江苏省无锡市2019届高三第一学期期中考试数学试题(含答案和评分标准)

合集下载

江苏省无锡市普通高中2019届高三上学期期中考试数学试题

江苏省无锡市普通高中2019届高三上学期期中考试数学试题

无锡市普通高中2019届高三期中基础性检测考试数 学 试 题注意事项及说明: 本卷考试时间为120分钟, 全卷满分为160分.一、填空题(本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上........) 1.已知复数(1)(z i i i =-为虚数单位),则复数z 在复平面上对应的点位于第 象限.2.已知全集{1,3,5,7,9},{1,5,9},{3,5,9}U A B ===,则()U A B ⋃ð的子集个数为 .3.若()f x 是定义在R 上的函数,则“(0)f =0是“函数()f x 为奇函数”的 条件(从“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选一个).4.某班要选1名学生做代表,每个学生当选是等可能的,若“选出代表是男生”的概率是“选出代表是女生”的概率23,则这个班的女生人数占全班人数的百分比为 .5.执行如图所示的程序框图,若输出s 的值为11,则输入自然数n 的值是 .6.直线x=a 和函数21y x x =+-的图象公共点的个数为 .7.已知向量12,e e 是两个不共线的向量,若122a e e =-与12b e e λ=+共线,则λ= .8.若一直角三角形的三边长构成公差为2的等差数列,则该直角三角形的周长为 .9.将函数y=的图象向左平移(0)ϕϕ>个单位,可得到函数sin(2)4y x π=+的图象,则ϕ的最小值为 .10.已知函数2()1f x x ax a=-+-在区间(0,1)上有两个零点,则实数a 的取值范围为 . 11.已知函数2,0,1()3,0,4x x x x x f x e x ⎧>⎪⎪++=⎨⎪-≤⎪⎩ 则函数()f x 的值域为 .12.若点P (x ,y )满足约束条件0,2,2,x x y a x y ≥⎧⎪-≤⎨⎪+≤⎩且点P (x ,y )所形成区域的面积为12,则实数a 的值为 .13.若函数1()sin()4f x x π=与函数3()g x x bx c =++的定义域为[0,2],它们在同一点有相同的最小值,则b+= .14.已知实数y>x>0若以x y x λ+为三边长能构成一个三角形,则实数λ的范围为 .二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)15.已知32,1,4a b a b π==与的夹角为. (1)求().(2)a b a b +-的值; (2)若k 为实数,求a kb +的最小值.16.在正四面体ABCD 中,点F 在CD 上,点E 在AD 上,且DF ∶FC=DE ∶EA=2∶3.证明:(1)EF ∥平面ABC ;(2)直线BD ⊥直线EF .17.已知函数22()sin cos sin cos ,(,)f x x x a x a x b a b R =+-+∈(1)若a>0,求函数()f x 的单调增区间;(2)若[,]44x ππ∈-时,函数()f x 的最大值为3,最小值为1,ab 的值.18.在等差数列{a n }中a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,其前n 项和为T n ,且b 2+S 2=11,2S 3=9b 3。

2019届江苏无锡市高三上期中数学试卷【含答案及解析】

2019届江苏无锡市高三上期中数学试卷【含答案及解析】

2019届江苏无锡市高三上期中数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、填空题1. 命题“若,则”是____________命题(填“真”或“假”).2. 某工厂生产甲、乙、丙、丁4类产品共计1200件,已知甲、乙、丙、丁4类产品的数量之比为1:2:4:5,现要用分层抽样在方法从中抽取60件,则乙类产品抽取的件数为_____________.3. 函数的定义域为___________.4. 已知集合,若,则 ____________.5. 执行如图所示的流程图,则输出的应为____________.6. 若复数,则 _____________.7. 已知盒中有3张分别标有1,2,3的卡片,从中随机地抽取一张,记下数字后再放回,再随机地抽取一张,记下数字,则两次抽得的数字之和为3的倍数的概率为___________.8. 已知向量满足,则与的夹角为____________.9. 已知满足,若的最大值为,最小值为,且,则实数的值为_____________.10. 已知,若,则 ____________.11. 若函数,在区间上有两个零点,则实数的取值范围为__________.12. 设数列的前项和为,已知,则______________.13. 已知正实数满足,则的最小值为___________.14. 已知正实数满足,则 ___________.二、解答题15. 已知三点,为平面上的一点,且 .(1)求;(2)求的值.16. 如图,在正方体中,为棱的中点.求证:(1)平面;(2)平面平面 .17. 在中,角所对的边分别为,已知 . (1)求;(2)若,求 .18. 某工厂第一季度某产品月生产量依次为10万件,12万件,13万件,为了预测以后每个月的产量,以这3个月的产量为依据,用一个函数模拟该产品的月产量(单位:万件)与月份的关系. 模拟函数;模拟函数 .(1)已知4月份的产量为万件,问选用哪个函数作为模拟函数好?(2)受工厂设备的影响,全年的每月产量都不超过15万件,请选用合适的模拟函数预测6月份的产量.19. 已知正项数列为等比数列,等差数列的前项和为,且满足:.(1)求数列,的通项公式;(2)设,求;(3)设,问是否存在正整数,使得.20. 已知函数的定义域为为的导函数.(1)求方程的解集;(2)求函数的最大值与最小值;(3)若函数在定义域上恰有2个极值点,求实数的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】。

【高考模拟】2019届江苏省无锡市高三第一次模拟考试 数学(word版有答案)

【高考模拟】2019届江苏省无锡市高三第一次模拟考试 数学(word版有答案)

2019届江苏省无锡市高三第一次模拟考试数 学注意事项:1. 本试卷共160分,考试时间120分钟.2. 答题前,考生务必将自己的学校、班级、姓名写在密封线内. 一、 填空题:本大题共14小题,每小题5分,共70分.1. 设集合A ={x |x >0},B ={x |-2<x <1},则A ∩B =________.2. 设复数z 满足(1+i)z =1-3i(其中i 是虚数单位),则z 的实部为________.3. 有A ,B ,C 三所学校,学生人数的比例为3∶4∶5,现用分层抽样的方法招募n 名志愿者,若在A 学校恰好选出9名志愿者,那么n =________.错误!4. 史上常有赛马论英雄的记载,田忌欲与齐王赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,则田忌的马获胜的概率为________.5. 执行如图所示的伪代码,则输出x 的值为________.6. 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,2x -y ≤0,x ≥0,则z =x +y 的取值范围是________.7. 在四边形ABCD 中,已知AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a ,b 是不共线的向量,则四边形ABCD 的形状是________.8. 以双曲线x 25-y 24=1的右焦点为焦点的抛物线的标准方程是________.9. 已知一个圆锥的轴截面是等边三角形,侧面积为6π,则该圆锥的体积等于________.10. 设公差不为零的等差数列{a n }满足a 3=7,且a 1-1,a 2-1,a 4-1成等比数列,则a 10=________.11. 已知θ是第四象限角,则cos θ=45,那么sin ⎝⎛⎭⎫θ+π4cos (2θ-6π)的值为________.12. 已知直线y =a (x +2)(a >0)与函数y =|cos x |的图象恰有四个公共点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),其中x 1<x 2<x 3<x 4,则x 4+1tan x 4=________.13. 已知点P 在圆M :(x -a )2+(y -a +2)2=1上,A ,B 为圆C :x 2+(y -4)2=4上两动点,且AB =23,则P A →·PB →的最小值是________.14. 在锐角三角形ABC 中,已知2sin 2A +sin 2B =2sin 2C ,则1tan A +1tan B +1tan C的最小值为________.二、解答题:本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC中,设a,b,c分别是角A,B,C的对边,已知向量m=(a,sinC-sin B),n=(b+c,sin A+sin B),且m∥n.(1) 求角C的大小;(2) 若c=3,求△ABC周长的取值范围.16. (本小题满分14分)在四棱锥P ABCD中,锐角三角形P AD所在平面垂直于平面P AB,AB⊥AD,AB⊥BC.(1) 求证:BC∥平面P AD;(2) 求证:平面P AD⊥平面ABCD.(第16题)17. (本小题满分14分)十九大提出对农村要坚持精准扶贫,至2020年底全面脱贫.现有扶贫工作组到某山区贫困村实施脱贫工作,经摸底排查,该村现有贫困农户100家,他们均从事水果种植,2017年底该村平均每户年纯收入为1万元,扶贫工作组一方面请有关专家对水果进行品种改良,提高产量;另一方面,抽出部分农户从事水果包装、销售工作,其人数必须小于种植的人数.从2018年初开始,若该村抽出5x户(x∈Z,1≤x≤9)从事水果包装、销售.经测算,剩下从事水果种植农户的年纯收入每户平均比上一年提高x20,而从事包装、销售农户的年纯收入每户平均为⎝⎛⎭⎫3-14x万元.(参考数据:1.13=1.331,1.153≈1.521,1.23=1.728)(1) 至2020年底,为使从事水果种植农户能实现脱贫(每户年均纯收入不低于1万6千元),至少抽出多少户从事包装、销售工作?(2) 至2018年底,该村每户年均纯收入能否达到1.35万元?若能,请求出从事包装、销售的户数;若不能,请说明理由.18. (本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点⎝⎛⎭⎫3,12,点P 在第四象限,A 为左顶点,B 为上顶点,P A 交y 轴于点C ,PB 交x 轴于点D . (1) 求椭圆C 的标准方程; (2) 求△PCD 面积的最大值.(第18题)19. (本小题满分16分)已知函数f(x)=e x -a2x 2-ax(a>0).(1) 当a =1时,求证:对于任意x>0,都有f(x)>0成立;(2) 若y =f(x)恰好在x =x 1和x =x 2两处取得极值,求证:x 1+x 22<ln a.20. (本小题满分16分)设等比数列{a n }的公比为q(q>0,q ≠1),前n 项和为S n ,且2a 1a 3=a 4,数列{b n }的前n 项和T n 满足2T n =n(b n -1),n ∈N *,b 2=1.(1) 求数列{a n },{b n }的通项公式;(2) 是否存在常数t ,使得⎩⎨⎧⎭⎬⎫S n +12t 为等比数列?请说明理由;(3) 设c n =1b n +4,对于任意给定的正整数k (k ≥2),是否存在正整数l ,m (k <l <m ),使得c k ,c l ,c m 成等差数列?若存在,求出l ,m (用k 表示);若不存在,请说明理由.江苏省无锡市2019届高三第一次模拟考试数学附加题注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内. 说明:解答时应写出必要的文字说明、证明过程或演算步骤. 21. (本小题满分10分)选修4-2:矩阵与变换 设旋转变换矩阵A =⎣⎢⎡⎦⎥⎤0-11 0,若⎣⎢⎡⎦⎥⎤a b 1 2·A =⎣⎢⎡⎦⎥⎤34c d ,求ad -bc 的值.22. (本小题满分10分)选修4-4: 坐标系与参数方程自极点O 作射线与直线ρcos θ=3相交于点M ,在OM 上取一点P ,使OM·OP =12,若Q 为曲线⎩⎨⎧x =-1+22t ,y =2+22t (t 为参数)上一点,求PQ 的最小值.23. (本小题满分10分)在平面直角坐标系xOy 中,曲线C 上的动点M(x ,y)(x>0)到点F(2,0)的距离减去M 到直线x =-1的距离等于1.(1) 求曲线C 的方程;(2) 若直线y =k(x +2)与曲线C 交于A ,B 两点,求证:直线FA 与直线FB 的倾斜角互补.24. (本小题满分10分)已知数列{a n }满足a 1=23,1a n -1=2-a n -1a n -1-1(n ≥2).(1) 求数列{a n }的通项公式;(2 )设数列{a n }的前n 项和为S n ,用数学归纳法证明:S n <n +12-ln .江苏省无锡市2019届高三第一次模拟考试数学参考答案及评分标准1. {x|0<x<1}2. -13. 364. 13 5. 256. [0,3]7. 梯形8. y 2=12x9. 3π 10. 21 11.5214 12. -2 13. 19-122 14. 13215. (1) 由m ∥n 及m =(a ,sin C -sin B ),n =(b +c ,sin A +sin B ), 得a (sin A +sin B )-(b +c )(sin C -sin B )=0,(2分) 由正弦定理,得a ⎝⎛⎭⎫a 2R +b 2R -(b +c )⎝⎛⎭⎫c 2R -b2R =0, 所以a 2+ab -(c 2-b 2)=0,得c 2=a 2+b 2+ab ,由余弦定理,得c 2=a 2+b 2-2ab cos C , 所以a 2+b 2+ab =a 2+b 2-2ab cos C , 所以ab =-2ab cos C ,(5分) 因为ab >0,所以cos C =-12,又因为C ∈(0,π),所以C =2π3.(7分) (2) 在△ABC 中,由余弦定理,得c 2=a 2+b 2-2ab cos C , 所以a 2+b 2-2ab cos 2π3=9,即(a +b )2-ab =9,(9分)所以ab =(a +b )2-9≤⎝⎛⎫a +b 22,所以3(a +b )24≤9,即(a +b )2≤12,所以a +b ≤23,(12分)又因为a +b >c ,所以6<a +b +c ≤23+3,即周长l 满足6<l ≤3+23, 所以△ABC 周长的取值范围是(6,3+23].(14分) 16. (1) 因为AB ⊥AD ,AB ⊥BC ,且A ,B ,C ,D 共面, 所以AD ∥BC.(3分)(第16题)因为BC ⊄平面PAD ,AD ⊂平面PAD , 所以BC ∥平面PAD.(5分)(2) 如图,过点D 作DH ⊥PA 于点H ,因为△PAD 是锐角三角形,所以H 与A 不重合.(7分)因为平面PAD ⊥平面PAB ,平面PAD ∩平面PAB =PA ,DH ⊂平面PAD , 所以DH ⊥平面PAD.(9分)因为AB ⊂平面PAB ,所以DH ⊥AB.(11分)因为AB ⊥AD ,AD ∩DH =D ,AD ,DH ⊂平面PAD , 所以AB ⊥平面PAD.因为AB ⊂平面ABCD ,所以平面PAD ⊥平面ABCD.(14分) 17. (1) 由题意得1×⎝⎛⎭⎫1+x203≥1.6, 因为5x<100-5x ,所以x<10且x ∈Z .(2分) 因为y =⎝⎛⎭⎫1+x203在x ∈[1,9]上单调递增, 由数据知,1.153≈1.521<1.6,1.23=1.728>1.6, 所以x20≥0.2,得x ≥4.(5分)又x <10且x ∈Z ,故x =4,5,6,7,8,9. 答:至少抽取20户从事包装、销售工作.(7分)(2) 假设该村户均纯收入能达到1.35万元,由题意得,不等式1100[5x ⎝⎛⎭⎫3-14x +⎝⎛⎭⎫1+x 20(100-5x )]≥1.35有正整数解,(8分)化简整理得3x 2-30x +70≤0,(10分) 所以-153≤x -5≤153.(11分) 因为3<15<4,且x ∈Z ,所以-1≤x -5≤1,即4≤x ≤6. (13分)答:至2018年底,该村户均纯收入能达到1万3千5百元,此时从事包装、销售的农户数为20户,25户,30户.(14分)18. (1) 由题意得⎩⎨⎧3a 2+14b2=1,c a =32,a 2=b 2+c 2,得a 2=4,b 2=1,(4分) 故椭圆C 的标准方程为x 24+y 2=1.(5分)(2) 由题意设l AP :y =k(x +2),-12<k<0,所以C(0,2k),由⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1,消去y 得(1+4k 2)x 2+16k 2x +16k 2-4=0,所以x A x P =16k 2-41+4k 2,由x A =-2得x P =2-8k 21+4k 2,故y P =k(x P +2)=4k 1+4k 2, 所以P ⎝ ⎛⎭⎪⎫2-8k 21+4k 2,4k 1+4k 2,(8分)设D(x 0,0),因为B(0,1),P ,B ,D 三点共线,所以k BD =k PB ,故1-x 0=4k1+4k 2-12-8k 21+4k 2,解得x D=2(1+2k )1-2k ,得D ⎝⎛⎭⎪⎫2(1+2k )1-2k ,0,(10分)所以S △PCD =S △PAD -S △CAD =12×AD ×|y P -y C |=12⎣⎢⎡⎦⎥⎤2(1+2k )1-2k +2⎪⎪⎪⎪4k 1+4k2-2k =4|k (1+2k )|1+4k 2,(12分)因为-12<k<0,所以S △PCD =-8k 2-4k 1+4k 2=-2+2×1-2k 1+4k 2,令t =1-2k ,1<t<2,所以2k =1-t ,所以g(t)=-2+2t 1+(1-t )2=-2+2t t 2-2t +2=-2+2t +2t -2≤-2+222-2=2-1,(14分) 当且仅当t =2时取等号,此时k =1-22,所以△PCD 面积的最大值为2-1.(16分)19. (1) 由f(x)=e x -12x 2-x ,则f′(x)=e x -x -1,令g(x)=f′(x),则g′(x)=e x -1,(3分)当x>0时,g′(x)>0,则f′(x)在(0,+∞)上单调递增, 故f′(x)>f′(0)=0,所以f(x)在(0,+∞)上单调递增,(5分)进而f(x)>f(0)=1>0,即对任意x>0,都有f(x)>0.(6分) (2) f′(x)=e x -ax -a ,因为x 1,x 2为f(x)的两个极值点,所以⎩⎪⎨⎪⎧f′(x 1)=0,f′(x 2)=0,即⎩⎪⎨⎪⎧e x 1-ax 1-a =0,e x 2-ax 2-a =0.两式相减,得a =e x 1-e x 2x 1-x 2,(8分)则所证不等式等价于x 1+x 22<ln e x 1-e x 2x 1-x 2,即e x 1+x22<e x 1-e x 2x 1-x 2,(10分)不妨设x 1>x 2,两边同时除以e x 2可得:ex 1-x 22<e x 1-x 2-1x 1-x 2,(12分)令t =x 1-x 2,t>0,所证不等式只需证明:e t 2<e t -1t ⇔t e t2-e t +1<0.(14分)设φ(t)=t e t2-e t+1,则φ′(t)=-e t 2·⎣⎡⎦⎤e t2-⎝⎛⎭⎫t 2+1,因为e x ≥x +1,令x =t 2, 可得e t 2-⎝⎛⎭⎫t 2+1≥0,所以φ′(t)≤0,所以φ(t)在(0,+∞)上单调递减,φ(t)<φ(0)=0, 所以x 1+x 22<ln a .(16分)20. (1) 因为2a 1a 3=a 4,所以2a 1·a 1q 2=a 1q 3, 所以a 1=q 2,所以a n =q 2q n -1=12q n .(2分)因为2T n =n(b n -1),n ∈N *,①所以2T n +1=(n +1)(b n +1-1),n ∈N ,②②-①,得2T n +1-2T n =(n +1)b n +1-nb n -(n +1)+n ,n ∈N *, 所以2b n +1=(n +1)b n +1-nb n -(n +1)+n , 所以(n -1)b n +1=nb n +1,n ∈N *,③(4分)所以nb n +2=(n +1)b n +1+1,n ∈N ,④④-③得nb n +2-(n -1)b n +1=(n +1)b n +1-nb n ,n ∈N *, 所以nb n +2+nb n =2nb n +1,n ∈N *,所以b n +2+b n =2b n +1, 所以b n +2-b n +1=b n +1-b n ,所以{b n }为等差数列. 因为n =1时b 1=-1,又b 2=1, 所以公差为2,所以b n =2n -3.(6分)(2) 由(1)得S n =q 2(1-q n )1-q ,所以S n +12t =q 2(1-q n )1-q +12t =q n +t 2(q -1)+q 2(1-q )+12t ,要使得⎩⎨⎧⎭⎬⎫S n +12t 为等比数列,则通项必须满足指数型函数,即q 2(1-q )+12t=0,解得t =q -1q .(9分)此时S n +1+12t S n +12t =q n +22(q -1)q n +12(q -1)=q , 所以存在t =q -1q ,使得⎩⎨⎧⎭⎬⎫S n +12t 为等比数列.(10分)(3) c n =1b n +4=12n +1,设对于任意给定的正整数k (k ≥2),存在正整数l ,m (k <l <m ),使得c k ,c l ,c m 成等差数列,所以2c l =c k +c m ,所以22l +1=12k +1+12m +1.所以12m +1=22l +1-12k +1=4k -2l +1(2l +1)(2k +1).所以m =2kl -k +2l4k -2l +1=(-4k +2l -1)(k +1)+(2k +1)24k -2l +1=-k -1+(2k +1)24k -2l +1.所以m +k +1=(2k +1)24k -2l +1.因为给定正整数k (k ≥2),所以4k -2l +1能整除(2k +1)2且4k -2l +1>0, 所以4k -2l +1=1或2k +1或(2k +1)2.(14分)若4k -2l +1=1,则l =2k ,m =4k 2+3k ,此时m -l =4k 2+k >0,满足(k <l <m ); 若4k -2l +1=2k +1,则k =l ,矛盾(舍去);若4k -2l +1=(2k +1)2,则l =2k 2,此时m +k =0(舍去). 综上,任意给定的正整数k (k ≥2),存在正整数l =2k ,m =4k 2+3k ,使得c k ,c l ,c m 成等差数列.(16分)江苏省无锡市2019届高三第一次模拟考试数学附加题参考答案及评分标准21. 因为A =⎣⎢⎡⎦⎥⎤0-110,所以⎣⎢⎡⎦⎥⎤a b 12⎣⎢⎡⎦⎥⎤0-110=⎣⎢⎡⎦⎥⎤34cd ,得⎩⎪⎨⎪⎧b =3,-a =4,2=c ,-1=d ,(6分)即a =-4,b =3,c =2,d =-1,(8分) 所以ad -bc =(-4)×(-1)-2×3=-2.(10分)22. 以极点O 为直角坐标原点,以极轴为x 轴的正半轴,建立直角坐标系,设P(ρ,θ),M(ρ′,θ), 因为OM·OP =12,所以ρρ′=12. 因为ρ′cos θ=3,所以12ρcos θ=3,即ρ=4cos θ,(3分)化为直角坐标方程为x 2+y 2-4x =0, 即(x -2)2+y 2=4.(5分)由⎩⎨⎧x =-1+22t ,y =2+22t (t 为参数)得普通方程为x -y +3=0,(7分)所以PQ 的最小值为圆上的点到直线距离的最小值, 即PQ min =d -r =|2-0+3|2-2=522-2.(10分)23. (1) 由题意得(x -2)2+y 2-|x +1|=1,(2分) 即(x -2)2+y 2=|x +1|+1.因为x>0,所以x +1>0, 所以(x -2)2+y 2=x +2,两边平方,整理得曲线C 的方程为y 2=8x.(4分)设A(x 1,y 1),B(x 2,y 2),联立⎩⎪⎨⎪⎧y 2=8x ,y =kx +2,得k 2x 2+(4k 2-8)x +4k 2=0,所以x 1x 2=4.(6分) 由k FA +k FB =y 1x 1-2+y 2x 2-2=k (x 1+2)x 1-2+k (x 2+2)x 2-2=k (x 1+2)(x 2-2)+k (x 1-2)(x 2+2)(x 1-2)(x 2-2)=2k (x 1x 2-4)(x 1-2)(x 2-2).(8分)将x 1x 2=4代入,得k FA +k FB =0,所以直线FA 和直线FB 的倾斜角互补.(10分)24. (1) 因为n ≥2,由1a n -1=2-a n -1a n -1-1, 得1a n -1=1-a n -1a n -1-1+1a n -1-1, 所以1a n -1-1a n -1-1=-1,(1分) 所以⎩⎨⎧⎭⎬⎫1a n -1是首项为-3,公差为-1的等差数列,且1a n -1=-n -2,所以a n =n +1n +2.(3分) (2) 下面用数学归纳法证明:S n <n -ln ⎣⎡⎦⎤n +32+12. ①当n =1时,左边=S 1=a 1=23,右边=32-ln 2, 因为e 3>16⇔3ln e >4ln 2⇔ln 2<34, 32-ln 2>32-34=34>23, 所以命题成立;(5分)②假设当n =k(k ≥1,k ∈N *)时成立,即S k <k -ln k +32+12, 则当n =k +1,S k +1=S k +a k +1<k -ln k +32+12+k +2k +3, 要证S k +1<(k +1)-ln (k +1)+32+12, 只要证k -ln k +32+12+k +2k +3<(k +1)-ln (k +1)+32+12, 只要证ln k +4k +3<1k +3,即证ln ⎝⎛⎭⎫1+1k +3<1k +3.(8分) 考查函数F (x )=ln(1+x )-x (x >0),因为x >0,所以F ′(x )=11+x -1=-x 1+x<0, 所以函数F (x )在(0,+∞)上为减函数,所以F (x )<F (0)=0,即ln(1+x )<x ,所以ln ⎝⎛⎭⎫1+1k +3<1k +3,也就是说,当n =k +1时命题也成立.综上所述,S n <n -ln n +32+12.(10分)。

2019届江苏无锡市高三上期中数学试卷【含答案及解析】

2019届江苏无锡市高三上期中数学试卷【含答案及解析】

2019届江苏无锡市高三上期中数学试卷【含答案及解析】姓名____________ 班级________________ 分数 ___________题号-二二总分得分、填空题1. 命题"若In a > Ini ,贝V a > b"是_____________________ 命题(填"真"或“假")2. 某工厂生产甲、乙、丙、丁4类产品共计1200件,已知甲、乙、丙、丁4类产品的数量之比为1: 2: 4: 5,现要用分层抽样在方法从中抽取60件,则乙类产品抽取的件数为_______________ .3. 函数+ J匸;的定义域为______________________________ .4. 已知集合川={1.2、丘={e&},若,贝V 畀 ____________________5. 执行如图所示的流程图,则输出.V的应为______________________ .6. 若复数[ER),则x+r= ______________________________________________ •7. 已知盒中有3张分别标有1, 2, 3的卡片,从中随机地抽取一张,记下数字后再放回,再随机地抽取一张,记下数字,则两次抽得的数字之和为3的倍数的概率为_______________8. 已知向量占b满足口= 2、b卜L卩-2b = 2,则石与由的夹角为9. 已知•,满足-… ,若的最大值为…,最小值为•,1启J且-讨+ m = 0 ,贝V实数灯的值为_________________ .10. 已知/ (r v) = *一?,若/ (<^)= 7 ,贝V sin a -__________________ .11. 若函数y = ]'■ _,在区间(-2.2)上有两个零点,则实数的取值范围为___________ .12. 设数列厲、的前-项和为、,已知I | ,贝V■---- ----------------------- .13. 已知正实数口上满足口+站=7,贝V —+—的最小值为_______________________________ .1 + rt 2+ b14. 已知正实数父F满足—即一卩11"十111卜,则“三_________________________ .二、解答题15. 已知三点「:l:i'',为平面,「,上的一点,忘且■■- ' - ■'•、•(1)求;(2 )求.的值•16. 如图,在正方体「「;一.・中,「为棱,■门的中点•求证:(1),平面,:;(2)平面瓷乂;J平面.17. 在_ W 中,角.:o'(所对的边分别为「..:;:..匸,已知,1 - ;. I . .(1)求.;(2 )若• .•,求.’.418. 某工厂第一季度某产品月生产量依次为10万件,12万件,13万件,为了预测以后每个月的产量,以这3个月的产量为依据,用一个函数模拟该产品的月产量,(单位:万件)与月份黑的关系•模拟函数,1 ,-■-—:;模拟函数,:r .+x *(1)已知4月份的产量为万件,问选用哪个函数作为模拟函数好?(2)受工厂设备的影响,全年的每月产量都不超过15万件,请选用合适的模拟函数预测6月份的产量.19. 已知正项数列;一- 一为等比数列,等差数列.一的前•项和为•且满足:.s,.二]m. _$.二二i_f:;二:二用二匚.(1)求数列;.:「;,打:的通项公式;(2 )设. ■: ■ I ,求°;(3 )设问是否存在正整数■,使得20. 已知函数#(町=里叮的定义域为(町为/(.V)的导函数.(1)求方程-「I I.的解集;(2)求函数的最大值与最小值;(3 )若函数」「--.在定义域上恰有2个极值点,求实数;的取值范围参考答案及解析第1题【答案】*【解析】试题分析:因为函数T山、是单调递增函数,故由111 rr > In!?可得a>b,故应埴答案真* 考点:命题頁假盼症.第2题【答案】110【解析】试题井析;由题设乙类产品抽取的件数为一畑=10,故应埴答累10・第3题【答案】【解析】试题分析:由题设可得{;[:鳥niSQ 我应填答案卜打第4题【答案】【解析】则灯=-1,又扌丘E,则*,故益第5题【答案】2【解析】试题井析:^/=LW = 2时,l,i = 2<4 ;当2 2,M・T时,M =丄」=3c4 j当2I 3. Af =—时,,V/=2.F —4"4 .故应埴答案2 -第6题【答案】【解析】试题分析:因为2 +>工0,所Wr-l+(^+l)i = 0,故工=Ly】,则x r•壬0,故应填答案Q • 第7题【答案】3【解析】试题分折:抽取的所有能育aJ).(L2)X13)X2^(2,l),(2k3),(33)X3J).(3.2)共九种,其中(L2K[2J).(3J)的数字之和都是?的倍数'所以两次抽得的数字之和为3的倍数的概率为尸二彳二扌 ,故应埴答秦£ .第8题【答案】1201【解析】试题分析;因为(口-2莎二12,即4 -4「屛4二12 ,也即e 5 F x -占,所以方与&的夹角为120 "故应埴答案120, ■第9题【答案】【解析】V X试题分析両出不等式组=X + .v £2表示的区域如團,结合图形可以看出当动直线V = -3x 4 -经过点x afa畑口)和Jf(lQ时,r = 3r+ v分别取最小值m = 4a和最大值旳二4 ,由题设可得肋+ 4 = 0 ,所以"-】,故应埴答案7・y^-3x+z第10题【答案】9 【解析】试题分析:宙题诰可得込(,勺二扛即心壬-強兰二匹,24 3 2 2 3第11题【答案】[0.2^11)2) 【解析】试题分析:由题设可知函数;与函数yr —c + inH 衽给定的区间(-2切和区间(0.2)內分[-Z7 < 0另惰一个根」结合團象可得'4- ^>0(2 - fl 41112 > 0[0.2 + 1112).第12题【答案】-2 【解析】试题分析:宙题设4第二如一滸+ 7丹0「V J 可得4®_] = 2%・(科・l)3+7(n ・1),将以上两式 两边相减可得4偽=2场-址t 一力+ 1 + 7=-««_! -H + 4,所£Jg +%I =-并+耳,又因再听=3 "所以® =-3-2 + 4 = -1,故①=1-2-4 = 3,依次可推得即二一2 "应填答案7・第13题【答案】,故应埴答案-扌■■zi> 0 即^<4「所以Q"di2,故应填答案玄 < 241112山4朽14 【解析】扁分析:因为丄*丄竺丄2 + 1)+贺2切](H-tJ 2 +右 1*3 J3 + 4VJ13第14题【答案】【解析】试趣分析:由題设可得血町=7+ 2.V-2 M 亦7 (当且仅当x = 4y 时取等号),即 ln^>2j^-2,也即如厂= I lnxy - 2^/xy - 2第15题【答案】(1)4 5 (2)久十出=7 .【解析】试i 题分析:(l)ffBJ ]题设条件运用向量的数量积公式束解;⑵借助题设运用向量的坐标形式运尊建立方 程组探求.(1)因为 A£=(2J ),JC =(L2) ......................................................................................... 2分丄+丄-)二丄[13 +*切1+c 2+ b 14a + 149 T) 2 + 6x = 2 1 ,所以存二於,故应填答案血所決石应= 2 + 2 =4................................................................. 4分<2)因h AP*AB= 0 ,所叹e丄石・因为AB=(2J);设= 』............................... 6分因为AP^AC = Z所以(k加卜(L7)=工占—= T , ............................................................................... 盼^ = (-U) 、Eft>jC=(l,2),所^(-12) = 4(il)4^(1.2)................................................................................ 1盼-1 =2x + 1所以H m ,则A+^=~ .......................................................... 14井Z ™ A | —卫J第16题【答案】(D证明见解析;(2)证明见解析.【解析】试题分折:⑴借朋题设条件运用线面平行的判定定理推证J⑵僭助题设运用面面垂直的利定定理推证试题解折:E为DR的中点,所^EOi/BD}勺。

江苏省无锡市2019届高三第一次模拟考试数学试卷(带答案)

江苏省无锡市2019届高三第一次模拟考试数学试卷(带答案)

江苏省无锡市2019届高三第一次模拟考试数 学注意事项:1.本试卷共160分,考试时间120分钟.2.答题前,考生务必将自己的学校、班级、姓名写在密封线内. 一、填空题:本大题共14小题,每小题5分,共70分. 1.设集合A ={x |x >0},B ={x |-2<x <1},则A ∩B =________.2.设复数z 满足(1+i)z =1-3i(其中i 是虚数单位),则z 的实部为________.3.有A ,B ,C 三所学校,学生人数的比例为3∶4∶5,现用分层抽样的方法招募n 名志愿者,若在A 学校恰好选出9名志愿者,那么n =________.4.史上常有赛马论英雄的记载,田忌欲与齐王赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,则田忌的马获胜的概率为________.5.执行如图所示的伪代码,则输出x 的值为________.6.已知x ,y 满足约束条件⎩⎨⎧x -y +1≥0,2x -y ≤0,x ≥0,则z =x +y 的取值范围是________.7.在四边形ABCD 中,已知AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a ,b 是不共线的向量,则四边形ABCD 的形状是________.8.以双曲线x 25-y 24=1的右焦点为焦点的抛物线的标准方程是________.9.已知一个圆锥的轴截面是等边三角形,侧面积为6π,则该圆锥的体积等于________.10.设公差不为零的等差数列{a n }满足a 3=7,且a 1-1,a 2-1,a 4-1成等比数列,则a 10=________.11.已知θ是第四象限角,则cos θ=45,那么sin ⎝⎛⎭⎫θ+π4cos (2θ-6π)的值为________.12.已知直线y =a (x +2)(a >0)与函数y =|cos x |的图象恰有四个公共点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),其中x 1<x 2<x 3<x 4,则x 4+1tan x 4=________.13.已知点P 在圆M :(x -a )2+(y -a +2)2=1上,A ,B 为圆C :x 2+(y -4)2=4上两动点,且AB =23,则P A →·PB →的最小值是________.14.在锐角三角形ABC 中,已知2sin 2A +sin 2B =2sin 2C ,则1tan A +1tan B +1tan C的最小值为________.二、解答题:本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分14分)在△ABC 中,设a ,b ,c 分别是角A ,B ,C 的对边,已知向量m =(a ,sin C -sin B ),n =(b +c ,sin A +sin B ),且m ∥n .(1) 求角C 的大小;(2) 若c =3,求△ABC 周长的取值范围.16.(本小题满分14分)在四棱锥P ABCD 中,锐角三角形P AD 所在平面垂直于平面P AB ,AB ⊥AD ,AB ⊥BC .(1) 求证:BC ∥平面P AD ;(2) 求证:平面P AD ⊥平面ABCD .(第16题)17.(本小题满分14分)十九大提出对农村要坚持精准扶贫,至2020年底全面脱贫.现有扶贫工作组到某山区贫困村实施脱贫工作,经摸底排查,该村现有贫困农户100家,他们均从事水果种植,2017年底该村平均每户年纯收入为1万元,扶贫工作组一方面请有关专家对水果进行品种改良,提高产量;另一方面,抽出部分农户从事水果包装、销售工作,其人数必须小于种植的人数.从2018年初开始,若该村抽出5x 户(x ∈Z ,1≤x ≤9)从事水果包装、销售.经测算,剩下从事水果种植农户的年纯收入每户平均比上一年提高x20,而从事包装、销售农户的年纯收入每户平均为⎝⎛⎭⎫3-14x 万元.(参考数据:1.13=1.331,1.153≈1.521,1.23=1.728) (1) 至2020年底,为使从事水果种植农户能实现脱贫(每户年均纯收入不低于1万6千元),至少抽出多少户从事包装、销售工作?(2) 至2018年底,该村每户年均纯收入能否达到1.35万元?若能,请求出从事包装、销售的户数;若不能,请说明理由.18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点⎝⎛⎭⎫3,12,点P 在第四象限,A 为左顶点,B 为上顶点,P A 交y 轴于点C ,PB 交x 轴于点D .(1) 求椭圆C 的标准方程; (2) 求△PCD 面积的最大值.(第18题)19.(本小题满分16分)已知函数f(x)=e x -a2x 2-ax(a>0).(1) 当a =1时,求证:对于任意x>0,都有f(x)>0成立;(2) 若y =f(x)恰好在x =x 1和x =x 2两处取得极值,求证:x 1+x 22<ln a.20.(本小题满分16分)设等比数列{a n }的公比为q(q>0,q ≠1),前n 项和为S n ,且2a 1a 3=a 4,数列{b n }的前n 项和T n 满足2T n =n(b n -1),n ∈N *,b 2=1.(1) 求数列{a n },{b n }的通项公式;(2) 是否存在常数t ,使得⎩⎨⎧⎭⎬⎫S n +12t 为等比数列?请说明理由;(3) 设c n =1b n +4,对于任意给定的正整数k (k ≥2),是否存在正整数l ,m (k <l <m ),使得c k ,c l ,c m 成等差数列?若存在,求出l ,m (用k 表示);若不存在,请说明理由.江苏省无锡市2019届高三第一次模拟考试数学附加题注意事项:1.附加题供选修物理的考生使用.2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的学校、班级、姓名写在密封线内. 说明:解答时应写出必要的文字说明、证明过程或演算步骤. 21.(本小题满分10分)选修4-2:矩阵与变换设旋转变换矩阵A =⎣⎢⎡⎦⎥⎤0-11 0,若⎣⎢⎡⎦⎥⎤a b 1 2·A =⎣⎢⎡⎦⎥⎤3 4c d ,求ad -bc 的值.22.(本小题满分10分)选修4-4: 坐标系与参数方程自极点O 作射线与直线ρcos θ=3相交于点M ,在OM 上取一点P ,使OM·OP =12,若Q 为曲线⎩⎨⎧x =-1+22t ,y =2+22t(t 为参数)上一点,求PQ 的最小值.23.(本小题满分10分)在平面直角坐标系xOy 中,曲线C 上的动点M(x ,y)(x>0)到点F(2,0)的距离减去M 到直线x =-1的距离等于1.(1) 求曲线C 的方程;(2) 若直线y =k(x +2)与曲线C 交于A ,B 两点,求证:直线FA 与直线FB 的倾斜角互补.24.(本小题满分10分)已知数列{a n }满足a 1=23,1a n -1=2-a n -1a n -1-1(n ≥2).(1) 求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,用数学归纳法证明:S n <n +12-ln .江苏省无锡市2019届高三第一次模拟考试数学参考答案及评分标准1.{x|0<x<1}2.-13.364.135.256.[0,3]7.梯形8.y 2=12x9.3π 10.21 11.5214 12.-2 13.19-122 14.13215.(1) 由m ∥n 及m =(a ,sin C -sin B ),n =(b +c ,sin A +sin B ), 得a (sin A +sin B )-(b +c )(sin C -sin B )=0,(2分)由正弦定理,得a ⎝⎛⎭⎫a 2R +b 2R -(b +c )⎝⎛⎭⎫c 2R -b2R =0, 所以a 2+ab -(c 2-b 2)=0,得c 2=a 2+b 2+ab , 由余弦定理,得c 2=a 2+b 2-2ab cos C , 所以a 2+b 2+ab =a 2+b 2-2ab cos C , 所以ab =-2ab cos C ,(5分)因为ab >0,所以cos C =-12,又因为C ∈(0,π),所以C =2π3.(7分)(2) 在△ABC 中,由余弦定理,得c 2=a 2+b 2-2ab cos C ,所以a 2+b 2-2ab cos 2π3=9,即(a +b )2-ab =9,(9分)所以ab =(a +b )2-9≤⎝⎛⎭⎫a +b 22,所以3(a +b )24≤9,即(a +b )2≤12,所以a +b ≤23,(12分)又因为a +b >c ,所以6<a +b +c ≤23+3,即周长l 满足6<l ≤3+23, 所以△ABC 周长的取值范围是(6,3+23].(14分)16.(1) 因为AB ⊥AD ,AB ⊥BC ,且A ,B ,C ,D 共面, 所以AD ∥BC.(3分)(第16题)因为BC ⊄平面PAD ,AD ⊂平面PAD , 所以BC ∥平面PAD.(5分)(2) 如图,过点D 作DH ⊥PA 于点H ,因为△PAD 是锐角三角形,所以H 与A 不重合.(7分)因为平面PAD ⊥平面PAB ,平面PAD ∩平面PAB =PA ,DH ⊂平面PAD , 所以DH ⊥平面PAD.(9分)因为AB ⊂平面PAB ,所以DH ⊥AB.(11分)因为AB ⊥AD ,AD ∩DH =D ,AD ,DH ⊂平面PAD , 所以AB ⊥平面PAD.因为AB ⊂平面ABCD ,所以平面PAD ⊥平面ABCD.(14分)17.(1) 由题意得1×⎝⎛⎭⎫1+x 203≥1.6,因为5x<100-5x ,所以x<10且x ∈Z .(2分)因为y =⎝⎛⎭⎫1+x 203在x ∈[1,9]上单调递增,由数据知,1.153≈1.521<1.6,1.23=1.728>1.6,所以x20≥0.2,得x ≥4.(5分)又x <10且x ∈Z ,故x =4,5,6,7,8,9. 答:至少抽取20户从事包装、销售工作.(7分)(2) 假设该村户均纯收入能达到1.35万元,由题意得,不等式1100[5x ⎝⎛⎭⎫3-14x +⎝⎛⎭⎫1+x 20(100-5x )]≥1.35有正整数解,(8分)化简整理得3x 2-30x +70≤0,(10分)所以-153≤x -5≤153.(11分)因为3<15<4,且x ∈Z ,所以-1≤x -5≤1,即4≤x ≤6. (13分)答:至2018年底,该村户均纯收入能达到1万3千5百元,此时从事包装、销售的农户数为20户,25户,30户.(14分)18.(1) 由题意得⎩⎨⎧3a 2+14b2=1,c a =32,a 2=b 2+c 2,得a 2=4,b 2=1,(4分) 故椭圆C 的标准方程为x 24+y 2=1.(5分)(2) 由题意设l AP :y =k(x +2),-12<k<0,所以C(0,2k),由⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1,消去y 得(1+4k 2)x 2+16k 2x +16k 2-4=0,所以x A x P =16k2-41+4k 2,由x A =-2得x P =2-8k 21+4k 2,故y P =k(x P +2)=4k1+4k 2, 所以P ⎝ ⎛⎭⎪⎫2-8k 21+4k 2,4k 1+4k 2,(8分)设D(x 0,0),因为B(0,1),P ,B ,D 三点共线,所以k BD =k PB ,故1-x 0=4k1+4k 2-12-8k 21+4k 2,解得x D =2(1+2k )1-2k,得D ⎝ ⎛⎭⎪⎫2(1+2k )1-2k ,0,(10分)所以S △PCD =S △PAD -S △CAD =12×AD ×|y P -y C |=12⎣⎢⎡⎦⎥⎤2(1+2k )1-2k +2⎪⎪⎪⎪4k 1+4k 2-2k =4|k (1+2k )|1+4k 2,(12分)因为-12<k<0,所以S △PCD =-8k 2-4k 1+4k 2=-2+2×1-2k 1+4k 2,令t =1-2k ,1<t<2,所以2k =1-t ,所以g(t)=-2+2t 1+(1-t )2=-2+2t t 2-2t +2=-2+2t +2t-2≤-2+222-2=2-1,(14分)当且仅当t =2时取等号,此时k =1-22,所以△PCD 面积的最大值为2-1.(16分)19.(1) 由f(x)=e x -12x 2-x ,则f′(x)=e x -x -1,令g(x)=f′(x),则g′(x)=e x -1,(3分)当x>0时,g′(x)>0,则f′(x)在(0,+∞)上单调递增, 故f′(x)>f′(0)=0,所以f(x)在(0,+∞)上单调递增,(5分) 进而f(x)>f(0)=1>0,即对任意x>0,都有f(x)>0.(6分) (2) f′(x)=e x -ax -a ,因为x 1,x 2为f(x)的两个极值点,所以⎩⎨⎧f′(x 1)=0,f′(x 2)=0,即⎩⎨⎧e x 1-ax 1-a =0,e x 2-ax 2-a =0.两式相减,得a =e x 1-e x 2x 1-x 2,(8分)则所证不等式等价于x 1+x 22<ln e x 1-e x 2x 1-x 2,即e x 1+x22<e x 1-e x 2x 1-x 2,(10分)不妨设x 1>x 2,两边同时除以e x 2可得:e x 1-x22<e x 1-x 2-1x 1-x 2,(12分)令t =x 1-x 2,t>0,所证不等式只需证明: e t 2<e t -1t⇔t e t 2-e t +1<0.(14分)设φ(t)=t e t 2-e t+1,则φ′(t)=-e t 2·⎣⎡⎦⎤e t2-⎝⎛⎭⎫t 2+1,因为e x ≥x +1,令x =t 2,可得e t2-⎝⎛⎭⎫t 2+1≥0,所以φ′(t)≤0,所以φ(t)在(0,+∞)上单调递减,φ(t)<φ(0)=0, 所以x 1+x 22<ln a .(16分)20.(1) 因为2a 1a 3=a 4,所以2a 1·a 1q 2=a 1q 3,所以a 1=q 2,所以a n =q 2q n -1=12q n .(2分)因为2T n =n(b n -1),n ∈N *,①所以2T n +1=(n +1)(b n +1-1),n ∈N ,②②-①,得2T n +1-2T n =(n +1)b n +1-nb n -(n +1)+n ,n ∈N *, 所以2b n +1=(n +1)b n +1-nb n -(n +1)+n , 所以(n -1)b n +1=nb n +1,n ∈N *,③(4分) 所以nb n +2=(n +1)b n +1+1,n ∈N ,④④-③得nb n +2-(n -1)b n +1=(n +1)b n +1-nb n ,n ∈N *, 所以nb n +2+nb n =2nb n +1,n ∈N *,所以b n +2+b n =2b n +1, 所以b n +2-b n +1=b n +1-b n ,所以{b n }为等差数列. 因为n =1时b 1=-1,又b 2=1, 所以公差为2,所以b n =2n -3.(6分)(2) 由(1)得S n =q 2(1-q n )1-q ,所以S n +12t =q2(1-q n )1-q+12t =q n +t 2(q -1)+q 2(1-q )+12t ,要使得⎩⎨⎧⎭⎬⎫S n +12t 为等比数列,则通项必须满足指数型函数,即q 2(1-q )+12t =0,解得t =q -1q .(9分)此时S n +1+12t S n +12t =q n +22(q -1)q n +12(q -1)=q , 所以存在t =q -1q ,使得⎩⎨⎧⎭⎬⎫S n +12t 为等比数列.(10分)(3) c n =1b n +4=12n +1,设对于任意给定的正整数k (k ≥2),存在正整数l ,m (k <l <m ),使得c k ,c l ,c m 成等差数列,所以2c l =c k +c m ,所以22l +1=12k +1+12m +1.所以12m +1=22l +1-12k +1=4k -2l +1(2l +1)(2k +1).所以m =2kl -k +2l4k -2l +1=(-4k +2l -1)(k +1)+(2k +1)24k -2l +1=-k -1+(2k +1)24k -2l +1.所以m +k +1=(2k +1)24k -2l +1.因为给定正整数k (k ≥2),所以4k -2l +1能整除(2k +1)2且4k -2l +1>0, 所以4k -2l +1=1或2k +1或(2k +1)2.(14分)若4k -2l +1=1,则l =2k ,m =4k 2+3k ,此时m -l =4k 2+k >0,满足(k <l <m ); 若4k -2l +1=2k +1,则k =l ,矛盾(舍去);若4k -2l +1=(2k +1)2,则l =2k 2,此时m +k =0(舍去).综上,任意给定的正整数k (k ≥2),存在正整数l =2k ,m =4k 2+3k ,使得c k ,c l ,c m 成等差数列.(16分)江苏省无锡市2019届高三第一次模拟考试数学附加题参考答案及评分标准21.因为A =⎣⎢⎡⎦⎥⎤0-110,所以⎣⎢⎡⎦⎥⎤a b 12⎣⎢⎡⎦⎥⎤0-110=⎣⎢⎡⎦⎥⎤34c d ,得⎩⎪⎨⎪⎧b =3,-a =4,2=c ,-1=d ,(6分) 即a =-4,b =3,c =2,d =-1,(8分)所以ad -bc =(-4)×(-1)-2×3=-2.(10分)22.以极点O 为直角坐标原点,以极轴为x 轴的正半轴,建立直角坐标系,设P(ρ,θ),M(ρ′,θ),因为OM·OP =12,所以ρρ′=12.因为ρ′cos θ=3,所以12ρcos θ=3,即ρ=4cos θ,(3分)化为直角坐标方程为x 2+y 2-4x =0, 即(x -2)2+y 2=4.(5分)由⎩⎨⎧x =-1+22t ,y =2+22t(t 为参数)得普通方程为x -y +3=0,(7分)所以PQ 的最小值为圆上的点到直线距离的最小值,即PQ min =d -r =|2-0+3|2-2=522-2.(10分)23.(1) 由题意得(x -2)2+y 2-|x +1|=1,(2分)即(x -2)2+y 2=|x +1|+1. 因为x>0,所以x +1>0,所以(x -2)2+y 2=x +2,两边平方,整理得曲线C 的方程为y 2=8x.(4分)设A(x 1,y 1),B(x 2,y 2),联立⎩⎨⎧y 2=8x ,y =kx +2,得k 2x 2+(4k 2-8)x +4k 2=0,所以x 1x 2=4.(6分)由k FA +k FB =y 1x 1-2+y 2x 2-2=k (x 1+2)x 1-2+k (x 2+2)x 2-2=k (x 1+2)(x 2-2)+k (x 1-2)(x 2+2)(x 1-2)(x 2-2)=2k (x 1x 2-4)(x 1-2)(x 2-2).(8分) 将x 1x 2=4代入,得k FA +k FB =0,所以直线FA 和直线FB 的倾斜角互补.(10分)24.(1) 因为n ≥2,由1a n -1=2-a n -1a n -1-1,得1a n -1=1-a n -1a n -1-1+1a n -1-1, 所以1a n -1-1a n -1-1=-1,(1分)所以⎩⎨⎧⎭⎬⎫1a n -1是首项为-3,公差为-1的等差数列,且1a n -1=-n -2,所以a n =n +1n +2.(3分) (2) 下面用数学归纳法证明:S n <n -ln⎣⎡⎦⎤n +32+12.①当n =1时,左边=S 1=a 1=23,右边=32-ln 2,因为e 3>16⇔3lne >4ln 2⇔ln 2<34,32-ln 2>32-34=34>23, 所以命题成立;(5分)②假设当n =k(k ≥1,k ∈N *)时成立,即S k <k -ln k +32+12,则当n =k +1,S k +1=S k +a k +1<k -ln k +32+12+k +2k +3,要证S k +1<(k +1)-ln (k +1)+32+12,只要证k -ln k +32+12+k +2k +3<(k +1)-ln (k +1)+32+12,只要证ln k +4k +3<1k +3,即证ln ⎝⎛⎭⎫1+1k +3<1k +3.(8分) 考查函数F (x )=ln(1+x )-x (x >0),因为x >0,所以F ′(x )=11+x -1=-x 1+x<0,所以函数F (x )在(0,+∞)上为减函数, 所以F (x )<F (0)=0,即ln(1+x )<x ,所以ln ⎝⎛⎭⎫1+1k +3<1k +3,也就是说,当n =k +1时命题也成立. 综上所述,S n <n -ln n +32+12.(10分)。

2019年无锡市高三数学上期中模拟试题带答案

2019年无锡市高三数学上期中模拟试题带答案

2019年无锡市高三数学上期中模拟试题带答案一、选择题1.数列{}n a 的前n 项和为21n S n n =++,()()1N*n n n b a n =-∈,则数列{}n b 的前50项和为( ) A .49B .50C .99D .1002.已知{}n a 为等差数列,若20191<-a a ,且数列{}n a 的前n 项和n S 有最大值,则n S 的最小正值为( ) A .1SB .19SC .20SD .37S3.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( )A .5B .25C D .4.已知等比数列{}n a 中,31174a a a =,数列{}n b 是等差数列,且77b a =,则59b b +=( ) A .2B .4C .16D .85.已知:0x >,0y >,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2- B .(][),42,-∞-+∞U C .()2,4-D .(][),24,-∞-⋃+∞6.已知等比数列{}n a 的各项均为正数,若3132312log log log 12a a a ++⋯+=,则67a a =( ) A .1B .3C .6D .97.已知ABC ∆的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为( ) A .34B .56C .78D .238.若a ,b ,c ,d∈R,则下列说法正确的是( ) A .若a >b ,c >d ,则ac >bd B .若a >b ,c >d ,则a+c >b+d C .若a >b >0,c >d >0,则c d a b> D .若a >b ,c >d ,则a ﹣c >b ﹣d9.如果等差数列{}n a 中,3a +4a +5a =12,那么1a +2a +…+7a =( ) A .14B .21C .28D .3510.已知数列{}n a 中,3=2a ,7=1a .若数列1{}na 为等差数列,则9=a ( ) A .12B .54C .45D .45-11.“中国剩余定理”又称“孙子定理”1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2019中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为( ) A .134B .135C .136D .13712.设{}n a 是首项为1a ,公差为-2的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则1a = ( ) A .8B .-8C .1D .-1二、填空题13.设等差数列{}n a 的前n 项和为n S ,12m S -=-,0m S =,13m S +=.其中*m N ∈且2m ≥,则m =______.14.已知实数,x y 满足102010x y x y x y ++≥⎧⎪-≥⎨⎪--≤⎩,则目标函数2z x y =+的最大值为____.15.已知等差数列{}n a 的前n 项n S 有最大值,且871a a <-,则当0n S <时n 的最小值为________.16.已知数列{}n a 的前n 项和为n S ,且221n S n n n N *=++∈,,求n a =.__________.17.已知数列{}n a 满足11a =,132n n a a +=+,则数列{}n a 的通项公式为________.18.已知三角形中,边上的高与边长相等,则的最大值是__________.19.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,已知,,a b c 成等比数列,且22a c ac bc -=-,则sin cb B的值为________. 20.已知实数,x y 满足240{220330x y x y x y -+≥+-≥--≤,,,则22x y +的取值范围是 .三、解答题21.已知等差数列{}n a 满足12231()()()2(1)n n a a a a a a n n +++++++=+L (*n N ∈). (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和n S . 22.若数列{}n a 的前n 项和n S 满足*231?(N )n n S a n =-∈,等差数列{}n b 满足113233b a b S ==+,.(1)求数列{}n a 、{}n b 的通项公式; (2)设3nn nb c a =,求数列{}n c 的前n 项和为n T . 23.已知向量113,sin cos 22x x a ⎛⎫+ ⎝=⎪ ⎪⎭v 与()1,b y =v 共线,设函数()y f x =. (1)求函数()f x 的最小正周期及最大值.(2)已知锐角ABC ∆的三个内角分别为,,A B C ,若有33f A π⎛⎫-= ⎪⎝⎭,边217,sin 7BC B ==,求ABC ∆的面积. 24.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c ,已知cos2A ﹣3cos (B+C )=1. (1)求角A 的大小; (2)若△ABC 的面积S=5,b=5,求sinBsinC 的值.25.D 为ABC V 的边BC 的中点.222AB AC AD ===.(1)求BC 的长;(2)若ACB ∠的平分线交AB 于E ,求ACE S V . 26.数列{}n a 对任意*n ∈N ,满足131,2n n a a a +=+=. (1)求数列{}n a 通项公式;(2)若13na nb n ⎛⎫=+ ⎪⎝⎭,求{}n b 的通项公式及前n 项和.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:当1n =时,113a S ==;当2n ≥时,()()()22111112n n n a S S n n n n n -⎡⎤=-=++--+-+=⎣⎦,把1n =代入上式可得123a =≠.综上可得3,1{2,2n n a n n ==≥.所以3,1{2,12,n n b n n n n n -==-≠为奇数且为偶数.数列{}n b 的前50项和为()()503235749224650S =--+++++++++L L ()()24349252503224922++=--⋅+⋅=.故A 正确.考点:1求数列的通项公式;2数列求和问题.2.D解析:D 【解析】 【分析】由已知条件判断出公差0d <,对20191<-a a 进行化简,运用等差数列的性质进行判断,求出结果. 【详解】已知{}n a 为等差数列,若20191<-a a ,则2019190a a a +<, 由数列{}n a 的前n 项和n S 有最大值,可得0d <,19193712029000,,0,370a a a a a S <=∴+<>>, 31208190a a a a ∴+=+<,380S <,则n S 的最小正值为37S 故选D 【点睛】本题考查了等差数列的性质运用,需要掌握等差数列的各公式并能熟练运用等差数列的性质进行解题,本题属于中档题,需要掌握解题方法.3.A解析:A 【解析】在ABC ∆中,1a =,045B ∠=,可得114522ABC S csin ∆=⨯⨯︒=,解得c =.由余弦定理可得:5b ===. 4.D解析:D 【解析】 【分析】利用等比数列性质求出a 7,然后利用等差数列的性质求解即可. 【详解】等比数列{a n }中,a 3a 11=4a 7,可得a 72=4a 7,解得a 7=4,且b 7=a 7, ∴b 7=4,数列{b n }是等差数列,则b 5+b 9=2b 7=8. 故选D . 【点睛】本题考查等差数列以及等比数列的通项公式以及简单性质的应用,考查计算能力.5.A解析:A 【解析】 【分析】若222x y m m +>+恒成立,则2x y +的最小值大于22m m +,利用均值定理及“1”的代换求得2x y +的最小值,进而求解即可. 【详解】 由题,因为211x y+=,0x >,0y >,所以()2142224448x y x y x y y x ⎛⎫++=+++≥+=+=⎪⎝⎭,当且仅当4x y y x =,即4x =,2y =时等号成立,因为222x y m m +>+恒成立,则228m m +<,即2280m m +-<,解得42m -<<, 故选:A 【点睛】本题考查均值不等式中“1”的代换的应用,考查利用均值定理求最值,考查不等式恒成立问题.6.D解析:D 【解析】 【分析】首先根据对数运算法则,可知()31212log ...12a a a =,再根据等比数列的性质可知()6121267.....a a a a a =,最后计算67a a 的值.【详解】由3132312log log log 12a a a +++=L ,可得31212log 12a a a =L ,进而可得()6121212673a a a a a ==L ,679a a ∴= .【点睛】本题考查了对数运算法则和等比数列性质,属于中档题型,意在考查转化与化归和计算能力.7.A解析:A 【解析】 【分析】设三角形的三边分别为,1,2(*)n n n n N ++∈,根据余弦定理求出最小角的余弦值,然后再由正弦定理求得最小角的余弦值,进而得到n 的值,于是可得最小角的余弦值. 【详解】由题意,设ABC ∆的三边长分别为,1,2(*)n n n n N ++∈,对应的三角分别为,,A B C , 由正弦定理得222sin sin sin 22sin cos n n n n A C A A A+++===, 所以2cos 2n A n+=. 又根据余弦定理的推论得222(2)(1)5cos 2(2)(1)2(2)n n n n A n n n +++-+==+++.所以2522(2)n n n n ++=+,解得4n =, 所以453cos 2(42)4A +==+,即最小角的余弦值为34. 故选A . 【点睛】解答本题的关键是求出三角形的三边,其中运用“算两次”的方法得到关于边长的方程,使得问题得以求解,考查正余弦定理的应用及变形、计算能力,属于基础题.8.B解析:B 【解析】 【分析】利用不等式的性质和通过举反例否定一个命题即可得出结果. 【详解】A 项,虽然41,12>->-,但是42->-不成立,所以不正确;B 项,利用不等式的同向可加性得知,其正确,所以成立,即B 正确;C 项,虽然320,210>>>>,但是3221>不成立,所以C 不正确; D 项,虽然41,23>>-,但是24>不成立,所以D 不正确; 故选B. 【点睛】该题考查的是有关正确命题的选择问题,涉及到的知识点有不等式的性质,对应的解题的方法是不正确的举出反例即可,属于简单题目.9.C解析:C 【解析】试题分析:等差数列{}n a 中,34544123124a a a a a ++=⇒=∴=,则()()174127477272822a a a a a a a +⨯+++====L考点:等差数列的前n 项和10.C解析:C 【解析】 【分析】由已知条件计算出等差数列的公差,然后再求出结果 【详解】依题意得:732,1a a ==,因为数列1{}na 为等差数列,所以7311111273738--===--a a d ,所以()9711159784a a =+-⨯=,所以945=a ,故选C .【点睛】本题考查了求等差数列基本量,只需结合题意先求出公差,然后再求出结果,较为基础11.B解析:B 【解析】 【分析】由题意得出1514n a n =-,求出15142019n a n =-≤,即可得出数列的项数. 【详解】因为能被3除余1且被5除余1的数就是能被15整除余1的数,故1514n a n =-.由15142019n a n =-≤得135n ≤,故此数列的项数为135,故答案为B.【点睛】本题主要考查阅读能力及建模能力、转化与化归思想及等差数列的通项公式及数学的转化与化归思想.属于中等题.12.D解析:D 【解析】 【分析】利用等差数列的通项公式,以及等比中项公式和前n 项和公式,准确运算,即可求解.【详解】由题意,可得等差数列{}n a 的通项公式为11(1)(2)2(1)n a a n a n =+-⨯-=--, 所以112141,22,412S a S a S a ==-=-,因为1S ,2S ,4S 成等比数列,可得2111(22)(412)a a a -=-,解得11a =-.故选:D . 【点睛】本题主要考查了等差数列通项公式,以及等比中项公式与求和公式的应用,其中解答中熟记等差数列的通项公式和等比中项公式,准确计算是解答的关键,着重考查了推理与计算能力,属于基础题.二、填空题13.5【解析】【分析】设等差数列的再由列出关于的方程组从而得到【详解】因为所以设因为所以故答案为:【点睛】本题考查等差数列前项和公式的灵活运用考查从函数的角度认识数列问题求解时要充分利用等差数列的前前项解析:5 【解析】 【分析】设等差数列的()n An n m S =-,再由12m S -=-,13m S +=,列出关于m 的方程组,从而得到m . 【详解】因为0m S =,所以设()n An n m S =-, 因为12m S -=-,13m S +=,所以(1)(1)2,125(1)13,13A m m m A m m -⋅-=-⎧-⇒=⇒=⎨+⋅=+⎩. 故答案为:5. 【点睛】本题考查等差数列前n 项和公式的灵活运用,考查从函数的角度认识数列问题,求解时要充分利用等差数列的前前n 项和公式必过原点这一隐含条件,从而使问题的计算量大大减少.14.5【解析】【分析】作出不等式组对应的平面区域利用数形结合即可得到z 的最大值【详解】作出实数xy 满足对应的平面区域如图:由z =2x+y 得y =﹣2x+z 平移直线y =﹣2x+z 由图象可知当直线y =﹣2x+解析:5 【解析】 【分析】作出不等式组对应的平面区域,利用数形结合即可得到z 的最大值. 【详解】作出实数x ,y 满足102010x y x y x y ++≥⎧⎪-≥⎨⎪--≤⎩对应的平面区域,如图:由z =2x +y 得y =﹣2x +z ,平移直线y =﹣2x +z 由图象可知当直线y =﹣2x +z 经过点A 时,直线y =﹣2x +z 的截距最大.又x 10y --=与20x y -=联立得A (2,1) 此时z 最大,此时z 的最大值为z =2×2+1=5, 故答案为5. 【点睛】本题主要考查线性规划的应用,考查了z 的几何意义,利用数形结合是解决本题的关键.15.14【解析】【分析】等差数列的前n 项和有最大值可知由知所以即可得出结论【详解】由等差数列的前n 项和有最大值可知再由知且又所以当时n 的最小值为14故答案为14【点睛】本题考查使的n 的最小值的求法是中档解析:14 【解析】 【分析】等差数列的前n 项和有最大值,可知0d <,由871a a <-,知1130a a +>,1150a a +<,1140a a +<,所以130S >,140S <,150S <,即可得出结论.【详解】由等差数列的前n 项和有最大值,可知0d <,再由871a a <-,知70a >,80a <,且780a a +<, 又711320a a a =+>,811520a a a =+<,781140a a a a +=+<, 所以130S >,140S <,150S <, 当<0n S 时n 的最小值为14, 故答案为14. 【点睛】本题考查使0n S <的n 的最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.16.【解析】分析:根据可以求出通项公式;判断与是否相等从而确定的表达式详解:根据递推公式可得由通项公式与求和公式的关系可得代入化简得经检验当时所以所以点睛:本题考查了利用递推公式求通项公式的方法关键是最解析:4,141,2n n a n n =⎧=⎨-≥⎩.【解析】分析:根据1n n n a S S -=-可以求出通项公式n a ;判断1S 与1a 是否相等,从而确定n a 的表达式。

无锡市第一中学2018—2019学年第一学期质量检测高三数学试卷

无锡市第一中学2018—2019学年第一学期质量检测高三数学试卷

无锡市第一中学2018—2019学年第一学期质量检测高三数学(理)参考公式:弧长||l r α=,其中r 为半径的长度,α是弧所对的圆心角的大小.一、填空题:本大题共14小题,每小题5分,共70分,请将正确答案直接填写在答题卡的相应位置.1.已知集合2{}A a =,{2,3}B =,且{3}A B =,则实数a 的值是 ▲ . 2.已知复数121iz i+=-,其中i 是虚数单位,则z 的实部是 ▲ . 3.为调查某区高中一年级学生每天用于课外阅读的时间,现从该区高中一年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100] (单位:分钟)上,其频率分布直方图如图所示,则估计该区高中一年级学生中每天用于阅读的时间在内的学生人数为 ▲ .4. “a b =”是“b a lg lg =”的 ▲ 条件.(填“充分不必要、必要不充分、充要或既不充分也不必要”中的一个) 5.函数()f x =的定义域为 ▲ .6.函数8ln ++-=x x y 的单调递增区间是 ▲ .7.如右图,是一个算法的流程图,则输出的n 的值是 ▲ .8.已知函数()(),0,1()4,02xg x x f x x >⎧⎪=⎨-<⎪⎩是奇函数,则()()3f g = ▲ . 9.设函数()f x 在R 上满足(4)()f x f x +=,且在区间(2,2]-上其函数解析式是(),20,1,02,x a x f x x x +-<≤⎧⎪=⎨-<≤⎪⎩其中a R ∈.若()()55f f -=,则()2f a = ▲ .10.已知定义在R 上的函数22,0,(),0,x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩ 若()()4f a f a +-<,则实数a 的取值范围是 ▲ .11.已知函数()21,()22xx f x g x m x x ⎛⎫==- ⎪++⎝⎭,若命题“[][]122,1,0,2x x ∃∈-∃∈使得()()12f x g x ≥成立”为假命题,则实数m 的取值范围为 ▲ .12.记定义在R 上的函数()y f x =的导函数为()f x ',若存在0[,]x a b ∈,使得()0()()()f b f a f x b a '-=-成立,则称0x 为函数()f x 在区间[,]a b 上的“中值点”.那么函数3()3f x x x =-在区间[2,2]-上的“中值点”所成的集合为 ▲ .13.已知函数()()2x x e af x a R e=-∈在区间[1,2]上单调递增,则实数a 的取值范围是▲ .14.已知函数323,0,(),0,x x t x f x x x ⎧-++<=⎨≥⎩t ∈R .若函数()(()1)g x f f x =-恰有4个不同的零点,则t 的取值范围为 ▲ .二、解答题:本大题共6小题,共90分,请将正确解答书写在答题卡的相应位置,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)设集合{}2ln(28),A x y x x x R ==--+∈,集合{}47,1321x B y y x x -+==≤≤-,集合{}1()(4)0,C x ax x x R a=-+≤∈.(1)求A B ;(2)若C ⊆C R A ,求实数a 的取值范围. 16.(本小题满分14分)若0a >,命题:p (0,1],30a x x x∃∈-+≥成立; 命题:q 函数()3221f x x ax a x =+-+在[1,1]-上单调递减.(1)若命题p 是真命题,求a 的取值范围; (2)是否存在整数a ,使得p q ∨为真命题;p q ∧为假命题,若存在,请求出a 的值;若不存在,请说明理由.已知函数()(1)x=--⋅(e为自然对数的底数, 2.71828f x x k ee≈,k∈R).(1)当0f x的单调区间和极值;x>时,求()(2)若对于任意[1,2]<成立,求k的取值范围.f x xx∈,都有()418.(本小题满分16分)如图,某大型水上乐园内有一块矩形场地ABCD,120AB=米,AD,为直径的半圆1O和半圆2O(半圆在矩形AD=米,以BC80ABCD内部)为两个半圆形水上主题乐园,,,BC CD DA都建有围墙,游客只能从线段AB处进出该主题乐园.为了进一步提高经济效益,水上乐园管理部门决定沿着AE、FB修建不锈钢护栏,沿着线段EF修建该主题乐园大门并设置检票口,其中,E F分别为AD BC上的动点,//,EF AB,且线段EF与线段AB在圆心1O和2O连线的同侧.已知弧线AE、FB部分的修建费用为200元/米,线段EF部分的平均修建费用为400元/米.(1)若80EF=米,则检票等候区域(图中阴影部分)面积为多少平方米?(2)试确定点E的位置,使得修建费用最低.已知函数()ln f x x =,函数(),,ng x mx m n R x=+?. (1)当1,1m n ==-时,① 求函数()()()h x f x g x =-在区间[,1]a a +上的最大值;② 已知不等式2()()f x kg x <对任意的(1,)x ??恒成立,求实数k 的范围.(2)已知对任意的*n N ∈,函数()()()F x f x g x =-在区间[1,2]上恒为单调递增函数, 求实数m 的取值范围. 20.(本小题满分16分) 设函数21()1ln 2f x ax x =--,其中a R ∈.(1)若0a =,求过点(0,1)-且与曲线()y f x =相切的直线方程; (2)若函数()f x 有两个零点1x ,2x , ① 求a 的取值范围;② 求证:12'()'()0f x f x +<.。

江苏省无锡市2019届高三上学期期中考试数学试题(解析版)

江苏省无锡市2019届高三上学期期中考试数学试题(解析版)

无锡市2019届高三上学期期中考试数学试题一、填空题1.已知全集,集合则【答案】{0,2,4}【解析】【分析】根据集合补集与并集的定义求结果.【详解】.【点睛】本题考查集合补集与并集概念,考查基本求解能力,属基础题.2.函数的定义域为_______.【答案】(-∞,2)【解析】【分析】根据分母不为零以及偶次根式下被开方数非负列不等式,解得结果.【详解】由题意得,即定义域为(-∞,2).【点睛】本题考查函数定义域,考查基本求解能力,属基础题.3.已知则实数【答案】【解析】【分析】根据指数与对数运算法则求解【详解】因为所以由得【点睛】本题考查指数与对数方程,考查基本求解能力,属基础题.4.设函数若则【答案】2【解析】【分析】根据关系求结果.【详解】因为,,所以,因为则【点睛】本题考查函数解析式,考查基本求解能力,属基础题.5.已知向量的夹角为,则的值为________.【答案】7【解析】【分析】根据向量数量积定义以及向量模的定义求结果.【详解】因为向量的夹角为,所以,因此【点睛】本题考查向量数量积以及向量模,考查基本求解能力,属基础题.6.若实数满足条件则的最大值为________.【答案】4【解析】【分析】先作可行域,再根据目标函数所表示的直线,结合图象确定最大值取法,即得结果.【详解】先作可行域,如图,则直线过点A(1,2)时取最大值4.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.7.已知定义在区间上的函数的最大值为4,最小值为,则【答案】-【解析】【分析】根据正弦函数性质确定最值取法,再解方程组得a,b,即得结果.【详解】因为,,所以,,从而【点睛】本题考查正弦函数性质,考查基本求解能力,属基础题.8.已知函数在上单调递增,则实数的取值范围为________.【答案】(0,1]【解析】【分析】根据分段函数单调性列不等式,解得结果.【详解】因为函数在上单调递增,所以【点睛】分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.9.已知则的值为_________.【答案】【解析】【分析】根据诱导公式以及二倍角公式化简求值.【详解】令,则,【点睛】本题考查诱导公式以及二倍角余弦公式,考查基本求解能力,属基础题.10.《九章算术》中研究盈不足问题时,有一道题是“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢?”题意即为“有厚墙五尺,两只老鼠从墙的两边分别打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半,问几天后两鼠相遇?” 荆州古城墙某处厚33尺,两硕鼠按上述方式打洞,相遇时是第____天.(用整数作答)【答案】6【解析】由题意得11.在中,点是线段上任意一点,是线段的中点,且,则【答案】-【解析】【分析】根据向量表示得,再根据向量分解唯一性得,即得结果.【详解】因为是线段的中点,所以,因为点是线段上任意一点,所以可设,从而因为,所以-【点睛】本题考查向量表示,考查基本求解能力,属基础题.12.设为正实数,且,则的最小值为________.【答案】27【解析】【分析】先根据条件解得x,再化简,最后利用基本不等式求最值.【详解】因为,所以因此当且仅当时取等号,即的最小值为27.【点睛】本题考查基本不等式求最值,考查基本分析求解能力,属中档题.13.定义为个正数的“均倒数”.若已知数列的前项的“均倒数”为又,则【答案】【解析】【分析】先根据定义得数列的前项的和,再根据和项与通项关系得,即得,最后根据裂项相减法求结果.【详解】因为数列的前项的“均倒数”为,所以,当时,作差得,因为,所以,,+=【点睛】裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如或.14.已知函数在上的零点为,函数在上的零点为则的范围为_________.【答案】(1,)【解析】【分析】先求,并确定范围,进而确定,最后利用导数求单调性,根据单调性确定取值范围.【详解】由得,因为,所以,因此,因为从而,因此,令,,则,所以(1,).【点睛】求范围或值域问题,一般利用条件转化为对应一元函数问题,即通过题意将多元问题转化为一元问题,再根据函数形式,选用方法求值域,如二次型利用对称轴与定义区间位置关系,分式型可以利用基本不等式,复杂性或复合型可以利用导数先研究单调性,再根据单调性确定值域.二、解答题15.已知(1)若与垂直,求实数的值;(2)三点构成三角形,求实数的取值范围.【答案】(1) k=-7 (2) (-∞,5)U(5,+∞)【解析】【分析】(1)根据向量垂直坐标表示列式,解得结果,(2)根据与不共线,列不等式,解得结果.【详解】(1)因为与垂直,所以,•=0,即(5,-5)•(-6,k+1)=0即:-30-5(k+1)=0,解得:k=-7(2)依题意,得A,B,C三点不共线,即与不共线,即5(k+1)≠30,解得:k≠5所以,实数的取值范围(-∞,5)U(5,+∞)【点睛】本题考查向量垂直与平行,考查基本求解能力,属基础题.16.在四棱锥中,已知分别是的中点,若是平行四边形,(1)求证:平面(2)若平面,求证:【答案】(1)见解析(2)见解析【解析】【分析】(1)取PA中点E,根据平几知识可得四边形BMNE为平行四边形,再根据线面平行判定定理得结论,(2)先根据线面垂直判定定理得AC⊥平面PAB,即得AC⊥BE,再根据平行关系得结果.【详解】(1)取PA中点E,连结BE,NE因为N为PD中点,所以,EN∥AD,且EN=AD,又M为BC中点,是平行四边形,所以BM∥AD,且BM=AD,所以,BM∥EN且BM=EN所以,四边形BMNE为平行四边形,所以,MN∥BE,而MN平面PAB,BE平面PAB所以,MN∥平面PAB。

2019年无锡市高一数学上期中模拟试题带答案

2019年无锡市高一数学上期中模拟试题带答案

2019年无锡市高一数学上期中模拟试题带答案一、选择题1.设集合{1,2,3,4}A =,{}1,0,2,3B =-,{|12}C x R x =∈-≤<,则()A B C =U IA .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}2.函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .3.三个数0.32,20.3,0.32log 的大小关系为( ).A .20.30.3log 20.32<< B .0.320.3log 220.3<<C .20.30.30.3log 22<<D .20.30.30.32log 2<<4.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-⋃+∞,, B .(1)(01)-∞-⋃,, C .(1)(1)-∞-⋃+∞,, D .(10)(01)-⋃,, 5.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L ( )A .50-B .0C .2D .506.已知定义域为R 的函数()f x 在[1,)+∞单调递增,且(1)f x +为偶函数,若(3)1f =,则不等式(21)1f x +<的解集为( ) A .(1,1)- B .(1,)-+∞ C .(,1)-∞D .(,1)(1,)-∞-+∞U7.设集合{1,2,3},{2,3,4}A B ==,则A B =UA .{}123,4,,B .{}123,,C .{}234,,D .{}134,, 8.已知定义在R 上的函数()f x 是奇函数且满足,3()(2)32f x f x f ⎛⎫-=-=-⎪⎝⎭,,数列{}n a 满足11a =-,且2n n S a n =+,(其中n S 为{}n a 的前n 项和).则()()56f a f a +=() A .3B .2-C .3-D .29.设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则( )A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭10.设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =I ( )A .3(3,)2--B .3(3,)2-C .3(1,)2D .3(,3)211.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( ) A .a c b >>B .a b c >>C .b a c >>D .c a b >>12.已知()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,则()2log 7f =( )A .7B .72C .74D .78二、填空题13.方程组2040x y x +=⎧⎨-=⎩的解组成的集合为_________.14.函数()f x 的定义域是__________.15.若函数()f x 满足()3298f x x +=+,则()f x 的解析式是_________.16.某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P 与店面经营天数x 的关系是P(x)=21300,0300245000,300x x x x ⎧-≤<⎪⎨⎪≥⎩则总利润最大时店面经营天数是___. 17.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 .18.已知函数()x xf x e e -=-,对任意的[3,3]k ∈-,(2)()0f kx f x -+<恒成立,则x的取值范围为______.19.已知函数1)4f x +=-,则()f x 的解析式为_________.20.有15人进家电超市,其中有9人买了电视,有7人买了电脑,两种均买了的有3人,则这两种都没买的有人.三、解答题21.已知函数()()221+0g x ax ax b a =-+>在区间[2,3]上有最大值4和最小值1.(1)求a 、b 的值; (2)设()()2g x f x x =-,若不等式()0f x k ->在x ∈(]2,5上恒成立,求实数k 的取值范围.22.已知函数2()(2)3f x x a x =+--.(1)若函数()f x 在[]2,4-上是单调函数,求实数a 的取值范围;(2)当5a =,[1,1]x ∈-时,不等式()24f x m x >+-恒成立,求实数m 的范围. 23.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后,y 与t 之间的函数关系式y =f(t);(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?24.2019年某开发区一家汽车生产企业计划引进一批新能源汽车制造设备,通过市场分析,全年需投入固定成本3000万元,每生产x (百辆),需另投入成本()f x 万元,且210200,050()100006019000,50x x x f x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每辆车售价6万元,且全年内生产的车辆当年能全部销售完.(1)求出2019年的利润()L x (万元)关于年产量x (百辆)的函数关系式;(利润=销售额-成本)(2)2019年产量为多少(百辆)时,企业所获利润最大?并求出最大利润. 25.设全集U=R ,集合A={x|1≤x <4},B={x|2a≤x <3-a}.(1)若a=-2,求B∩A ,B∩(∁U A);(2)若A∪B=A ,求实数a 的取值范围. 26.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P 与投入a (单位:万元)满足326P a =,乙城市收益Q 与投入b (单位:万元)满足124Q b =+,设甲城市的投入为x (单位:万元),两个城市的总收益为()f x (单位:万元).(1)当甲城市投资50万元时,求此时公司总收益;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B ⋃=-, 结合交集的定义可知:(){}1,0,1A B C ⋃⋂=-. 本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.2.C解析:C 【解析】 【分析】确定函数是奇函数,图象关于原点对称,x >0时,f (x )=log a x (0<a <1)是单调减函数,即可得出结论. 【详解】由题意,f (﹣x )=﹣f (x ),所以函数是奇函数,图象关于原点对称,排除B 、D ; x >0时,f (x )=log a x (0<a <1)是单调减函数,排除A . 故选C . 【点睛】本题考查函数的图象,考查函数的奇偶性、单调性,正确分析函数的性质是关键.3.A解析:A 【解析】 【分析】利用指数函数与对数函数的单调性即可得出. 【详解】∵0<0.32<1,20.3>1,log 0.32<0, ∴20.3>0.32>log 0.32. 故选A .【点睛】本题考查了指数函数与对数函数的单调性,属于基础题.4.D解析:D 【解析】由f (x )为奇函数可知,()()f x f x x--=()2f x x<0.而f (1)=0,则f (-1)=-f (1)=0. 当x >0时,f (x )<0=f (1); 当x <0时,f (x )>0=f (-1). 又∵f (x )在(0,+∞)上为增函数, ∴奇函数f (x )在(-∞,0)上为增函数. 所以0<x <1,或-1<x <0. 选D点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内5.C解析:C 【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 详解:因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=,因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++L , 因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=,(2)(2)(2)(2)0f f f f =-=-∴=Q ,从而(1)(2)(3)(50)(1)2f f f f f ++++==L ,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.6.A解析:A 【解析】 【分析】由函数y =f (x +1)是定义域为R 的偶函数,可知f (x )的对称轴x =1,再利用函数的单调性,即可求出不等式的解集. 【详解】由函数y =f (x +1)是定义域为R 的偶函数,可知f (x )的对称轴x =1,且在[1,+∞)上单调递增,所以不等式f (2x+1)<1=f (3)⇔ |2x+1﹣1|)<|3﹣1|, 即|2x |<2⇔|x |<1,解得-11x << 所以所求不等式的解集为:()1,1-. 故选A . 【点睛】本题考查了函数的平移及函数的奇偶性与单调性的应用,考查了含绝对值的不等式的求解,属于综合题.7.A解析:A 【解析】由题意{1,2,3,4}A B =U ,故选A. 点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.8.A解析:A 【解析】 由奇函数满足()32f x f x ⎛⎫-=⎪⎝⎭可知该函数是周期为3T =的奇函数, 由递推关系可得:112,21n n n n S a n S a n +-=+=+-, 两式做差有:1221n n n a a a -=--,即()()1121n n a a --=-, 即数列{}1n a -构成首项为112a -=-,公比为2q =的等比数列, 故:()1122,21n n n n a a --=-⨯∴=-+,综上有:()()()()()552131223f a f f f f =-+=-==--=,()()()()66216300f a f f f =-+=-==,则:()()563f a f a +=. 本题选择A 选项.9.C解析:C 【解析】 【分析】由已知函数为偶函数,把233231log ,2,24f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小. 【详解】()f x Q 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422---->==>>∴>>Q ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.10.D解析:D 【解析】试题分析:集合()(){}{}|130|13A x x x x x =--<=<<,集合,所以3|32A B x x ⎧⎫⋂=<<⎨⎬⎩⎭,故选D.考点:1、一元二次不等式;2、集合的运算.11.B解析:B 【解析】试题分析:根据指数函数和对数函数的单调性知:0.30771a =>=,即1a >;7000.30.31b <=<=,即01b <<;ln0.3ln10c =<=,即0c <;所以a b c >>,故正确答案为选项B .考点:指数函数和对数函数的单调性;间接比较法.12.C解析:C 【解析】 【分析】根据函数的周期性以及分段函数的表达式,结合对数的运算法则,代入即可得到结论. 【详解】2222log 4log 7log 83=<<=Q ,20log 721∴<-<,()()2log 72227log 7log 7224f f -∴=-==. 故选:C . 【点睛】本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性进行转化是解决本题的关键.二、填空题13.【解析】【分析】解方程组求出结果即可得答案【详解】由解得或代入解得或所以方程组的解组成的集合为故答案为【点睛】该题考查的是有关方程组解集的问题需要注意的问题是解是二维的再者就是需要写成集合的形式属于 解析:()(){}2,2,2,2--【解析】 【分析】 解方程组240x y x +=⎧⎨-=⎩,求出结果即可得答案. 【详解】由240x -=,解得2x =或2x =-,代入0x y +=, 解得22x y =⎧⎨=-⎩或22x y =-⎧⎨=⎩, 所以方程组240x y x +=⎧⎨-=⎩的解组成的集合为{}(2,2),(2,2)--, 故答案为{}(2,2),(2,2)--. 【点睛】该题考查的是有关方程组解集的问题,需要注意的问题是解是二维的,再者就是需要写成集合的形式,属于简单题目.14.【解析】由得所以所以原函数定义域为故答案为 解析:(],0-∞【解析】由120x -≥,得21x ≤,所以0x ≤,所以原函数定义域为(],0-∞,故答案为(],0-∞.15.【解析】【分析】设带入化简得到得到答案【详解】设代入得到故的解析式是故答案为:【点睛】本题考查了利用换元法求函数解析式属于常用方法需要学生熟练掌握解析:()32f x x =+【解析】 【分析】设32t x =+,带入化简得到()32f t t =+得到答案. 【详解】()3298f x x +=+,设32t x =+ 代入得到()32f t t =+故()f x 的解析式是() 32f x x =+ 故答案为:()32f x x =+ 【点睛】本题考查了利用换元法求函数解析式,属于常用方法,需要学生熟练掌握.16.200【解析】【分析】根据题意列出总利润L(x)的分段函数然后在各个部分算出最大值比较大小就能确定函数的最大值进而可求出总利润最大时对应的店面经营天数【详解】设总利润为L(x)则L(x)=则L(x)解析:200 【解析】 【分析】根据题意,列出总利润L(x)的分段函数,然后在各个部分算出最大值,比较大小,就能确定函数的最大值,进而可求出总利润最大时对应的店面经营天数. 【详解】 设总利润为L(x),则L(x)=2120010000,0300210035000,300x x x x x ⎧-+-≤<⎪⎨⎪-+≥⎩则L(x)=21(200)10000,0300210035000,300x x x x ⎧--+≤<⎪⎨⎪-+≥⎩当0≤x<300时,L(x)max =10000, 当x ≥300时,L(x)max =5000,所以总利润最大时店面经营天数是200. 【点睛】本题主要考查分段函数的实际应用,准确的写出各个部分的函数关系式是解决本题的关键.17.-8【解析】试题分析:设当且仅当时成立考点:函数单调性与最值解析:-8 【解析】 试题分析:2tan 1tan 1,42xx x ππ∴∴Q设2tan t x =()()()2221412222142248111t t t y t t t t -+-+∴==-=----≤-⨯-=----当且仅当2t =时成立考点:函数单调性与最值18.【解析】【分析】先判断函数的单调性和奇偶性根据单调性和奇偶性化简题目所给不等式利用一次函数的性质求得的取值范围【详解】由于故函数为奇函数而为上的增函数故由有所以即将主变量看成()表示一条直线在上纵坐解析:11,2⎛⎫- ⎪⎝⎭ 【解析】 【分析】先判断函数()f x 的单调性和奇偶性,根据单调性和奇偶性化简题目所给不等式,利用一次函数的性质,求得x 的取值范围. 【详解】由于()()f x f x -=-故函数为奇函数,而()1xxf x e e =-为R 上的增函数,故由(2)()0f kx f x -+<,有()()()2f kx f x f x -<-=-,所以2kx x -<-,即20xk x +-<,将主变量看成k ([3,3]k ∈-),表示一条直线在[]3,3-上纵坐标恒小于零,则有320320x x x x -+-<⎧⎨+-<⎩,解得112x -<<.所以填11,2⎛⎫- ⎪⎝⎭.【点睛】本小题主要考查函数的单调性和奇偶性的运用,考查化归与转化的数学思想方法,考查一元一次不等式组的解法,属于中档题.19.【解析】【分析】利用换元法求解析式即可【详解】令则故故答案为【点睛】本题考查函数解析式的求法换元法是常见方法注意新元的范围是易错点 解析:2()23(1)f x x x x =--≥【解析】 【分析】利用换元法求解析式即可 【详解】令11t =≥,则()21x t =-故()()214f t t =--=223(1)t t t --≥ 故答案为2()23(1)f x x x x =--≥ 【点睛】本题考查函数解析式的求法,换元法是常见方法,注意新元的范围是易错点20.【解析】【分析】【详解】试题分析:两种都买的有人所以两种家电至少买一种有人所以两种都没买的有人或根据条件画出韦恩图:(人)考点:元素与集合的关系 解析:【解析】【分析】【详解】 试题分析:两种都买的有人,所以两种家电至少买一种有人.所以两种都没买的有人.或根据条件画出韦恩图:(人).考点:元素与集合的关系.三、解答题21.(1)1,0a b ==;(2)4k <.【解析】【分析】(1)函数()g x 的对称轴方程为1x =,开口向上,则在[]2,3上单调递增,则可根据最值列出方程,可解得,a b 的值.(2)由题意只需()min k f x <,则只需要求出()f x 在(]2,5上的最小值,然后运用基本不等式求最值即可.【详解】解:(1)()g x Q 开口方向向上,且对称轴方程为 1x =,()g x ∴在[]2,3上单调递增()()()()min max 2441139614g x g a a b g x g a a b ⎧==-++=⎪∴⎨==-++=⎪⎩. 解得1a =且0b =.(2)()0f x k ->Q 在(]2,5x ∈上恒成立所以只需()min k f x <.有(1)知()()221111222242222x x f x x x x x x x x -+==+=-++≥-⋅=----当且仅当122x x -=-,即3x =时等号成立. 4k ∴<.【点睛】本题考查二次函数的最值的求法,注意讨论对称轴和区间的位置关系,考查不等式恒成立问题的解法,注意运用参数分离和基本不等式的应用,属于中档题.22.(1)(,6][6,+)∞∞--U ;(2)3(,)4∞-. 【解析】【分析】(1)首先求函数的对称轴22a x -=-,令242a --≥或 222a --≤-,求实数a 的取值范围;(2)不等式等价于21x x m ++>恒成立,令()21g x x x =++,转化为()min g x m >,[]1,1x ∈-恒成立,求m 的取值范围.【详解】解:(1)函数()f x 的对称轴为22a x -=-, 又函数()f x 在[]2,4-上是单调函数,242a -∴-≥或 222a --≤-, 解得6a ≤-或6a ≥.∴实数a 的取值范围为(,6][6,)-∞-+∞U ; (2)当5a =,[]1,1x ∈-时,()24f x m x >+-恒成立,即21x x m ++>恒成立, 令()21g x x x =++,()min g x m >恒成立, 函数()g x 的对称轴[]11,12x =-∈-,∴()min 1324g x g ⎛⎫=-= ⎪⎝⎭,即34m >, m ∴的范围为3(,)4-∞.【点睛】本题考查二次函数单调性,恒成立的的综合问题,属于基础题型.23.(1)0.8)4,015(,1t t t y t ≤≤⎧=⎨⋅>⎩n ; (2)服药一次后治疗有效的时间是5-=小时. 【解析】【分析】(1)由函数图象的奥这是一个分段函数,第一段为正比例函数的一段,第二段是指数函数的一段,由于两端函数均过点(1,4),代入点(1,4)的坐标,求出参数的值,即可得到函数的解析式;(2)由(1)的结论将函数值0.25代入函数的解析式,构造不等式,求出每毫升血液中函数不少于0.25微克的起始时刻和结束时刻,即可得到结论.【详解】(1)由题意,根据给定的函数的图象,可设函数的解析式为1)2,01(,1t a kt t y t -≤<⎧⎪=⎨⎪≥⎩n ,又由函数的图象经过点(1,4),则当1t =时,14k ⨯=,解得4k =,又由1t =时,11()42a -=,解得3a =, 所以函数的解析式为1)324,01(,1t t t y t -≤<⎧⎪=⎨⎪≥⎩n . (2)由题意,令0.25y ≥,即当01t ≤<时,40.25t ≥,解得116t ≥, 当1t ≥时,31()0.252t -≥,解得15t ≤≤,综上所述,可得实数t 的取值范围是1516t ≤≤, 所以服药一次后治疗有效的时间是17951616-=小时. 【点睛】本题主要考查了一次函数与指数函数模型的应用,解答中认真审题,合理设出函数的解析式,代入求解是解答的关键,同时应用指数函数模型应注意的问题:(1)指数函数模型的应用类型.常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决.(2)应用指数函数模型时的关键.关键是对模型的判断,先设定模型,再将已知有关数据代入验证,确定参数,从而确定函数模型.24.(1)()2104003000,050100006000,50x x x L x x x x ⎧-+-<<⎪=⎨--+≥⎪⎩;(2)2019年年产量为100百辆时,企业所获利润最大,最大利润为5800万元.【解析】【分析】(1)先阅读题意,再分当050x <<时,当50x ≥时,求函数解析式即可;(2)当050x <<时,利用配方法求二次函数的最大值,当50x ≥时,利用均值不等式求函数的最大值,一定要注意取等的条件,再综合求分段函数的最大值即可.【详解】解:(1)由已知有当050x <<时,()22600(10200)3000104003000L x x x x x x =-+-=-+-当50x ≥时,()1000010000600(6019000)30006000L x x x x x x=-+--=--+, 即()2104003000,050100006000,50x x x L x x x x ⎧-+-<<⎪=⎨--+≥⎪⎩, (2)当050x <<时,()2210400300010(20)1000L x x x x =-+-=--+, 当20x =时,()L x 取最大值1000,当50x ≥时,()10000100006000260005800L x x x x x =--+≤-⨯+=, 当且仅当10000x x=,即100x =时取等号, 又58001000>故2019年年产量为100百辆时,企业所获利润最大,最大利润为5800万元.【点睛】本题考查了函数的综合应用,重点考查了分段函数最值的求法,属中档题.25.(1)B ∩A =[1,4),B ∩(∁U A )= [-4,1)∪[4,5);(2)1[,)2+∞ .【解析】【分析】(1)利用补集的定义求出A 的补集,然后根据交集的定义求解即可直接求解即可;(2 )分类讨论B 是否是空集,列出不等式组求解即可.【详解】(1)∵A ={x |1≤x <4},∴∁U A ={x |x <1或x ≥4},∵B ={x |2a ≤x <3-a },∴a =-2时,B ={-4≤x <5},所以B ∩A =[1,4),B ∩(∁U A )={x |-4≤x <1或4≤x <5}=[-4,1)∪[4,5).(2)A ∪B =A ⇔B ⊆A ,①B =∅时,则有2a ≥3-a ,∴a ≥1,②B ≠∅时,则有,∴,综上所述,所求a 的取值范围为. 【点睛】本题主要考查集合的交集、集合的补集以及空集的应用,属于简答题.要解答本题,首先必须熟练应用数学的转化与划归思想及分类讨论思想,将并集问题转化为子集问题,其次分类讨论进行解答,解答集合子集过程中,一定要注意空集的讨论,这是同学们在解题过程中容易疏忽的地方,一定不等掉以轻心.26.(1)43.5(2)当甲城市投资72万元,乙城市投资48万元时,总收益最大,且最大收益为44万元.【解析】(1)当50x =时,此时甲城市投资50万元,乙城市投资70万元,所以总收益()50f =167024+⨯+=43.5(万元). (2)由题知,甲城市投资x 万元,乙城市投资()120x -万元,所以()f x =()1612024x +-+=126,4x -+ 依题意得4012040x x ≥⎧⎨-≥⎩,解得4080x ≤≤,故()f x =()12640804x x -+≤≤,令t =,则t ⎡∈⎣,所以y =21264t -++=21(444t --+.当t =,即72x =万元时,y 的最大值为44万元,所以当甲城市投资72万元,乙城市投资48万元时,总收益最大,且最大收益为44万元.。

江苏省无锡市2019届高三期中考试试卷2019.11数学

江苏省无锡市2019届高三期中考试试卷2019.11数学

江苏省无锡市2019届高三期中考试试卷2019.11数 学注意事项及说明:本卷考试时间为120分钟,全卷满分为160分.1. 函数)1(log )(2x x f -=的定义域为 ▲ .2. 若复数z 满足i iz 32+-=(i 是虚数单位),则复数z = ▲ . 3. 函数)3sin(π-=x y )2(ππ≤≤x 的值域为 ▲ .4. 函数8log 2)(3-+=x x x f 的零点有 ▲ 个.5. 若直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为2,则直线m 的倾斜角是 ▲ °.6.四天的气温分别是16℃,18℃,13℃,17℃.若从这四天中任选两天的气温,则这两天的平均气温与这四天的平均气温相差不超过1℃的概率为 ▲ . 7.已知向量)23,23(-=),23(λ=,若//,则实数λ的值为__ _▲______. 8.数列{a n }是等差数列,且 a n ≠0,2a 3-27a +2a 11=0;数列{b n }是等比数列,且77a b =,则b 6b 8= ▲ .9.设实数x 、y 满足条件⎪⎩⎪⎨⎧≥≥-≤+,0,1,3y y x y x 则点(x ,y )构成的平面区域面积为 ▲ .10.如图所示的流程图,输出的结果为 ▲ .11. 已知命题p :关于x 的不等式220x x a -->解集为R ;命题q :曲线()1322+-+=x a x y 与x 轴交于不同的两点.如果“q p 且”为假命题,“q p 或”为真命题,则实数a 的取值范围为 ▲ . 12. 给定两个长度为1且互相垂直的平面向量OA 和OB ,点C 在以O 为圆心的圆弧AB 上运动,若y x +=,其中x 、y ∈R ,则22)1(y x +-的最大值为 ▲ .13. 已知函数)(x f (x R ∈)满足)1(f =2,且)(x f 在R 上的导数1)(<'x f ,则不等式12)2(+<x x f 的解集为 ▲ .14.已知数列{a n }的形成规则为:若a n 是偶数,则除以2便得到a n +1;若a n 是奇数,则加上1除以2便得到a n +1,依此法则直至得到1为止.那么按照这种规则得到的含有5个元素的集合共有 ▲ 个.二.解答题:(本大题共6小题,满分为90分.解答需写出文字说明、推理过程或演算步骤)15.(本小题满分14分)在△ABC 中,∠B =45°,10=AC ,532cos =C . (Ⅰ)求AB 边的长度;(Ⅱ)若点D 是AB 的中点,求中线CD 的长度.16. (本小题满分14分)某校迎接校庆中有一项工作是请20位工人制作100只灯笼和20块展板.已知一名工人在单位时间内可制作10只灯笼或3块展板.现将20名工人分成两组,一组制作灯笼,一组制作展板,同时开工.设制作灯笼的工人有x 名(191≤≤x ).(Ⅰ)用x 分别表示制作100只灯笼和20块展板所用的单位时间; (Ⅱ)求当x 为何值时,完成此项工作时间最短.17. (本小题满分14分)如图,四棱锥P —ABCD 中,P A ⊥底面ABCD ,四边形ABCD 为直角梯形,AD ∥BC ,AD ⊥CD . (Ⅰ)求证:CD ⊥PD ;(Ⅱ)若AD =2,BC =3,F 为PD 中点, BE =BC 31, 求证:EF ∥平面P AB .18. (本小题满分16分)如图,圆O 的方程为222=+y x ,直线l 是椭圆1222=+y x 的左准线,A 、B 是该椭圆的左、右焦PABCD·F·E点,点P 为直线l 上的一个动点,直线AQ ⊥OP 交圆O 于点Q .(Ⅰ)若点P 的纵坐标为4,求此时点Q 的坐标,并说明此时直线PQ 与圆O 的位置关系; (Ⅱ)求当∠APB 取得最大值时P 点的坐标.19. (本小题满分16分)已知数列{a n }的前n 项和为S n ,且n n a n S 23+=(n *N ∈).数列{b n }是等差数列,且22a b =,420a b =.(Ⅰ)求证:数列{a n -1}是等比数列;(Ⅱ)求数列⎭⎬⎫⎩⎨⎧-1n n a b 的前n 项和T n ;(Ⅲ)若不等式x n n T a nn log 326112<⨯-+-+ (a >0且a ≠1)对一切n *N ∈恒成立,求实数x 的取值范围. 20.(本小题满分16分)已知函数15)(23+++-=x kx x x f ,kx x x g +-=ln )(,其中k ∈R . (Ⅰ)当k =1时,求函数)(x f 的极值;(Ⅱ)若关于x 的方程)(x f =0在区间(1,2)上有解,求实数k 的取值范围; (Ⅲ)设函数⎩⎨⎧>≤=0),(0),()(x x g x x f x q ,是否存在正实数k ,使得对于函数)(x q 上任一点(横坐标不为0),总能找到另外惟一一点使得在这两点处切线的斜率相等?若存在,求k 的值;若不存在,请说明理由.。

江苏省无锡市2019届高三上学期期中考试数学试题含答案解析

江苏省无锡市2019届高三上学期期中考试数学试题含答案解析

无锡市2019届高三上学期期中考试数学试题一、填空题1.已知全集,集合则【答案】{0,2,4}【解析】【分析】根据集合补集与并集的定义求结果.【详解】.【点睛】本题考查集合补集与并集概念,考查基本求解能力,属基础题.2.函数的定义域为_______.【答案】(-∞,2)【解析】【分析】根据分母不为零以及偶次根式下被开方数非负列不等式,解得结果.【详解】由题意得,即定义域为(-∞,2).【点睛】本题考查函数定义域,考查基本求解能力,属基础题.3.已知则实数【答案】【解析】【分析】根据指数与对数运算法则求解【详解】因为所以由得【点睛】本题考查指数与对数方程,考查基本求解能力,属基础题.4.设函数若则【答案】2【解析】【分析】根据关系求结果.【详解】因为,,所以,因为则【点睛】本题考查函数解析式,考查基本求解能力,属基础题.5.已知向量的夹角为,则的值为________.【答案】7【解析】【分析】根据向量数量积定义以及向量模的定义求结果.【详解】因为向量的夹角为,所以,因此【点睛】本题考查向量数量积以及向量模,考查基本求解能力,属基础题.6.若实数满足条件则的最大值为________.【答案】4【解析】【分析】先作可行域,再根据目标函数所表示的直线,结合图象确定最大值取法,即得结果. 【详解】先作可行域,如图,则直线过点A(1,2)时取最大值4.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.7.已知定义在区间上的函数的最大值为4,最小值为,则【答案】-【解析】【分析】根据正弦函数性质确定最值取法,再解方程组得a,b,即得结果.【详解】因为,,所以,,从而【点睛】本题考查正弦函数性质,考查基本求解能力,属基础题.8.已知函数在上单调递增,则实数的取值范围为________.【答案】(0,1]【解析】【分析】根据分段函数单调性列不等式,解得结果.【详解】因为函数在上单调递增,所以【点睛】分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.9.已知则的值为_________.【答案】【解析】【分析】根据诱导公式以及二倍角公式化简求值.【详解】令,则,【点睛】本题考查诱导公式以及二倍角余弦公式,考查基本求解能力,属基础题.10.《九章算术》中研究盈不足问题时,有一道题是“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢?”题意即为“有厚墙五尺,两只老鼠从墙的两边分别打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半,问几天后两鼠相遇?” 荆州古城墙某处厚33尺,两硕鼠按上述方式打洞,相遇时是第____天.(用整数作答)【答案】6【解析】由题意得11.在中,点是线段上任意一点,是线段的中点,且,则【答案】-【解析】【分析】根据向量表示得,再根据向量分解唯一性得,即得结果.【详解】因为是线段的中点,所以,因为点是线段上任意一点,所以可设,从而因为,所以-【点睛】本题考查向量表示,考查基本求解能力,属基础题.12.设为正实数,且,则的最小值为________.【答案】27【解析】【分析】先根据条件解得x,再化简,最后利用基本不等式求最值.【详解】因为,所以因此当且仅当时取等号,即的最小值为27.【点睛】本题考查基本不等式求最值,考查基本分析求解能力,属中档题.13.定义为个正数的“均倒数”.若已知数列的前项的“均倒数”为又,则【答案】【解析】【分析】先根据定义得数列的前项的和,再根据和项与通项关系得,即得,最后根据裂项相减法求结果. 【详解】因为数列的前项的“均倒数”为,所以,当时,作差得,因为,所以,,+=【点睛】裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如 (其中是各项均不为零的等差数列,c为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如或.14.已知函数在上的零点为,函数在上的零点为则的范围为_________.【答案】(1,)【解析】【分析】先求,并确定范围,进而确定,最后利用导数求单调性,根据单调性确定取值范围.【详解】由得,因为,所以,因此,因为从而,因此,令,,则,所以(1,).【点睛】求范围或值域问题,一般利用条件转化为对应一元函数问题,即通过题意将多元问题转化为一元问题,再根据函数形式,选用方法求值域,如二次型利用对称轴与定义区间位置关系,分式型可以利用基本不等式,复杂性或复合型可以利用导数先研究单调性,再根据单调性确定值域.二、解答题15.已知(1)若与垂直,求实数的值;(2)三点构成三角形,求实数的取值范围.【答案】(1) k=-7 (2) (-∞,5)U(5,+∞)【解析】【分析】(1)根据向量垂直坐标表示列式,解得结果,(2)根据与不共线,列不等式,解得结果.【详解】(1)因为与垂直,所以,•=0,即(5,-5)•(-6,k+1)=0即:-30-5(k+1)=0,解得:k=-7(2)依题意,得A,B,C三点不共线,即与不共线,即5(k+1)≠30,解得:k≠5所以,实数的取值范围(-∞,5)U(5,+∞)【点睛】本题考查向量垂直与平行,考查基本求解能力,属基础题.16.在四棱锥中,已知分别是的中点,若是平行四边形,(1)求证:平面(2)若平面,求证:【答案】(1)见解析(2)见解析【解析】【分析】(1) 取PA中点E,根据平几知识可得四边形BMNE为平行四边形,再根据线面平行判定定理得结论,(2)先根据线面垂直判定定理得AC⊥平面PAB,即得AC⊥BE,再根据平行关系得结果.【详解】(1)取PA中点E,连结BE,NE因为N为PD中点,所以,EN∥AD,且EN=AD,又M为BC中点,是平行四边形,所以BM∥AD,且BM=AD,所以,BM∥EN且BM=EN所以,四边形BMNE为平行四边形,所以,MN∥BE,而MN平面PAB,BE平面PAB所以,MN∥平面PAB。

2019届江苏省无锡市高三上学期期中考试数学试卷及答案

2019届江苏省无锡市高三上学期期中考试数学试卷及答案
当 时, = =4>0
综上所述, ≥0,所以,
对于一切 恒成立;
20、(1)当 =0时, ,
切点(1,0),切线的斜率:k=
所求的切线方程为:
(2)当 取得最大值时,求 的值.
2019届无锡市高三上学期期中考试
数学参考答案
1、{0,2,4}2、(-∞,2)3、 4、25、7
6、47、- 8、(0,1]9、 10、6
11、- 12、2713、 14、(1, )
15、(1)因为 与 垂直,所以, • =0,
即(5,-5)(-6,k+1)=0
即:-30-5(k+1)=0,解得:k=-7
17、已知 的三个内角 的对边分别为 ,且
(1)求角 的值;
(2)若 边上的中线 的长为 ,求 面积的最大值.
18.有一块圆心角为120度,半径为 的扇形钢板 ( 为弧 的中点),现要将其裁剪成一个五边形磨具 ,其下部为等腰三角形 ,上部为矩形 .设 五边形 的面积为 .
(1)写出 关于 的函数表达式,并写出 的取值范围;

化简,得:
即: ,所以,A= 。
(2)因为BD为AC边上的中线,
所以,S△ABC=2S△ABD=AB•AD×sin = AB•AD
又由余弦定理,得:BD2=AB2+AD2-2AB•AD×cos =AB2+AD2-AB•AD≥AB•AD
所以,AB•AD≤13
所以,S△ABC= ABቤተ መጻሕፍቲ ባይዱAD≤ ×13=
所以,四边形BMNE为平行四边形,
所以,MN∥BE,而MN 平面PAB,BE 平面PAB
所以,MN∥平面PAB。
(2)∵ ∴AC⊥AB,
∵PA⊥平面ABCD,∴PA⊥AC

江苏省无锡市2019届高三数学第一次模拟考试试题

江苏省无锡市2019届高三数学第一次模拟考试试题

江苏省无锡市2019届高三第一次模拟考试数学注意事项:1。

本试卷共160分,考试时间120分钟.2. 答题前,考生务必将自己的学校、班级、姓名写在密封线内.一、填空题:本大题共14小题,每小题5分,共70分.1。

设集合A={x|x>0},B={x|-2〈x<1},则A∩B=________.2。

设复数z满足(1+i)z=1-3i(其中i是虚数单位),则z的实部为________.3. 有A,B,C三所学校,学生人数的比例为3∶4∶5,现用分层抽样的方法招募n名志愿者,若在A学校恰好选出9名志愿者,那么n=________.错误!4。

史上常有赛马论英雄的记载,田忌欲与齐王赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,则田忌的马获胜的概率为________.5. 执行如图所示的伪代码,则输出x的值为________.6。

已知x,y满足约束条件错误!则z=x+y的取值范围是________.7. 在四边形ABCD中,已知错误!=a+2b,错误!=-4a-b,错误!=-5a-3b,其中a,b是不共线的向量,则四边形ABCD的形状是________.8。

以双曲线错误!-错误!=1的右焦点为焦点的抛物线的标准方程是________.9。

已知一个圆锥的轴截面是等边三角形,侧面积为6π,则该圆锥的体积等于________.10. 设公差不为零的等差数列{a n}满足a3=7,且a1-1,a2-1,a4-1成等比数列,则a10=________.11. 已知θ是第四象限角,则cos θ=错误!,那么错误!的值为________.12. 已知直线y=a(x+2)(a〉0)与函数y=|cos x|的图象恰有四个公共点A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),其中x1〈x2<x3<x4,则x4+错误!=________.13. 已知点P在圆M:(x-a)2+(y-a+2)2=1上,A,B为圆C:x2+(y-4)2=4上两动点,且AB=23,则错误!·错误!的最小值是________.14。

江苏省无锡市2019届高三上学期期中学考试试数学精彩试题

江苏省无锡市2019届高三上学期期中学考试试数学精彩试题

实用文档无锡市2019届高三上学期期中考试数学试题2018.11一、填空题________.?CA)B({2,4},{1,2,3},B?A{0,1,2,3,4}??U则,集合1、已知全集u1?x)f(的定义域为_______. 2、函数x2?a,a?38?2,logx________.?x则实数3、已知a2,?xx?bx(x)?asinf________.?(?1)(1)f?0,f则、设函数4若b?24,b?a3,a?ba,?120________. 5、已知向量的值为则的夹角为,x?1,??y?2,y,x2x?y的最大值为则满足条件、若实数6________.??x?y?2,???5,[?]f(x)?2asinxcosx?b(a?0)的最大值为4、已知定义在区间上的函数,最小值为,7442________.a??b则logx,x?2,?2f(x)?a R的取值范围为上单调递增,则实数8、已知函数在________. ?ax?1,x?2,????25????,xsin(?)?sin?x?sin?2x的值为则_________. 、已知9????4666????实用文档10、《九章算术》中研究盈不足问题时,有一道题是“今有桓厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢?”题意即为“有厚墙五尺,两只老鼠从墙的两边分别打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半,问几天后两鼠相遇?”一古城墙某处厚33尺,大小老鼠按上述方式打洞,相遇时是第_______天.??ACABBM??BCABCADMD△,11、在上任意一点,的中点,且中,点是线段是线段????_______.则43??1xyx,y的最小值为________. ,则为正实数,且12、设1?x2?ynP,P,...,P{a}nn项的“均倒数”为个正数定义13. 的“均倒数”.若已知数列为的前n12n P...P??P?n12a?11111n________.????...?,b又,则n bbbbbb3?22n102913224x4?)?kx?f(xx2](0,(2,?kx?1??)(gx)上的零点为在14. 已知函数上的零点为在,函数111?x的范围为则_________. 2xx21二、解答题A(?2,4),B(3,?1),C(?3,k).、已知15BCAB k的值;与垂直,求实数(1)若A,B,C k的取值范围)(2三点构成三角形,求实数.实用文档M,NBC,PD ABCD?PABCD是平行四边形,、在四棱锥分别是的中点,若中,已知16?BAC?90?.PAB;//MN平面(1)求证:ABCDMN?AC.?PA若,求证:平面(2)3(b?acosC)?csinA.cBA,,Cb,a,ABC△,且、已知17的对边分别为的三个内角A的值;)求角(113ABCACBD△面积的最大值2边上的中线,求)若的长为. (实用文档OAPBPRAB的中点)(,现要将其裁剪成一为弧18.有一块圆心角为120度,半径为的扇形钢板?,POC??CDEFCDEOFOEF五边形,其下部为等腰三角形设个五边形磨具,上部为矩形.CDEOFS.的面积为??S的取值范围;关于的函数表达式,并写出(1)写出?cos S的值取得最大值时,求. (2)当a?2a?c?2?a?c,}{ac为正常数.19、已知数列满足nnn?1n*n?N,a?a?c恒成立;1()求证:对于一切n1?n{a}a的取值范围为等差数列,求(2)若数列. 1n实用文档x?1x?ae(a?Rf(x)?). 20、已知函数x e a?0,y?f(x)x?1处的切线方程;求曲线)若(1在a??1,f(x)的单调区间;(2)若求函数1?a?2,f(x)??1.(求证:)若3实用文档2019届高三上学期期中考试参考答案无锡市一、填空题________.B?(CA){2,4},B?{0,1,2,3,4}A?{1,2,3},?U则、已知全集,集合1u:集合的运算,补集与并集的运算。

江苏省无锡市2019届高三第一次模拟考试 数学 Word版含答案

江苏省无锡市2019届高三第一次模拟考试 数学 Word版含答案

江苏省无锡市2019届高三第一次模拟考试数 学注意事项:1. 本试卷共160分,考试时间120分钟.2. 答题前,考生务必将自己的学校、班级、姓名写在密封线内. 一、 填空题:本大题共14小题,每小题5分,共70分.1. 设集合A ={x |x >0},B ={x |-2<x <1},则A ∩B =________.2. 设复数z 满足(1+i)z =1-3i(其中i 是虚数单位),则z 的实部为________.3. 有A ,B ,C 三所学校,学生人数的比例为3∶4∶5,现用分层抽样的方法招募n 名志愿者,若在A 学校恰好选出9名志愿者,那么n =________.错误!4. 史上常有赛马论英雄的记载,田忌欲与齐王赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,则田忌的马获胜的概率为________.5. 执行如图所示的伪代码,则输出x 的值为________.6. 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,2x -y ≤0,x ≥0,则z =x +y 的取值范围是________.7. 在四边形ABCD 中,已知AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a ,b 是不共线的向量,则四边形ABCD 的形状是________.8. 以双曲线x 25-y 24=1的右焦点为焦点的抛物线的标准方程是________.9. 已知一个圆锥的轴截面是等边三角形,侧面积为6π,则该圆锥的体积等于________. 10. 设公差不为零的等差数列{a n }满足a 3=7,且a 1-1,a 2-1,a 4-1成等比数列,则a 10=________.11. 已知θ是第四象限角,则cos θ=45,那么sin ⎝⎛⎭⎫θ+π4cos (2θ-6π)的值为________.12. 已知直线y =a (x +2)(a >0)与函数y =|cos x |的图象恰有四个公共点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),其中x 1<x 2<x 3<x 4,则x 4+1tan x 4=________. 13. 已知点P 在圆M :(x -a )2+(y -a +2)2=1上,A ,B 为圆C :x 2+(y -4)2=4上两动点,且AB =23,则P A →·PB →的最小值是________.14. 在锐角三角形ABC 中,已知2sin 2A +sin 2B =2sin 2C ,则1tan A +1tan B +1tan C的最小值为________.二、 解答题:本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,设a ,b ,c 分别是角A ,B ,C 的对边,已知向量m =(a ,sin C -sin B ),n =(b +c ,sin A +sin B ),且m ∥n .(1) 求角C 的大小;(2) 若c =3,求△ABC 周长的取值范围.16. (本小题满分14分)在四棱锥P ABCD 中,锐角三角形P AD 所在平面垂直于平面P AB ,AB ⊥AD ,AB ⊥BC .(1) 求证:BC ∥平面P AD ;(2) 求证:平面P AD ⊥平面ABCD .(第16题)17. (本小题满分14分)十九大提出对农村要坚持精准扶贫,至2020年底全面脱贫.现有扶贫工作组到某山区贫困村实施脱贫工作,经摸底排查,该村现有贫困农户100家,他们均从事水果种植,2017年底该村平均每户年纯收入为1万元,扶贫工作组一方面请有关专家对水果进行品种改良,提高产量;另一方面,抽出部分农户从事水果包装、销售工作,其人数必须小于种植的人数.从2018年初开始,若该村抽出5x 户(x ∈Z ,1≤x ≤9)从事水果包装、销售.经测算,剩下从事水果种植农户的年纯收入每户平均比上一年提高x20,而从事包装、销售农户的年纯收入每户平均为⎝⎛⎭⎫3-14x 万元.(参考数据:1.13=1.331,1.153≈1.521,1.23=1.728)(1) 至2020年底,为使从事水果种植农户能实现脱贫(每户年均纯收入不低于1万6千元),至少抽出多少户从事包装、销售工作?(2) 至2018年底,该村每户年均纯收入能否达到1.35万元?若能,请求出从事包装、销售的户数;若不能,请说明理由.18. (本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点⎝⎛⎭⎫3,12,点P 在第四象限,A 为左顶点,B 为上顶点,P A 交y 轴于点C ,PB 交x 轴于点D .(1) 求椭圆C 的标准方程; (2) 求△PCD 面积的最大值.(第18题)19. (本小题满分16分)已知函数f(x)=e x -a2x 2-ax(a>0).(1) 当a =1时,求证:对于任意x>0,都有f(x)>0成立;(2) 若y =f(x)恰好在x =x 1和x =x 2两处取得极值,求证:x 1+x 22<ln a.20. (本小题满分16分)设等比数列{a n }的公比为q(q>0,q ≠1),前n 项和为S n ,且2a 1a 3=a 4,数列{b n }的前n 项和T n 满足2T n =n(b n -1),n ∈N *,b 2=1.(1) 求数列{a n },{b n }的通项公式;(2) 是否存在常数t ,使得⎩⎨⎧⎭⎬⎫S n +12t 为等比数列?请说明理由;(3) 设c n =1b n +4,对于任意给定的正整数k (k ≥2),是否存在正整数l ,m (k <l <m ),使得c k ,c l ,c m 成等差数列?若存在,求出l ,m (用k 表示);若不存在,请说明理由.江苏省无锡市2019届高三第一次模拟考试数学附加题注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内. 说明:解答时应写出必要的文字说明、证明过程或演算步骤. 21. (本小题满分10分)选修4-2:矩阵与变换 设旋转变换矩阵A =⎣⎢⎡⎦⎥⎤0-11 0,若⎣⎢⎡⎦⎥⎤a b 1 2·A =⎣⎢⎡⎦⎥⎤3 4c d ,求ad -bc 的值.22. (本小题满分10分)选修4-4: 坐标系与参数方程自极点O 作射线与直线ρcos θ=3相交于点M ,在OM 上取一点P ,使OM·OP =12,若Q 为曲线⎩⎨⎧x =-1+22t ,y =2+22t (t 为参数)上一点,求PQ 的最小值.23. (本小题满分10分)在平面直角坐标系xOy 中,曲线C 上的动点M(x ,y)(x>0)到点F(2,0)的距离减去M 到直线x =-1的距离等于1. (1) 求曲线C 的方程;(2) 若直线y =k(x +2)与曲线C 交于A ,B 两点,求证:直线FA 与直线FB 的倾斜角互补.24. (本小题满分10分)已知数列{a n }满足a 1=23,1a n -1=2-a n -1a n -1-1(n ≥2).(1) 求数列{a n }的通项公式;(2 )设数列{a n }的前n 项和为S n ,用数学归纳法证明:S n <n +12-ln .江苏省无锡市2019届高三第一次模拟考试数学参考答案及评分标准1. {x|0<x<1}2. -13. 364. 13 5. 256. [0,3]7. 梯形8. y 2=12x9. 3π 10. 21 11.5214 12. -2 13. 19-122 14. 13215. (1) 由m ∥n 及m =(a ,sin C -sin B ),n =(b +c ,sin A +sin B ), 得a (sin A +sin B )-(b +c )(sin C -sin B )=0,(2分) 由正弦定理,得a ⎝⎛⎭⎫a 2R +b 2R -(b +c )⎝⎛⎭⎫c 2R -b2R =0, 所以a 2+ab -(c 2-b 2)=0,得c 2=a 2+b 2+ab ,由余弦定理,得c 2=a 2+b 2-2ab cos C , 所以a 2+b 2+ab =a 2+b 2-2ab cos C , 所以ab =-2ab cos C ,(5分) 因为ab >0,所以cos C =-12,又因为C ∈(0,π),所以C =2π3.(7分) (2) 在△ABC 中,由余弦定理,得c 2=a 2+b 2-2ab cos C , 所以a 2+b 2-2ab cos 2π3=9,即(a +b )2-ab =9,(9分)所以ab =(a +b )2-9≤⎝⎛⎭⎫a +b 22,所以3(a +b )24≤9,即(a +b )2≤12,所以a +b ≤23,(12分)又因为a +b >c ,所以6<a +b +c ≤23+3,即周长l 满足6<l ≤3+23, 所以△ABC 周长的取值范围是(6,3+23].(14分) 16. (1) 因为AB ⊥AD ,AB ⊥BC ,且A ,B ,C ,D 共面, 所以AD ∥BC.(3分)(第16题)因为BC ⊄平面PAD ,AD ⊂平面PAD , 所以BC ∥平面PAD.(5分)(2) 如图,过点D 作DH ⊥PA 于点H ,因为△PAD 是锐角三角形,所以H 与A 不重合.(7分)因为平面PAD ⊥平面PAB ,平面PAD ∩平面PAB =PA ,DH ⊂平面PAD , 所以DH ⊥平面PAD.(9分)因为AB ⊂平面PAB ,所以DH ⊥AB.(11分)因为AB ⊥AD ,AD ∩DH =D ,AD ,DH ⊂平面PAD , 所以AB ⊥平面PAD.因为AB ⊂平面ABCD ,所以平面PAD ⊥平面ABCD.(14分) 17. (1) 由题意得1×⎝⎛⎭⎫1+x203≥1.6, 因为5x<100-5x ,所以x<10且x ∈Z .(2分) 因为y =⎝⎛⎭⎫1+x203在x ∈[1,9]上单调递增, 由数据知,1.153≈1.521<1.6,1.23=1.728>1.6, 所以x20≥0.2,得x ≥4.(5分)又x <10且x ∈Z ,故x =4,5,6,7,8,9. 答:至少抽取20户从事包装、销售工作.(7分)(2) 假设该村户均纯收入能达到1.35万元,由题意得,不等式1100[5x ⎝⎛⎭⎫3-14x +⎝⎛⎭⎫1+x 20(100-5x )]≥1.35有正整数解,(8分)化简整理得3x 2-30x +70≤0,(10分) 所以-153≤x -5≤153.(11分) 因为3<15<4,且x ∈Z ,所以-1≤x -5≤1,即4≤x ≤6. (13分)答:至2018年底,该村户均纯收入能达到1万3千5百元,此时从事包装、销售的农户数为20户,25户,30户.(14分)18. (1) 由题意得⎩⎨⎧3a 2+14b2=1,c a =32,a 2=b 2+c 2,得a 2=4,b 2=1,(4分) 故椭圆C 的标准方程为x 24+y 2=1.(5分)(2) 由题意设l AP :y =k(x +2),-12<k<0,所以C(0,2k),由⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1,消去y 得(1+4k 2)x 2+16k 2x +16k 2-4=0,所以x A x P =16k 2-41+4k 2,由x A =-2得x P =2-8k 21+4k 2,故y P =k(x P +2)=4k1+4k 2, 所以P ⎝ ⎛⎭⎪⎫2-8k 21+4k 2,4k 1+4k 2,(8分)设D(x 0,0),因为B(0,1),P ,B ,D 三点共线,所以k BD =k PB ,故1-x 0=4k1+4k 2-12-8k 21+4k 2,解得x D =2(1+2k )1-2k,得D ⎝⎛⎭⎪⎫2(1+2k )1-2k ,0,(10分)所以S △PCD =S △PAD -S △CAD =12×AD ×|y P -y C |=12⎣⎢⎡⎦⎥⎤2(1+2k )1-2k +2⎪⎪⎪⎪4k1+4k2-2k =4|k (1+2k )|1+4k 2,(12分)因为-12<k<0,所以S △PCD =-8k 2-4k 1+4k 2=-2+2×1-2k 1+4k 2,令t =1-2k ,1<t<2,所以2k=1-t ,所以g(t)=-2+2t 1+(1-t )2=-2+2t t 2-2t +2=-2+2t +2t -2≤-2+222-2=2-1,(14分)当且仅当t =2时取等号,此时k =1-22,所以△PCD 面积的最大值为2-1.(16分)19. (1) 由f(x)=e x -12x 2-x ,则f′(x)=e x -x -1,令g(x)=f′(x),则g′(x)=e x -1,(3分)当x>0时,g′(x)>0,则f′(x)在(0,+∞)上单调递增, 故f′(x)>f′(0)=0,所以f(x)在(0,+∞)上单调递增,(5分) 进而f(x)>f(0)=1>0,即对任意x>0,都有f(x)>0.(6分) (2) f′(x)=e x -ax -a ,因为x 1,x 2为f(x)的两个极值点,所以⎩⎪⎨⎪⎧f′(x 1)=0,f′(x 2)=0,即⎩⎪⎨⎪⎧e x 1-ax 1-a =0,e x 2-ax 2-a =0. 两式相减,得a =e x 1-e x 2x 1-x 2,(8分)则所证不等式等价于x 1+x 22<ln e x 1-e x 2x 1-x 2,即e x 1+x22<e x 1-e x 2x 1-x 2,(10分)不妨设x 1>x 2,两边同时除以e x 2可得:ex 1-x 22<e x 1-x 2-1x 1-x 2,(12分)令t =x 1-x 2,t>0,所证不等式只需证明:e t 2<e t -1t ⇔t e t2-e t +1<0.(14分)设φ(t)=t et 2-e t +1,则φ′(t)=-e t2·⎣⎡⎦⎤e t2-⎝⎛⎭⎫t 2+1,因为e x ≥x +1,令x =t 2, 可得e t 2-⎝⎛⎭⎫t2+1≥0,所以φ′(t)≤0,所以φ(t)在(0,+∞)上单调递减,φ(t)<φ(0)=0, 所以x 1+x 22<ln a .(16分)20. (1) 因为2a 1a 3=a 4,所以2a 1·a 1q 2=a 1q 3, 所以a 1=q 2,所以a n =q 2q n -1=12q n .(2分)因为2T n =n(b n -1),n ∈N *,①所以2T n +1=(n +1)(b n +1-1),n ∈N ,②②-①,得2T n +1-2T n =(n +1)b n +1-nb n -(n +1)+n ,n ∈N *, 所以2b n +1=(n +1)b n +1-nb n -(n +1)+n , 所以(n -1)b n +1=nb n +1,n ∈N *,③(4分)所以nb n +2=(n +1)b n +1+1,n ∈N ,④④-③得nb n +2-(n -1)b n +1=(n +1)b n +1-nb n ,n ∈N *, 所以nb n +2+nb n =2nb n +1,n ∈N *,所以b n +2+b n =2b n +1, 所以b n +2-b n +1=b n +1-b n ,所以{b n }为等差数列. 因为n =1时b 1=-1,又b 2=1, 所以公差为2,所以b n =2n -3.(6分)(2) 由(1)得S n =q 2(1-q n )1-q ,所以S n +12t =q 2(1-q n )1-q +12t =q n +t 2(q -1)+q 2(1-q )+12t ,要使得⎩⎨⎧⎭⎬⎫S n +12t 为等比数列,则通项必须满足指数型函数,即q 2(1-q )+12t =0,解得t=q -1q.(9分) 此时S n +1+12t S n +12t =q n +22(q -1)q n +12(q -1)=q , 所以存在t =q -1q ,使得⎩⎨⎧⎭⎬⎫S n +12t 为等比数列.(10分)(3) c n =1b n +4=12n +1,设对于任意给定的正整数k (k ≥2),存在正整数l ,m (k <l <m ),使得c k ,c l ,c m 成等差数列,所以2c l =c k +c m ,所以22l +1=12k +1+12m +1. 所以12m +1=22l +1-12k +1=4k -2l +1(2l +1)(2k +1).所以m =2kl -k +2l4k -2l +1=(-4k +2l -1)(k +1)+(2k +1)24k -2l +1=-k -1+(2k +1)24k -2l +1. 所以m +k +1=(2k +1)24k -2l +1. 因为给定正整数k (k ≥2),所以4k -2l +1能整除(2k +1)2且4k -2l +1>0,所以4k -2l +1=1或2k +1或(2k +1)2.(14分)若4k -2l +1=1,则l =2k ,m =4k 2+3k ,此时m -l =4k 2+k >0,满足(k <l <m ); 若4k -2l +1=2k +1,则k =l ,矛盾(舍去);若4k -2l +1=(2k +1)2,则l =2k 2,此时m +k =0(舍去).综上,任意给定的正整数k (k ≥2),存在正整数l =2k ,m =4k 2+3k ,使得c k ,c l ,c m 成等差数列.(16分)江苏省无锡市2019届高三第一次模拟考试数学附加题参考答案及评分标准21. 因为A =⎣⎢⎡⎦⎥⎤0-110,所以⎣⎢⎡⎦⎥⎤a b 12⎣⎢⎡⎦⎥⎤0-110=⎣⎢⎡⎦⎥⎤34c d ,得⎩⎪⎨⎪⎧b =3,-a =4,2=c ,-1=d ,(6分) 即a =-4,b =3,c =2,d =-1,(8分)所以ad -bc =(-4)×(-1)-2×3=-2.(10分)22. 以极点O 为直角坐标原点,以极轴为x 轴的正半轴,建立直角坐标系,设P(ρ,θ),M(ρ′,θ),因为OM·OP =12,所以ρρ′=12.因为ρ′cos θ=3,所以12ρcos θ=3,即ρ=4cos θ, (3分)化为直角坐标方程为x 2+y 2-4x =0,即(x -2)2+y 2=4.(5分)由⎩⎨⎧x =-1+22t ,y =2+22t (t 为参数)得普通方程为x -y +3=0,(7分) 所以PQ 的最小值为圆上的点到直线距离的最小值,即PQ min =d -r =|2-0+3|2-2=522-2.(10分) 23. (1) 由题意得(x -2)2+y 2-|x +1|=1,(2分) 即(x -2)2+y 2=|x +1|+1.因为x>0,所以x +1>0,所以(x -2)2+y 2=x +2,两边平方,整理得曲线C 的方程为y 2=8x.(4分)设A(x 1,y 1),B(x 2,y 2),联立⎩⎪⎨⎪⎧y 2=8x ,y =kx +2, 得k 2x 2+(4k 2-8)x +4k 2=0,所以x 1x 2=4.(6分) 由k FA +k FB =y 1x 1-2+y 2x 2-2=k (x 1+2)x 1-2+k (x 2+2)x 2-2 =k (x 1+2)(x 2-2)+k (x 1-2)(x 2+2)(x 1-2)(x 2-2) =2k (x 1x 2-4)(x 1-2)(x 2-2).(8分) 将x 1x 2=4代入,得k FA +k FB =0,所以直线FA 和直线FB 的倾斜角互补.(10分)24. (1) 因为n ≥2,由1a n -1=2-a n -1a n -1-1, 得1a n -1=1-a n -1a n -1-1+1a n -1-1, 所以1a n -1-1a n -1-1=-1,(1分) 所以⎩⎨⎧⎭⎬⎫1a n -1是首项为-3,公差为-1的等差数列,且1a n -1=-n -2,所以a n =n +1n +2.(3分)(2) 下面用数学归纳法证明:S n <n -ln ⎣⎡⎦⎤n +32+12.①当n =1时,左边=S 1=a 1=23,右边=32-ln 2, 因为e 3>16⇔3ln e >4ln 2⇔ln 2<34, 32-ln 2>32-34=34>23, 所以命题成立;(5分)②假设当n =k(k ≥1,k ∈N *)时成立,即S k <k -ln k +32+12, 则当n =k +1,S k +1=S k +a k +1<k -ln k +32+12+k +2k +3, 要证S k +1<(k +1)-ln (k +1)+32+12, 只要证k -ln k +32+12+k +2k +3<(k +1)-ln (k +1)+32+12, 只要证ln k +4k +3<1k +3,即证ln ⎝⎛⎭⎫1+1k +3<1k +3.(8分) 考查函数F (x )=ln(1+x )-x (x >0),因为x >0,所以F ′(x )=11+x -1=-x 1+x<0, 所以函数F (x )在(0,+∞)上为减函数,所以F (x )<F (0)=0,即ln(1+x )<x ,所以ln ⎝⎛⎭⎫1+1k +3<1k +3,也就是说,当n =k +1时命题也成立.综上所述,S n <n -ln n +32+12.(10分)。

江苏省无锡市2018—2019学年第一学期高三数学期中复习试卷

江苏省无锡市2018—2019学年第一学期高三数学期中复习试卷

1 江苏省无锡市2018—2019学年第一学期期中复习试卷
高三数学
2018.11
一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应的位置上.........
.) 1.如图,若集合A ={1,2,3,4,5},B ={2,4,6,8,10},则图中阴影部分表示的集合为 .
2.已知i 为虚数单位,复数1z ,2z ,在复平面内对应的点关于原点对称,且123i z =-,则2z = .
3.根据如图所示的伪代码,最后输出的S 的值为 .
4.已知(1)4()1()42
x f x x f x x +<⎧⎪=⎨≥⎪⎩,,,则2(log 3)f = . 5.己知函数2
()lg(2)f x x ax =-+在区间(1,2)上的减函数,则实数a 的取值集合是 . 6.设x ,y 满足约束条件2302020x y x y y +-≥⎧⎪+-≤⎨⎪-≤⎩
,且z mx y =-+的最小值为13,则正实数m 的值为 .
7.已知函数()cos(3)3f x x π
=+,其中x ∈[6π,m ](m ∈R 且m 6
π>),若()f x 的值域是[﹣1
,,则m 的最大值是 . 8.已知函数2()ln f x x x -=-,则不等式(21)()0f a f a --<中a 的取值范围是 .
9
= . 10.已知n S 为数列{}n a 的前n 项和,若12a =,且12n n S S +=,设2log n n b a =,则12
1b b +231011
11b b b b ++的值是 . 11.已知正实数a ,b 满足
111a b a b
+=+-,则32a b +的最小值为 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无锡市2019届高三年级第一学期期中考试
数学试题
(总分160分,考试时间120分钟)
2018.11
一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.)
1.已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A)B = .
2
.函数()f x =
的定义域为 . 3.已知82a =,log 3a x a =,则实数x = .
4.设函数2()sin f x a x bx x =++,若(1)0f =,则(1)f - .
5.已知向量a ,b 的夹角为120︒,4a =,3b =,则2a b +的值为 .
6.若实数x ,y 满足条件122x y x y ≤⎧⎪≤⎨⎪+≥⎩
,则2x y +的最大值为 . 7.已知定义在区间[4π-
,]4π上的函数()2sin cos (0)f x a x x b a =+<的最大值为4,最小值为52
,则a b ⋅= . 8.已知函数2log 2()12x x f x ax x ≥⎧=⎨
-<⎩,,在R 上单调递增,则实数a 的取值范围为 . 9
.已知sin()64
x π
+=,则5sin()sin(2)66x x ππ-+-的值为 . 10.《九章算术》中研究盈不足问题时,有一道题是“今有桓厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢?”题意即为“有厚墙五尺,两只老鼠从墙的两边分别打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半,问几天后两鼠相遇?”一古城墙某处厚33尺,大小老鼠按上述方式打洞,相遇时是第 天.
11.在△ABC 中,点D 是线段BC 上任意一点,M 是线段AD 的中点,且BM AB λμ=+AC ,则λμ+= .
12.设x ,y 为正实数,且43112x y
+=++,则xy 的最小值为 . 13.定义12n n
P P P +++为n 个正数1P ,2P ,…,n P 的“均倒数”.若已知数列{}n a 的
前n 项的“均倒数”为123n +,又12n n a b +=,则1223910
111b b b b b b +++ . 14.已知函数()1g x kx =+在(2,+∞)上的零点为1x ,函数2()44f x kx x =+-在(0,2]
上的零点为2x ,则12
11x x +的范围为 . 二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文
字说明、证明过程或演算步骤.)
15.(本小题满分14分)
已知A(﹣2,4),B(3,﹣1),C(﹣3,k ).
(1)若AB 与BC 垂直,求实数k 的值;
(2)A ,B ,C 三点构成三角形,求实数k 的取值范围.
16.(本小题满分14分)
在四棱锥P —ABCD 中,已知M ,N 分别是BC ,PD 的中点,若ABCD 是平行四边形,∠BAC =90°.
(1)求证:MN ∥平面PAB ;
(2)若
PA ⊥平面ABCD ,求证:MN ⊥AC .。

相关文档
最新文档