液压与气压:基本原理、介质性能

合集下载

液压与气压传动基础

液压与气压传动基础
Q —流量
分析:液压传动是靠密闭工作容积变化相等的原则实现 运动传递的,改变进入大液压缸的流量Q ,即可改变其 活塞的运动速度υ 2。 ●第二个特征:液压传动的速度大小取决于流量。
第1章
绪论
通过液压传动的工作原理可知:
压力和流量是液压系统中两个最基本的参数。
第1 章
绪论
1.2 液压与气压传动的组成(以图示磨床工作台为例)
2.4 液体流动中的压力损失
2.5 液体流经小孔及缝隙的流量 2.6 液压冲击及气穴现象
第2章 液压流体力学基础
2.1 工作介质:在液压系统中,液压流体的主要作用是传 递力和运动。
1.密度ρ—单位体积流体的质量 ρ = m/V [kg/ m3]
一般矿物油的密度为850~950kg/m3
图2-2静压力的分布规律
第2章 液压流体力学基础
重力作用下静止液体压力分布特点: 任意一点压力由两部分组成:液面压力p0,自重形 成的压力ρgh。 液体内的压力与液体深度h成正比。 离液面深度相同处各点的压力相等,压力相等的所 有点组成等压面,重力作用下静止液体的等压面为 水平面。 静止液体中任一质点的总能量 p/ρg+h 保持不变,即 能量守恒。
各类液压泵适用的粘度范围
液压泵类型 工作介质粘度 ν40 10-6m2.s-1 环境温度5~40℃ 环境温度40~80℃ 95~165
齿轮泵
叶片泵
30~70
p<7.0Mpa
p≥7.0Mpa
30~50
50~70
40~75
55~90
径向柱塞泵
轴向柱塞泵
30~80 40~75
65~240 70~150
第2章 液压流体力学基础 2.2 液体静力学

液压与气压传动课程标准

液压与气压传动课程标准

液压与气压传动课程标准一、课程性质与任务1.课程的性质《液压与气动技术》是机械设计制造及其自动化专业的一门重要的专业技术课程。

无论对学生的思维素质、创新能力、科学精神以及在工作中解决实际问题的能力的培养,还是对后继课程的学习,都具有十分重要的作用。

该课程是主要研究液压与气压传动技术一般规律和具体应用的一门科学。

这门技术与其它传动形式有不可比拟的优势而应用广泛,以优良的静态、动态性能成为一种重要的控制手段,无论是机械制造还是自动化控制都有广泛的实际应用价值。

该课程是机械设计制造及其自动化专业教学必不可少的重要组成部分。

通过对这门课程的学习,使学生具有较强的液压与气压传动的理论知识和实际技能,无论对学生的思维素质、创新能力以及在工作中解决实际问题的能力的培养,还是对后继课程的学习,都具有十分重要的作用。

2.本课程与前后课程之间的联系、要求前期课程:机械识图,工程力学,技术测量基础等;后续课程:自动化制造系统,机电传动与控制,机床电气控制等;要求同学们具备阅读中等难度的机械图纸的能力、理论力学、机械传动基础等,并善于归纳总结,举一反三,积极参与实践,做到学以致用。

要联系其它专业技术知识,以使整个知识体系完整。

二、课程教学目标1.知识目标(1)能正确阐述液压传动的原理;(2)能清晰说明液压元件的结构特征和工作原理;(3)能读懂一般液压和气压系统工作原理图;(4)能掌握液压系统故障的分析和诊断的方法;(5)掌握液压、气压元件的正确选用。

2.能力目标(1)能识别常用液压元件,了解它们的结构和原理;(2)会正确使用常用的工具;(3)能阅读常用液压设备的液压传动系统图;能按照液压系统图进行液压元件的选用、连接与调试;(4)能分析汽车液压制动系统的结构和工作过程;(5)能分析汽车气压制动系统的结构和工作过程;(6)能分析液压助力转向系统的结构和工作过程;(7)能对液压制动系统进行维护;(8)能排除液压、气压制动系统的常见故障3.素质目标(1)培养学生具备一定的吸收新技术和新知识的自修能力;(2)培养学生具有较快适应生产、管理第一线岗位需要的能力;(3)培养学生的创新意识;(4)培养学生的安全和环保意识。

液压与气压传动

液压与气压传动

液压与气压传动液压与气压传动是工业现代化生产的重要组成部分,液压与气压作为传动介质,已经广泛应用于各种机械、工具、设备、以及各类工业自动化系统和生产流水线上。

本文将主要从液压与气压传动的基本原理、特点以及优缺点等方面进行探讨。

一、液压气压传动基本原理液压传动系统的基本组成部分主要包括:液压泵、液压缸、液压阀、液压油箱、油管、以及液压控制阀等。

液压系统中,液压泵负责将机械能转换成液压能,由液压泵产生的液压能作为有效载荷传递到被控制的液压元件上,通过控制液压阀的开启和关闭来实现各种运动控制。

气压传动系统也是由几个部分组成的,主要包括压缩机、气缸、气阀、压力表、以及一个气槽等。

气压系统中,压缩机负责将机械能转换成压缩空气,通过气缸所传递的空气压力,实现各种运动控制。

二、液压气压传动的特点1、液压传动特点液压传动系统比气压传动系统在各方面都更加稳定和可靠。

由于液压能储存时间较长,且油液受热膨胀系数小,不易泄漏,因此液压传动系统运行起来比气压传动稍微安全。

此外,液压传动系统可实现无级调速功能,同时承受的荷载也能大于气压传动系统。

2、气压传动特点相对于液压传动,气压传动具有价格较为便宜的优势。

气压传动的另一个优势是气缸行程大,且行程能通过重复拼接的方式实现无级调节。

此外,气压传动还具有快速响应的特点,当工作中的负荷突然增加时,气压传动能够响应自如,更快地完成加速和减速操作。

三、液压气压传动优缺点比较1、液压传动系统优缺点液压传动系统具有加速、减速平稳、静音、开关灵活、精确度高等优点,此外使用寿命比较长,维护成本较低。

但是,液压传动系统也存在着以下缺点:传动过程中会产生噪音,维护操作人员需要具备一定的技能和经验。

另外还需要经常维护常规保养,以及防止油液泄漏等问题。

2、气压传动系统优缺点气压传动系统具有价格低廉,适用范围广、安全性高的优点。

此外,气压传动系统操作简单,无需专业技能。

但是,气压传动系统存在传动路途中能量损失较大,且响应速度慢,不能实现调速等缺点。

(完整版)液压与气压传动知识点重点

(完整版)液压与气压传动知识点重点

液压与气压传动知识点1、液压与气压工作原理:它首先通过能量转换装置(如液压泵,空气压缩机)将原动机(如电动机)的机械能转变为压力能,然后通过封闭管道,控制原件等,由另一能量转换装置(液压缸或者气缸,液压马达或气动马达)将液体(气体)的压力能转变为机械能,驱动负载,使执行机构得到所需要的动力,完成所需的运动。

2、液压与气压传动系统的组成:动力元件,执行元件,控制调节元件,辅助元件,工作介质。

3、黏性的意义:液体在外力作用下流动时,液体分子间的内聚力会阻碍其分子的相对运动,即具有一定的内摩擦力,这种性质成为液体的黏性。

常用的黏度有3种:动力黏度,运动黏度,相对黏度。

4、液压油分为3大类:石油型、合成型、乳化型。

5、液体压力有如下的特性:1、液体的压力沿着内法线方向作用于承压面。

2、静止液体内任意一点的压力在各个方向上都相等。

5、液体压力分为绝对压力和相对压力。

6、真空度:如果液体中某一点的绝对压力小于大气压力,这时,比大气压小的那部分数值叫做真空度。

7、帕斯卡原理:P198、理想液体:一般把既无黏性又不可压缩的液体称为理想液体。

9、恒定流动:液体流动时,若液体中任何一点处的压力、速度和密度等参数都不随时间而变化,则这种流动称为恒定流动(或定常流动、非时变流动)。

当液体整个作线形流动时,称为一维流动。

10、液流分层,层与层之间互不干扰,液体的这种流动状态称为层流。

液流完全紊乱,这时液体的流动状态称为紊流。

11、临界雷诺数P23雷诺数的物理意义:雷诺数是液流的惯性力对黏性力的无因次比。

当雷诺数较大时,液体的惯性力起主导作用,液体处于紊流状态;当雷诺数较小时,黏性力起主导作用,液体处于层流状态。

12、连续性方程是质量守恒定律在流体力学中的一种表达形式。

13、伯努利方程是能量守恒定律在流体力学中的一种表达形式。

14、动量方程是动量定理在流体力学中的具体应用。

15、沿程压力损失:液体在等径直管中流动时,因黏性摩擦而产生的压力损失称为沿程压力损失。

液压与气压传动第二版 王积伟

液压与气压传动第二版 王积伟

液压与气压传动第二版王积伟1. 前言液压与气压传动是现代工程领域中常用的一种动力传输方式。

本文将介绍液压和气压传动的基本原理、应用范围以及设计要点等内容,旨在使读者对液压与气压传动有更深入的了解。

2. 液压传动2.1 基本原理液压传动利用液体作为传动介质,通过控制液体的流动来实现动力传输。

液压传动具有较高的传动效率、可靠性和承载能力,广泛应用于工程机械、冶金设备等领域。

2.2 液压元件液压传动中的关键部件包括液压泵、液压缸、液压阀等。

本节将详细介绍这些液压元件的结构、工作原理和选型要点。

2.3 液压系统设计液压系统设计考虑因素包括工作压力、流量需求、系统稳定性等。

本节将介绍液压系统的设计步骤、常见问题和解决方法,帮助读者全面了解液压系统设计的要点。

2.4 液压传动的应用液压传动在各个行业都有广泛的应用,包括工程机械、航空航天、汽车制造等。

本节将介绍液压传动在不同行业的应用案例,展示其在实际工程中的优势和效果。

3. 气压传动3.1 基本原理气压传动利用气体作为传动介质,通过控制气体的压力和流量来实现动力传输。

与液压传动相比,气压传动具有操作简单、维护方便的优势,广泛应用于制造业物料输送、压缩机等领域。

3.2 气压元件气压传动中的关键部件包括空压机、气缸、气控阀等。

本节将详细介绍这些气压元件的结构、工作原理和选型要点。

3.3 气压系统设计气压系统设计考虑因素包括系统压力、流量需求、气源稳定性等。

本节将介绍气压系统的设计步骤、常见问题和解决方法,帮助读者全面了解气压系统设计的要点。

3.4 气压传动的应用气压传动在制造业中有着广泛的应用,如气动工具、风力发电等。

本节将介绍气压传动在不同行业的应用案例,展示其在实际工程中的优势和效果。

4. 液压和气压传动的比较与选择本节将对液压传动和气压传动进行对比分析,从技术特点、应用场景、优势和限制等方面进行比较,以帮助读者选择适合自己工程需求的传动方式。

5. 总结液压传动和气压传动作为现代工程领域中常用的动力传输方式,具有各自的特点和应用范围。

液压与气压的原理

液压与气压的原理

液压与气压的原理
液压与气压的原理如下
1).液压是以液体作为工作介质来进行能量传递和转换的;2).液压以液体压力能来传递动力和运动的;3).液压的工作介质是在受控制、受调节的状态下进行的。

2.液压传动系统的组成:动力装置、控制及调节装置、执行元件、辅助装置、工作介质。

3.液压传动系统的组成部分的作用:1)动力装置:对液压传动系统来说是液压泵,其作用是为液压传动系统提供压力油;对气压传动系统来说是气压发生装置(气源装置),其作用是为气压传动系统提供压缩空气。

2)控制及其调节装置:用来控制工作介质的流动方向、压力和流量,以保证执行元件和工作机构按要求工作;3)执行元件:在工作介质的作用下输出力和速度(或转矩和转速),以驱动工作机构作功;4)辅助装置:一些对完成主要工作起辅助作用的元件,对保证系统正常工作有着重要的作用;5)工作介质:利用液体的压力能来传递能量。

液压与气压传动

液压与气压传动

绪论教学目的和要求:了解液压系统的组成、工作原理、基本特征,优缺点及液压系统的应用与发展。

教学重点与难点:液压传动的工作原理与基本特征。

教学内容:液压传动的概况、工作原理、组成部分、图形符号及其优缺点。

一、液压传动区别于其它传动方式的基本特征1.在液压传动中工作压力取决于负载,与流入的液体(流量)多少无关。

2.活塞移动速度正比于流入液压缸中油液流量q,与负载无关。

3.液压传动中的功率等于压力p和流量q的乘积。

二、在液压与气动系统中,要发生两次能量转变1.把机械能转变为流体压力能的元件或装置称为泵或能源装置。

2.把流体压力能转变为机械能的元件称为执行元件。

三、液压传动的工作原理液压传动是基于流体力学的帕斯卡定律,主要利用液体在密闭容积内发生变化时产生的压力来进行能量传递和控制。

它利用各种元件组成具有所需功能的基本回路,再由若干回路有机组合成传动和控制系统,从而实现能量的转换、传递和控制。

四、液压系统组成一个完整的、能够正常工作的液压系统,应该由以下五个主要部分来组成:(1 )能源装置把机械能转换成油液的压力能的装置,其作用是供给液压系统压力油,为系统提供动力,称为系统的动力元件。

(2 )执行元件把油液的压力能转化成机械能,推动负载做功;其作用是在压力油的作用下输出力和速度。

(3)控制调节元件控制或调节系统中油液的压力、流量或流动方向。

(4 )辅助元件上述三部分之外的其他装置,例如油箱,滤油器,油管等,主要保证系统的正常运行。

(5 )工作介质主要是传递动力与能量。

第一章流体力学基础教学目的和要求:了解液压油的特性、熟练掌握液压油的物理性质、会根据要求选用合适的油液。

熟练掌握流体静力学基本方程,流体动力学三个方程,管路压力损失及小孔、缝隙液流公式和基本概念,理解液压冲击与空穴现象成因,了解克服液压冲击与空穴的方法。

教学重点与难点:1.压力传递原理及液压系统压力是由外界负载决定的概念。

2.定常流动时流体动力学方程及应用3.压力损失公式与应用、小孔流量公式及应用。

(完整版)液压与气压传动概念知识点总结考试重要考点

(完整版)液压与气压传动概念知识点总结考试重要考点

1.液压系统的工作原理:1).液压是以液体作为工作介质来进行能量传递和转换的;2).液压以液体压力能来传递动力和运动的;3).液压的工作介质是在受控制、受调节的状态下进行的。

2.液压传动系统的组成:动力装置、控制及调节装置、执行元件、辅助装置、工作介质。

3.液压传动系统的组成部分的作用:1)动力装置:对液压传动系统来说是液压泵,其作用是为液压传动系统提供压力油;对气压传动系统来说是气压发生装置(气源装置),其作用是为气压传动系统提供压缩空气。

2)控制及其调节装置:用来控制工作介质的流动方向、压力和流量,以保证执行元件和工作机构按要求工作;3)执行元件:在工作介质的作用下输出力和速度(或转矩和转速),以驱动工作机构作功;4)辅助装置:一些对完成主要工作起辅助作用的元件,对保证系统正常工作有着重要的作用;5)工作介质:利用液体的压力能来传递能量。

4.液压传动的特点:优点:1)与电动机相比,在同等体积下,液压装置能产生更大的动力;2)液压装置容易做到对速度的无极调节,而且调速范围大,并且对速度的调节还可以在工作过程中进行;3)液压装置工作平稳,换向冲击小,便于实现频繁换向;4)液压装置易于实现过载保护,能实现自润滑,使用寿命长;5)液压装置易于实现自动化,实现复杂的运动和操作;6)液压元件易于实现系列化、标准化和通用化,便于设计、制造和推广使用;缺点:7)液压传动无法保证严格的传动比;8)液压传动有较多的能量损失(泄露损失、摩擦损失等),传动效率相对低;9)液压传动对油温的变化比较敏感,不宜在较高或较低的温度下工作;10)液压传动在出现故障时不易诊断。

5.在液压传动技术中,液压油液最重要的特性是它的可压缩性和粘性。

6.粘温特性:温度升高,粘度显著下降的特性。

7.静止液体的压力性质:1)液体的压力沿着内法线方向上相等;2)静止液体内任一点处的压力在各个方向上都相等。

8.帕斯卡原理:在密闭容器内,施加于静止液体上的压力可以等值传递到液体内各点,也称静压传递原理。

液压与气压传动总结(全)

液压与气压传动总结(全)

一、名词解释1.帕斯卡原理(静压传递原理):(在密闭容器内,施加于静止液体上的压力将以等值同时传到液体各点。

)2.系统压力:(系统中液压泵的排油压力。

)3.运动粘度:(动力粘度μ和该液体密度ρ之比值。

)4.液动力:(流动液体作用在使其流速发生变化的固体壁面上的力。

)5.层流:(粘性力起主导作用,液体质点受粘性的约束,不能随意运动,层次分明的流动状态。

)6.紊流:(惯性力起主导作用,高速流动时液体质点间的粘性不再约束质点,完全紊乱的流动状态。

)7.沿程压力损失:(液体在管中流动时因粘性摩擦而产生的损失。

)8.局部压力损失:(液体流经管道的弯头、接头、突然变化的截面以及阀口等处时,液体流速的大小和方向急剧发生变化,产生漩涡并出现强烈的紊动现象,由此造成的压力损失)9.液压卡紧现象:(当液体流经圆锥环形间隙时,若阀芯在阀体孔内出现偏心,阀芯可能受到一个液压侧向力的作用。

当液压侧向力足够大时,阀芯将紧贴在阀孔壁面上,产生卡紧现象。

)10.液压冲击:(在液压系统中,因某些原因液体压力在一瞬间突然升高,产生很高的压力峰值,这种现象称为液压冲击。

)11.气穴现象;气蚀:(在液压系统中,若某点处的压力低于液压油液所在温度下的空气分离压时,原先溶解在液体中的空气就分离出来,使液体中迅速出现大量气泡,这种现象叫做气穴现象。

当气泡随着液流进入高压时,在高压作用下迅速破裂或急剧缩小,又凝结成液体,原来气泡所占据的空间形成了局部真空,周围液体质点以极高速度填补这一空间,质点间相互碰撞而产生局部高压,形成压力冲击。

如果这个局部液压冲击作用在零件的金属表面上,使金属表面产生腐蚀。

这种因空穴产生的腐蚀称为气蚀。

)12.排量:(液压泵每转一转理论上应排出的油液体积;液压马达在没有泄漏的情况下,输出轴旋转一周所需要油液的体积。

)13.自吸泵:(液压泵的吸油腔容积能自动增大的泵。

)14.变量泵:(排量可以改变的液压泵。

)15.恒功率变量泵:(液压泵的出口压力p与输出流量q的乘积近似为常数的变量泵。

《液压与气压传动技术》课程标准

《液压与气压传动技术》课程标准

《液压与气动技术》课程标准(90学时)一、课程概述(一)课程性质本课程是高等职业技术教育机电一体化技术专业核心教学与训练项目《机电一体化技术》课程的重要组成模块。

通过本课程的学习和项目训练,使学生掌握液压与气压传动系统在机电一体化设备中应用的基础知识、正确使用液压和气压元件、利用元件组装液压和气压传动系统和系统的故障诊断和排除等基本技能。

以培养学生的综合职业能力、创新精神和良好的职业道德,为学生将来从事专业工作和适应职业岗位变化及学习新的生产科学技术打好基础。

(二)课程基本理念坚持以就业为导向,以能力为本位,以培养学生的全面素质为基础,以提高学生的综合职业能力为核心的职教特色。

本课程打破以学科为中心的内容结构体系,突出“必备和够用为度”的职教思想,采用项目教学法,将学科知识按“项目”进行整合,体现以人为本的教学特色,注重学生实践能力的培养。

(三)课程设计思路本课程包含了“液压传动与控制技术”和“气压传动与控制技术”两个模块,每个模块设置了若干个应用型项目,每个项目均由若干个具体的典型工作任务组成,每个任务均将相关知识和实践(含实验)过程有机结合,力求体现“做中学”、“学中做”的教学理念。

课程结构如附图所示。

附图:课程结构整体设计框图二、课程目标(一)总目标通过学习,使学生初步掌握终身发展必备的液压和气压控制技术相关的基础知识和基本技能,了解这些知识与技能在生产实践中的应用,关注液压和气压控制技术的现状及发展趋势。

学习科学探究方法,发展自主学习能力,养成良好的思维习惯和职业规范,能运用相关的专业知识、专业方法和专业技能解决工程中的实际问题。

发展好奇心与求知欲,发展科学探索兴趣,培养坚持真理、勇于创新、实事求是的科学态度与科学精神,形成科学的价值观;培养学生的团队合作精神,激发学生的创新潜能,提高学生的实践能力。

(二)具体目标1.通过实际项目理论的学习,使学生掌握液压、气动的基础知识,熟悉液压、气动系统的基本组成和各元件的基本结构、工作过程和使用要求,具备识读和分析中等复杂液压、气动系统图的能力。

液压与气压传动知识点重点

液压与气压传动知识点重点

液压与气压传动知识点1、液压与气压工作原理:它首先通过能量转换装置(如液压泵,空气压缩机)将原动机(如电动机)的机械能转变为压力能,然后通过封闭管道,控制原件等,由另一能量转换装置(液压缸或者气缸,液压马达或气动马达)将液体(气体)的压力能转变为机械能,驱动负载,使执行机构得到所需要的动力,完成所需的运动。

2、液压与气压传动系统的组成:动力元件,执行元件,控制调节元件,辅助元件,工作介质。

3、黏性的意义:液体在外力作用下流动时,液体分子间的内聚力会阻碍其分子的相对运动,即具有一定的内摩擦力,这种性质成为液体的黏性。

常用的黏度有 3 种:动力黏度,运动黏度,相对黏度。

4、液压油分为3 大类:石油型、合成型、乳化型。

5、液体压力有如下的特性:1、液体的压力沿着内法线方向作用于承压面。

2、静止液体内任意一点的压力在各个方向上都相等。

5、液体压力分为绝对压力和相对压力。

6、真空度:如果液体中某一点的绝对压力小于大气压力,这时,比大气压小的那部分数值叫做真空度。

7、帕斯卡原理:P198、理想液体:一般把既无黏性又不可压缩的液体称为理想液体。

9、恒定流动:液体流动时,若液体中任何一点处的压力、速度和密度等参数都不随时间而变化,则这种流动称为恒定流动(或定常流动、非时变流动)。

当液体整个作线形流动时,称为一维流动。

10、液流分层,层与层之间互不干扰,液体的这种流动状态称为层流。

液流完全紊乱,这时液体的流动状态称为紊流。

11、临界雷诺数P23雷诺数的物理意义:雷诺数是液流的惯性力对黏性力的无因次比。

当雷诺数较大时,液体的惯性力起主导作用,液体处于紊流状态;当雷诺数较小时,黏性力起主导作用,液体处于层流状态。

12、连续性方程是质量守恒定律在流体力学中的一种表达形式。

13、伯努利方程是能量守恒定律在流体力学中的一种表达形式。

14、动量方程是动量定理在流体力学中的具体应用。

15、沿程压力损失:液体在等径直管中流动时,因黏性摩擦而产生的压力损失称为沿程压力损失。

液压气压知识点总结

液压气压知识点总结

液压气压知识点总结液压与气压技术是现代工程领域中广泛应用的一种动力传动技术。

它们通过利用流体的压力传递力量,实现机械设备的运动和控制。

本文将总结液压与气压技术的基本原理、应用领域以及相关注意事项。

一、液压技术基本原理液压技术基于流体力学原理,利用固体不可压缩的特性传递力量。

主要包括以下几个方面的知识点:1. 流体力学基础:了解流体的性质、流体静力学和动力学理论,熟悉流体的压强、流速、流量等基本概念。

2. 液压元件:认识液压系统中的核心元件,如液压泵、液压缸、液压马达、液压阀等,了解它们的结构和工作原理。

3. 压力控制:掌握液压系统中的压力控制原理,了解安全阀、溢流阀、比例阀等压力控制元件的使用方法。

4. 流量控制:理解液压系统中的流量控制原理,包括流量阀、节流阀等的使用场景和操作方式。

5. 液压传动:学习液压系统的传动方式,了解液压传动的特点、优势和应用范围。

二、气压技术基本原理气压技术基于气体力学原理,利用气体的可压缩性传递动力。

以下是气压技术的关键知识点:1. 理想气体状态方程:了解理想气体状态方程,掌握气体的温度、压力、体积之间的关系。

2. 压缩空气的产生:熟悉压缩机原理和工作过程,了解不同种类的压缩机以及其适用范围。

3. 气压元件:认识气压系统中的主要元件,如气缸、气动阀门、气源处理元件等,了解其结构和功能。

4. 气动控制原理:掌握气压系统的控制原理,包括单个气缸的控制和多个气缸的协调工作等。

5. 气压传动:了解气压传动的工作方式和特点,比较气压和液压传动的异同,明确气压技术的应用场景。

三、液压与气压技术的应用领域液压与气压技术广泛应用于各个工程领域,主要包括以下几个方面:1. 机械制造:液压气压技术在机床、冶金设备、塑料机械、印刷机械等制造设备中的运动控制和动力传递方面得到广泛应用。

2. 自动化生产线:液压气压技术在自动化生产线中,如汽车生产线、装配线等,用于控制产品的装配、搬运和运动。

液压与气压传动

液压与气压传动

绪论教学目的和要求:了解液压系统的组成、工作原理、基本特征,优缺点及液压系统的应用与发展。

教学重点与难点:液压传动的工作原理与基本特征。

教学内容:液压传动的概况、工作原理、组成部分、图形符号及其优缺点。

一、液压传动区别于其它传动方式的基本特征1.在液压传动中工作压力取决于负载,与流入的液体(流量)多少无关。

2.活塞移动速度正比于流入液压缸中油液流量q,与负载无关。

3.液压传动中的功率等于压力p和流量q的乘积。

二、在液压与气动系统中,要发生两次能量转变1.把机械能转变为流体压力能的元件或装置称为泵或能源装置。

2.把流体压力能转变为机械能的元件称为执行元件。

三、液压传动的工作原理液压传动是基于流体力学的帕斯卡定律,主要利用液体在密闭容积内发生变化时产生的压力来进行能量传递和控制。

它利用各种元件组成具有所需功能的基本回路,再由若干回路有机组合成传动和控制系统,从而实现能量的转换、传递和控制。

四、液压系统组成一个完整的、能够正常工作的液压系统,应该由以下五个主要部分来组成:(1)能源装置把机械能转换成油液的压力能的装置,其作用是供给液压系统压力油,为系统提供动力,又称为系统的动力元件。

(2)执行元件把油液的压力能转化成机械能,推动负载做功;其作用是在压力油的作用下输出力和速度。

(3)控制调节元件控制或调节系统中油液的压力、流量或流动方向。

(4)辅助元件上述三部分之外的其他装置,例如油箱,滤油器,油管等,主要保证系统的正常运行。

(5)工作介质主要是传递动力与能量。

第一章流体力学基础教学目的和要求:了解液压油的特性、熟练掌握液压油的物理性质、会根据要求选用合适的油液。

熟练掌握流体静力学基本方程,流体动力学三个方程,管路压力损失及小孔、缝隙液流公式和基本概念,理解液压冲击与空穴现象成因,了解克服液压冲击与空穴的方法。

教学重点与难点:1.压力传递原理及液压系统压力是由外界负载决定的概念。

2.定常流动时流体动力学方程及应用3.压力损失公式与应用、小孔流量公式及应用。

液压与气压传动 02液压传动基础知识

液压与气压传动 02液压传动基础知识

通流截面:在流束中与所有流线正交的截面。在液压传动 系统中,液体在管道中流动时,垂直于流动方向的截面即 为通流截面,也称为过流断面。
3、流量和平均流速
流量—单位时间内通过某通流截面的液体的体积。 单位:m3/s,实际使用中常用L/min或mL/s 流量的计算:
对于微小流束,可以认为通流截面上各点的流速是相等的,所以通 过此微小截面的流量为
三、伯努利方程
是能量守恒定律在流动液体中的表现形式。 推导过程略 1、理想液体的伯努利方程为
p1 u1 p2 u2 z1 z2 g 2 g g 2g
2、实际液体的伯努利方程
2
2
p1

z1 g
1v1
2
2

p2

z2 g
2v2
2
2
hw g
式中α为动能修正系数,层流取2,紊流取1 hw为能量损耗
du Ft A dy
粘性系数 或粘度
动力粘度(绝对粘度)μ

牛顿内摩擦定律 du Ft A dy 两边同除以A,得
Ft du A dy
式中
μ:称为动力粘度系数(Pa· s) τ:单位面积上的摩擦力(即剪切应力) 速度梯度,即液层间速度对液层距离的变化率

物理意义 : 当速度梯度为 1 时接触液层间单位面积上
石油型 液 压 油 乳化型 合成型
最常用的液压系统工作介质
水包油乳化液 油包水乳化液 水-乙二醇液 磷酸酯液

工作介质的污染是液压系统发生故障的主要原因。 固体 颗粒
最普遍 危害最大
1.污染物质 根据物体形 态
液体 气体
从外界侵入的水 空气
已被污染的新油

液压与气压传动基础知识

液压与气压传动基础知识

15/49
气源装置
气源装置为气动系统提供满足一定质量要求的压缩空气, 气源装置为气动系统提供满足一定质量要求的压缩空气,是气动 系统的重要组成部分。 系统的重要组成部分。 气动系统对压缩空气的主要要求:具有一定压力和流量, 气动系统对压缩空气的主要要求:具有一定压力和流量,并具有 一定的净化程度。 一定的净化程度。 气源装置由以下四部分组成 气压发生装置——空气压缩机; 空气压缩机; 气压发生装置 空气压缩机 净化、贮存压缩空气的装置和设备; 净化、贮存压缩空气的装置和设备; 管道系统; 管道系统; 气动三大件。 气动三大件。
液压与气压传动技术简介
1/49
湖南工业大学
液压与气压传动的工作原理和特征
传动分类简介 液压与气压传动是以流体(液压油液或压縮 液压与气压传动是以流体( 空气) 空气)为工作介质进行能量传递和控制的一种 传动形式。(元件组成基本回路, 。(元件组成基本回路 传动形式。(元件组成基本回路,回路再组成 一定功能的传动系统) 一定功能的传动系统) 以液压千斤顶为例来简述液压传动的工作 液压千斤顶为例来简述液压传动的工作 原理(类比打气筒及日用洗涤用品压出装置)。 原理(类比打气筒及日用洗涤用品压出装置)。
6/49
典 型 液 压 图 形 符 号 图
湖南工业大学
系 统 原 理
液压与气压传动系统的组成
能源装置——将机械能转换为流体压力能的装置。液 将机械能转换为流体压力能的装置。 能源装置 将机械能转换为流体压力能的装置 压泵或空气压縮机。 压泵或空气压縮机。 执行元件——将流体的压力能转换为机械能的元件。 将流体的压力能转换为机械能的元件。 执行元件 将流体的压力能转换为机械能的元件 液压缸或气缸、液压马达或气马达。 液压缸或气缸、液压马达或气马达。 控制元件——控制系统压力、流量、方 向的元件以 控制系统压力、 控制元件 控制系统压力 流量、 及进行信号转换、 及进行信号转换、逻辑运算和放大等功能的信号控制 元件。如溢流阀、节流阀、方向阀等。 元件。如溢流阀、节流阀、方向阀等。 辅助元件——保证系统正常工作除上述三种元件外的 辅助元件 保证系统正常工作除上述三种元件外的 装置。如油箱、过滤器、蓄能器、油雾器、消声器、 装置。如油箱、过滤器、蓄能器、油雾器、消声器、 管件等。 管件等。 工作介质—传递能量和信号 液压油、压缩空气。) 传递能量和信号, (工作介质 传递能量和信号,液压油、压缩空气。)

液压基本原理

液压基本原理

液压基本原理
液压系统是一种利用液体在封闭的容器中传递力和能量的技术。

其基本原理是根据波义耳定律,通过使用液体传递力量。

液压系统包括主要的液压泵、液压马达(或液压缸)、液压执行元件和液压控制元件等。

液压系统的工作原理如下:
1. 液压泵将液体从液压油箱中抽出,并提高其压力。

2. 高压液体通过液压管道传递到液压执行元件(液压马达或液压缸),施加力或产生运动。

3. 通过液压控制元件(如液控阀)的控制,调节液压系统的工作过程、方向、速度和压力等。

4. 工作完成后,液体返回液压油箱,液压系统进入待机状态。

液压系统的优点包括:
1. 可以传递大功率:液压系统可以传递更大的力和扭矩,适用于大型工程及机械设备。

2. 灵活性高:通过液压控制元件的组合和调节,可以实现多种工艺需求和运动模式的控制。

3. 传递效率高:液体是不可压缩的,液压系统的传动效率相对较高。

4. 运行稳定可靠:液压系统运行平稳、噪音低,寿命长,可靠性高。

液压系统的应用广泛,包括机械工程、航空航天、汽车工程、建筑工程等领域。

通过合理的设计和优化,可以使液压系统更加高效、安全和可靠。

液压与气动技术第1章 液压与气压传动基础知识

液压与气动技术第1章 液压与气压传动基础知识
25
1.2.2 液压传动系统的图形符号
图1-2(a) 和图1- 2(b) 中的各个元件是半结构式图形画出来的,直观性 强,易理解,但难于绘制,元件多时更是如此。在工程实际中,除某些 特殊情况外,一般都用简单的图形符号绘制,如图1-2 (c) 所示。图形 符号只表示元件的功能,不表示具体结构和参数。
物8就向下运动。
16
1.1.2 液压传动的基本原理
通过对上面液压千斤顶工作过程的分析,可以初步了解到液压传
动的基本工作原理如下: (1)液压传动是利用有压力的液体(液压油)作为传递运动和动力
的工作介质;
(2)液压传动中要经过两次能量转换,先将机械能转换成油液的压 力能,再将油液的压力能转换成机械能; (3)液压传动是依靠密封容器或密闭系统中密封容积的变化来实现 运动和动力的传递。
环境条件下工作。
③ 为了减少泄漏,以及为了满足某些性能上的要求,液压元件的配合件制造 精度要求较高,加工工艺较复杂。 ④ 液压传动要求有单独的能源,不像电源那样使用方便。 ⑤ 液压系统发生故障不易检查和排除。
31
1.4 液压油
1.液压油的用途
液压油主要有以下几种作用。 ① 传递运动与动力。将泵的机械能转换成液体的压力能并传至
液压泵
3
油箱
23
1.2.1 液压传动系统的组成
液压泵 3 由电动机驱动旋转,从油箱 1 中吸油,经过滤器 2 后被液压 泵吸入并输出给系统。当换向阀 6 阀芯处于图1-2 (a) 所示位置时,压 力油经阀 5 、阀 6 和管道进入液压缸 7的左腔,推动活塞向右运动。 液压缸右腔的油液经管道、阀 6 、管道流回油箱。改变阀 6 阀芯工作 位置,使之处于左端位置时,如图1-2(b) 所示,液压缸活塞反向运动。 工作台的移动速度是通过流量控制阀来调节的。阀口开大时,进入缸的 流量较大,工作台的速度较快;反之,工作台的速度较慢。为适应克服 大小不同阻力的需要,泵输出油液的压力应当能够调整。工作台低速移 动时,流量控制阀开口小,泵输出多余的油液经溢流阀4和管道流回油箱, 调节溢流阀弹簧的预压力,就能调节泵输出口的油液压力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 物理意义 :当速度梯度为1时接触液层间单位面积上的
内摩擦力
du dz
• 法定计量单位 :帕· 秒(Pa· s)
运动粘度ν
• 定义:动力粘度μ
与密度ρ 之比
• 法定计量单位:m2/s
由于ν的单位中只有运动学要素,故称为运动粘度。液压 油的粘度等级就是以其40º C时运动粘度的某一平均值来表 示,如L-HM32液压油的粘度等级为32,则40º C时其运动粘 度的平均值为32mm2/s
• 气压传动的优缺点
气动技术正向节能化、小型化、轻量化、位臵控 制的高精度化,以及与机、电、液、气相结合的 综合控制技术方向发展
流体传动介质的特性
• • • • • 液压油的主要物理性质 液压油的选择 空气的主要物理性质 气体状态方程 气压传动系统对空气的要求
液压油的主要物理性质
• 密度ρ :单位体积液体的质量
• 绝热过程: 一定质量的气体,在状态变化过程中,若与
外界完全无热量交换
式中 :等熵指数,对干空气=1.4,对饱和水蒸气=1.3 p11 p2 2 常数
k k
k 1 k 1 k
p T1 2 1 p T 2 1 2 在绝热过程中,气体状态变化与外界无热量交换,系统依
空气的基本性质
• 密度和质量体积 密度ρ :单位体积内的空气质量

m V
式中 m:空气的质量(kg);V:空气的体积(m3)
质量体积(比容)υ :单位质量空气的体积
υ=1/ρ
单位:m3/ kg
空气的基本性质
• 压缩性: 一定质量的气体,由于压力改变而导致
气体容积发生变化的现象
• 粘性:气体质点相对运动时产生阻力的性质
重要基本概念一:
“工作压力取决于负载”,而与流入的液体多少无 关 思考:1.若空载,即W=0,则p=?
2.千斤顶的工作原理和其它传动方式的比较?
运动关系
A1h1=A2h2
h2 A1 h1 A2
(1.2) (1.3) ? 守恒
A1
h1 h A2 2 t t
v2 A1 v1 A2
活塞的运动速度和活塞的作用面积成反比
一定质量的气体,在状态变化过程中,若
体膨胀);当温度下降时,气体体积减小(气体被压缩)
理想气体状态变化过程
• 等温过程:
温度保持不变 上式表明,当温度不变时,气体压力上升,气体体积被压 缩;压力下降时,气体体积膨胀 一定质量的气体,在状态变化过程中,若
p1V1 p2V2 常数
理想气体状态变化过程
湿空气
• 含湿量d: 每千克质量的干空气中所含有的水蒸
气的质量
式中
d ms s mg g
ms:水蒸气的质量(kg); mg:干空气的质量(kg); ρs:水蒸气的密度(kg/m3);
ρg:干空气的密度(kg/m3);
气体状态方程
• 理想气体(不计粘性的气体)状态方程
在平衡状态下,气体的三个基本状态参数:压力、温度和 质量体积(比容)之间的关系为:
气压传动系统对空气要求
• 要求压缩空气具有一定的压力和足够的流 量 • 要求压缩空气具有一定的清洁度和干燥度
(指压缩空气中含水量的多少 )
湿空气
• 相对湿度φ :
式中
在相同温度和相同压力下,绝对湿度与 饱和绝对湿度之比 ps
b
100% pb 100%
χ :绝对湿度; χb:饱和绝对湿度; ps:水蒸气的分压力(N/ m2); pb:饱和水蒸气的分压力(N/ m2);
相对湿度表示了湿空气中水蒸气含量接近饱和的 程度,也称饱和度。 它同时说明了湿空气吸收水蒸气能力的大小
研究对象
• 研究以有压流体(压力油和压缩空气)为 传动介质来实现各种机械传动和自动控制 的学科 元件 回路 系统 介质
液压与气压传动的工作原理
力比关系
• 帕斯卡原理“在密闭容器内,施加于静止液体
上的压力将以等值同时传到液体各点”
p F1 W A1 A2
W A2 F1 A1
(1.1)

m V
式中 m:液体的质量(kg); V:液体的体积(m3); ρ=900 kg/ m3
液压油的主要物理性质
• 可压缩性:液体受压力作用而发生体积变化的性质。可用体
积压缩系数κ或体积弹性模量K表示 (m2/N)

1 V p V
• 体积压缩系数κ :单位压力变化所引起的体积相对变化量,
p1V1 p2V2 T1 T2
理想气体状态变化过程
• 等容过程:
体积保持不变
p1 p2 常数 T1 T2
一定质量的气体,在状态变化过程中,若
上式表明,当体积不变时,压力的变化与温度的变化成正比, 当压力上升时,气体的温度随之上升
理想气体状态变化过程
• 等压过程:
压力保持不变
V1 V2 常数 T1 T2 上式表明,当压力不变时,温度上升,气体体积增大(气
液压与气压传动系统组成
• 动力元件:液压泵或气源装臵,其功能是将原动机输入的机械能
转换成流体的压力能,为系统提供动力
• 执行元件:液压缸或气缸、液压马达或气马达,功能是将流体的
压力能转换成机械能,输出力和速度或转矩和转速),以带动负载进 行直线运动或旋转运动
• 控制元件:压力、流量和方向控制阀,作用是控制和调节系统中
液压与气压:基本原理、介质
性能
液压与气压:基本原理、介质性能
• 液压与气压传动都是借助于密封容积的变化,利 用流体的压力能与机械能之间的转换来传递能量 的 • 压力和流量是液压与气压传动中两个最重要的参 数。压力取决于负载;流量决定执行元件的运动 速度 • 液压与气压传动系统的基本组成 • 传动介质的主要性能、参数的物理意义、度量单 位以及主要的影响因素

• F1v1=Wv2 (1-6) (1-7) P=pA1v1=pA2v2=pq
• 压力p和流量q是流体传动中最基本、最重要的两 个参数,它们相当于机械传动中的力和速度,它 们的乘积即为功率 • 液压与气压传动是以流体的压力能来传递动力的
1.2液压与气压传动系统组成与实例
机床工作台液压传动系统
液压传动的特点
流体的压力、流量和流动方向,以保证执行元件达到所要求的输出力 (或力矩)、运动速度和运动方向
• 辅助元件:保证系统正常工作所需要的辅助装臵,包括管道、管
接头、油箱或储气罐、过滤器和压力计
液压与气压传动的比较
• 液压传动的优缺点
液压技术正向高压、高速、大功率、高效率、低 噪声和高度集成化、数字化等方向发展
流量q (Ah/t):单位时间内流过某一截面积为A的流体体积
(1-4)(连续性方程) q 若已知进入缸体的流量q,则活塞运动速度为: v (1.5) A q=A1v1=A2v2
q=Av
重要基本概念二:
“活塞的运动速度v取决于进入液压(气压)缸 (马达)的流量q,而与液体压力p大小无关”
功率关系
• 恩式粘度与运动粘度(mm2/s)的换算关系:
粘温特性
• 定义:粘度随温度变化的特性
几种国产油液粘温图
液压油的选择
• 液压油的要求 • 液压油的选择:
工作压力的高低 环境温度 工作部件运动速度的高低
空气的主要物理性质
• 空气的性质
空气的组成:表1.4 空气的基本性质
• 湿空气: 含有水蒸气的空气
靠本身内能的消耗对外作功
理想气体状态变化过程
• 多变过程:
一定质量的气体,若其基本状态参数都在 变化(即没有任何条件限制)
n n 式中n为多变指数,在一定的多变过程中,n保持不变;对于不同的多 1 1 2 2
p p 常数
变过程,n有不同的值。
当n=0时,pv0=p=常数,为等压过程; 当n=1时,pv=常数,为等温过程; 当n=时, pv =常数,为绝热过程; 当n=时,p1/nv=p0v=v=常数,为等容过程
p = RT 或 pV = mRT
p:绝对压力(Pa);:质量体积(比容)(m3 /kg); R:气体常数,对干空气,R=287.1(N· m/kg· K);水蒸气, R=461(N· m/kg· K); T: 热力学温度(K);m:质量(kg);V:体积(m3) 式中
对定量气体,状态方程可写成:
式中 V:液体加压前的体积(m3);
△V:加压后液体体积变化量(m3); △p:液体压力变化量(N/ m2);
• 体积弹性模量K (N/ m2) :液体体积压缩系数κ的倒数
1 K
计算时常取K=7×108 N/ m2
粘度
• 液体的粘性:
液体在流动时产生内摩擦力的特性
静止液体则不显示粘性
• 液体的粘度:
液体粘性的大小可用粘度来衡量。 粘度是液体的根本特性,也是选择液压油的最重要指标 常用的粘度有三种不同单位:即动力粘度、运动粘度和相 对粘度
动力粘度(绝对粘度)μ
• 牛顿内摩擦定律
du dz du dz μ:称为动力粘度系数(Pa· s) F A
式中
液体粘性示意图
τ:单位面积上的摩擦力(即剪切应力) :速度梯度,即液层间速度对液层距离的变化率
湿空气
• 绝对湿度χ :每立方米湿空气中所含水蒸气的质量

式中
ms V
ms:湿空气中水蒸气的质量(kg); V:湿空气的体积(m3)
• 饱和绝对湿度:湿空气中水蒸气的分压力达到该湿度下蒸气的饱
和压力时的绝对湿度
b
pb RsT
式中
Pb:饱和空气中水蒸气的分压力(N/ m2); Rs:水蒸气的气体常数,Rs=461(N· m/kg· K); T: 热力学温度(K),T=273.1+t(C)
相关文档
最新文档