生巩固所学知识,提高解题能力。
5. 总结:对本节课的内容进行总结,强调参数方程在实际问题中的应用。
6. 作业布置:布置课后作业,巩固所学知识。
六、教学评估:1. 课堂问答:通过提问,了解学生对参数方程概念的理解程度。
2. 练习解答:检查学生练习题的完成情况,评估学生对参数方程求解方法的掌握程度。
3. 课后作业:评估学生课后作业的质量,了解学生对课堂所学知识的巩固情况。
七、教学反思:1. 针对学生的掌握情况,调整教学方法和节奏,以提高教学效果。
2. 针对学生的反馈,补充和调整教学内容,使之更符合学生的需求。
3. 注重培养学生的数学思维能力,提高学生分析问题和解决问题的能力。
新人教A高中数学教材目录必修选修很全面
新人教A高中数学教材目录必修选修很全面人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn 思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。
《参数方程》教案(新人教选修)
《参数方程》教案(新人教选修)第一章:参数方程的概念与基本形式1.1 参数方程的定义引入参数方程的概念,让学生理解参数方程是一种描述曲线运动的数学工具。
通过实际例子,让学生了解参数方程在现实中的应用。
1.2 参数方程的基本形式介绍参数方程的两种基本形式:圆锥曲线的参数方程和直线的参数方程。
通过图形和实例,让学生理解参数方程与普通方程之间的关系。
第二章:参数方程的图像与性质2.1 参数方程的图像利用图形软件,绘制常见参数方程的图像,让学生直观地了解参数方程的特点。
引导学生观察图像,探讨参数方程与坐标轴之间的关系。
2.2 参数方程的性质引导学生研究参数方程的单调性、周期性和奇偶性等性质。
通过实例,让学生了解参数方程的性质在实际问题中的应用。
第三章:参数方程的变换与化简3.1 参数方程的变换介绍参数方程的基本变换,如平移、旋转和缩放等。
通过实例,让学生学会如何对参数方程进行变换。
3.2 参数方程的化简引导学生利用数学方法对参数方程进行化简,使其形式更加简洁。
通过实例,让学生了解参数方程化简的意义和应用。
第四章:参数方程的应用4.1 参数方程在物理中的应用以机械运动为例,介绍参数方程在描述物体运动中的应用。
引导学生利用参数方程解决实际物理问题。
4.2 参数方程在工程中的应用以电子电路为例,介绍参数方程在描述系统动态行为中的应用。
引导学生利用参数方程解决实际工程问题。
第五章:参数方程的综合练习5.1 参数方程的解题技巧通过实例,让学生学会如何运用不同的技巧解决参数方程问题。
5.2 综合练习题提供一系列与参数方程相关的综合练习题,让学生巩固所学知识。
对练习题进行讲解和解析,帮助学生提高解题能力。
第六章:参数方程在圆锥曲线中的应用6.1 圆锥曲线的参数方程复习圆锥曲线的普通方程,并引入其参数方程。
通过图形和实例,让学生了解圆锥曲线的参数方程表示方法。
6.2 圆锥曲线的参数性质引导学生研究圆锥曲线的参数性质,如渐近线、焦点、顶点等。
高中数学第二讲参数方程二第1课时椭圆的参数方程学案含解析新人教A版选修4_4
二圆锥曲线的参数方程第一课时椭圆的参数方程考纲定位重难突破1.知道椭圆的参数方程,参数的意义.2.会用椭圆的参数方程解决简单问题.重点:理解和掌握椭圆的参数方程.难点:椭圆的参数方程在实际问题中的应用.授课提示:对应学生用书第25页[自主梳理]椭圆的参数方程1.中心在原点,焦点在x轴上的椭圆x2a2+y2b2=1的参数方程是⎩⎪⎨⎪⎧x=a cos φ,y=b sin φ(φ是参数),规定参数φ的取值范围是[0,2π).2.中心在(h,k)的椭圆普通方程为(x-h)2a2+(y-k)2b2=1,则其参数方程为⎩⎪⎨⎪⎧x=h+a cos φ,y=k+b sin φ(φ是参数).[双基自测]1.椭圆⎩⎪⎨⎪⎧x=sin θ,2y=cos θ(θ为参数)的一个焦点坐标为()A.⎝⎛⎭⎫22,0B.⎝⎛⎭⎫0,22C.⎝⎛⎭⎫32,0D.⎝⎛⎭⎫0,32解析:由题知椭圆的普通方程为x2+4y2=1.可知椭圆的焦点坐标为⎝⎛⎭⎫±32,0,故选C.答案:C2.过点(-3,2)且与曲线⎩⎪⎨⎪⎧x=3cos φ,y=2sin φ(φ为参数)有相同焦点的椭圆的方程是() A.x215+y210=1 B.x2152+y2102=1C.x210+y215=1 D.x2102+y2152=1解析:由题易知曲线⎩⎪⎨⎪⎧x=3cos φ,y=2sin φ化为普通方程为x29+y24=1.∴焦点坐标为(±5,0),又所求椭圆过点(-3,2),代入求得选A.答案:A3.椭圆⎩⎪⎨⎪⎧x =3+17cos θ,y =8sin θ-2(θ为参数)的中心坐标为________.解析:椭圆的普通方程为(x -3)2172+(y +2)282=1.∴椭圆的中心坐标为(3,-2). 答案:(3,-2)4.椭圆x 24+y 22=1的参数方程是________;椭圆(x -1)225+(y +1)216=1的参数方程是________.答案:⎩⎨⎧x =2cos φ,y =2sin φ(φ为参数,φ∈[0,2π))⎩⎪⎨⎪⎧x =1+5cos φ,y =-1+4sin φ(φ为参数,φ∈[0,2π))授课提示:对应学生用书第25页探究一 用椭圆参数方程求最值[例1] 在椭圆x 216+y 212=1上找一点,使这一点到直线x -2y -12=0的距离最小.[解析] 由题意,椭圆的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =23sin θ(θ为参数),则d =|4cos θ-43sin θ-12|5=455|cos θ-3sin θ-3| =455⎪⎪⎪⎪2cos ⎝⎛⎭⎫θ+π3-3, 当cos ⎝⎛⎭⎫θ+π3=1时,d min =455,此时取θ+π3=0,∴θ=-π3,∴⎩⎨⎧x =4cos ⎝⎛⎭⎫-π3=2,y =23sin ⎝⎛⎭⎫-π3=-3,∴所求点坐标是(2,-3).本题有多种解法,可以利用直线与椭圆相切,转化为平行直线间距离求解,也可以利用距离公式结合二次函数配方解决,但相比之下,参数方程的方法最简单有效.1.(2016·高考全国卷Ⅲ)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 解析:(1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值, d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为(32,12).探究二 利用椭圆的参数方程求轨迹方程[例2] 已知A ,B 分别是椭圆x 236+y 29=1的右顶点和上顶点,动点C 在该椭圆上运动,求△ABC 的重心的轨迹方程.[解析] 由于动点C 在椭圆上运动,可设C 的坐标为(6cos θ,3sin θ),由于点C 不与A ,B 重合,故θ∈⎝⎛⎭⎫0,π2∪⎝⎛⎭⎫π2,2π. 设△ABC 的重心G 的坐标为(x ,y ).依题意,知A (6,0),B (0,3),由三角形的重心坐标公式,得⎩⎪⎨⎪⎧x =6+0+6cos θ3,y =0+3+3sin θ3,即⎩⎪⎨⎪⎧x =2+2cos θ,y =1+sin θ.其中θ∈⎝⎛⎭⎫0,π2∪⎝⎛⎭⎫π2,2π,这就是重心G 的参数方程,消去参数θ,得(x -2)24+(y -1)2=1,点(4,1)及(2,2)除外,所以△ABC 的重心的轨迹方程为(x -2)24+(y -1)2=1,点(4,1)及(2,2)除外.利用圆锥曲线的参数方程直接设出圆锥曲线上的点的坐标,从而可以便捷地表示出其他的相关点,为求动点的轨迹带来了方便.2.如图,已知圆的方程为x 2+y 2=12,椭圆的方程为x 225+y 216=1,过原点的射线交圆于A 点,交椭圆于B 点,过A ,B 分别作x 轴和y 轴的平行线,求所作两直线的交点P 的轨迹方程.解析:设A ⎝⎛⎭⎫22cos α,22sin α,B (5cos θ,4sin θ),则所求轨迹的参数方程为⎩⎪⎨⎪⎧x =5cos θ, ①y =22sin α. ②由O ,A ,B 三点共线,知k OA =k OB ,从而tan α=45tan θ , ③由①得tan 2θ=25-x 2x2, ④由②得tan 2α=2y 21-2y 2. ⑤将③两边平方得tan 2α=1625tan 2θ, ⑥把④⑤代入⑥化简整理得8x 2+9x 2y 2+400y 2=200,所求轨迹方程为8x 2+9x 2y 2+400y 2=200.探究三 利用椭圆的参数方程解决恒成立问题[例3] 已知椭圆x 24+y 2=1上任一点M (除短轴端点外)与短轴两端点B 1,B 2的连线分别交x 轴于P 、Q 两点,求证:|OP |·|OQ |为定值.[证明] 设M (2cos φ,sin φ),φ为参数,B 1(0,-1),B 2(0,1). 则MB 1的方程:y +1=sin φ+12cos φ·x ,令y =0,则x =2cos φsin φ+1,即|OP |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ.MB 2的方程:y -1=sin φ-12cos φ·x ,令y =0,则x =2cos φ1-sin φ.∴|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1-sin φ.∴|OP |·|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ×⎪⎪⎪⎪⎪⎪2cos φ1-sin φ=4.即|OP |·|OQ |=4为定值.利用参数方程证明定值(或恒成立)问题,首先是用参数把要证明的定值(或恒成立的式子)表示出来,然后利用条件消去参数,得到一个与参数无关的定值即可.3.曲线⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(a >b >0)上一点M 与两焦点F 1、F 2所成角为∠F 1MF 2=α.求证:△F 1MF 2的面积为b 2tan α2.证明:∵M 在椭圆上, ∴由椭圆的定义,得: |MF 1|+|MF 2|=2a ,两边平方, 得|MF 1|2+|MF 2|2+2|MF 1|·|MF 2|=4a 2.在△F 1MF 2中,由余弦定理,得|MF 1|2+|MF 2|2-2|MF 1||MF 2|cos α=|F 1F 2|2=4c 2. 由两式,得|MF 1||MF 2|=b 2cos 2α2.故S △F 1MF 2=12|MF 1||MF 2|sin α=b 2tan α2.椭圆参数方程的综合应用[典例] (本题满分10分)已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2cos φ,y =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(2,π3).(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|P A |2+|PB |2+|PC |2+|PD |2的取值范围. [解析] (1)由已知可得A ⎝⎛⎭⎫2cos π3,2sin π3, B ⎝⎛⎭⎫2cos ⎝⎛⎭⎫π3+π2,2sin ⎝⎛⎭⎫π3+π2, C ⎝⎛⎭⎫2cos ⎝⎛⎭⎫π3+π,2sin ⎝⎛⎭⎫π3+π, D ⎝⎛⎭⎫2cos ⎝⎛⎭⎫π3+3π2,2sin ⎝⎛⎭⎫π3+3π2, 即A (1,3),B (-3,1),C (-1,-3),D (3,-1).5分 (2)设P (2cos φ,3sin φ), 令S =|P A |2+|PB |2+|PC |2+|PD |2,则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ.9分 因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].10分[规律探究] 由于椭圆上任一点的坐标可通过参数方程描述为参数的函数,所以可通过用参数方程设出椭圆上动点坐标的方法,解决求离心率、几何图形面积、目标函数最值及证明恒等式问题.[随堂训练] 对应学生用书第27页1.曲线⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数)的长轴长为( )A .2B .4C .6D .8解析:将曲线的参数方程化为普通方程,得x 2+y 24=1,它表示焦点在y 轴上的椭圆,其长轴长为4.答案:B2.椭圆⎩⎪⎨⎪⎧x =3cos φ,y =5sin φ(φ为参数)的两个焦点坐标是( )A .(0,-3),(0,3)B .(0,-4),(0,4)C .(4,0),(-4,0)D .(3,0),(-3,0)解析:由椭圆⎩⎪⎨⎪⎧x =3cos φ,y =5sin φ(φ为参数)可知a =5,b =3,c =a 2-b 2=4,且焦点在y轴上,焦点坐标为(0,-4),(0,4),所以选B.答案:B 3.椭圆(x -1)2+y 22=1上离直线x +y -2=0最远和最近点到该直线的距离分别为( ) A.62,22 B.6+22,22 C.2+32,0 D.2+62,0 解析:设椭圆上的点P 的坐标为(1+cos θ,2sin θ),可求得d max =2+62,d min =0.另外本题还可利用相切的充要条件来解答.答案:D。
高中数学《参数方程的概念》教案新人教A版选修
高中数学《参数方程的概念》教案新人教A版选修一、教学目标:1. 让学生理解参数方程的概念,掌握参数方程的基本形式和特点。
2. 培养学生运用参数方程解决实际问题的能力。
3. 提高学生对数学方程美的欣赏能力,激发学生学习数学的兴趣。
二、教学内容:1. 参数方程的定义和基本形式。
2. 参数方程与直角坐标方程的互化。
3. 参数方程在实际问题中的应用。
三、教学重点与难点:1. 重点:参数方程的概念,参数方程的基本形式和特点。
2. 难点:参数方程与直角坐标方程的互化,以及参数方程在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生从实际问题中发现参数方程的必要性。
2. 运用数形结合法,帮助学生直观地理解参数方程的特点。
3. 采用合作学习法,鼓励学生相互讨论,共同探讨参数方程的解题方法。
五、教学过程:1. 导入:通过一个实际问题,引导学生思考如何用数学方法描述物体的运动轨迹。
2. 新课讲解:讲解参数方程的定义、基本形式和特点,举例说明参数方程在实际问题中的应用。
3. 案例分析:分析几个典型的实际问题,让学生学会运用参数方程解决问题。
5. 巩固练习:布置一些练习题,让学生巩固所学知识。
7. 作业布置:布置一些有关参数方程的应用题,让学生课后思考。
六、教学评估:1. 课堂问答:通过提问,了解学生对参数方程概念的理解程度。
2. 练习题:收集学生完成的练习题,评估学生对参数方程的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,了解学生的合作能力和解决问题的能力。
七、教学拓展:1. 介绍其他形式的参数方程,如极坐标方程、参数曲线等。
2. 探讨参数方程在其他学科中的应用,如物理学、工程学等。
八、课后反思:2. 学生反思:让学生写下对本节课学习的收获和困惑,以便教师了解学生的学习情况。
九、教学资源:1. 教材:新人教A版选修《高中数学》。
2. 网络资源:有关参数方程的图片、视频和案例。
3. 教具:黑板、粉笔、投影仪等。
参数方程》教案(新人教选修
参数方程》教案(新人教选修)第一章:参数方程简介1.1 参数方程的概念解释参数方程的定义举例说明参数方程的应用场景1.2 参数方程的表示方法介绍参数方程的表示方法展示不同类型的参数方程示例1.3 参数方程的解法介绍参数方程的解法方法演示解题过程,并提供练习题第二章:简单参数方程的求解2.1 线性参数方程的求解解释线性参数方程的定义展示线性参数方程的求解方法2.2 非线性参数方程的求解解释非线性参数方程的定义展示非线性参数方程的求解方法2.3 参数方程的图像解释参数方程的图像表示绘制不同参数方程的图像,并进行分析第三章:参数方程的应用3.1 参数方程在几何中的应用介绍参数方程在几何中的应用展示参数方程在几何问题求解中的例子3.2 参数方程在物理中的应用介绍参数方程在物理中的应用展示参数方程在物理问题求解中的例子3.3 参数方程在工程中的应用介绍参数方程在工程中的应用展示参数方程在工程问题求解中的例子第四章:参数方程的变换4.1 参数方程的线性变换解释参数方程的线性变换展示参数方程的线性变换方法4.2 参数方程的非线性变换解释参数方程的非线性变换展示参数方程的非线性变换方法4.3 参数方程的合成解释参数方程的合成概念展示参数方程的合成方法第五章:参数方程的综合应用5.1 参数方程在曲线设计中的应用介绍参数方程在曲线设计中的应用展示参数方程在曲线设计中的例子5.2 参数方程在优化问题中的应用介绍参数方程在优化问题中的应用展示参数方程在优化问题求解中的例子5.3 参数方程在其他领域的应用介绍参数方程在其他领域的应用展示参数方程在其他领域问题求解中的例子第六章:参数方程与极坐标方程的转换6.1 极坐标方程的基本概念解释极坐标方程的定义展示极坐标方程的表示方法6.2 参数方程与极坐标方程的转换方法介绍参数方程与极坐标方程的转换方法展示参数方程转换为极坐标方程的示例6.3 极坐标方程的应用介绍极坐标方程在几何中的应用展示极坐标方程在几何问题求解中的例子第七章:参数方程与直角坐标系的转换7.1 直角坐标系的基本概念解释直角坐标系的定义和表示方法展示直角坐标系的特点和应用7.2 参数方程与直角坐标系的转换方法介绍参数方程与直角坐标系的转换方法展示参数方程转换为直角坐标系的示例7.3 直角坐标系中的应用介绍参数方程在直角坐标系中的应用展示参数方程在直角坐标系问题求解中的例子第八章:参数方程与函数的关系8.1 函数的基本概念解释函数的定义和表示方法展示函数的特点和应用8.2 参数方程与函数的关系介绍参数方程与函数的关系展示参数方程表示的函数示例8.3 函数图像是参数方程的应用介绍函数图像是参数方程的应用展示函数图像是参数方程的示例第九章:参数方程在实际问题中的应用9.1 参数方程在物理学中的应用介绍参数方程在物理学中的应用展示参数方程在物理学问题求解中的例子9.2 参数方程在工程学中的应用介绍参数方程在工程学中的应用展示参数方程在工程学问题求解中的例子9.3 参数方程在其他领域的应用介绍参数方程在其他领域的应用展示参数方程在其他领域问题求解中的例子第十章:参数方程的综合案例分析10.1 参数方程的综合案例介绍一个综合性的参数方程案例分析并解决该案例中的问题10.2 参数方程的解题策略介绍解决参数方程问题的策略和方法提供一些建议和技巧以提高解题效率10.3 参数方程的练习题和解答提供一些关于参数方程的综合练习题给出详细的解答和解释重点和难点解析重点一:参数方程的概念与表示方法重点关注参数方程的定义,理解参数方程与普通方程的区别。
人教A版高中数学教材目录(全)
必修 1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2. 1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3. 1 函数与方程3.2 函数模型及其应用必修 2第一章空间几何体1 .1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2 .1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3. 1 直线的倾斜角与斜率3.2 直线的方程3 . 3 直线的交点坐标与距离公式必修 3第一章算法初步1 .1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2 .1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2 .2 用样本估计总体阅读与思考生产过程中的质量控制图人教 A 版高中数学目录2. 3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3 .1 随机事件的概率阅读与思考天气变化的认识过程3. 2 古典概型3. 3 几何概型必修 4第一章三角函数1 .1 任意角和弧度制1. 2 任意角的三角函数1. 3 三角函数的诱导公式1. 4 三角函数的图象与性质1. 5 函数 y=Asin (ωx+ψ)1. 6 三角函数模型的简单应用第二章平面向量2 .1 平面向量的实际背景及基本概念2. 2 平面向量的线性运算2. 3 平面向量的基本定理及坐标表示2. 4 平面向量的数量积2. 5 平面向量应用举例第三章三角恒等变换3 .1 两角和与差的正弦、余弦和正切公式3. 2 简单的三角恒等变换必修 5第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n 项和2.4 等比数列2.5 等比数列的前n 项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题3.3.1 二元一次不等式(组)与平面区域3.3.2 简单的线性规划问题3.4 基本不等式选修 1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 变化率与导数3.2 导数的计算3.3 导数在研究函数中的应用3.4 生活中的优化问题举例选修 1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4. 1 流程图4. 2 结构图人教 A 版高中数学目录选修 2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2 立体几何中的向量方法选修 2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修 2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2二项分布及其应用2.3 离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修 3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝人教 A 版高中数学目录选修 3-2选修 3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修 4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修 4-3选修 4-4第一讲坐标系第二讲参数方程第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修 3-4第一讲平面图形的选修 4-5对称群第一讲不等式和绝对值不等式第二讲代数学中的对称与抽象群的概念第二讲证明不等式的基本方法第三讲对称与群的故事第三讲柯西不等式与排序不等式选修 4-1第四讲数学归纳法证明不等式第一讲相似三角形的判定及有关性质选修 4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修 4-7第一讲优选法第二讲试验设计初步选修 4-8选修 4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版( B)教材目录介绍必修一第一章集合1. 1 集合与集合的表示方法1.2 集合之间的关系与运算人教 A 版高中数学目录第二章函数2.1 函数2. 2 一次函数和二次函数2. 3 函数的应用(Ⅰ)2. 4 函数与方程第三章基本初等函数(Ⅰ)3 .1 指数与指数函数3. 2 对数与对数函数3.3 幂函数3. 4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1. 2 点、线、面之间的位置关系第二章平面解析几何初步2 .1 平面真角坐标系中的基本公式2. 2 直线方程2. 3 圆的方程2. 4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1. 2 基本算法语句1. 3 中国古代数学中的算法案例第二章统计2.1 随机抽样2. 2 用样本估计总体2. 3 变量的相关性第三章概率3.1 随机现象3. 2 古典概型3. 3 随机数的含义与应用3. 4 概率的应用必修四第一章基本初等函(Ⅱ )1 .1 任意角的概念与弧度制1. 2 任意角的三角函数1. 3 三角函数的图象与性质第二章平面向量2 .1 向量的线性运算2 .2 向量的分解与向量的坐标运算2. 3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3 .1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修 1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修 1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修 4-5第一章不等式的基本性质和证明的基本方法1 .1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式人教 A 版高中数学目录1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2. 1 柯西不等式2.2 排序不等式2.3 平均值不等式 ( 选学 )2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3. 1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
《参数方程》教案(新人教选修)
《参数方程》教案(新人教选修)第一章:参数方程的概念1.1 参数方程的定义与形式引入参数的概念,解释参数方程与普通方程的区别。
举例说明参数方程的形式,如圆的参数方程。
1.2 参数方程的图像利用图形展示参数方程所表示的曲线。
引导学生观察参数变化时,曲线的变化情况。
1.3 参数方程的应用结合实际问题,介绍参数方程的应用,如物体的运动轨迹。
引导学生理解参数方程在实际问题中的作用。
第二章:参数方程的变换2.1 参数变换的概念引入参数变换的概念,解释参数变换的作用。
举例说明参数变换的形式,如从直角坐标系到极坐标系的变换。
2.2 参数变换的方法引导学生掌握参数变换的方法,如代数变换、三角变换等。
利用实例演示参数变换的过程。
2.3 参数变换的应用结合实际问题,介绍参数变换的应用,如解三角方程。
引导学生理解参数变换在实际问题中的作用。
第三章:参数方程的求解3.1 参数方程的求解概念引入参数方程的求解概念,解释求解的目的。
举例说明参数方程的求解方法,如代数方法、图形方法等。
3.2 参数方程的求解方法引导学生掌握参数方程的求解方法,如代数求解、图形求解等。
利用实例演示参数方程的求解过程。
3.3 参数方程的求解应用结合实际问题,介绍参数方程的求解应用,如求解物理问题。
引导学生理解参数方程的求解在实际问题中的作用。
第四章:参数方程的综合应用4.1 参数方程与普通方程的转换引导学生理解参数方程与普通方程之间的转换关系。
利用实例演示参数方程与普通方程的转换过程。
4.2 参数方程在实际问题中的应用结合实际问题,介绍参数方程在实际问题中的应用,如工程问题、物理问题等。
引导学生理解参数方程在实际问题中的重要性。
4.3 参数方程的综合实例分析提供综合实例,让学生运用所学知识解决实际问题。
引导学生进行讨论和思考,提高学生解决问题的能力。
第五章:参数方程的进一步研究5.1 参数方程的性质研究引导学生研究参数方程的性质,如对称性、周期性等。
高中数学《参数方程的概念》教案新人教A版选修
参数方程目标点击:1.理解参数方程的概念,了解某些参数的几何意义和物理意义;2.熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则;3.会选择最常见的参数,建立最简单的参数方程,能够根据条件求出直线、圆锥曲线等常用曲线的一些参数方程并了解其参数的几何意义; 4.灵活运用常见曲线的参数方程解决有关的问题.基础知识点击:1、曲线的参数方程在取定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数,⎩⎨⎧==)()(t g y t f x (1) 并且对于t 的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程. 联系x 、y 之间关系的变数叫做参变数,简称参数.2、求曲线的参数方程求曲线参数方程一般程序:(1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标; (2) 选参:选择合适的参数;(3) 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系 式,并由此分别解出用参数表示的x 、y 的表达式. (4) 结论:用参数方程的形式表示曲线的方程 3、曲线的普通方程相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程. 4、参数方程的几个基本问题(1) 消去参数,把参数方程化为普通方程. (2) 由普通方程化为参数方程. (3) 利用参数求点的轨迹方程. (4) 常见曲线的参数方程. 5、几种常见曲线的参数方程 (1) 直线的参数方程(ⅰ)过点P 0(00,y x ),倾斜角为α的直线的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) 为直线上任意一点.(ⅱ)过点P 0(00,y x ),斜率为abk =的直线的参数方程是⎩⎨⎧+=+=bty y atx x 00 (t 为参数)(2)圆的参数方程(ⅰ)圆222r y x =+的参数方程为⎩⎨⎧==ϕϕsin cos r y r x (ϕ为参数)ϕ的几何意义为“圆心角”(ⅱ)圆22020)()(r y y x x =-+-的参数方程是⎩⎨⎧+=+=ϕϕsin cos 00r y y r x x (ϕ为参数)ϕ的几何意义为“圆心角”(3)椭圆的参数方程(ⅰ)椭圆12222=+b y a x (0>>b a ) 的参数方程为⎩⎨⎧==ϕϕsin cos b y a x (ϕ为参数)(ⅱ)椭圆1)()(220220=-+-by y a x x (0>>b a )的参数方程是 ⎩⎨⎧+=+=ϕϕsin cos 00b y y a x x (ϕ为参数)ϕ的几何意义为“离心角”(4)双曲线的参数方程(ⅰ)双曲线12222=-b y a x 的参数方程为⎩⎨⎧==ϕϕbtg y a x sec (ϕ为参数)(ⅱ)双曲线1)()(220220=---b y y a x x 的参数方程是 ⎩⎨⎧+=+=ϕϕbtg y y a x x 00sec (ϕ为参数)ϕ的几何意义为“离心角”(5) 抛物线的参数方程px y 22= (p>0) 的参数方程为⎩⎨⎧==pt y pt x 222(t 为参数) 其中t 的几何意义是抛物线上的点与原点连线的斜率的倒数(顶点除外).考点简析:参数方程属每年高考的必考内容,主要考查基础知识、基本技能,从两个方面考查(1)参数方程与普通方程的互化与等价性判定;(2)参数方程所表示的曲线的性质. 题型一般为选择题、填空题.一、 参数方程的概念一)目标点击:1、理解参数方程的概念,能识别参数方程给出的曲线或曲线上点的坐标;2、熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则;3、能掌握消去参数的一些常用技巧:代人消参法、三角消参等;4、能了解参数方程中参数的意义,运用参数思想解决有关问题;二)概念理解:1、例题回放: 问题1:(请你翻开黄岗习题册P122,阅读例题)已知圆C 的方程为1)2(22=+-y x ,过点P 1(1,0) 作圆C 的任意弦, 交圆C 于另一点P 2,求P 1P 2的中点M 的轨迹方程. 书中列举了六种解法,其中解法六运用了什么方法求得M 点的轨迹方程?此种方法是如何设置参数的,其几何意义是什么?设M(y x ,) ,由⎪⎪⎩⎪⎪⎨⎧+=++=222112k ky k k x ,消去k,得41)23(22=+-y x ,因M 与 P 1不重合,所以M 点的轨迹方程为41)23(22=+-y x (1≠x )解法六的关键是没有直接寻求中点M 的轨迹方程0),(=y x F ,而是通过引入第三个变量k (直线的斜率),间接地求出了x 与y 的关系式,从而求得M 点的轨迹方程.实际上方程⎪⎪⎩⎪⎪⎨⎧+=++=222112k k y k k x (1)和41)23(22=+-y x (1≠x )(2)都表示同一个曲线,都是M 点的轨迹方程.这两个方程是曲线方程的两种形式.方程组(1)是曲线的参数方程,变数k 是参数,方程(2)是曲线的普通方程. 由此可以看出参数方程和普通方程是同一曲线的两种不同的表达形式.我们对参数方程并不陌生,在求轨迹方程的过程中,我们通过设参变量k,先求得曲线的参数方程再化为普通方程,进而求得轨迹方程.参数法是求轨迹方程的一种比较简捷、有效的方法.问题2:几何课本3.1曲线的参数方程一节中,从研究炮弹发射后的运动规律, 得出弹道曲线的方程.在这个过程中,选择什么量为参数,其物理意 义是什么?参数的取值范围?通过研究炮弹发射后弹道曲线的方程说明:1)形如⎩⎨⎧==)()(t g y t f x 的方程组,描述了运动轨道上的每一个位置(y x ,)和时间t 的对应关系.2)我们利用“分解与合成”的方法研究和认识了形如⎩⎨⎧==)()(t g y t f x 的方程组表示质点的运动规律.3)参数t 的取值范围是由t 的物理意义限制的. 2、曲线的参数方程与曲线C 的关系在选定的直角坐标系中,曲线的参数方程⎩⎨⎧==)()(t g y t f x t D ∈ (*)与曲线C 满足以下条件:(1)对于集合D 中的每个t 0,通过方程组(*)所确定的点()(),(00t g t f )都在曲线C 上;(2)对于曲线C 上任意点(00,y x ),都至少存在一个t 0,满足⎩⎨⎧==)()(0000t g y t f x则 曲线C ⇔ 参数方程⎩⎨⎧==)()(t g y t f x t D ∈3、曲线的普通方程与曲线的参数方程的区别与联系曲线的普通方程),(y x F =0是相对参数方程而言,它反映了坐标变量x 与y 之间的直接联系;而参数方程⎩⎨⎧==)()(t g y t f x t D ∈是通过参数t 反映坐标变量x 与y之间的间接联系.曲线的普通方程中有两个变数,变数的个数比方程的个数多1;曲线的参数方程中,有三个变数两个方程,变数的个数比方程的个数多1个.从这个意义上讲,曲线的普通方程和参数方程是“一致”的.参数方程 普通方程 ; 普通方程 参数方程这时普通方程和参数方程是同一曲线的两种不同表达形式.问题3:方程222a y x =+(0≠a );方程λ=-2222by a x (0≠λ)是参数方程吗?参数方程与含参数的方程一样吗?方程222a y x =+(0≠a )表示圆心在原点的圆系,方程λ=-2222by a x (0≠λ)表示共渐近线的双曲线系。
高中数学第2章《参数方程》教案新人教版选修4
参数方程考点要求1 了解参数方程的定义。
2 分析直线,圆,圆锥曲线的几何性质。
会选择适当的参数,写出他们的参数方程。
并理解直线参数方程标准形式中参数的意义。
3掌握曲线的参数方程与普通方程的互化。
考点与导学1参数方程的定义:在取定的坐标系中。
如果曲线上任意一点的坐标y x ,都是某个变量t 的函数⎩⎨⎧==)()(t g y t f x (t ∈T) (1) 这里T 是)(),(t g t f 的公共定义域。
并且对于t 的每一个允许值。
由方程(1)所确定的点 ),(y x M 。
都在这条曲线上;那么(1)叫做这条曲线的参数方程,辅助变数t 叫做参数。
2过点),,(000y x p 倾斜角为α的直线l 的参数方程(I )⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数) (i )通常称(I )为直线l 的参数方程的标准形式。
其中t 表示),,(000y x p 到l 上一点),(y x p 的有向线段p p 0的数量。
t>0时,p 在0p 上方或右方;t<0时,p 在0p 下方或左方,t=0时,p 与0p 重合。
(ii )直线的参数方程的一般形式是:⎩⎨⎧+=+=bt y y at x x 00(t 为参数) 这里直线l 的倾斜角α的正切ba =αtan (00900==αα或时例外)。
当且仅当122=+b a 且b>0时. (1)中的t 才具有(I )中的t 所具有的几何意义。
2 圆的参数方程。
圆心在点),,(00'y x o 半径为r 的圆的参数方程是⎩⎨⎧+=+=θθsin cos 00r y y r x x (θ为参数)3 椭圆12222=+b y a x 的参数方程。
⎩⎨⎧==θθsin cos b y a x (θ为参数) 4 双曲线12222=-b y a x 的参数方程:⎩⎨⎧==θθtan sec b y a x (θ为参数)5 抛物线px y 22=的参数方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1课时 参数方程的概念[核心必知]1.参数方程在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程组①叫做这条曲线的参数方程.联系变量x ,y 的变数t 叫做参变数,简称参数. 2.普通方程相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.[问题思考]1.参数方程中的参数t 是否一定有实际意义?提示:参数是联系变数x ,y 的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.2.曲线的参数方程一定是唯一的吗?提示:同一曲线选取参数不同,曲线参数方程形式也不一样.如⎩⎪⎨⎪⎧x =4t +1,y =2t (t ∈R )和⎩⎪⎨⎪⎧x =2m +1,y =m (m ∈R ) 都表示直线x =2y +1.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =2t ,y =3t 2-1(t 为参数).(1)判断点M 1(0,-1)和M 2(4,10)与曲线C 的位置关系; (2)已知点M (2,a )在曲线C 上,求a 的值.[精讲详析] 本题考查曲线的参数方程及点与曲线的位置关系.解答此题需要将已知点代入参数方程,判断参数是否存在.(1)把点M 1的坐标代入参数方程⎩⎪⎨⎪⎧x =2t ,y =3t 2-1, 得⎩⎪⎨⎪⎧0=2t ,-1=3t 2-1, ∴t =0.即点M 1在曲线C 上.把点M 2的坐标代入参数方程⎩⎪⎨⎪⎧x =2t ,y =3t 2-1, 得⎩⎪⎨⎪⎧4=2t ,10=3t 2-1,方程组无解.即点M 2不在曲线C 上. (2)∵点M (2,a )在曲线C 上,∴⎩⎪⎨⎪⎧2=2t ,a =3t 2-1. ∴t =1,a =3×12-1=2.即a 的值为2. ——————————————————已知曲线的参数方程,判断某点是否在曲线上,就是将点的坐标代入曲线的参数方程,然后建立关于参数的方程组,如果方程组有解,则点在曲线上;否则,点不在曲线上.1.已知曲线⎩⎪⎨⎪⎧x =2sin θ+1,y =sin θ+3(θ为参数,0≤θ<π),则下列各点A (1,3),B (2,2),C (-3,5)在曲线上的点是________.解析:将A (1,3)点代入方程得θ=0;将B 、C 点坐标代入方程,方程无解,故B 、C点不在曲线上.答案:A (1,3)如图,△ABP 是等腰直角三角形,∠B 是直角,腰长为a ,顶点B 、A 分别在x 轴、y 轴上滑动,求点P 在第一象限的轨迹的参数方程.[精讲详析] 本题考查曲线参数方程的求法,解答本题需要先确定参数,然后分别用同一个参数表示x 和y .法一:设P 点的坐标为(x ,y ),过P 点作x 轴的垂线交x 轴于Q . 如图所示,则Rt △OAB ≌Rt △QBP .取OB =t ,t 为参数(0<t <a ). ∵|OA |=a 2-t 2,∴|BQ |=a 2-t 2. ∴点P 在第一象限的轨迹的参数方程为⎩⎨⎧x =t +a 2-t 2,y =t ,(0<t <a ) 法二:设点P 的坐标为(x ,y ),过点P 作x 轴的垂线交x 轴于点Q ,如图所示.取∠QBP =θ,θ为参数(0<θ<π2),则∠ABO =π2-θ.在Rt △OAB 中,|OB |=a cos (π2-θ)=a sin θ.在Rt △QBP 中,|BQ |=a cos θ,|PQ |=a sin θ.∴点P 在第一象限的轨迹的参数方程为⎩⎪⎨⎪⎧x =a (sin θ+cos θ),y =a sin θ.(θ为参数,0<θ<π2).——————————————————(1)求曲线参数方程的主要步骤:第一步,建立直角坐标系,设(x ,y )是轨迹上任意一点的坐标.画出草图(画图时要注意根据几何条件选择点的位置,以利于发现变量之间的关系).第二步,选择适当的参数.参数的选择要考虑以下两点:一是曲线上每一点的坐标x ,y 与参数的关系比较明显,容易列出方程;二是x ,y 的值可以由参数唯一确定.例如,在研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数.此外,离某一定点的“有向距离”、直线的倾斜角、斜率、截距等也常常被选为参数.第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式.(2)求曲线的参数方程时,要根据题设条件或图形特性求出参数的取值范围并标注出来.2.如图所示,OA 是圆C 的直径,且OA =2a ,射线OB 与圆交于Q 点,和经过A 点的切线交于B 点,作PQ ⊥OA 交OA 于D ,PB ∥OA ,试求点P 的轨迹的参数方程.解:设P (x ,y )是轨迹上任意一点,取∠DOQ =θ,由PQ ⊥OA ,PB ∥OA ,得x =OD =OQ cosθ=OA ·cos 2θ=2a cos 2θ,y =AB =OA tan θ=2a tan θ.所以P 点轨迹的参数方程为⎩⎪⎨⎪⎧x =2a cos 2θ,y =2a tan θ,θ∈(-π2,π2).曲线参数方程的应用,是高考模拟的热点内容.本考题以实际问题为背景考查了曲线参数方程的实际应用,是高考模拟命题的一个新亮点.[考题印证]已知弹道曲线的参数方程为⎩⎪⎨⎪⎧x =2t cos π6,y =2t sin π6-12gt 2.(t 为参数)(1)求炮弹从发射到落地所需时间; (2)求炮弹在运动中达到的最大高度.[命题立意] 本题主要考查曲线参数方程中参数的实际意义及其应用. [解] (1)令y =0,则2t sin π6-12gt 2=0,解之得t =2g.∴炮弹从发射到落地所需要的时间为2g.(2)y =2t sin π6-12gt 2=-12gt 2+t=-12g (t 2-2g t )=-12g [(t -1g )2-1g 2]=-12g (t -1g )2+12g ,∴当t =1g 时,y 取最大值12g .即炮弹在运动中达到的最大高度为12g .一、选择题1.方程⎩⎪⎨⎪⎧x =1+sin θ,y =sin 2θ(θ是参数)所表示曲线经过下列点中的( )A .(1,1) B.⎝ ⎛⎭⎪⎫32,12C.⎝ ⎛⎭⎪⎫32,32D.⎝ ⎛⎭⎪⎫2+32,-12解析:选C 将点的坐标代入方程:⎩⎪⎨⎪⎧x =1+sin θ,y =sin 2θ,解θ的值.若有解,则该点在曲线上.2.直线l的参数方程为⎩⎪⎨⎪⎧x =a +t ,y =b +t (t 为参数),l 上的点P 1对应的参数是t 1,则点P 1与P (a ,b )之间的距离是( )A .|t 1|B .2|t 1| C.2|t 1| D.22|t 1| 解析:选C ∵P 1(a +t 1,b +t 1),P (a ,b ),∴|P 1P |=(a +t 1-a )2+(b +t 1-b )2=t 21+t 21=2|t 1|.3.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =6+4cos θ,y =5tan θ-3(θ为参数,π≤θ<2π).已知点M (14,a )在曲线C 上,则a =( )A .-3-5 3B .-3+5 3C .-3+53 3D .-3-53 3解析:选A ∵(14,a )在曲线C 上, ∴⎩⎪⎨⎪⎧14=6+4cos θ, ①a =5tan θ-3. ②由①得:cos θ=12,又π≤θ<2π.∴sin θ=-1-(12)2=-32,∴tan θ=- 3.∴a =5·(-3)-3=-3-5 3.4.参数方程⎩⎪⎨⎪⎧x =t +1t ,y =-2(t 为参数)所表示的曲线是( ) A .一条射线 B .两条射线 C .一条直线 D .两条直线解析:选B 因为x =t +1t∈(-∞,-2]∪[2,+∞),即x ≤-2或x ≥2,故是两条射线. 二、填空题5.由方程x 2+y 2-4tx -2ty +3t 2-4=0(t 为参数)所表示的一族圆的圆心的轨迹的参数方程为________.解析:由x 2+y 2-4tx -2ty +3t 2-4=0得: (x -2t )2+(y -t )2=4+2t 2.设圆心坐标为(x ,y ),则⎩⎪⎨⎪⎧x =2t ,y =t .答案:⎩⎪⎨⎪⎧x =2t ,y =t (t 为参数)6.已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at2(其中t 为参数,a ∈R ).点M (5,4)在该曲线上,则常数a =________.解析:∵点M (5,4)在曲线C 上∴⎩⎪⎨⎪⎧5=1+2t ,4=at 2, 解得:⎩⎪⎨⎪⎧t =2,a =1.∴a 的值为1.答案:17.曲线(x -1)2+y 2=4上点的坐标可以表示为________(填序号). ①(-1+cos θ,sin θ),②(1+sin θ,cos θ), ③(-1+2cos θ,2sin θ),④(1+2cos θ,2sin θ)解析:分别将①、②、③、④代入曲线(x -1)2+y 2=4验证可知,只有④使方程成立. 答案:④8.动点M 作匀速直线运动,它在x 轴和y 轴方向的分速度分别为9和12,运动开始时,点M 位于A (1,1),则点M 的参数方程为________.解析:设M (x ,y ),则在x 轴上的位移为:x =1+9t ,在y 轴上的位移为y =1+12t .∴参数方程为:⎩⎪⎨⎪⎧x =1+9t ,y =1+12t .答案:⎩⎪⎨⎪⎧x =1+9t ,y =1+12t (t 为参数)三、解答题9.设质点沿以原点为圆心,半径为2的圆作匀角速度运动,角速度为π60 rad/s ,运动开始时质点位于A (2,0),试以时间t 为参数,建立质点运动轨迹的参数方程.解:如图,运动开始时质点位于点A 处,此时t =0,设动点M (x ,y )对应时刻t ,由图可知:⎩⎪⎨⎪⎧x =2cos θy =2sin θ又θ=π60·t ,故参数方程为:⎩⎪⎨⎪⎧x =2cos π60t ,y =2sin π60t(t 为参数).10.过M (0,1)作椭圆x 2+y 24=1的弦,试求弦中点的轨迹的参数方程.解:设过M (0,1)的弦所在的直线方程为y =kx +1,其与椭圆的交点为(x 1,y 1)和(x 2,y 2),设中点P (x ,y )则有:x =x 1+x 22,y =y 1+y 22由⎩⎪⎨⎪⎧y =kx +1,x 2+y 24=1得:(k 2+4)y 2-8y +4-4k 2=0∴y 1+y 2=8k 2+4,x 1+x 2=-2kk 2+4. ∴⎩⎪⎨⎪⎧x =-k k 2+4,y =4k 2+4.(k 为参数)这就是以动弦斜率k 为参数的动弦中点的轨迹的参数方程.11.舰A 在舰B 的正东,距离6千米;舰C 在舰B 的北偏西30°,距离4千米.它们准备围捕海中某动物,某时刻A发现动物信号,4秒后B 、C 同时发现这种信号,A 于是发射麻醉炮弹,假设舰与动物都是静止的,动物信号的传播速度为1千米/秒,炮弹初速度为 203g3千米/秒,其中g 为重力加速度,空气阻力不计,求舰A 炮击的方位角与仰角.解:以BA 为x 轴,BA 中垂线为y 轴建立直角坐标系(如图),则B (-3,0),A (3,0),C (-5,23).设海中动物为P (x ,y ).因为|BP |=|CP |,所以P 在线段BC 的中垂线上,易知中垂线方程是y =33(x +7).又|PB |-|PA |=4,所以P 在以A 、B 为焦点的双曲线右支上,双曲线方程是x 24-y 25=1.从而得P (8,53).设∠xAP =α,则tan α=k AP =3,∴α=60°,这样炮弹发射的方位角为北偏东30°.再以A 为原点,AP 为x ′轴建立坐标系x ′Ay ′,(如图).|PA |=10,设弹道曲线方程是⎩⎪⎨⎪⎧0y ′=v 0t sin θ-12gt 2,(其中θ为仰角)将P (10,0)代入,消去t 便得sin 2θ=32,θ=30°或60°这样舰A 发射炮弹的仰角为30°或60°.。