第三章力系的平衡条件
理论力学第3章 力系的平衡条件与平衡方程
10
例题二的解答
解:选取研究对象:杆CE(带有销 钉D)以及滑轮、绳索、重物组成 的系统(小系统)受力分析如图, 列平衡方程:
M D (F ) 0 M C (F ) 0 M B (F ) 0
( F C cos ) CD F ( DE R ) PR 0 F Dx DC F ( CE R ) PR 0 F BD F ( DE R ) P ( DB R ) 0 Dy
2012年11月3日星期六
北京邮电大学自动化学院
29
滚动摩擦力偶的性质
滚动摩擦力偶M 具有如下性质(与滑动摩擦力性质类似): ◆ 其大小由平衡条件确定; ◆ 转向与滚动趋势相反; ◆ 当滚子处于将滚未滚的平衡临界状态时, M = M max =δFN
式中:δ —滚动摩擦系数,它的量纲为长度; FN —法向反力(一般由平衡条件确定)。
q (2a b) 2a
2
YA q (2a b)
16
2012年11月3日星期六
北京邮电大学自动化学院
课堂练习3
多跨静定梁由AB梁和BC梁用中间铰B连接而成,支撑和荷 载情况如图所示,已知P = 20kN,q=5kN⋅m,α = 45°。求 支座A、C的反力和中间铰B处的反力。
2012年11月3日星期六
x
xC
x
2012年11月3日星期六
北京邮电大学自动化学院
5
平行分布线载荷的简化
Q
q
1、均布荷载 Q=ql
l 2
l 2
Q
q
2、三角形荷载 Q=ql /2
2l 3
l 3
Q
3、梯形荷载 Q=(q1+q2)l /2 (自己求合力的位置)
《工程力学:第三章-力系的平衡条件和平衡方程》解析
工程力学 1. 选择研究对象。以吊车大梁 AB为研究对象,进行受力分析 (如图所示) 2.建立平衡方程
第三章 力系的平衡条件和平衡方程
FAX FTB cos 0 Fy 0
F
x
0
: (1)
M
FAy FQ FP FTB sin 0
A
(F ) 0
工程力学
第三章 力系的平衡条件和平衡方程
§3.3 考虑摩擦时的平衡问题
3.3.1 滑动摩擦定律
概念:
静摩擦力:F 最大静摩擦力:Fmax 滑动摩擦力: Fd
静摩擦因数:
水平拉力: Fp
Fmax f s FN
fs
工程力学
第三章 力系的平衡条件和平衡方程
3.3.2 考虑摩擦时构件的平衡问题
考虑摩擦力时与不考虑摩擦力时的平衡 解题方法和过程基本相同, 但是要注意摩擦力的方向与运动趋势方向相反;且在滑动之前摩擦 力不是一个定值,而是在一定范围内取值。
l l sin 0
(3)
工程力学
第三章 力系的平衡条件和平衡方程
• 联立方程(1)(2)(3)得:
FAX
FQ FP 3 l x 2
(2)由FTB结果可以看出,当x=L时,即当电动机移动到大梁右 端B点时,钢索所受的拉力最大,最大值为
非静定问题:未知数的数目多于等于独立的平衡方程的数目,不能 解出所有未知量。相应的结构为非静定结构或超静定结构。
会判断静定问题和非静定问题
工程力学
第三章 力系的平衡条件和平衡方程
工程力学
第三章 力系的平衡条件和平衡方程
3.2.2 刚体系统平衡问题的特点与解法
1.整体平衡与局部平衡的概念 系统如果整体是平衡的,则组成系统的每一个局部以及每一个 2.研究对象有多种选择 刚体也必然是平衡的。
第三章力系的平衡介绍
工 程 力 学
§3-2
平面力系的平衡条件
F1 Fn F3
1、平面任意力系的平衡方程 F2 平面任意力系平衡的充要条件是: 力系的主矢和对任意点的主矩都等于零。
0 FR
第 三 章 力 系 的 平 衡
Mo 0
平面任意力系
FR ( Fx ) 2 ( Fy ) 2
M O M O (F )
2
0
F
x
0,
F
y
0,
F
z
0
即:汇交力系的平衡条件是力系中所有各力在各个坐
标轴中每一轴上的投影的代数和分别等于零。
工 程 力 学
三、空间平行力系的平衡方程
第 三 章 力 系 的 平 衡
F
z
0,
M (F ) 0, M (F ) 0
x
y
工 程 力 学
四、空间力偶系的平衡方程
第 三 章 力 系 的 平 衡
工 程 力 学
例:如图所示为一种起吊装置的结构简图。图中尺寸d , 载荷F, <FAD =60均为已知。若不计各杆自重,试求杆AF与杆AD在各 自的约束处所受的约束力。
第 三 章 力 系 的 平 衡
工 程 力 学
第 三 章 力 系 的 平 衡
工 程 力 学
例:滑轮支架系统如图所示。已知G,a,r,θ ,其余物体重 量不计,试求A和B的约束力。
工 程 力 学
3、平面汇交力系的平衡方程
F
x
0,
F
y
0
4、平面力偶系的平衡条件
第 三 章 力 系 的 平 衡
M 0
即:力偶系各力偶力偶矩的代数和等于零。
工 程 力 学
理论力学-3-力系的平衡
z
F2
O
F1
F
z
0
M F 0 M F 0
x y
自然满足,且
M F 0
z
M F 0
O
平面力系平衡方程的一般形式
于是,平面力系平衡 方程的一般形式为: z O y
Fx 0 Fy 0 M F 0 o
其中矩心 O 为力系作用面 内的任意点。
静不定次数:静不定问题中,未知量的个数与独立的平 衡方程数目之差。
多余约束:与静不定次数对应的约束,对于结构保持静 定是多余的,因而称为多余约束。 关于静不定问题的基本解法将在材料力学中介绍。
P A m a B q
解:对象:梁 受力:如图 方程:
C
b
F F
0, FAx P cosq 0, FAx P cosq # FAy FB P sin q 0 1 y 0, M A F 0, m FBa Pa bsinq 0 2
B A
FR FR
x
A
B
FR
A、B 连线不垂直于x 轴
B A
FR
x
3.3 平面力系的平衡方程 “三矩式” M A = 0, MB = 0 , MC = 0。
C B A C B A
FR FR
满足第一式? 满足第二式? 满足第三式?
B A
FR
FR
A、B、C 三点不 在同一条直线上
C A
B
M (F ) 0 Fy 0
A
FQ (6 2) FP 2 FB 4 W (12 2) 0
FQ FA FP FB W 0
理论力学:第3 章 力系的平衡
力系平衡是静力学研究的主要内容之一,也是静力学最重要的内容。其中平面力系的平衡又
是重要之重要内容,平面物系的平衡又是重要之重要内容。
事实上我们已经得到力系的平衡条件(充要):
R
0,M O
0 。下面将其写成代数方程即
平衡方程,用其解决具体问题。
3.1 平面力系的平衡条件与平衡方程
受力图如图(c),列解方程:
Y 0, P cos G sin 0
P
使 P 最小,则
G sin cos
G sin cos( )
cos( ) 1,
arctan 3
3652'
Pmin
G sin
20
3 5
12kN
4
另解:(几何法) 画自行封闭的力三角形,如图(d),则
Q
G(b
e) 50b a
Hale Waihona Puke 350.0kN∴ 使起重机正常工作的平衡重为:333.3kN≤Q≤350.0kN 注:也可按临界平衡状态考虑,求 Pmin 和 Pmax。 静力学的应用:
学习静力学有何用处?——上面几个例题有所反映。
例 1:碾子问题——满足工作条件的载荷设计。
例 2:梁平衡问题——结构静态设计(一类重要工程问题)。
分由由由图图图析(((:acb)))汽:::车受平面平行力mmm系EBB(((,FFF))易) 列解000,,,方程。下shl面只给出方程:
例 4 平行力系典型题目,稳定性问题且求范围。 行动式起重机的稳定性极其重要,要求具有很好的稳定裕度,满载时不向右翻倒,空载时不 向左翻倒。已知自重 G = 500kN,最大载荷 Pmax = 210kN,各种尺寸为:轨距 b = 3m,e = 1.5m, l = 10m,a = 6m,试设计平衡重 Q,使起重机能正常工作,且轨道反力不小于 50kN。
工程力学3-力系的平衡条件和平衡方程
例1 例1 求图示刚架的约束反力。
解:以刚架为研究对象,受力如图。
F x0:F A xq b0
P a A
q
b
F y0:F A yP0
P
MA(F)0:
MA
MAPa12q b2 0
FAx
A
FAy
q
解之得:
FAx qb
FAy P
MAPa 1 2qb 2
例2 例2 求图示梁的支座反力。
解:以梁为研究对象,受力如图。
坐标,则∑Fx=0自然满足。于是平面 平行力系的平衡方程为:
O
F2
x
F y 0 ; M O ( F ) 0
平面平行力系的平衡方程也可表示为二矩式:
M A ( F ) 0 ; M B ( F ) 0
其中AB连线不能与各力的作用线平行。
[例5] 已知:塔式起重机 P=700kN, W=200kN (最大起重量), 尺寸如图。求:①保证满载和空载时不致翻倒,平衡块
解: 1.分析受力
建立Oxy坐标系。 A处约束力分量为FAx和FAy ;钢 索的拉力为FTB。
解: 2.建立平衡方程
Fx=0
MAF= 0
- F Q 2 l- F W xF T Blsi= n0
FTB= FPlxs+ iF nQ2 l= 2FlWxFQ
FAx F TBco = s0
Fy=0
F A = x 2 F W x l F Q l co= s3 3 F lW 0xF 2 Q
[例1] 已知压路机碾子重P=20kN, r=60cm, 欲拉过h=8cm的障碍物。 求:在中心作用的水平力F的大小和碾子对障碍物的压力。
解: ①选碾子为研究对象 ②取分离体画受力图
工程力学第三章-力系的平衡
将上式两边向x、y、z 轴投影,可得平衡方程
F F F
可以求解3个未知量。
x y
z
0 0 0
• 2.平面汇交力系
力系的平衡
• 力偶系的平衡方程 • 1.空间力偶系
平衡的充要条件(几何条件) M Mi 0 将上式两边向x、y、z 轴投影,可得平衡方程
M M M
可以求解3个未知量。
ix iy iz
0 0 0
• 2.平面力偶系
力系的平衡
• 平衡的充要条件:力偶系中各力偶矩的代数和等于零.
m 0
i
• 任意力系的平衡方程 空间任意力系: • 平衡的充要条件:力系的主矢和对任一点的主矩均为零。
FR 0
MO 0
G3 a
e
G 3(a b) FNAb G1e G 2L 0 G 3(a b) G1e G 2L FNA 2 b
由(1)、(2)式 得:
G1 G2 L
G1e G 2L G3 ab
3
A FN A b
B FN B
(2)空载时
不翻倒条件:FNB≥0 (4) 由 mA 0 得:
FAB = 45 kN
600
y B TBC 15 15 30 TBD
0 0 0
x
C
D
150
B
300
TBD=G E
A
E
FAB G
解题技巧及说明:
1、一般地,对于只受三个力作用的物体,且角度特殊时用 几 何法(解力三角形)比较简便。 2、一般对于受多个力作用的物体,且角度不特殊或特殊, 都用解析法。 3、投影轴常选择与未知力垂直,最好使每个方程中只有一 个未知数。
工力C第三章力系的平衡方程及应用
M
静力学
第三章 力系的平衡方程及其应用
静力学
例3-3 伸臂式起重机,已知匀质梁AB 重P =4kN,吊车连 同吊起重物重P1=10kN。有关尺寸如图。
y
试求:拉索BD 的拉力及铰链 A 的约束力。
D
解:取AB梁连同重物为研究对象,
FAy
FT
C 30°
A
FAx
画受力图。 取坐标,列平衡方程。
B
x由: X 0
• 空间任意力系平衡方程:基本形式、四矩式、五矩式 和六矩式。
• 应当注意:每一种形式最多只能列6个独立平衡方程, 解6个未知数,任何多于6个的方程都是这些方程的线性 组合。
• 空间任意力系平衡方程是平衡方程的一般形式。汇交 力系、平行力系、力偶系及平面力系是其特殊形式。
第三章 力系的平衡方程及其应用
对图(d):
FT1
由 M B (F ) 0 0.4FT cos 1YH 0
(d)
X H
H
由 X 0
FT sin X H X B 0
(e)
YH
FT2 由 Y 0
FT cos YH YB 0
(f )
(c)
YB E X B
B
F'T
但若系统的n物体中,有n1个物体为二力构件或受平面 力偶系, n2个受平面汇交力系或平面平行力系、n3个受平 面任意力系作用,则最多可列的独立平衡方程的数目m为
m n1 2n2 3n3
可解m个未知数。
第三章 力系的平衡方程及其应用
静力学
设k为物体系统的未知量数目
若k = m,未知量数目等于可列独立平衡方程的数
FB
理论力学第3章 力系的平衡
基础部分——静力学第3 章力系的平衡主要内容:§3-7 重心即:力系平衡的充分必要条件是,力系的主矢和对任一点3-2-1 平衡方程的一般形式∑=iF F R ∑=)(i O O F M M 已知∑=iF F R ∑=)(i O O F M M 投影式:平衡方程i即:力系中所有力在各坐标轴上投影的代数和分别等于零;所有力对各坐标轴之矩的代数和分别等于零。
说明:¾一般¾6个3个投影式,3个力矩式;¾一般形式基本形式3-2-2 平面一般力系的平衡方程xy zOF1F2Fn平面内,¾一般形式¾3个2个投影式,1个力矩式;¾ABAzzCC附加条件:不垂直附加条件:不共线Bx二矩式的证明必要性充分性合力平衡AA 点。
B 点。
过ABBx故必有合力为零,力系平衡证毕平面问题3个3个 解题思路BAMFo45l l[例3-1] 悬臂梁,2解:M A 校核:0)(=∑F MB满足!解题思路?AyF AxF[例3-2] 伸臂梁F AxF AyF BF q 解:0=∑x F 0)(=∑F AM3(F −+0=∑yF3(F −+(F −+0)(=∑F AM=∑yF0=∑x F F AxF AyF BF q 思考:如何用其他形式的平衡方程来求解?0=∑x F 3(F −+0)(=∑F AMF AxF F BF q 0)(=∑F BM(F −+二矩式思考练习][练习FFlll F ACB DlllACB DM=F l[思考][思考]lll F ACB DlllACB DF见书P54例3-1—约束lllACB DF—约束CBADEFM—约束—约束—整体平衡局部平衡CB ADEFM研究对象的选取原则¾仅取整体或某个局部,无法求解;¾一般先分析整体,后考虑局部;¾尽量做到一个方程解一个未知力。
qCBAm2m2m2m2MBCM[例3-3] 多跨梁,求:如何选取研究对象?F CqF CFAxF AyM ABAqF'BxF'ByM A F Ax F AyF Bx F By解:先将分布力用合力来代替。
第三章 力系的平衡条件
解: 取AB梁,画受力图。 梁 画受力图。
∑F =0 x
F + F cos450 = 0 Ax c
F + F sin450 −F = 0 Ay c
∑Fy =0
MA = 0 F cos450 ⋅l − F ⋅ 2l = 0 ∑ c
解得
F = 28.28kN FAx = −20kN FAy = −10kN , , C
例3 - 8
M 已知: F=20kN, q=10kN/m, = 20kN⋅m, L=1m; 已知:
求: A,B处的约束力. 处的约束力. 解: 取CD梁,画受力图. 画受力图.
∑M =0
c
l F sin 60 ⋅l −ql ⋅ − F cos300 ⋅ 2l = 0 B 2
0
解得
FB=45.77kN
∑MA = 0
F ⋅ 2a + F x ⋅ a = 0 Bx D
得
F =−F Bx
例3-19 已知: 荷载与尺寸如图; 已知: 荷载与尺寸如图; 每根杆所受力。 求: 每根杆所受力。 取整体,画受力图。 解: 取整体,画受力图。
∑F = 0 ix
F =0 Ax
F = 20kN Ay
∑MB = 0 −8FAy +5*8+10*6+10*4+10*2 = 0
q= 20kN , m
l =1 ; F = 400kN, m
解得 F = 316.4kN Ax
o F =0 FAy − P−Fcos60 = 0 ∑ y
解得 FAy =300kN
∑M
A
=0
A 解得 M = −1188kN⋅ m
M − M − F1⋅l + F cos60o ⋅l + Fsin 60o ⋅3l = 0 A
工程力学 第3章 力系的平衡
6
解 :1. 受力分析, 确定平衡对象 圆弧杆两端 A 、 B 均为铰链,中间无外力作用,因此圆弧杆为二力杆。 A 、 B 二处的 约束力 FA 和 FB 大小相等、 方向相反并且作用线与 AB 连线重合。 其受力图如图 3-6b 所示。 若 以圆弧杆作为平衡对象,不能确定未知力的数值。所以,只能以折杆 BCD 作为平衡对象。 ' 折杆 BCD , 在 B 处的约束力 FB 与圆弧杆上 B 处的约束力 FB 互为作用与反作用力, 故 二者方向相反; C 处为固定铰支座,本有一个方向待定的约束力,但由于作用在折杆上的 ' 只有一个外加力偶,因此,为保持折杆平衡,约束力 FC 和 FB 必须组成一力偶,与外加力 偶平衡。于是折杆的受力如图 3-6c 所示。 2.应用平衡方程确定约束力 根据平面力偶系平衡方程(3-10) ,对于折杆有 M + M BC = 0 (a) 其中 M BC 为力偶( FB , FC )的力偶矩代数值
图 3-8 例 3-3 图
解 :1. 选择平衡对象 本例中只有平面刚架 ABCD 一个刚体(折杆) ,因而是唯一的平衡对象。 2 受力分析 刚架 A 处为固定端约束, 又因为是平面受力, 故有 3 个同处于刚架平面内的约束力 FAx、 FAy 和 MA 。 刚架的隔离体受力图如图 3-8b 所示。 其中作用在 CD 部分的均布荷载已简化为一集中 力 ql 作用在 CD 杆的中点。 3. 建立平衡方程求解未
习 题
本章正文 返回总目录
2
第 3 章 力系的平衡
§3-1 平衡与平衡条件
3-1-1 平衡的概念
物体静止或作等速直线运动,这种状态称为平衡。平衡是运动的一种特殊情形。
平衡是相对于确定的参考系而言的。例如,地球上平衡的物体是相对于地球上固定参 考系的, 相对于太阳系的参考系则是不平衡的。 本章所讨论的平衡问题都是以地球作为固定 参考系的。 工程静力学所讨论的平衡问题,可以是单个刚体,也可能是由若干个刚体组成的系统, 这种系统称为刚体系统。 刚体或刚体系统的平衡与否,取决于作用在其上的力系。
第3章力系的平衡条件与平衡方程
第3章 力系的平衡条件与平衡方程3.1 平面力系的平衡条件与平衡方程3.1.1 平面一般力系的平衡条件与平衡方程如果一个平面一般力系的主矢和力系对任一点的主矩同时都等于零,物体将不会移动也不会转动,则该物体处于平衡状态。
力系平衡的充分必要条件:力系的主矢和力系对任一点的主矩都分别等于零,即 110()0i n R i n O O ii F F M M F ==⎫==⎪⎪⎬⎪==⎪⎭∑∑平衡条件的解析式:11100()0nix i niy i n O i i F F M F ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑ 或 00()0x y O F F M F ⎫=⎪⎪=⎬⎪=⎪⎭∑∑∑ 平面一般力系的平衡方程该式表明,平面一般力系的平衡条件也可叙述为:力系中各力在任选的坐标轴上的投影的代数和分别等于零,以及各力对任一点的矩的代数和也等于零。
平面汇交力系:平面汇交力系对平面内任意一点的主矩都等于零,即恒满足()0O M F ≡∑物体在平面汇交力系作用下平衡方程:00x yF F ⎫=⎪⎬=⎪⎭∑∑例题3-1 图所示为悬臂式吊车结构图。
其中AB 为吊车大梁,BC为钢索,A 处为固定铰支座,B 处为铰链约束。
已知起重电动机E 与重物的总重量为PF (因为两滑轮之间的距离很小,PF 可视为集中力作用在大梁上)梁的重力为QF 已知角度30θ=。
求:1、电动机处于任意位置时,钢索BC所受的力和支座A处的约束力;2、分析电动机处于什么位置时。
钢索受力最大,并确定其数值。
解:1、选择研究对象以大梁为研究对象,对其作受力分析,并建立图示坐标系。
建立平衡方程 取A 为矩心。
根据()0A M F =∑sin 02Q P TB lF F x F l θ-⨯-⨯+⨯=222sin 2sin30P Q P Q P TB QlF x F F x F l F x F F l l l θ⨯+⨯+===+由xF =∑cos 0Ax TB F F θ-=2()cos303()2Q P P Ax Q F F x F x F F l l =+=+由yF =∑sin 0Ay Q P TB F F F F θ---+=122[()]2Q P Ay Q P TB Q P Q P F F x F F F F F F l F l xF l =--+=--++-=-+由 2P TB QF x F F l =+ 可知当x l =时钢索受力最大, 其最大值为 22P TB Q P QF lF F F F l =+=+在平面力系的情形下,力矩中心应尽量选在两个或多个未知力的交点上,这样建立的力矩平衡方程中将不包含这些未知力;坐标系中坐标轴取向应尽量与多数未知力相垂直,从而这些未知力在这一坐标轴上的投影等于零,这样可减少力的平衡方程中未知力的数目。
工程力学03章静力学平衡问题
FP
l
l
FP
l
l
M
q
M
q
2l l
2l l
A
FAx A MA
解:1.选择研究对象。
FAy
2 受力分析,画出受力图如图所示。
8
2l l
FP
l
l
M
FAx
A MA
FAy
3. 建立平衡方程求解未知力 应用平衡方程
Fx = 0, FAx ql 0
q Fy = 0, FAy FP 0
MA= 0,
B
C
M1
A 60o
M2
60o D
20
解: 取杆AB为研究对象画受力图。
杆AB只受力偶的作用而平衡且C处为光滑面约束,则A 处约束反力的方位可定。
B
B FA = FC = F,
M1
A 60o
C
C AC = a
FC
Mi = 0
M2 M1
60o D A
FA
a F - M1 = 0
M1 = a F (1)
的各坐标轴上投影的代数和及所有力对
各轴之矩的代数和均等于零
Fx 0 Fy 0 Fz 0
M M
x y
(F ) (F )
0 0
M
z
(F
)
0
26
§3-3 简单的刚体系统平衡问题
一、刚体系统静定与静不定的概念
1、静定问题:一个静力平衡问题,如果系统中未知量 的数目正好等于独立的平衡方程数,单用平衡方程就 能解出全部未知量。
y
4. 联立求解,得
FAB 54.5KN FBC 74.5KN
理论力学:第3章 力系的平衡
1第3章 力系的平衡 3.1 主要内容空间任意力系平衡的必要和充分条件是:力系的主矢和对任一点的主矩等于零,即 0=R F 0=O M 空间力系平衡方程的基本形式 0,0,0=∑=∑=∑z y x F F F 0)(,0)(,0)(=∑=∑=∑F F F z y x M M M空间汇交力系平衡的必要和充分条件是:力系的合力 0=R F空间汇交力系平衡方程的基本形式0,0,0=∑=∑=∑z y x F F F空间力偶系平衡的必要和充分条件是:各分力偶矩矢的矢量和 0=∑i M空间力偶系平衡方程的基本形式 0)(,0)(,0)(=∑=∑=∑F F F z y x M M M平面力系平衡的必要和充分条件:力系的主矢和对于任一点的主矩都等于零,即:0=∑='F F R;0)(=∑=F O O M M 平面力系的平衡方程有三种形式:基本形式: 0)(,0,0=∑=∑=∑F M F F O y x二矩式: 0)(,0)(,0=∑=∑=∑F M F M F B A x (A 、B 连线不能与x 轴垂直)三矩式: 0)(,0)(,0=∑=∑=∑F M F M M C B A (A 、B 、C 三点不共线)平面力系有三个独立的平衡方程,可解三个未知量。
平面汇交力系平衡的必要和充分条件是合力为零,即0=∑=F F R 平衡的解析条件:各分力在两个坐标轴上投影的代数和分别等于零,即0,0=∑=∑y x F F两个独立的平衡方程,可解两个未知量。
平面力偶系平衡的必要和充分条件为:力偶系中各力偶矩的代数和等于零,即∑=0Mi一个独立的平衡方程,可解一个未知量。
3.2 基本要求1.熟练掌握力的投影,分布力系的简化、力对轴之矩等静力学基本运算。
2.能应用各种类型力系的平衡条件和平衡方程求解单个刚体和简单刚体系统的平衡问题。
对平面一般力系的平衡问题,能熟练地选取分离体和应用各种形式的平衡方程求解。
3.正确理解静定和超静定的概念,并会判断具体问题的静定性。
第三章 力系的平衡
HOHAI UNIVERSITY ENGINEERING MECHANICS
例1: 作AB和CD示力图
HOHAI UNIVERSITY ENGINEERING MECHANICS
解: AB示力图 FAx FAy
A D C B
F
A
B F'RD FRD D
F
CD示力图
FRD D C C FRC
FRC
C
4.物体间的内约束力不应该画出。
§3-3 汇交力系的平衡
一、汇交力系平衡的充分必要条件
HOHAI UNIVERSITY ENGINEERING MECHANICS
FR F1 F2 Fn 0
二、汇交力系的平衡方程
空间汇交力系: 平面汇交力系:
FRx =Fix=0
FRy =Fiy=0
两个构件用光滑圆 柱形销钉连接起来,称 为铰链连接(铰接)
四、活动铰支座
HOHAI UNIVERSITY ENGINEERING MECHANICS
上摆
组成分析
销钉 底板 只能限制物体与支座接触处向着支承面或 离开支承面的运动。 运动分析
滚轮
受力分析
HOHAI UNIVERSITY ENGINEERING MECHANICS
(A、B的连线不垂直于x轴)
HOHAI UNIVERSITY ENGINEERING MECHANICS
连杆的约束力沿着连杆 中心线,指向不定
F'B
空间铰
HOHAI UNIVERSITY ENGINEERING MECHANICS
六、球铰
HOHAI UNIVERSITY ENGINEERING MECHANICS
工程力学3-力系的平衡条件和平衡方程
根据力的平衡条件,可以列出平衡方程。对于一个物体,在X轴和Y轴上的力可以表示为F1、F2、F3、F4等,根 据平衡条件,可以列出两个平衡方程:F1X+F2X+F3X+F4X=0和F1Y+F2Y+F3Y+F4Y=0。
平衡方程的分类
平面力系的平衡方程
对于平面力系,可以列出三个平衡方程,分别表示X轴、Y轴 和Z轴上的力的平衡。
• 总结词:平面力系的平衡方程是用来求解未知力的数学工具,一般形式为 ∑X=0和∑Y=0。
• 详细描述:平面力系的平衡方程是根据平衡条件建立的数学方程,一般形式为 ∑X=0和∑Y=0,其中X和Y表示力在两个相互垂直的方向上的投影。通过解平衡 方程,可以求出未知力的值。
空间力系的平衡条件和平衡方程
• 总结词:空间力系中,力的合成与分解遵循平行六面体法则,平衡条件是力系 中所有力在三个相互垂直的方向上的投影之和为零。
• 详细描述:在空间力系中,力的合成与分解遵循平行六面体法则,即一个力可 以分解为三个相互垂直的分力。平衡条件是指力系中所有力在三个相互垂直的 方向上的投影之和为零,即合力矩为零。满足平衡条件的力系不会产生相对运 动或相对运动趋势。
• 总结词:空间力系的平衡方程是用来求解未知力的数学工具,一般形式为 ∑X=0、∑Y=0和∑Z=0。
跨学科融合
力系的平衡条件和平衡方程将与其它学科进行更紧密的融合,如计算机科学、人工智能 等,为解决复杂问题提供更高效的方法。
实际应用
力系的平衡条件和平衡方程在实际应用中将更加注重与工程实践的结合,提高解决实际 问题的效率。
力系平衡条件和平衡方程的实际应用
工程设计
在工程设计中,力系的平衡条件和平衡方程被广泛应用于结构分析 和优化设计,以确保结构的稳定性和安全性。
理论力学第三章 任意力系的简化与平衡条件
例3-2 已知:涡轮发动机叶片轴向力F=2kN,力偶矩
M=1kN.M, 斜齿的压力角=20 ,螺旋角 。 =10 ,齿轮节圆半径 r=10cm。不计发动 机自重。 O1O2=L1=50cm, O2A=L2=10cm. 求: FN, O1,O2处的约束力。
。
第三章 力系的简化与平衡条件
§3-5 力系的平衡条件
3
F2 F3
1
F'
F1
1 O 200 1
x
2
1 3 1 FRy F1 F2 F3 = -161.6(N) 2 10 5
第三章 任意力系的简化与平衡条件
§3-4 力系简化计算
解:(1)先将力系向O点简化,求主矢和主矩。 FRx FRy =466.5(N) 2 2 FR
Xi 0 F x F2x Fr 0 1
F y F2y F 0 1
Zi 0
F z Fa F 0 1
第三章 力系的简化与平衡条件
§3-5 力系的平衡条件
例3-2 解: 3、列平衡方程
Mx (F) 0
F2 y L1 F (L1 L2 ) 0
y
100 1
F
80
3
Байду номын сангаас
F2 F3
1
F'
F1
1 O 200 1
x
2
第三章 任意力系的简化与平衡条件
§3-4 力系简化计算
例3-1 (1)先将力系向O点简 解: 化,求主矢和主矩。 1 1 F2 FRx F1 10 2 2 F3 5 = -437 .6(N)
y
100 1
F
建筑力学大纲 知识点第三章 平面力系得平衡条件
第3章 平面力系的平衡条件3.1平面汇交力系的合成与平衡条件力系中各力的作用线都在同一平面内且汇交于一点,这样的力系称为平面汇交力系。
3.1.1 平面汇交力系合成的解析法设作用于O 点的平面汇交力系(F 1,F 2,…,F n ),其合力矢量为R F (图3-2)。
按合力投影定理求合力R F 在x , y 轴上的投影∑∑====ni yiRy ni xiRx F F F F 11y图3-2R F = cos RxRF F α=(3-1) cos Ry RF F β=式中α,β------合力矢量F R 与x 和y 轴的正向夹角。
3.1.2 平面汇交力系的平衡方程平面汇交力系平衡的必要与充分条件是力系的合力F R 等于零。
10nRx xi i F F ===∑10nRy yii F F===∑ (3-2)于是,平面汇交力系平衡的必要与充分条件可解析地表达为:力系中所有各力在两个坐标轴上投影的代数和分别为零。
式(3-2)称为平面汇交力系的平衡方程。
3.2平面力偶系的合成与平衡条件3.2.1 平面力偶系的合成应用力偶的等效条件,可将n 个力偶合成为一合力偶,合力偶矩记为M 。
∑==ni i M M 1(3-3)3.2.2 平面力偶系的平衡条件平面力偶系平衡的必要与充分条件:力偶系中所有各力偶的力偶矩的代数和等于零,即 10nii M M===∑ (3-4)3.3平面任意力系的合成与平衡条件3.3.1工程中的平面任意力系问题力系中各力的作用线在同一平面内,且任意地分布,这样的力系称为平面任意力系。
3.3.2 平面任意力系向一点的简化 主矢和主矩如图3-7(a )所示。
在力系作用面内任选一点O ,将力系向O 点简化,并称O 点为简化中心。
i ′图3-7由力12,,,n F F F '''L 所组成的平面汇交力系,可简化为作用于简化中心O 的一个力RF ',该力矢量∑==ni i RF F 1'(3-5)R F '称作平面任意力系的主矢。
第3章力系的平衡条件和平衡方程
1第3章 力系的平衡条件与平衡方程平面力系的平衡条件与平衡方程3.1.1 平面一般力系的平衡条件与平衡方程若是一个平面一般力系的主矢和力系对任一点的主矩同时都等于零,物体将不会移动也不会转动,则该物体处于平衡状态。
力系平衡的充分必要条件:力系的主矢和力系对任一点的主矩都别离等于零,即 110()0i nR i nO O ii F F M M F ==⎫==⎪⎪⎬⎪==⎪⎭∑∑平衡条件的解析式: 11100()0nix i niy i n O i i F F M F ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑ 或00()0x y OF F M F ⎫=⎪⎪=⎬⎪=⎪⎭∑∑∑ 平面一般力系的平衡方程该式表明,平面一般力系的平衡条件也可叙述为:力系中各力在任选的坐标轴上的投影的代数和别离等于零,和各力对任一点的矩的代数和也等于零。
平面汇交力系:2平面汇交力系对平面内任意一点的主矩都等于零,即恒知足()0OMF ≡∑物体在平面汇交力系作用下平衡方程:00x yF F ⎫=⎪⎬=⎪⎭∑∑例题3-1 图所示为悬臂式吊车结构图。
其中AB 为吊车大梁,BC 为钢索,A 处为固定铰支座,B 处为铰链约束。
已知起重电动机E 与重物的总重量为PF (因为两滑轮之间的距离很小,PF 可视为集中力作用在大梁上)梁的重力为QF 已知角度30θ=。
求:一、电动机处于任意位置时,钢索BC 所受的力和支座A 处的约束力;二、分析电动机处于什么位置时。
钢索受力最大,并肯定其数值。
3解:一、选择研究对象以大梁为研究对象,对其作受力分析,并成立图示坐标系。
成立平衡方程取A 为矩心。
按照 ()0A M F =∑sin 02Q P TB lF F x F l θ-⨯-⨯+⨯=222sin 2sin 30P Q P Q P TB QlF x F F x F l F x F F l l l θ⨯+⨯+===+ 由xF =∑cos 0Ax TB F F θ-=2()cos303()2QP P Ax Q F F x F x F F l l =+=+由yF =∑sin 0Ay Q P TB F F F F θ---+=4122[()]2Q P Ay Q P TB Q P Q P F F x F F F F F F l F l xF l =--+=--++-=-+由 2P TB QF x F F l =+ 可知当x l =时钢索受力最大, 其最大值为 22P TB Q P QF lF F F F l =+=+在平面力系的情形下,力矩中心应尽可能选在两个或多个未知力的交点上,这样成立的力矩平衡方程中将不包括这些未知力;坐标系中坐标轴取向应尽可能与多数未知力相垂直,从而这些未知力在这一坐标轴上的投影等于零,这样可减少力的平衡方程中未知力的数量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、空间任意力系的平衡条件
空间任意力系简化 {F1, F2, , Fn} {FR, MO}
FR 0, MO 0
平衡
n
n
FR Fi ' Fi
i1
i1
n
n
MO Mi ri Fi
i1
i1
FR ( Fx )2 ( Fy )2 ( Fz )2
L
例3-20
已知:P1,P2,P3,尺寸如图。
求: 1,2,3杆所受力。 解: 求支座约束力
M A 0 FAy
Fiy 0 FBy
从1,2,3杆处截取左边部分
Fiy 0
F2
MC 0
Fix 0
F1 F3
若再求4,5杆受力
取节点D
Fix 0 F5 Fiy 0 F4
Fix 0 FAx FT cos 300 0
Fiy 0
FAy P1 P2 FT sin 300 0
(1)
MA 0
FT sin 300 6 4P2 3P1 0
解得 FT 17.33kN FAy 5.33kN
例3-16 已知:P , a ,各杆重不计; 求:B 铰处约束反力。
得 FAy 20kN
Fiy 0 FAy FBy 40 0
得 FBy 20kN
求各杆内力
取节点A
Fiy 0 FAD
Fix 0 FAC
取节点C
Fiy 0 FCF Fix 0 FCD 0
取节点D
Fiy Fix
0 0
FDF , FDE
取节点E
L
Fiy 0 FEG Fix 0 FEF
M A 0 M A M 2ql 2l FB sin 600 3l F cos300 4l 0
解得
M A 10.37kN
例3-5 已知:P 100kN, M 20kN m,
q 20kN m, l 1m; F 400kN,
求: 固定端A处约束力。 解:取T型刚架,画受力图。
解: 取AB梁,画受力图。
Fx 0 FAx Fc cos 450 0
F y
0
FAy Fc sin 450 F 0
M A 0 Fc cos 450 l F 2l 0
解得 FC 28.28kN, FAx 20kN, FAy 10kN
例3-8 已知: F=20kN, q=10kN/m,M 20kNm, L=1m; 求: A,B处的约束力. 解: 取CD梁,画受力图.
解得 F3 9.81kN (拉)
例 3-14 已知:P1 4kN, P2 10kN, 尺寸如图;
求:BC杆受力及铰链A受力。
解: 取AB 梁,画受力图。
Fix 0 FAx FT cos 300 0
Fiy 0 FAy P1 P2 FT sin 300 0
M A 0 FT sin 300 6 4P2 3P1 0
F x
0
FAx 0 解得 FAm 0
M A 0 FB 4a M P 2a q 2a a 0
解得
FB
3 4
P
1 2
qa
Fy 0
解得
FAy q 2a P FB 0
FAy
P 4
3 2
qa
例3-2(例2-1)
已知:AC=CB=l, P=10kN; 求:铰链A和DC杆受力。(用平面任意力系方法求解)
汇交力系平衡的充分必要条件:
空间问题
Fx 0 Fy 0, Fz 0
平面问题
力偶系平衡的充分必要条件:
Fx Fy
0 ,
0
空间问题
M x (F ) 0 M y (F ) 0, M z (F ) 0
平面问题
M 0
例:已知AB梁长为l,其上受有均布载荷q, 求:梁A端的约束力。
解: 取整体,画受力图 MC 0 FBy 2a 0
解得 FBy 0
取ADB杆,画受力图 取DEF杆,画受力图
MD 0 FE sin 45o a F 2a 0
得 FE sin 45o 2F
Fix 0 FE cos 45o FD' x 0
得 FD' x FE cos 45o 2F
例3-12 已知: P=10kN,尺寸如图;
求: 桁架各杆件受力。
解: 取整体,画受力图。
Fix 0 FBx 0
M B 0 2P 4FAy 0 FAy 5kN
Fiy 0 FAy FBy P 0 FBy 5kN
取节点A,画受力图。
Fiy 0 FAy F1 sin 300 0
Fiy 0
解得
FAy FBy P1 P2 0 FBy 8kN
用截面法,取桁架左边部分。
ME 0 F1 1 cos300 FAy 1 0
解得 F1 10.4kN(压)
Fiy 0 FAy F2 sin 600 P1 0
解得
F2 1.15kN (拉)
Fix 0 F1 F3 F2 cos 600 0
解得 F1 10kN (压)
Fix 0 F2 F1 cos 300 0
解得 F2 8.66kN(拉)
取节点C,画受力图.
Fix 0 F4 cos 300 F1' cos 300 0
解得 F4 10kN (压)
Fiy 0 F3 F1' F4 sin 300 0
解得 F3 10kN(拉)
A
FAy MA
A FAx
解:研究AB梁,画受力图。
Fx 0, FAx 0
B
Fy 0,
l
FAy qdx 0, FAy ql
0
M A 0,
B
M
A
l 0
xqdx
0,
M
A
1 2
ql2
例3-4
已知: P, q, a, M pa; 求: 支座A、B处的约束力。
解:取AB梁,画受力图。
取节点D,画受力图。
Fix 0 F5 F2' 0
解得 F5 8.66kN (拉)
例3-13
已知: P1 10kN, P2 7kN, 各杆长度均为1m;
求: 1,2,3杆受力。
解: 取整体,求支座约束力。
Fix 0 FAx 0
M B 0 2P1 P2 3FAy 0
解得
FAy 9kN
MB o
FD' x a F 2a 0
得 FD' x 2F
对ADB杆受力图
M A 0 FBx 2a FDx a 0
得 FBx F
例3-19 已知: 荷载与尺寸如图;
求: 每根杆所受力。 解: 取整体,画受力图。
Fix 0 FAx 0
M B 0 8FAy 5*8 10*6 10*4 10*2 0
MO ( MOx )2 ( MOy )2 ( MOz )2
空间任意力系平衡的充分必要条件:
FR
0
Fx 0
Fy 0
MO
0
MOx(F ) 0
MOy(F ) 0
M x(F) 0 M y (F ) 0,
Fz 0
MOz(F ) 0
M z(F) 0
三、其它力系的平衡条件
Mc 0
FB
sin
600
l
ql
l 2
F
cos
300
2l
0
解得 FB=45.77kN
取整体,画受力图.
Fix 0
FAx FB cos 600 F sin 300 0
解得 FAx 32.89kN
Fiy 0 FAy FB sin 600 2ql F cos300 0
解得
FAy 2.32kN
其中
1
F1
F x
q 3l 30kN 2
0 FAx F1
F
sin 600
0
解得 FAx 316.4kN
Fy 0 FAy P F cos 60 0
解得 FAy 300kN
MA 0
MA M F1l F cos 60 l F sin 60 3l 0
解得 MA 1188kN m