初二代数二次根式综合练习一 (2)
初二代数二次根式综合练习一(2)
二次根式综合练习一、填空题:1、 计算:0)2(- =________;22-=________;12.0-=________;33--=________。
2、 计算:0)15(-=________;13-=________;32=________;2)3(-=________。
3、 计算: 1)2(-+8=_________。
4、 计算:20-515 =__________.5、 计算2)3(-=___________。
6、 若22)32()5(++-b a =0,则2ab =__________。
7、 当x_______时,x--23有意义。
8、在直角坐标系内,点P (-1,)到原点的距离为 。
二、选择题:9、下列二次根式中,最简二次根式是( )。
(A )x 9 (B)32-x (C)xyx - (D)b a 23 10、当a <-4时,那么|2-2)2(a +|等于( )(A)4+a (B)-a (C)-4-a (D)a 11、化简|a -2|+2)2(a -的结果是( )。
(A )4-2a (B)0 (C)24-a (D)4 12、231-与23+的关系是( )。
(A)互为相反数 (B)互为倒数 (C)相等 (D)互为有理化因式 13、5+2倒数是( )。
(A) 5-2 (B) -5-2 (C) -5+2 (D)251-14、下列各式中,一定能成立的是( )。
(A)22)5.2()5.2(=- (B)22)(a a =(C)122+-x x =x-1 (D)3392+⋅-=-x x x15、当-1<a <1时,化简22)1()1(-++a a 得( )。
(A)2 (B)-2 (C)2a (D)-2a16、下列各组中互为有理化因式的是( )。
(A)b a +与a b -- (B)a -2与2-a (C)32+a 与a 23- (D)a 与a 217、若0>>a b ,化简ba b a --2)(的结果为( )。
八年级数学下册《二次根式》综合练习题含答案
八年级数学下册《二次根式》综合练习题测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232B .32321C .281D .241三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525(6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x 5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式: (1)25与______; (2)y x 2-与______; (3)mn 与______; (4)32+与______; (5)223+与______; (6)3223-与______. 23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49.5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6. 11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1. 19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b (6);52 (7)49; (8)12; (9)⋅y xy 263 8..cm 62 9..72 10.210.11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1.16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5) ;36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab + 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+-- 15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0. 19.原式,32y x +=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n nn n nn (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n n n n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax -4.D . 5.D . 6.B . 7.⋅66 8..1862-- 9..3314218- 10.⋅417 11..215 12..62484- 13.(1)3;(2).55-- 14.B . 15.D .16.⋅-41 17.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.。
(完整)八年级二次根式综合练习题及答案解析.docx
填空题1. 使式子x 4 有意义的条件是。
【答案】x≥4【分析】二次根号内的数必须大于等于零,所以x-4≥ 0,解得x≥ 4 2. 当__________时,x 2 1 2 x 有意义。
【答案】 -2≤x≤12【分析】 x+2≥ 0, 1-2x≥ 0 解得 x≥- 2, x≤1123. 若m有意义,则 m 的取值范围是。
m 1【答案】 m≤0且m≠﹣1【分析】﹣ m≥0 解得 m≤ 0,因为分母不能为零,所以m+1≠ 0 解得 m≠﹣ 14.当 x __________ 时, 1 x 2 是二次根式。
【答案】 x 为任意实数【分析】﹙1- x﹚2是恒大于等于0 的,不论 x 的取值,都恒大于等于0,所以 x 为任意实数5.在实数范围内分解因式: x49 __________, x2 2 2x 2__________ 。
【答案】﹙x 2+ 3﹚﹙ x+3﹚﹙ x-3﹚,﹙ x- 2 ﹚2【分析】运用两次平方差公式:x 4- 9=﹙ x 2+ 3﹚﹙ x 2-3﹚=﹙ x 2+ 3﹚﹙ x+ 3 ﹚﹙x - 3 ﹚,运用完全平方差公式:x 2- 2 2 x+ 2=﹙ x- 2 ﹚26.若 4 x22x ,则 x 的取值范围是。
【答案】 x≥0【分析】二次根式开根号以后得到的数是正数,所以2x≥ 0,解得 x≥07.已知x22 x ,则x的取值范围是。
2【答案】 x≤2【分析】二次根式开根号以后得到的数是正数,所以2- x≥0,解得 x≤ 2 8.化简: x2 2 x 1 x p 1的结果是。
【答案】 1-x【分析】x2 2 x 1 =(x1)22,因为 x 1 ≥0,x<1所以结果为1-x9.当1x p5时,x2x 5 _____________ 。
1【答案】 4【分析】因为 x≥1 所以x 1 2= x 1,因为x<5所以x-5的绝对值为5-x,x- 1+5- x= 410.把 a1的根号外的因式移到根号内等于。
八年级初二数学二次根式练习题含答案
=
=
=
∵ ,
∴
=
=
∴
∵ , ,
∴ .
【点睛】
本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.
23.先阅读下列解答过程,然后再解答:
形如 的化简,只要我们找到两个正数 ,使 , ,使得 , ,那么便有:
例如:化简
解:首先把 化为 ,这里 ,由于 ,即: , ,
【答案】(1)4 ;(2)10
【分析】
(1)先计算出a+b、a-b的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;
(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.
【详解】
(1)∵a= + ,b= - ,
∴a+b= + + ﹣ =2 ,
A.m>﹣2B.m>﹣2且m≠1C.m≥﹣2D.m≥﹣2且m≠1
10.下列计算正确的是( )
A. B. C. D.
二、填空题
11.已知 ,则 ________.
12.已知a=﹣ ,则代数式a3+5a2﹣4a﹣6的值为_____.
13.已知 可写成 的形式( 为正整数),则 ______.
14.若 ,则 ______.
15.把 根号外的因式移到根号内,得_____________.
16.若 的整数部分为 ,小数部分为 ,则 的值是___.
17.化简二次根式 的结果是_____.
18.已知:x= ,则 可用含x的有理系数三次多项式来表示为: =_____.
19.把 的根号外的因式移到根号内等于?
20.最简二次根式 与 是同类二次根式,则 =________.
八年级二次根式综合练习题及答案解析
二次根式及其性质复习一.有关概念1、二次根式需要满足的条件是,。
下列各式中,不是二次根式的是()A、2B、C、D、- E. F. G.H.当x是多少时,+在实数范围内有意义?呢?2、最简二次根式需要满足的条件是不含,也不含。
若和都是最简二次根式,则。
下列各式不是最简二次根式的是()A. B. C. D.E. F. G. H.对于二次根式,以下说法中不正确的是()A. 它是一个非负数B. 它是一个无理数C. 它是最简二次根式D. 它的最小值为33、同类二次根式需要满足的条件是后,相同。
在中,与是同类二次根式的是。
若最简二次根式与是同类二次根式,则。
二、二次根式的性质1、被开方数的非负性若+=0,求的值.2、结果的非负性若与互为相反数,则。
3、()2=a (a≥0)(1)(2)(3) (4)(5)(b≥0) (6)(7);4、(1) (2) (3) (4). (5)若,则____________;若,则____________. 已知实数在数轴上的对应点如图所示,则____________.设a、b、c分别是三角形三边的长,化简:若时,试化简.5、化简二次根式(1);(2);(3)(4);(5);(6)使等式成立的条件是。
6、化简(1);(2);(3)(4);(5);(6)6如果,那么x的取值范围是()A、1≤x≤2 B、1<x≤2 C、x≥2 D、x>2三、二次根式的应用在实数范围内分解下列因式:(1);(2).观察分析下列数据,寻找规律:0,,,3,2,,3,……那么第10个数据应是____________.填空题1. 使式子有意义的条件是。
【答案】x≥4【分析】二次根号内的数必须大于等于零,所以x-4≥0,解得x≥42. 当时,有意义。
【答案】-2≤x≤【分析】x+2≥0,1-2x≥0解得x≥-2,x≤3. 若有意义,则的取值范围是。
【答案】m≤0且m≠﹣1【分析】﹣m≥0解得m≤0,因为分母不能为零,所以m+1≠0解得m≠﹣14. 当时,是二次根式。
二次根式综合练习
1二次根式综合练习一、单选题1.下列各式成立的是( )A .√(−3)2=−3B .√x 2=xC .√(−5)2=5D .√a 2+1=a +1 2.二次根式 √x −5 中字母x 的取值可以是( )A .x =5B .x =1C .x =2D .x =-1 3.当a <1时,化简√−a 3(1−a)的结果是( )A .a √(a −1)B .−a √a(a −1)C .a √a(−a)D .−a √a(−a) 4.二次根式 √2x −1 有意义时,x 的取值范围是( ). A .x >12 B .x ≥12 C .x <12 D .x ≤12 5.下列根式中,最简二次根式的是( )A .√4B .√12C .√12D .√106.计算并化简√5×√45 的结果为( ) A .2 B .√4 C .±2 D .±√47.下列运算正确的是( )A .√2+√3=√5B .√3−√2=1C .√2×√3=√5D .√24÷√8=√3 8.函数y =√x+3中,自变量x 的取值范围是( ) A .x >﹣3且x≠0 B .x >﹣3 C .x≥﹣3D .x≠﹣39.下列等式何者不成立( ) A .4√3+2√3=6√3 B .4√3−2√3=2√3 C .4√3×2√3=8√3 D .4√3÷2√3=2 10.下列二次根式是最简二次根式的为( )A .√10B .√20C .√23D .√3.6 11.已知y =√x −3+√3−x +1,则x +y 的平方根是( )A .2B .-2C .±2D .±112.实数a 、b 在数轴上的位置如图所示化简,√(a −b)2+√a 2−√b 2的结果为( )A .2a +2bB .−2aC .−2bD .2a −2b 13.把代数式 (a −1)√11−a中的 a −1 移到根号内,那么这个代数式等于()2A .−√1−aB .√a −1C .√1−aD .−√a −1 14.计算√2×√8+√−273的结果为( )A .﹣1B .1C .4−3√3D .7 15.若一个直角三角形的两条直角边长分别为 √13 cm 和 √14 cm ,那么此直角三角形的斜边长是( ) A .3 √2 cm B .3 √3 cm C .9cm D .27 cm 16.已知 √7 =a , √70 =b ,则 √10 等于( )A .a+bB .b-aC .abD .b a17.如图,长方形内三个相邻的正方形面积分别为4,3,和2,则图中阴影部分的面积为( )A .2B .√6C .2√3+√6−2√2−3D .2√3+2√2−5 18.√16 的值为( ) A .4 B .-4 C .±4 D .219.下列计算正确的是( ) A .√(−3)2=−3 B .√9=±3C .√−83=2D .√(−4)33=−4 20.估计 2√6 的大小应( )A .在2~3之间B .在3~4之间C .在4~5之间D .在5~6之间 21.若式子 √3−x 在实数范围内有意义,则x 的取值范围是( )A .x <3B .x ≤3C .x ≥3D .x ≠3 22.下列二次根式中,最简二次根式是( ) A .√12B .√17C .√75D .√5a 3 23.如果 a =√3+2, b =√3−2 ,那么 a 与 b 的关系是( ) A .a +b =0 B .a =b C .a =1b D .a <b 24.下列计算正确的是( )A .√2+√3=√5B .3√2−2√2=1C .√2×√3=√6D .√24÷√6=4 25.计算 4√12+3√13−√8 的结果是( ) A .√3+√2 B .√3 C .√33 D .√3−√226.下列计算正确的是( )3A .(3−2√2)(3−2√2)=9−2×3=3B .(2√x +√y )(√x −√y )=2x −yC .(3−√3)2=32−(√3)2=6D .(√x +√x +1)(√x +1−√x )=1 27.已知x 为实数,化简√−x 3−x √−1x的结果为( ) A .(x −1)√−x B .(−1−x )√−x C .(1−x )√−x D .(1+x )√−x二、填空题28.若二次根式 √x −3 在实数范围内有意义,则x 的取值范围是 . 29.二次根式 √x +4 中,字母x 的取值范围是 . 30.(√6+√5)2021×(√6−√5)2022 = . 31.若一个二次根式与 √12 的积为有理数,则这个二次根式可以是 32.计算√−83+√36−√49= ;33.如果最简二次根式√2x −1与√5是同类二次根式,那么x 的值为 . 34.已知实数a ,b ,c 表示一个三角形的三边长,它们满足 √a −3 +|b-3|+ √c −4 =0,则该三角形的形状为 35.已知1<a <3,则化简 √1−2a +a 2 ﹣ √a 2−8a +16 的结果是 .36.函数y = √x+5x 的自变量x 的取值范围为 . 37.比较大小: 1√6−√5 1√7−√6(用 >,< 或 = 填空) 38.①比较大小:- 3√2 -4;②√33的倒数为 . 39.若x 、y 满足y= √x −2 + √2−x +4,xy= . 40.如果最简二次根式 √2a −3 与 √7 是同类二次根式,那么a 的值是 .三、计算题41.计算: (1)4√12−√18+√8 (2)√12×√36√6 (3)(√2−√3)2−(√3+√2)(√3−√2) .四、解答题42.计算: 3√3−√27+(π−2020)0+√24÷√2 43.若 x , y 为实数,且 x =√y 2−1+√1−y 2+y y+1,求 x −3+y 的值.44.已知a ,b 分别为等腰三角形的两条边长,且a ,b 满足 b =3+√3a −6+5√2−a ,求此三角形的周4 长.45.有一道练习题是:对于式子 2a −√a 2−4a +4 先化简,后求值.其中 a =√2 . 小明的解法如下:2a −√a 2−4a +4 = 2a −√(a −2)2 =2a ﹣(a ﹣2)=a+2= √2 +2. 小明的解法对吗?如果不对,请改正.46.如果最简二次根式 √3a −8 与 √17−2a 是同类二次根式,那么要使式 √4a −2x +√x −a 有意义,x 的取值范围是什么?47.实数a 、b 、c 在数轴上的对应点位置如图所示,化简: √(−c)2+|a −b|+√(a +b)33−|b −c|48.古希腊的几何学家海伦给出了求三角形面积的公式:S= √p(p −a)(p −b)(p −c) ,其中a ,b ,c 为三角形的三边长,p= a+b+c 2.若一个三角形的三边长分别为2,3,4,求该三角形的面积.49.若a 、b 、c 是△ABC 的三条边长,且满足等式 √a −1+(b −√3)2+(c −2)2=0 求证:△ABC 是直角三角形50.如图所示是工人师傅做的一块三角形铁板材料,BC 边的长为2 √35 cm ,BC 边上的高AD 为 √28 cm ,求该三角形铁板的面积.每天进步一点点,就是迈向卓越的开始 5 答案解析部分1.【答案】C2.【答案】A3.【答案】B4.【答案】B5.【答案】D6.【答案】A7.【答案】D8.【答案】B9.【答案】C10.【答案】A11.【答案】C12.【答案】B13.【答案】A14.【答案】B15.【答案】B16.【答案】D17.【答案】D18.【答案】A19.【答案】D20.【答案】C21.【答案】B22.【答案】B23.【答案】A24.【答案】C25.【答案】B26.【答案】D27.【答案】C28.【答案】x≥329.【答案】x≥-430.【答案】√6−√531.【答案】√3632.【答案】-333.【答案】334.【答案】等腰三角形35.【答案】2a−536.【答案】x≥-5且x≠037.【答案】< 38.【答案】<;√339.【答案】840.【答案】541.【答案】(1)解:原式=2 √2 -3 √2 +2 √2 = √2 (2)解:原式= √12×√3×√66 =√12×3×66 =√6 (3)解:原式=5- 2 √6 -(3--2)=4- 2 √6 42.【答案】解:原式= √3−3√3+1+2√3 =143.【答案】解:由题意得,y 2-1≥0且1-y 2≥0, 所以,y 2≥1且y 2≤1,所以,y 2=1所以,y=±1,又∵y+1≠0,∴y≠-1,所以,y=1,所以,x= 11+1=12 ,∴x −3+y =(12)−3+1=944.【答案】解:∵b =3+√3a −6+5√2−a ∴3a -6≥0,2-a≥0∴a=2∴b=3∵a ,b 分别为等腰三角形的两条边长 ∴等腰三角形的另一条边为2或3∴等腰三角形的周长为:2+2+3=7或2+3+3=845.【答案】解:小明的解法不对.改正如下:7 2a −√a 2−4a +4 = 2a −√(a −2)2 =2a ﹣|a ﹣2|, ∵a= √2 ,∴a ﹣2<0,∴原式=2a+a ﹣2=3a ﹣2,把a= √2 代入得原式=3 √2 ﹣246.【答案】解:由题意,得3a ﹣8=17﹣2a ,解得a=5;4a ﹣2x≥0且x ﹣a≥,解得5≤x≤10,√4a −2x +√x −a 有意义,x 的取值范围是5≤x≤1047.【答案】解:原式=|-c|+|a-b|+a+b-|b-c|, =c+(-a+b )+a+b-(-b+c ),=c-a+b+a+b+b-c ,=3b.48.【答案】解:设a=2,b=3,c=4, ∴p= a+b+c 2=2+3+42=92∴S= √p(p −a)(p −b)(p −c)= √92(92−2)×(92−3)×(92−4) = 3√154∴该三角形的面积为 3√15449.【答案】证明:由题意,得a= 1,b= √3 ,c= 2,∵a 2+b 2= 4,c 2= 4,∴a 2+b 2=c 2, ∴△ABC 是直角三角形50.【答案】解:解:根据题意可知,S △ABC =12×BC ×AD =12×2√35×√28=√35×28=14√5故三角形铁板的面积为14 √5 cm 2。
二次根式练习题及答案(2)(可编辑修改word版)
若代数式V 乔(X-1)。
在实数范用内有意义,则X 的取值范用为.四-解答题(共8小题)10.若禹 b 为实数,a={2b- 14+\/7-bD 抑G-b)2・二次根式练习题 A. 要使式子字有意义,则X 的取值范囤是( x>l B. x> - 1 C. x>l D. x> - 12. A. 式子/丄圧实数范用内有意义,则S 的取值范用是( V X - 1 x<l B. xWl C. x>l D. s213. 下列结论正确的是( A ・ 3a'b - a'b=2B .单项式-x=的系数是-1 C .使式子\忌有意义的X 的取值范用是x> - 2 D . 4. A. 5. 色2-1 若分1 _的值等于 a+1要使式子』应有意义,则a 的取值范囤是( )a aHO B. a> • 2 且 aT^O C ・ a> ・ 2 或 aHO D, aM - 2 且 aHO 使返豆有意义,则s 的取值范用是—• X 0,则 a=+l 6.若代数仔有意义,则X 的取值范帥 7. 已知屈二£是正整数,则实数n 的最大值为.9. 若实数a 满足a ・8 +Ja- 10=a ,则a=11.已知也=返垒陌1_3,求伽+ “严的值?n +412.已知小y为等腰三角形的两条边长,且X, y满足y = 二雄二r + 4,求此三角形的周长13.己知a、b、c满足J2d+b - 4小-c+l|=JL^+需丸.求a+b+c的平方根.14・若a、b为实数,且沪\/14 ■ Zb+Jb ■ 7+3・求寸(自• b) 2•15・已知yVJx■旷02・Z化简ly・3l - Jy2 - 8y+16・16. 已知a 、b 满足等式br/2a- 6+的-3d - 9・求出a. b 的值分别是多少? 试求五亦-傅十需溯值•已知实数a 满足{(2008- d) 2009",求" 2008=的值是多少?(1) (2)参考答素与试8解析 J Y — 11・(2016•划门)要使式- —j 恿义,则X 的取值范隔是(2A. x>l B ・ x> - 1 C. xMl D ・ xM - 1J V — 1 【解答】解:要使式子P c 有意义,2 故乳・1MS 解得:xN 】・ 则X 的取值范困是:xMl.故选:C. 2.(缈6•贵港)式勺E 做数范碉内《义,则•,的取值范碉是C A. x<l B ・ xWl C. x>l D. xNl【解答】解:依題总得:X-1>O. 解得x>l ・ 故选:C. 3. (2016-杭州校级自主招生)下列结论正确的是( A. 3a-b - a-b=2 in 项式-x :的系数是-1使式-"h+2右恿义的X 的取值范用是x> - 2 B. C, D ・ 界-1若分式 -------- 的值等于0,则沪±1a+1【解答】解:3a=b - a^b=2a=b, A 错熙爪项式的系数是• 1. B 正确:使式fVx+2竹意义的X 的取值范用是xM-2. C 错決界-1若分式 -------- 的值等于0.则沪1,错误,a+1故选:B. 4. <2016•博野县校级自主招生)要使式子』应有恿义・则a 的取值范ra 是( A ・ aHO B. a> - 2 且 aHO C ・ a> -2 或 aHO D ・ aM ・ 2 且 a 工0 【解答】解:由題意得・計2M0. aHO.解斜• aM ・2且aHO.故选:D. 5."州校级自主招生)沮警有意义,则•,的取值范収亠寻9. 【解答】解:根据题意得,3X-2M0且xHO.9 解斜x>-三且xHO ・ 3 故答案为.xM-gL xHO.yA/ V — 26.(沁•永«模拟)若代数式匕有意义,则•,的取值范册.【解答】解2根据题御X-2MS 且X-3H0. 解得• xN2且x#3:故答案是:xN2且xH3, 7.(2016春•固始县期末)已知(12- n是正整数・则实数n 的报大值为_ H・【解答】解:由题总可知12-n是一个完全平方数,且不为0.嚴小为1-所以n的最大值为12-1=11.8. (2016-大悟县_模)若代数式”x+3牛(x-l)°在实数范困内有意义,则X的取值范隔为xN・3且xH【解答】解:由題总得:寸3MS且x・lH0・解得:xM・3且xHl.故答案为.xM- 3且xHl.9・(2009 -兴化市模拟)若实数a满足la-8 认 -]0% 则沪_Ll【解答】解,根据题意得,a-105^0,解得a^lO.•••原等式可化为S a・8+&- 10%叭/d-10冷Aa- 10=61,解御:a=74.10. <2015 #•绵阳期中〉若 a. b 为实数,叫2b - 14+"7 - 2 求J(a- b) 2.【解答】解:由題总得・2b - 115= 0且7-b>0. 解得bN7且bW7, a=3i 所以• J(a-b)&J(3-7)S・L r _ 2di 7求(mF宀的值?H. <2016-^顺县校级篠拟〉已知n+4【解答】解.由題意得.16・£MO. n=- 16^0.十4H0. 则n'=16. nH - 4.解得■ n=*L则m= - 3,(m+n)浹=】• 12. (2016春•微ft县校级〃考〉已知M.y为等腰三角形的两条边长,且斗y满足尸{齐左(2« - 6別・求此三允形的周长.【解答】解:由題意得・3-x^O. 2K・6M0・解斜• x=3.则 y=4i半腰为3•底边为4时,-角形的周长为:3+3+4=10, 腰为4•底边为3时,三角形的周长为:3+4+4=11, 答:此三角形的周长为10或H ・13. (2015 春•武昌区期中)已知 a 、b 、c 满足V2d+b -4+ a-crln/b-求屮br 的 平方根.【解答】解:由題总b • cM 0且c - bMO. 所以• bNc 且cNb,所以• b=c.所以.等式可变为"2册 -4Ta ・bT =°,解 <a=tlb=2 所以•c=2.所以.a+b+c 的平方根是±>/^・ 14. (2015 R-宜兴市校级期中)若a 、b 为实数,且知期-2b+{b-7+3,求寸(a - b ) 2.【解答】解:根据题氫得:”4 我Aolb-7>0解斜:b=7 •则 a=3.则原式=a-b| = |3-7|=4.15. (2015 #•荣县校级JJ 考)已知y v#x-卩/2 - Z 化简1厂3| -£2_ 8y+16・【解答】解:根据题意得:, 2^匕 解得:E12-x>0则yV3・则原式=3 - y - y - 4|=3 - y - <4-y ) = -2y-l.16.(2014春•富顺县校级期末)已知a 、b 满足等式b 二y2a • 6十“9 - 33 -9(1)求出a 、b 的值分别是多少?⑵试求A ZT 亦-的忆【解答】解:(1)由题总:得.2a-6^0且9・3aM0, 解得&S 且aW3・所以,a=3> b=・ 9;由非负数的性质斜.2a+b-4=0, a- b+l=O- d(-9)2+ 引3%(-9)・=6-9-3.=-6・17. (2014秋•宝兴县校级期末)已知实数a满足+乜8・2009% 求a・2008’的值是多少?【解答】解:72:次根式有恿义.Aa- 20095=0.即a5= 2009,•••2008・aW-lV0・•"・2008勺0- 2009"・解得寸Q-2009=2°°&等式两边平方,整理a -2008^2009.。
北师大版八年级数学上册--第二单元二次根式一练习题(含答案)
二次根式二次根式(一)知识与技能填空:(1)4的平方根是___________,算术平方根是____________.3的平方根是___________,算术平方根是___________.25的平方根是___________,算术平方根是___________.(2)化简:= ___________,= ___________,= ___________, =___________ ,= ___________,= ___________.(3)若a<1,化1.简= ___________.x4有最小值,其最小值是___________.(4)当x= 时,代数式5(5)若=16,则a=___________;若=25,则b=___________.(6) =3-x成立的条件是___________.(7)成立的条件是___________.(8) 成立的条件是___________.2.下列各式中,二次根式的个数是( )①;(1)②;③1x;④5⑤πA .1 个B .2 个C .3 个 D.4个(2)使式子有意义的x 的取值范围是( ) A.x≥-2 B.x≥-2且x≠-1C.x≠-1D.x>-1(3)下列各式中,正确的是( )A. B. C.9=±3 D.(4)下列运算正确的是( )A.a0=1B.(2a+1)2=4a2+2a+1C.-(2xy2)3=-8x3y6D. =a(5)若x<-2,则化简的结果是( )A.2x+4B.-2x+4C.0D.2x(6)能够使二次根式有意义的x的值有( )A.0个B.1个C.2个D.3个3.计算:(1);(2); (3).4.计算:(1); (2);(3); (4).5.求下列二次根式中字母x 的取值范围:(1); (2);(3); (4);(5).6.已知,求a+b-c 的值. 解决问题7.实数a 在数轴上的对应点如图所示,化简:8.若-1<a<0,化简: .参考答案知识与技能1.(1)±2,2,±3,3,±5,5(2)7,35,4,0.3,5,4(3)26,62,,,,65,27,230,27(4)-a (5)-45,0(6)±16,25 (7)x ≤3(8)x ≥4 (9)x ≥12.(1)C(2)B(3)A(4)C(5)D(6)B3.(1)108 (2)80 (3)384.(1)9 (2)7 (3)2-1 (4)π-3.14 5.(1)x ≥21(2)x 取全体实数 (3)x>5(4)-2≤x ≤2(5)x ≥1且x ≠16.-2解决问题7.-28.-2a-1。
八年级数学下册《二次根式》综合练习题带答案
八年级数学下册《二次根式》综合练习题一、选择题1、如果-3x+5是二次根式,则x的取值范围是()A、x≠-5B、x>-5C、x<-5D、x≤-52、等式x2-1 =x+1 ·x-1 成立的条件是()A、x>1B、x<-1C、x≥1D、x≤-13、已知a=15 -2,b=15 +2,则a2+b2+7 的值为()A、3B、4C、5D、64、下列二次根式中,x的取值范围是x≥2的是()A、2-xB、x+2C、x-2D、1 x-25、在下列根式中,不是最简二次根式的是()A、a2 +1B、2x+1C、2b4D、0.1y6、下面的等式总能成立的是()A、a2 =aB、a a2 =a2C、 a · b =abD、ab = a · b7、m为实数,则m2+4m+5 的值一定是()A、整数B、正整数C、正数D、负数8、已知xy>0,化简二次根式x-yx2的正确结果为()A、yB、-yC、-yD、--y9、若代数式(2-a)2 +(a-4)2的值是常数2,则a的取值范围是()A、a≥4B、a≤2C、2≤a≤4D、a=2或a=410、下列根式不能与48 合并的是()A、0.12B、18C、113D、-7511、如果最简根式3a-8 与17-2a 是同类二次根式,那么使4a-2x 有意义的x的范围是()A、x≤10B、x≥10C、x<10D、x>1012、若实数x、y满足x2+y2-4x-2y+5=0,则x +y3y-2x的值是()A 、1B 、32 + 2 C 、3+2 2 D 、3-2 2二、填空题 1、要使x -13-x有意义,则x 的取值范围是 。
2、若a+4 +a+2b -2 =0,则ab= 。
3、若1-a 2与a 2-1 都是二次根式,那么1-a 2+a 2-1 = 。
4、若y=1-2x +2x -1 +(x -1)2,则(x+y)2003= 。
(完整版)二次根式专题练习(含答案)
初二数学专题练习《二次根式》一.选择题1.式子在实数范围内有意义,则x 的取值范围是()A .x<1 B.x≤1 C .x> 1D. x≥ 12.若 1<x<2,则的值为() A .2x﹣4 B.﹣ 2 C .4﹣2x D.2 3.下列计算正确的是() A .=2B.=C.=x D.=x 4.实数 a , b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B.2a ﹣b C .﹣ b D.b5.化简+ ﹣的结果为()A.0 B.2 C .﹣2 D. 26.已知 x<1,则化简的结果是() A . x﹣ 1 B.x+1 C .﹣ x﹣1D . 1﹣ x7.下列式子运算正确的是() A .B. C .D.8.若,则 x3﹣ 3x2+3x 的值等于()A .B. C .D.二.填空题9.要使代数式有意义,则 x 的取值范围是.10.在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为.11.计算:=.12.化简:=.13.计算:(+)=.14.观察下列等式:第 1 个等式: a 1==﹣1,第 2 个等式: a 2==﹣,第 3 个等式: a 3==2﹣,第 4 个等式: a 4==﹣2,按上述规律,回答以下问题:( 1)请写出第 n 个等式: a n=;( 2) a 1+a 2+a 3+ +a n =.15.已知 a 、b 为有理数,m 、n 分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b=.16.已知: a <0,化简=.17.设,,,,.设,则 S=(用含n的代数式表示,其中n 为正整数).三.解答题18.计算或化简:﹣(3+);19.计算:(3﹣)(3+)+(2﹣)20.先化简,再求值:,其中x=﹣3﹣(π﹣3)0.21.计算:(+ )× .22.计算:×(﹣)+| ﹣2 |+ ()﹣3.23.计算:(+1 )(﹣1)+ ﹣()0.24.如图,实数 a 、b 在数轴上的位置,化简:.25.阅读材料,解答下列问题.例:当 a >0 时,如 a=6 则|a|=|6|=6,故此时a的绝对值是它本身;当 a=0 时, |a|=0 ,故此时 a 的绝对值是零;当 a <0 时,如 a= ﹣ 6 则|a|=| ﹣ 6|= ﹣(﹣ 6),故此时 a 的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:( 1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.26.已知: a=,b=.求代数式的值.27.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)( 1)请用不同的方法化简.(2=;=.(3)化简:+++ +.28.化简求值:,其中..参考答案与解析一.选择题1.( 2016? 贵港)式子在实数范围内有意义,则x 的取值范围是()A . x< 1B.x≤1 C . x>1D.x≥1【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得 x 的取值范围.【解答】解:依题意得: x﹣ 1> 0,解得 x>1.故选: C.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零..2.( 2016? 呼伦贝尔)若 1<x<2,则的值为()A . 2x﹣4 B.﹣ 2 C .4﹣2x D.2【分析】已知 1< x< 2,可判断 x﹣3<0,x﹣ 1>0,根据绝对值,二次根式的性质解答.【解答】解:∵ 1< x< 2,∴x﹣ 3< 0, x﹣ 1>0,原式 =|x ﹣ 3|+=|x ﹣3|+|x﹣1|=3﹣x+x ﹣ 1=2.故选 D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当 a > 0 时,表示a的算术平方根;当 a=0 时,=0 ;当 a 小于 0 时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.3.( 2016? 南充)下列计算正确的是()A .=2B.= C .=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解: A 、=2,正确;B、=,故此选项错误;C 、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选: A..【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.4.( 2016? 潍坊)实数 a ,b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B. 2a ﹣ b C .﹣ bD .b【分析】直接利用数轴上 a ,b 的位置,进而得出 a <0,a ﹣b < 0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示: a <0,a ﹣b <0,则 |a|+=﹣a ﹣( a ﹣b )=﹣2a+b .故选: A.【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.5.( 2016? 营口)化简+﹣的结果为()A.0 B.2C.﹣2D.2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3 +﹣2=2,故选: D.【点评】本题考查了二次根式的加减,先化简,再加减运算.6.已知 x<1,则化简的结果是()A . x﹣ 1B.x+1 C .﹣ x﹣1 D.1﹣x【分析】先进行因式分解, x2﹣2x+1= (x﹣1)2,再根据二次根式的性质来解题即可..【解答】解:==|x ﹣1|∵x< 1,∴原式 =﹣( x﹣ 1) =1﹣ x,故选 D.【点评】根据完全平方公式、绝对值的运算解答此题.7.下列式子运算正确的是()A.B.C.D.【分析】根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.【解答】解: A 、和不是同类二次根式,不能计算,故 A 错误;B、=2,故B错误;C、=,故C错误;D、=2 ﹣+2+ =4,故 D 正确.故选: D.【点评】此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.8.若,则x3﹣3x2+3x的值等于()A.B.C.D..【分析】把 x 的值代入所求代数式求值即可.也可以由已知得(x﹣1)2 =3,即 x2﹣ 2x﹣2=0,则 x3 ﹣3x2+3x=x (x2﹣ 2x﹣2)﹣( x2﹣2x ﹣2)+3x ﹣ 2=3x﹣ 2,代值即可.【解答】解:∵ x3﹣3x2 +3x=x ( x2﹣3x+3 ),∴当时,原式 =()[﹣3()+3]=3+1 .故选 C.【点评】代数式的三次方不好求,就先提取公因式,把它变成二次方后再代入化简合并求值.二.填空题9.( 2016? 贺州)要使代数式有意义,则x的取值范围是x≥﹣ 1 且 x≠0.【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于 0,列不等式组求解.【解答】解:根据题意,得,解得 x≥﹣ 1 且 x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.10.( 2016? 乐山)在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为3.【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得: a ﹣5<0,a ﹣ 2> 0,则+|a ﹣ 2|=5﹣a+a ﹣2=3.11.( 2016? 聊城)计算:=12.【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12 .故答案为: 12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.12.( 2016? 威海)化简:=.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式 =3﹣2=.故答案为:.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.13.( 2016? 潍坊)计算:(+)=12.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式 = ?(+3)=×4=12 .算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.( 2016? 黄石)观察下列等式:第 1 个等式: a 1= = ﹣ 1,第 2 个等式: a 2= = ﹣,第 3 个等式: a 3= =2﹣,第 4 个等式: a 4= = ﹣ 2,按上述规律,回答以下问题:( 1)请写出第 n 个等式: a n= = ﹣;;( 2) a 1+a 2+a 3+ +a n = ﹣1 .【分析】( 1)根据题意可知,a 1= = ﹣1,a 2 = = ﹣,a 3= =2 ﹣,a 4== ﹣ 2,由此得出第 n 个等式: a n = = ﹣;( 2)将每一个等式化简即可求得答案.【解答】解:(1)∵第 1 个等式: a 1= = ﹣1,第 2 个等式: a 2= = ﹣,第 3 个等式: a 3= =2﹣,第 4 个等式: a 4= = ﹣2,∴第 n 个等式: a n= = ﹣;(2) a 1+a 2+a 3+ +a n=(﹣1)+(﹣)+(2﹣)+(﹣2)++(﹣)故答案为=﹣;﹣1.【点评】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.15.已知 a 、b 为有理数, m 、n 分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5.【分析】只需首先对估算出大小,从而求出其整数部分 a ,其小数部分用﹣a表示.再分别代入 amn+bn 2=1 进行计算.【解答】解:因为 2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把 m=2 ,n=3 ﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得( 6a+16b )﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以 6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以 2a+b=3 ﹣0.5=2.5 .故答案为: 2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.16.已知: a <0,化简=﹣2.【分析】根据二次根式的性质化简.【解答】解:∵原式 =﹣=﹣又∵二次根式内的数为非负数∴a ﹣ =0∴a=1 或﹣ 1∵a <0∴a= ﹣ 1∴原式 =0﹣2= ﹣2.【点评】解决本题的关键是根据二次根式内的数为非负数得到 a 的值.17.设,,,,.设,则 S=(用含n的代数式表示,其中n 为正整数).【分析】由 S n =1++===,求,得出一般规律.【解答】解:∵ S n =1++===,∴==1+=1+﹣,∴S=1+1﹣ +1+ ﹣ + +1+ ﹣=n+1 ﹣==.故答案为:.【点评】本题考查了二次根式的化简求值.关键是由S n变形,得出一般规律,寻找抵消规律.三.解答题(共11 小题)18.( 2016? 泰州)计算或化简:﹣(3+);【解答】解:(1)﹣(3+)=﹣(+)=﹣﹣=﹣;【点评】本题考查了二次根式的加减法以及分式的混合运算,正确化简是解题的关键.19.( 2016? 盐城)计算:(3﹣)(3+)+(2﹣)【分析】利用平方差公式和二次根式的乘法法则运算.【解答】解:原式 =9 ﹣7+2﹣ 2=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.( 2016? 锦州)先化简,再求值:,其中x=﹣3﹣(π﹣3)0.【分析】先根据分式混合运算的法则把原式进行化简,再把化简后x 的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=×4﹣﹣1,=2 ﹣﹣1,=﹣1.把 x=﹣1代入得到:==.即=.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.21.计算:(+)×.【分析】首先应用乘法分配律,可得(+)×合运算顺序,先计算乘法,再计算加法,求出算式(【解答】解:(+)×= ×+×;然后根据二次根式的混+)×的值是多少即可.=×+×=1+9=10【点评】此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.22.计算:×(﹣)+|﹣2|+ ()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8 ,然后化简后合并即可.【解答】解:原式 =﹣+2 +8=﹣3 +2 +8=8﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运.算,然后合并同类二次根式.也考查了负整数整数幂、23.计算:(+1 )(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣ 1+2﹣1,然后进行加减运算.【解答】解:原式 =3﹣ 1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.24.如图,实数 a 、b 在数轴上的位置,化简:.【分析】本题综合性较强,不仅要结合图形,还需要熟悉算术平方根的定义.【解答】解:由数轴知, a <0,且 b >0,∴a ﹣b <0,∴,=|a| ﹣|b|﹣[﹣(a﹣b)],=(﹣ a )﹣ b+a ﹣b ,=﹣2b .【点评】本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.观察数轴确定 a 、 b 及 a ﹣ b 的符号是解答本题的关键,本题巧用数轴给出了每个数的符号,渗透了数形结合的思想,这也是中考时常考的知识点.本题考查算术平方根的化简,应先确定 a 、b 及 a ﹣b 的符号,再分别化简,最后计算.25.阅读材料,解答下列问题.例:当 a >0 时,如 a=6 则|a|=|6|=6,故此时a的绝对值是它本身;当 a=0 时, |a|=0 ,故此时 a 的绝对值是零;当 a <0 时,如 a= ﹣ 6 则|a|=| ﹣ 6|= ﹣(﹣ 6),故此时 a 的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:( 1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.【分析】应用二次根式的化简,首先应注意被开方数的范围,再进行化简.【解答】解:(1)由题意可得=;( 2)由( 1)可得:=|a|.【点评】本题主要考查二次根式的化简方法与运用:①当 a >0 时,=a ;②当 a < 0 时,= ﹣ a ;③当 a=0 时,=0.26.已知: a=,b=.求代数式的值.【分析】先求得 a+b=10 ,ab=1 ,再把求值的式子化为 a 与 b 的和与积的形式,将整体代入求值即可.【解答】解:由已知,得 a+b=10 ,ab=1 ,∴===.【点评】本题关键是先求出a+b 、ab 的值,再将被开方数变形,整体代值.27.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)( 1)请用不同的方法化简.(2=;=.(3)化简:+++ +.【分析】(1 )中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;( 2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;.(2)原式= + +=++ +=.【点评】学会分母有理化的两种方法.28.化简求值:,其中.【分析】由 a=2+,b=2﹣,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式 =+,约分后得+,接着分母有理化和通分得到原式=,然后根据整体思想进行计算.【解答】解:∵ a=2+>0,b=2﹣>0,∴a+b=4 ,ab=1 ,∴原式=+=+=+=,当 a+b=4 ,ab=1 ,原式 =×=4.【点评】本题考查了二次根式的化简求值:先把各二次根式化为最简二次根式,再合并同类二次根式,然后把字母的值代入(或整体代入)进行计算.。
(完整版)二次根式经典练习题初二
二次根式练习题一、选择题1. 下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x2.若13-m 有意义,则m 能取的最小整数值是( )A .m=0B .m=1C .m=2D .m=33.若x<0,则x x x 2-的结果是( )A .0B .—2C .0或—2D .24.下列说法错误的是 ( )A .962+-a a 是最简二次根式 B.4是二次根式C .22b a +是一个非负数 D.162+x 的最小值是45n 的最小值是( )A.4B.5C.6D.26.化简6151+的结果为( )A .3011B .33030C .30330D .1130 7..把a a 1-根号外的因式移入根号内的结果是( )A 、 a -B 、a --C 、aD 、a -8. 对于所有实数,a b ,下列等式总能成立的是( )A. 2a b =+B. a b =+C. 22a b =+D. a b =+9. )A. 它是一个非负数B. 它是一个无理数C. 它是最简二次根式D. 它的最小值为3 10. 下列式子中正确的是( )A. =B. a b =-C. (a b =-D. 22==二、填空题11.①=-2)3.0( ;②=-2)52( 。
12.化简:计算=--y x yx _______________;13.计算3393aa a a -+= 。
14)1x p 的结果是 。
15. 当1≤x <55_____________x -=。
16.))2000200122______________=g 。
17.若0≤ a ≤1,则22)1(-+a a = ;18.先阅读理解,再回答问题:2,<1;3,=<的整数部分为2;4,=<<3;n 为正整数)的整数部分为n 。
x ,小数部分是y ,则x -y =______________。
三、计算(1)225241⎪⎪⎭⎫⎝⎛-- (2))459(43332-⨯(3)2332326--(4)2(5)(()2771+--(6). ((((22221111+-(7)计算:1031 (231)321211++++++++四、 解答题1.已知:的值。
初二数学上册二次根式的化简综合练习题
初二数学上册二次根式的化简综合练习题在初二数学上册中,学生们将会学习到二次根式的化简综合练习题。
二次根式是数学中的重要知识点之一,对学生的数学素养和问题解决能力提出了挑战。
本文将围绕初二数学上册二次根式的化简综合练习题展开论述。
一、基本概念回顾首先,让我们回顾一下二次根式的基本概念。
二次根式是形如√n的表达式,其中n为一个非负实数。
二次根式可以是一个根数,也可以是两个根数的和、差、积或商。
1. 二次根式的化简规则在化简二次根式时,我们需要掌握以下规则:(1)如果√a * √b,其中a和b都是非负实数,则可以化简为√(ab)。
(2)如果√a / √b,其中a和b都是非负实数且b不等于0,则可以化简为√(a/b)。
(3)如果√a + √b,其中a和b都是非负实数,则无法化简,我们可以保留原样。
(4)如果√a - √b,其中a和b都是非负实数,则无法化简,我们可以保留原样。
2. 二次根式的运算法则在进行二次根式的运算时,我们需要注意以下法则:(1)加法和减法:只有当二次根式中的根数相同才可以相加或相减。
(2)乘法:二次根式的乘法可以化简为一个整数或含有根号的简化根式。
(3)除法:二次根式的除法是将被除数的分子和分母同时乘以其共轭复数,并进行化简。
二、化简综合练习题以下是一些初二数学上册的二次根式的化简综合练习题,请根据学习的规则和法则进行解答。
1. 将以下二次根式化简至最简形式:(1)√12(2)√18(3)√200(4)√482. 计算以下二次根式的和或差:(1)√3 + √12(2)√5 - √20(3)√7 + √3 - √10(4)√40 - √10 + √53. 按要求进行化简:(1)将√50写成a√2的形式。
(2)将√72写成b√3的形式。
4. 计算以下二次根式的乘积或商:(1)√5 * √8(2)√12 * √18(3)√50 / √2(4)√84 / √7以上练习题旨在帮助学生巩固对二次根式的化简规则和运算法则的理解,并提高解决问题的能力。
八年级数学-二次根式练习题(含解析)
八年级数学-二次根式练习题(含解析)一.选择题(共15小题)1.二次根式在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥﹣1 C.x≠2 D.x≥﹣1且x≠22.若式子在实数范围内有意义,则x的取值范围是()A.x≥0 B.x≥1 C.x>1 D.x>03.若在实数范围内有意义,则x的取值范围是()A.x>﹣B.x>﹣且x≠0 C.x≥﹣D.x≥﹣且x≠04.式子+有意义的条件是()A.x≥0 B.x≤0 C.x≠﹣2 D.x≤0且x≠﹣25.若有意义,则x满足条件是()A.x≥﹣3且x≠1 B.x>﹣3且x≠1 C.x≥1 D.x≥﹣36.已知y=++2,则x y的值为()A.9 B.8 C.2 D.37.在式子中,二次根式有()A.2个B.3个C.4个D.5个8.下列各式中,一定是二次根式的有()①②③④⑤A.2个B.3个C.4个D.5个9.已知n是正整数,是整数,n的最小值为()A.21 B.22 C.23 D.2410.已知,则=()A.B.C.D.﹣11.若二次根式在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.12.如果y=,则2x﹣y的平方根是()A.﹣7 B.1 C.7 D.±113.若是二次根式,则下列说法正确的是()A.x≥0 B.x≥0且y>0C.x、y同号D.x≥0,y>0或x≤0,y<014.若,则a的取值范围是()A.a>0 B.a≥1 C.0<a<1 D.0<a≤115.使下列式子有意义的实数x的取值都满足x≥1的式子的是()A.B.C.+D.二.填空题(共10小题)16.若实数a,b满足,则a﹣b的平方根是.17.当x时,在实数范围内有意义.18.若在实数范围内有意义,则x的取值范围是.19.若|2017﹣m|+=m,则m﹣20172=.20.使代数式有意义的整数x的和是.21.观察与思考:形如的根式叫做复合二次根式,把变成=叫复合二次根式的化简,请化简=.22.若代数式﹣(x﹣2)0+(x﹣3)﹣2有意义,则x的取值范围是.23.设x,y为实数,且,则点(x,y)在第象限.24.代数式﹣3﹣的最大值为,若有意义,则=.25.当a时,无意义;有意义的条件是.三.解答题(共15小题)26.已知+=b+8.(1)求a、b的值;(2)求a2﹣b2的平方根和a+2b的立方根.27.(1)若++y=16,求﹣的值(2)若a,b互为相反数,c,d互为倒数,m的绝对值为2,求+m﹣cd的值28.若y=++x3,求10x+2y的平方根.29.已知n=﹣6,求的值.30.若b=+﹣a+10.(1)求ab及a+b的值;(2)若a、b满足x,试求x的值.31.(1)已知y=+x+3,求的值.(2)比较大小:3与2.32.已知x,y为实数,y=,求xy的平方根.33.若x,y为实数,且y=++.求﹣的值.34.已知a,b分别为等腰三角形的两条边长,且a•b满足b=4++3,求此三角形的周长.35.若a,b是一等腰三角形的两边长,且满足等式,试求此等腰三角形的周长.36.(1)已知a+3与2a﹣15是一个正数的平方根,求a的值;(2)已知x,y为实数,且y=﹣+4,求的值.37.(1)计算:(﹣)﹣1﹣|﹣3|﹣20160+()2;(2)解方程:4(x﹣1)2﹣1=24;(3)已知y=++3,则xy的算术平方根.38.请认真阅读下列这道例题的解法,并完成后面两问的作答:例:已知y=+2018,求的值.解:由,解得:x=2017,∴y=2018.∴.请继续完成下列两个问题:(1)若x、y为实数,且y>+2,化简:;(2)若y•=y+2,求的值.39.若a,b为实数,且,求.40.已知a、b、c为一个等腰三角形的三条边长,并且a、b满足b=2,求此等腰三角形周长.参考答案与试题解析一.选择题(共15小题)1.【分析】直接利用二次根式的定义得出x的取值范围进而得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x+1≥0,解得:x≥﹣1.故选:B.2.【分析】根据被开方数是非负数、除数不等于0,确定x的取值范围.【解答】解:由题意,可得x﹣1>0,所以x>1故选:C.3.【分析】根据二次根式被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得,2x+5≥0,解得,x≥﹣,故选:C.4.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得﹣x≥0且x+2≠0,解得x≤0且x≠﹣2.故选:D.5.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:∵有意义,∴x满足条件是:x+3≥0,且x﹣1≠0,解得:x≥﹣3且x≠1.故选:A.6.【分析】直接利用二次根式有意义的条件得出x的值,进而求出y的值,即可得出答案, 【解答】解:∵y=++2,∴x﹣3=3﹣x=0,解得:x=3,则y=2,则x y=32=9.故选:A.7.【分析】根据二次根式的定义对各数分析判断即可得解.【解答】解:根据二次根式的定义,y=﹣2时,y+1=﹣2+1=﹣1,所以二次根式有(x>0),,(x<0),,共4个.故选:C.8.【分析】利用二次根式定义判断即可.【解答】解:①是二次根式;②,当a≥0时是二次根式;③是二次根式;④是二次根式;⑤,当x≤0时是二次根式,故选:B.9.【分析】如果一个根式是整数,则被开方数是完全平方数,首先把化简,然后求n的最小值.【解答】解:∵189=32×21,∴=3,∴要使是整数,n的最小正整数为21.故选:A.10.【分析】根据二次根式有意义的条件求出x,根据题意求出y,分母有理化化简即可.【解答】解:由题意得,x2﹣2≥0,2﹣x2≥0,∴x2=2,解得,x=±,当x=时,无意义,当x=﹣时,2=2y,解得,y=,∴==+,故选:C.11.【分析】直接利用二次根式有意义的条件结合数轴得出答案.【解答】解:二次根式在实数范围内有意义,则2x﹣6≥0,解得:x≥3,则x的取值范围在数轴上表示为:.故选:A.12.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:由题意可得:x2﹣4=0,x+2≠0,解得:x=2,故y=3,则2x﹣y=1,故2x﹣y的平方根是:±1.故选:D.13.【分析】二次根式中的被开方数必须是非负数.【解答】解:依题意有≥0且y≠0,即≥0且y≠0.所以x≥0,y>0或x≤0,y<0.故选:D.14.【分析】直接利用二次根式有意义的条件得出答案.【解答】解:∵,∴,解得:0<a≤1.故选:D.15.【分析】根据分式有意义的条件以及二次根式有意义的条件即可求出答案【解答】解:(A)由,可得:x≤0且x≠﹣1,故x≥1时,无意义,故不选A,(B)由x+1>0,可得:x>﹣1,此时有意义,不都满足x≥1,故不选B;(C)由可得:﹣1≤x≤1,故C不选;(D)解得:x>1,满足x≥1,故选D故选:D.二.填空题(共10小题)16.【分析】直接利用二次根式有意义的条件进而分析得出答案.【解答】解:∵和有意义,则a=5,故b=﹣4,则===3,∴a﹣b的平方根是:±3.故答案为:±3.17.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【解答】解:由题意得,x+1≥0,|x|﹣2≠0,解得,x≥﹣1且x≠2,故答案为:≥﹣1且x≠2.18.【分析】根据被开方数大于等于0,分母不等于0列不等式求解即可.【解答】解:由题意得,﹣>0,解得x<﹣3.故答案为:x<﹣3.19.【分析】根据二次根式的性质求出m≥2018,再化简绝对值,根据平方运算,可得答案.【解答】解:∵|2017﹣m|+=m,∴m﹣2018≥0,m≥2018,由题意,得m﹣2017+=m.化简,得=2017,平方,得m﹣2018=20172,m﹣20172=2018.故答案为:201820.【分析】直接利用二次根式的性质得出不等式组求出答案.【解答】解:使代数式有意义,则,解得:﹣4<x≤,则整数x有:﹣3,﹣2,﹣1,0,故整数x的和是:﹣3﹣2﹣1=﹣6.故答案为:﹣6.21.【分析】直接利用完全平方公式将原式变形进而得出答案.【解答】解:==﹣.故答案为:﹣.22.【分析】直接利用二次根式有意义的条件以及零指数幂的性质和负指数幂的性质分别判断得出答案.【解答】解:∵代数式﹣(x﹣2)0+(x﹣3)﹣2有意义,∴x+1≥0,且x﹣1≠0,x﹣2≠0,x﹣3≠0,解得:x≥﹣1且x≠1,x≠2,x≠3.故答案为:x≥﹣1且x≠1,x≠2,x≠3.23.【分析】直接利用二次根式有意义的条件得出x的值,进而得出y的值,再利用点的坐标特点得出答案.【解答】解:由题意可得:,解得:x=5,故y=﹣4,则点(x,y)为(5,﹣4)在第四象限.故答案为:四.24.【分析】根据算术平方根具有非负性可得当=0时,代数式﹣3﹣有最大值,进而可得代数式﹣3﹣的最大值为﹣3;再根据二次根式被开方数为非负数可得x=0,进而可得答案.【解答】解:∵≥0,∴当=0时,代数式﹣3﹣有最大值,∴代数式﹣3﹣的最大值为﹣3;∵有意义,∴,解得:x=0,则=1,故答案为:﹣3;1.25.【分析】根据二次根式成立的条件:被开方数是非负数;无意义:被开方数小于0,列不等式可得结论.【解答】解:3a﹣2<0,a<,由有意义得:,解得,当a时,无意义;有意义的条件是:x≤2且x≠﹣8,故答案为:a,x≤2且x≠﹣8.三.解答题(共15小题)26.【分析】(1)关键二次根式有意义的条件即可求解;(2)将(1)中求得的值代入即可求解.【解答】解:(1)由题意得a﹣17≥0,且17﹣a≥0,得a﹣17=0,解得a=17,把a=17代入等式,得b+8=0,解得b=﹣8.答:a、b的值分别为17、﹣8.(2)由(1)得a=17,b=﹣8,±=±=±15,===1.答:a2﹣b2的平方根为±15,a+2b的立方根为1.27.【分析】(1)根据二次根式的被开方数是非负数;(2)根据相反数、倒数的定义以及绝对值得到:a+b=0,cd=1,m=±2,代入求值即可.【解答】解:(1)由题意,得解得x=8.所以y=16所以原式=﹣=2﹣4=﹣2.(2)∵a,b互为相反数,c,d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2,∴=+m﹣1=m﹣1.当m=2时,原式=1.当m=﹣2时,原式=﹣2﹣1=﹣3.综上所述,+m﹣cd的值是1或﹣3.28.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后计算出10x+2y的值,再求平方根.【解答】解:由题意得:,解得:x=2,则y=8,10x+2y=20+16=36,平方根为±6.29.【分析】直接利用二次根式的性质得出m,n的值,进而化简得出答案.【解答】解:∵与有意义,∴m=2019,则n=﹣6,故==45.30.【分析】(1)直接利用二次根式有意义的条件得出ab,a+b的值;(2)利用已知结合完全平方公式计算得出答案.【解答】解:(1)∵b=+﹣a+10,∴ab=10,b=﹣a+10,则a+b=10;(2)∵a、b满足x,∴x2=,∴x2===8,∴x=±2.31.【分析】(1)直接利用二次根式有意义的条件分析得出x,y的值,进而答案;(2)直接将二次根式变形进而比较即可.【解答】解:(1)∵y=+x+3,∴x=3,故y=6,∴==3;(2)∵3=,2=,∴>,即3>2.32.【分析】根据被开方数是非负数且分母不等于零,可得x,y的值,根据开平方,可得答案.【解答】解:由题意,得,,且x﹣2≠0解得x=﹣2,y=﹣xy=,xy的平方根是.33.【分析】根据二次根式的被开方数是非负数求得x的值,进而得到y的值,代入求值即可.【解答】解:依题意得:x=,则y=,所以==,==2,所以﹣=﹣=﹣=.34.【分析】根据题意求出a、b的值,根据三角形的三边关系确定三角形的边长,求出此三角形的周长.【解答】解:由题意得,3a﹣6≥0,2﹣a≥0,解得,a≥2,a≤2,则a=2,则b=4,∵2+2=4,∴2、2、4不能组成三角形,∴此三角形的周长为2+4+4=10.35.【分析】根据被开方数大于等于0列式求出a,再求出b,然后分a是腰长与底边两种情况讨论.【解答】解:根据题意得,3a﹣6≥0且2﹣a≥0,解得a≥2且a≤2,所以a=2,b=4,①a=2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②a=2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,所以此等腰三角形的周长为10.36.【分析】(1)直接利用平方根的定义分析得出答案;(2)利用二次根式有意义的条件分析得出答案.【解答】解:(1)根据平方根的性质得,a+3+2a﹣15=0,解得:a=4,答:a的值为4;(2)满足二次根式与有意义,则,解得:x=9,∴y=4,∴=+=5.37.【分析】(1)直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案;(2)利用直接开平方法解方程得出答案;(3)直接利用二次根式的性质分析得出x,y的值进而得出答案.【解答】解:(1)(﹣)﹣1﹣|﹣3|﹣20160+()2=﹣4﹣3﹣1+2=﹣6;(2)∵4(x﹣1)2﹣1=24,∴(x﹣1)2=,∴x﹣1=±,解得:x1=,x2=﹣;(3)∵y=++3,∴,解得:x=4,∴y=3,则xy=12,故12的算术平方根为:2.38.【分析】根据题意给出的方法即可求出答案.【解答】解:(1)由,解得:x=3,∴y>2.∴;(2)由:,解得:x=1.y=﹣2.∴.39.【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意,得a2﹣1=0,且a+1≠0,解得a=1,b=.﹣=﹣3.40.【分析】由二次根式有意义的条件可得,解不等式可得a的值,进而可得b的值,然后再分两种情况进行计算即可.【解答】解:由题意得:,解得:a=3,则b=5,若c=a=3,此时周长为11,若c=b=5,此时周长为13.。
初二数学上册二次根式的混合运算综合练习题
初二数学上册二次根式的混合运算综合练习题在初二数学上册中,我们学习了二次根式的概念以及运算法则。
为了巩固对二次根式的理解和应用,下面将提供一些混合运算的综合练习题,帮助同学们巩固知识点并提高解题能力。
1. 练习题一:简单运算计算下列各式的值:a) 3√4 × 2√5b) 4√27 ÷ √3c) (√8 - √2) × √2d) √20 + 2√5 - √802. 练习题二:合并同类项合并下列各式中的同类项:a) √3 + 2√5 - √2 + 3b) 4√7 - √7 + √18 - 3√2c) 8√5 + √45 - 3√20 + 5√803. 练习题三:分数的化简将下列各式中的数改写为最简形式:a) 2√12b) √45 - 3√5c) 5√20 + √804. 练习题四:有理化将下列各式中的无理数有理化:a) √2 ÷ (√3 + √2)b) (√5 - √3) × (√5 + √3)c) (√7 - 2) ÷ (√7 + 2)5. 练习题五:方程的解求下列方程的解:a) 2√x + √5 = 3b) √(x + 3) + √(x - 1) = 4c) √(3x - 2) = 5 - √(x + 4)通过以上的练习题,同学们可以巩固对初二数学上册二次根式的混合运算的理解。
在解题过程中,需要注意使用二次根式的运算法则,合并同类项时要注意系数的运算,分数的化简和有理化要灵活运用,方程的解需要使用特定的解方方法。
同学们可以通过反复练习,提高解题的速度和准确性。
希望以上的练习题可以帮助同学们更好地掌握初二数学上册二次根式的混合运算。
在学习中遇到困难时,要勇于提问,及时向老师和同学们寻求帮助。
相信通过不断的学习和实践,同学们一定能够轻松掌握二次根式的混合运算,取得更好的成绩。
加油!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式综合练习
一、填空题:
1、 计算:0)2(- =________;2
2-=________;12.0-=________;3
3--=________。
2、 计算:0)15(-=________;13-=________;3
2=________;2
)3(-=________。
3、 计算: 1)2(-+8=_________。
4、 计算:20-
5
15 =__________.
5、 计算2
)3(-=___________。
6、 若22
)32()5(++-b a =0,则2ab =__________。
7、 当x_______时,
x
--23
有意义。
8、在直角坐标系内,点P (-1,)到原点的距离为 。
二、选择题:
9、下列二次根式中,最简二次根式是( )。
(A )x 9 (B)32-x (C)
x
y
x - (D)b a 23 10、当a <-4时,那么|2-2
)2(a +|等于( )
(A)4+a (B)-a (C)-4-a (D)a 11、化简|a -2|+2)2(a -的结果是( )。
(A )4-2a (B)0 (C)24-a (D)4 12、
2
31-与23+的关系是( )。
(A)互为相反数 (B)互为倒数 (C)相等 (D)互为有理化因式 13、5+2倒数是( )。
(A) 5-2 (B) -5-2 (C) -5+2 (D)2
51-
14、下列各式中,一定能成立的是( )。
(A)2
2)5.2()5.2(=- (B)22)(a a =
(C)122+-x x =x-1 (D)3392+⋅-=
-x x x
15、当-1<a <1时,化简22
)1()1(-+
+a a 得( )。
(A)2 (B)-2 (C)2a (D)-2a
16、下列各组中互为有理化因式的是( )。
(A)b a +与a b -- (B)a -2与2-a (C)32+a 与a 23- (D)a 与a 2
17、若0>>a b ,化简
b
a b a --2)(的结果为( )。
(A) b a + (B)b a - (C) a b -- (D)b a +- 18、如果
121
22-=+-⋅-b ab a b
a ,则
b a 和的关系是( )。
(A)b a ≤ (B)b a < (C)b a ≥ (D)b a >
19、把31
a
a -
根号外的因式移入根号内,得( )。
(A)
a 1 (B)a 1- (C) -a
1
(D) -a 1-
20、设4-2的整数部分为a ,小整数部分为b ,则b
a 1
-
的值为( )。
(A)1-2
2
(B)2 (C)221+ (D) -2
三、计算题
21、x x
x x 3)1
246(÷-
22、32)12(18-++
23、3
4
9
3273
32-+
+
24、)625()625(-⋅+
25、)2332)(632(--)
四、解答题 26、已知:2
420-=
x ,求x x 42
-的值.
27、在张翰家的房前有一块直角三角形的空地,张翰的爸爸想要把它开垦出来种菜,经测量,一直角边长为35米,斜边长为335米。
如果用篱笆将这块直角三角形的菜地围起来,那么张翰的爸爸至少需要买篱笆多少米?(35≈5.916,70≈8.366结果精确到1米)
参考答案:
一、 1、1;
41;5;27
1-
2、1;
33;3
6;3 3、231+
4、
225 5、3. 6、
52
3
7、 >2 8、5 二、
三、计算题 21、
3
1 22、1 23、6-34 24、1 25、6612- 26、17 27、41。