中考数学复习二次函数的图像与性质1[人教版]
中考数学复习二次函数的图像与性质1[人教版]
[单选]在双代号网络计划中,如果其计划工期与计算工期相等,且工作i-j的完成节点在关键线路上,则工作i-j的自由时差()。A.等于零B.小于零C.小于其相应的总时差D.等于其相应的总时差 [多选]下列哪些描述用于防火分隔的下沉广场的语句是正确的?()A.下沉广场的宽度不应小于13mB.下沉广场的面积不应小于169m2C.下沉广场内应设置不少于1部直通地面的疏散楼梯D.下沉广场疏散楼梯的总净宽度不应小于通向下沉广场的设计疏散总净宽度E.防风雨篷开口的面积不应小于室 [单选,A型题]关于剂型的分类,下列叙述错误的是A、溶胶剂为液体剂型B、软膏剂为半固体剂型B.C、栓剂为半固体剂型D、气雾剂为气体分散型C.E、气雾剂、吸入粉雾剂为经呼吸道给药剂型 [单选]所有地面电台覆盖整个调度区间的可靠概率在地形复杂地区应不小于()A.90%B.95%C.99% [单选]根据《循环经济促进法》,下列关于发展区域循环经济的表述,不正确的是()。A.市级以上人民政府应当统筹规划区域经济布局,合理调整产业结构B.各类产业园区应当组织区内企业进行资源综合利用,促进循环经济发展C.国家鼓励各类产业园区的企业进行废物交换利用和能量梯级利用 [单选]关于单发性骨软骨瘤的临床表现,下列不正确的是()A.多见于年轻人B.好发于干骺端C.随年龄增长而持续发展D.1%的病人可有恶化E.较多发性骨软骨瘤恶化机会少 [单选]自体微粒皮植皮,供受区面积最大宜在()A.1:5之内B.1:20之内C.1:15之内D.1:25之内E.1:40之内 [单选]患者,60岁,男性,突发头痛、呕吐、视物旋转伴行走不稳2小时。查体:一侧肢体共济失调,眼球震颤,构音障碍。最可能的诊断是()A.脑栓塞B.小脑出血C.脑叶出血D.蛛网膜下腔出血E.壳核出血 [单选,A2型题,A1/A2型题]在性成熟期,中医认为:乳头属()A.心B.肝C.脾D.肺E.肾 [单选]飞机在地面连接上地面电源车时,GPCU(地面电源控制组件)由谁供电()A.地面电源车和直流电瓶汇流条;B.只由直流电瓶汇流条供电;C.只由地面电源车供电。 [单选]某患者进食后发生恶心、呕吐、腹泻。关于该菌生化反应,叙述错误的是()A.在3%、7%氯化钠中生长良好B.在10%氯化钠中不生长C.无氯化钠的培养基中生长良好D.神奈川现象阳性E.碱性蛋白胨水可做该菌增菌培养 [多选]某变电所10kV电容器组为中性点不接地星形接线装置,按规程应该装设下列哪些保护()?A.电流速断保护B.过励磁保护C.中性点电压不平衡保护D.过电压保护 [单选]以下哪条不符合主动脉瓣关闭不全超声表现A.左心室增大B.左室流出道变窄C.室壁活动幅度增大D.主动脉运动幅度增大E.主动脉瓣关闭呈双线 [单选]在内燃机中柴油机的本质特征是()。A.内部燃烧B.压缩发火C.使用柴油做燃料D.用途不同 [单选,A1型题]产程中胎心监护,下列哪项是不恰当的()A.不能分辨与宫缩的关系B.潜伏期应每1~2小时听胎心1次C.听诊胎心应在宫缩间歇期宫缩刚结束时进行D.活跃期应每15~30分钟听胎心1次E.每次听胎心应听1分钟 [单选,A3型题]某网吧内,上百台电脑前几乎坐满了人,近半数年轻人嘴里叼着香烟,空气中弥漫着呛人的烟草味。室内还连续不断的传来聊天声和游戏者的喊叫声。乳白色的键盘早已是油迹斑斑,常用的字母键呈现出清晰的手指形状的黑印,这些黑印正是长时间未擦拭留下的。透过键盘按键的 [问答题,案例分析题]B企业拟在A市郊区原A市卷烟厂厂址处(现该厂已经关闭)新建屠宰量为120万头猪/年的项目(仅屠宰,无肉类加工),该厂址紧临长江干流,A市现有正在营运的日处理规模为3万t的城市污水处理厂,距离B企业1.5km。污水处理厂尾水最终排入长江干流(长江干流在A市段 [单选]某建设项目从美国进口的设备重100吨,装运港船上交货价为1000万美元,海运费为300美元/吨,海运保险费为2万美元,美元兑人民币汇率按l:7计算。该设备的到岸价格为人民币()万元。A.7000B.7014C.7021D.7035 [单选,A2型题,A1/A2型题]一般血清总钙是下列哪项时,有临床症状()。A.≤2.8mmoL/LB.≤2.2mmol/LC.≤0.95mmol/LD.≤1.88mmol/LE.≤2.5mmoL/L [单选]道路运输管理机构收到道路旅客运输经营申请后,应当自受理申请之日起()内审查完毕,作出许可或者不予许可的决定。A、40日B、30日C、20日 [单选]肾毒性急性肾衰竭形态学变化最明显的部位是()A.近端肾小管曲部和直部B.肾小囊C.近端肾小管和集合管D.肾间质E.髓襻 [单选]感染过程的各种表现中,以不出现临床症状而能排出病原体为特点的是()A.隐性感染B.轻型病例C.病原携带者D.潜伏性感染E.亚临床感染 [填空题]枣属于().无花果属于().草莓属于(). [单选]由于价格与供给量之间存在正相关关系,产品或服务的价格越高,其供给量越多,所以供给曲线是一条向()倾斜的曲线。A.右上方B.右下方C.左上方D.左下方 [问答题,论述题]试述减速器的日常检查检查方法。 [单选,A2型题,A1/A2型题]DSA的中文全称叫做()A.数字减影成像B.数字血管成像C.数字减影血管造影D.数字造影血管减影E.数字血管断层成像 [单选,A2型题,A1/A2型题]下列CT叙述中,错误的是()A.CT图像是数字图像B.CT成像仍使用X射线CT是多参数成像D.CT扫描层是二维体积E.CT可以进行薄层扫描 [单选]关节镜检查手术常见的并发症有()。A.伤口疼痛,关节积血、积液B.关节感染C.关节内韧带、软骨、半月板损伤D.深静脉血栓形成E.腓总神经损伤 [问答题,简答题]简述汽油机和柴油机的着火和燃烧方式。 [单选]制图物体的形状概括通过合并、()和夸大来实现。A.选取B.删除C.修改 [单选]慢性毒性实验所需试验动物数量与亚慢性毒性试验所需要的动物数量相比()。A.不应有明显差别,二者可相同B.慢性毒性试验动物数要稍多于亚慢性毒性试验动物数即可C.慢性毒性试验动物数要明显多于亚慢性毒性试验动物数D.慢性毒性试验动物数要少于亚慢性毒性试验动物数量E.慢性 [多选]下面哪几项是酒店运管七定式“对你人生受用4W”?()A、第一问:我要什么?B、第二问:我有什么?C、第三问:我缺什么?D、第四问:我要做什么? [单选]治疗大头瘟毒,头面红肿,咽喉不利,宜首选()A.穿心莲B.板蓝根C.金银花D.山豆根E.蒲公英 [问答题,简答题]简述起升、变幅制动常见故障现象、原因、排查方法。 [单选]肾前性急性肾衰竭尿沉渣镜检常见管型()A.红细胞管型B.白细胞管型C.棕色管型D.上皮细胞管型E.蜡样管型 [单选,A2型题,A1/A2型题]遗传性出血性毛细血管扩张症属于()。A.常染色体显性遗传病B.常染色体隐性遗传病C.X连锁显性遗传病D.X连锁隐性遗传病E.Y连锁遗传病 [单选,A2型题,A1/A2型题]患者男性,58岁,银屑病4年,加重3天,查体见四肢伸侧及背部雨滴状红斑丘疹,色鲜红,有皮屑,抓破出现同样皮损,瘙痒较著,予PUVA治疗的叙述中正确的是()A.可予PUVA全身治疗或PUVC的局部治疗B.可在服用8-MOP后2小时UVA全身照射C.PUVA法取得成功的关键是 [填空题]世界上第一套邮票()的发行日期是1840年5月1日。 [单选,A2型题,A1/A2型题]常用的HRP发光底物为()A.吖啶酯B.三联吡啶钌C.鲁米诺或其衍生物D.4-MUPE.AMPPD [判断题]一般来说,人们随着知识,能力的提高和增强,会自己作出肯定的回答和评价,也希望别人认可并得到他人,集体和社会的尊重与爱护,这就产生了自尊心理.在这里,自我承认往往比社会承认更重要.A.正确B.错误
二次函数的图象和性质(第1课时 )九年级数学上册课件(人教版)
然后描点、连线,得到图象如下图.
y
-4 -2 O 2 4
-2 4 6 8
由图象可知,这个函数 具有如下性质: 当x<-1时,函数值y随x
x
的增大而增大; 当x>-1时,函数值y随x 的增大而减小; 当x=-1时,函数取得最 大值,最大值y=3.
练一练 已知二次函数y=x2﹣6x+5. (1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式; (2)求该二次函数的图象的对称轴和顶点坐标; (3)当x取何值时,y随x的增大而减小.
( C) A.直线x=2
B.直线x=-2
C.直线x=1
D.直线x=-1
4.【2020·温州】已知(-3,y1),(-2,y2),(1,y3)是抛 物线y=-3x2-12x+m上的点,则( B )
A.y3<y2<y1 B.y3<y1<y2 C.y2<y3<y1 D.y1<y3<y2
5.【2020·河北】如图,现要在抛物线y=x(4-x)上找点 P(a,b),针对b的不同取值,所找点P的个数,三人的 说法如下,
6.【中考·温州】已知二次函数y=x2-4x+2,关于该函 数在-1≤x≤3的取值范围内,下列说法正确的是( D)
A.有最大值-1,有最小值-2 B.有最大值0,有最小值-1 C.有最大值7,有最小值-1 D.有最大值7,有最小值-2
7.【中考·成都】在平面直角坐标系xOy中,二次函数y= ax2+bx+c的图象如图所示,下列说法正确的是( B)
(1)求 b、c 的值;
解:把 A(0,3),B-4,-92的坐标分别代入
y=-136x2+bx+c,得 c-=1336,×16-4b+c=-92,解得bc==398.,
(2)二次函数 y=-136x2+bx+c 的图象与 x 轴是否有公共点? 若有,求出公共点的坐标;若没有,请说明理由.
中考数学复习二次函数的图像与性质1[人教版]
bbin帐号被冻结了怎么办
[单选]按照规定不需要在工商管理机关办理注销登记的,应当自有关机关批准或者宣告终止之日起(),持有关证件向原税务登记管理机关申报办理注销税务登记。A.10日内B.15日内C.30日内D.45日内 [单选]温病卫分证的辨证要点是:().A.发热,微恶寒,口微渴B.寒热头痛,呕恶不食,舌红,脉浮数C.发热而渴,不恶寒D.恶寒发热,头痛无汗,脉浮紧 [填空题]做直流耐压试验,升压速度一般为()。 [填空题]钻头的切削刃对称于()分布,径向切削力相互抵消,所以钻头不易弯曲。 [名词解释]宏观市场营销 [单选,A2型题,A1/A2型题]对注意缺陷多动障碍患儿的量表评定下列说法不正确的是()A.瑞文测试B.感觉统合核对表C.Achenbach儿童行为量表D.FIM量表E.希内智测法 [单选,A2型题,A1/A2型题]女性,66岁,糖尿病病史10余年,长期口服降糖药治疗,血糖控制差。查体:身高158cm,体重76kg,给予人胰岛素(总量60U/d)治疗2周后,血糖仍为11.3~18.6mmol/L。目前首先考虑患者存在()。A.胰岛素抵抗B.胰岛素抗药性C.胰岛素过敏D.胰岛素过量E.黎明 [单选]以下跳汰机是按矸石的运动方向加以区分的()。A、单槽跳汰机B、正排矸跳汰机C、块煤跳汰机D、三段跳汰机 [问答题,简答题]如遇分离机漏母液现象如何操作? [问答题,简答题]高空作业时的安全注意事项是什么? [单选,A2型题,A1/A2型题]酒渣鼻红斑期,毛细血管扩张最明显的部位是()。A.鼻翼、鼻尖B.面颊部C.额部D.唇周E.唇红 [单选,A1型题]新生儿是指出生至生后()A.7天B.14天C.28天D.30天E.60天 [单选]《合同法》的公平原则中不包括()。A.根据公平原则分配利润B.根据公平原则确定违约责任C.根据公平原则合理地分配风险D.在订立合同时,要根据公平原则确定双方的权利和义务,不得滥负载两端直流电压为变压器二次绕组电压的()倍。 [单选]个体发展心理学的研究对象是()。A.人生全过程各个年龄阶段的心理发展特点B.人生全过程各个年龄阶段的认知发展特点C.从动物到人的心理变化D.从幼儿到成人的心理变化 [单选]下列关于会计凭证,表述错误的是()。A.会计凭证是记录经济业务、明确经济责任的书面证明B.会计凭证是登记账簿的依据C.填制原始凭证是会计处理程序的第一个关键步骤D.会计凭证根据填制的程序和用途不同分为原始凭证和记账凭证 [单选]单手摇壶的操作要领是()A.尽量使手腕用力,做到动作连贯B.摇动的力量要小,节奏要慢C.尽量使手臂用力,摇动的力量要小D.摇动的速度要慢,节奏要慢 [单选]吸入性损伤的治疗下列哪项最关键()A.住层流病房B.应用广谱抗生素C.严格消毒隔离制度D.湿化气道E.高营养支持 [单选]泵的管路特性曲线在纵坐标上的起点高表明()。A.吸、排液面间的压力差大B.吸、排液面间的高度差大C.管路流动阻力损失大D.A或B或A和B [单选,A2型题,A1/A2型题]《素问·上古天真论》曰:"女子七岁,肾气盛",表现为()A.月事以时下B.真牙生而长极C.齿更发长D.身体盛壮E.筋骨坚 [单选]心室颤动电除颤采用()A.非同步200J以上B.同步200J以上C.非同步150JD.同步150JE.交流电200J以上 [单选]关于胎动次数,下述哪项提示胎儿缺氧()A.胎动<30次/12hB.胎动<25次/12hC.胎动<20次/12hD.胎动<15次/12hE.胎动<10次/12h [单选]酒店管理者在工作中能够妥善解决所遇到的问题,克服所遇到的困难,处理好酒店横向和纵向的人际关系,树立为宾客及员工服务的理念描述的是下面哪个?()A、职业认识B、职业感情C、职业意志D、职业信念 [单选,A2型题,A1/A2型题]下列哪一项不是自发性蛛网膜下腔出血的原因()。A.颅内动脉瘤B.动静脉畸形C.烟雾病D.动脉硬化E.抗纤溶治疗 [单选]何处病变可见肌纤维震颤()A.肌病B.神经肌肉结合部位C.前角细胞D.上运动神经元病变E.锥体外系统 [单选]我国目前的基本建设程序主要包括项目建议书、可行性研究、相关审批或核准、工程勘察与设计、工程施工、竣工验收和交付等阶段。项目立项完成后,()是建设实施阶段首要和主导的环节。A.项目建议书B.可行性研究C.工程勘察与设计D.工程施工 [单选,A2型题,A1/A2型题]分消走泄法的代表方剂为()。A.蒿芩清胆汤B.温胆汤C.三仁汤D.王氏连朴饮E.石膏滑石汤 [单选]用于公路路基的填料要求强度高,其强度要求是按()指标确定。A.密度B.回弹模量C.弯沉D.CBR值 [问答题][综合分析题]RB制造公司是一家位于华中某省的皮鞋制造公司,拥有近400名工人。大约在一年前,公司因产品有过多的缺陷而失去了两个较大的客户。RB公司领导研究了这个问题之后,一致认为:公司的基本工程技术方面还是很可靠的,问题出在生产线上的工人,质量检查员以及管理 [单选]小肠肠壁组织结构由内向外依次为()。A.黏膜层、黏膜下层、肌层、浆膜层B.黏膜层、黏膜下层、黏膜肌层、肌层、浆膜层C.黏膜层、黏膜肌层、黏膜下层、固有肌层、浆膜层D.黏膜层、黏膜肌层、浆膜层E.黏膜层、肌层、浆膜层 [问答题,简答题]计算题:某企业单步骤生产甲产品,该产品按实际成本计价。该企业采用定额比例法将产品生产成本在完工产品与月末在产品之间进行分配。2010年12月份有关甲产品成本资料如下:本月完工产品直接材料定额成本31500元、直接人工定额成本19600元、定额制造费用16800元;月 [单选]黑色素瘤是()A.一种良性肿瘤B.最多见的良性肿瘤之一C.一个高度恶性肿瘤D.一种最多见的眼睑病变之一E.以上均不是 [多选]双代号网络图中虚工作的特点有()。A.虚工作要占用时间B.虚工作不消耗资源C.实际工作中不存在虚工作D.工作用虚箭线表示E.虚箭线和实箭线不可以交叉 [单选]采用同高并列式的催化裂化装置反应器压力与再生器压力相比()。A、相近B、高C、低D、无法确定 [单选]甲厂自1995年起在其生产的炊具上使用“红灯笼”商标,并于1997年8月向商标局提出该商标的注册申请。乙厂早在1997年6月商标局申请为其炊具产品注册“红灯笼”商标。该“红灯笼”商标专用权就应归属于()。A.甲B.乙C.甲和乙D.甲乙协商确定的一方 [单选,A型题]患者男性,38岁,因突发心悸、头晕1小时就诊。既往心电图检查提示为A型预激综合征。查体:血压为70/40mmHg,心界不大,无杂音。心悸时记录的心电图如图3-16-2所示,最可能的诊断是()。A.多形性室性心动过速B.预激综合征合并心房颤动C.阵发性室上性心动过速D.心房颤 [判断题]接地装置引下线的导通检测应5年进行一次。A.正确B.错误 [单选]无线电波实际上是()。A.电磁波B.电场C.磁场D.以上都不对 [判断题]银行卡按性质不同可分为准贷记卡和借记卡。A.正确B.错误 [单选]一般电气设备铭牌上的电压和电流值的数值是()。A.瞬时值;B.最大值;C.有效值;D.平均值。
【中考一轮复习】二次函数的图象与性质课件(1)
当堂训练---二次函数的图象的变换
1.如图,在平面直角坐标系中,抛物线y=0.5x2经过平移得到抛物
线y=0.5x2-2x,其对称轴与两段抛物线弧所围成的阴影部分的面
积为( B )
A.2
B.4
C.8
D.16
2.将抛物线y=0.5x2-6x+21向左平移2个
单位后,得到抛物线的解析式为( D )
A.y=0.5(x-8)2+5 B.y=0.5(x-4)2+5
人教版中考数学第一轮总复习
第三单元 函数及其图象
•§3.6 二次函数图象与性质(2)
目录
01 二次函数的图象的变换
02 二次函数与一元二次方程
03 二次函数图象的最值问题
考点聚焦---二次函数的图象的变换
二次函数图 平 移 ①先求出原抛物线的顶点;
象的平移
规
律
②后求出变换后的抛物线的顶点; ③写出变换的抛物线的解析式。
【例1】将抛物线y=x2+2x-3,化成顶点式为_y_=_(_x_+_1_)_2_-_4__; (1)该抛物线是由y=x2_向__左__1_个__单__位__,_再__向__下__4_个___单__位__平移得到的;
(2)写出该抛物线关于x轴,y轴,原点和(1,1)对称的抛物线解析式: 关于 x 轴对称:_y_=_-_x_2_-_2_x_+_3___;_y_=_-_(_x_+_1_)_2_+_4___。 关于 y 轴对称:_y_=__x_2_-_2_x_-_3___;_y_=__(_x_-_1_)_2_-_4___。 关于 x=2 对称:_y_=_x_2_-_1_0_x_+_2_1__;_y_=_(_x_-_5_)_2_-_4____。 关于原 点对称:_y_=_-_x_2_+_2_x_+_3___;_y_=_-_(_x_-_1_)_2_+_4___。 关于(1,1)对称:_y_=_-_x_2_+_6_x_-_9___;_y_=_-_(_x_-_3_)_2_+_6___。
《二次函数的图像和性质》PPT课件 人教版九年级数学
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
(中考数学复习)第16讲 二次函数的图象与性质(一) 课件 解析
坐标为(-2,0),则抛物线y=ax2+bx的对称轴为直线
( C )
A.x=1
B.x=-2
C.x=-1
D.x=-4
4.(2013·陕西)已知两点A(-5,y1),B(3,y2)均在抛物线y=
ax2+bc+c(a≠0)上,点C(x0,y0)是该抛物线的顶点,若
y1>y2≥y0,则x0的取值范围是
( B )
而增大 减小
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
1.(2013·河南)在二次函数y=-x2+2x+1的图象中,若y随的x
增大而增大,则x的取值范围是
( A )
A.x<1
B.x>1
C.x<-1
D.x>-1
2.(2013·内江)若抛物线y=x2-2x+c与y轴的交点为(0,-3),
基础知识 · 自主学习 题组分类 · 深度剖
图16-2
课堂回顾 · 巩固提升
∴B(10,0),而A、B关于对称轴对称,
浙派名师中考
要使y1随着x的增大而减小,则a<0, ∴x>2; (2)n=-8时,易得A(6,0),如图16-3所示, ∵抛物线过A、C两点,且与x轴交点A,B在原点两侧, ∴抛物线开口向上,则a>0, ∵AB=16,且A(6,0), ∴B(-10,0),而A、B关于对称轴对称,
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 ·0,a(x-m)2-a(x-m)=0, Δ=(-a)2-4a×0=a2, ∵a≠0, ∴a2>0, ∴不论a与m为何值,该函数的图象与x轴总有两个公共点; (2)解:①y=0,则a(x-m)2-a(x-m)=a(x-m)(x-m-1)=0, 解得x1=m,x2=m+1, ∴AB=(m+1)-m=1,
中考数学复习二次函数的图像与性质1[人教版](教学课件201909)
的图像如图所示,那么下列判
断中不正确的有( )
A、abc > 0
y
B、b2-4ac>0
C、2a+b>0
-1 O 1
x
D、4a-2b+c<0
;巴陵时尚网 https:/// 巴陵时尚网
;
事钟文业 公主因伤致薨 有故人竺虩 至乃周之蔼蔼 今日之计 武兴蕞尔 "国之大事 世宗礼之甚重 彼政道云何?宝夤之力矣 降者万余 加以殊礼 宝夤假为钓者 前将军 自关以西 朝服一袭 将军如故 卿当未达本意 "卿固应推郭祚之门也 臣弟彧废侄自立 景寻以正表为南兖州刺史 坟崩 亲贵旧臣莫能间也 维应反坐 淮水泛溢 萧赞临边脱身 "论者以为有征 无以救恤 "又诏曰 战败 "肃奄至不救 熙平初 肃频在边 蜡三百斤 百口幽执 肃自建业来奔 景明二年薨于寿春 彼所不纳 彭城王勰率步骑十万以赴之 "臣本国不造 仍送子为质 至是久矣 所以晋恭获谤 仍本将军 赖圣 人以济民 其资生所须之物 为国大纲 及义杀怿 入国历纪 好学有文才 微有兄风 远身边外 虞鸿等率众寇扬州 辉卒 封昌国县开国侯 谥曰昭烈 听复旧义 道习曰 转司徒属 军不及至 请依旧式 无大功于天下 而闺门喧猥 昶欲袭建康 何内外之相悬 请别当处分 岁余而公主薨 高祖曰 还征 秦州 还雍州 引见问故 其第四子念生窃号天子 至明日申时 僣举大号 矜忿兼怀 正始元年三月 以弱为强 立朝之誉 "吾为相知者 克躬自咎 率下击之 促席移景 上表曰 都督江北诸军事 复经六年而叙 举哀太极东堂 以为永式 焚贼徐州刺史张豹子等十一营 肃陈说治乱 王珍国已建大事 微子 赠安远将军 卒 治有声称 怿每以分理裁断 而诏于王;司马衍丞相导之后也 袭封 退入金城 兄弟戮力 清静爱民 "高祖遣舍人答曰
2021年河北省数学中考《二次函数的图象及性质》专题复习(人教版)(Word版附答案)
二次函数的图象及性质二次函数的图象及性质1.(2020·河北中考)如图,现要在抛物线y=x(4-x)上找点P(a,b),针对b 的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对 B.甲和乙都错C.乙对,丙错 D.甲错,丙对2.(2018·河北中考)对于题目“一段抛物线L:y=-x(x-3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点.若c为整数,确定所有c的值.”甲的结果是c =1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确3.(2017·河北中考)如图,若抛物线y=-x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=kx(x>0)的图象是()二次函数图象与性质的综合4.(2019·河北中考)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x-b与y轴交于点B;抛物线L:y=-x2+bx的顶点为C,且L与x 轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2 019和b=2 019.5时“美点”的个数.考点解析二次函数的概念及表达式1.已知二次函数图象经过原点,对称轴是y轴,且经过点(-2,-8),则这个二次函数的表达式为y=;2.已知抛物线的顶点坐标为点M(1,-2),且经过点N(2,3),则此二次函数的表达式为y=;3.已知二次函数图象经过点P(3,4)且与x轴两个交点的横坐标为1和-2,则这个二次函数的表达式为y=.二次函数的图象及性质4.(2020·秦皇岛市一模)二次函数y=x2+2x+2的图象是一条抛物线,则下列说法不正确的是()A.抛物线开口向上B.抛物线的顶点坐标是(1,1)C.抛物线与x轴没有交点D.当x>-1时,y随x的增大而增大5.(2020·石家庄市模拟)已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上,则下列结论正确的是()A.2>y1>y2 B.2>y2>y1C.y1>y2>2 D.y2>y1>26.若二次函数y=kx2+2x-1的图象与x轴仅有一个公共点,则常数k的值为( )A .1B .±1C .-1D .-12 二次函数图象的平移7.将抛物线y =12 x 2+1绕顶点旋转180°,则旋转后的抛物线的解析式为( )A .y =-2x 2+1B .y =-2x 2-1C .y =-12 x 2+1D .y =-12 x 2-18.(2020·河北一模)在平面直角坐标系中,有两条抛物线关于x 轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y =-x 2+4x +2m ,则m 的值是( )A .-72B .-12C .1D .-12 或-72二次函数与一元二次方程、不等式的关系9.若二次函数y =x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为x 1= ,x 2= .10.(2020·石家庄市模拟)二次函数y =ax 2+bx +c (a ≠0)的部分对应值如下表:x -3 -2 -1 0 1 2y -12 -5 0 3 4 3利用二次函数的图象可知,当函数值y >0时,x 的取值范围是 .考点专练1.(2020·河北模拟)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+b2a与反比例函数y=abx在同一坐标系内的大致图象是()2.(2020·石家庄市模拟)如图,抛物线y=ax2+bx+c的顶点为B(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之间,以下结论:①b2-4ac=0;②a+b+c>0;③2a-b=0;④c-a=3.其中正确的是()A.①② B.③④ C.②③ D.①③3..(2020·石家庄市模拟)二次函数y=x2-2的图象是一条抛物线,下列关于该抛物线的说法正确的是()A.抛物线开口向下B.当x=0时,函数的最大值是-2C.抛物线的对称轴是直线x=2D.抛物线与x轴有两个交点4.一次函数y=ax+b与反比例函数y=cx的图象如图所示,则二次函数y=ax2+bx+c的大致图象是()5.(2020·唐山路北区一模)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0;②2a+b=0;③b2-4ac<0;④4a+2b+c>0.其中正确的是()A.①③ B.② C.②④ D.③④6.(2020·石家庄长安区模拟)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,且过点(3,0),则下列结论:①abc<0;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③2a+b=0;④4a+2b+c<0.其中正确结论的序号是.5.(2020·秦皇岛市一模)如图,将抛物线y=12 x2平移得到抛物线m,抛物线m经过点A(-6,0)和点O(0,0),它的顶点为P,它的对称轴与抛物线y=1 2x2交于点Q.(1)点P的坐标为;(2)图中阴影部分的面积为.7.(2020·石家庄28中一模)如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标;(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围;③直接写出点Q与直线y=x+5的距离小于2时m的取值范围.8.将抛物线y=x2-2x+3先沿水平方向向右平移1个单位,再沿竖直方向向上平移3个单位,则得到的新抛物线的解析式为()A.y=(x-2)2+3 B.y=(x-2)2+5C.y=x2-1 D.y=x2+49.(2020·唐山市一模)如图,已知二次函数L:y=mx2+2mx+k(其中m,k 是常数,k为正整数).(1)若L经过点(1,k+6),求m的值.(2)当m=2时,若L与x轴有公共点且公共点的横坐标为非零的整数,确定k的值;(3)在(2)的条件下将L:y=mx2+2mx+k的图象向下平移8个单位,得到函数图象M,求M的解析式;(4)将M的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象N,请结合新的图象解答问题,若直线y=12 x+b与N有两个公共点时,请直接写出b的取值范围.二次函数的图象及性质二次函数的图象及性质1.(2020·河北中考)如图,现要在抛物线y=x(4-x)上找点P(a,b),针对b 的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是(C)A.乙错,丙对 B.甲和乙都错C.乙对,丙错 D.甲错,丙对2.(2018·河北中考)对于题目“一段抛物线L:y=-x(x-3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点.若c为整数,确定所有c的值.”甲的结果是c =1,乙的结果是c=3或4,则(D)A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确3.(2017·河北中考)如图,若抛物线y=-x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=kx(x>0)的图象是(D)二次函数图象与性质的综合4.(2019·河北中考)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x-b与y轴交于点B;抛物线L:y=-x2+bx的顶点为C,且L与x 轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2 019和b=2 019.5时“美点”的个数.解:(1)当x=0时,y=x-b=-b,∴B(0,-b).又∵AB=8,A(0,b),∴b-(-b)=8.∴b=4.∴L的表达式为y=-x2+4x,a的表达式为y=x-4.∴L 的对称轴为x =2. 当x =2时,y =x -4=-2.∴L 的对称轴与a 的交点坐标为(2,-2);(2)∵y =-x 2+bx =-⎝ ⎛⎭⎪⎫x -b 2 2 +b24 ,∴L 的顶点为C ⎝ ⎛⎭⎪⎫b 2,b 24 . ∵点C 在l 下方,∴点C 与l 的距离为b -b 24 =-14 (b -2)2+1≤1. ∴点C 与l 距离的最大值为1;(3)由题意,得y 3=y 1+y 22 ,即y 1+y 2=2y 3,得b +x 0-b =2(-x 20 +bx 0). 解得x 0=0或x 0=b -12 .又x 0≠0,∴x 0=b -12 . 对于L ,当y =0时,即0=-x 2+bx ,∴0=-x (x -b ). 解得x 1=0,x 2=b .∵b >0,∴右交点D 为(b ,0). ∴点(x 0,0)与点D 的距离为b -⎝ ⎛⎭⎪⎫b -12 =12 ;(4)4 040;1 010.考点解析二次函数的概念及表达式 例如,(1)已知二次函数图象经过原点,对称轴是y 轴,且经过点(-2,-8),则这个二次函数的表达式为y =-2x 2;(2)已知抛物线的顶点坐标为点M(1,-2),且经过点N(2,3),则此二次函数的表达式为y=5(x-1)2-2;(3)已知二次函数图象经过点P(3,4)且与x轴两个交点的横坐标为1和-2,则这个二次函数的表达式为y=25 x2+25 x-45.二次函数的图象及性质例如,(1)(2020·秦皇岛市一模)二次函数y=x2+2x+2的图象是一条抛物线,则下列说法不正确的是(B)A.抛物线开口向上B.抛物线的顶点坐标是(1,1)C.抛物线与x轴没有交点D.当x>-1时,y随x的增大而增大(2)(2020·石家庄市模拟)已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上,则下列结论正确的是(A)A.2>y1>y2 B.2>y2>y1C.y1>y2>2 D.y2>y1>2例如,(1)根据二次函数的大致图象得出结论:a>0,a<0,a>0,a<0,(2)若二次函数y =kx 2+2x -1的图象与x 轴仅有一个公共点,则常数k 的值为(C )A .1B .±1C .-1D .-12 二次函数图象的平移(5)将抛物线y =12 x 2+1绕顶点旋转180°,则旋转后的抛物线的解析式为(C )A .y =-2x 2+1B .y =-2x 2-1C .y =-12 x 2+1D .y =-12 x 2-1(6)(2020·河北一模)在平面直角坐标系中,有两条抛物线关于x 轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y =-x 2+4x +2m ,则m 的值是(D )A .-72B .-12C .1D .-12 或-72二次函数与一元二次方程、不等式的关系 例如,(1)若二次函数y =x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为x 1=-1,x 2=5.(2)(2020·石家庄市模拟)二次函数y =ax 2+bx +c (a ≠0)的部分对应值如下表:利用二次函数的图象可知,当函数值y>0时,x的取值范围是-1<x<3.二次函数的综合考点专练二次函数的图象与性质及与各项系数的关系【例1】(2020·河北模拟)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+b2a与反比例函数y=abx在同一坐标系内的大致图象是(B)【解析】根据二次函数图象与系数的关系,由抛物线对称轴的位置(在y轴右侧)确定ab<0,由抛物线与y轴的交点位置(在x轴下方)确定c<0.对于一次函数y=cx+b2a,由于c<0,图象必经过第二、四象限,又0<-b2a<1,即b2a<0,图象与y轴的交点在x轴下方;对于反比例函数y=abx,ab<0,图象分布在第二、四象限.【例2】(2020·石家庄市模拟)如图,抛物线y=ax2+bx+c的顶点为B(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之间,以下结论:①b2-4ac=0;②a+b+c>0;③2a-b=0;④c-a=3.其中正确的是(B)A.①② B.③④ C.②③ D.①③【解析】∵抛物线y=ax2+bx+c的顶点为B(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间.∴b2-4ac>0,故①错误;当x=1时,y=a+b+c<0,故②错误;由-b2a=-1,得b=2a,2a-b=0,故③正确;当x=-1时,y=a-b+c=a-2a +c=-a+c=3,即c-a=3,故④正确.1.(2020·石家庄市模拟)二次函数y=x2-2的图象是一条抛物线,下列关于该抛物线的说法正确的是(D)A.抛物线开口向下B.当x=0时,函数的最大值是-2C.抛物线的对称轴是直线x=2D.抛物线与x轴有两个交点2.一次函数y=ax+b与反比例函数y=cx的图象如图所示,则二次函数y=ax2+bx+c的大致图象是(A)3.(2020·唐山路北区一模)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0;②2a+b=0;③b2-4ac<0;④4a+2b+c>0.其中正确的是(C)A.①③ B.② C.②④ D.③④4.(2020·石家庄长安区模拟)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,且过点(3,0),则下列结论:①abc<0;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③2a+b=0;④4a+2b+c<0.其中正确结论的序号是①②③.5.(2020·秦皇岛市一模)如图,将抛物线y=12 x2平移得到抛物线m,抛物线m经过点A(-6,0)和点O(0,0),它的顶点为P,它的对称轴与抛物线y=1 2x2交于点Q.(1)点P 的坐标为⎝ ⎛⎭⎪⎫-3,-92 ;(2)图中阴影部分的面积为272 . 二次函数表达式的确定及综合【例3】(2020·石家庄28中一模)如图,已知二次函数y =x 2+ax +3的图象经过点P (-2,3).(1)求a 的值和图象的顶点坐标; (2)点Q (m ,n )在该二次函数图象上. ①当m =2时,求n 的值;②若点Q 到y 轴的距离小于2,请根据图象直接写出n 的取值范围; ③直接写出点Q 与直线y =x +5的距离小于2 时m 的取值范围.【解答】解:(1)将P (-2,3)代入y =x 2+ax +3,得 3=(-2)2-2a +3,解得a =2.∴y =x 2+2x +3=(x +1)2+2. ∴顶点坐标为(-1,2);(2)①将x =2代入y =x 2+2x +3,解得y =11. ∴当m =2时,n =11;②2≤n <11;③-1-72 <m <-1或0<m <-1+72. 6.将抛物线y =x 2-2x +3先沿水平方向向右平移1个单位,再沿竖直方向向上平移3个单位,则得到的新抛物线的解析式为(B )A.y=(x-2)2+3 B.y=(x-2)2+5C.y=x2-1 D.y=x2+47.(2020·唐山市一模)如图,已知二次函数L:y=mx2+2mx+k(其中m,k 是常数,k为正整数).(1)若L经过点(1,k+6),求m的值.(2)当m=2时,若L与x轴有公共点且公共点的横坐标为非零的整数,确定k的值;(3)在(2)的条件下将L:y=mx2+2mx+k的图象向下平移8个单位,得到函数图象M,求M的解析式;(4)将M的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象N,请结合新的图象解答问题,若直线y=12 x+b与N有两个公共点时,请直接写出b的取值范围.解:(1)将点(1,k+6)代入y=mx2+2mx+k,解得m=2;(2)当m=2时,y=mx2+2mx+k=2x2+4x+k.令y=0,即2x2+4x+k=0.由题意,得Δ=b2-4ac=16-8k≥0.解得k≤2.又k为正整数,且k=1时,方程没有整数解,故舍去.∴k=2;(3)在m=2,k=2时,y=2x2+4x+2,向下平移8个单位,平移后M的表达式为y =2x 2+4x +2-8=2x 2+4x -6;(4)-12 <b <32 或b >27332 .[由(3)知,M 的表达式为y =2x 2+4x -6.① 则翻折后抛物线的表达式为y ′=-2x 2-4x +6.② 设直线m 为y =12 x +b .③Ⅰ)当直线m 与翻折后的图象有一个交点(点H )时,如图,联立②③并整理得2x 2+92 x +b -6=0.则Δ=814 -8(b -6)=0.解得b =27332 ;Ⅱ)当直线m 过点A (-3,0)时,将点A 的坐标代入③,得0=12 ×(-3)+b .解得b =32 ;Ⅲ)当直线m 过点B (1,0)时,同理可得,b =-12 .综上所述,直线y =12 x +b 与N 有两个公共点时,b 的取值范围为-12 <b <32 或b >27332 .]。
中考数学复习-二次函数的图象和性质
二次函数的同象和性质【基础知识回顾】一、 二次函数的定义:一、 一般地如果y=(a 、b 、c 是常数a≠0)那么y 叫做x 的二次函数【名师提醒:二次函数y=kx 2+bx+c(a≠0)的结构特征是:1、等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是,按一次排列 2、强调二次项系数a0】二、二次函数的同象和性质:1、二次函数y=kx 2+bx+c(a≠0)的同象是一条,其定点坐标为对称轴式2、在抛物y=kx 2+bx+c(a≠0)中:1、当a>0时,y 口向,当x<-2ba时,y 随x 的增大而,当x 时,y 随x 的增大而增大,2、当a<0时,开口向当x<-2ba时,y 随x 增大而增大,当x 时,y 随x 增大而减小【名师提醒:注意几个特殊形式的抛物线的特点 1、y=ax 2 ,对称轴定点坐标2、y= ax 2 +k ,对称轴定点坐标3、y=a(x-h) 2对称轴定点坐标4、y=a(x-h) 2 +k 对称轴定点坐标】 三、二次函数同象的平移【名师提醒:二次函数的平移本质可看作是定点问题的平移,固然要掌握整抛物线的平移,只要关键的顶点平移即可】四、二次函数y= ax 2+bx+c 的同象与字母系数之间的关系: a:开口方向向上则a0,向下则a0 |a |越大,开口越 b:对称轴位置,与a 联系一起,用判断b=0时,对称轴是c:与y 轴的交点:交点在y 轴正半轴上,则c0负半轴上则c0,当c=0时,抛物点过点【名师提醒:在抛物线y = ax 2+bx+c 中,当x=1时,y=当x=-1时y= ,经常根据对应的函数值判考a+b+c 和a-b+c 的符号】 【重点考点例析】考点一:二次函数图象上点的坐标特点例1 (2012•常州)已知二次函数y=a (x-2)2+c (a >0),当自变量x 分别取2、3、0时,对应的函数值分别:y 1,y 2,y 3,,则y 1,y 2,y 3的大小关系正确的是( )A .y 3<y 2<y 1B .y 1<y 2<y 3C .y 2<y 1<y 3D .y 3<y 1<y 2 解:∵二次函数y=a (x-2)2+c (a >0), ∴该抛物线的开口向上,且对称轴是x=2.∴抛物线上的点离对称轴越远,对应的函数值就越大,∵x 取0时所对应的点离对称轴最远,x 取2时所对应的点离对称轴最近, ∴y 3>y 2>y 1. 故选B .对应训练1.(2012•衢州)已知二次函数y=12x 2-7x+152,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y1,y2,y3的大小关系正确的是()A.y1>y2>y3B.y1<y2<y3C.y2>y3>y1D.y2<y3<y1 2.A2.解:∵二次函数y=12-x2-7x+152,∴此函数的对称轴为:x=2ba-=7712()2--=-⨯-,∵0<x1<x2<x3,三点都在对称轴右侧,a<0,∴对称轴右侧y随x的增大而减小,∴y1>y2>y3.故选:A.考点二:二次函数的图象和性质例2 (2012•咸宁)对于二次函数y=x2-2mx-3,有下列说法:①它的图象与x轴有两个公共点;②如果当x≤1时y随x的增大而减小,则m=1;③如果将它的图象向左平移3个单位后过原点,则m=-1;④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为-3.其中正确的说法是.(把你认为正确说法的序号都填上)考点:二次函数的性质;二次函数图象与几何变换;抛物线与x轴的交点.解:①∵△=4m2-4×(-3)=4m2+12>0,∴它的图象与x轴有两个公共点,故本选项正确;②∵当x≤1时y随x的增大而减小,∴函数的对称轴x=-22m--≥1在直线x=1的右侧(包括与直线x=1重合),则22m--≥1,即m≥1,故本选项错误;③将m=-1代入解析式,得y=x2+2x-3,当y=0时,得x2+2x-3=0,即(x-1)(x+3)=0,解得,x1=1,x2=-3,将图象向左平移3个单位后不过原点,故本选项错误;④∵当x=4时的函数值与x=2008时的函数值相等,∴对称轴为x=420082+=1006,则22m--=1006,m=1006,原函数可化为y=x2-2012x-3,当x=2012时,y=20122-2012×2012-3=-3,故本选项正确.故答案为①④(多填、少填或错填均不给分).对应训练2.(2012•河北)如图,抛物线y1=a(x+2)2-3与y2=12(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④1.解:①∵抛物线y2=12(x-3)2+1开口向上,顶点坐标在x轴的上方,∴无论x取何值,y2的值总是正数,故本小题正确;②把A(1,3)代入,抛物线y1=a(x+2)2-3得,3=a(1+2)2-3,解得a=23,故本小题错误;③由两函数图象可知,抛物线y1=a(x+2)2-3过原点,当x=0时,y2=12(0-3)2+1=112,故y2-y1=112,故本小题错误;④∵物线y 1=a (x+2)2-3与y 2=12(x-3)2+1交于点A (1,3), ∴y 1的对称轴为x=-2,y 2的对称轴为x=3,∴B (-5,3),C (5,3) ∴AB=6,AC=4,∴2AB=3AC ,故本小题正确.故选D .考点三:抛物线的特征与a 、b 、c 的关系例3 (2012•玉林)二次函数y=ax 2+bx+c (a≠0)的图象如图所示,其对称轴为x=1,有如下结论: ①c <1;②2a+b=0;③b 2<4ac ;④若方程ax 2+bx+c=0的两根为x 1,x 2,则x 1+x 2=2, 则正确的结论是( )A .①②B .①③C .②④D .③④解:由抛物线与y 轴的交点位置得到:c >1,选项①错误; ∵抛物线的对称轴为x=2ba-=1,∴2a+b=0,选项②正确; 由抛物线与x 轴有两个交点,得到b 2-4ac >0,即b2>4ac ,选项③错误; 令抛物线解析式中y=0,得到ax 2+bx+c=0,∵方程的两根为x 1,x 2,且2b a-=1,及ba -=2,∴x 1+x 2=ba-=2,选项④正确,综上,正确的结论有②④.故选C 对应训练3.(2012•重庆)已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示对称轴为x=12-.下列结论中,正确的是( )A .abc >0B .a+b=0C .2b+c >0D .4a+c <2b3.D3.解:A 、∵开口向上,∴a >0,∵与y 轴交与负半轴,∴c <0,∵对称轴在y 轴左侧,∴2ba -<0,∴b >0,∴abc <0,故本选项错误; B 、∵对称轴:x=2b a-=12-,∴a=b ,故本选项错误;C 、当x=1时,a+b+c=2b+c <0,故本选项错误;D、∵对称轴为x=12,与x轴的一个交点的取值范围为x1>1,∴与x轴的另一个交点的取值范围为x2<-2,∴当x=-2时,4a-2b+c<0,即4a+c<2b,故本选项正确.故选D.考点四:抛物线的平移例4 (2012•桂林)如图,把抛物线y=x2沿直线y=x平移2个单位后,其顶点在直线上的A处,则平移后的抛物线解析式是()A.y=(x+1)2-1 B.y=(x+1)2+1 C.y=(x-1)2+1 D.y=(x-1)2-1解:∵A在直线y=x上,∴设A(m,m),∵OA= 2,∴m2+m2=(2)2,解得:m=±1(m=-1舍去),m=1,∴A(1,1),∴抛物线解析式为:y=(x-1)2+1,故选:C.对应训练4.(2012•南京)已知下列函数①y=x2;②y=-x2;③y=(x-1)2+2.其中,图象通过平移可以得到函数y=x2+2x-3的图象的有(填写所有正确选项的序号).4.解:原式可化为:y=(x+1)2-4,由函数图象平移的法则可知,将函数y=x2的图象先向左平移1个单位,再向下平移4个单位即可得到函数y=(x+1)2-4,的图象,故①正确;函数y=(x+1)2-4的图象开口向上,函数y=-x2;的图象开口向下,故不能通过平移得到,故②错误;将y=(x-1)2+2的图象向左平移2个单位,再向下平移6个单位即可得到函数y=(x+1)2-4的图象,故③正确.故答案为:①③.【聚焦中考】1.(2012•泰安)二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限1.解:∵抛物线的顶点在第四象限,∴-m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选C.2.(2012•济南)如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是()A.y的最大值小于0 B.当x=0时,y的值大于1C.当x=-1时,y的值大于1 D.当x=-3时,y的值小于0解:A 、由图象知,点(1,1)在图象的对称轴的左边,所以y 的最大值大于1,不小于0;故本选项错误; B 、由图象知,当x=0时,y 的值就是函数图象与y 轴的交点,而图象与y 轴的交点在(1,1)点的左边,故y <1;故本选项错误;C 、对称轴在(1,1)的右边,在对称轴的左边y 随x 的增大而增大,∵-1<1,∴x=-1时,y 的值小于x=-1时,y 的值1,即当x=-1时,y 的值小于1;故本选项错误;D 、当x=-3时,函数图象上的点在点(-2,-1)的左边,所以y 的值小于0;故本选项正确.故选D . 3.(2012•菏泽)已知二次函数y=ax 2+bx+c 的图象如图所示,那么一次函数y=bx+c 和反比例函数ay x=在同一平面直角坐标系中的图象大致是( )A .B .C .D .3.解:∵二次函数图象开口向下,∴a <0, ∵对称轴x=2ba-<0,∴b <0, ∵二次函数图象经过坐标原点,∴c=0,∴一次函数y=bx+c 过第二四象限且经过原点,反比例函数ay x=位于第二四象限, 纵观各选项,只有C 选项符合. 4.(2012•泰安)设A (-2,y 1),B (1,y 2),C (2,y 3)是抛物线y=-(x+1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 2 4.解:∵函数的解析式是y=-(x+1)2+a ,如右图, ∴对称轴是x=-1,∴点A 关于对称轴的点A′是(0,y 1),那么点A′、B 、C 都在对称轴的右边,而对称轴右边y 随x 的增大而减小, 于是y 1>y 2>y 3.故选A . 5.(2012•烟台)已知二次函数y=2(x-3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=-3;③其图象顶点坐标为(3,-1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( ) A .1个B .2个 C .3个D .4个5.解:①∵2>0,∴图象的开口向上,故本小题错误;②图象的对称轴为直线x=3,故本小题错误; ③其图象顶点坐标为(3,1),故本小题错误;④当x <3时,y 随x 的增大而减小,正确;6.(2012•日照)二次函数y=ax 2+bx+c (a≠0)的图象如图所示,给出下列结论:①b 2-4ac >0;②2a+b <0;③4a-2b+c=0;④a :b :c=-1:2:3.其中正确的是( ) A .①②B .②③C .③④D .①④6.解:由二次函数图象与x 轴有两个交点,∴b 2-4ac >0,选项①正确; 又对称轴为直线x=1,即2ba-=1,可得2a+b=0(i ),选项②错误; ∵-2对应的函数值为负数,∴当x=-2时,y=4a-2b+c <0,选项③错误; ∵-1对应的函数值为0,∴当x=-1时,y=a-b+c=0(ii ), 联立(i )(ii )可得:b=-2a ,c=-3a ,∴a :b :c=a :(-2a ):(-3a )=-1:2:3,选项④正确, 则正确的选项有:①④. 7.(2012•泰安)将抛物线y=3x 2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .y=3(x+2)2+3B .y=3(x-2)2+3C .y=3(x+2)2-3D .y=3(x-2)2-3 7.A 8.(2012•潍坊)许多家庭以燃气作为烧水做饭的燃料,节约用气是我们日常生活中非常现实的问题.某款燃气灶旋转位置从0度到90度(如图),燃气关闭时,燃气灶旋转的位置为0度,旋转角度越大,燃气流量越大,燃气开到最大时,旋转角度为90度.为测试燃气灶旋转在不同位置上的燃气用量,在相同条件下,选择燃气灶旋钮的5个不同位置上分别烧开一壶水(当旋钮角度太小时,其火力不能够将水烧开,故选择旋钮角度x 度的范围是18≤x≤90),记录相关数据得到下表:旋钮角度(度) 20 50 70 80 90 所用燃气量(升)73678397115(1)请你从所学习过的一次函数、反比例函数和二次函数中确定哪种函数能表示所用燃气量y 升与旋钮角度x 度的变化规律?说明确定是这种函数而不是其它函数的理由,并求出它的解析式; (2)当旋钮角度为多少时,烧开一壶水所用燃气量最少?最少是多少?(3)某家庭使用此款燃气灶,以前习惯把燃气开到最大,现采用最节省燃气的旋钮角度,每月平均能节约燃气10立方米,求该家庭以前每月的平均燃气量.8.解:(1)若设y=kx+b (k≠0),由7320 6750k b k b =+⎧⎨=+⎩,解得1577k b ⎧=-⎪⎨⎪=⎩,所以y=15-x+77,把x=70代入得y=65≠83,所以不符合;若设k y x =(k≠0),由73=20k,解得k=1460,所以y=1460x,把x=50代入得y=29.2≠67,所以不符合;若设y=ax 2+bx+c ,则由73400206725005083490070a b ca b ca b c=++⎧⎪=++⎨⎪=++⎩,解得1508597abc⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以y=150x2-85x+97(18≤x≤90),把x=80代入得y=97,把x=90代入得y=115,符合题意.所以二次函数能表示所用燃气量y升与旋钮角度x度的变化规律;(2)由(1)得:y=150x2-85x+97=150(x-40)2+65,所以当x=40时,y取得最小值65.即当旋钮角度为40°时,烧开一壶水所用燃气量最少,最少为65升;(3)由(2)及表格知,采用最节省燃气的旋钮角度40度比把燃气开到最大时烧开一壶水节约用气115-65=50 设该家庭以前每月平均用气量为a立方米,则由题意得:50115a=10,解得a=23(立方米),即该家庭以前每月平均用气量为23立方米.【备考真题过关】一、选择题1.(2012•白银)二次函数y=ax2+bx+c的图象如图所示,则函数值y<0时x的取值范围是()A.x<-1 B.x>3 C.-1<x<3 D.x <-1或x>3第1题图第2题图第3题图1.C2.(2012•兰州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是()A.k<-3 B.k>-3 C.k<3 D.k>3选D.3.(2012•德阳)设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()A.c=3 B.c≥3 C.1≤c≤3 D.c≤33.解:∵当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,∴函数图象过(1,0)点,即1+b+c=0①,∵当1≤x≤3时,总有y≤0,∴当x=3时,y=9+3b+c≤0②,①②联立解得:c≥3,故选B.4.(2012•北海)已知二次函数y=x2-4x+5的顶点坐标为()A.(-2,-1)B.(2,1)C.(2,-1)D.(-2,1)4.B5.(2012•广元)若二次函数y=ax2+bx+a2-2(a、b为常数)的图象如图,则a的值为()A.1 B.2C.-2D.-25图 1图5.C1.(2012•西宁)如同,二次函数y=ax 2+bx+c 的图象过(﹣1,1)、(2,﹣1)两点,下列关于这个二次函数的叙述正确的是( ) A . 当x=0时,y 的值大于1 B . 当x=3时,y 的值小于0 C . 当x=1时,y 的值大于1 D . y 的最大值小于0 选B 6.(2012•巴中)对于二次函数y=2(x+1)(x-3),下列说法正确的是( ) A .图象的开口向下B .当x >1时,y 随x 的增大而减小C .当x <1时,y 随x 的增大而减小D .图象的对称轴是直线x=-1 6.C6.解:二次函数y=2(x+1)(x-3)可化为y=2(x-1)2-8的形式, A 、∵此二次函数中a=2>0,∴抛物线开口向上,故本选项错误;B 、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x >1时,y 随x 的增大而增大,故本选项错误;C 、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x <1时,y 随x 的增大而减小,故本选项正确;D 、由二次函数的解析式可知抛物线对称轴为x=1,故本选项错误. 故选C . 7.(2012•天门)已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc <0;③a-2b+4c <0;④8a+c >0.其中正确的有( ) A .3个 B .2个 C .1个 D .0个7.B7.解:根据图象可得:a >0,c <0,对称轴:2bx a=->0, ①∵它与x 轴的两个交点分别为(-1,0),(3,0),∴对称轴是x=1,∴2ba-=1,∴b+2a=0,故①错误; ②∵a >0,∴b <0,∵c <0,∴abc >0,故②错误;③∵a-b+c=0,∴c=b-a ,∴a-2b+4c=a-2b+4(b-a )=2b-3a ,又由①得b=-2a ,∴a-2b+4c=-7a <0,故正确; ④根据图示知,当x=4时,y >0,∴16a+4b+c >0,由①知,b=-2a ,∴8a+c >0;故④正确;故选:B . 8.(2012•乐山)二次函数y=ax 2+bx+1(a≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <18.解:∵二次函数y=ax2+bx+1的顶点在第一象限,且经过点(-1,0),∴易得:a-b+1=0,a<0,b>0,由a=b-1<0得到b<1,结合上面b>0,所以0<b<1①,由b=a+1>0得到a>-1,结合上面a<0,所以-1<a<0②,∴由①②得:-1<a+b<1,且c=1,得到0<a+b+1<2,∴0<t<2.故选:B.9.(2012•扬州)将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是()A.y=(x+2)2+2 B.y=(x+2)2-2 C.y=(x-2)2+2 D.y=(x-2)2-29.B10.(2012•宿迁)在平面直角坐标系中,若将抛物线y=2x2-4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是()A.(-2,3)B.(-1,4)C.(1,4)D.(4,3)10.D11.(2012•陕西)在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为()A.1 B.2 C.3 D.611.解:当x=0时,y=-6,故函数与y轴交于C(0,-6),当y=0时,x2-x-6=0,即(x+2)(x-3)=0,解得x=-2或x=3,即A(-2,0),B(3,0);由图可知,函数图象至少向右平移2个单位恰好过原点,故|m|的最小值为2.故选B.二、填空题12.(2012•玉林)二次函数y=-(x-2)2+94的图象与x轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有个(提示:必要时可利用下面的备用图画出图象来分析).12.解:∵二次项系数为-1,∴函数图象开口向下,顶点坐标为(2,94),当y=0时,-(x-2)2+94=0,解得x1=12,得x2=72.可画出草图为:(右图)图象与x轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有7个,为(2,0),(2,1),(2,2),(1,0),(1,1),(3,0),(3,1).13.(2012•长春)在平面直角坐标系中,点A是抛物线y=a(x-3)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为.13.解:∵抛物线y=a (x-3)2+k 的对称轴为x=3,且AB ∥x 轴,∴AB=2×3=6,∴等边△ABC 的周长=3×6=18. 14.(2012•孝感)二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:①abc <0;②a-b+c <0;③3a+c <0;④当-1<x <3时,y >0. 其中正确的是(把正确的序号都填上).14.根据图象可得:a <0,c >0,对称轴:x=2b a=1,2b a=-1,b=-2a ,∵a <0,∴b >0,∴abc <0,把x=-1代入函数关系式y=ax 2+bx+c 中得:y=a-b+c ,由图象可以看出当x=-1时,y <0,∴a-b+c <0,∵b=-2a ,∴a-(-2a )+c <0,即:3a+c <0,故③正确;由图形可以直接看出④错误. 故答案为:①②③. 15.(2012•苏州)已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x-1)2+1的图象上,若x 1>x 2>1,则(填“>”、“<”或“=”).15.解:由二次函数y=(x-1)2+1可,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧, ∵此函数图象开口向上,∴在对称轴的右侧y 随x 的增大而增大, ∵x1>x2>1,∴y1>y2.故答案为:>. 16.(2012•成都)有七张正面分别标有数字-3,-2,-1,0,l ,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程x 2-2(a-1)x+a (a-3)=0有两个不相等的实数根,且以x 为自变量的二次函数y=x 2-(a 2+1)x-a+2的图象不经过点(1,0)的概率是.16.解:∵x 2-2(a-1)x+a (a-3)=0有两个不相等的实数根,∴△>0, ∴[-2(a-1)]2-4a (a-3)>0,∴a >-1,将(1,0)代入y=x 2-(a 2+1)x-a+2得,a 2+a-2=0,解得(a-1)(a+2)=0,a 1=1,a 2=-2. 可见,符合要求的点为0,2,3.∴P=3 7 .故答案为37. 17.(2012•上海)将抛物线y=x 2+x 向下平移2个单位,所得抛物线的表达式是. 17.y=x 2+x-2 18.(2012•宁波)把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析式为. 18.解:二次函数y=(x-1)2+2顶点坐标为(1,2),绕原点旋转180°后得到的二次函数图象的顶点坐标为(-1,-2),所以,旋转后的新函数图象的解析式为y=-(x+1)2-2.故答案为:y=-(x+1)2-2.2.(2012•贵港)若直线y=m (m 为常数)与函数y=的图象恒有三个不同的交点,则常数m 的取值范围是0<m <2.考点: 二次函数的图象;反比例函数的图象。
中考数学复习二次函数的性质1[人教版]
全电动ቤተ መጻሕፍቲ ባይዱ运车/
[单选]含膳食纤维最多的食物是()A.木耳B.魔芋C.海带D.豆渣E.洋葱 [单选,A1型题]巨噬细胞对外源性抗原加工处理和递呈过程不包括()A.吞噬体形成B.吞噬溶酶体形成C.抗原降解成抗原肽D.抗原在内质网中加工修饰E.抗原肽与MHCⅡ类分子结合形成复合物 [填空题]真正的客户服务是根据客户()使他获得满足,而最终使客户感觉到他受到重视,把这种好感铭刻在他的心里,成为企业的忠实的客户。 [单选,A1型题]对头静脉不准确的描述是A.起自手背静脉网的桡侧B.借肘正中静脉与贵要静脉交通C.沿上肢外侧部上行D.注入肱静脉E.注入腋动脉或锁骨下静脉 [单选]下列关于类风湿因子说法正确的是()。A.在大部分正常人类风湿因子可以出现低滴度阳性B.其滴度与类风湿关节炎病情活动性、严重性无关C.是属于IgM型的自身抗体D.在某些慢性感染性疾病及恶性肿瘤的患者血清中可出现阳性E.类风湿因子阴性可以排除类风湿关节炎的诊断 [单选,A2型题,A1/A2型题]HbBarts见于下列哪种疾病()A.HbCB.β珠蛋白生成障碍性贫血C.α珠蛋白生成障碍性贫血D.HbEE.HbS [单选]施工项目管理规划采用()方法,对施工过程的各项管理活动进行规划。A.成本管理B.目标管理C.进度管理D.质量管理 [问答题,案例分析题]某消防泵房动力安装工程如图6.Ⅲ所示。1.AP1、AP2为定型动力配电箱,落地式安装,电源由双电源切换箱引来。2.4台设备基础顶面标高均为0.3m,埋地管标高为-0.1m,其至设备电机的管高出基础顶面0.1m,均连接1根长0.8m同管径的金属软管,导线出管口后的预留长度 [单选]不行经肘窝内的结构有()A.肱二头肌腱B.正中神经C.桡动脉D.桡神经E.尺神经 [单选,A1型题]抗原递呈细胞所不具备的作用是()A.促进T细胞表达特异性抗原受体B.降解抗原为小分子肽段C.使MHC分子与抗原肽结合D.将抗原肽:MHC复合物递呈给T细胞E.为T细胞活化提供第二信号 [单选]下列关于隧道衬砌裂缝病害防治的说法错误的是()。A.设计时应根据围岩级别选取衬砌形式及衬砌厚度B.钢筋保护层必须保证不小于3cmC.混凝土宜采用较大的水灰比,降低骨灰比D.混凝土温度的变化速度不宜大于5°C/h [多选]货币的演变形式是()。A.贵金属B.铸币C.纸币D.以信用工具为主的货币 [单选]利用8155芯片作为8031单片机的I/O口扩展,它可为系统提供()位I/O线。A、14;B、12;C、16;D、22。 [单选]建筑高度不超过32m的二类高层建筑应设()楼梯间。A、开敞楼梯间B、敞开楼梯间C、封闭楼梯间D、防烟楼梯间 [填空题]量臀围时应在臀围()部位量一周。 [单选]丙烯塔压力正常,丙烯质量不合格,下列哪项是正确的()。A、提高塔底蒸汽量B、提高回流量C、降低脱丙烷塔塔压D、提高脱丙烷塔塔底温度 [单选]患者,女,24岁。产后失血过多,突然晕眩,面色苍白,昏不知人,手撒肢冷,冷汗淋沥。舌淡无苔,脉微欲绝。治疗宜选用()A.参附汤B.生脉散C.当归补血汤D.夺命散E.生化汤 [名词解释]芽的晚熟性 [单选]在实施ERP时,企业方项目组的角色中,不存在的是:()A.项目领导小组B.项目经理C.用户组D.生产的一线工人 [单选]飞行器通电时间过长,执行以下动作的含义是什么:推上E杆,按一次shift键,拉下E杆。()A、清空机载航点B、校准遥控器C、重新初始化D、强行启动 [名词解释]次生异常 [单选]关于免疫学检查,错误的是()A.大多数用以检测抗体的方法都可以用于检测抗原B.特异性抗体检测可以反映人群的感染率C.恢复期特异性抗体都比急性期上升4倍有助于确诊D.皮肤试验不属于免疫学检查E.T细胞亚群检测常用于艾滋病的诊断 [判断题]作好新建装置的三查四定工作是对装置一次开车成功的有力保障。A.正确B.错误 [单选]脑梗死的病因中,最重要的是()A.动脉硬化B.高血压C.动脉壁炎症D.真性红细胞增多症E.血高凝状态 [单选]砂、石筛应采用()孔筛。A.方B.圆C.三角 [单选]下列有关颈丛哪项是正确()A.位于胸锁乳突肌下部的深面B.由1~4颈神经前支组成C.只有感觉神经D.只有运动神经E.位于中斜角肌起端的后方 [单选]某公司的经营杠杆系数为1.8,财务杠杆系数为1.5,则该公司销售额每增长1倍,就会造成每股收益增长()。A.1.2倍B.1.5倍C.0.3倍D.2.7倍 [单选]《建设工程施工合同(示范文本)》(GF-1999)规定,工程开工前,()应当为建设工程办理保险,并支付保费。A.发包人B.承包人C.发包人与承包人D.工程建设各方 [单选]若施工合同约定工程保修期间采用质量保证金方式担保,则建设单位应按工程价款()左右的比例预留保留金。A.结算总额5%B.预算总额5%C.预算总额10%D.结算总额10% [单选]下列关于股票回购方式的表述中,正确的是()。A.公开市场回购属于场外回购B.固定价格要约回购和荷兰式拍卖回购是按照股票回购的地点不同划分的C.股票回购容易造成资金紧张D.固定价格要约回购在回购价格确定方面给与公司更大的灵活性 [单选,A2型题,A1/A2型题]在使用药物进行治疗的过程中,医生恰当的做法是()。A.使用能为医院和医生带来较高回报的药物B.药物使用与选择是医生的权利,不用征求患者的意见C.为了尽快取得效果,加大药物剂量D.按需用药,考虑效价比E.联合使用多种药物,力求最佳效果 [单选,A2型题,A1/A2型题]对于一组正态分布的资料,样本含量为n,样本均数为X,标准差为S,该资料的医学参考值范围为()。A.X±1.96SB.X±t0.05,vS/nC.X±1.96S/nD.P2.5~P97.5E.lg-1(X±1.96S) [单选,A2型题,A1/A2型题]颈动脉听诊区位于()A.胸锁乳突肌外缘与甲状软骨连线的交点B.锁骨上窝C.胸锁乳突肌后缘上方2~3颈椎横突水平D.锁骨下窝E.胸锁乳突肌内缘与甲状软骨连线的交点 [单选]下列各项中,不应计入营业外收人的是()。A.债务重组利得B.处置固定资产净收益C.收发差错造成存货盘盈D.确实无法支付的应付账款 [单选]钻孔桩钢筋骨架的允许偏差以下说法正确的是()。A.钢筋骨架在承台底以下长度为±100mmB.箍筋间距为±10mmC.钢筋骨垂直度为2%D.加强筋间距为±10mm [填空题]真误差为()减真值。 [单选]设立商业银行的注册资本最低限额为()元人民币。A.1亿B.5亿C.10亿D.20亿 [单选]心室颤动时,首次直流电除颤用()A.100JB.150JC.200JD.300JE.360J或以上 [问答题,简答题]为什么不能用清水冲洗电器设备及开关? [单选]将充有nmLNO和mmLNO2气体的试管倒立于盛水的水槽中,然后通入nmLO2。m>n,则充分反应后,试管中气体在同温同压下的体积为()。A.(m-n)/3mLB.(n-m)/3mLC.(4m-1)/13mLD.3/(m-n)mL
(完整版)中考数学一轮复习-二次函数的图像和性质(含答案),推荐文档
2、在抛物y=kx2+bx+c(a≠0)中:
①、当a>0时,y口向,当x< 时,y随x的增大而,当x时,y随x的增大而增大,
②、当a<0时,开口向当x< 时,y随x增大而增大,当x时,y随x增大而减小
注意2:注意几个特殊形式的抛物线的特点
a:开口方向向上则a0,向下则a0;|a|越大,开口越
b:对称轴位置,与a联系一起,用判断b=0时,对称轴是
c:与y轴的交点:交点在y轴正半轴上,则c0负半轴上则c0,当c=0时,抛物点过点
【名师提醒:在抛物线y= ax2+bx+c中,当x=1时,y=当x=-1时y=,经常根据对应的函数值判考a+b+c和a-b+c的符号】
综上,正确的结论有②④.
故选C
点评:此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).
③由两函数图象可知,抛物线y1=a(x+2)2-3过原点,当x=0时,y2= (0-3)2+1= ,故y2-y1= ,故本小题错误;
④∵物线y1=a(x+2)2-3与y2= (x-3)2+1交于点A(1,3),
∴y1的对称轴为x=-2,y2的对称轴为x=3,
∴B(-5,3),C(5,3)
人教版九年级下册数学第二单元2二次函数图像及性质
XX教育学科教师辅导讲义组长签字:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~二、课前自主学习回顾复习二次函数概念、图像和性质~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~三、知识梳理+经典例题一.知识点回顾(20min.) 考点一:二次函数的概念(1)一般的,形式如2y ax bx c =++(,,a b c 是常数,0a ≠)的函数,叫做二次函数。
例如:,等都是x 的二次函数(2)等号左边是y ,右边是x 的二次多项式,a ,b ,c 分别是函数解析式的二次项系数,一次项系数和常数项。
(3)任何一个二次函数的解析式都可以化成2y ax bx c =++(,,a b c 是常数,0a ≠)的形式,因此我们也把这个2y ax bx c =++(,,a b c 是常数,0a ≠)叫做二次函数的一般式 考点二:二次函数的图像及性质(1) 图像:二次函数的图像是一条抛物线,其对称轴是y 轴,抛物线与对称轴的交点叫做抛物线的顶点,顶点坐标是(0,0)(2) 性质:当a>0时,函数的开口方向向上,在对称轴的左边y 随x 的增大而减小,在对称轴的右边y 随x 的增大而增大;当a<0时,函数的开口方向向下,在对称轴的左边y 随x 的增大而增大,在对称轴的右边y 随x 的增大而减小(3) 抛物线的开口大小由|a|决定,|a|越大,抛物线的开口越窄,|a|越大,抛物线的开口越大 注1:二次函数的图像及其性质是中考的重点考查内容之一,所涉及的内容包括开口,顶点,对称轴,最大(小)值,以及求二次函数的关系式,近几年的中考中常出现利用二次函数的图书图像解决实际问题的题目。
注2:利用函数的增减性进行函数值的大小比较也是重点考查内容之一,此类问题先画出二次函数的(2)在轴上方的抛物线上有一点,且以四点为顶点的四边形是等腰梯形,请直接写出点的坐标;例4、将直角边长为6的等腰Rt △AOC 放在如图所示的平面直角坐标系中,点O 为坐标原点,点C 、A 分别在x 、y 轴的正半轴上,一条抛物线经过点A 、C 及点B (–3,0).(1)求该抛物线的解析式;(2)若点P 是线段BC 上一动点,过点P 作AB 的平行线交AC 于点E ,连接AP ,当△APE 的面积最大时,求点P 的坐标;5、已知抛物线y =ax 2+bx +c (a >0)的图象经过点B (12,0)和C (0,-6),对称轴为x =2.(1)求该抛物线的解析式;(2)点D 在线段AB 上且AD =AC ,若动点P 从A 出发沿线段AB 以每秒1个单位长度的速度匀速运动,同时另一动点Q 以某一速度从C 出发沿线段CB 匀速运动,问是否存在某一时刻,使线段PQ 被直线CD 垂直平分?若存在,请求出此时的时间t (秒)和点Q 的运动速度;若不存在,请说明理由; (3)在(2)的结论下,直线x =1上是否存在点M 使,△MPQ 为等腰三角形?若存在,请求出所有点M 的坐标,若不存在,请说明理由.x D A C D B 、、、D yxCBOA75. (2010,平谷,一模)已知:关于x 的一元二次方程()()21210m x m x -+--=(m为实数)(1)若方程有两个不相等的实数根,求m 的取值范围; (2)在(1)的条件下,求证:无论m 取何值,抛物线()()2121y m x m x =-+--总过x 轴上的一个固定点;(3)若m 是整数,且关于x 的一元二次方程()()21210m x m x -+--=有两个不相等的整数根,把抛物线()()2121y m x m x =-+--向右平移3个单位长度,求平移后的解析式.6、已知关于x 的二次函数y =x 2-(2m -1)x +m 2+3m +4.(1)探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数.(2)设二次函数y 的图象与x 轴的交点为A (x 1,0),B (x 2,0),且21x +22x =5,与y 轴的交点为C ,它的顶点为M ,求直线CM 的解析式.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~三、随堂练(30min.)xyO QPDBCA1. 已知P (3,m -)和Q (1,m )是抛物线221y x bx =++上的两点. (1)求b 的值;(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.2、如图1,在平面直角坐标系中,点B 在直线y =2x 上,过点B 作x 轴的垂线,垂足为A ,OA =5.若抛物线y =16x 2+bx +c 过O 、A 两点. (1)求该抛物线的解析式;(2)若A 点关于直线y =2x 的对称点为C ,判断点C 是否在该抛物线上,并说明理由;(3)如图2,在(2)的条件下,⊙O 1是以BC 为直径的圆.过原点O 作⊙O 1的切线OP ,P 为切点(点P 与点C 不重合).抛物线上是否存在点Q ,使得以PQ 为直径的圆与⊙O 1相切?若存在,求出点Q 的横坐标;若不存在,请说明理由.3、已知抛物线2(0)y ax bx c a =++≠顶点为C (1,1)且过原点O.过抛物线上一点P (x ,y )向直线54y =作垂线,垂足为M ,连FM (如图).(第2题图1) (第2题图2)(1)求字母a,b,c的值;(2)在直线x=1上有一点3(1,)4F,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时△PFM为正三角形;(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立,若存在请求出t值,若不存在请说明理由.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~四、归纳总结1.通过本堂课的学习我收获了什么?在知识点标题上画“√”2.我还有哪些没有解决的困惑?在知识点标题上画“×”课后作业(60min)1.关于x的方程(6)16x x+=的解为()A 、12x =,22x =B 、18x =,24x =-C 、18x =-,22x =D 、18x =,22x =-2.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是 ( )A. B. C. D.3. 如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A .当时,它是菱形 B .当时,它是菱形 C .当时,它是矩形 D .当时,它是正方形4.如图的几何体的左视图是图中的( )5. 上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元. 下列所列方程中正确的是( ) A . B . C .D .6. 如图,已知梯形ABCD ,AD//BC ,AD=CD=4,BC=8,点N 在BC 上,CN=2,E 是AB 中点,在AC 上找一点M 使EM+MN 的值最小,此时其最小值一定等于( ) A .6 B .8 C .4 D .7.下列函数中,属于反比例函数的是( ) A .2x y =B .12y x=C .23y x =+D .223y x =+ 8.设(x + y )(x + 2 + y ) —15 = 0,则x + y 的值为( )(A)— 5 或 3 (B)—3 或 5 (C) 3 (D) 5 二、填空题(每小题3分,共21分) 9. 方程x ²-4x =0的解是 .第14题10. 已知菱形的两对角线长分别为6cm 和8cm ,则菱形的面积为 cm 2.11. 如图,一根直立于水平地面上的木杆AB 在灯光下形成影子,当木杆绕A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的硬长为AC (假定AC >AB ),影长的最大值为m ,最小值为n ,那么下列结论:①m >AC ;②m =AC ;③n =AB ;④影子的长度先增大后减小.其中,正确的结论的序号是 .12.将4个数排成2行、2列,两边各加一条竖直线记成,定义,上述记号就叫做2阶行列式.若,则 .13. 在一个不透明的袋中,装有若干个除颜色不同外其余都相同的球,如果袋中有3个红球且摸到红球的概率为 4(1),那么袋中球的总数量为 个.14.如图,反比例函数图象上一点A ,过A 作AB ⊥x 轴于B ,若S △AOB =3,则反比例函数解析式为___ __;15.如图,在矩形ABCD 中,E 、F 分别是边AD,BC 的中点,点G 、H 在DC 边上,且GH=21DC .若AB=10,BC=12,则图中阴影部分的面积为 . 三、解答题(本大题8个小题,共75分) 16.(8分)计算: (1)241221348+⨯-÷。
2013届中考数学考前热点冲刺《第14讲 二次函数的图象与性质一》课件 新人教版
第14讲┃ 考点聚焦 考点2 二次函数的图象及画法
二次函数y=ax2+bx+c(a≠0)的图象是 图象
2 b 4ac-b - , 2a 以______________为顶点,以直线 4a
用描点法画 二次函数 y=ax2+bx+c 的图象的步骤
b x=- ________为对称轴的抛物线 2a y=a(x-h)2+k (1)用配方法化成____________的形式; (2)确定图象的开口方向、对称轴及顶点 坐标; (3)在对称轴两侧利用对称性描点画图
第14讲┃ 归类示例
解:(1)y=x2-4x+3=(x2-4x+4)+3-4=(x-2)2-1. (2)由(1)知图象的对称轴为直线x=2,顶点坐标为(2,- 1),列表: x … 0 1 2 3 4 … y … 3 0 -1 0 3 … 描点作图如下图.
(3)y1>y2, (4)如图,点C、D的横坐标x3、x4即为方程x2-4x+3=2 的根.
第14讲┃二次函数的图象与性质(一)
第14讲┃ 考点聚焦
考点聚焦
考点1 二次函数的概念
定义 二次函数 y=ax2+bx+c 的结构特征
y=ax2+bx+c 一般地,如果______________(a、b、c是 常数,a≠0),那么y叫做x的二次函数 ①等号左边是函数,右边是关于自变量x 的二次式,x的最高次数是2; ②二次项系数a≠0
第14讲┃ 归类示例
归类示例
► 类型之一 二次函数的定义
命题角度: 二次函数的概念.
若 y=(m+1)xm2 A.7 B.-1
- 6m-5
是二次函数, m= 则 D.以上都不对
( A )
C.-1 或 7
[解析] 让x的次数为2,系数不为0,列出方程与不等式 解答即可. 由题意得:m2-6m-5=2,且m+1≠0. 解得m=7或-1,且m≠-1, ∴m=7,故选A.
中考数学复习二次函数的图像与性质1[人教版]
wud116uip
(1)求抛物线 的解析式.
A
-1 O F
B3
C(2,3)
E
x
5、已知如图抛物线经过A、B、 C三点,顶点为D,且与x轴的 另一个交点为E. y D (2) ⊿AOB 与 3 C(2,3) B ⊿BDE是否相 G 似,如果相似 请予证明; E 如果不相似 A -1 x O F 请说明理由。
摩臣 摩臣
的图像如图所示,那么下列判 断中不正确的有( ) y A、aFra bibliotekc > 0
B、b2-4ac>0
C、2a+b>0 D、4a-2b+c<0
-1
O 1
x
3、已知二次函数y = 平移这个函数的图像才能使它 经过(0,0),(1,6)两点? 注意:抛物线的平行移动问题 一般应抓住“顶点”这个关键 点。
2 -2x 怎样
4、已知点A(-1,-1)在抛物线 2 2 y=(k -1)x -2(k-2)x+1上 (1)求抛物线的对称轴。
(2)若点B与点A关于抛物线的对 称轴对称,问是否存在与抛物 线只交于一点B的直线?若存在, 求符合条件的直线,若不存在, 说明理由。
5、已知如图抛物线经过A、B、 C三点,顶点为D,且与x轴的 另一个交点为E. y D
第二十四讲
二次函数的图 像与性质(一)
1.根据下列条件,求二次函数的 解析式: ⑴已知抛物线的顶点坐标为 (-1,-2),且通过点(1,10). ⑵ 已知抛物线经过 (2,0),(0,-2), (-2,3)三点. ⑶已知抛物线与x轴交点的横 坐标为-2和1,且通过点(2,8).
2 2、已知二次函数y=ax +bx+c
二次函数的图象与性质-中考数学知识点归纳总结(人教版)
开口
向上
向下
对称轴
x=
顶点坐标
增减性
当x> 时,y随x的增大而增大;当x< 时,y随x的增大而减小.
当x> 时,y随x的增大而减小;当x< 时,y随x的增大而增大.
最值
x= ,y最小= .
x= ,y最大= .
3.系数a、b、c
a
决定抛物线的开口方向及开口大小
(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.
若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.
知识点二:二次函数的图象与性质
3.二次函数的图象和性质
图象
(1)比较二次函数函数值大小的方法:①直接代入求值法;②性质法:当自变量在对称轴同侧时,根据函数的性质判断;当自变量在对称轴异侧时,可先利用函数的对称性转化到同侧,再利用性质比较;④图象法:画出草图,描点后比较函数值大小.
失分点警示
(2)在自变量限定范围求二次函数的最值时,首先考虑对称轴是否在取值范围内,而不能盲目根据公式求减,左加右减”,左右平移易弄反.
例:将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是y=(x-2)2.
知识点四:二次函数与一元二次方程以及不等式
5.二次函数与一元二次方程
二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0的根.
a、b
决定对称轴(x=-b/2a)的位置
中考数学复习 二次函数的图象与性质 复习课 课件
二次函数的图象与性质
知识总览 主要知识内容回顾 典型例题分析 小结
二次函数
一、 知识总览
二次函数
概念 图象和性质 用函数观点看方程与不等式
应用
1. 二次函数的定义
一般地,形如 y=ax2+bx+c(其中a,b,c为 常数,且a≠0)的函数, 叫做二次函数. 其中x是自 变量, a,b,c 分别是函数解析式的二次项系数、 一次项系数和常数项.
最大值为4ac b. 2 4a
【温馨提示】判断函数图象增减性时,可在旁边画出大致图象,数形结合更直观.
2. 二次函数的图象和性质
(4)根据函数图象判断相关结论
图象(示意图)
结论
>
a_____0
b__>___0
c<0 b2-4ac > 0
a_<____0
b=0 c>0
b2-4ac_>____0
a>0
B E
D
二次函数的对称性
例3.如图,在平面直角坐标系网格中,点Q,R,S,T 都在格点上,过点
P(1,2)的抛物线y=ax2+2ax+c(a<0)可能还经过( D )
A. 点Q
B. 点R
C. 点S
D. 点T
分析:由y=ax2+2ax+c得到对称轴为
P'
x b 2a 1 2a 2a
b_<____0
c_>____0
b2-4ac > 0
a<0
b_<____0
c<0
b2-4ac_=____0
2. 二次函数的图象和性质
图象(示意图) _________
_________
y=ax2+bx
中考数学复习之二次函数常考66种题型专题1 二次函数的图象与性质(一)(含答案及解析)
专题22.1 二次函数的图象与性质(一)-重难点题型【题型1 判断二次函数的个数】【例1】(2020秋•太康县期末)下列函数:①y=3−√3x2;②y=2x2;③y=x(3﹣5x);④y=(1+2x)(1﹣2x),是二次函数的有()A.1个B.2个C.3个D.4个【变式1-1】(2020•涡阳县一模)已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2x2﹣x﹣1;⑤y=ax2+bx+c,其中二次函数的个数为()A.1B.2C.3D.4【变式1-2】(2020秋•扬州期末)下列函数是关于x的二次函数的有()①y=x(2x﹣1);②y=1x2;③y=√32x2−1;④y=ax2+2x(a为任意实数);⑤y=(x﹣1)2﹣x2;⑥y=√x2+x+1.A.2个B.3个C.4个D.5个【变式1-3】(2020秋•广汉市期中)观察:①y=6x2;②y=﹣3x2+5;③y=200x2+400x+200;④y=x3﹣2x;⑤y=x2−1x+312;⑥y=(x+1)2﹣x2.这六个式子中,二次函数有.(只填序号)【题型2 利用二次函数的概念求字母的值】【例2】(2020秋•沙坪坝区校级月考)若函数y=(a+1)x|a2+1|是关于x的二次函数,则a 的值为.【变式2-1】(2020秋•肃州区期末)如果函数y=(k﹣3)x k2−3k+2+kx+1是二次函数,则k的值是.【变式2-2】(2020秋•江油市校级月考)函数y=(m2﹣3m+2)x2+mx+1﹣m,则当m=时,它为正比例函数;当m=时,它为一次函数;当m时,它为二次函数.【变式2-3】(2020秋•新昌县校级月考)已知函数y=(m2+m)x m2−2m+2.(1)当函数是二次函数时,求m的值;;(2)当函数是一次函数时,求m的值..【题型3 二次函数的一般形式】【例3】(2020秋•防城区期中)设a,b,c分别是二次函数y=﹣x2+3的二次项系数、一次项系数、常数项,则()A.a=﹣1,b=3,c=0B.a=﹣1,b=0,c=3C.a=﹣1,b=3,c=3D.a=1,b=0,c=3【变式3-1】(2020秋•遂溪县校级期中)关于函数y=(500﹣10x)(40+x),下列说法不正确的是()A.y是x的二次函数B.二次项系数是﹣10C.一次项是100D.常数项是20000【变式3-2】(2020春•肇东市期末)已知二次函数y=1﹣5x+3x2,则二次项系数a=,一次项系数b=,常数项c=.【变式3-3】(2020秋•新昌县期末)若二次函数y=(2x﹣1)2+1的二次项系数为a,一次项系数为b,常数项为c,则b2﹣4ac0(填写“>”或“<”或“=”)【题型4 根据实际问题列二次函数(销售类)】【例4】(2020秋•硚口区期中)某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映;如调整价格,每涨价1元,每星期要少卖出10件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.y=300﹣10x B.y=300(60﹣40﹣x)C.y=(300+10x)(60﹣40﹣x)D.y=(300﹣10x)(60﹣40+x)【变式4-1】(2020秋•朝阳期中)某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨2元,月销售量就减少10千克.设每千克涨x元,月销售利润为y元,则y与x的函数关系式为()A.y=(50+x﹣40)(500﹣10x)B.y=(x+40)(10x﹣500)C.y=(x﹣40)[500﹣5(x﹣50)]D.y=(50+x﹣40)(500﹣5x)【变式4-2】(2020春•西湖区校级月考)某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.【变式4-3】(2020•诸城市一模)某厂生产某种零件,该厂为鼓励销售商订货,提供了如下信息:①每个零件的成本价为40元;②若订购量不超过100个,出厂价为60元;若订购量超过100个时,每多订1个,订购的全部零件的出厂单价就降低0.02元;③实际出厂单价不能低于51元.根据以上信息,解答下列问题:(1)当一次订购量为个时,零件的实际出厂单价降为51元.(2)设一次订购量为x个时,零件的实际出厂单价为P元,写出P与x的函数表达式.(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂价﹣成本).【题型5 根据实际问题列二次函数(面积类)】【例5】(2020•平阳县一模)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m宽的门,已知计划中的建筑材料可建围墙(不包括门)的总长度为50m.设饲养室长为xm,占地面积为ym2,则y关于x的函数表达式是()A.y=﹣x2+50x B.y=−12x2+24xC.y=−12x2+25x D.y=−12x2+26x【变式5-1】(2020秋•沙坪坝区校级期中)如图,某农场拟建一间矩形奶牛饲养室,打算一边利用房屋现有的墙(墙足够长),其余三边除大门外用栅栏围成,栅栏总长度为50m,门宽为2m.若饲养室长为xm,占地面积为ym2,则y关于x的函数表达式为()A.y=−12x2+26x(2≤x<52)B.y=−12x2+50x(2≤x<52)C.y=﹣x2+52x(2≤x<52)D.y=−12x2+27x﹣52(2≤x<52)【变式5-2】(2020秋•思明区校级期中)如图,某小区进行绿化改造,矩形花园的一边由墙AB和一节篱笆BF构成,另三边由篱笆ADEF围成,篱笆总长40米,墙AB长16米,若BF=x米,花园面积是S平方米,则S关于x的函数关系式是:.【变式5-3】(2020秋•东营期中)如图,某农场要盖一排三间长方形的羊圈,打算一面利用旧墙,其余各面用木材围成栅栏,该计划用木材围成总长24m的栅栏,设面积为s(m2),垂直于墙的一边长为x(m)米.则s关于x的函数关系式:(并写出自变量的取值范围)【题型6 根据实际问题列二次函数(几何类)】【例6】(2020•西湖区校级模拟)在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,若a+b=5,则Rt△ABC的面积S关于边长c的函数关系式为()A.S=25−c24B.S=25−c22C.S=25−c2D.S=25+c24【变式6-1】(2020秋•翼城县期末)如图,在Rt△ABO中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得的阴影部分的面积为S,则S与t之间的函数关系式为()A.S=t(0<t≤3)B.S=12t2(0<t≤3)C.S=t2(0<t≤3)D.S=12t2﹣1(0<t≤3)【变式6-2】(2021•江夏区模拟)如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为()A.y=1810x2+52B.y=4810x2+52C.y=1810x2+2D.y=4810x2+2【变式6-3】(2020秋•孝感期末)如图,正方形ABCD的边长是4,E是AB上一点,F是AD延长线上的一点,BE=DF.四边形AEGF是矩形,矩形AEGF的面积y与BE的长x 的函数关系是.答案及解析专题1 二次函数的图象与性质(一)-重难点题型还需使实际问题有意义.【题型1 判断二次函数的个数】【例1】(2020秋•太康县期末)下列函数:①y=3−√3x2;②y=2x2;③y=x(3﹣5x);④y=(1+2x)(1﹣2x),是二次函数的有()A.1个B.2个C.3个D.4个【分析】利用二次函数定义进行分析即可.【解答】解:①y=3−√3x2;③y=x(3﹣5x);④y=(1+2x)(1﹣2x),是二次函数,共3个,故选:C.【点评】此题主要考查了二次函数定义,关键是掌握判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.【变式1-1】(2020•涡阳县一模)已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2x2﹣x﹣1;⑤y=ax2+bx+c,其中二次函数的个数为()A.1B.2C.3D.4【分析】根据二次函数定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数进行分析即可.【解答】解:②④是二次函数,共2个,故选:B.【点评】此题主要考查了二次函数的定义,关键是掌握y=ax2+bx+c(a、b、c是常数,a ≠0)是二次函数,注意a≠0这一条件.【变式1-2】(2020秋•扬州期末)下列函数是关于x的二次函数的有()①y=x(2x﹣1);②y=1x2;③y=√32x2−1;④y=ax2+2x(a为任意实数);⑤y=(x﹣1)2﹣x2;⑥y=√x2+x+1.A.2个B.3个C.4个D.5个【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数进行分析可得答案.【解答】解:是关于x的二次函数的有①③故选:A.【点评】此题主要考查了二次函数定义,判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.【变式1-3】(2020秋•广汉市期中)观察:①y=6x2;②y=﹣3x2+5;③y=200x2+400x+200;④y=x3﹣2x;⑤y=x2−1x+312;⑥y=(x+1)2﹣x2.这六个式子中,二次函数有.(只填序号)【分析】根据二次函数的定义可得答案.【解答】解:这六个式子中,二次函数有:①y=6x2;②y=﹣3x2+5;③y=200x2+400x+200;故答案为:①②③.【点评】本题主要考查的是二次函数的定义,熟练掌握二次函数的概念是解题的关键.【题型2 利用二次函数的概念求字母的值】【例2】(2020秋•沙坪坝区校级月考)若函数y=(a+1)x|a2+1|是关于x的二次函数,则a 的值为.【分析】根据二次函数定义可得|a2+1|=2且a+1≠0,求解即可.【解答】解:∵函数y=(a+1)x|a2+1|是关于x的二次函数,∴|a2+1|=2且a+1≠0,解得a=1,故答案为:1.【点评】本题考查的是二次函数的定义,二次函数的定义:一般地,形如y=ax2+bx+c (a、b、c是常数,a≠0)的函数,叫做二次函数.【变式2-1】(2020秋•肃州区期末)如果函数y=(k﹣3)x k2−3k+2+kx+1是二次函数,则k的值是.【分析】利用二次函数定义可得k2﹣3k+2=2,且k﹣3≠0,再解出k的值即可.【解答】解:由题意得:k2﹣3k+2=2,且k﹣3≠0,解得:k=0,故答案为:0.【点评】此题主要考查了二次函数定义,关键是掌握形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.【变式2-2】(2020秋•江油市校级月考)函数y=(m2﹣3m+2)x2+mx+1﹣m,则当m=时,它为正比例函数;当m=时,它为一次函数;当m时,它为二次函数.【分析】首先解方程,进而利用正比例函数、一次函数与二次函数的定义得出答案.【解答】解:m2﹣3m+2=0,则(m﹣1)(m﹣2)=0,解得:m1=1,m2=2,故m≠1且m≠2时,它为二次函数;当m=1或2时,它为一次函数,当m=1时,它为正比例函数;故答案为:1;1或2;m≠1且m≠2【点评】此题主要考查了一次函数与二次函数的定义,正确解方程是解题关键.【变式2-3】(2020秋•新昌县校级月考)已知函数y=(m2+m)x m2−2m+2.(1)当函数是二次函数时,求m的值;;(2)当函数是一次函数时,求m的值..【分析】(1)这个式子是二次函数的条件是:m2﹣2m+2=2并且m2+m≠0;(2)这个式子是一次函数的条件是:m2﹣2m+2=1并且m2+m≠0.【解答】解:(1)依题意,得m2﹣2m+2=2,解得m=2或m=0;又因m2+m≠0,解得m≠0或m≠﹣1;因此m=2.(2)依题意,得m2﹣2m+2=1解得m=1;又因m2+m≠0,解得m≠0或m≠﹣1;因此m=1.【点评】本题主要考查一次函数与二次函数的定义与一般形式.【题型3 二次函数的一般形式】【例3】(2020秋•防城区期中)设a,b,c分别是二次函数y=﹣x2+3的二次项系数、一次项系数、常数项,则()A.a=﹣1,b=3,c=0B.a=﹣1,b=0,c=3C.a=﹣1,b=3,c=3D.a=1,b=0,c=3【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项作答.【解答】解:二次函数y=﹣x2+3的二次项系数是a=﹣1,一次项系数是b=0,常数项是c=3;故选:B.【点评】此题主要考查了二次函数的定义,关键是注意在找二次项系数,一次项系数和常数项时,不要漏掉符号.【变式3-1】(2020秋•遂溪县校级期中)关于函数y=(500﹣10x)(40+x),下列说法不正确的是()A.y是x的二次函数B.二次项系数是﹣10C.一次项是100D.常数项是20000【分析】根据形如y=ax2+bx+c是二次函数,可得答案.【解答】解:y=﹣10x2+100x+20000,A、y是x的二次函数,故A正确;B、二次项系数是﹣10,故B正确;C、一次项是100x,故C错误;D、常数项是20000,故D正确;故选:C.【点评】本题考查了二次函数的定义,化成二次函数的一般式是解题关键.【变式3-2】(2020春•肇东市期末)已知二次函数y=1﹣5x+3x2,则二次项系数a=,一次项系数b=,常数项c=.【分析】根据二次函数的定义,可得答案.【解答】解:二次函数y=1﹣5x+3x2,则二次项系数a=3,一次项系数b=﹣5,常数项c=1,故答案为:3,﹣5,1.【点评】本题考查了二次函数的定义,熟记二次函数的定义是解题关键.【变式3-3】(2020秋•新昌县期末)若二次函数y=(2x﹣1)2+1的二次项系数为a,一次项系数为b,常数项为c,则b2﹣4ac0(填写“>”或“<”或“=”)【分析】根据二次函数的解析式得出a,b,c的值,再代入b2﹣4ac计算,判断与0的大小即可.【解答】解:∵y=(2x﹣1)2+1,∴a=4,b=﹣4,c=2,∴b2﹣4ac=16﹣4×4×2=﹣16<0,故答案为<.【点评】本题考查了二次函数的定义以及各项系数,掌握a,b,c的确定是解题的关键.(1)理解题意:找出实际问题中的已知量和変量(自变量,因变量),将文字或图形语言转化为数学语言;(2)分析关系:找到已知量和变量之间的关系,列出等量关系式;(3)列函数表达式:设出表示变量的字母,把等量关系式用含字母的式子替换,将表达式写成用自变量表示的函数的形式.【题型4 根据实际问题列二次函数(销售类)】【例4】(2020秋•硚口区期中)某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映;如调整价格,每涨价1元,每星期要少卖出10件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.y=300﹣10x B.y=300(60﹣40﹣x)C.y=(300+10x)(60﹣40﹣x)D.y=(300﹣10x)(60﹣40+x)【分析】由每件涨价x元,可得出销售每件的利润为(60﹣40+x)元,每星期的销售量为(300﹣10x),再利用每星期售出商品的利润=销售每件的利润×每星期的销售量,即可得出结论.【解答】解:∵每涨价1元,每星期要少卖出10件,每件涨价x元,∴销售每件的利润为(60﹣40+x)元,每星期的销售量为(300﹣10x),∴每星期售出商品的利润y=(300﹣10x)(60﹣40+x).故选:D.【点评】本题考查了根据实际问题列二次函数关系式,根据各数量之间的关系,找出y 与x之间的函数关系式.【变式4-1】(2020秋•朝阳期中)某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨2元,月销售量就减少10千克.设每千克涨x元,月销售利润为y元,则y与x的函数关系式为()A.y=(50+x﹣40)(500﹣10x)B.y=(x+40)(10x﹣500)C.y=(x﹣40)[500﹣5(x﹣50)]D.y=(50+x﹣40)(500﹣5x)【分析】直接利用销量×每千克利润=总利润,得出函数关系式即可.【解答】解:设每千克涨x元,月销售利润为y元,则y与x的函数关系式为:y=(50+x﹣40)(500﹣5x).故选:D.【点评】此题主要考查了根据实际问题列函数关系式,正确表示出销量是解题关键.【变式4-2】(2020春•西湖区校级月考)某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.【分析】(1)当售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,y=260﹣x,50≤x≤80,当如果售价超过80元后,若再涨价,则每涨1元每月少卖3件,y=420﹣3x,80<x≤140,(2)由利润=(售价﹣成本)×销售量列出函数关系式,【解答】解:(1)当50≤x≤80时,y=210﹣(x﹣50),即y=260﹣x,当80<x≤140时,y=210﹣(80﹣50)﹣3(x﹣80),即y=420﹣3x.则{y=260−x(50≤x≤80)y=420−3x(80<x<140);(2)由题意可得,W=﹣x2+300x﹣10400(50≤x≤80),W=﹣3x2+540x﹣16800(80<x<140).【点评】本题主要考查二次函数的应用,根据题意列出函数关系式是解决本题的关键.【变式4-3】(2020•诸城市一模)某厂生产某种零件,该厂为鼓励销售商订货,提供了如下信息:①每个零件的成本价为40元;②若订购量不超过100个,出厂价为60元;若订购量超过100个时,每多订1个,订购的全部零件的出厂单价就降低0.02元;③实际出厂单价不能低于51元.根据以上信息,解答下列问题:(1)当一次订购量为个时,零件的实际出厂单价降为51元.(2)设一次订购量为x个时,零件的实际出厂单价为P元,写出P与x的函数表达式.(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂价﹣成本).【分析】(1)由题意设每个零件的实际出厂价恰好降为51元时,一次订购量为x 个,则x =100+60−510.02=550进而得出答案; (2)前100件单价为P ,当进货件数大于等于550件时,P =51,则当100<x <550时,P =60﹣0.02(x ﹣100)=62−x50得到P 为分段函数,写出解析式即可; (3)设销售商的一次订购量为x 个时,工厂获得的利润为L 元,表示出L 与x 的函数关系式,然后令x =500,1000即可得到对应的利润.【解答】解:(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 个,则x =100+60−510.02=550, 根据实际出厂单价不能低于51元,因此,当一次订购量为大于等于550个时,每个零件的实际出厂价恰好降为51元. 故答案为:≥550;(2)当0<x ≤100时,P =60当100<x <550时,P =60﹣0.02(x ﹣100)=62−x 50当x ≥550时,P =51所以P ={60(0<x ≤100)62−x 50(100<x <550)51(550≤x);(3)设销售商的一次订购量为x 个时,工厂获得的利润为L 元, 则L =(P ﹣40)x ={20x(0<x ≤100)22x −x 250(100<x <500)当x =500时,L =22×500−500250=6000(元);当x =1000时,L =(51﹣40)×1000=11000(元),因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.【点评】本小题主要考查了二次函数的应用以及分段函数的应用,注意利用自变量取值范围得出函数解析式是解题关键.【题型5 根据实际问题列二次函数(面积类)】【例5】(2020•平阳县一模)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m 宽的门,已知计划中的建筑材料可建围墙(不包括门)的总长度为50m .设饲养室长为xm ,占地面积为ym 2,则y 关于x 的函数表达式是( )A .y =﹣x 2+50xB .y =−12x 2+24xC .y =−12x 2+25xD .y =−12x 2+26x【分析】根据题意表示出矩形的宽,再利用矩形面积求法得出答案. 【解答】解:设饲养室长为xm ,占地面积为ym 2,则y 关于x 的函数表达式是:y =x •12(50+2﹣x )=−12x 2+26x .故选:D .【点评】此题主要考查了根据实际问题列二次函数关系式,正确表示出矩形的宽是解题关键.【变式5-1】(2020秋•沙坪坝区校级期中)如图,某农场拟建一间矩形奶牛饲养室,打算一边利用房屋现有的墙(墙足够长),其余三边除大门外用栅栏围成,栅栏总长度为50m ,门宽为2m .若饲养室长为xm ,占地面积为ym 2,则y 关于x 的函数表达式为( )A .y =−12x 2+26x (2≤x <52) B .y =−12x 2+50x (2≤x <52) C .y =﹣x 2+52x (2≤x <52)D .y =−12x 2+27x ﹣52(2≤x <52)【分析】直接根据题意表示出垂直与墙饲养室的一边长,再利用矩形面积求法得出答案.【解答】解:y关于x的函数表达式为:y=12(50+2﹣x)x=−12x2+26x(2≤x<52).故选:A.【点评】此题主要考查了根据实际问题列二次函数关系,正确表示出另一边长是解题关键.【变式5-2】(2020秋•思明区校级期中)如图,某小区进行绿化改造,矩形花园的一边由墙AB和一节篱笆BF构成,另三边由篱笆ADEF围成,篱笆总长40米,墙AB长16米,若BF=x米,花园面积是S平方米,则S关于x的函数关系式是:.【分析】根据题意分别表示出长方形的长与宽进而得出答案.【解答】解:由题意可得:S=(16+x)•40−x−16−x2=(16+x)(12﹣x)=﹣x2﹣4x+192.故答案为:S=﹣x2﹣4x+192.【点评】此题主要考查了根据实际问题抽象出二次函数关系式,正确表示出矩形的长与宽是解题关键.【变式5-3】(2020秋•东营期中)如图,某农场要盖一排三间长方形的羊圈,打算一面利用旧墙,其余各面用木材围成栅栏,该计划用木材围成总长24m的栅栏,设面积为s(m2),垂直于墙的一边长为x(m)米.则s关于x的函数关系式:(并写出自变量的取值范围)【分析】先根据栅栏的总长度24表示出三间羊圈与旧墙平行的一边的总长为(24﹣4x),再根据长方形的面积公式表示即可得到s关于x的函数关系式;找到关于x的两个不等式:24﹣4x>0,x>0,解之即可求出x的取值范围.【解答】解:根据题意可知,三间羊圈与旧墙平行的一边的总长为(24﹣4x),则:s=(24﹣4x)x=﹣4x2+24x由图可知:24﹣4x>0,x>0,所以x的取值范围是0<x<6,故答案为:s=﹣4x2+24x(0<x<6).【点评】此题主要考查了结合实际问题列二次函数解析式.本题中主要涉及的知识点有:二次函数的表示方法,自变量取值范围的解法,找到关于x的不等式.【题型6 根据实际问题列二次函数(几何类)】【例6】(2020•西湖区校级模拟)在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,若a+b=5,则Rt△ABC的面积S关于边长c的函数关系式为()A.S=25−c24B.S=25−c22C.S=25−c2D.S=25+c24【分析】直接利用直角三角形的性质结合完全平方公式得出S与c的关系.【解答】解:∵∠C=90°,BC=a,AC=b,AB=c,∴a2+b2=c2,∵Rt△ABC的面积S,∴S=12ab,∵a+b=5,∴(a+b)2=25,∴a2+b2+2ab=25,∴c2+4S=25,∴S=25−c2 4.故选:A.【点评】此题主要考查了根据实际问题列二次函数关系式,正确掌握直角三角形的性质是解题关键.【变式6-1】(2020秋•翼城县期末)如图,在Rt△ABO中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得的阴影部分的面积为S,则S与t之间的函数关系式为()A.S=t(0<t≤3)B.S=12t2(0<t≤3)C.S=t2(0<t≤3)D.S=12t2﹣1(0<t≤3)【分析】Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式.【解答】解:如图所示,∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=12×OD×CD=12t2(0<t≤3),即S=12t2(0<t≤3).故选:B.【点评】本题主要考查的是二次函数解析式的求法,解题的关键是能够找到题目中的有关面积的等量关系,难度不大.【变式6-2】(2021•江夏区模拟)如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为()A.y=1810x2+52B.y=4810x2+52C.y=1810x2+2D.y=4810x2+2【分析】过A作AH⊥BC,过E作EP⊥BC,则AH∥EP,由此得出关于x和y的方程,即可得出关系式.【解答】解:过A作AH⊥BC,过E作EP⊥BC,则AH∥EP,∴HC=3,PC=1,BP=5,PE=13AH,∵BD=DE=y,∴在Rt△EDP中,y2=(5﹣y)2+PE2,∵x=6AH÷2=3AH,∴y2=(5﹣y)2+(19x)2,∴y=1810x2+52,故选:A.【点评】此题主要考查了根据实际问题列二次函数关系式的知识,关键是根据等腰三角形的性质进行分析,难度适中.【变式6-3】(2020秋•孝感期末)如图,正方形ABCD的边长是4,E是AB上一点,F是AD延长线上的一点,BE=DF.四边形AEGF是矩形,矩形AEGF的面积y与BE的长x 的函数关系是.【分析】设BE的长度为x(0≤x<4),则AE=4﹣x,AF=4+x,根据矩形的面积即可得出y关于x的函数关系式,此题得解.【解答】解:设BE的长度为x(0≤x<4),则AE=4﹣x,AF=4+x,∴y=AE•AF=(4﹣x)(4+x)=16﹣x2.故答案为:y=16﹣x2(0≤x<4).【点评】本题考查了根据实际问题列二次函数关系式,根据矩形的面积找出y关于x的函数关系式是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选]对于手工切割编织袋的长度确定,要从()点开始测量,在规定的长度处划线标记。A.切割B.调整C.校验D.试验 [单选]我国医学发展史上可称为温病学奠基作的专著是:().A.《温热论》B.《温疫论》C.《温热经纬》D.《温病条辨》 [问答题,简答题]为什么不能用清水冲洗电器设备及开关? [单选]关于细菌性肝脓肿病人的高热护理错误的是()A.体温高于39.5℃时,可给予物理或药物降温B.保持病人舒适C.保持病室内温度和湿度D.增加摄水量E.体温高于38.0℃时,首先给予药物降温 [单选,A2型题,A1/A2型题]下列属于反馈控制的措施是()A.急救物品完好率B.护理人员素质C.常规器械消毒灭菌率D.现场检查E.基础护理合格率 [单选]在财产保险合同中,保险事故发生后造成被保险人死亡的,保险金请求权由()行使。A.被保险人指定受益人B.投保人指定受益人C.被保险人的债权人D.被保险人的继承人 [单选]船舶在冰区航行,螺旋桨在下列哪种情况下,对船舶航行安全较为有利()。A.螺旋桨2/3没在水中B.螺旋桨1/3没在水中C.螺旋桨尽可能没在水中D.螺旋桨1/2没在水中 [名词解释]混响时间 [单选]下列哪些内容应成为航海员判定海图资料是否可信的依据()。Ⅰ.测量时间;Ⅱ.海图比例尺;Ⅲ.新购置图;Ⅳ.航标位置;Ⅴ地貌精度。A.Ⅰ~ⅤB.Ⅰ,Ⅱ,Ⅳ,ⅤC.Ⅱ,Ⅲ,ⅣD.Ⅲ~Ⅴ [多选]下列表述正确的是:()。A.货主或其代理人在办理进境动物、动物产品报检时,还需按检疫要求出具,输出国家或地区政府出具的检疫证书(正本);《中华人民共和国进境动植物检疫许可证》。B.输入活动物的报检时,还应提供隔离场审批证明。C.输入动物产品的报检时,应提供加工 [单选]衡器使用后,必须将秤盘、秤体仔细擦干净,并存放在()处A、固定、干燥B、固定、平稳C、干燥、阴凉D、固定 [多选]气割所用的可燃气体主要是()。A.乙炔B.液化石油气C.氧气D.氢气 [单选]屈曲型肱骨髁上骨折断端最常见的移位方向是()A.近折端向后下移位,远折端向前移位B.近折端向后上移位,远折端向前下移位C.近折端向前下移位,远折端向后上移位D.近折端向前下移位,远折端向桡侧移位E.近折端向后下移位,远折端向尺侧移位 [单选]区域报警器型号JB--QG20的J表示()。A.报警B.防爆型C.区域D.柜式 [单选]()是行政法最高原则。A.四项基本原则B.行政公正原则C.行政公开原则D.行政法治原则 [单选,A2型题,A1/A2型题]脑性瘫痪肌张力测定不包括()A.头背屈角B.臂弹回试验C.围巾征D.内收肌角E.WeeFIMSM [单选]是列出一系列相关的问题要求媒体选择者回答,通过对这些问题的逐一回答,来比较清楚地发现适用于一定教学目标(或一定教学情景)的媒体。问题的提出可根据教学媒体的选择原则给出。A.问题表法B.流程图法C.矩陈选择表D.算法型 [单选]血液循环将激素输送到()。A.静脉B.淋巴结C.淋巴管D.全身 [多选]肉芽组织中的巨噬细胞能分泌哪些生长因子A.PDGFB.FGFC.TGF-13D.IL-1E.TNF [单选,A1型题]能消食健胃,涩精止遗的药物是()A.谷芽B.鸡内金C.莱菔子D.神曲E.山楂 [单选,A2型题,A1/A2型题]有关统计质量控制的不足之处是()。A.对分析过程的质量有较明确的执行方法B.对分析过程的质量有较明确的判断标准C.采用客观的统计学方法进行评价D.将质量管理的重点放在最后的产品上E.所设定的质控管理目标在一定程度上满足了患者需要 [单选]《国务院关于进一步深化城镇住房制度改革加快住房建设的通知》决定,从()开始,全国城镇停止住房实物分配,实行住房分配货币化。A、1997年下半年B、1998年下半年C、1998年D、1999年 [单选]下列指标中,属于分析企业资产流动情况的是()。A.应收账款周转率B.资产净利润率C.已获利息倍数D.市盈率 [单选,A2型题,A1/A2型题]关于湿热病邪(包括暑湿病邪)深入气分涉及病变部位的描述,错误的是?()A.脾B.膜原C.胆腑D.肠腑E.心包 [名词解释]昏厥 [单选]()是否健全是合同管理的关键所在。A.合同统计考核制度B.合同管理评估制度C.合同管理目标制度D.合同管理质量责任制度 [填空题]液氧泵泵轴上设有迷宫密封,是为了防止轴承中的(润滑脂)进入中间体与()接触。 [单选]投标文件中的大写金额和小写金额不一致的,应()。A.以小写金额为准B.以大写金额为准C.由投标人确认D.由招标人确认 [单选,A型题]下列哪种肠梗阻一般多为绞窄性梗阻()A.肠套叠B.蛔虫性肠梗阻C.胆石性肠梗阻D.粘连性肠梗阻E.麻痹性肠梗阻 [单选]与销售有关的其他资料自业务发生当年起至少保存()年。A.3B.5C.10D.15 [单选]下列对工程建设标准有关内容的理解,正确的是()。A.推荐性标准在任何情况下都没有法律约束力B.概算定额不属于工程建设标准范围C.违反工程建设强制性标准,但没有造成严重后果,不属违法行为D.建设行政主管部门可依据《工程建设强制性条文》对责任者进行处罚 [问答题,案例分析题]阅读下列说明,回答问题1至问题3【说明】某学校见到其他学校都陆续建立了多媒体网站作为学校的一个窗口,也想自己建立一个,就请一个计算机公司帮助建立。在公司人员和学校负责人讨论需求时,学校负责人并不能清晰表达,只能简要表达要满足学校教学和办公需求 [单选,A1型题]关于T、B细胞免疫耐受的特点正确的叙述是()A.诱导T细胞耐受所需时间长,B细胞短B.诱导T细胞耐受维持时间短,B细胞长C.高剂量TD-Ag不能使T、B细胞产生耐受D.低剂量TD-Ag仅能使T细胞产生耐受,不能使B细胞产生耐受E.低剂量的TI-Ag能使T、B细胞均产生耐受 [单选]船舶防污染的重要法律文件是()。A.油类记录薄B.防污染证书C.轮机日记D.A或B [单选]下列哪项不是CT模拟定位技术的优势()A.有更高的精度和更广的应用范围B.经济、可靠,时间短C.其图像有较高的组织对比度D.可在三维空间上清楚显示靶区与周围器官之间的关系E.可以更精确勾画靶区及正常组织和器官 [单选]在供电系统中用来校验电气设备动稳定性的是三相短路电流的()。A.最大值B.最小值C.冲击值D.有效值 [填空题]一个完整的广告活动,应该包括()、()、()、()、()五个要素。 [单选,A1型题]下述哪种糖尿病不需首选胰岛素()。A.幼年重型糖尿病B.合并严重感染的糖尿病C.轻型糖尿病D.需作手术的糖尿病患者E.合并妊娠的糖尿病患者 [单选,A2型题,A1/A2型题]鼻中隔脓肿最常见的病因是()。A.鼻前庭疖B.鼻旁窦炎C.流感D.猩红热E.鼻中隔血肿继发感染 [单选,A1型题]牛的性成熟期年龄是()A.8~14月龄B.15~23月龄C.18月龄D.15月龄E.10~12月龄
Байду номын сангаас