2019-2020年七年级数学下学期期中测试卷
2019-2020学年度第二学期期中考试初一年级数学试卷及答案
2019-2020学年度第二学期期中考试初一年级数学试卷考试时间100分钟 满分120分 命题:一、选择题(本大题共8小题,每小题2分,共16分.) 1.下列现象中不属于平移的是 A .滑雪运动员在平坦的雪地上滑雪 B .彩票大转盘在旋转C .高楼的电梯在上上下下D .火车在一段笔直的铁轨上行驶2.化简(–x 3)2的结果是 A .–x 5 B .–x 6 C .x 5D .x 63.如图,∠1=∠2,∠3=40°,则∠4等于A .120°B .130°C .140°D .40°4.在数(–12)–2,(–2)–2,(–12)–1,(–2)–1中,最大的数是 A .(–12)–2 B .(–2)–2 C .(–12)–1D .(–2)–15.长方形的长是31.610cm ⨯,宽是2510cm ⨯,则它的面积是 A .42810cm ⨯ B .52810cm ⨯ 62C 810cm ⨯.72D 810cm ⨯.6.下列说法正确的是( )A .三角形的三条高至少有一条在三角形内B .直角三角形只有一条高C .三角形的角平分线其实就是角的平分线D .三角形的角平分线、中线、高都在三角形的内部7.如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线,则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .68.已知:a =﹣226x +2017,b =﹣226x +2018,c =﹣226x +2019,请你巧妙的求出 代数式a 2+b 2+c 2﹣ab ﹣bc ﹣ca 的值( ) A .3B .2C .1D .0二、填空题(本大题共10小题,每小题3分,共30分) 9.计算:0.25×55=__________.10.内角和与外角和相等的多边形的边数是__________.11.光的传播速度约为300000km/s ,太阳光照射到地球上大约需要500s ,则太阳到地球的距离用科学记数法表示为__________km .12.在ABC △中,::2:3:4A B C ∠∠∠=,则B ∠=__________. 13.如图,AB ∥CD ∥EF ,若∠A =35°,∠AFC =15°,则∠C =__________.14.若2x +5y –4=0,则432x y ⨯=__________.15.若(x 2+p )(x 2+7)的展开式中不含有x 2项,则p =__________.16.已知P =m 2–m ,Q =m –1(m 为任意实数),则P 、Q 的大小关系为__________.17.如上中图,边长为8cm 的正方形ABCD 先向上平移4cm ,再向右平移2cm ,得到正方形A′B′C′D′,此时阴影部分的面积为__________cm 2.18.如上右图有一张直角三角形纸片,记作△ABC ,其中∠B =90°.按如图方式剪去它的一个角(虚线部分),在剩下的四边形ADEC 中,若∠1=165°,则∠2的度数为__________°.三、解答题(本大题共11小题) 19.(本小题满分12分)计算:(1)(b2)3·(b 3)4÷(-b 5)3(2)(12)–1+(π–2018)0–(–1)2019. (3)(3﹣x )(﹣x +3)﹣x (x +1) (4)(2a +b ﹣5)(2a ﹣b ﹣5)20.(本小题满分12分)分解因式:(1)2x 2﹣18 (2)3m 2n ﹣12mn+12n (3)(a+b )2﹣6(a+b )+9 (4)(x 2+4y 2)2﹣16x 2y221.(本小题满分8分)如图,四边形ABCD 中,点E 在BC 上,∠A +∠ADE =180°,∠B =78°,∠C =60°,求∠EDC 的度数.22.(本小题满分8分)已知A =2x 2+3xy –2x –1,B =–x 2+xy –1,(1)计算3A +6B 的值。
2019-2020学年七年级下学期期中数学试题(解析版)
2019-2020学年七年级下学期期中数学试题一.选择题1.在实数3.1415926,17, 1.010010001……,中,无理数的个数是( )个 A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.,1.010010001……是无理数,故选B .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等无限不循环小数(与是否有规律无关).)A4 B. ±4 C. 2 D. ±2【答案】C【解析】【分析】4,4的算术平方根是2,2,故选C .【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.3.下列式子正确的是()A. =7 =5 ﹣3【答案】B【解析】试题分析:根据平方根的意义,可知49=±7,故A 不正确;根据立方根的意义,可知3377-=-,故B 正确;根据算术平方根的意义,可知25=5,故C 不正确;根据平方根的性质2||a a =,可知()23-=3,故不正确.故选B.点睛:此题主要考查了平方根的意义和性质,解题的关键是抓住平方根的意义,算术平方根,立方根的性质的应用,比较简单,但是容易出错,是中考常考题.4.已知:如图, AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠与2∠的关系一定成立的是( )A. 相等B. 互补C. 互余D. 互为对顶角【答案】C【解析】【分析】 根据互余的定义,结合图形解答即可.【详解】∵AB CD ⊥,∴∠BOC=90°,∴∠1+∠COE=90°.∵∠2=∠COE ,∴∠1+∠2=90°,∴1∠与2∠互余.故选C.【点睛】本题考查了垂直的定义,对顶角的性质,以及余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.5.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③等角的补角相等;④同一平面内,垂直于同一条直线的两条直线互相平行.其中真命题的个数为A. 1B. 2C. 3D. 4【答案】B【解析】分析:对4个命题一一判断即可.详解:①相等的角是对顶角;假命题.②两条直线被第三条直线所截,同位角相等;假命题.③等角的补角相等;真命题.④同一平面内,垂直于同一条直线的两条直线互相平行. 真命题.是真命题的有2个.故选B.点睛:考查命题与定理.能够判断真假的陈述句叫做命题,判断为真的命题叫做真命题.6.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【详解】∵-20,2x+10,∴点P (-2,2x+1)在第二象限,故选B.7.已知在同一平面内三条直线a、b、c,若a∥c,b∥c,则a与b的位置关系是()A. a⊥bB. a⊥b或a∥bC. a∥bD. 无法确定【答案】C【解析】【分析】根据平行线的判定得出即可.【详解】解:∵同一平面内三条直线a、b、c,a∥c,b∥c,∴a∥b,故选C.【点睛】本题考查了平行线的性质和判定,平行公理及推理的应用,能熟记知识点(平行于同一直线的两直线平行)是解此题的关键.8. 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A. 30°B. 25°C. 20°D. 15°【答案】B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,9.一个正数的平方根是2a-3与5-a,则这个正数的值是()A. 64B. 36C. 81D. 49【答案】D【解析】【分析】根据正数的两个平方根互为相反数列式求出a的值,进而可求出这个这个数.【详解】∵一个正数的平方根是2a-3与5-a,∴2a-3+5-a=0,∴a=-2,∴5-a=5-(-2)=7,∴这个正数的值是49.故选D.【点睛】本题考查了平方根的意义,如果个一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的平方根,正数a 的平方根记作a ±.正数a 有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.如图,直线AB 、CD 交于点O ,OT⊥AB 于O ,CE∥AB 交CD 于点C ,若∠ECO =30°,则∠DOT 等于( )A. 30°B. 45°C. 60°D. 120°【答案】C【解析】【分析】 由//CE AB ,根据两直线平行,同位角相等,可求得BOD ∠的度数,又由OT AB ⊥求得BOT ∠的度数,然后由DOT BOT BOD ∠=∠-∠即可求得答案.【详解】∵//CE AB ,30ECO ∠=︒∴30BOD ECO ∠=∠=︒(两直线平行,同位角相等)∵OT AB ⊥∴90BOT ∠=︒∴903060DOT BOT BOD ∠=∠-∠=︒-︒=︒故选:C .【点睛】本题考查了平行线的性质、垂直等知识点,熟记并灵活运用平行线的性质是解题关键. 二.填空题11.311-__________,绝对值是_________.【答案】 (1).113, (2). 113.【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据差的绝对值是大数减小数,可得答案.【详解】解:3-11的相反数是-(3-11)= 11-3,绝对值是11-3.故答案为11-3;11-3【点睛】此题考查了实数的性质,熟练掌握相反数及绝对值的定义是解本题的关键.12.已知实数a,b满足a1-+|1-b|=0,则a2012+b2013=______【答案】2【解析】【分析】根据二次根式与绝对值的非负性即可求出a,b,故可求解.【详解】解:由题意可知:a-1=0,1-b=0,∴a=1,b=1,∴原式=2,故答案为:2.【点睛】本题考查非负数的性质,解题的关键是熟练运用非负数的性质,本题属于基础题型.13.把命题“对顶角相等”改写成“如果⋯那么⋯”的形式:_____.【答案】如果两个角是对顶角,那么它们相等.【解析】【分析】先把命题分解为题设和条件,再改写成“如果⋯那么⋯”的形式,即可.【详解】题设为:对顶角,结论为:相等,故写成“如果⋯那么⋯”的形式是:如果两个角是对顶角,那么它们相等.故答案为:如果两个角是对顶角,那么它们相等.【点睛】本题主要考查把命题改写成“如果⋯那么⋯”的形式,理解命题的题设和结论是解题的关键.14.如图所示,想在河的两岸搭建一座桥,沿线段________搭建最短,理由是___【答案】(1). PM(2). 垂线段最短【解析】【分析】连接直线外一点与直线上所有点的连线中,垂线段最短,据此进行解答即可. 【详解】∵PM⊥EN,垂足为M,∴PM为垂线段,∴想在河的两岸搭建一座桥,沿线段PM搭建最短(垂线段最短),故答案为PM,垂线段最短.【点睛】本题考查了垂线段的性质在生活中的应用,熟练掌握垂线段最短的知识是解题的关键.__________________.【答案】(1). 3(2).32【解析】【分析】,再求出立方根即可.,3,32,故答案为3,32.【点睛】此题考查了算术平方根、立方根的定义及表示方法,熟练掌握这些定义是解题的关键.16.的所有整数值是_________________【答案】±2,±1,0.【解析】【分析】的取值范围,进而可得出结论.【详解】解:∵4<8<9,∴23,∴绝对值小于8的所有整数是:±2,±1,0.故答案为±2,±1,0.【点睛】本题考查的是估算无理数的大小,先根据题意估算出8的取值范围是解答此题的关键.17.已知a,b为两个连续的整数,且a<57<b,则a+b=___________.【答案】15【解析】【分析】估算出在哪两个相邻的整数之间,即可求出a与b的值,然后代入a+b计算即可.【详解】∵72<57<82,∴7<57<8,∴a=7,b=8,∴a+b=7+8=15.故答案为15.【点睛】此题主要考查了估算无理数的大小,注意首先估算被开方数在哪两个相邻的平方数之间,再估算该无理数在哪两个相邻的整数之间.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.18.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF 的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是_____【答案】48【解析】【分析】根据平移的性质可知:AB=DE,BE=CF;由此可求出EH和CF的长.由于CH∥DF,根据成比例线段,可求出EC的长.由EH、EC,DE、EF的长,即可求出△ECH和△EFD的面积,进而可求出阴影部分的面积.【详解】根据题意得:DE=AB=10;BE=CF=6;CH∥DF,∴EH=10﹣4=6;EH:HD=EC:CF,即6:4=EC :6,∴EC =9,∴S △EFD =12×10×(9+6)=75;S △ECH =12×9×6=27,∴S 阴影部分=75﹣27=48.故答案为48. 【点睛】本题考查了平移的性质、由平行判断成比例线段及有关图形的面积计算,有一定的综合性.三.解答题19.(1)|-(2)21(1)4x -=;(3)11-; (4)()334375x -=-.【答案】(1)12;(2)32x =,12x =;(3)0;(4)x=-1. 【解析】【分析】(1)根据数的开方计算即可;(2)根据平方根的定义解答;(3)先开平方、去绝对值、括号,然后合并.(4)先化原方程为(x-4)3=-125,然后求立方根;【详解】(1)原式= 1322--=12; (2)解: 112x -=±, 32x =或12x =;(3)解:原式=))211+-211=+=0(4)解: ()34125x -=- 45x -=-1x =-【点睛】本题考查了实数的运算和平方根、立方根的求法.在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.20.根据语句画图,并回答问题,如图,∠AOB内有一点P.(1)过点P画PC∥OB交OA于点C,画PD∥OA交OB于点D.(2)写出图中与∠CPD互补的角.(写两个即可)(3)写出图中∠O相等的角.(写两个即可)【答案】(1)画图见解析;(2)∠ODP,∠PCO(答案不唯一);(3)∠ACP,∠BDP(答案不唯一).【解析】试题分析:(1)根据平行线的画法画图即可;(2)直接利用平行线的性质以及结合互补的定义得出答案;(3)根据平行线的性质可得∠O=∠PCA,∠BDP=∠O.试题解析:(1)如图所示:PC,PD,即为所求;(2)∵PC∥BO,∴∠CPD+∠ODP=180°,∵PD∥AO,∴∠CPD+∠PCO=180°与∠CPD互补的角有:∠ODP,∠PCO;故答案为∠ODP,∠PCO(答案不唯一).(3)∵PD∥AO,∴∠O=∠BDP,∵CP∥BO,∴∠ACP=∠O,∴∠O相等的角有:∠ACP,∠BDP.故答案为∠ACP,∠BDP(答案不唯一).21.完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=()∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=12()∠ABE=12()∴∠ADF=∠ABE∴∥()∴∠FDE=∠DEB.()【答案】∠ABC,两直线平行,同位角相等;∠ADE,∠ABC,角平分线的定义;DF,BE,同位角相等,两直线平行;两直线平行,内错角相等【解析】【分析】根据平行线的性质由DE∥BC得∠ADE=∠ABC,再根据角平分线的定义得到∠ADF=12∠ADE,∠ABE=12∠ABC,则∠ADF=∠ABE,然后根据平行线的判定得到DF∥BE,最后利用平行线的性质得∠FDE=∠DEB.【详解】∵DE∥BC,∴∠ADE=∠ABC,∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=12∠ADE,∠ABE=12∠ABC,∴∠ADF=∠ABE,∴DF∥BE,∴∠FDE=∠DEB.故答案为∠ABC,两直线平行,同位角相等;∠ADE,∠ABC,角平分线的定义;DF,BE,同位角相等,两直线平行;两直线平行,内错角相等.【点睛】本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.22. (1)在平面直角坐标系中,描出下列3个点:A (-1,0),B (3,-1),C (4,3);(2) 顺次连接A,B,C,组成△ABC,求△ABC的面积.【答案】(1)图形见解析(2)8.5【解析】【分析】(1)建立平面直角坐标系,然后画图;(2)用三角形所在的长方形的面积减去四周的三个三角形的面积即可得.【详解】(1)如图(2)如图所示,ABC EFHC EAC AFB BHC S S S S S ∆∆∆∆=---X=20-7.5-2-2=8.5答:△ABC 的面积为8.5.23.如图,已知∠AED =60°,∠2=30°,EF 平分∠AED ,可以判断EF ∥BD 吗?为什么?【答案】EF∥BD ,理由见解析.【解析】【详解】试题分析:本题可通过证直线EF 与BD 的内错角∠1和∠2相等,来得出EF∥BD 的结论. 试题解析:EF∥BD ;理由如下:∵∠AED=60°,EF 平分∠AED ,∴∠FED=30°,又∵∠FED=∠2=30°,∴EF∥BD 考点:平行线的判定.24.已知a 、b 、c 2a 2(c a)-+|b+c|.【答案】-a .【解析】【分析】直接利用数轴得出a <0,a+b <0,c-a >0,b+c <0,进而化简得出答案.【详解】解:如图所示:a <0,a+b <0,c-a >0,b+c <0, 故2a -|a+b|+2(c a) +|b+c|=-a+a+b+c-a-b-c=-a .【点睛】此题主要考查了二次根式的性质和数轴,正确得出各部分符号是解题关键.25.已知AB ∥DE ,∠ABC =800,∠CDE =1400.请你探索出一种(只须一种)添加辅助线求出∠BCD 度数的方法,并求出∠BCD 的度数.【答案】∠BCD =40°【解析】【分析】过点C 作FG ∥AB ,根据平行线的传递性得到FG ∥DE ,根据平行线的性质得到∠B=∠BCF ,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=80°,由等式性质得到∠DCF=40°,于是得到结论.【详解】解:过C 作CF ∥DE∵CF ∥DE (作图)AB ∥DE (已知)∴AB ∥DE ∥CF (平行于同一条直线的两条直线平行)∴∠BCF =∠B =80°(两直线平行,内错角相等)∠DCF+∠D=180°(两直线平行,同旁内角互补)又∵∠D=140°(已知)∴∠DCF=40°(等量代换)又∵∠BCD=∠BCF-∠DCF(角的和差定义)∴∠BCD=80°-40°(等量代换)即∠BCD=40°【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,。
2019-2020学年第二学期七年级数学期中考试试题(带答案)
2019—2020学年第二学期期中质量检测七年级数学试题(时间:120分钟 总分:120分)第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1. 已知⎩⎨⎧-==32y x 错误!未找到引用源。
是二元一次方程4x +ay =7的一组解,则a 的值为( )错误!未找到引用源。
A .-5 B .5 C .31 D .31-2. 如图,下列条件中,能判定a∥b 的是( )A. ∠1=∠2B. ∠1=∠4C. ∠1+∠3=180°D. ∠3+∠4=180°(第2题图) (第3题图)3.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为( )A .53°B .55°C .57°D .60° 4. 下列说法中不正确的是( )A. 抛掷一枚硬币,硬币落地时正面朝上是随机事件B. 把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C. 一个盒子中有白球m 个,红球6个,黑球n 个错误!未找到引用源。
每个球除了颜色外都相同错误!未找到引用源。
如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m 与n 的和是6D. 某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖5. 为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件10元,乙种体育用品每件20元,共用去70元,请你设计一下,共有( )种购买方案.A .2B .3C .4D .56. 下列命题:①垂线段最短;②同位角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④内错角相等,两直线平行;⑤经过一点有且只有一条直线与已知直线平行;⑥如果x =2,那么x=2.其中真命题有( )A .1个B .2个C .3个D .4个7. 如图所示,∠A=28°,∠BFC=92°,∠B=∠C ,则∠BDC 的度数是( )A .85°B .75°C .64°D .60°(第7题图) (第9题图)购买商品A 的数量(个) 购买商品B 的数量(个)购买总费用(元)第一次购物 4 3 93 第二次购物 6 6162若小丽需要购买3个商品A 和2个商品B ,则她要花费( )A. 64元B. 65元C. 66元D. 67元9.某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是( ) A .抛一枚硬币,出现正面朝上B .掷一个正六面体的骰子,出现3点朝上C .一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D .从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球10.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A .136 B .135 C .134 D .133(第10题图)第Ⅱ卷(非选择题 共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.命题“直角三角形两个锐角互余”的条件是 ,结论是 .12. 如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B =35°,∠ACE =60°,则∠A =___ ___.(第12题图)13. 在不透明的盒子中装有5个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出1个棋子,摸到黑色棋子的概率是41,则白色棋子的个数是 . 14. 已知⎩⎨⎧=+=+1023532y x y x ,则2019+x+y= .15.在“”方框中,任意填上“+”或“-”.能够构成完全平方式的概率是 .16. 小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:12:00时是一个两位数,数字之和为7;13:00时十位与个位数字与12:00是所看到的正好互换了;14:00时比12:00时看到的两位数中间多出一个0.如果设小明在12:00看到的数的十位数字是x ,个位数字是y ,根据题意可列方程组为 .17.如图,直线l 1、l 2相交于点A ,则点A 的坐标为 .(第17题图)18.已知如图,AB ∥CD ,试解决下列问题:(第18题图) (1)∠1+∠2+∠3+∠4=______;(2)试探究∠1+∠2+∠3+∠4+…+∠n=______.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(本题满分8分)解方程组:(1)⎩⎨⎧-=+=-1929327y x y x (2) ⎪⎩⎪⎨⎧=---=+1213343144y x y x20. (本题满分6分)如图,已知B ,C ,D 三点在同一条直线上,∠B=∠1,∠2=∠E . 求证:AD ∥CE .(第20题图)21. (本题满分8分)某商场为了吸引顾客,设立了一可以自由转动的转盘,AB 为转盘直径,如图所示,并规定:顾客消费100元(含100元)以上,就能获得一次转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠. (1)某顾客正好消费99元,是否可以获得相应的优惠.(2)某顾客正好消费120元,他转一次转盘获得三种打折优惠的概率分别是多少?(第21题图)22.(本题满分9分)如图,将△ABC 的一角折叠,使点C 落在△ABC 内一点 (1)若∠1=40°,∠2=30°,求∠C 的度数;(2)试通过第(1)问,直接写出∠1、∠2、∠C 三者之间的关系.(第22题图)23. (本题满分9分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”; 爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?” 请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).24.(本题满分10分)已知如图1,线段AB、CD相交于点O ,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题(1)在图1中,写出∠A,∠B,∠C,∠D之间的关系为(2)如图2,在图1的结论下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.①仔细观察,在图2中“8字形”的个数:______个;②若∠D=400∠B=360,试求∠P的度数;③∠B和∠D为任意角时,其他条件不变,试直接写出∠P与∠B,∠D之间的数量关系,不需要说明理由.(第24题图)25.(本题满分12分)甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.(第25题图)七年级数学试题(答案)一、选择题:每小题3分1.C2.C3.C4.D5.B6.D7.D8.C9.D 10.B二、填空题:11-14题每小题3分,15-18题每小题4分 11.一个三角形是直角三角形;它的两个锐角互余12. 850 13. 15 14. 2022 15.2116.⎩⎨⎧+-+=+-+=+)10(100)10(107x y y x y x x y y x 17.(21-,3) 18.(1) 5400; 1800(n-1)三、解答题19.(1) ⎩⎨⎧-=-=51y x (2) ⎪⎩⎪⎨⎧==4113y x 20.证明:∵∠B=∠1,∴AB ∥DE(同位角相等,两直线平行),…………2分∴∠2=∠ADE(两直线平行,内错角相等)………4分∵∠2=∠E ,∴∠E=∠ADE ,∴AD ∥CE(内错角相等,两直线平行).………6分21.(1)根据规定消费100元(含100元)以上才能获得一次转盘的机会,而99元小于100元,故不能获得转盘的机会;……………………………………2分 (2)某顾客正好消费120元,超过100元,可以获得转盘的机会。
2019-2020年七年级下数学期中试卷及答案.docx
2019-2020 年七年级下数学期中试卷及答案题号一二三四五六总分得分二、选择题(请将每小题的答案填在表格内)(每小题 3 分,共 18 分)题号111213141516答案11、下列计算正确的是(★ )A. x2x4x8B. a10a2a5C. m3m2m5D. ( a2)3 a 612、四根长度分别为 3 ㎝、 4 ㎝、 7 ㎝、 10 ㎝的木条,以其中三根的长为边长钉成一个三角形框架,那么这个框架的周长可能是(★ )A.14 ㎝B.17 ㎝C.20㎝D.21 ㎝13、下列各式能用平方差公式计算的是(★ )A.( x 5)( x 5)B.(a 2b)(2a b)C.(1 m)( 1 m)D. ( x1) 214、如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=36 °,那么∠ 2 的度数为(★)A. 44°B. 54°C. 60°D. 36°(第 14 题)(第16 题)15、已知x3y 5 0,则代数式 3 2x 6 y 的值为(★)A.7B. 8C. 13D.1016、如图,在△ ABC 中,已知点 D、 E、F 分别是 BC 、 AD 、BE 上的中点,且△ ABC 的面积为 8 ㎝2,则△ BCF 的面积为(★ )A.0.5 ㎝2B.1㎝2C.2㎝2D.4㎝2三、计算(每小题 4 分,共 16 分)17、(2)3 6 ( 1 )1( 3.5)018、a a2a3( 2a3 ) 2a7a219、(x2)2(x 1)( x 2)20、(m2n 3)( m 2n3)四、因式分解(每小题 4 分,共 16 分)21、2x(m n) (n m)22、8x25023、3ax26axy 3ay224、16 y48x2 y2x 4五、画图题(本题 4 分)25、如图,△ ABC 的顶点都在方格纸的格点上,将△ABC 向下平移 3 格,再向右平移 4 格 .(1)请在图中画出平移后的△ A ′B′C′(2)在图中画出△ A ′B′C′的高 C′D′六、解答题(第26~29 题各 5 分,第 30 题 6 分,共 26 分)26、当x1时,求代数式 (3 4x)(3 4 x) (3 4x) 2的值.1227、如图, AB ∥ DC,∠ ABC= ∠ADC ,问:AE 与 FC 平行吗?请说明理由.(第 27 题)28、在△ ABC 中, AD 是高, AE 是角平分 .,∠ B=20 °,∠ C=60 ,求∠ CAD 和∠ DAE 的度数。
2019-2020年七年级数学下册期中数学试卷含答案解析.docx
2019-2020 年七年级数学下册期中数学试卷含答案解析一、(共10 小题,每小题 3 分,满分30 分)1.49 的平方根是()A . 7B.﹣ 7C.±7D.2.如图所示的图案分别是大众、奥迪、奔驰、三菱汽车的车标,其中,可以看作由平移得到的是()“基本图案”经过A.B.C.D.3.在下列各数: 3.1415926、、0.2、、、、中无理数的个数是()A.2B.3C.4D.54.如图所示,点 E 在 AC 的延长线上,下列条件中不能判断BD ∥ AE 的是()A .∠ 1=∠ 2B .∠ D+ ∠ACD=180 °C.∠ D=∠ DCE D.∠ 3=∠45.下列运算正确的是()A .B .(﹣3C.=2D.=3 3) =276.点 A(, 1)关于 y 轴对称的点的坐标是()A .(﹣,﹣ 1)B.(﹣, 1) C.(,﹣ 1) D.(, 1)7.如果∠ α=30°,那么∠α的余角是()A.30° B. 150°C. 60° D. 70°8.若y 轴上的点 P 到 x 轴的距离为 3,则点 P 的坐标是()A .(3, 0) B.( 0, 3) C.( 3,0)或(﹣ 3, 0) D .( 0, 3)或( 0,﹣ 3)9.下列命题中正确的有()① 相等的角是对顶角;② 在同一平面内,若a∥ b, b∥c,则 a∥ c;③ 同旁内角互补;④ 互为邻补角的两角的角平分线互相垂直.A.0 个 B.1 个 C.2 个D.3 个10.一个方形在平面直角坐系中三个点的坐(1, 1),( 1,2),( 3, 1),第四个点的坐()A .( 2, 2) B.( 3, 2) C.( 3,3) D .( 2, 3)二、填空(将正确答案填在每后面的横上)11.( 1)算=;(2)如果 x=2.,那么 x =12.如果式子有意, x 的取范是.13.把命“ 角相等”改写成“如果⋯那么⋯”的形式:.14.如,已知AB 、 CD 相交于点 O, OE⊥AB ,∠ EOC=28 °,∠ AOD=度.15.1的相反数是; 64的立方根是.16.如, a∥ b, M , N 分在 a, b 上, P两平行一点,那么∠1+∠ 2+∠ 3=°.三、解答17.算:( 2)3×+|+ |+ ×( 1)2016.18.求式中x 的: 3( x 1)2+1=28 .19.如,已知∠1= ∠2,∠ B=∠ C,可推得AB ∥ CD.理由如下:∵∠ 1= ∠ 2(已知),且∠ 1=∠CGD()∴∠ 2= ∠ CGD (等量代)∴ CE∥BF())∴∠ =∠BFD (又∵∠ B= ∠C(已知)∴∠ BFD= ∠B (等量代换)∴AB ∥CD()四、解答题20.如图,已知:∠1=∠ 2,∠ 3=108°,求∠ 4 的度数.21.已知+|2x﹣3|=0.( 1)求x, y 的值;(2)求x+y的平方根.22.已知的整数部分为a,小数部分为b.求:( 1) a、 b 的值;( 2)式子a2﹣a﹣ b 的值.五、解答题 (每小题 9 分,共 27 分 )23.在平面直角坐标系xoy 中,已知△ ABC 三个顶点的坐标分别为 A (﹣ 2,0), B(﹣ 4,4), C (3,﹣ 3).(1)画出△ABC ;( 2)画出△ABC 向右平移 3 个单位长度,再向上平移 5 个单位长度后得到的△A1B1C1,并求出平移后图形的面积.24.已知如图, CD ⊥ AB 于点 D, EF⊥ AB 于点 F,∠ 1= ∠2.(1)求证: CD ∥ EF;(2)判断∠ ADG 与∠ B 的数量关系?如果相等,请说明理由;如果不相等,也请说明理由.25.如图, A (﹣ 1, 0), C( 1,4),点 B 在 x 轴上,且AB=3 .(1)求点 B 的坐标;(2)求△ ABC 的面积;( 3)在 y 轴上是否存在点P,使以 A 、 B 、P 三点为顶点的三角形的面积为10?若存在,请直接写出点 P 的坐标;若不存在,请说明理由.2015-2016 学年广东省汕头市潮南区两英镇七年级(下)期中数学试卷参考答案与试题解析一、(共10 小题,每小题 3 分,满分30 分)1.49 的平方根是()A . 7B.﹣ 7 C.±7 D.【考点】平方根.【分析】根据一个正数有两个平方根,它们互为相反数解答即可.【解答】解:∵(±7)2=49 ,∴ ±=±7,故选: C.【点评】本题考查了平方根的概念,掌握一个正数有两个平方根,它们互为相反数; 0 的平方根是 0;负数没有平方根是解题的关键.2.如图所示的图案分别是大众、奥迪、奔驰、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.【解答】解:观察图形可知,图案 B 可以看作由“基本图案”经过平移得到.故选: B.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选 A 、C、 D.3.在下列各数: 3.1415926、、0.2、、、、中无理数的个数是()A.2B.3C.4D.5【考点】无理数.【分析】根据无理数的定及常的无理数的形式即可判定.【解答】解:在下列各数: 3.1415926、、0.2、、、、中,根据无理数的定可得,无理数有、两个.故 A.【点】此主要考了无理数的定,解要注意根号的要开不尽方才是无理数,无限不循小数无理数.如π,,0.8080080008⋯(2016春?潮南区期中)如所示,点 E 在 AC 的延上,下列条件中不能判断BD ∥AE 的是()A .∠ 1=∠ 2B .∠ D+ ∠ACD=180 °C.∠ D=∠ DCE D.∠ 3=∠4【考点】平行的判定.【分析】根据平行的判定,逐个判断即可.【解答】解: A 、根据∠ 1=∠2 不能推出BD ∥ AE ,故本正确;B、∵∠ D+ ∠ ACD=180 °,∴ BD ∥AE ,故本;C、∵∠ D= ∠ DCE,∴ BD ∥AE ,故本;D、∵∠ 3= ∠ 4,∴BD ∥AE ,故本;故 A.【点】本考了平行的判定的用,能熟平行的判定定理是解此的关,注意:平行的判定有:① 同位角相等,两直平行,② 内角相等,两直平行,③ 同旁内角互,两直平行.5.下列运算正确的是()A .B .(﹣ 3)3=27 C.=2D.=3【考点】立方根;有理数的乘方;平方根;算术平方根.【分析】根据算术平方根、立方根计算即可.【解答】解: A 、,错误;B、(﹣ 3)3=﹣ 27,错误;C、,正确;D、,错误;故选 C【点评】此题考查算术平方根、立方根,关键是根据算术平方根、立方根的定义计算.6.点 A(, 1)关于 y 轴对称的点的坐标是()A .(﹣,﹣ 1) B.(﹣, 1) C.(,﹣ 1) D.(, 1)【考点】关于 x 轴、 y 轴对称的点的坐标.【分析】根据关于y 轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【解答】解: A (,1)关于y轴对称的点的坐标是(﹣,1),故选: B.【点评】本题考查了关于 y 轴对称的点的坐标,关于 y 轴对称的点的纵坐标相等,横坐标互为相反数.7.如果∠ α=30°,那么∠α的余角是()A . 30° B. 150°C. 60° D. 70°【考点】余角和补角.【分析】根据互为余角的两角之和为90°,进行计算即可得出答案.【解答】解:∵∠α=30°,∴∠ α的余角 =90 °﹣ 30°=60 °.故选 C.【点评】此题考查了余角的知识,属于基础题,解答本题的关键是掌握互为余角的两角之和为90°.8.若 y 轴上的点P 到 x 轴的距离为3,则点 P 的坐标是()A .( 3, 0) B.( 0, 3) C.( 3,0)或(﹣ 3, 0) D .( 0, 3)或( 0,﹣ 3)【考点】点的坐标.【分析】由点在 y 轴上首先确定点P 的横坐标为0,再根据点P 到 x 轴的距离为3,确定 P 点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.【解答】解:∵ y 轴上的点P,∴P 点的横坐标为0,又∵点 P 到 x 轴的距离为3,∴P 点的纵坐标为±3,所以点 P 的坐标为( 0, 3)或( 0,﹣ 3).故选: D.【点评】此题考查了由点到坐标轴的距离确定点的坐标,特别对于点在坐标轴上的特殊情况,点到坐标轴的距离要分两种情况考虑点的坐标.9.下列命题中正确的有()①相等的角是对顶角;② 在同一平面内,若a∥ b, b∥c,则 a∥ c;③ 同旁内角互补;④ 互为邻补角的两角的角平分线互相垂直.A.0 个 B.1 个 C.2 个D.3 个【考点】命题与定理.【分析】根据对顶角的性质、平行公理、平行线的判定定理和垂直的定义对各个选项进行判断即可.【解答】解:相等的角不一定是对顶角,① 错误;在同一平面内,若a∥ b, b∥ c,则 a∥ c,②正确;同旁内角不一定互补,③ 错误;互为邻补角的两角的角平分线互相垂直,④ 正确,故选: C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣ 1),(﹣ 1,2),( 3,﹣ 1),则第四个顶点的坐标为()A .( 2, 2) B.( 3, 2) C.( 3,3) D .( 2, 3)【考点】 坐标与图形性质;矩形的性质.【分析】 本题可在画出图后,根据矩形的性质,得知第四个顶点的横坐标应为3,纵坐标应为 2.【解答】 解:如图可知第四个顶点为:即:( 3, 2).故选: B .【点评】 本题考查学生的动手能力,画出图后可很快得到答案.二、填空题(请将正确答案填在每题后面的横线上)11.( 1)计算 = 5 ;( 2)如果 x= ,那么 x 2= 5 .【考点】算术平方根.【分析】 根据平方运算,可得答案.【解答】 解;( 1) 52=25,,如果 x=2,,那么 x =5故答案为: 5, 5.【点评】 本题考查了算术平方根,平方运算是求平方根的关键.12.如果式子有意义,则 x 的取值范围是 x ≥1 .【考点】 二次根式有意义的条件.【分析】 根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】 解:由题意得, x ﹣ 1≥0,解得, x ≥1,故答案: x≥1.【点】本考的是二次根式有意的条件,掌握二次根式中的被开方数必是非数是解的关.13.把命“ 角相等”改写成“如果⋯那么⋯”的形式:如果两个角是角,那么它相等.【考点】命与定理.【分析】命中的条件是两个角相等,放在“如果”的后面,是两个角的角相等,放在“那么”的后面.【解答】解::角,:相等,故写成“如果⋯那么⋯”的形式是:如果两个角是角,那么它相等,故答案:如果两个角是角,那么它相等.【点】本主要考了将原命写成条件与的形式,“如果”后面是命的条件,“那么”后面是条件的,解决本的关是找到相的条件和,比.14.如,已知 AB 、 CD 相交于点 O, OE⊥AB ,∠ EOC=28 °,∠ AOD=62 度.【考点】角的算;角、角.【】算.【分析】根据余角和角的性可求得.【解答】解:∵ OE⊥ AB ,∠ EOC=28 °,∴∠ COB=90 ° ∠ EOC=62 °,∴∠ AOD=62 °(角相等).故答案: 62.【点】此主要考了角相等的性以及利用余角求另一角.15.1的相反数是1; 64 的立方根是4.【考点】数的性;立方根.【分析】根据只有符号不同的两个数互为相反数,开立方运算,可得答案.【解答】解: 1﹣的相反数是﹣ 1;﹣ 64 的立方根是﹣4,故答案为:﹣ 1,﹣ 4.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数,注意负数的立方根是负数.16.如图, a∥ b, M , N 分别在 a, b 上, P 为两平行线间一点,那么∠1+∠ 2+∠ 3= 360°.【考点】平行线的性质.【分析】首先作出 PA∥ a,根据平行线性质,两直线平行同旁内角互补,可以得出∠1+∠ 2+∠3 的值.【解答】解:过点 P 作 PA∥ a,∵ a∥b, PA∥ a,∴ a∥b∥ PA,∴∠ 1+∠ MPA=180 °,∠ 3+ ∠ APN=180 °,∴∠ 1+∠ MPA+ ∠ 3+∠ APN=180 °+180°=360 °,∴∠ 1+∠ 2+∠3=360 °.故答案为: 360.【点评】此题主要考查了平行线的性质,作出PA ∥ a 是解决问题的关键.三、解答题17.计算:(﹣ 2)3×+|+ |+ ×(﹣ 1)2016.【考点】实数的运算.【专题】计算题;实数.【分析】原式利用乘方的意义,算术平方根、立方根定义,绝对值的代数意义计算即可得到结果.【解答】解:原式 =﹣ 8× +2﹣+=﹣1+2=1 .【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.218.求式中x 的值: 3( x﹣ 1) +1=28 .【专题】计算题;实数.【分析】方程整理后,利用平方根定义开方即可求出x 的值.【解答】解:方程整理得:3( x﹣ 1)2=27,即( x﹣1)2=9,开方得: x﹣1= ±3,解得: x=4 或 x= ﹣ 2.【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.19.如图,已知∠1= ∠2,∠ B=∠ C,可推得AB ∥ CD.理由如下:∵∠ 1= ∠ 2(已知),且∠ 1= ∠ CGD (对顶角相等)∴∠ 2= ∠ CGD (等量代换)∴ CE∥BF(同位角相等,两直线平行)∴∠ C =∠ BFD (两直线平行,同位角相等)又∵∠ B= ∠C(已知)∴∠ BFD= ∠B (等量代换)∴ AB ∥CD (内错角相等,两直线平行)【考点】平行线的判定与性质.【专题】推理填空题.【分析】首先确定∠ 1=∠ CGD 是对顶角,利用等量代换,求得∠ 2=∠ CGD ,则可根据:同位角相等,两直线平行,证得:CE∥BF ,又由两直线平行,同位角相等,证得角相等,易得:∠BFD= ∠B ,则利用内错角相等,两直线平行,即可证得:AB ∥ CD.【解答】解:∵∠1= ∠2(已知),且∠ 1= ∠ CGD (对顶角相等),∴∠ 2= ∠ CGD (等量代换),∴ CE∥BF(同位角相等,两直线平行),∴∠ C= ∠ BFD (两直线平行,同位角相等),又∵∠ B= ∠C(已知),∴∠ BFD= ∠B (等量代换),∴ AB ∥CD (内错角相等,两直线平行).故答案为:(对顶角相等),(同位角相等,两直线平行), C,(两直线平行,同位角相等),(内错角相等,两直线平行).【点评】此题考查了平行线的判定与性质.注意数形结合思想的应用.四、解答题20.如图,已知:∠1=∠ 2,∠ 3=108°,求∠ 4 的度数.【考点】平行线的判定与性质.【分析】由∠ 1=∠ 2,根据同位角相等,两直线平行,即可求得AB ∥ CD,又由两直线平行,同旁内角互补,即可求得∠ 4 的度数.【解答】解:∵∠ 1= ∠2,∴AB ∥CD .∴∠ 3+ ∠ 4=180°,∵∠ 3=108 °,∴∠ 4=72 °.【点评】 此题考查了平行线的判定与性质.注意同位角相等,两直线平行与两直线平行,同旁内角互补.21.已知+|2x ﹣3|=0.( 1)求x , y 的值;(2)求x+y 的平方根.【考点】 非负数的性质:算术平方根;非负数的性质:绝对值;平方根.【分析】 ( 1)根据非负数的性质求出x 、y 的值;( 2)根据( 1)求出 x+y ,开方即可.【解答】 解:( 1)∵≥0, |2x ﹣ 3|≥0,+|2x ﹣ 3|=0,∴ 2x+4y ﹣ 5=0, 2x ﹣ 3=0,则 x= , y= .( 2) x+y= + =2,则 x+y 的平方根为 ±.【点评】 本题考查了非负数的性质:几个非负数的和为0 时,这几个非负数都为0.22.已知的整数部分为 a ,小数部分为 b .求:( 1) a 、 b 的值;( 2)式子 a 2﹣a ﹣ b 的值.【考点】 估算无理数的大小.【分析】 ( 1)根据 2< < 3,即可解答;( 2)代入 a ,b 的值,即可解答.【解答】 解:∵ 2< < 3,∴ 的整数部分为 2,小数部分为 ﹣ 2,∴ a=2, b= ﹣ 2.( 2) a 2﹣ a ﹣ b=22﹣ 2﹣( ﹣ 2) =4﹣ .【点评】本题考查了估算无理数的大小,解决本题的关键是估算的范围.五、解答题(每小题9 分,共27 分)23.在平面直角坐标系xoy中,已知△ ABC三个顶点的坐标分别为 A (﹣ 2,0), B(﹣ 4,4), C ( 3,﹣ 3).( 1)画出△ABC;( 2)画出△ABC 向右平移 3 个单位长度,再向上平移 5 个单位长度后得到的△A1B1C1,并求出平移后图形的面积.【考点】作图 -平移变换.【分析】( 1)根据 A , B, C 三点坐标描出各点,顺次连接各点即可;(2)根据图形平移的性质画出△A 1B 1C1,利用正方形的面积减去三个顶点上三角形的面积即可.【解答】解:( 1)如图:(2)如图, S△ A 1B1C1面积 =7 ×7﹣×2×4﹣×2×5﹣×7×7=49﹣ 4﹣ 5﹣=.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.24.已知如图, CD ⊥ AB 于点 D, EF⊥ AB 于点 F,∠ 1= ∠2.(1)求证: CD ∥ EF;(2)判断∠ ADG 与∠ B 的数量关系?如果相等,请说明理由;如果不相等,也请说明理由.【考点】平行线的判定.【分析】( 1)根据垂直于同一条直线的两条直线平行即可证明.(2)结论∠ ADG= ∠B .只要证明 DG∥ BC 即可解决问题.【解答】( 1)证明:∵ CD ⊥ AB 于点 D ,EF⊥ AB 于点E,∴ CD ∥EF.(2)解:结论∠ ADG= ∠ B.理由:∵ CD∥ EF,∴∠ 2=∠3,∵∠ 1=∠2,∴∠ 1=∠3,∴DG∥BC ,∴∠ ADG= ∠B.【点评】本题考查平行线的性质和判定、垂线的定义等知识,解题的关键是熟练掌握平行线的判定和性质,属于基础题,中考常考题型.25.如图, A (﹣ 1, 0), C( 1,4),点 B 在 x 轴上,且AB=3 .( 1)求点 B 的坐标;( 2)求△ ABC 的面积;( 3)在 y 轴上是否存在点P,使以 A 、 B 、P 三点为顶点的三角形的面积为10?若存在,请直接写出点 P 的坐标;若不存在,请说明理由.【考点】坐标与图形性质;三角形的面积.【分析】( 1)分点 B 在点 A 的左边和右边两种情况解答;( 2)利用三角形的面积公式列式计算即可得解;( 3)利用三角形的面积公式列式求出点P 到 x 轴的距离,然后分两种情况写出点P 的坐标即可.【解答】解:( 1)点 B 在点 A 的右边时,﹣ 1+3=2,点 B 在点 A 的左边时,﹣ 1﹣ 3=﹣ 4,所以, B 的坐标为( 2, 0)或(﹣ 4,0);( 2)△ ABC 的面积 =×3×4=6;(3)设点 P 到 x 轴的距离为 h,则×3h=10 ,解得 h= ,点 P 在y 轴正半轴时,P( 0,),点 P 在 y 轴负半轴时,P( 0,﹣),综上所述,点P 的坐标为( 0,)或(0,﹣).【点评】本题考查了坐标与图形性质,主要利用了三角形的面积,难点在于要分情况讨论.。
2019-2020年七年级下学期期中考试数学试题含答案解析
2019-2020年七年级下学期期中考试数学试题含答案解析一、选择题:(每题3分,共24分)1.在下列实例中,属于平移过程的个数有.在下列实例中,属于平移过程的个数有 ( ) ①时针运行过程;②电梯上升过程;③火车直线行驶过程;④地球自转过程;⑤生产过程中传送带上的电视机的移动过程.中传送带上的电视机的移动过程. A .1个 B .2个 C .3个 D .4个2.下列计算:(1)2nnna a a ×=,(2)6612a a a +=,(3)55c c c ×=,(4)778222+=,(5)3339(3)9xy x y = 中正确的个数为( ) A .4个B .3个C .2个D .1个3.下列各式能用平方差公式计算的( ) A .(3)(3)a b a b ---+ B .(3)()a b a b +- C .(3)(3)a b a b +--D .(3)(3)a b a b -+-4.若一个多边形每一个内角都是144º,则这个多边形的边( ) A .6 B .8 C .10 D .12 5.已知方程组2122x y x y k +=ìí+=-î的解满足2x y -=,则k 的值是( ) A .3k = B .5k = C . 1k =- D . 1k =6.已知,,a b c 是三角形的三边,那么代数式2222a ab b c -+-的值( ) A .大于零.大于零B .等于零.等于零C .小于零.小于零D .不能确定.不能确定 7.如图:将一张长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,ED′的延长线与BC 交与点G. 若∠BFC′=70°,则∠1= ( ) A .100°B .110°C .120°D .125°8.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为( ) A . 6 B .7 C .8 D.9 绿化二、填空题:(每题3分,共30分)9.钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公里,最小的岛是飞濑岛,面积约为0.0008平方公里,请用科学记数法表示飞濑岛的面积约为 平方公里.10.若2212x y -=,4x y +=,则x y -= .11. 若等腰三角形的两边的长分别是5cm 、10cm ,则它的周长为则它的周长为 cm . 12.若2,3==nma a , 则=-nm a2_________.13如果(2)()x x p ++的乘积不含一次项,那么p = 14.已知0222)21(,)21(,2,)2.0(-=-=-=-=--d c ba ,则比较a 、b 、c 、d 的大小结果是果是 .(按从小到大的顺序排列)15.某人要买一件25元的商品元的商品,,身上只带2元和5元两种人民币(数量足够),而商店没有零钱,那么他付款的方式有钱,那么他付款的方式有 种.16如右图,一块六边形绿化园地,六角都做有半径为R 的圆形喷水池,则这六个喷水池占去的绿化园地的面积为占去的绿化园地的面积为 .(结果保留p )17.如下图,在△ABC 中,∠B=600,∠C=400,AD ⊥BC 于D ,AE 平分∠BAC ;则∠DAE=________.18.如图,在△ABC 中,∠A=60°,BD 、CD 分别平分∠ABC 、∠ACB ,M 、N 、Q 分别在DB 、DC 、BC 的延长线上,BE 、CE 分别平分∠MBC 、∠BCN ,BF 、CF 分别平分∠EBC 、∠ECQ ,则∠F= .三、解答题:(共96分)19.(本题满分8分)计算(或化简): (1)5243)()()2(a a a -¸+- ((2)2)1()4)(4(---+a a a20.(本题满分8分)将下列各式分解因式:分)将下列各式分解因式:(1)26126a a -+- (2)222(2)4(2)x x x +-+ 21.(本题满分8分)解下列方程组:分)解下列方程组:第17题图题图 第18题图题图第16题图题图(1)8312x y x y -=ìí+=î(2)ïîïíì=-+=+1323241y x x y22.(本题满分8分)先化简,再求值:2(2)(2)3(2)a b a b a b +-+-,其中1a =,2b =-.23.(本题满分10分)列方程组解决问题:为了净化空气,美化环境,某县城兴华小区计划投资1.8万元种玉兰树和松柏树共80棵,已知某苗圃负责种玉兰树和松柏树的价格分别为:300元/棵,200元/棵,问可种玉兰树和松柏树各多少棵?棵,问可种玉兰树和松柏树各多少棵?24.(本题满分10分)基本事实:“若0ab =,则00a b ==或”.一元二次方程220x x --=可通过因式分解化为(2)(1)0x x -+=,由基本事实得2010x x -=+=或,即方程的解为12x =;21x =-.(1)试利用上述基本事实,解方程:220x x -=:(2)若2222()(1)20x y x y ++--=,求2222x y +的值.的值.25.(本题满分10分)如图,∠1=52°,∠2=128°,∠C=∠D .探索∠A 与∠F 的数量关系,并说明理由并说明理由..26.(本题满分10分)如图,在方格纸内将△ABC 水平向右平移3个单位得到△A′B′C′. (1)利用网格点和直尺画出△A′B′C′; (2)画出AB 边上的高线CD ;(3)图中△ABC 的面积是的面积是 ; (4)△ABC 与△EBC 面积相等,在图中描出所有面积相等,在图中描出所有满足条件且异于A 点的格点E ,并记为E 1、E 2…………27.(本题满分12分)将若干个同样大小的小长方形纸片拼成如图形状的大长方形将若干个同样大小的小长方形纸片拼成如图形状的大长方形(小长方(小长方形纸片长为a ,宽为b),请你仔细观察图形,解答下列问题:A BC(1)a 与b 有怎样的关系?并简要说明理由有怎样的关系?并简要说明理由..(2)图中阴影部分的面积是大长方形面积的几分之几?并简要说明理由)图中阴影部分的面积是大长方形面积的几分之几?并简要说明理由..(3)请你仔细观察图中的一个阴影部分,请你仔细观察图中的一个阴影部分,根据它面积的不同表示方法写出含字母根据它面积的不同表示方法写出含字母a 、b 的一个等式一个等式..(等式不需要化简)(等式不需要化简)(第26题)ba28. (本题满分本题满分12分)在△ABC 中,∠ACB=90°,BD 是△ABC 的角平分线,P 是射线AC 上任意一点上任意一点(不与A 、D 、C 三点重合),过点P 作PQ ⊥AB ,垂足为Q ,交直线BD 于E . (1)如图①,当点P 在线段CD 上时,说明∠PDE=∠PED .(2)作∠CPQ 的角平分线交直线AB 于点F ,则PF 与BD 有怎样的位置关系?画出图形并说明理由.并说明理由.20142014——2015学年度第二学期期中考试七年级数学参考答案和评分标准一、选择题:(每题3分,共24分)题号题号 1 2 3 4 5 6 7 8 答案答案C C A C D C B B 二、填空题:(每题3分,共30分)题号题号 9 10 11 12 13 答案答案 4810-´3 25 922-题号题号 14 15 16 17 18 答案答案b a dc <<<3 22πR 010 015三、解答题:(共96分)19. (本题满分8分)计算:(每题4分) 解:(1)原式=39a -; (2)原式=217a -;20. (本题满分8分)将下列各式分解因式:(每题4分) (1)原式=26(1)a -- (2)原式=3(2)(2)x x +- 21. (本题满分8分)解下列方程组:(每题4分) (1)53x y =ìí=-î (2)373x y =-ìïí=-ïî22. (本题满分8分)分) 先化简,再求值:先化简,再求值:化简得2216122a ab b -+(6分)代入结果为:48(2分)分)23. (本题满分10分)分)解:设可种玉兰树x 棵,松柏树y 棵,由题意得:(1分)分)12的面积是的面积是 8 ;其余作图略,但必须按格点给分。
2019-2020年七年级下学期期中考试数学试卷及答案
2019-2020年七年级下学期期中考试数学试卷及答案求莉莉 刘少峰 一、精心选一选(每小题2分,共20分)1.将如图所示的图案通过平移后可以得到的图案是( )2、如图所示,已知直线a ∥b ,c 与a,b 均相交,∠1=60°则∠2为 ( ) A.60° B.70° C.120° D.150°3、下列是二元一次方程的是 ( ) A.3x=10 B. C. D.4、以为解的二元一次方程是( ) A. 2x-3y= -13B. y=2x+5C. y-4x=5D. x=y-35、下列计算不正确的是( ) A. B. C. D.6、下列各式能用完全平方式进行因式分解的是( ) A.B. C. D.7、如图,在边长为a 的正方形上剪去一个边长为b 的小正方形(a>b ),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是 ( )A .(a -b )2=a 2-2ab+b 2B .(a+b )2=a 2+2ab+b 2C . a 2-b 2= (a+b )(a -b ) D . a (a -b )= a 2-ab8、若代数式可以表示为的形式则的值是( )A.10B.11C.12D.139、《九章算术》是我国东汉初年编订的一部数学经典著作。
在它的“方程”一章里,一次方程组是由算筹布置而成的,《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排如图1、图2,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是:,类似地,图2所示的算筹图我们可以表述为( ) A 、 B 、 C 、 D 、2abc1第2题第9题图2第9题图1第7题题A. B.C.D.10、如图,把一张对面互相平行的纸条折成如图所示那样,EF 是折痕,若∠EFB=32°则下列结论正确的有( )(1)∠C′EF=32°(2)∠AEC=116°(3)∠BGE=64° (4)∠BFD=116° A. 1个 B. 2个 C. 3个 D. 4个 二、细心填一填(每小题3分,共30分)11、禽流感病毒直径约为0.00000205cm ,用科学计数法表示为_____________cm. 12、已知x +2y =2,用关于x 的代数式表示y ,则y = . 13、计算: . 14、分解因式2x 2-18 = .15、如图,AB ∥CD ,∠B=68°,∠E=20°,则∠D 的度数为__________.16、已知代数式-3xm-1y 3与2x n y m+n 是同类项,那m=_________,n=_________17、某同学解方程组 的解为 ,由于不小心,滴上了两滴墨水, 刚好遮住了两个数●和★,请你帮他找回这个数,●= 。
2019-2020学年七年级(下)期中数学试卷(解析版)
2019-2020学年七年级(下)期中数学试卷(时间:120分,满分150分)一、精心选一选(本题共10个小题,每小题4分,共40分,每小题只有一个正确选项) 1.在下列实数中,属于无理数的是------------------------------------------( )A .0B .2C .3D .1/32.如图,小手盖住的点的坐标可能为---------------------------------------( )A .(﹣1,1)B .(﹣1,﹣1)C .(1,1)D .(1,﹣1)3.如图,线段AB 是线段CD 经过平移得到的,那么线段AC 与BD 的关系是----------------------------------------------------------------------------------( ) A .平行且相等 B .平行 C .相交D .相等4.如图,直线a ,b 与直线c ,d 相交,若∠1=∠2,∠3=110°,则∠4=( )A .70°B .80°C .110°D .100°5.已知直线AB ,CB ,l 在同一平面内,若AB ⊥l ,垂足为B ,CB ⊥l ,垂足也为B ,则符合题意的图形可以是------------------------------------------( )6.若m >n ,下列不等式一定成立的是-------------------------------------( )A .m ﹣2>n+2B .2m >2nC .﹣>D .m 2>n 27.如图,已知∠A=60°,下列条件能判定AB ∥CD 的是--------------( )A .∠C=60°B .∠E=60°C .∠AFD=60°D .∠AFC=60°8.已知一个表面积为12㎡的正方体,则这个正方体的棱长为-------------------------------( )A .1mB .m C .6m D .3m9.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为-------------------------------------------------------------------------( ) A .B .C .D .……………密……………封……………线……………内……………不……………准……………答……………题…………………考室N O ._____ 考号N O .______ 班级______ 姓名__________ 座号_____①考生要写清姓名、班级及座号②答题时,字迹要清楚,卷面要整 ③考生不准作弊,否则作零分处理注意事项10.如图,在△ABC 中,BC=6,将△ABC 以每秒2cm 的速度沿BC 所在直线向右平移,所得图形对应为△DEF ,设平移时间为t 秒,若要使AD=2CE 成立,则t 的值为------------------------------------------------------------( ) A .6B .1C .2D .3二、细心填一填(本题共6个小题,每小题4分,共24分。
2019-2020年七年级数学下学期期中检测试题及答案
七年数学下学期期中试题2019-2020年七年级数学下学期期中检测试题及答案一、选择题(1-6每小题3分,7-12每小题4分,共42分) 1.下列语句中正确的是 ( )A .两个角互为补角,则一定有一个角是锐角,另一个角是钝角B .两条平行线被第三条直线所截,同旁内角相等C .过一点有且只有一条直线与这条直线平行D .两个角互为补角,和两个角所在位置没有关系 2.观察图形,下列说法正确的个数是 ( )①过点A 有且只有一条直线AC 垂直于直线l ; ②线段AB 、AC 、AD 中,线段AC 最短,根据是两点之间线段最短; ③线段AB 、AC 、AD 中,线段AC 最短,根据是垂线段最短; ④线段AC 的长是点A 到直线l 的距离。
A .1个B .2个C .3个D .4个DCBAd cba4321(第2题图) (第3题图) 3.如图,∠1=∠2,∠3=70,则∠4= ( )A .100°B .110°C .120°D .130° 4.已知x 轴上的点P 到y 轴的距离为3,则点P 的坐标为 ( ) A .(3,0) B .(0,3)或(0,-3) C .(0,3) D .(3,0)或(-3,0)5.在5×5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是 ( ) A 先向下移动1格,再向左移动1格 B 先向下移动1格,再向左移动2格 C 先向下移动2格,再向左移动1格D 先向下移动2格,再向左移动2格6.若ab=0,则p 点(a ,b )在 ( )A .x 轴上B .y 轴上C .坐标原点上D .x 轴或y 轴上7.将点P (-4,3)先向左平移2个单位,再向下平移1个单位后,则得到点P ´的坐标为 ( ) A .(-6,2) B .(-2,2) C .(-6,4) D .(-2,4) 8.若等腰三角形的两边长分别为5cm 和2cm ,则它的周长为 ( )图(2)图(1)M NN M 图1 图2A .12B .9C .9或12D .79. 已知一个多边形的每一个内角都等于144,则它的内角和为 ( ) A .1152 B .1440 C .1008 D .129610.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是 ( ) A 、第一次向左拐300,第二次向右拐300 B 、第一次向右拐500,第二次向左拐1300 C 、第一次向右拐500,第二次向右拐1300 D 、第一次向左拐500,第二次向左拐130011.如图,已知:AB ∥EF ,CE =CA ,∠E =65°,则∠CAB 的度数为( ) A .25° B .50° C .60° D .65° 12.等腰三角形的周长为24cm ,腰长为xcm ,则x 的取值范围是 ( ) A .x <6 B .6<x <12 C .0<x <12 D .x >12 二、填空题(每小题4分,共20分) 13.若三角形的三个内角的度数之比为1∶2∶6,则这三个内角的度数分是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年七年级数学下学期期中测试卷
(时间:90分钟总分:100分)
一、填空题(每题3分,共30分):
l、已知∠a的对顶角是81°,则∠a=______.
2、把“等角的补角相等”写成“如果…,那么…”的形式_________________________________.
3、在平面直角坐标系中,点P(-4,5)到x轴的距离为______,到y轴的距离为________.
4、若等腰三角形的边长分别为3和6,则它的周长为________.
5、如果P(m+3,2m+4)在y轴上,那么点P的坐标是________.
6、如果一个等腰三角形的外角为100°,则它的底角为________..
7、一个长方形的三个顶点坐标为(―1,―1),(―1,2)(3,―1),则第四个顶点的坐标
是______________.
8、将点P (-3,4)先向下平移3个单位,再向左平移2个单位后得到点Q,则点Q的坐标
是_____________.
9、武夷中学运动场需铺设草皮,现有正三角形、正四边形、正
五边形、正六边形、正八边形、正十边形6种形状的草皮,请
你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种
组合是.
10、观察下列球的排列规律(其中●是实心球,○是空心球):
●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2010个球止,共有实心球_____________个。
”
二、选择题(每题3分,共30分)
11、在同一平面内,两直线可能的位置关系是().
A.相交 B.平行 C.相交或平行 D.相交、平行或垂直
12、如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是( ).
(A)120° (B)130° (C)140° (D)150°
13、在△ABC中,已知∠A:∠B:∠C=1:2:3则△ABC是().
A、锐角三角形
B、直角三角形
C、钝角三角形 D以上都不对
54D
3E
21C B A 14、如果∠A 和∠B 的两边分别平行,那么∠A 和∠B 的关系是( ).
A.相等
B.互余或互补
C.互补
D.相等或互补
15、如右图,下列能判定AB ∥CD 的条件有( )个.
(1) ︒=∠+∠180BCD B ; (2)21∠=∠;
(3) 43∠=∠; (4) 5∠=∠B . A.1 B.2 C.3 D.4 第15题图
16、下列说法:①三角形的高、中线、角平分线都是线段;②内错角相等;③坐标平面内的
点与有序数对是一一对应;④因为∠1=∠2,∠2=∠3,所以∠1=∠3。
其中正确的是( ).
A .①③④
B .①②③④
C .①②④
D .③④
17、下列图形中,正确画出AC 边上的高的是( )
.
18、下面四个图形中,∠1与∠2是对顶角的图形( ).
A 、4个
B 、3个
C 、2个
D 、1个 19、如果mn<O ,且m>O ,那么点P(m 2,m-n)在( ).
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
20、三角形的三个内角( ).
A 、至少有两个锐角
B 、至少有一个直角
C 、至多有两个钝角
D 、至少有一个钝角
三、解答题(21-25题,每题5分,26、27、题、6分、9分,共40分).
21、已知一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.(5分)
22、如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C 与∠AED 的大小关系吗?并说明理
由. ( 5分)
23、如图,A点在B处的北偏东40°方向,C点在B处的北偏东85°方向,A点在C处的北
偏西45°方向,求∠B AC及∠B CA的度数.(5分)
24、在图所示的平面直角坐标系中表示下面各点:(5分)
A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,7)。
(1)A点到原点O的距离是__ __个单位长。
(2)将点C向左平移6个单位,它会与点重合。
(3)连接CE,则直线CE与y轴是什么位置关系?(4)点F到x、y轴的距离分别是多少?
25、如图,直线AD与AB、CD相交于A、D两点,EC、BF与AB、CD相交于E、C、B、F,
如果∠1=∠2,∠B=∠C.
求证:∠A=∠D.(5分)
26、如图在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°,求∠DAC,∠BOA(6分)
27、如图,AD为△ABC的中线,BE为△ABD的中线。
(9分)
(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为40,BD=5,则△BDE 中BD边上的高为多少?
28、探究(共8分)
已知,AB∥CD,分别探讨四个图形中∠APC,∠PAB,∠PCD的关系.
(1)请探究图1、图2中三个角的关系,并任选一个加以证明.
(2)猜想图3、图4中三个角的关系,不必说明理由. (提示:注意适当添加辅助线吆!)
参考答案
一、 填空题
1、81°
2、如果两个角相等,那么这两个角的补角也相等
3、5 4
4、15
5、(0,-2)
6、80°或50°
7、四
8、(3,2)
9、(-5,1) 10、112°
二、选择题
11、C 12、C 13、C 14、D 15、C 16、D 17、D 18、A 19、A 20、A
三、解答题
21、七边形
(1)
P
D C
B A (2)P
D C
B A
(3)P
D C
B A (4)P
D C B A
22、∠AED=∠C.
因为∠1+∠2=180°,又因为∠1+∠4=180°,所以∠2=∠4.
所以EF∥AB,所以∠3=∠5,因为∠3=∠B,所以∠5=∠B,
所以DE∥AB,所以∠AED=∠C
23、∠DAB=40°
∠DAC=85° ,DB∥CE,∠ECB=180°-85° =95°,∠ECA=45° ,所以∠BCA=95°-45°=50°
所以∠BAC=180°-50°-45°=85°
24、(1)3
(2)-3,-5
(3)平行
(4)7,5
25、证明:因为∠1=∠2,∠1=∠3(对顶角相等)
所以∠2=∠3,所以CE∥BF(同位角相等,两直线平行)
所以∠C=∠4(两直线平行,同位角角相等)
又因为∠B=∠C,所以∠B=∠4,
所以AB∥CD(内错角相等,两直线平行)
所以∠A=∠D(两直线平行,内错角相等)
26、78°
27、(1)55°(2)图略
(3)4。