Coupled electro-thermal simulation of a DC DC converter

合集下载

高速列车耦合大系统动力学研究

高速列车耦合大系统动力学研究

高速列车耦合大系统动力学研究张卫华【摘要】According to the structure and technical features of high-speed railway,the high-speed train,rail line,air flow,power supply and catenary which are relevant to the high-speed train and have an effect on the dynamic behavior of the high-speed train are coupled as a unified system. The dynamic model of coupled systems in high-speed trains are created by establishing the dynamic models of high-speed train,rail line,pantograph-catenary and power supply and the coupled interaction models of wheel-rail,pantograph-catenary,liquid-solid and electro-me-chanical. For the high speed train operation simulation requirements,this paper studied the train dynamics modeling and calculation method based on cyclic variable parameters method, the train-line coupled calculation method based on the slip model and the liquid-solid coupled calculation method based on the relaxation factor. the simulation of coupled systems in high-speed trains are realized.%根据高速铁路结构和技术特点,把高速列车以及与之相关并影响其动力学性能的线路、气流、供电和接触网等耦合系统作为一个统一的大系统,通过建立高速列车、线路、弓网及供电等子系统动力学模型,以及轮轨、弓网、流固和机电等耦合关系模型,形成高速列车耦合大系统动力学模型。

(凝聚态物理专业论文)钽铌酸钾及相关复合材料的制备和机理研究

(凝聚态物理专业论文)钽铌酸钾及相关复合材料的制备和机理研究

华中科技大学博士学位论文钽铌酸钾及相关复合材料的制备和机理研究姓名:***申请学位级别:博士专业:凝聚态物理指导教师:***20070517华中科技大学博士学位论文摘要随着激光和红外技术的发展,热释电材料及其应用的研究不断深入,已用作热释电探测器和热摄像管等器件,在工业生产、国防科技以及日常生活中都有广泛的用途。

陶瓷聚合物复合材料采用两相复合,可兼具两相材料的优点,因而是热释电材料研究的热点。

钽铌酸钾材料具有非凡的电光效应和热释电效应,是一种非常有潜力的材料。

针对钽铌酸钾(KTN)材料较高的制备温度始终障碍着材料的实用化,本文旨在探索KTN材料新的合成方法:低温水热、溶剂热和混合溶剂热法;并进而探索制备以KTN材料为基的热释电性能优异的复合材料。

为此重点从理论上唯象地探讨提高0-3铁电复合材料的热释电性能的可能途径,并从微观上讨论了材料的极化机理,进而预测了不同极化条件下0-3铁电复合材料热释电、压电性能的变化规律。

鉴于KTN材料的制备温度较高,本文探讨反应条件温和的新的制备工艺。

为此我们采用了水热合成技术:水热法、溶剂热法和混合溶剂热法制备KTN粉体,通过系统的大量实验优化工艺最终成功制备了高纯的KTN纳米粉体,并比较深入地探讨了其合成机理。

我们发现混合溶剂热法是温和条件下合成铁电KTN纳米材料的一种有效的新途径;并且KOH浓度和溶剂组分对产物影响很大。

XRD、SEM和TEM等分析表明混合溶剂热法合成的典型样品结晶度高,且为形状规则、纳米尺寸的单晶颗粒。

晶粒尺寸增大时,KTN晶粒发生立方-四方相变。

溶剂热法和混合溶剂热法的合成条件更温和,主要是由于溶剂中的异丙醇形成了超临界流体。

采用热压法制备了KTN/P(VDF-TrFE)0-3复合材料,初步研究了其介电、铁电和热释电性能。

XRD和SEM结果表明,材料无杂相,结晶良好,KTN粉体分布比较均匀、无大的团聚。

复合材料的介电常数较KTN陶瓷大大降低,室温时约为100。

基于iSIGHT平台的开关电源电热耦合仿真方法

基于iSIGHT平台的开关电源电热耦合仿真方法

基于iSIGHT平台的开关电源电热耦合仿真方法周月阁;郑会明;卢璐;刘守文;刘闯【摘要】In order to obtain accurate performance simulation of switching mode power supply (SMPS), the electro-thermal coupling effect between temperature and components should be considered. Ignoring electro-thermal coupling effect may cause the simulation inaccuracy of SMPS. A method of SMPS electro-thermal coupling modeling and simulation analysis was proposed based on iSIGHT platform. The equiva-lent circuit model of high-frequency transformer was established, and the parasitic parameters were ex-tracted based on finite element analysis. Then the relationship between characteristics of power semicon-ductor components and temperature was analyzed, and the electro-thermal models of Schottky diode and power MOSFET were established. Based on these models, a SMPS was carried out as an example.The circuit simulation model and the steady thermal field simulation were accomplished.Then iSIGHT platform was utilized to assemble electric simulation, thermal simulation, and automated data interaction of elec-tro-thermal coupling simulation. The electro-thermal coupling simulation method can improve the simula-tion precision of the electric and thermal characteristics,and describe the performance characteristics ac-curately. It provides another way for product optimization design.%为了实现开关电源性能特性的精确仿真分析,需要考虑温度与元器件之间的电热耦合效应,否则将无法准确模拟电源真实工作状态.提出一种基于iSIGHT平台的开关电源电热耦合建模与仿真分析方法.采用有限元仿真方法提取高频变压器分布参数,建立等效电路模型;分析功率半导体器件工作特性受温度的影响关系,建立肖特基二极管和功率MOSFET的电热耦合仿真模型.以某开关电源为对象,分别建立电路仿真模型和稳态热场仿真模型,采用iSIGHT 对电、热仿真过程进行集成,实现电热耦合仿真数据的自动化交互.该电热耦合仿真方法提高了电、热特性的仿真精度,可精确描述开关电源的性能特性与下位特性参数的关系,为产品优化设计提供了准确有效的手段.【期刊名称】《电机与控制学报》【年(卷),期】2017(021)010【总页数】9页(P85-93)【关键词】开关电源;电热耦合;高频变压器;电路仿真;温度仿真【作者】周月阁;郑会明;卢璐;刘守文;刘闯【作者单位】北京卫星环境工程研究所航天机电产品环境与可靠性试验技术北京市重点实验室,北京100094;北京卫星环境工程研究所航天机电产品环境与可靠性试验技术北京市重点实验室,北京100094;中国人民解放军理工大学通信工程学院,江苏南京210007;北京卫星环境工程研究所航天机电产品环境与可靠性试验技术北京市重点实验室,北京100094;北京卫星环境工程研究所航天机电产品环境与可靠性试验技术北京市重点实验室,北京100094【正文语种】中文【中图分类】TM40Abstract:In order to obtain accurate performance simulation of switching mode power supply (SMPS), the electro-thermal coupling effect betweentemperature and components should be considered. Ignoring electro-thermal coupling effect may cause the simulation inaccuracy of SMPS. A method of SMPS electro-thermal coupling modeling and simulation analysis was proposed based on iSIGHT platform. The equivalent circuit model of high-frequency transformer was established, and the parasitic parameters were extracted based on finite element analysis. Then the relationship between characteristics of power semiconductor components and temperature was analyzed, and the electro-thermal models of Schottky diode and power MOSFET were established. Based on these models, a SMPS was carried out as an example.The circuit simulation model and the steady thermal field simulation were accomplished.Then iSIGHT platform was utilized to assemble electric simulation, thermal simulation, and automated data interaction of electro-thermal coupling simulation. The electro-thermal coupling simulation method can improve the simulation precision of the electric and thermal characteristics, and describe the performance characteristics accurately. It provides another way for product optimization design.Keywords:switching mode power supply; electro-thermal coupling; high-frequency transformer switching; circuit simulation; thermal simulation由于对高功率密度、高集成、高可靠等日渐需求,功率损耗和温度分布的精确估计对开关电源的性能和稳健性优化至关重要。

电流互感器模型

电流互感器模型

A current transformer modelingYann Le FlochCedrat Recherche,Meylan,FranceLaboratoire d’Electrotechnique de Grenoble,Saint Martin d’He`res,France Christophe Gue´rin Cedrat Recherche,Meylan,FranceDominique BoudaudSchneider Electric,Grenoble,FranceGe´rard Meunier Laboratoire d’Electrotechnique de Grenoble,Saint Martin d’He`res,France,andXavier BrunotteCedrat Recherche,Meylan,FranceKeywords Electrical circuits,Transient flow,Nonlinearity,Magnetic fieldsAbstract This paper presents the modeling of a current transformer by various methods with the FLUX3D software.The technique used is based on the finite element method coupled with electric circuits.A magnetic scalar potential reduced versus T 0formulation ðT 0f 2f Þtaking into account the electric circuits with an air-gap is used for this purpose.The air-gap is described either by a thin volume region or by a surface region.1.IntroductionThe study deals with a current transformer used in a low voltage circuit breaker made by Schneider Electric (see Plate 1).FLUX3D software allows us to take into account nonlinear transient magnetic problems coupled with electric circuits.This software enables to model in an effective way the current transformers by introducing a thin volume air-gap.This solution can be used when modeling simple devices such as the current transformer presented in this paper.When modeling more complex devices,difficulties due to the geometrical description and the meshing of the thin volume air-gaps can occur.We would then like to model the thin volume air-gap in another way by using shell elements which are surface elements with a thickness.Thus,a new version which allows us to take into account electric circuits and surface air-gaps has been developed.We will describe the improvements obtained,thanks to the introduction of a surface air-gap with the electric circuits.A current transformer modeling 505COMPEL:The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,Vol.21No.4,2002,pp.505-511.q MCB UP Limited,0332-1649DOI 10.1108/033216402104377612.Description of the current transformerThe transformer is constituted by a magnetic core surrounded by two secondary coils connected in series.The finite element modeling (in time stepping and circuit equations)represents 1/8th of the device (see Figure 1).The simulated curves correspond to a primary sinusoidal excitation ðI 0¼11;137A and f ¼50Hz Þand a purely resistive load.The total simulation time (40ms)corresponds to the transient mode of the sensor.3.Formulation:T 0f 2fThe present formulation ðT 0f 2f Þ(Biro et al.,1993;Meunier et al.,1998)to treat couplings between electric circuits and magnetic devices is shown in Figure 2.Plate 1.The current transformerused for themodelingFigure 1.Description of thecurrenttransformerCOMPEL 21,4506In magnetic circuit (V t ):H ¼2grad ðf ÞB ¼m HIn air and in air-gap (V 0)H ¼k ¼1;m X I k t 0k 2grad ðf ÞB ¼m 0Hwhere m is the number of inductors.t 0k is calculated in the V 0region with a unit current in the inductor k ,such as:t 0k £n ¼0on G ¼V t >V 0With this assumption,the relation between current and voltage is (Piriou and Razek,1992):U k ¼R k I k þZV 0t 0k ·›B ›td V To compute t 0k ,we have two solutions.The first solution is to use edge elements,which is natural in order to take into account the surface condition t 0k £n ¼0on G .The other one is to compute nodal t 0k .For this purpose,we compute t 0k in the air (V 0)such ast 0k ¼h 0k 2grad ðdf k Þwhere h 0k is the magnetic field due to a unit current in the inductor k ,calculated with Biot and Savart’s formula (nodal value)in the air (V 0),df k the reduced-total increment (Simkin and Trowbridge,1979;Luong et al.,1996)calculated with a unit current in the inductor k such as:grad ðdf k Þ£n ¼h 0k £n on G ¼V t >V 0:Figure 2.Formulation T 0f 2fconfigurationA current transformer modeling 507Remark on cancellation errors We do not have cancellation errors because we compute and use h 0k in the air(V 0)and the total scalar potential in the magnetic circuit (V t ).Thus,we can use a non linear material in the magnetic circuit without any cancellation errors.Thus,on G ,we respect the conditions:t 0k £n ¼0because t 0k ¼h 0k 2grad ðdf k Þand we compute df k as follows:h 0k £n ¼grad ðdf k Þ£nNow,we will see which solution we choose to model our current transformer.4.Modeling air-gapsOne of the difficulties of the current transformer modeling is to take into account thin air-gaps.In our case,for a 40mm long device the air-gap thickness is 50m m.This scale difference makes the device difficult to geometrically describe it and to mesh it (see Figure 3).Thus,we would like to model thin volume air-gaps by surface air-gaps with a thickness.For this purpose,we have to use surface elements with potential jump (shell element).Our experience in magnetostatics leads us to use shell elements with a nodal approximation (Guerin et al.,1994).The solution is then to use the formulation presented above with the nodal t 0k which enables us to describe the air gap with shell elements.First,we will present in a short way the shell elements and its limitation and,in a second part,the t 0k computation.4.1Shell elementsAs mentioned before,we can model air-gaps with shell elements.Indeed,the magnetic field is mainly normal to the air-gap surface,so there is a jump of the magnetic scalar potential in the thickness direction.Therefore,the new element will be a surface element in the plane of the air-gap and will have double nodes (see Figure 4).Each couple of double nodes will have the same coordinates and Figure 3.Surface mesh of theair-gap and the magneticcircuitCOMPEL 21,4508the shell element will be considered as a conventional prismatic element (Guerin et al.,1994).However,shell elements have thickness limitations.The ratio between the air-gap thickness and the device length has to be smaller than 1/10and higher than 1/105.We now use these shell elements with the T 0f 2f formulation with a nodal t 0k presented below.4.2t 0k Computation with shell elements When we compute df k for the inductor k ,we impose:df k ib 2df k it ¼constant ¼1on shell elements (Notation on Figure 4).This constant is the current in theinductor k (1A)because of the Ampe`re’s law (Luong et al.,1996).This reduced-total increment enables us to make the potential jump between the two sides of the air-gap surface (see Figure 5).Figure 4.Prismatic element (a),shell element withpotential jump(b)Figure 5.Reduced-total increment(df B 2)calculated with aunit current in theinductor B2and thesurface mesh of themagneticcircuitA currenttransformer modeling 5095.The results We have performed two simulations,one with a thin volume air-gap and an edge t 0k ,and another with a surface air-gap and a nodal t 0k .We compare these two computations with measurements given by Schneider Electric.For the thin volume air-gap and the surface air-gap,the currents obtained are not sinusoidal due to the saturation of the magnetic material (see Figure 6).The shapes of theresulting waves for both simulations are the same (see Figure 6)and are accurate in comparison with measurements (less than 5per cent of variation on the whole simulation period).The more accurate the provided B (H )curve of the magnetic material,especially at the saturation bend,the smaller the variation between simulation and measurements.The contribution of the surface air-gap leads to strong improvements in terms of computation time which is divided by four (see Table I)without modifying the results (see Figures 6and 7).In Figure 7,the isovalues of the Flux density in the air are almost identical,made smoother with the surface air-gap.This difference is due to the t 0k calculated with edge elements used with the volume air-gap and with nodal elements used with the surface air-gap.Method Degrees of freedom Computing time (CPU)Volume air-gap 187216h 12min 56s Surface air-gap 53541h 25min 55sTable I.Computation timefor the variousmethods (for 80timesteps)with PentiumIII 450MHz,512Moof RAM Figure 6.Induced current in thesecondary circuit(B2)COMPEL 21,45106.ConclusionFLUX3D software is therefore a powerful tool for modeling and analyzing low voltage current transformers.The difficulties of the current transformer modeling is to take into account thin air-gaps.To avoid the problems linked to air-gap geometrical descriptions and meshing,a new computation of t 0k is introduced which allows us to take into account both circuit equations and surface air-gaps with thickness.This contribution strongly improves problem description (geometry and mesh of thin volume regions),computation times (four times faster)as well as the smoothness of the isovalue results.ReferencesBiro,O.,Preis,K.,Renhart,W.,Vrisk,G.and Richter,K.R.(1993),“Computation of 3D currentdriven skin effect problem using a current vector potential”,IEEE Trans.Magn.,Vol.29No.2,pp.1325-8.Guerin,C.,Tanneau,G.,Meunier,G.,Brunotte,X.and Albertini,J.B.(1994),“Three dimensionalmagnetostatic finite elements for gaps and iron shells using magnetic scalar potentials”,IEEE Trans.Magn.,Vol.30No.5,pp.2885-8.Luong,H.T.,Mare´chal,Y.,Labie,P.,Guerin, C.and Meunier,G.(1996),“Formulation of magnetostatic problems in terms of source,reduced and total scalar potentials”,Proccedings of 3rd International Worshop on Electric And Magnetic Field,Liege (Belgium),6-9May 1996,pp.321-6.Meunier,G.,Luong,H.T.and Mare´chal,Y.(1998),“Computation of coupled problem of 3D eddy current and electrical circuit by using T 02T 2f formulation”,IEEE Trans.Magn.,Vol.34No.5,pp.3074-7.Piriou,F.and Razek,A.(1992),“A non-linear coupled 3D model for magnetic field and electriccircuit equations”,IEEE Trans.Magn.,Vol.28No.2,pp.1295-8.Simkin,J.and Trowbridge,C.W.(1979),“On the used of a total scalar potential in the numericalsolution of field problems in electromagnetics”,Int.J.Num.Meth.Eng.,Vol.14,pp.423-40.Figure 7.Flux density (Tesla)attime t ¼0:033s withvolume air-gap (a)andwith surface air-gap(b)A currenttransformer modeling 511。

电路中英文缩写

电路中英文缩写

电路中的英文缩写电子类常用缩写 (英文翻译 )AC(alternating current) 交流 (电)A/ D(analog to digital) 模拟/数字转换ADC(analog to digital convertor) 模拟/数字转换器ADM(adaptive delta modulation) 自适应增量调制ADPCM(adaptive differential pulse code自适应modulation) 差分脉冲编码调制ALU(arithmetic logic unit) 算术逻辑单元ASCII(American standard code for information interchange) 美国信息交换标准码AV(audio visual) 声视,视听BCD(binary coded decimal) 二进制编码的十进制数BCR(bi-directional controlled rectifier) 双向晶闸管 BCR(buffer courtier reset) 缓冲计数器BZ(buzzer) 蜂鸣器,蜂音器C(capacitance , capacitor) 电容量,电容器CATV(cable television) 电缆电视CCD(charge-coupled device) 电荷耦合器件CCTV(closed-circuit television) 闭路电视CMOS(complementary) 互补 MOSCPU(central processing unit)** 处理单元CS(control signal) 控制信号D(diode) 二极管DAST(direct analog store technology) 直接模拟存储技术DC(direct current) 直流DIP(dual in-line package) 双列直插封装DP(dial pulse) 拨号脉冲DRAM(dynamic random access memory) 动态随机存储器DTL(diode-transistor logic) 二极管晶体管逻辑DUT(device under test) 被测器件DVM(digital voltmeter) 数字电压表ECG(electrocardiograph) 心电图ECL(emitter coupled logic) 射极耦合逻辑EDI(electronic data interchange) 电子数据交换EIA(Electronic Industries Association) 电子工业联合会EOC(end of conversion) 转换结束EPROM(erasable programmable read only memory) 可擦可编程只读存储器EEPROM(electrically EPROM) 电可擦可编程只读存储器ESD(electro-static discharge) 静电放电FET(field-effect transistor) 场效应晶体管FS(full scale) 满量程F/ V(frequency to voltage convertor) 频率/电压转换FM(frequency modulation) 调频FSK(frequency shift keying) 频移键控FSM(field strength meter) 场强计FST(fast switching快速晶闸管shyster)FT(fixed time) 固定时间FU(fuse unit) 保险丝装置FWD(forward) 正向的GAL(generic array logic) 通用阵列逻辑GND(ground) 接地,地线GTO(Sate turn off thruster) 门极可关断晶体管HART(highway addressable remote transducer) 可寻址远程传感器数据公路HCMOS(high density COMS) 高密度互补金属氧化物半导体 ( 器件)HF(high frequency) 高频HTL(high threshold logic) 高阈值逻辑电路HTS(heat temperature sensor) 热温度传感器IC(integrated circuit) 集成电路ID(international data) 国际数据IGBT(insulated gate bipolar transistor) 绝缘栅双极型晶体IGFET(insulated gate field effect transistor) 绝缘栅场效应晶体管I / O(input / output) 输入/输出I / V(current to voltage convertor) 电流- 电压变换器IPM(incidental phase modulation) 附带的相位调制IPM(intelligent Power module) 智能功率模块IR(infrared radiation) 红外辐射IRQ(interrupt request) 中断请求JFET(junction field effect transistor) 结型场效应晶体管LAS(light activated switch) 光敏开关LASCS(light activated silicon controlled switch) 光控可控硅开关LCD(liquid crystal display) 液晶显示器min(minute) 分MOS(l oxide semiconductor) 金属氧化物半导体 MOSFET(l oxide semiconductor FET) 金属氧化物半导体场 效应晶体管 N(negative) 负NMOS(N-channel l oxide semiconductor FET) N 沟道 MOSFETNTC(negative temperature coefficient)LDR(light dependent resistor) 光敏电阻 LED(light emitting diode)发光二极管LRC(longitudinal redundancy check) 纵向冗余 ( 码) 校验LSB(leastsignificant bit) 最低有效位 LSI(1arge scaleintegration)大规模集成电路M(motor) 电动机MCT(MOS controlled gyrator)场控晶闸管 MIC(microphone) 话筒,微音器,麦克风负温度系数OC(over current) 过电流OCB(overload circuit breaker) 过载断路器OCS(optical communication system) 光通讯系统OR(type of logic circuit) 或逻辑电路OV(over voltage) 过电压P(pressure) 压力FAM(pulse amplitude modulation) 脉冲幅度调制PC(pulse code) 脉冲码PCM(pulse code modulation) 脉冲编码调制PDM(pulse duration modulation) 脉冲宽度调制PF(power factor) 功率因数PFM(pulse frequency modulation) 脉冲频率调制PG(pulse generator) 脉冲发生器PGM(programmable) 编程信号PI(proportional-integral(controller)) 比例积分(控制器 )PID(proportional-integral-比例积differential(controller)) 分微分 (控制器)PIN(positive intrinsic-negative) 光电二极管PIO(parallel input output) 并行输入输出 PLD(phase-locked detector) 同相检波 PLD(phase-locked discriminator) 锁相解调器PLL(phase-locked loop) 锁相环路PMOS(P-channel l oxide semiconductor FET) P 沟道MOSFETP-P(peak-to-peak) 峰 -- 峰PPM(pulse phase modulation) 脉冲相位洲制PRD(piezoelectric radiation detector) 热电辐射控测器PROM(programmable read only memory) 可编只读程存储器 PRT(platinum resistance thermometer) 铂电阻温度计 PRT(pulse recurrent time) 脉冲周期时间PUT(programmable unijunction可编程单结晶体transistor)PWM(pulse width modulation) 脉宽调制R(resistance ,resistor) 电阻,电阻器 RAM(random access memory) 随机存储器RCT(reverse conducting thyristor) 逆导晶闸管REF(reference) 参考,基准REV(reverse) 反转R/F(radio frequency) 射频RGB(red/green /blue) 红绿蓝ROM(read only memory) 只读存储器RP(resistance potentiometer) 电位器RST(reset) 复位信号RT(resistor with inherent variability dependent)热敏电阻RTD(resistance temperature detector) 电阻温度传感器RTL(resistor transistor电阻晶体管逻辑(电路)logic)RV(resistor with inherent variability dependent on thevoltage) 压敏电阻器SA(switching assembly) 开关组件SBS(silicon bi-directional 硅双向开关,双向硅开SCR(silicon controlled 可控硅整流器SCS(safety control switch) 安全控制开关SCS(silicon controlled 可控硅开关SCS(speed control system) 速度控制系统SCS(supply control system) 电源控制系统SG(spark gap) 放电器SIT(static induction transformer) 静电感应晶体管SITH(static inductionthyristor)静电感应晶闸管SP(shift pulse) 移位脉冲SPI(serial peripheral 串行外围接口SR(sample realy ,saturable reactor) 取样继电器,饱和电抗器SR(silicon rectifier) 硅整流器SRAM(static random access memory) 静态随机存储器SSR(solid-state relay) 固体继电器SSR(switching select repeater) 中断器开关选择器SSS(silicon symmetrical switch) 硅对称开关,双向可控硅SSW(synchro-switch) 同步开关ST(start) 启动ST(starter) 启动器STB(strobe) 闸门,选通脉冲T(transistor) 晶体管,晶闸管TACH(tachometer) 转速计,转速表TP(temperature probe) 温度传感器TRIAC(triodes AC switch) 三极管交流开关TTL(transistor-transistorlogic)TV(television) 电视UART(universal asynchronous receivertransmitter) 步收发器VCO(voltage controlled oscillator) 压控振荡器 VD(video decoders) 视频译码器VDR(voltage dependent resistor) 压敏电阻VF(video frequency) 视频V / F(voltage-to-frequency) 电压/频率转换V /I(voltage to current convertor) 电压- 电流变换器VM(voltmeter) 电压表 晶体管一晶体管逻辑通用异VS(vacuum switch) 电子开关VT(visual telephone) 电视电话VT(video terminal) 视频终端AC(alternating current) 交流 (电)A/ D(analog to digital) 模拟/数字转换ADC(analog to digitalconvertor) ADM(adaptive delta modulation) 自适应增量调制 ADPCM(adaptive differential pulse codemodulation)应差分脉冲编码调制ALU(arithmetic logic unit) 算术逻辑单元ASCII(American standard code for information interchange) 美国信息交换标准码AV(audio visual) 声视,视听BCD(binary coded decimal) 二进制编码的十进制数 BCR(bi-directional controlled rectifier) 双向晶闸管BCR(buffer courtier reset) 缓冲计数器BZ(buzzer) 蜂鸣器,蜂音器C(capacitance , capacitor) 电容量,电容器 CATV(cable television) 电缆电视 模拟/数字转换器自适CCD(charge-coupled device) 电荷耦合器件CCTV(closed-circuit闭路电视television)CMOS(complementary) 互补 MOSCPU(central processing unit)** 处理单元CS(control signal) 控制信号D(diode) 二极管DAST(direct analog store technology) 直接模拟存储技术电子类常用缩写 (英文翻译 )2DC(direct current) 直流DIP(dual in-line package) 双列直插封装DP(dial pulse) 拨号脉冲DRAM(dynamic random access memory) 动态随机存储器DTL(diode-transistor logic) 二极管晶体管逻辑DUT(device under test) 被测器件DVM(digital voltmeter) 数字电压表ECG(electrocardiograph) 心电图ECL(emitter coupled logic) 射极耦合逻辑EDI(electronic data电子数据交换interchange)EIA(Electronic Industries Association) 电子工业联合会EOC(end of conversion) 转换结束EPROM(erasable programmable read only memory) 可擦可编程只读存储器EEPROM(electrically EPROM) 电可擦可编程只读存储器ESD(electro-static discharge) 静电放电FET(field-effect transistor) 场效应晶体管FS(full scale) 满量程F/ V(frequency to voltage convertor) 频率/电压转换FM(frequency modulation) 调频FSK(frequency shift keying) 频移键控FSM(field strength meter) 场强计FST(fast switching shyster) 快速晶闸管FT(fixed time) 固定时间FU(fuse unit) 保险丝装置FWD(forward) 正向的GAL(generic array logic) 通用阵列逻辑GND(ground) 接地,地线GTO(Sate turn off thruster) 门极可关断晶体管HART(highway addressable remote transducer) 可寻址远程传感器数据公路HCMOS(high density COMS) 高密度互补金属氧化物半导体 ( 器件)HF(high frequency) 高频HTL(high threshold logic) 高阈值逻辑电路HTS(heat temperature sensor) 热温度传感器IC(integrated circuit) 集成电路ID(international data) 国际数据IGBT(insulated gate bipolar transistor) 绝缘栅双极型晶体管IGFET(insulated gate field effect绝缘栅场transistor) 效应晶体管I / O(input / output) 输入/输出I /V(current to voltage convertor) 电流- 电压变换器IPM(incidental phase modulation) 附带的相位调制IPM(intelligent power module) 智能功率模块IR(infrared radiation) 红外辐射IRQ(interrupt request) 中断请求JFET(junction field effect transistor) 结型场效应晶体管LAS(light activated switch) 光敏开关LASCS(light activated silicon controlled switch) 光控可控硅开关LCD(liquid crystal display) 液晶显示器LDR(light dependent resistor) 光敏电阻LED(light emitting发光二极管diode)LRC(longitudinal redundancy check) 纵向冗余 ( 码) 校验LSB(least significant bit) 最低有效位LSI(1arge scale integration) 大规模集成电路M(motor) 电动机MCT(MOS controlled gyrator) 场控晶闸管MIC(microphone) 话筒,微音器,麦克风 min(minute) 分MOS(l oxide semiconductor) 金属氧化物半导体MOSFET(l oxide semiconductor FET) 金属氧化物半导体场效应晶体管N(negative) 负NMOS(N-channel l oxide semiconductor FET) N 沟道MOSFETNTC(negative temperature coefficient) 负温度系数OC(over current) 过电流OCB(overload circuit过载断路器breaker)OCS(optical communication system) 光通讯系统OR(type of logic circuit) 或逻辑电路OV(over voltage) 过电压P(pressure) 压力FAM(pulse amplitude modulation) 脉冲幅度调制PC(pulse code) 脉冲码PCM(pulse code modulation) 脉冲编码调制PDM(pulse duration modulation) 脉冲宽度调制PF(power factor) 功率因数PFM(pulse frequency modulation) 脉冲频率调制PG(pulse generator) 脉冲发生器PGM(programmable) 编程信号PI(proportional-integral(controller)) 比例积分(控制器 )PID(proportional-integral-differential(controller)) 比例积分微分(控制器)PIN(positive intrinsic-negative) 光电二极管PIO(parallel input output) 并行输入输出PLD(phase-locked detector) 同相检波PLD(phase-locked discriminator) 锁相解调器PLL(phase-locked loop) 锁相环路PMOS(P-channel l oxide semiconductor FET) P 沟道MOSFETP-P(peak-to-peak) 峰 -- 峰PPM(pulse phase modulation) 脉冲相位洲制PRD(piezoelectric radiation detector) 热电辐射控测器PROM(programmable read only memory) 可编只读程存储器PRT(platinum resistance thermometer) 铂电阻温度计PRT(pulse recurrent time) 脉冲周期时间PUT(programmable unijunction transistor) 可编程单结晶体PWM(pulse width modulation) 脉宽调制R(resistance ,resistor) 电阻,电阻器 RAM(random access memory) 随机存储器RCT(reverse conducting thyristor) 逆导晶闸管REF(reference) 参考,基准REV(reverse) 反转R/F(radio frequency) 射频RGB(red/green /blue) 红绿蓝ROM(read only memory) 只读存储器RP(resistance potentiometer) 电位器RST(reset) 复位信号RT(resistor with inherent variability dependent)热敏电阻RTD(resistance temperature detector) 电阻温度传感器 RTL(resistor transistor logic) 电阻晶体管逻辑(电路 )RV(resistor with inherent variability dependent on the voltage) 压敏电阻器SA(switching assembly) 开关组件SBS(silicon bi-directional 硅双向开关,双向SCR(silicon controlled 可控硅整流器SCS(safety control switch) 安全控制开关SCS(silicon controlled switch) 可控硅开关SCS(speed control system) 速度控制系统SCS(supply control system) 电源控制系统SG(spark gap) 放电器SIT(static induction transformer) 静电感应晶体管SITH(static inductionthyristor)静电感应晶闸管SP(shift pulse) 移位脉冲SPI(serial peripheral interface) 串行外围接口SR(sample realy ,saturable reactor)取样继电器,饱和电抗器SR(silicon rectifier) 硅整流器SRAM(static random access memory) 静态随机存储器SSR(solid-state relay) 固体继电器SSR(switching select repeater) 中断器开关选择器SSS(silicon symmetrical switch) 硅对称开关,双向可控硅SSW(synchro-switch) 同步开关ST(start) 启动ST(starter) 启动器STB(strobe) 闸门,选通脉冲T(transistor) 晶体管,晶闸管TACH(tachometer) 转速计,转速表TP(temperature probe) 温度传感器TRIAC(triodes AC switch) 三极管交流开关TTL(transistor-transistor logic) 晶体管一晶体管逻辑TV(television) 电视通用UART(universal asynchronous receivertransmitter)异步收发器VCO(voltage controlled oscillator) 压控振荡器VD(video decoders) 视频译码器VDR(voltage dependent resistor) 压敏电阻VF(video frequency) 视频V/ F(voltage-to-frequency) 电压/频率转换V/I(voltage to current convertor) 电压- 电流变换器VM(voltmeter) 电压表VS(vacuum switch) 电子开关VT(visual telephone) 电视电话VT(video terminal) 视频终端。

无线电传输在双线圈及四线圈系统中的耦合模理论

无线电传输在双线圈及四线圈系统中的耦合模理论

Transmission of Wireless Power in Two-Coil and Four-Coil Systems using Coupled Mode TheoryManasi Bhutada, Vikaram Singh, ChiragWartyDept. of Electrical and Electronics EngineeringIntelligent Communication LabMumbai, India无线电传输在双线圈及四线圈系统中的耦合模理论电气与电子工程系智能通信实验室印度,孟买姓名:学号:班级:日期:2016年7月2日Abstract—Wireless Power Transfer (WPT) systems are considered as sophisticated alternatives for modern day wired power transmission. Resonance based wireless power delivery is an efficient technique to transfer power over a relatively long distance. This paper presents a summary of a two-coil wireless power transfer system with the design theory, detailed formulations and simulation results using the coupled mode theory (CMT). Further by using the same theory, it explains the four-coil wireless power transfer system and its comparison with the two-coil wireless transfer power system. A four-coil energy transfer system can be optimized to provide maximum efficiency at a given operating distance. Design steps to obtain an efficient power transfer system are presented and a design example is provided. Further, the concept of relay is described and how relay effect can allow more distant and flexible energy transmission is shown.摘要——无线电源传输(WPT)系统被认为是复杂的现代有线输电的替代品。

锂离子电池多点内短路及物理场变化

锂离子电池多点内短路及物理场变化

锂离子电池多点内短路及物理场变化陈明彪J2,3,4,白帆飞5,宋文吉1,2,3*,冯自平J2,3,4(1.中国科学院广州能源研究所,广东广州510640; 2.中国科学院可再生能源重点实验室,广东广州510640;3.广东省新能源和可再生能源研究开发与应用重点实验室,广东广州510640;4.中国科学院大学,北京100049; 5.佛燃能源集团股份有限公司,广东佛山528000)摘要:建立电-热耦合的内短路模型,分析单点或多点触发内短路后且发生热失控前,锂离子电池电流场及温度场的变化。

两点内短路与单点内短路相比,单层内短路电池和多层内短路电池的最大局部电流分别下降到65%和56%左右,最高局部产热率分别下降到43%和30%左右。

电池在发生热失控前,对于单层两点触发内短路工况,内短路点越靠近极耳,通过内短路点的电流越大。

减小远离极耳内短路点的电阻,可在一定程度上降低电池的最高温度。

当监测到单层铝箔-负极形式内短路触发后,在发生热失控前强行刺穿所有电池层,有助于降低局部最高产热率。

关键词:锂离子电池;电-热耦合模型;內短路;极耳;热安全中图分类号:TM912.9文献标志码:A文章编号:1001-1579(2021)02-0131-04Multi-point internal short circuit and physicalfield variation of Li-ion batteryCHEN Ming-biao1,2,3,4,BAI Fan-fei5,SONG Wen-ji1,2,3*,FENG Zi-ping1,2,3,4(1.Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences,Guangzhou,Guangdong510640,China;2.CAS Key Laboratory of Renewable Energy,Guangzhou,Guangdong510640,China;3.Guangdong Provincial KeyLaboratory of New and Renewable Energy Research and Development,Guangzhou,Guangdong510640,China; 4.University of Chinese Academy of Sciences,Beijing100049,China; 5.Foran Energy Group Co.,Ltd.,Foshan,Guangdong528000,China)Abstract:Thermal-electro coupled internal short circuit model was built to study the variation of current field and temperature field after the single-point or multi-point internal short circuit was occurred but before thermal runaway was pared multi­point internal short circuit with single-point internal short circuit,the maximum local current of single-layer internal short circuit battery and multi-layer internal short circuit battery was dropped to about65%and56%,respectively,while the maximum local heat generation was dropped to about43%and30%,respectively.In the single-layer multi-point internal short circuit case before thermal runaway,the current through the internal short circuit point was bigger when the internal short circuit point was closer to tabs.The maximum temperature of battery was dropped when the resistance at the internal short circuit point,which was farther away from tabs decreased.In the case when single-layer aluminum-negative internal short circuit was occurred but thermal runaway wasn't occurred,the local heat generation was dropped if all layers were forced to penetrate immediately.Key words:Li-ion battery;thermal-electro coupled model;internal short circuit;tab;thermal safety作者简介:陈明彪(1986-),男,广东人,中国科学院广州能源研究所助理研究员,博士生,研究方向:大规模储能控制;白帆飞(1989-),男,河南人,佛燃能源集团股份有限公司博士后,研发管理部经理,研究方向:系统热管理;宋文吉(1978-),男,山东人,中国科学院广州能源研究所研究员,博士,研究方向:大规模储电系统控制,通信作者;冯自平(1968-),男,宁夏人,中国科学院广州能源研究所研究员,博士,博士生导师,研究方向:先进储能。

电热耦合

电热耦合

J Comput Electron(2012)11:93–105DOI10.1007/s10825-012-0387-xCoupled electro-thermal simulation of MOSFETs Chunjian Ni·Zlatan Aksamija·Jayathi Y.Murthy·Umberto RavaioliPublished online:31January2012©Springer Science+Business Media LLC2012Abstract Thermal transport in metal-oxide-semiconductor field effect transistors(MOSFETs)due to electron-phonon scattering is simulated using phonon generation rates ob-tained from an electron Monte Carlo deviceThe device simulation accounts for a full band descrip-tion of both electrons and phonons considering22types of electron-phonon scattering events.Detailed profiles of phonon emission/absorption rates in the physical and mo-mentum spaces are generated and are used in a MOS-FET thermal transport simulation with a recently-developed anisotropic relaxation time model based on the Boltzmann transport equation(BTE).Comparisons with a Fourier con-duction model reveal that the anisotropic heat conduction model predicts higher maximum temperatures because it ac-counts for the bottlenecks in phonon scattering pathways. Heatfluxes leaving the boundaries associated with differ-ent phonon polarizations and frequencies are also exam-ined to reveal the main modes responsible for transport.It is found that though the majority of the heat generation is in the optical modes,the heat generated in the acoustic modes C.Ni( )·J.Y.MurthySchool of Mechanical Engineering,Purdue University,West Lafayette,IN47907,USAe-mail:charlesni2006@J.Y.Murthye-mail:jmurthy@Z.AksamijaElectrical and Computer Engineering Department,University of Wisconsin-Madison,Madison,WI53706,USAe-mail:aksamija@U.RavaioliSchool of Electrical and Computer Engineering,University of Illinois,Urbana Champaign,IL61820,USAe-mail:ravaioli@ is not negligible.The modes primarily responsible for the transport of heat are found to be medium-to-high frequency acoustic phonon modes.Keywords Semiconductors·Dielectrics·Phonons·Boltzmann transport equation·Electron Monte Carlo device simulation·Coupled electro-thermal simulation·Micro/nanoscale heat transfer1IntroductionCoupled electro-thermal simulation of sub-micron electron device is of great interest to both academia and industry,due to the fact that self-heating may cause device performance degradation in submicron regime.Sadi et al.[1,2],used a 2-D electron Monte Carlo simulation(MC)coupled with a 2-D solution of the heat diffusion equation(HDE)to study the electrothermal phenomena in Silicon-On-Insulator(SOI) and Silicon-Germanium-on-Insulator(SGOI)metal-oxide field-effect transistors(MOSFET).Although they got in-teresting results on device thermal effects and performance degradation,there is a fundamentalflaw in their thermal so-lution of the heat diffusion equation,which is well known not valid in submicron regime[3].Raleva,Vasileska et al.[4,5],coupled electron Monte Carlo simulation with the equations for the optical and acoustic energy transfer derived from the phonon Boltzmann Transport Equation(BTE)[6].They used this methodology to study electrothermal effects in the Silicon-On-Insulator (SOI)MOSFET.They showed that the device current de-grades due to heating effects,while pronounced velocity overshoot in the nano-scale device structure(at gate length in the order of20nm)minimizes the current degradation due to lattice heating.Although they solved the equationsFig.1Phonon dispersion for bulk silicon in the X[100]direction. Phonons of the f and g type are marked on the graph[7]for the optical and acoustic energy transfer derived from phonon BTE,their thermal transfer model is a simplified model which might not be able to capture detailed physics of phonon transport in the submicron devices.To better model thermal transport in submicron devices, it is necessary to correctly resolve the granularity of phonon transport.Figure1shows phonon dispersion curves for sili-con in the[100]direction.Electron-phonon scattering scat-ters energy selectively to high-frequency optical and longi-tudinal phonon modes at the Brillouin zone edge[8–10], which then transfer energy through phonon-phonon scatter-ing processes to other phonon groups.The thermal profile in the MOSFET is thus governed by which phonon groups receive energy from electrons,how fast they scatter to other phonons,and the group velocity of these phonons.If scatter-ing from slow-moving high-frequency optical and acoustic phonons to faster-moving phonon groups is a bottle-neck, high device temperatures would occur;alternatively,if fast-moving phonons are able to move energy quickly to the de-vice boundaries,low device temperatures would result.Cap-turing these detailed physics requires a resolution not only of the electron-phonon scattering rates in both the physical and momentum spaces,but also of phonon scattering and transport mechanisms.A number of published studies have sought to simulate phonon transport at the sub-micron scale. Early studies employed a“gray”description of phonons and employed the Boltzmann transport equation(BTE)in the re-laxation time approximation[3,11].Here,all phonons are grouped into a single mode characterized by a single group velocity and relaxation time.One of the parameters,typi-cally the group velocity,is chosen to reflect that of the dom-inant phonon group responsible for transport at the device temperature,such as longitudinal acoustic(LA)phonons;the relaxation time is then computed from the bulk ther-mal conductivity.However,this type of model does not ad-equately capture the large variations in group velocity,spe-cific heat and scattering rates in MOSFET simulations.Sverdrup[12]and Ju[13]developed and improved a two-fluid or semi-gray BTE model for heat conduction in silicon-on-insulator(SOI)devices.In the two-fluid BTE model,there are two phonon modes:the reservoir mode and the propagation mode.The longitudinal acoustic phonons are lumped into the propagation mode,while the transverse acoustic and optical phonons are lumped into the reservoir mode.Heat generation due to electron-phonon interaction in MOSFET is incorporated into the reservoir mode via a source term,while the heat transport is accomplished by the propagation mode,characterized by a single group velocity. The two modes are coupled by a scattering term character-ized by a single relaxation time,again chosen to match bulk thermal conductivity.The device temperature predicted by this type of model depends strongly on the choice of the group velocity and relaxation time.If the group velocity is picked to be that of a dominant LA group,a too-long relax-ation time between reservoir and propagating modes results, leading to an unrealistically high device temperature.Because of the drawbacks of these approximate models, a number of recent efforts have sought to capture the de-tails of phonon transport,incorporating the details of phonon dispersion,polarization and scattering to different degrees. Narumanchi et al.[14,15]developed a BTE model incorpo-rating phonon dispersion effects to model MOSFET thermal transport.The phonon spectrum was resolved into bands, but only acoustic modes incorporated a ballistic term.The ballistic term was ignored for optical phonons because of their low group velocity,and a single equation for the opti-cal phonon energy was developed.The interactions among the different phonon groups were represented by frequency-dependent relaxation times,which were obtained from the perturbation theory[16].With most of the heat generation assigned to the optical phonon mode,their prediction of the hotspot temperature rise above ambient could be as high as 350%of that predicted by the Fourier diffusion model.This high number was thought to be a result of the zero group velocity assigned to the optical mode.Phonon BTE models incorporating detailed spectral reso-lution require the determination of detailed relaxation times, which can no longer be found simply by matching bulk ther-mal conductivity.Wang[17]developed a new BTE model which directly computes the scattering rate for three-phonon interactions from perturbation theory[16]without making the relaxation time approximation.All modes,including op-tical,are resolved using the BTE with ballistic terms in-cluded.Wang developed a search scheme to determine all three-phonon processes(normal(N)and Umklapp(U))con-tributing to scattering.Field effect transistor(FET)thermalmodeling using this BTE model showed that the optical phonon mode plays an important role in the prediction of the hotspot temperature,since optical phonon velocities are not negligible for intermediate wave-number values.One of the drawbacks of directly computing N and U in-teractions and enforcing conservation rules is that the com-putation of scattering rates becomes very expensive.There are many millions of N and U interactions,which must be evaluated every iteration in a typical computational process. Ni[18]developed an anisotropic relaxation time phonon BTE model based on Ref.[17].This BTE model employs a single-mode relaxation time idea,but the relaxation time is a function of the wave-vector.The model incorporates directional and dispersion behavior and the resulting three-phonon processes satisfy conservation putational expense is allayed by pre-computing single-mode relaxation times,resulting in order-of-magnitude reduction in compu-tational time over Ref.[17].A critical issue in the model development is the accounting for the role of three-phonon N scattering processes.Following Callaway[19],the over-all relaxation rate is modified to include the shift in the phonon distribution function due to N processes.The relax-ation times so obtained compare reasonably well with those extracted from equilibrium molecular dynamics simulation by Henry and Chen[20].In all the models described above,metal-oxide-semi-conductorfield effect transistor(MOSFET)modeling was undertaken by prescribing an electron-phonon scattering source in the phonon BTE.Typically,a source term is in-cluded in the optical phonon equations,or a prescribed arbi-trary distribution in wave-vector space is used.However,to fully capture the granularity of thermal transport,it is nec-essary to describe phonon generation as a function of both phonon mode and frequency.Monte Carlo simulation has long been used to model electron transport in semiconduc-tor devices[21].Pop et al.[8–10]developed a Monte Carlo simulation(e-MC)scheme to calculate Joule heating in sili-con.In their scheme,they used analytic,non-parabolic elec-tron energy bands to model electron transport,while using an isotropic,analytic phonon dispersion model for electron-phonon scattering,distinguishing optical/acoustic and lon-gitudinal/transverse phonon branches.Their Monte Carlo simulation was used to examine the details of the phonon generation spectrum by electron-phonon interaction in sili-con.They found that a significant portion of the generated phonons were optical phonons or acoustic phonons near the Brillouin zone edge.Their simulations did not focus on the details on phonon transport,however.Sinha et al.[22]developed a split-flux form of the non-equilibrium phonon BTE model in which the phonon generation spectrum was taken from Monte Carlo simula-tion of electron-phonon scattering.They split the phonon departure-from-equilibrium function into two components:one that traces the evolution of the emitted phonons before they thermalize through scattering,and another that traces the diffusion of the thermalized phonons.The former was obtained by solving the ballistic BTE in a spatial region of the order of a mean free path.The thermalized component was assumed to correspond to the solution of the BTE in the limit of diffusive transport.Rowlette and Goodson[23]coupled the electron Monte Carlo(e-MC)model of Refs.[8–10]with the split-flux model for phonon transport to perform a self-consistent sim-ulation of non-equilibrium transport in MOSFETs.Their coupled simulation begins with an isothermal e-MC simu-lation solved self-consistently with the Poisson equation in the device.The net phonon-generation rates as a function of position and phonon frequency are gathered and fed into the split-flux phonon transport model,whose solution leads to an updated distribution of phonons as a function of position. The effective temperatures for the dominant optical f-and g-type phonons as well as for the LA and TA branches are then computed and passed back to the e-MC to adjust the electron-phonon scattering rates.They used this fully cou-pled electron-phonon model to study a1-D n+/n/n+sili-con device and found that near the hotspot the temperature is anomalously high,possibly as a result of ballistic trans-port.The e-MC solver developed by Pop et al.[8–10]as-sumes analytical,non-parabolic electron energy bands and analytic phonon dispersion curves.Recently,Aksamija[7] improved an existing full-band Monte Carlo simulation tool developed at University of Illinois at Urbana-Champaign [24]to provide phonon generation terms due to electron-phonon scattering.He employed a full-band description of electrons and phonons.The electron band structure was cal-culated using the empirical pseudo-potential model of Co-hen and Bergstresser[25].The electron scattering mecha-nisms considered in Monte Carlo simulation included intra-valley acoustic phonon scattering,X–X f and g type inter-valley phonon scattering,and X–L inter-valley phonon scat-tering.The Monte Carlo simulation was performed self-consistently with a solution of the Poisson equation to up-date the electricfield during the simulation.The e-MC sim-ulation may be used to provide phonon generation rates to a phonon BTE simulation to accurately predict sub-micron thermal transport in MOSFETs.The goal of this paper is to couple the anisotropic re-laxation time phonon BTE simulation to a computation of the phonon generation spectrum calculated using the Monte Carlo simulator of Ref.[7].The Monte Carlo simulation[7] provides the phonon generation spectrum at different spa-tial positions and different positions in momentum space. The phonon generation spectrum so obtained is incorpo-rated in the anisotropic relaxation time phonon BTE model of Ref.[18]to predict more realistically the location andtemperature of a hotspot in the MOSFET device.The ap-proach taken in this paper not only improves the representa-tion of the electron-phonon scattering source to the phonon field,but also resolves the details of phonon transport more completely than in previous studies.However,only one-way coupling is considered in that the predicted temperature field does not affect electron-phonon scattering.Thus the electron mobility is not affected by the device self-heating and the drain current reduction due to self-heating is not captured.The device Monte Carlo simulation was done at fixed tem-perature of 300K.The model is applied to the prediction of the temperature field in a MOSFET and the detailed path-ways for energy transport are identified and discussed.2Phonon dispersion for siliconBulk silicon has six phonon dispersion branches:two trans-verse acoustic phonon branches (TA1and TA2),one longi-tudinal acoustic phonon branch (LA),two transverse opti-cal branches (TO1and TO2)and one longitudinal optical branch (LO).The dispersion curves for silicon used in this paper are calculated using the adiabatic bond charge model [26].A fully anisotropic Brillouin zone is taken into ac-count.3Anisotropic relaxation time modelA complete description of the anisotropic relaxation time model may be found in Ref.[18];a brief summary is given below.The phonon BTE in the energy form [18]under the single mode relaxation time assumption may be written as:∂e (r ,K ,t)∂t +∇·(e (r ,K ,t)v g )=(e 0−e(r ,K ,t))1τ3phonon +1τI +1τB+q vol (r ,K )(1a)with e (r ,K ,t)=lim3K →01(2π)1K3KωN(r ,K ,t)d 3K(1b)ande 0=lim3K →01(2π)313K3Kωexp ( ω/k B T lattice )−1d 3K(1c)Here q vol (r,K)is the volumetric heat generation term due to electron-phonon scattering.N(r ,K ,t)is the phonon oc-cupation number,and e (r ,K ,t)is the phonon energy den-sity for phonons of wave vector K at position r and time t .It denotes the phonon energy per unit physical volume per unit K-space volume at (r ,K ,t).e 0(ω)is the phonon en-ergy density corresponding to the Bose-Einstein distribution function evaluated at the lattice temperature T lattice .v g (K )is the phonon group velocity corresponding to the wave vec-tor K .It may be calculated from the phonon dispersion by v g =∇K ω(2)The adiabatic bond charge model [26]is used to com-pute the dispersion relation,as described in Ref.[18].The effective relaxation time τ(K )depends on the wave vector;a dependence on polarization is implied throughout.It con-tains the influence of three-phonon scattering,represented by a relaxation time τ3phonon and isotope scattering,repre-sented by τI ;Matthiesen’s rule [17]is applied to compute their combined influence.Boundary conditions on (1a )include the specification of thermalizing boundaries,specular boundaries or partially specular/partially diffuse boundaries.Boundary scattering is computed by representing the appropriate boundaries of the MOSFET domain as either partially or fully diffusely re-flecting.A detailed description of the treatment of boundary conditions may be found in Ref.[18].4Numerical methodEquation (1a )is discretized using the finite volume method and solved numerically.The phonon energy distribution function e (r ,K ,t)is discretized in both the spatial and wave vector domains.The spatial domain is discretized into control volumes or cells.The three-dimensional wave vec-tor space is discretized using spherical coordinates and con-sists of an angular space of 4πand a wave number space [0,K zone ],where K zone is the maximum K value in each di-rection,accounting for the shape of first Brillouin zone [18].The angular space is discretized into N θ×N φcontrol an-gles,each of extent of i ,corresponding to direction i ;θand φare the polar and azimuthal angles.The wave num-ber space is discretized into N k bands,each of extent K j ,corresponding to band j .Each polarization is discretized inthis way.The discrete energy density e ijcorresponding to direction i and band j is stored at the cell centroids.The phonon BTE is integrated over the control volume,control angle and wave number band for each polarization,resulting in an energy balance for each spatial control vol-ume for direction i ,wave number band j and polarization.A third-order SMART scheme [27]is used to discretize the convective operators.A second-order discretization of the scattering terms is used.The phonon energy densities are solved sequentially and iteratively,cycling through each di-rection and band in turn.For each direction and band,the discrete equation set is solved using the line-by-line tri-diagonal matrix algorithm (TDMA).5Lattice temperatureOnce the discrete energy density at the cell centroids is computed,the lattice temperature is determined.In order to guarantee energy conservation,the summation of the source terms on the right hand side of (1a )over all directions and bands should be zero,if q vol (r ,K )=0.The following equa-tion must be satisfied:(e 0−e (r ,K ,t)) 1τ3phonon +1τI +1τB d 3K =0(3)The lattice temperature,T lattice ,is defined so that (3)is sat-isfied,using the definition of e 0given in (1c ).6Phonon relaxation timesA key feature of the anisotropic relaxation time model is thedevelopment of single-mode relaxation rates based on a rig-orous computation of three-phonon interactions.Klemens et al.[16]developed three-phonon interaction rates based on perturbation theory.Based on these rates,Wang [17]de-veloped a full-scattering phonon BTE model which directly computes three-phonon scattering rates for N and U pro-cesses.Details may be found in Ref.[18];a brief overview is given here for completeness.Three-phonon interactions must satisfy energy and mo-mentum conservation rules,given by [16]ω+ω ↔ω (4)K +K ↔KN processesK +K ↔K +bU Processes(5)Here,ω,ω ,ω are three interacting phonons with corre-sponding wave vectors K ,K ,K ,and b is the recipro-cal lattice vector.Wang [17]developed a search techniqueto identify all possible three-phonon normal (N)and Umk-lapp (U)processes between interacting phonons.The pro-cess employs a discretization of the Brillouin zone in the manner described in this paper,and triads of interacting phonons (ij),(kl)and (mn)satisfying (4)and (5)are found.Here (i,j)denotes the direction i and wave number band j of an interacting phonon;(kl)and (mn)are interpreted in a similar fashion.Consideration of polarization in determin-ing these triads is implied.Given a such a triad,the scattering rate may be cal-culated from the perturbation theory derived by Klemens and co-workers [16,28].For an interaction of the type K +K ⇔K ,the scattering rate due to three-phonon pro-cesses is given by: dN dt 3-phonon = K2|C 3|2M ωω ωπδt (ω+ω −ω )×(NN (N +1)−(N +1)(N +1)N )(6)Here |C 3|2=(4γ23G )(M 22)(ωω ω )2,γis the Gruneisen con-stant,G is the number of atoms per unit cell,v is thesound velocity,and M is the atomic mass.N is the oc-cupation number of mode K ,while N and N are those corresponding to K and K .The summation is over all possible interactions undergone by a phonon of wave vec-tor K .The anisotropic relaxation time model employs a single-mode relaxation time approximation which signif-icantly cuts down on solution time while preserving the granularity of phonon-phonon interaction bottlenecks.Un-der this approximation,the three-phonon relaxation time τ3phonon in (1a )is computed by assuming that the only non-zero departure from equilibrium occur for the phonon mode K ,i.e.,the phonon mode for which the BTE is be-ing solved;the departure from equilibrium of phonons with wave vectors K and K are set to zero.Under this approx-imation,it is possible to show that for a single three-phonon interaction for phonon K ,the single mode relaxation time may be written as1τ3phonon (K )=2|C 3|2M ωω ωπδt (ω+ω −ω )(N 0−N0)(7)Details may be found in Ref.[18].The computational savings afforded by the anisotropic relaxation time model now become evident.To evaluate the scattering rate in (6),the non-equilibrium distribution func-tions N,N and N are necessary.These change iteration-to-iteration in a typical computational procedure.Since there may be many millions of N and U interactions,the scattering term update becomes computationally very ex-pensive even for coarse spatial meshes.On the other hand,τ3phonon in (7)depends only on the equilibrium distributions of the interacting phonons,and may be computed a priori and stored,greatly reducing the cost per iteration.In the present implementation,a list of all permitted three-phonon N and U processes is first determined using the procedure described in Wang [17].Based on these per-mitted interactions,a single-mode relaxation time as a func-tion of discrete wave vector,polarization and temperature is computed and stored in a look-up table.Interpolations within this look-up table are used to compute the distribu-tions of relaxation time in physical and wave-number space in the MOSFET simulation.Incorporation of N processes is performed through the use of a shifted equilibrium distribu-tion,as described by Callaway [19].Details of the relaxation time computations as well as validation against experimen-tal measurements may be found in Ni [18].7Monte Carlo simulation including full phonon dispersionJoule heating or phonon generation in the device due to electron-phonon interaction may be obtained from Monte Carlo simulation.A three-dimensional ensemble Monte Carlo simulator with a self-consistent non-linear Poisson solver[29]is employed here;a quantum correction based on thefirst moment of the Wigner equation is used[7].The Monte Carlo simulator accounts for a full band structure for electrons which was implemented in[30].The6X valleys of the lowest electron conduction band at(±0.85×2π/a,0,0),(0,±0.85×2π/a,0),and (0,0,±0.85×2π/a)in the wave vector space(a is the lat-tice constant of bulk silicon[7]),and the next higher L val-leys in the conduction band,are considered.The transitions may be categorized into the following types:intra-valley transitions(within one X valley),inter-valley X–X f type transitions(between a valley and any of the four valleys closest to it),inter-valley X–X g type transitions(between a valley and its opposite valley),and inter-valley X–L transi-tions.Figure1shows the f and g type transitions graphically.A g-type transition,for example,involving electrons go-ing from(0.85×2π/a,0,0)to(−0.85×2π/a,0,0)would cause a phonon at(1.7×2π/a,0,0)to be generated.In the irreducible wedge of thefirst Brillouin zone,the correspond-ing K value would be(0.3×2π/a,0,0)[7].All the other g type transitions may be obtained exploiting the symmetry of the lattice.The energies of the phonons involved in each transition may be tabulated and used to simplify the scattering rate calculation in the Monte Carlo simulation.As mentioned above,four types of transitions,i.e.,intra-valley,X–X f type, X–X g type,and X–L inter-valley transitions,are consid-ered.For each type of transition,there are several phonon branches on which phonons may be emitted or absorbed.A total of22different kinds of scattering events resulting from these interactions are shown in Table1.The transition rates or probabilities are tabulated for these22scattering events in the Monte Carlo simulator.The scattering prob-abilities are also tabulated in the Monte Carlo simulator by the energy of the electron involved in the events listed in Ta-ble1.They are calculated by analytically integrating Fermi’s Golden Rule over all initial electron momenta k with a given energy and all the possiblefinal momenta k [7].Whenever a collision,resulting in either emission or ab-sorption,occurs,an average phonon energy corresponding to the chosen event type is either subtracted(for emission)or added(for absorption)to the current electron energy.These energies are listed in Table1.Thefinal energy of the elec-tron is then used to look up thefinal state of the electron after collision in a table of electron momenta sorted by energy in the irreducible wedge of thefirst Brillouin zone.Then the Table1Classification of scattering events[7]Event Valley Sign Branch EnergyE avg(meV)1Acoustic Absorption TA/LA0to45meV 2Intra-valley Emission TA/LA0to45meV 3Absorption TA18.95824LA/LO47.39545X–X f TO59.02886TA12.06437LA18.52738X–X g TO/LO62.04499X–X f Emission TA18.958210LA/LO47.395411TO59.028812X–X g TA12.064313LA18.527314LO/TO62.044915X–L Absorption TO57.908516LO54.634017LA41.363218TA16.976219X–L Emission TO57.908520LO54.634021LA41.363222TA16.9762 actualfinal state in the complete3-D momentum space is chosen randomly by symmetry considerations,according to the specific type of scattering that occurred[31].For exam-ple,for X–X f type scattering,the largest component of the momentum in thefinal state must be made perpendicular to the largest component of the momentum in the initial state, while other types of scattering may have their signs and or-dering chosen at random[7].A full phonon dispersion relation,calculated from the adiabatic bond charge model[26]and tabulated for look-up, is included to ensure accuracy.An iterative algorithm intro-duced by Pop et al.[8]is adapted to ensure that all scatter-ing events conserve energy and momentum with the use of the full phonon dispersion relationship.As shown in Fig.2, this algorithm starts at each scattering event with an estimate of the phonon energy,E est,involved.This estimated energy is taken from those listed in Table1(E est=E avg).From the resulting electron energy E(k )=E(k)±E avg,thefinalstate k is looked up,and the phonon momentum K is de-termined by K=k±k .Its corresponding phonon energy E(K)is determined from the full phonon dispersion rela-tion and used as the next guess of the electronfinal energy E(k )=E(k)±E(K).Thefinal state k is again looked up and the procedure described above repeated until afi-nal state satisfying both momentum and energy conserva-。

温度场有限元法模拟

温度场有限元法模拟

单元模型构造
插值函数 一般都采用多项式函数,主要原因是:
采用多项式插值函数比较容易推导单元平衡 方程,特别是易于进行微分和积分运算。
随着多项式函数阶次的增加,可以提高有限 元法的计算精度。从理论上说,无限提高多 项式的阶数,可以求得系统的精确解。
单元模型构造方法
整体坐标系法 局部坐标系法
Lagrange插值方法 Hermite插值方法
Package Thermal analysis
SMD IC package (J lead) ¼ Symmetry
Analysis Example
Inertial Sensor - Accelerometer
Thermal Mechanical Simulation
Intel Pentium II Module
平面温度场有限元法求解
具有内热源和瞬态温度分布的固体导热微 分方程(平面问题):
c T
t
2T x2
2T y2
qV
第一类: 第二类:
第三类: 初始条件:
平面温度场有限元法求解
有限元计算的基本方程推导
由微分方程
c T
t
2T x2
2T y2
qV
得到,
D T x, y,t
主要参考书
王勖成,邵 敏. 《有限单元法基本原理与数 值方法》. 北京:清华大学出版社,1996.
R.D.库克著,程耿东等译. 《有限元分析的概 念和应用》科学出版社.
上机实习软件
工程分析软件-ANSYS 上机地点:材料学院机房
Introduction
Successful Applications
直角坐标中导热微分方程式:

SMT行业相关名词解释

SMT行业相关名词解释

SMT行业相关名词解释Ball grid array (BGA球栅列阵):集成电路的包装形式,其输入输出点是在元件底面上按栅格样式排列的锡球。

Blind via(盲通路孔):PCB的外层与内层之间的导电连接,不继续通到板的另一面。

Bond lift-off(焊接升离):把焊接引脚从焊盘表面(电路板基底)分开的故障。

Bonding agent(粘合剂):将单层粘合形成多层板的胶剂。

Bridge(锡桥):把两个应该导电连接的导体连接起来的焊锡,引起短路。

Buried via(埋入的通路孔):PCB的两个或多个内层之间的导电连接(即,从外层看不见的)。

21. ECN中文全称为﹕工程变更通知单﹔SWR中文全称为﹕特殊需求工作单﹐必须由各相关部门会签, 文件中心分发, 方为有效;22. 5S的具体内容为整理﹑整顿﹑清扫﹑清洁﹑素养;23. PCB真空包装的目的是防尘及防潮;24. 品质政策为﹕全面品管﹑贯彻制度﹑提供客户需求的品质﹔全员参与﹑及时处理﹑以达成零缺点的目标;25. 品质三不政策为﹕不接受不良品﹑不制造不良品﹑不流出不良品;26. QC七大手法中鱼骨查原因中4M1H分别是指(中文): 人﹑机器﹑物料﹑方法﹑环境;27. 锡膏的成份包含﹕金属粉末﹑溶济﹑助焊剂﹑抗垂流剂﹑活性剂﹔按重量分﹐金属粉末占85-92%﹐按体积分金属粉末占50%﹔其中金属粉末主要成份为锡和铅, 比例为63/37﹐熔点为183℃;28. 锡膏使用时必须从冰箱中取出回温, 目的是﹕让冷藏的锡膏温度回复常温﹐以利印刷。

如果不回温则在PCBA进Reflow后易产生的不良为锡珠;29. 机器之文件供给模式有﹕准备模式﹑优先交换模式﹑交换模式和速接模式;30. SMT的PCB定位方式有﹕真空定位﹑机械孔定位﹑双边夹定位及板边定位;31. 丝印(符号)为272的电阻,阻值为2700%26Omega; ,阻值为4.8M%26Omega;的电阻的符号(丝印)为485;32. BGA本体上的丝印包含厂商﹑厂商料号﹑规格和Datecode/(Lot No)等信息;33. 208pinQFP的pitch为0.5mm ;34. QC七大手法中, 鱼骨图强调寻找因果关系;37. CPK指: 目前实际状况下的制程能力;38. 助焊剂在恒温区开始挥发进行化学清洗动作;39. 理想的冷却区曲线和回流区曲线镜像关系;40. RSS曲线为升温%26rarr;恒温%26rarr;回流%26rarr;冷却曲线;AI :Auto-Insertion 自动插件AQL :acceptable quality level 允收水准ATE :automatic test equipment 自动测试ATM :atmosphere 气压BGA :ball grid array 球形矩阵CCD :charge coupled device 监视连接组件(摄影机)CLCC :Ceramic leadless chip carrier 陶瓷引脚载具COB :chip-on-board 芯片直接贴附在电路板上cps :centipoises(粘度单位) 百分之一CSB :chip scale ball grid array 芯片尺寸BGACSP :chip scale package 芯片尺寸构装CTE :coefficient of thermal expansion 热膨胀系数DIP :dual in-line package 双内线包装(泛指手插组件)FPT :fine pitch technology 微间距技术FR-4 :flame-retardant substrate 玻璃纤维胶片(用来制作PCB材质) IC :integrate circuit 集成电路IR :infra-red 红外线Kpa :kilopascals(压力单位)LCC :leadless chip carrier 引脚式芯片承载器MCM :multi-chip module 多层芯片模块MELF :metal electrode face 二极管MQFP :metalized QFP 金属四方扁平封装NEPCON :National Electronic Package andProduction Conference 国际电子包装及生产会议PBGA:plastic ball grid array 塑料球形矩阵PCB:printed circuit board 印刷电路板PFC :polymer flip chipPLCC:plastic leadless chip carrier 塑料式有引脚芯片承载器Polyurethane 聚亚胺酯(刮刀材质)ppm:parts per million 指每百万PAD(点)有多少个不良PAD(点) psi :pounds/inch2 磅/英吋2PWB :printed wiring board 电路板QFP :quad flat package 四边平坦封装SIP :single in-line packageSIR :surface insulation resistance 绝缘阻抗SMC :Surface Mount Component 表面粘着组件SMD :Surface Mount Device 表面粘着组件SMEMA :Surface Mount EquipmentManufacturers Association 表面粘着设备制造协会SMT :surface mount technology 表面粘着技术SOIC :small outline integrated circuitSOJ :small out-line j-leaded packageSOP :small out-line package 小外型封装SOT :small outline transistor 晶体管SPC :statistical process control 统计过程控制SSOP :shrink small outline package 收缩型小外形封装TAB :tape automaticed bonding 带状自动结合TCE :thermal coefficient of expansion 膨胀(因热)系数Tg :glass transition temperature 玻璃转换温度THD :Through hole device 须穿过洞之组件(贯穿孔)TQFP :tape quad flat package 带状四方平坦封装UV :ultraviolet 紫外线uBGA :micro BGA 微小球型矩阵cBGA :ceramic BGA 陶瓷球型矩阵PTH :Plated Thru Hole 导通孔IA Information Appliance 信息家电产品MESH 网目OXIDE 氧化物FLUX 助焊剂LGA (Land Grid Arry)封装技术LGA封装不需植球,适合轻薄短小产品应用。

基础医学英语翻译

基础医学英语翻译

基础医学英语翻译医学英语是与大学英语相延续的专业英语的学习内容。

下面小编为大家分享基础医学英语翻译,希望对大家有用。

基础医学英语翻译如下:electronic scanner 电子扫描仪electronic screen 电子显示荧光屏electronic sector ultrasonic cardiotomograph 扇型扫描式超声心动断层检查仪electronic sensor 电子传感器electronic shutter 电动快门electronic simulation 电子模拟electronic simulator 电子模拟器electronic skin tester 电子皮试仪electronic sphygmomanometer 电子血压计electronic spiro-analyzer 呼吸功能自动分析仪,电子肺量分析仪electronic sterilization 电子灭菌法electronic stethoscope 电子听诊器electronic stimulator 电刺激器electronic test instrument 电子测试仪器electronic thermometer 电子测温计electronic thermostat 电子恒温器electronic timer 电子定时器electronic tracer 电子描绘器electronic universal dilatometer 电子通用膨胀计electron interferometer 电子干扰仪electron micrograph 电子显微镜检查,电子显微照片electron microscope 电子显微镜,电镜electron microscope with a magnification of , times 八十万倍电子显微镜electron microscopic autoradiography 电镜自动射线照像术electron multiplier 电子倍增器electronogram 电子衍射图electronograph 电子显微照片electron pair 电子对,电子偶electron paramagnetic resonance (abbr. EPR) 电子顺磁共振electron radiography 电子放射照像术electron scanning micrograph 电子扫描显微照片electron tube 电子管electronystagmogram (abgr. ENG) 眼震电流描记图electronystagmograph 眼震电流描记器electronystagmogroaphy 眼震图描记术electro-oculogram(abgr. EOG) 眼电(流)图electro-oculography 眼电(流)描记法electro-osmosis 电渗electro-osmotic 电渗的electropathy 电疗法,电疗学electrophone 电助听器electrophonocardiograph 电心音描记器electrophonoide 电助听器训练器(治慢性耳聋)electrophore ①电泳②电离子透入法electrophoregram 电泳图electrophoresis ①电泳②电离子透入法electrophresis apparatus 电泳仪electrophoresis chamber 电泳槽electrophoresis gel 电泳凝胶electrophoresis method 电泳法electrophoresis scanner 电泳扫描仪electrophoretic display 电泳显示器electrophoretic pattern 电泳图型electrophoretogram 电泳图electrophorogram 电泳图eoectrophorus 起电盘electrophotography 电照像术electrophotometer 光电比色计electrophysiological amplifier 电生理放大器electrophysiology 电生理学electroplexy 电休克electropneumograph 电呼吸描记器electropositive 阳电性的,正电性的electropsychrometer 电测湿度计electropuncture 电针术electropradiology 电放射学electroradiometer 电放射性测量仪electroreceptor 电感受器electroresction 电切除术electro-respirator 电动呼吸机electroretinogram(abbr. ERG) 视网膜电(流)图electroretinograph 视网膜电(流)描记器,视网膜电图仪electroretinography 视网膜电圈学electrosalivogram 涎腺电(流)图electroscope 验电器,静电测量器electrosection 电切除术electroshock 电休克electrosinogram 心窦电(流)图electroskiagraphy X 射线照像术electro-sleep appatatus 电睡眠机electrosol 金属电胶液electrospectrogram 电光谱图electrospectrography 电光谱描记术electrosphygmobarometer 电子眼底血压计electro-sphygmomanometer 电子血压计electro-spinal stimulation instrument 脊骨也刺激仪electrospinogram 脊髓电(流)图electrostatic accelerator 静电加速器electrostatic attraction 静电吸引electrostatic diathermy unit 静电电疗机electrostatic equipment 静电装置electrostatic generator 静电发电机electrostatic precipitator 静电除尘器electrostatics 静电学electrostatic voltmeter 静电伏特计electro-sternum saw 电动胸骨锯electrostethograph 电心音描记器electrostethophone 电扩音听诊器electro-stimulation analyzer 电刺激分析仪electro-stimulation therapy unit 电兴奋治疗机electro-stimulator 电刺激器electro-stomach irrigator 电动洗胃机electro-striatogram 纹状体电(流)图electrosurgery 电外科electrosurgical knife 手术用电刀electrosurgical unit 电灼器,电手术器械electro-thalamogram 丘脑电(流)图electro-therapeutic apparatus 电疗仪electrotherapy 电疗法electrotherapy apparatus 电疗设备electrotherapy room 电疗室electrotherm 电热器electrothermic laryngoscope 电热喉镜electothermometer 电子体温计electrotome 电刀electrotomy 电切除术electro-tonometer 电眼压计electrotonus 电紧张electro-traction massage bed 电动牵引按摩床electrotrephine 电圆锯,脑用电动圆锯electroureterogram 输尿管电(流)图electrovacuum extractor 电动真空吸引器electrovagogram 迷走神经电(流)图electrovection 电导入法electrovectrocardioscope 心电向量检查仪electroventriculogram 心室电(流)图electro-vibrator ①电按摩器②电振动器element (化学)元素,单元,成分elemental analyser 元素分析仪elementary 元素的,基础的,初级的eleometer 油度计,油比重计elevation 上升,隆凸,挺起elevator ①骨撬,牙挺,起子②升降机eliminator 消除器,抑制器ellipse 椭圆形ellipsometer 椭圆率计eluant 洗提液,洗脱剂elutriating apparatus 淘析器,洗提器elutriator 淘析器,洗提器eluxation 脱位elytreurynter 阴道扩张袋elytro- 阴道elytrorrhaphy 阴道缝术EM (electron microscope) 电子显微镜emanation 射气,放出物emanator 射气投置emanometer 氡射线计,射气计emanotherapy 射气疗法emasculator 去睾器embed 包埋,植入embedded electrode 埋入电极embedded type 埋入式embedding 包埋,埋植emboli 栓子emboliform 楔形的,栓子状的embolism 栓塞embrasure hook 楔形隙钩embryo 胚,胚胎embryoctony 碎胎术embryograph 胚胎描记器embryography 胚胎描记法embryoscope 胚胎发育观察器embryotome 碎胎刀embryotomy 碎胎术embryotomy forceps 碎胎钳embryotomy knife 碎胎刀embryotomy scissors 碎胎剪embryulcus 牵胎钩,牵胎术用钳子emergency ①急症②意外,紧急emergency alarm bell 报警铃emergency cart 急诊用推车emergency case 急救盒,急救箱emergency light 故障信号灯emergency resuscitator 急救用复苏器emergency room 争诊室emergent light 出射光emery paper 砂纸emery wheel 砂轮EMF; e. m. f.(electromotive force) 电动势EMG (①electromyogram ②electromyograph) 肌(动)电(流)图,肌电图机EMG electronic stimulator 肌电图电子刺激器emission 放射,发射,传播emission electron 发射电子emission spectrum 发射光谱emissivity 发射率emitron 光电摄象管emitter 发射器,放射体Emmet's needle 埃梅特氏(弯)针,有柄粗弯针Emmet's retractor 埃梅特氏牵开器,自留阴道牵开器emphraxis 闭塞,阻塞emplastic bougie 铸型探条empyema 脓胸,积脓empyema apparatus 抽脓器empyema trocar 脓胸套针empyema tube 脓胸引流管EMS (electron microscope) 电子显微镜emulgator 乳化器,乳化剂emulsification 乳化(作用)emulsifier 乳化器,乳化剂emulsifying agent 乳化剂emulsion 乳胶,感光乳剂emgloves 乳胶手套emulsor 乳化器,乳化剂EMXA (electron microprobe X-ray analyzer) 电子微探针X 射线分析仪enamel bur 牙釉质钻enamel chisel 牙釉质凿enamel cleaver 牙釉质凿刀enamel cutter 牙釉凿羡刀enamel needle 釉质电烙针enamel square tray 搪瓷方盘enantiomorph 镜像体,对映体encephalion 小脑encephalo- 脑encephalo-arteriography 脑动脉造影术encephalogram 脑造影片,脑X 射线照片encephalograph 脑造影片encephalography 脑造影术encephalometer 脑搏动计,脑域测定器encephalon 脑encephaloscope 脑镜,窥脑器encephaloscopy 脑镜检查法encephalotome 脑刀encephalotomy 脑切开术enclose 包装,密封,附入enclosure ①附件②外壳,套encoder 编码器end-; endo- 内腔,内部endarterectomy 动脉内膜切除术endarterectomy instument 动脉内膜切除器械endarterectomy scissors 动脉内膜切除剪endarterectomy set 动脉内膜切除器endaural retractor 耳内牵开器enb cut dur 端切钻endo- 内腔,内部endobronchial airway 支气管内导气管endorbonchial suction catheter 支气管内吸引导管endo-camera 内窥镜照像机endocardiac mapping 心内膜电位图endocardial 心内膜的,心内的endocardiography 心内心(动)电(流)描记法endocardium 心内膜endocurlar probe 眼内探头(激光仪用)endodiascope 体腔X 线管endodiascopy 体腔X 线检查endogenous 内生的,内源的endometrial biopsy curette 子宫内膜活检刮匙endometrial curette 子宫内膜刮匙endometrial implants 子宫内膜植入片endometry 内腔容积测定法endomyocardiol bioptome 心肌活检钳endoradiography 体腔X 射线照像术,体腔造影术endoradiosonde 体腔无线电测压器(如测肠腔内压)endoscope 内窥镜,内腔镜endoscope adapter 内窥镜摄像接头endoscope cabinet 内窥镜柜endoscope for anaethesia 麻醉用窥镜endoscope washer 内窥镜自动洗净器endoscopic examining chair 内窥镜检查椅endoscopic film projector 内窥镜照片投影仪endoscopic injector 内窥镜注射器endoscopic screen viewer 内窥镜屏幕观察器endoscopic suction pump 内窥镜吸引泵endoscopy 内窥镜检查endosmometer 内渗压测定器endostethoscope 食管内听心器endo-stroboscope 喉动态镜endothelium 内皮endothermal 吸热的,收热的endotherm knife 电热刀endothermy 透热法,高频电透热法endotome 胎儿断头剪endotoscope 耳(内)镜endotracheal airway 气管内导气管endotracheal connector 气管内接管endotracheal intubator 气管内插管器endotracheal tube 气管内导管end-point titrator 终点滴定器enduser 用户end-window counter 钟罩型计数器enema 灌肠法,灌肠剂enema bag 灌肠袋enema can 灌肠罐enemal ware 搪瓷器皿enema syringe 灌肠注射器enemator 灌肠器energetics 能量学energometer 脉能测量器,脉能计energometry 能量测定法energy 能(量)energy meter 能量计,功率计energy regulator 能量调整器energy scale 能量标准energy source 能源energy spectrum 能谱energy transducer 换能器ENG (electronystagmogram) 眼震颤电(流描记)图engagement ①衔接②约定,契约engine (牙)钻机,发动机engine arm 牙机臂engine bit 牙钻engineer ①工程师,技师②设计,计划engineering 工程学,工程(技术)engine mallet 牙机锤engine speed indicator 转速指示器enlarge forceps 扩大钳enlargement 扩大,放大enlarge needle 扩大针enlarger 放大机,放像机enlarging bur 扩大钻enquiry 询价,查询E. N. T.(ear, nose, throat) 耳鼻喉E. N. T. drill 耳鼻喉科用钻enteral 肠的,肠内的entero- 肠enterocleaner 肠冲洗器enterocoelia 腹腔enterogram 肠动描记图enterograph 肠动描记器enterography 肠动描记法enterometer 小肠腔测量器enteron 肠enteroscope 肠(窥)镜,肠内视镜enteroscopy 肠镜检查enterotome 肠刀enterotomy scissors 肠切开剪enterotribe 夹肠器enterotriptor 夹肠器enterprise 事业(单位),企业(单位)entity 实在,本质,实体entogenous 内生的,内源的entome 尿道刀entopic 正常位置的,正位的entoptoscope 眼内媒质镜,眼内视镜entoptoscopy 眼内镜检查entrainment 输送,传输,引开entrance ①入口,进入②引入线entropion 睑内翻entropion knife 睑内翻刀entropium forceps 睑内翻镊,翻眼镊entropy ①熵②平均信息量entrust 委托,信任entry ①项目,条款②输入,入口E. N. T. treatment chair 耳鼻喉科治疗椅E. N. T. treatment unit 耳鼻喉科综合治疗台enucleate 剜出,摘除enucleation hook 剜出钩(眼)enucleation knife 剜出刀enucleation snare 眼球摘除圈套器enucleator 剜出器,摘除器enumerable 可数的enumerator 计数器envelope 封皮,外壳,套envelope for dental X-ray film 牙科X 射线胶片套environment ①环境,外界②包围,围绕environmental hygiene 环境卫生enzyme 酶enzyme analyser 酶分析仪enzyme electrode 酶电极enzyme reaction velocity measuring device 酶反应速度测定器EOG (electro-oculogram) 眼电(流)图eolipyle 烧灼酒精灯eosin 伊红,曙红EP (electrophoresis) 电泳EPC (echophonocardiograph) 心音回声描记器epicardial mapping 心表面电位图epicardium 心外膜epidemic prerention vehicle 防疫车epiderm 表皮epidiascope 反射幻灯机epidural canula 硬膜外套管epidural needle 硬膜外针epidurography 硬膜外腔造影术epiglottis retractor 会厌牵开器epilating forceps 拔毛钳epilation 拔毛,除毛法epiphysiometer (骨)骺测量器episcope ①反射投影灯②物面检查器episiotomy 外阴切开术episiotomy scissors 会阴剪,外阴切开剪epistaxis canula 鼻衄套管epithelia 上皮epithelial peg 上皮钉epithesis ①矫正术②夹板epoxide 环氧化物epoxy resin 环氧树脂EPR (electron paramagnetic resonance) 电子顺磁共振EPSP (excitatory post-synaptic potential) 兴奋性突触后电位equalizer 均值器,均衡器,补偿器equation 方程,等式equator 赤道,中纬线equatorial 赤道仪equatoriat plane 赤道面equi- 相等equilibration 平衡,均势equilibrator 平衡器equilibrium 平衡equilibrium constant 平衡常数equipment (abbr. Eq.; equip.) 设备,装置,仪器equipotentiality 等位性,等势性equivalence 等值,等量equivalent ①等效,等值(的)②当量equivocal 两可的,双关的Er(erbium) 铒eraser 抹音器,消磁器erasion ①刮术②抹掉erbium (abbr. Er) 铒erbium laser 铒激光器ERD(evoked response detector) 诱发应测定器erect image 正像ERG(electroretinogram) 视网膜电流图ergo- 工作,力,动力ergocardiogram 心电动力图ergocardiography 心电动力描记术ergodynamograph 肌动力描记器ergoesthesiograph 肌动感觉描记器ergogram 肌力描记波,测力图ergograph 肌动力描记器,测力器ergography 测力法,肌力描记法ergometer 测力计,肌力计ergostat 练肌器eriometer 微粒直径测量器(检红细胞直径)erisiphake 晶状体吸盘erisophake 晶状体吸盘ERPF (effective renal plasma flow) 有效肾血浆流量erratic 游走的,移动的error 误差,错误error counter 误差计数器error detector 误差检测器ERT(electrical resistance thermometer) 电阻体温计ERV (expiratory reserve volume) 呼气储气量erysiphake 晶状体吸盘erythro- 红erythrocyte 红细胞,红血球erythrocyte sedimentation 红细胞沉降,血沉erythrocytometer 红细胞计数器erythrogram 红细胞图像erythrometer 红细胞计数器erythrometry 红细胞计数法Es(einsteinium) 锿Es(①electric stimulation ②electron spectrometer) ①电刺激②电子分光计ESO(esophagoscopy) 食管内窥镜检查eso- 在内,向内esophageal 食管的esophageal bougie 食管探条esophageal cardiogram 食管心动图esophageal dilator 食道扩张器esophageal forceps 食管钳esophageal foreign body forceps 食物异物镊esophageal nasogastric tube 食道鼻胃管esophageal probe 食管探子esophageal retractor 食管牵开器esophageal scissors 食管剪esophageal sound 食管探子esophageal stethoscope 食管听诊器esophageal tube 食道导管esophago- 食道,食管esophagofiberscope 食管纤维内窥镜esophagogastroscopy 食客胃镜检查esophagogram 食管X 射线(照)片esophagography 食管X 射线照像术esophagometer 食管长度计esophagoscope 食管镜,食道镜esophagoscopy 食管镜检查esophagotome 食管刀esophagram 食管X 射线照片esophagus biopsy forceps 食管活体取样钳esophagus cell adopter 食道细胞寻取器esophagus foreign forceps 食道异物钳ESR (①erythrocyte sedimentation rate ②electron spinresonance) ①红细胞沉降率(血沉)②电子自旋共振essential 必需的,特有的,基本的essential accessory 必需附件ester 酯esthesia 感觉esthesio- 感觉esthesiography 感觉描记法esthesiometer 触觉测量器,触觉计esthesiometry 触觉测量法estimate ①估价单②估算estimated time of arrival (abbr. ETA) 预计抵达日期estimate sheet 估价单esu.(electrostatic unit) 静电单位ETA (electrothermal analyzer) 电热分析器ethanol 乙醇,醇,酒精ether 醚,乙醚ether air anesthesia unit 空气麻醉机ether anesthetic mouth gag 全麻开口器ether bag 乙醚袋ether bed 乙醚苏醒床ether bubbler 乙醚扩散器ether cone 乙醚罩ether drop bottle 乙醚滴瓶ether inhaler 乙醚吸入面罩etherioscope 测醚镜ether mask 乙醚面罩etherometer 乙醚滴定器ether spray 乙醚喷雾ethmoid 筛骨ethmoid curette 筛骨刮匙ethmoid forceps 筛窦钳ethylene 乙烯ethylene oxide sterilizer 环氧乙烷消毒器Eu (europium) 铕eudiometer ①空气纯度测定仪②量气管eugenics 优生学eugenol cement 丁香油粘固粉eupatheoscope 空气温度测量仪(测综合气象因素)eupathescope 空气温度测量仪(测综合气象因素)europium(abbr. Eu) 铕eurynter 扩张器euscope 映像显微镜,显微映像器Eustachian catheter 欧氏管导管(咽鼓管导管)Eustachian catheter nozzle 咽鼓管导管嘴eutectic ice 共融泳,盐泳euthyscope 直视镜EV (evoked response) 诱发反应eV (electron volt) 电子伏特evacuate 排除,排空,排泄evacuating catheter 排尿管evacuator 排泄器,排出器evaluation 评价,估价,鉴定evaluator 鉴定机,识别器evaporate 蒸发evaporating basin 干燥盆,蒸发盆evaporating dish 蒸发皿evaporator 蒸发器evaporometer 蒸发计evaporoscope 蒸发镜eventration treatment 露脏X 射线治疗EVG (electrovaginogram) 阴道电(流)图evil (疾)病E-viton 紫外线单位(紫外线照射有效生物剂量)evoke 诱发,唤起evoked potential measuring system 脑干电位测量系统evoked potential system 激发电位系统evoked response recorder 诱发反应记录仪evolution 进化,演化evolutionism 进化论ex- 出,离,除,从ex (free out of) 交货(船边,码头),无(线利)exact dentimeter 精确牙测量器exactolfactometer 精密嗅觉计examinating couch 检查床examinating light 检查灯examination 检查,诊察examination gloves 检查用手套examination lamp 检眼灯examiner 检查者examining chair 诊查椅examining table 检查台examining telescope 检查窥镜excavating bur 牙挖钻excavation ①陷凹②挖除excavator 挖匙,剜器excerpt 摘录,选择exchange key 交换键exchanger ①交换器②交换剂exchange syringe 互换注射器exchange transfusion tray 输血盘excipient 赋形剂excising forceps 切断钳excision 切除术exciftability 应激性,兴奋性excitation 刺激,兴奋excitation filter 感光滤光片exciting electrode 刺激电极excochleation 刮除术excrement 粪便excrement collector 粪便收集器excretion 排泄,分泌excretion urography 排泄性尿路造影术exercise 练习,操练,运动Ex dock 码头交货价。

压电陶瓷应用于结构健康监测研究

压电陶瓷应用于结构健康监测研究

压电陶瓷应用于结构健康监测研究摘要压电陶瓷(PZT)材料不但响应速度快,价格便宜,同时它独特的传感与作动功能特性也使压电陶瓷被广泛地应用于土木工程结构健康监测方面。

文章概述了以PZT为基础的主动监测与被动监测两种结构健康监测方法,总结了PZT应用于结构健康监测还需要研究的几个问题,为PZT研究与推广提供参考。

关键词压电陶瓷;结构健康监测;主动监测;被动监测;综述压电传感器敏感元件为压电材料且存在正向和反向压电效应。

在外加载荷作用下,它可以发生弹性形变并将应变能转化为电能输出或以机械运动形式传递给负载。

压电传感器由电极和敏感层两部分组成。

压电材料的极化方向受外力作用而改变,当压电材料的极性相反时,会产生电荷。

压电材料还同时具有良好的传感与驱动功能以及较快的响应速度和价格低廉等优点。

与其他压电材料相比较,压电陶瓷(Piezoelectric ceramic,简称PZT)以其压电系数高和压电性能更加稳定等优点得到了广泛的应用。

传统的损伤识别方法由于受信号来源的限制,PZT的应用范围受到了一定程度上的限制,因此需要发展新的结构健康监测方法实现从主动监测到被动监测的转变。

1基于压电陶瓷材料的主动监测技术基于压电陶瓷的主动监测可以分为波传播法和机械阻抗法两大类。

1.1波传播法波传播法(又称波法)的基本原理是将压电陶瓷片粘贴在结构表面或嵌入结构中分别作为驱动器和传感器,同时使用两块压电陶瓷板分别发送和接收信号。

当结构损伤发生时,两传感器输出的信号幅值会发生变化,从而可以检测到不同的模态以及相应的传播时间[1],这对于工程实际具有重要意义。

斯坦福大学教授Chang等[2]提出了利用复合材料(压电陶瓷)作为诊断应力波的方法。

目前已发展成为一种新型的无损检测手段,包括超声相控阵成像(ACT),表面声波透射法(SSAM)和体波反射法等。

在此基础上发展了基于应力波及纵波监测、表面波及板波及声发射监测技术的新方法。

Kawiecki等[3]在混凝土梁上粘贴一个质量块,用两块压电陶瓷片作驱动器和传感器来测量试件的模拟损伤,得到了它们的传递函数,分析了它们的幅值与自然频率之间的关系,由实验结果可知该方法具有极强的灵敏性和重复性。

10kA底部阴极稀土电解槽电—磁—流多物理场耦合仿真

10kA底部阴极稀土电解槽电—磁—流多物理场耦合仿真

硕士学位论文论文题目:10kA 底部阴极稀土电解槽电-磁-流多物理场耦合仿真 英文题目:Coupled simulation of Multiple Physical Fields in a 10kARare Earth Electrolysis Cell学位类别: 工学硕士研究生姓名: 陈宇昕 学号:201002048学科(领域)名称:指导教师: 张志宏 职称:教授级高工协助指导教师: 职称:2013年6月15日独创性说明本人郑重声明:所呈交的论文是我个人在导师指导下进行的研究工作及取得研究成果。

尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得内蒙古科技大学或其他教育机构的学位或证书所使用过的材料。

与我一同工作的同志对本研究所做的任何贡献均已在论文中做了明确的说明并表示了谢意。

签名:___________ 日期:____________关于学位论文使用授权的说明本人完全了解内蒙古科技大学有关保留、使用学位论文(纸质版和电子版)的规定,即:本人唯一指定研究生院有权保留送交学位论文在学校相关部门存档,允许论文在校内被查阅和借阅,可以采用影印、缩印或其他复制手段保存论文。

在论文作者同意的情况下,研究生院可以转授权第三方使用查阅该论文。

(保密的论文在解密后应遵循此规定)签名:___________ 导师签名:___________ 日期:____________摘要上插式阴、阳极稀土电解槽在生产过程中暴露的诸多问题,已有人探索开发新的电解槽槽型,提出了底部阴极稀土电解槽。

本论文在前人研究的基础上,进一步考察该槽型的实用性,利用数值模拟方法计算了底部阴极稀土电解槽内的电场、磁场以及在电磁力影响下电解质的运动。

首先,利用ANSYS软件计算了底部阴极稀土电解槽的电场和电位分布,考察极距为11cm、12 cm、13 cm、14 cm、15 cm五种不同情况下电场的分布,由电场产生磁场,利用ANSYS电磁耦合模块,直接耦合法计算得到电解槽内的磁场分布。

CMOS集成电路的电热耦合效应及其模拟研究

CMOS集成电路的电热耦合效应及其模拟研究

收稿日期:2000-04-10; 定稿日期:2000-05-27基金项目:国家自然科学基金重大项目(59995550-01)第31卷第1期2001年2月微电子学Microelect ronics Vo l .31,№1F eb .2001文章编号:1004-3365(2001)01-0010-03CMOS 集成电路的电热耦合效应及其模拟研究刘 淼,周润德,贾松良(清华大学 微电子学研究所,北京 100084)摘 要: 文章基于集成电路具体的封装结构提出了它的热学分析模型。

针对均匀温度分布的集成电路,采用解耦法实现了电热耦合模拟软件Etsim ,并研究分析了温度对集成电路性能和功耗的影响。

关键词: CMOS 集成电路;自热效应;电热耦合效应中图分类号: TN 432文献标识码: AA Simulation and Study of Electro -Thermal Coupling Effects in CMOS IC 'sLIU M iao ,ZHOU Run -de ,JIA Song -liang(I nstitute of M icroelectr onics ,T sing hua Univ ersi ty ,Beij ing 100084,P .R .Chi na )Abstract : A ther mal analy sis model fo r a packaged IC chip is proposed and the temper atur e -dependent cir cuit per -formance is analyzed.Based on r elaxation method,an electro-ther mal simulator (Etsim)has been developed,which can be used to simulate the electr o-thermal effects under unifor m temperature distr ibution.Key words : CM OS IC;Self-heat effect;Electro -thermal coupling effect EEACC : 2570D 1 引 言在一个集成电路中存在着两个子系统:电学子系统和热学子系统。

压电材料连续性损伤模型译文

压电材料连续性损伤模型译文

压电材料连续性损伤模型摘要在这篇文章中,提出了一个包含分布式裂缝的压电材料固体连续模型。

该模型阐述了一个使用张量作为内部变量的连续损伤力学模型,该模型的赫姆霍兹自由能可以用一个变形多项式表示。

通过完全约束电场矢量和张量的损伤变量使最初材料的正交个性异性转化为对称性。

通过使用talreja的张量内部状态损伤变量以及压电材料的Helmhotlz自由能得到压电材料和损伤的基本关系。

压电板横向矩阵裂缝是运用模型的一个特例,基于板的基尔霍夫假设,建立了考虑损伤的压电矩形板自由振动方程。

利用伽辽金方法,对方程进行了求解。

数值结果表示在闭合电路下自由振动的压电板上损伤对其的影响。

最后用现在的结果和三维理论进行了对比。

关键词:张量内部状态变量,连续性损伤力学,损伤本构关系,压电板1 介绍由于固有的正、逆压电效应,使压电材料在智能结构中具有广泛的应用,作为传感器或驱动器去控制活性结构的变形何震动。

在制造和还原过程中裂纹、空洞、错位和分层等缺陷也被引入压电材料。

这些缺陷极大地影响到压电材料的导电、绝缘、伸缩、机械和压电性能。

当受到机械和导电负载时,这些缺陷可能引起尺寸和裂缝的变化,导致材料过早的产生机械或导电故障。

因此,研究这些缺陷的产生和这些缺陷的整体效果对压电材料的机械和电气性能是很重要的,以便于预测准确的结构使用寿命。

这些分析的进展依靠于人们怎样明确为合并各向异性固体材料将其变形及其相互作用与分布的缺陷确立本构关系。

在纤维增强复合材料中的损伤被广泛的研究,许多理论中也已经建立用来预测复合材料结构的使用寿命的理论。

摩尔和迪拉德注意到在室温条件下,在石墨/环氧基树脂中和凯夫拉纤维/环氧基树脂复合材料正交层板中横向裂纹与时间有关的增长。

Schapery使用不可逆过程的热力学分析研究了在变形、断裂、单片和复合材料的线性和非线性的行为损害。

罗和丹尼发现单向纤维增强脆性基复合材料的宏观力学行为与微观变形和损害有明确的关系。

电磁轨道炮的三维电热力耦合数值模拟

电磁轨道炮的三维电热力耦合数值模拟

电磁轨道炮的三维电热力耦合数值模拟Electro-thermal-mechanical numerical simulation in 3 Dimensions for Railguns (Railgun3D)何勇谢龙宋盛义王刚华关永超程诚高贵山李业勋仇旭中国工程物理研究院流体物理研究所,四川绵阳,621900摘要基于有限元和边界元混合算法,辅以外电路模拟程序,开发了电磁发射三维电热力耦合数值模拟程序(Railgun3D),可描述电磁发射过程中电磁加载、欧姆加热、电枢运动等物理过程,为电磁发射系统的设计提供参考。

本文对电磁轨道炮三维电热力耦合数值模拟程序的计算结果与经验公式计算、以及串联增强型电磁轨道炮发射的试验结果进行了比较和分析,表明所开发的程序能模拟电磁发射过程,能给出发射中电、热、力参数的变化,有助于提高对电磁发射过程的理解,可为电磁发射器的设计提供参考。

引言电磁轨道发射过程的数值模拟是电磁发射研究中非常重要的方向,有助于提高人们对电磁发射过程中呈现的极端和复杂电热力物理过程的理解,该过程问题通常具三维、瞬态、非均匀和耦合特性,包括电磁加载、欧姆加热、电枢-轨道间高速滑动电接触、相变、材料应力应变、气动特性等问题[1]。

目前,尚无物理模型可同时清楚的描述上述问题。

但建立一个可描述基本物理过程(电磁加载、欧姆加热)的模型,开发相应的三维电热力耦合数值模拟程序,可促进人们对电磁发射过程的认知,为电磁发射系统设计提供参考。

在此模型上加入其他复杂物理过程(电枢-轨道间高速滑动电接触、相变、材料应力应变等)的描述,可进一步加深对电磁发射过程的理解,提升发射器设计水平,促进电磁轨道发射技术应用。

在上世纪90年代,电磁发射技术研究从等离子体电枢发射转向固体电枢发射研究为主期间,美国、法国、德国和英国的电磁发射研究机构深入的开展了电磁发射数值模拟研究,针对25-mm口径方膛电磁发射中的共性基础问题,进行了理论建模和程序开发[1]。

22264185_热动力水下航行器润滑系统建模与仿真

22264185_热动力水下航行器润滑系统建模与仿真

2020年8月杨威, 等: 电动力水下航行器电池组温度场仿真第4期4 结论文中通过COMSOL Multiphysics软件建立锂离子电池的电化学-热耦合模型, 并对50 kg级水下航行器动力舱段的电池温度场进行了仿真计算。

发现由于水下良好的换热条件, 航行器航速在10 kn 以下时, 电池组的温度变化不会引起热安全问题。

具体结论如下:1) 通过恒温放电实验验证了电化学-热耦合模型可精确计算电池单体在0.75C倍率和1C倍率的温度变化, 其拟合结果相对误差在0.2%以内;2) 在航速分别为5 kn, 7 kn和10 kn时, 电池舱段温度随航速的增大而升高, 10 kn时最高温度可达41.3℃, 最大温度出现在电池组的中心区域。

尽管海水与外壁对流换热良好, 但是舱段内空气流通性差, 电池产生的热量难以迅速排出, 在更高工况时, 需要考虑针对电池的散热设计;3) 该型电池组的第3层电池由仪器与动力电池组合构成, 导致了其在工作过程中存在相对的温度不均匀。

并且随着航速的增大, 温度不均匀性也在增加。

下一步的工作将变换应用场景, 在更大倍率充放电下, 对换热环境较为严苛的锂离子电池组进行热分析研究。

参考文献:[1]王艳峰. 水下航行器电池舱段热过程研究[D]. 西安:西北工业大学, 2014.[2]常国峰, 季运康, 魏慧利. 锂离子电池热模型研究现状及展望[J]. 电源技术, 2018, 42(8): 1226-1229.Chang Guo-feng, Ji Yun-kang, Wei Hui-li. Research Sta-tus and Prospect of Lithium-ion Batteries Thermal Mod-els[J]. Chinese Journal of Power Sources, 2018, 42(8): 1226-1229.[3]Dolye M, Newman J, Gozdz A S, et al. Comparison ofModeling Predictions with Experimental Data from Plastic Lithium Ion Cell[J]. Journal of Electrochemical Socie-ty, 1996, 143(6): 1890-1903.[4]Hosseinzadeh E, Genieser R, Worwood D. A SystematicApproach for Electrochemical-thermal Modelling of a La-rge Format Lithium-ion Battery for Electric Vehicle Ap-plication[J]. Journal of Power Sources, 2018, 382: 77- 94.[5]Ye Y H, Shi Y X, Cai N S. Electro-thermal Modeling andExperimental Validation for Lithium-ion Battery[J]. Jo- urnal of Power Sources, 2012, 199: 227-238.[6]陈军, 康健强, 谭祖宪. 基于电化学–热耦合模型分析18650型锂离子电池的热性能[J]. 化学工程与技术,2018, 8(2): 97-107.Chen Jun, Kang Jiang-qiang, Tan Zu-xian. Analysis of Thermal Performance of 18650 Li-ion Battery Based on an Electrochemical-Thermal Coupling Model[J]. Hans Journal of Chemical Engineering and Technology, 2018, 8(2): 97-107.[7]张立军, 李文博, 程洪正. 三维锂离子单电池电化学-热耦合模型[J]. 电源技术, 2016, 40(7): 1362-1366, 1490.Zhang Li-jun, Li Wen-bo, Cheng Hong-zheng. Coupled Thermal-eletrochemical Model of 3D Lithium-ion Batte- ry[J]. Chinese Journal of Power Sources, 2016, 40(7): 1362-1366, 1490.[8]韩学飞. 锂离子电池热管理及电化学-热耦合分析[D].上海: 华东理工大学, 2018.[9]郭阳东, 李玉芳, 张文浩, 等. 典型工况下动力电池温度特性研究[J]. 电源技术, 2018, 42(8): 1143-1147.Guo Yang-dong, Li Yu-fang, Zhang Wen-hao, et al. Re-search on Temperature Performance of Power Battery Undertypical Condition[J]. Chinese Journal of Power So-urces, 2018, 42(8): 1143-1147.[10]何士闵. 电动汽车电池包匹配及热特性研究[D]. 重庆:重庆理工大学, 2018.[11]和伟超. 电动汽车用永磁同步电机水冷系统设计及温升分析[D]. 杭州: 浙江大学, 2013.[12]李升东. 电动汽车锂离子电池组散热特性仿真研究[D].重庆: 重庆交通大学, 2016.(责任编辑: 杨力军)第28卷第4期 水下无人系统学报 Vol.28No.42020年8月JOURNAL OF UNMANNED UNDERSEA SYSTEMS Aug. 2020收稿日期: 2019-07-22; 修回日期: 2019-09-30.作者简介: 曹 浩(1982-), 男, 在读博士, 高级工程师, 主要研究方向为水下航行器振动传递路径分析.[引用格式] 曹浩, 屈明宝, 王祎, 等. 热动力水下航行器润滑系统建模与仿真[J]. 水下无人系统学报, 2020, 28(4): 452-455.热动力水下航行器润滑系统建模与仿真曹 浩1, 屈明宝1, 王 祎1, 李育英1, 赵丽刚2, 汤 田1(1. 中国船舶重工集团公司 第705研究所, 陕西 西安, 710077; 2. 中国船舶工业集团公司 第708研究所, 上海, 200011)摘 要: 随着水下航行器航速不断提高, 航程不断增加, 其润滑系统的重要性日益凸显。

高导热环氧复合材料干式电抗器热点温升的仿真研究

高导热环氧复合材料干式电抗器热点温升的仿真研究

高导热环氧复合材料干式电抗器热点温升的仿真研究曲展玉1,钟昱尧1,宋岩泽1,2,谢子豪1,孟雨琦1,谢庆1,2(1.华北电力大学电力工程系,河北保定071003;2.华北电力大学新能源电力系统国家重点实验室,北京102206)摘要:干式电抗器的稳定运行影响新型电力系统的输电可靠性。

干式空心电抗器包封材料整体由浸有环氧树脂的玻璃纤维丝经高温固化而成。

本文采用多物理场耦合有限元方法,考虑干式空心电抗器的包封材料热导率对其热点温升的影响,建立了环氧复合材料的COMSOL微观仿真模型和外电路约束下的干式空心电抗器电-磁、流-热耦合计算模型。

将电磁场下的损耗作为热源计算温度场与流场分布,研究在25℃环境温度下常规/高导热环氧复合材料对干式空心电抗器热点温升的影响规律。

结果表明:高导热环氧树脂对复合材料热导率的提升效果显著;包封材料本体及周围空气温度场区域中热点温升最大值为103.75℃,出现在内部第4层包封材料的上端处;不同热导率的复合材料对降低干式电抗器的热点温升有明显差异,其中干式电抗器在高导热环氧树脂复合材料下的热点温度降低了7.55℃。

关键词:干式空心电抗器;热导率;热点温升;多物理场耦合中图分类号:TM215;TM472 DOI:10.16790/ki.1009-9239.im.2024.04.015Simulation study on hot spot temperature rise of dry reactor with high thermal conductive epoxy composite as encapsulating materialQU Zhanyu1, ZHONG Yuyao1, SONG Yanze1,2, XIE Zihao1, MENG Yuqi1, XIE Qing1,2(1. Department of Electrical Engineering, North China Electric Power University, Baoding 071003, China;2. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University, Beijing 102206, China)Abstract: The stable operation of dry-type reactors affects the transmission reliability of new power system. The encapsulating material of dry-type reactor is made of glass fiber filament impregnated epoxy resin cured at high temperature. In this paper, a multiphysics coupled finite element method was used to consider the influence of thermal conductivity of the encapsulating material for dry-type reactor on its hot spot temperature rise, and a COMSOL microscopic simulation model of epoxy composites and an electro-magnetic and flow-thermal coupling calculation model of dry-type reactor under the constraints of external circuits were established. The temperature field and flow field distribution were calculated by using the loss under electromagnetic field as the heat source, and the influence of conventional/high thermal conductive epoxy composites on the hot spot temperature rise of the dry-type reactor at 25℃ of ambient temperature was studied. The results show that the high thermal conductive epoxy resin has a significant improving effect on the thermal conductivity of composites. The maximum hot spot temperature rise in the temperature field area of the encapsulating material body and the surrounding air is 103.75℃, which appears at the upper end of the fourth layer of encapsulating material. The epoxy resin composite with different thermal conductivity has obvious difference on decreasing the hot spot temperature of dry-type reactor, and the hot spot temperature of the dry-type reactor with high thermal conductive epoxy resin composite is reduced by 7.55℃.Key words: dry hollow reactor; thermal conductivity; hot spot temperature rise; multiphysical field coupling0 引言干式电抗器凭借线性度好、饱和性高、损耗小、运行维护方便等优点已成为在“双碳”战略下构建新型电力系统的重要发展方向[1]。

构筑锆基活性位点用于电吸附磷酸盐的研究

构筑锆基活性位点用于电吸附磷酸盐的研究

DOI :10.19965/ki.iwt.2023-0239第 44 卷第 3 期2024年 3 月Vol.44 No.3Mar.,2024工业水处理Industrial Water Treatment 构筑锆基活性位点用于电吸附磷酸盐的研究伏培仟1,张鹏2,卜兆宇1,李克勋2(1.扬州市建筑设计研究院有限公司,江苏扬州 225012;2.南开大学环境科学与工程学院,天津 300350)[ 摘要 ] 水体中含有过量的磷会导致富营养化等环境污染问题,有效去除磷酸盐的方法引发了研究者们的关注。

通过液相浸渍耦合焙烧法成功制备了Zr 基金属掺杂的活性炭电极材料(ZrAC ),并将其用于电吸附除磷。

通过XRD 、XPS 、SEM 、EDS 及TEM 表征了该复合活性炭材料,结果表明,所合成的ZrAC 材料具有良好的晶体结构特征,Zr 的负载为磷酸盐去除提供了充足的吸附位点。

所制备的电极材料对磷酸盐的去除符合伪二级动力学模型,在1.0 V 的电压下,电极对PO 43-的吸附量可达到29.43 mg/g ,外接电压显著提升了对磷酸盐的去除性能,ZrO 2对PO 43-的捕获主要源于Zr —O —P 键的形成,由此提升了电极材料对PO 43-的吸附能力和速度。

此外,所合成的ZrAC 电极材料在电吸附过程中具有较好的抗干扰能力和稳定性。

[关键词] 电吸附;磷酸盐去除;富营养化;氧化锆[中图分类号] TQ424;X703.1 [文献标识码]A [文章编号] 1005-829X (2024)03-0074-07Construction of zirconium -based active site forphosphate electro -adsorptionFU Peiqian 1,ZHANG Peng 2,BU Zhaoyu 1,LI Kexun 2(1.Yangzhou Architectural Design and Research Institute Co., L td., Y angzhou 225012,China ;2.College of Environmental Science and Technology ,Nankai University ,Tianjin 300350,China )Abstract :Excessive phosphorus in water can lead to environmental pollution problems such as eutrophication ,and effective methods for removing phosphate have attracted the attention of researchers. The electrode material (ZrAC ) of Zr -based metal doped activated carbon was successfully prepared by liquid -phase impregnation coupled calcina⁃tion method and used for phosphorus electro -adsorption. The composite activated carbon material was characterized by XRD ,XPS ,SEM ,EDS and TEM. The results indicated that the synthesized ZrAC material exhibited favorable crystal structure characteristics ,while the incorporation of Zr provided an ample number of adsorption sites for effi⁃cient phosphate removal. The kinetics of the prepared electrode material during the phosphate removal process fol⁃lowed a pseudo -second -order kinetic model. At a voltage of 1.0 V ,the PO 43- electro -adsorption capacity could reach 29.43 mg/g ,and the external voltage significantly improved the phosphate removal effect. The capture of PO 43- byZrAC was primarily attributed to the formation of Zr —O —P bond ,thereby enhancing the adsorption capacity and rate of the electrode material towards PO 43-. Moreover ,the synthesized ZrAC electrode material exhibited excellent resistance to interference and stability during electro -adsorption.Key words :electro -adsorption ;phosphate removal ;eutrophication ;zirconia磷是所有生物必需的矿物质营养素。

SMT常用术语解读

SMT常用术语解读

SMT常用术语解读1、产品Product活动或过程的结果。

如生产企业或科研单位与大专院校向市场或用户以商品形式提供的单一制成品或若干制成品的组合体或研究成果。

2、电路Circuit为达到某种电功能而设计的电子或电气通路的集合体。

3、电子装联Electronic Assembly电子或电器产品在形成中所采用的电连接和装配的工艺过程。

4、穿孔插装元器件THC/THDThrough Hole Components(穿孔插装元件)/Through Hole Devices(穿孔插装器件)一种外形封装,将电极的引线(或引脚)设计成位于轴向(或径向),并插入印制板的引线孔内在另一面与焊盘进行焊接,来实现电连接的电子元件与器件。

其同义词:通孔(或穿孔)组装元器件,通孔(或穿孔)安装元器件。

5、表面贴装元器件SMC/SMDSurface Mount Components(表面贴装元件)/Surface Mount Devices(表面贴装器件)。

一种外形封装,将电极的焊端或短引脚设计成位于同一平面,并贴于印制板的表面在同一面与焊盘进行焊接,来实现电连接的电子元件与器件。

其同义词:表面组装元器件、表面安装元器件、表面粘装元器件。

6、印制板PCBPrinted Circuit Board,以绝缘层为基材,将导电层以印刷蚀刻制作形成电气通络走线与焊盘的印制电路或印制线路成品板的通称。

材质上可分刚性、柔性以及刚一柔性等,印制电路上可分单面板、双面板与多层板等。

7、表面贴装印制板SMBSurface Mount Board,用于装焊表面贴装元器件的印制板。

由于SMT应用程度与水平的不同,这种印制板常常有贴插混凝土装与全贴装的两种。

该类印制板对于耐热性、可焊性、绝缘性、抗剥离强度、平整性/翘曲度、制作精确度与工艺适应性等各项指标要求明显高于全插装印制板。

8、通孔插装技术THTThrough Hole Technology,一种需要对焊盘进行钻插装孔,再将引线(或引脚)位于轴向(或径向)的电子元器件(即通孔插装元器件)插入印制板的焊盘孔内并加以焊接,与导电图形进行电连的电子装联技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Coupled electro-thermal simulation of a DC/DC converterMiquel Vellvehi *,Xavier Jorda`,Philippe Godignon,Carles Ferrer,Jose ´Milla ´n Centre Nacional de Microelectro`nica (CNM-CSIC),Institut de Microelectro `nica de Barcelona,Systems Integration Department,Campus U.A.B.Bellaterra,08193Cerdanyola del Valle`s,Barcelona,Spain Received 3April 2006;received in revised form 24October 2006Available online 19December 2006AbstractElectro-thermal simulation of a DC/DC converter using a two-step methodology and its experimental validation are presented in this paper.The simulation technique is based on the coupling of a thermal simulator (FLOTHERM)and an electrical one based on VHDL-AMS language.This work is mainly focused on the description of the thermal component with special emphasis in the modelling of the active power devices (MOSFETs and Schottky diodes)included in the converter.Once these devices have been electro-thermally mod-elled,they are implemented in the DC/DC converter including a 10layer PCB and some passive components.The modelling results have been experimentally checked by means of infrared measurements.Ó2006Elsevier Ltd.All rights reserved.1.IntroductionThe performance and characteristics of semiconductor devices in electronic packages can be considerably affected by temperature variations.For this reason,accurate circuit simulation requires to take into account the static and dynamic effects induced by the heat dissipation.In this way,new modelling methodologies are being applied in complex power systems to study these effects [1–3].The modelling using electro-thermal interactions in inte-grated circuits has been addressed in a variety of ways.The existing methods can be broadly classified into two groups:direct and relaxation methods (Fig.1)[4].In both cases,standard electrical models became electro-thermal models,by including an additional thermal electrode in each model.In the direct or fully coupled method a single electrical simulation tool is used to model both electrical and ther-mal behaviour [5].The coupling is possible through the exchange between both models of an electrical parameter (instantaneous dissipated power)and a thermal variable (instantaneous temperature).The problem of this method is the thermal modelling due to the complex structure ofthe overall system.Often finite-difference approaches,Fou-rier series,analytical solutions and thermal networks are employed.Most of them are valid only in the steady-state cases for linear heat equations.Different contributions have been previously reported using this representation together with 1-D heat transfer equations,where voltages are equivalents to temperatures and currents to thermal power.As an example,we can mention the electro-thermal model of a commercial MOSFET from IR (IRPF254)with SPICE software [6].In the relaxation method,electrical and thermal equa-tions are solved separately exchanging periodically temper-ature and power parameters until thermal and electrical convergence is reached [7].The trade-offof this technique is clear:a more accurate representation of the thermal behaviour of the system is available,at the expense of an increase of the computation time.Modelling tasks requires a good knowledge of the geom-etry and physical properties of the different materials involved in the system.In addition,depending on the sys-tem to be modelled,the mesh generation can be complex and time consuming.In our case,the modelling of the DC/DC converter requires more than two million mesh points.Although these tasks are laborious but not concep-tually complex,the problems can appear in data transfer0026-2714/$-see front matter Ó2006Elsevier Ltd.All rights reserved.doi:10.1016/j.microrel.2006.10.009*Corresponding author.Tel.:+34935947700;fax:+34935801496.E-mail address:miquel.vellvehi@cnm.es (M.Vellvehi)./locate/microrelAvailable online at Microelectronics Reliability 47(2007)2114–2121between both simulators(synchronization,convergence and mathematical approximation).This paper shows how the methodology based on the relaxation method can be applied to analyse relatively com-plex industrial systems,such as a DC/DC converter,in order to predict their thermal behaviour.The whole approach has been experimentally validated by means of an exhaustive thermographic analysis method.In afirst stage,we have used and demonstrated the simulation method on single power devices(MOSFETs and Schottky diodes)used in the converter.The methodology used in this work willfinally allow predicting the chip temperature of the power devices used in the DC/DC converter,hence improving the system design and increasing the reliability level of the whole system.Other passive components such as transformers,self-inductances and capacitors have been also included in thefinal model of the converter.2.Modelling methodologyOne of the main objectives of our work is to build a model for a DC/DC converter usable for electro-thermal simulation.The block diagram of the relaxation method (usually called two-step method)is shown in Fig.2.The electrical model is defined taking into account the tempera-ture dependence of the more relevant parameters,extracted from the characterisation of the components at different operating temperatures.On the other hand,the thermal model is based on the physical and geometrical description of the packages of the components,mainly extracted from the datasheets.The coupling between both simulators is achieved in the following way:the results obtained from thefirst iteration of the electrical simulator at a given initial temperature are exported in a textfile containing the value of the instantaneous power dissipated in the relevant com-ponents(main heat sources).Then,these power values are used as inputs in the thermal simulator.Next,new values of the components temperature are obtained,which are also exported in a textfile and used as a new input for the elec-trical simulator.New values of dissipated power are obtained,being the new inputs for the thermal simulator. This process is iterative and once the convergence criterion is reached(i.e.any significant evolution of powers and temperatures is observed),we get thefinal values of instan-taneous dissipated power and temperature in each com-ponent.The used convergence criterion has been that the components’temperature does not change more than 0.05°C from a coupling loop to the next one.2.1.The electrical simulatorThe electrical simulations have been performed with VHDL-AMS(Analogue Mixed Signal)modelling language using ADVanceMS from Mentor Graphics[8].To represent the power devices(MOSFETS and Schottky diodes),we have used SPICE models described with VHDL-AMS,as Fig.1.Example of both main electro-thermal coupling methods used for power system modelling.M.Vellvehi et al./Microelectronics Reliability47(2007)2114–21212115well as the passive components(transformer,self-induc-tance,capacitors...).A detailed explanation of the electri-cal modelling of the DC/DC converter has been reported in[9].The advantage of using this strategy of modelling is that it is very convenient to extract the model parameters from the characterisation measurements at different tem-peratures.However,some limitations arise:the models are adjusted in specific conditions of measurements and they can only be used in these conditions.In our case,the models have been developed to be compatible with real operating conditions of the considered converters(input voltage of 48V,an output voltage of5V,an output current of3A,a commutation frequency of500kHz and a duty cycle of 40%).For example,power MOSFETs are modelled only in their lineal region,which is their normal working condi-tion in the DC/DC converter.This modelling approach will be detailed for the power devices in Section3.2.2.The thermal simulatorThe thermal models developed for the MOSFET,Scho-ttky diodes and the complete PCB of the DC/DC converter have been implemented with the FLOTHERM TM package from FLOMERICS[10].This software uses Computa-tional Fluid Dynamics(CFD)technique and is addressed to solve thermal problems in electronic equipments.It pre-dicts airflow and heat transfer in and around electronic equipments,including the coupled effects of conduction, convection and radiation.In particular,we have used this software to model the thermal behaviour of semiconductor chips and their packages,as a series of layers of materials characterised by their thermal conductivities and specific heats.These layers must be properly connected to describe the correct thermal path from chip to environment.The main heat transfer mechanism from the different devices to the PCB is the conduction.The convection to the air is considered around the whole DC/DC converter and the radiation phenomena can be neglected because the maximum temperatures reached in the system are low enough.Geometrical data,material properties and bound-ary conditions of the full system have to be well known for an efficient modelling.3.Power devices modellingAs afirst step,the two-step electro-thermal modelling method using VHDL-AMS and FLOTHERM,has been applied to the discrete power devices of the commercial DC/DC converter from ASCOM(SMC CX15C48S5). The active components integrated in this converter are basically of two types:power MOSFETs(BUK482-100A) and Schottky diodes(EC21QS04).3.1.MOSFET modelThe power MOSFET has been electrically modelled with a SPICE Level3model,using experimentally extracted parameters of the BUK482-100A.Electrical characterizations at several working temperatures and gate voltages have been performed.Fig.3shows the I(V)char-acteristics of the MOSFET at different ambient tempera-tures(from25°C to150°C)and an applied gate voltage of7V.As the MOSFET will work as a switch in its linear region,the model considers only the parameters related with this working zone(on-state resistance,threshold volt-age,etc.).Apart from the static characterisation,the dynamic electrical behaviour of the MOSFET is described by its parasitic capacitances.As it has been demonstrated [6],parasitic MOSFET capacitances are practically inde-pendent of temperature,being the main temperature dependant parameters the on-state resistance(R ON)and the threshold voltage(V TH)as it is shown in Fig.4.Electro-thermal iterations have been performed between the electrical model described above with the aid of VHDL-AMS and the thermal model of the MOSFET packaged in a SOT-223,developed with FLOTHERM (Fig.5).As regards the boundary conditions,the MOSFET has been mounted on a Cu layer with afixedtemperature Fig.3.VDMOS forward I–V characteristics at a gate voltage of7V extracted at different temperatures.2116M.Vellvehi et al./Microelectronics Reliability47(2007)2114–2121of 25°C.As explained in the previous section,the main heat transfer mechanism is the conduction from the chip to the Cu layer,and the radiation and convection to the air can be neglected.Under these conditions,we obtain an equilibrium junc-tion temperature under different input powers,considering a minimum number of iterations.As an example,the results obtained for the different iterations with V gs =5V and I ds =1.25A biasing,are shown in Table 1.As we can see from this table,the convergence criterion is reached after four iterations between both simulators and we obtain a final chip temperature of 31.7°C and a dissipated power of 0.5105W.From the thermal simulation results,the ther-mal resistance of the device can be deduced as the relation-ship between the silicon temperature increase and the dissipated power.The value obtained in the simulation is 13.1°C/W being the maximum value obtained from the manufacturer’s data sheet of 15°C/W.Although these results represent a first indirect validation of our models,we have performed a direct experimental validation.In this sense,the power VDMOS BUK482-100A has been mounted on an IMS (Insulated Metal Substrate)applying a uniform temperature on the IMS backside.The measurement conditions are:an applied power of 0.51W,an input gate voltage of 5V and an output current of 1.2A.When the backside temperature is fixed at 25°C,an equilibrium temperature of 28.6°C is measured on the MOSFET top surface.This value is in good agreement with the simulated value (28.8°C),hence validating our modelling approach.3.2.Schottky diode modelAn equivalent model of a Schottky Diode (SPICE Level 1)has been developed,adjusting the simulation parametersof the EC21QS04Schottky diodes included in the system.As for the MOSFET,an electro-thermal characterization has been performed to extract the temperature dependence of the parameters of the diode (forward voltage drop,leak-age current and junction capacitance).Then,the electrical model has been developed considering the temperature dependence of the electrical parameters.In parallel,the thermal model of the Schottky diode using FLOTHERM TM (Fig.6)has also been developed and checked,taking into account the DO-214AC package structure of the EC21QS04.4.DC/DC converter modellingThe modelled DC/DC converter is mainly composed of an input filter (two capacitances),power switches stage (including two MOSFETs in parallel),transformer,output rectifier Schottky diodes and filters (the inductance and the capacitance)and finally,isolation stage and PWM Control (Fig.7).The power consumption of the latter is negligible compared to other stages and will not be taken into account in the modelling.All these elements are mounted on both faces of a 10-layer PCB board.The electrical circuit of the converter modelled with ADVanceMS is depicted in Fig.8[9].Only the components dissipating significant power have been considered.The electrical characteristics of the converter are:an input volt-age of 48V,an output voltage of 5V,an output current of 3A and a commutation frequency of 500kHz.A duty cycle of 40%has been chosen taking into account the optimum operating ing these parameters as input val-ues,we have calculated the dissipated power mean values of the different components (Table 2).Complete thermal modelling of the DC/DC converter has been developed using FLOTHERM TM ,describing the complete PCB.The geometry and components location have been obtained from the manufacturer’s datasheet.The active components (MOSFET and Schottky diodes)thermal models previously developed have been included in the full converter system.The 10-layer board PCBisFig.5.FLOTHERM model of the BUK482-100A MOSFET packaged in a SOT-223.Table 1Simulation results after successive iterations of the MOSFET coupled electro-thermal modelling V gs (V)I d (A)T amb (°C)T j (°C)Pot (W)#Iteration 51.2525250.492131.450.5098231.690.5105331.70.51054Fig.6.FLOTHERM model of the EC21QS04Schottky diode packaged in a DO-214AC.M.Vellvehi et al./Microelectronics Reliability 47(2007)2114–21212117modelled with an orthotropic thermal conductivity.The power converter works at an output voltage of5V and an output current of3A.That brings us to the consider-ation that the most important devices related to power con-sumption will be the switches,the rectifier diodes and the transformer.It is worth to point out that the passive com-ponents included in the PCB have not been thermally mod-elled.In this sense,such components have been considered as cuboids placed at the right locations but without any functionality.The active and passive components are placed in the PCB as shown in Fig.9:•Face A includes the half part of the transformer and the inductor,two MOSFETs in SOT-223package and fourcapacitors.•Face B includes the second half part of the transformer and the inductor,four Schottky diodes in DO-214AC package,a small transformer,a bipolar diode andfive capacitors.The values of the power dissipated by each component extracted from the electrical simulator(see Table2)are used as input parameters in the thermal simulator.The out-put of the thermal modelling is the internal temperature of each component.The values of the temperature of the active devices obtained by modelling at ambient tempera-ture(20°C)are shown in Table3.Fig.10shows the simu-lated temperature distribution in both faces of the PCB for an output current of3A andfixing20°C as ambient tem-perature.As it can be observed in Table3and in Fig.10, although the two MOSFETs temperatures are similar, some differences are observed between the four diodes, being the coolest the external ones(CR2and CR5).This will be corroborated with the infrared measurements.Table2Calculated dissipated power in the main components of the converter(T amb=20°C)Component Dissipated power(W)Transformer0.834Inductor0.025MOSFET0.205Schottky diodes0.8Fig.9.FLOTHERM DC/DC converter model.(a)Face A and(b)FaceB.2118M.Vellvehi et al./Microelectronics Reliability47(2007)2114–21215.Experimental validationTo validate the simulation results,temperature distribu-tion has been measured using Infrared (IR)thermography with AGEMA Thermovision THV900equipment.This technique allows the monitoring of surface temperatures and thermal patterns while the converter is operating.To obtain the IR measurements on both sides of the PCB,a test board has been developed to obtain the temperature distribution both on top and back of the PCB (Fig.11).Since the various components of the PCB have different emissivity values,a direct measurement of the surface tem-perature could result in unrealistic temperature values.For this reason,the IR measurements methodology includes two complementary techniques for comparison:•Emissivity equalization:Initially,an IR image of the PCB is made without biasing the circuit and considering a fixed external temperature;this gives a reference image for the emissivity equalization (i.e.an emissivity map-ping is obtained).After that,we obtain a second IR image of the system under working conditions.Consid-ering the two images,a surface map of temperature is obtained by software processing (Fig.12).•Black paint:the board is painted with black paint (Nex-tel 811-21Velvet Coating)with a known emissivity (e =0.97).Then,all components are supposed to pres-ent the same value of emissivity.Consequently,a direct temperature distribution can be measured on the IR pic-ture when the converter is biased (Fig.13).Fig.10.Simulated surface temperature distribution of the DC/DC converter at 20°C:Face A (a)and Face B(b).Fig.11.PCB connections for IR thermographymeasurements.Fig.12.Experimental temperature distribution on Face A (a)and Face B (b)of the converter,using an emissivity equalization technique (output current of 3A).Table 3Simulated surface temperatures of the active components of the DC/DC converterAmbient temperature 20°CMOSFET Q274.23°C MOSFET Q374.29°C Diode CR273.94°C Diode CR376.77°C Diode CR475.66°C Diode CR574.46°CM.Vellvehi et al./Microelectronics Reliability 47(2007)2114–21212119As mentioned before,the converter has been biased under the same conditions used for the simulation.The experimental results obtained for 1A and 3A output cur-rents can be seen in Tables 4and 5,respectively.These tables show the values of the surface temperatures of the different active components in both faces (A and B).As can be observed in both tables,the two methods used to measure the temperature distribution give similar results,with maximum differences of 2°C.The most important dif-ferences are found for the 3A output current case and for Face B components.If we compare the results of the measurements with the simulated ones (see Table 5)for the 3A output current (T amb =20°C),we observe a difference on the temperature distribution over the transformer.The reason is that pas-sive components have not been thermally modelled in a first approximation as explained previously.However,regarding the MOSFETs (Q2and Q3)the temperatures measured in both devices are very similar using both mea-surement techniques and almost equal to the temperatures calculated by simulation.In the case of the Schottky diodes,they present slight differences between experimental and simulated tempera-tures.For the external diodes (CR2and CR5)the experi-mental temperature values are similar to those obtained by simulation.However,for the internal ones (CR3and CR4),which are the hottest,the temperatures differences can reach 5°C,corresponding to an error of 6%.Then,we can conclude that,although the slight discrepancy on the values of temperatures in two of the active devices,the results obtained from the simulations agree with the measured results,corroborating the efficient electro-ther-mal modelling of the active devices.Then,using the pro-posed simulation methodology,we can also predict the junction temperature of the active devices included in the converter,hence improving its design in order to decrease the maximum temperature and increasing its reliability.In our case,under the operating conditions described above,the obtained chip temperatures of the different power devices are around 1°C above the temperatures measured in the surface of its packages.6.ConclusionsIn this work,the electro-thermal model of a power sys-tem using a modelling methodology based on relaxation method is presented and experimentally validated.The demonstrator is a DC/DC commercial converter and its modelling presents two main characteristics:the first one is the inclusion of power devices and the second one is the presence of a large number of active and passive com-ponents mounted in a 10-layer PCB.Electrical modelling performed with VHDL-AMS (using ADVanceMS)is cou-pled with thermal simulations using FLOTHERM TM .This coupled electro-thermal modelling was applied to single power devices (MOSFET and Schottky diode)to validate the methodology,before considering the complete circuit simulation.Special emphasis has been done on the thermal simulations and their experimental validation by means of an exhaustive infrared thermography analysis.The results obtained from the measurements show a good agreement with those obtained by simulation,hence showing the efficient electro-thermal modelling of the active devices.In addition,using this simulation methodology,we can predict the junction temperature of the devices.In thisTable 4Experimental surface temperatures of the active components obtained for an output current of 1A Op @1A Emissivity equalisation (°C)Black paint (°C)FACE A T Q237.137.3FACE A T Q337.137.3FACE B T CR236.835.2FACE B T CR338.836.9FACE B T CR438.337.0FACEB T CR536.534.6Table 5Experimental surface temperatures of the active components obtained for an output current of 3A Op @3A Emissivity equalisation Black paint FACE A T Q274.2°C 75.4°C FACE A T Q374°C 74.4°C FACE B T CR274.073.0FACE B T CR381.078.7°C FACE B T CR480.878.0°C FACEB T CR574.369.4°CFig.13.Experimental temperature distribution on Face A (a)and Face B (b)of the converter,using a black paint of known emissivity (output current of 3A).2120M.Vellvehi et al./Microelectronics Reliability 47(2007)2114–2121way,we can improve the system design in order to decrease the maximum junction temperature and to increase the reli-ability of the whole system.AcknowledgementsThe work presented in this paper was supported by EU under SPARTE Euclid contract and by the Spanish Ministerio de Educacio´n y Ciencia under contract TEC2005-087392(SPACESIC Project).References[1]Gutierrez H,Christoffersen CE,Steer MB.An integrated environ-ment for the simulation of electrical,thermal and electromagnetic interactions in high-performance integrated circuits.In:Proceedings of the IEEE sixth topical meeting on electrical performance of electronic packaging,September1999.[2]Kojima T,Yamada Y,Ciappa M,Chiavarini M,Fichtner W.A novelelectro-thermal simulation approach to power IGBT modules for automotive traction applications.R&D Review of Toyota CRDL 2004;39(4).[3]Miao L,Runde Z,Yuanquing G.A New electro-thermal simulatorbased on relaxation method for integrated circuits with distributed temperatures.In:Proceedings of international conference on chip design automation proceedings ICDA,2000.[4]Wu¨nsche S,ClaußC,Schwarz P.Electro-thermal circuit simulationusing simulator coupling.IEEE Trans Very Large Scale Integrat VLSI Syst1997;5(3):277–82.[5]Hefner AR,Blackburn DL.Thermal component models for electrothermal network simulation.In:ninth IEEE semiconductor thermal symposium1993.p.88.[6]Jorda`X,et al.Electro-thermal VDMOS SPICE model for thethermal design of power converter.In:IEEE international sympo-sium on diagnostics for electrical machines power electronics and drives(SDEMPED’99),Gijo´n(Spain),Septiembre1999.[7]Petegem WV,Geeraets B,Sansen W.Electrothermal simulation anddesign of electrical circuits.IEEE J Solid-State Circuits1994;29(February):143–6.[8]Heinkel Ulrich et al.The VHDL reference,a practical guide tocomputer-aided integrated circuit design including VHDL-AMS.John Wiley&Sons,LTD.;2002.p.197–232.ISBN047189972. [9]Martin E,Ferrer C.DC/DC Converter Modelling with VHDL-AMS.In:Proceedings of IEEE ICIT(International Conference on Indus-trial Tecnology)2003–Maribor,Slovenia,p.766–71.[10]FLOTHERM TM User’s Guide.Flomerics Inc.www.fl.M.Vellvehi et al./Microelectronics Reliability47(2007)2114–21212121。

相关文档
最新文档