广东省届高三七校第一次联考(文数)资料

合集下载

2024届广东省东莞市虎门中学等七校高三上学期联考数学试题及答案

2024届广东省东莞市虎门中学等七校高三上学期联考数学试题及答案

东莞市2023-2024学年第一学期七校联考试卷高三数学一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑.1. 已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=( )A. ∅B. SC. TD. Z2. 在复平面内,复数z 对应点为()1,1-,则1iz=+( )A. 2 B. 1C. D.123. 对于定义域是R 的任意奇函数()f x ,都有( )A. ()()0f x f x -->B. ()()0f x f x --≤C. ()()0f x f x ⋅-≤ D. ()()0f x f x ⋅->4. 假设你有一笔资金,现有三种投资方案,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.现打算投资10天,三种投资方案的总收益分别为10A ,10B ,10C ,则( )A. 101010A B C << B. 101010A C B <<C. 101010B A C << D. 101010C A B <<5. 函数()()e x x tf x -=在()2,3上单调递减,则t 的取值范围是( )A. [)6,+∞B. (],6-∞C. (],4∞- D. [)4,+∞6. 等边ABC 边长为2,13BD BC = ,则AD BC ⋅=( )A. 1B. 1- C.23D. 23-7. 已知正实数,a b 满足3a b ab +=,则4a b +的最小值为( )的A. 9B. 8C. 3D.838. 向量()0,1a = ,()2,3b =- ,则b 在a 上的投影向量为( )A ()2,0 B. ()0,2 C. ()3,0- D. ()0,3-二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.请把正确选项在答题卡中的相应位置涂黑.9. 某学校一同学研究温差x (℃)与本校当天新增感冒人数y (人)的关系,该同学记录了5天的数据:x 568912y1720252835经过拟合,发现基本符合经验回归方程 2.6y x a=+,则( )A. 经验回归直线经过(8,25) B. 4.2a=C. 5x =时,残差为0.2- D. 若去掉样本点(8,25),则样本的相关系数r 增大10. 已知函数()()πsin (ω0,)2f x x ωϕϕ=+><的部分图象如图所示,则( )A. ()f x 的图象可由曲线sin 2y x =向左平移π3个单位长度得到B ()πcos 26f x x ⎛⎫=-⎪⎝⎭C. 2π,03⎛⎫-⎪⎝⎭是()f x 图象的一个对称中心D. ()f x 在区间7π5π,64⎡⎤⎢⎥⎣⎦上单调递增11. 如图,圆锥SO 的底面圆O 的直径4AC =,母线长为B 是圆O 上异于A ,C 的动点,则下..列结论正确的是( )A. SC 与底面所成角为45°B. 圆锥SO的表面积为C. SAB ∠的取值范围是ππ,42⎛⎫⎪⎝⎭D. 若点B 为弧AC 的中点,则二面角S BC O --的平面角大小为45°12. 已知大气压强()Pa p 随高度()m h 的变化满足关系式00ln ln p p kh p -=,是海平面大气压强,410k -=.我国陆地地势可划分为三级阶梯,其平均海拔如下表:若用平均海拔的范围直接代表各级阶梯海拔的范围,设在第一、二、三级阶梯某处的压强分别为123,,p p p ,则( )A. 010.4p p e ≤B. 03p p <C. 23p p ≤D. 0.1832ep p ≤三、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡的相应位置上.13. 已知52345012345(1)x a a x a x a x a x a x -=+++++,则3a 的值为________.14. 已知tan 2α=,则()2sin π22cos 1αα+-值为______.15. 某公司员工小明上班选择自驾、坐公交车、骑共享单车的概率分别为13,13,13,而他自驾,坐公交车,骑共享单车迟到的概率分别为14,15,16,结果这一天他迟到了,在此条件下,他自驾去上班的概率的是________.16. 已知,A B 是球O 的球面上两点,60AOB ∠= ,P 为该球面上的动点,若三棱锥P OAB -体积的最大值为6,则球O 的表面积为________.四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效.17. ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos cos 2cos a C c A b B +=.(1)求B ;(2)若b =,ABC 的面积为ABC 的周长.18. 如图,在长方体1111ABCD A B C D -中,112,AA AD DC BD ===和1B D 交于点,E F 为AB 的中点.(1)求证://EF 平面11ADD A ;(2)求点A 到平面CEF 的距离.19. 记n S 为数列{}n a 的前n 项和,已知()*233n n S a n =-∈N .(1)求n a ;(2)若3211log n n nb a a -=+,记n T 为{}n b 的前n 项和,且满足150n T <,求n 的最大值.20. 某乡镇在实施乡村振兴的进程中,大力推广科学种田,引导广大农户种植优良品种,进一步推动当地农业发展,不断促进农业增产农民增收.为了解某新品种水稻品种的产量情况,现从种植该新品种水稻的不同自然条件的田地中随机抽取400亩,统计其亩产量x (单位:吨()t ).并以此为样本绘制了如图所示的频率分布直方图.附:()()()()22()n ad bc a b c d a c b d χ-=++++.α0.1000.05000100.001x α2.7063.8416.63510.828(1)求这400亩水稻平均亩产量的估计值(同一组中的数据用该组区间的中点值代表,精确到小数点后两位);(2)若这400亩水稻的灌溉水源有河水和井水,现统计了两种水源灌溉的水稻的亩产量,并得到下表:试根据小概率值0.05α=的独立性检验分析,用井水灌溉是否比河水灌溉好?21. 适量的运动有助于增强自身体质,加快体内新陈代谢,有利于抵御疾病.某社区组织社区居民参加有奖投篮比赛,已知小李每次在罚球点投进的概率都为()01p p <<.(1)若每次投篮相互独立,小李在罚球点连续投篮6次,恰好投进4次的概率为()f p ,求()f p 的最大值点0p ;(2)现有两种投篮比赛规则,规则一:在罚球点连续投篮6次,每投进一次,奖励两盒鸡蛋,每次投篮相互独立,每次在罚球点投进的概率都以(1)中确定的0p 作为p 的值;规则二:连续投篮3次,每投进一次,奖励四盒鸡蛋.第一次在罚球点投篮,投进的概率以(1)中确定的0p 作为p 的值,若前次投进,则下一次投篮位置不变,投进概率也不变,若前次未投进,则下次投篮要后退1米,投进概率变为上次投.进概率的一半.请分析小李应选哪种比赛规则对自己更有利.22. 已知函数()e xm f x x =+.(1)讨论()f x 的单调性;(2)若12x x ≠,且()()122f x f x ==,证明:0e m <<,且122x x +<.东莞市2023-2024学年第一学期七校联考试卷高三数学一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑.1. 已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=( )A. ∅B. SC. TD. Z【答案】C 【解析】【分析】分析可得T S ⊆,由此可得出结论.【详解】任取t T ∈,则()41221t n n =+=⋅+,其中Z n ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.2. 在复平面内,复数z 对应的点为()1,1-,则1iz=+( )A. 2B. 1C.D.12【答案】B 【解析】【分析】利用复数的几何意义及复数的除法法则,结合复数的模公式即可求解.【详解】因为复数z 在复平面内对应的点为()1,1-,所以1i z =-.所以()()()()212i i i 1i 1i 1i i 21i 1i 11i z -⨯----+====-+++⨯,所以11iz ==+.故选:B.3. 对于定义域是R 的任意奇函数()f x ,都有( )A. ()()0f x f x --> B. ()()0f x f x --≤C. ()()0f x f x ⋅-≤D. ()()0f x f x ⋅->【答案】C 【解析】【分析】根据()f x 为奇函数,可得()()f x f x -=-,再对四个选项逐一判断即可得正确答案.【详解】∵()f x 为奇函数,∴()()f x f x -=-,∴()()()()()2=0f x f x f x f x f x ⎡⎤⎡⎤⋅-⋅-=-≤⎣⎦⎣⎦,又()0=0f ,∴()20f x -≤⎡⎤⎣⎦,故选:C【点睛】本题主要考查了奇函数的定义和性质,属于基础题.4. 假设你有一笔资金,现有三种投资方案,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.现打算投资10天,三种投资方案的总收益分别为10A ,10B ,10C ,则( )A. 101010A B C << B. 101010A C B <<C. 101010B A C << D. 101010C A B <<【答案】B 【解析】【分析】设三种方案第n 天的回报分别为n a ,n b ,n c ,由条件可知{}n a 为常数列;{}n b 是首项为10,公差为10的等差数列;{}n c 是首项为0.4,公比为2的等比数列,然后求出投资10天三种投资方案的总收益为10A ,10B ,10C ,即可判断大小.【详解】解:设三种方案第n 天的回报分别为n a ,n b ,n c ,则40n a =,由条件可知{}n a 为常数列;{}n b 是首项为10,公差为10的等差数列;{}n c 是首项为0.4,公比为2的等比数列.设投资10天三种投资方案的总收益为10A ,10B ,10C ,则10400A =;101091010105502B ⨯=⨯+⨯=;10100.4(12)409.212C -==-,所以101010B C A >>.故选:B .【点睛】本题考查数列的实际应用,关键在于根据生活中的数据,转化到数列中所需的基本量,公差,公比等,属于中档题.5. 函数()()e x x tf x -=在()2,3上单调递减,则t 的取值范围是( )A. [)6,+∞B. (],6-∞C. (],4∞- D. [)4,+∞【答案】A 【解析】【分析】根据复合函数的单调性可得()y x x t =-的单调性,从而可求得t 的取值范围.【详解】因为函数e x y =在R 上单调递增,所以根据复合函数的单调性可得函数()y x x t =-在()2,3上单调递减,则32t≥,解得6t ≥.故选:A6. 等边ABC 边长为2,13BD BC = ,则AD BC ⋅=( )A. 1B. 1- C.23D. 23-【答案】D 【解析】【分析】根据题意,结合向量的数量积的运算公式,准确运算,即可求解.【详解】如图所示,由ABC 是边长为2的等边三角形,且13BD BC = ,可得AD AB BD =+,所以()2222cos120233AD BC AB BD BC AB BC BD BC ⋅=+⋅=⋅+⋅=⋅⋅+⋅=-.故选:D.7. 已知正实数,a b 满足3a b ab +=,则4a b +的最小值为( )A. 9 B. 8C. 3D.83【答案】C 【解析】【分析】利用“1”的代换,结合基本不等式进行求解即可【详解】由条件知113a b+=,1111414(4)553333a b a b a b a b b a ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当21a b ==时取等号.故选:C8. 向量()0,1a = ,()2,3b =- ,则b 在a上投影向量为( )A. ()2,0B. ()0,2 C. ()3,0- D. ()0,3-【答案】D 【解析】【分析】直接由投影向量公式求解即可.【详解】b 在a 上的投影向量为.()··30,3a b a a a a=-=-故选:D.二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.请把正确选项在答题卡中的相应位置涂黑.9. 某学校一同学研究温差x (℃)与本校当天新增感冒人数y (人)的关系,该同学记录了5天的数据:x568912的y 1720252835经过拟合,发现基本符合经验回归方程 2.6y x a=+,则( )A. 经验回归直线经过(8,25) B. 4.2a=C. 5x =时,残差为0.2- D. 若去掉样本点(8,25),则样本相关系数r 增大【答案】ABC 【解析】【分析】计算样本中心点可得验证选项A ;由样本中心点计算 a验证选项B ;根据残差的定义计算验证选项C ;根据相关系数r 的分析验证选项D .【详解】56891285x ++++==,1720252835255y ++++==,所以样本中心点为(8,25),则A 正确;由ˆ2.6y x a=+,得ˆ 2.625 2.68 4.2a y x =-=-⨯=,则B 正确;由B 知,ˆ 2.6 4.2yx =+,当5x =时,ˆ 2.65 4.217.2y =⨯+=,则残差为1717.20.2-=-,则C 正确;由相关系数公式可知,去掉样本点(8,25)后,相关系数r 的公式中的分子、分母的大小都不变,故相关系数r 的大小不变,故D 不正确.故选:ABC .10. 已知函数()()πsin (ω0,)2f x x ωϕϕ=+><的部分图象如图所示,则( )A. ()f x 的图象可由曲线sin 2y x =向左平移π3个单位长度得到B. ()πcos 26f x x ⎛⎫=-⎪⎝⎭的C. 2π,03⎛⎫-⎪⎝⎭是()f x 图象的一个对称中心D. ()f x 在区间7π5π,64⎡⎤⎢⎥⎣⎦上单调递增【答案】BC 【解析】【分析】根据函数的图象确定函数的表达式为()πsin 23f x x ⎛⎫=+⎪⎝⎭,即可结合选项逐一求解.【详解】由图可知:1πππ24126T T ω⎛⎫=--⇒=⇒= ⎪⎝⎭,又()f x 经过点π,112⎛⎫⎪⎝⎭,所以ππ22π,Z 122k k ϕ⨯+=+∈,故π2π,Z 3k k ϕ=+∈,由于ππ,,23ϕϕ<∴=故()πsin 23f x x ⎛⎫=+ ⎪⎝⎭,对于A ,()f x 的图象可由曲线sin 2y x =向左平移π6个单位长度得到,故A 错误,对于B ,()ππππcos 2=sin 2=sin 26623f x x x x ⎛⎫⎛⎫⎛⎫=--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 正确,对于C , ()2πsin π03f ⎛⎫-=-= ⎪⎝⎭,故2π,03⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心,故C 正确,对于D ,令πππ2π22π,Z 232k x k k -+≤+≤+∈,解得ππ,Z 5ππ1212k x k k +≤≤+∈-,故()f x 的其中两个单调递增区间为7π13π,1212⎡⎤⎢⎥⎣⎦,19π25π,1212⎡⎤⎢⎥⎣⎦,故()f x 在7π5π,64⎡⎤⎢⎥⎣⎦不单调递增,故D 错误,故选:BC11. 如图,圆锥SO 的底面圆O 的直径4AC =,母线长为B 是圆O 上异于A ,C 的动点,则下列结论正确的是( )A. SC 与底面所成角为45°B. 圆锥SO 的表面积为C. SAB ∠的取值范围是ππ,42⎛⎫⎪⎝⎭D. 若点B 为弧AC 的中点,则二面角S BC O --的平面角大小为45°【答案】AC 【解析】【分析】对于A ,根据SO ⊥面ABC ,由cos OCSCO SC<=判断;对于B ,由圆锥SO 的侧面积公式求解判断;对于C ,由π0,2ASB ⎛⎫∠∈ ⎪⎝⎭求解判断;对于D ,取BC 的中点D ,连接OD ,SD ,易得SDO ∠为二面角S BC O --的平面角求解判断.【详解】对于A ,因为SO ⊥面ABC ,所以SCO ∠是SC 与底面所成角,在Rt SOC △中,圆锥的母线长是,半径2r OC ==,则cos OC SCO SC ∠===,所以SCO ∠=45︒,则A 正确;对于B ,圆锥SO 的侧面积为rl π=,表面积为+4π,则B 错误;对于C ,当点B 与点A 重合时,0ASB ∠=为最小角,当点B 与点C 重合时π2ASB ∠=,达到最大值,又因为B 与A ,C 不重合,则π0,2ASB ⎛⎫∠∈ ⎪⎝⎭,又2πSAB ASB ∠+∠=,可得ππ,42SAB ⎛⎫∠∈ ⎪⎝⎭,则C 正确;对于D ,如图所示,,取BC 的中点D ,连接OD ,SD ,又O 为AC 的中点,则//OD AB ,因为AB BC ⊥,所以BC OD ⊥,又SO ⊥面ABC ,BC ⊂面ABC ,所以BC SO ⊥,又SO OD O = ,BC ⊥面SOD ,故BC SD ⊥,所以SDO ∠为二面角S BC O --的平面角,因为点B 为弧AC的中点,所以AB =,12OD AB ==tan SO SDO OD∠==D 错误.故选:AC.12. 已知大气压强()Pa p 随高度()m h 的变化满足关系式00ln ln p p kh p -=,是海平面大气压强,410k -=.我国陆地地势可划分为三级阶梯,其平均海拔如下表:平均海拔/m第一级阶梯4000≥第二级阶梯10002000~第三级阶梯2001000~若用平均海拔的范围直接代表各级阶梯海拔的范围,设在第一、二、三级阶梯某处的压强分别为123,,p p p ,则( )A. 010.4p p e ≤B. 03p p <C. 23p p ≤D. 0.1832ep p ≤【答案】ACD 【解析】【分析】根据题意,列出不等式,根据对数函数的性质解对数不等式即可求解.【详解】设在第一级阶梯某处的海拔为1h ,则4011ln ln 10p p h --=,即41110lnp h p =.因为14000h ≥,所以40110ln4000p p ≥,解得010.4ep p ≤A 正确;由0ln ln p p kh -=,得0ekhp p =.当0h >时,0e 1khp p=>,即0p p >,所以03p p >,B 错误;设在第二级阶梯某处的海拔为2h ,在第三级阶梯某处的海拔为3h ,则40224033ln ln 10ln ln 10p p h p p h --⎧-=⎨-=⎩两式相减可得()43232ln 10p h h p -=-.因为[][]231000,2000,200,1000h h ∈∈,所以[]230,1800h h -∈,则4320ln1018000.18p p -≤≤⨯=,即0.18321e p p ≤≤,故0.18232e C,D p p p ≤≤,均正确.故选:ACD.三、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡的相应位置上.13. 已知52345012345(1)x a a x a x a x a x a x -=+++++,则3a 的值为________.【答案】10【解析】【分析】根据给定条件,利用二项式定理直接列式计算作答.【详解】依题意,2235C (1)10a =-=.故答案为:1014. 已知tan 2α=,则()2sin π22cos 1αα+-的值为______.【答案】43【解析】【分析】利用三角函数的诱导公式、二倍角的正余弦公式以及同角三角函数的基本关系求解.【详解】()222222sin π2sin22sin cos 2tan 4tan 2,2cos 1cos sin cos sin 1tan 3αααααααααααα+---=====----.故答案为:43.15. 某公司员工小明上班选择自驾、坐公交车、骑共享单车的概率分别为13,13,13,而他自驾,坐公交车,骑共享单车迟到的概率分别为14,15,16,结果这一天他迟到了,在此条件下,他自驾去上班的概率是________.【答案】1537【解析】【分析】设小明迟到为事件A ,小明自驾为事件B ,由题可得()()(),,P A P B P AB ,后由条件概率公式可得答案.【详解】设小明迟到为事件A ,小明自驾为事件B ,则()11111137343536180P A =⨯+⨯+⨯=, ()1113412P AB =⨯=.则在小明迟到的条件下,他自驾去上班的概率为()()()115123737180P AB P B A P A ===.故答案为:153716. 已知,A B 是球O 的球面上两点,60AOB ∠= ,P 为该球面上的动点,若三棱锥P OAB -体积的最大值为6,则球O 的表面积为________.【答案】48π【解析】【分析】当PO ⊥平面OAB 时,三棱锥体积最大,设球O 的半径为R ,列方程求解即可.【详解】如图所示,当PO ⊥平面OAB 时,三棱锥的体积最大,设球O 的半径为R ,此时11sin 60632P OAB R V R R =⨯⨯⨯⨯⨯= -,故R =,则球O 的表面积为24π48πS R ==.故答案为:48π.四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效.17. ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos cos 2cos a C c A b B +=.(1)求B ;(2)若b =,ABC的面积为ABC 的周长.【答案】(1)3B π=;(2)6+的【解析】【分析】(1)根据正弦定理以及两角和的正弦公式即可求出1cos 2B =,进而求出B ;(2)根据余弦定理可得到()2312a b ab +-=,再根据三角形面积公式得到 8ab =,即可求出6a b +=,进而求出ABC 的周长.【详解】解:(1)cos cos 2cos a C c A b B += ,由正弦定理得:sin cos sin cos 2sin cos A C C A B B +=,整理得:()sin 2sin cos sin A C B B B +==,∵在ABC 中,0B π<<,∴sin 0B ≠,即2cos 1B =,∴1cos 2B =,即3B π=;(2)由余弦定理得:(222122a c ac =+-⋅,∴()2312a c ac +-=,∵1sin 2S ac B ===,∴8ac =,∴()22412a c +-=,∴6a c +=,∴ABC 的周长为6+.18. 如图,在长方体1111ABCD A B C D -中,112,AA AD DC BD ===和1B D 交于点,E F 为AB 的中点.(1)求证://EF 平面11ADD A ;(2)求点A 到平面CEF 的距离.【答案】(1)证明见解析 (2)1【解析】【分析】(1)利用空间中直线与平面平行的判定定理,结合三角形中位线即可证明;(2)建立空间直角坐标系,求平面法向量,再根据面面夹角的向量公式及点到面的距离公式运算求解.【小问1详解】如图,连接1AD ,11B D ,BD .因为长方体1111ABCD A B C D -中,1//BB 1DD 且11BB DD =,所以四边形11BB D D 为平行四边形.所以E 为1BD 的中点,在1ABD 中,因为E ,F 分别为1BD 和AB 的中点,所以//EF 1AD .因为EF ⊄平面11ADD A ,1AD ⊂平面11ADD A ,所以//EF 平面11ADD A .【小问2详解】如图建立空间直角坐标系D xyz -,因为长方体中12A A AD ==,CD =,则(0,0,0)D ,(2,0,0)A,(0,C,B,F,1B,E .所以(1,CE =,(2,CF =,.设平面CEF 的法向量为111(,,)m x y z =,则0,0,m CE m CF ⎧⋅=⎪⎨⋅=⎪⎩即11111020x z x ⎧-+=⎪⎨=⎪⎩,令11x =,则1y =,11z =,可得m =.AF =,所以点A 到平面CEF 的距离为||1||AF m d m ⋅== .19. 记n S 为数列{}n a 的前n 项和,已知()*233n n S a n =-∈N .(1)求n a ;(2)若3211log n n nb a a -=+,记n T 为{}n b 的前n 项和,且满足150n T <,求n 的最大值.【答案】(1)3nn a = (2)12【解析】【分析】(1)利用n S 与n a 的关系计算即可;(2)利用等比数列、等差数列的求和公式及分组求和法求n T ,再由函数的单调性解不等式即可.【小问1详解】当1n =时,1112332S a a =-=,解得13a =,当2n ≥时,11233n n S a --=-,因为233n n S a =-,所以1122233n n n n n S S a a a ---==-,即13n n a a -=,所以()132nn a n a -=≥,所以,{}n a 是首项为3,公比为3的等比数列,所以数列{}n a 的通项公式为3nn a =;【小问2详解】由题意知:1213n nb n =+-,所以()211112111331122313nn nn n T n ⎛⎫-⎪+-⎛⎫⎝⎭=+=-+ ⎪⎝⎭-,易知{}n T 在*n ∈N 上单调递增,而1213121311111441150,16911502323T T ⎛⎫⎛⎫=+-<=+-> ⎪ ⎪⎝⎭⎝⎭,所以满足150n T <的n 的最大值为12.20. 某乡镇在实施乡村振兴的进程中,大力推广科学种田,引导广大农户种植优良品种,进一步推动当地农业发展,不断促进农业增产农民增收.为了解某新品种水稻品种的产量情况,现从种植该新品种水稻的不同自然条件的田地中随机抽取400亩,统计其亩产量x (单位:吨()t ).并以此为样本绘制了如图所示的频率分布直方图.附:()()()()22()n ad bc a b c d a c b d χ-=++++.α0.1000.0500.0100.001x α2.7063.8416.63510.828(1)求这400亩水稻平均亩产量的估计值(同一组中的数据用该组区间的中点值代表,精确到小数点后两位);(2)若这400亩水稻的灌溉水源有河水和井水,现统计了两种水源灌溉的水稻的亩产量,并得到下表:亩产量超过0.7t亩产量不超过0.7t 合计河水灌溉18090270井水灌溉7060130合计250150400试根据小概率值0.05α=的独立性检验分析,用井水灌溉是否比河水灌溉好?【答案】(1)0.75(2)用河水灌溉是比井水灌溉好.【解析】【分析】(1)先根据频率之和为1求出b 的值,再根据公式求出平均值;(2)运用卡方公式进行求解.【小问1详解】由题:(0.752 1.252 1.75 2.25)0.1=1b ⨯+⨯+++⨯,解得=2b ,所以这400亩水稻平均亩产量的估计值为:(0.450.750.55 1.250.65 1.750.75 2.250.8520.95 1.25 1.050.75)0.1⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯0.75≈;【小问2详解】()()()()222()400(180607090) 6.154250*********n ad bc a b c d a c b d χ-⨯⨯-⨯==≈++++⨯⨯⨯,因为6.154 3.841>,所以根据小概率值0.05α=的独立性检验分析,有95%的把握认为亩产量与所用灌溉水源相关,用河水灌溉是比井水灌溉好.21. 适量的运动有助于增强自身体质,加快体内新陈代谢,有利于抵御疾病.某社区组织社区居民参加有奖投篮比赛,已知小李每次在罚球点投进的概率都为()01p p <<.(1)若每次投篮相互独立,小李在罚球点连续投篮6次,恰好投进4次的概率为()f p ,求()f p 的最大值点0p ;(2)现有两种投篮比赛规则,规则一:在罚球点连续投篮6次,每投进一次,奖励两盒鸡蛋,每次投篮相互独立,每次在罚球点投进的概率都以(1)中确定的0p 作为p 的值;规则二:连续投篮3次,每投进一次,奖励四盒鸡蛋.第一次在罚球点投篮,投进的概率以(1)中确定的0p 作为p 的值,若前次投进,则下一次投篮位置不变,投进概率也不变,若前次未投进,则下次投篮要后退1米,投进概率变为上次投进概率的一半.请分析小李应选哪种比赛规则对自己更有利.【答案】(1)最大值点023=p (2)小李应选规则一参加比赛.【解析】【分析】(1)先求出连续投篮6次,恰好投进4次的概率()f p 的解析式,再利用导数研究其单调性及其最值即可;(2)若选规则一,利用二项分布概念即可求出其数学期望;若选规则二,可分别求出离散型随机变量的各种情况概率,从而可求得其分布列,进而得出其数学期望,比较这两种规则下求得的数学期望,进而判断即可.【小问1详解】由题意得则()()()2446C 1,0,1f p p p p =-∈,则()()()()()24344366C 4121C 146f p p p p p p p p ⎡⎤'=---=--⎣⎦,令()0f p '=,得23p =,当20,3p ⎛⎫∈ ⎪⎝⎭时,()0f p '>,()f p 在区间20,3⎛⎫ ⎪⎝⎭内单调递增,当2,13p ⎛⎫∈ ⎪⎝⎭时,()0f p '<,()f p 在区间2,13⎛⎫⎪⎝⎭内单调递减,所以()f p 的最大值点023=p .【小问2详解】若选规则一,记X 为小李投进的次数,则X 的所有可能取值为0,1,2,3,4,5,6.的则2~6,3X B ⎛⎫ ⎪⎝⎭,则()2643E X =⨯=,记Y 为小李所得鸡蛋的盒数,则2Y X =,()()28E Y E X ==.若选规则二,记Z 为小李投进的次数,则Z 的所有可能取值为0,1,2,3.记小李第k 次投进为事件()1,2,3k A k =,未投进为事件k A ,所以投进0次对应事件为123,,A A A ,其概率为()()1231255033627P Z P A A A ===⨯⨯=;投进1次对应事件为123123123A A A A A A A A A ++,其概率()2121121217133333333627P Z ==⨯⨯+⨯⨯+⨯⨯=;投进2次对应事件为123123123A A A A A A A A A ++,其概率()2212111117133333333327P Z ==⨯⨯+⨯⨯+⨯⨯=.投进3次对应事件为123A A A ,其概率()2228333327P Z ==⨯⨯=,所以Z 的分布列为Z 0123P527 727 727 827所以()577850123272727273E Z =⨯+⨯+⨯+⨯=;记L 为小李所得鸡蛋的盒数,则4L Z =,()203E L =,因为()()E Y E L >,所以小李应选规则一参加比赛.22. 已知函数()e xm f x x =+.(1)讨论()f x 的单调性;(2)若12x x ≠,且()()122f x f x ==,证明:0e m <<,且122x x +<.【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)求定义域,求导,分0m ≤和0m >两种情况,得到函数的单调性;(2)变形为12,x x 是方程e (2)x m x =-的两个实数根,构造函数()e (2)xg x x =-,得到其单调性和极值最值情况,结合图象得到0e m <<,再构造差函数,证明出122x x +<.小问1详解】()f x 的定义域为R ,由题意,得e ()1e exx x m f x m'-=-=,x ∈R ,当0m ≤时,()0f x '>恒成立,()f x 在R 上单调递增;当0m >,且当(,ln )x m ∈-∞时,()0f x '<,()f x 单调递减;当(ln ,)x m ∈+∞时,()0f x '>,()f x 单调递增.综上,当0m ≤时,()f x 在R 上单调递增;当0m >时,()f x 在区间(),ln m -∞上单调递减,在区间()ln ,m +∞上单调递增.【小问2详解】证明:由()()122f x f x ==,得1x ,2x 是方程2e xmx +=的两个实数根,即12,x x 是方程e (2)x m x =-的两个实数根.令()e (2)xg x x =-,则()e (1)xg x x '=-,所以当(),1x ∈-∞时,()0g x '>,()g x 单调递增;当()1x ∈+∞,时,()0g x '<,()g x 单调递减,所以()()max 1e g x g ==.因为当x →-∞时,()0g x →;当x →+∞时,()g x →-∞,()20g =,所以0e m <<.不妨设12x x <,因为1x ,2x 是方程e (2)x m x =-的两个实数根,则1212x x <<<.要证122x x +<,只需证122x x <-.因为11<x ,221x -<,【所以只需证()()122g x g x <-.因为()()12g x g x =,所以只需证()()222g x g x <-.今()()(2)h x g x g x =--,12x <<,则()22()()(2)e (1)e(1)(1)e e xxx xh x g x g x x x x --'''=+-=-+-=--22e e (1)0ex xx -=-⋅<在()1,2恒成立.所以()h x 在区间(1,2)上单调递减,所以()(1)0h x h <=,即当12x <<时,()(2)g x g x <-.所以()()222g x g x <-,即122x x +<成立.【点睛】极值点偏移问题,通常会构造差函数来进行求解,若等式中含有参数,则先消去参数.。

2021-2022学年广东省东莞市七校高三(上)联考数学试卷(12月份)(学生版+解析版)

2021-2022学年广东省东莞市七校高三(上)联考数学试卷(12月份)(学生版+解析版)

2021-2022学年广东省东莞市七校高三(上)联考数学试卷(12月份)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑. 1.(5分)已知集合A ={1,2,3},B ={x |0<x ≤2},则A ∩B =( ) A .{2,3}B .{0,1,2,3}C .{1,2}D .{1,2,3}2.(5分)已知z =1﹣i ,则z(z +2i)=( ) A .2+iB .2﹣iC .﹣2iD .2i3.(5分)二项式(2x −√x)5展开式中,x 3的系数等于( ) A .10B .﹣10C .80D .﹣804.(5分)6个人排队,其中甲、乙、丙3人两两不相邻的排法有( ) A .30种B .144种C .5种D .4种5.(5分)已知圆柱的底面半径为1,母线长为2,则该圆柱的外接球的体积为( ) A .5√5π6B .8√2π3 C .20√5π3D .64√2π36.(5分)若tan α=3,则1+cos2αsin2α=( )A .−12B .13C .±13D .27.(5分)已知双曲线C 的离心率为√3,F 1,F 2是C 的两个焦点,P 为C 上一点,|PF 1|=3|PF 2|,若△PF 1F 2的面积为4√2,则双曲线C 的实轴长为( ) A .1B .2C .4D .68.(5分)已知函数f (x )={lnxx,x >01−x 2,x ≤0,若函数g (x )=f (x )﹣k 有三个零点,则( )A .1<k ≤eB .−1e<k <0 C .0<k <1eD .1e<k <1二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.请把正确选项在答题卡中的相应位置涂黑.9.(5分)如图所示,在5×5的方格中,点O ,A ,B ,C 均为小正方形的顶点,则下列结论正确的是( )A .OB →=OA →+OC →B .|OA →|=|OC →|=12|OB →| C .AC →=OB →−2OC →D .OA →⋅OB →=OC →⋅OB →10.(5分)已知函数f (x )=A sin (ωx +φ)(其中A >0,ω>0,|φ|<π)的部分图象如图所示,则下列结论正确的是( )A .函数f (x )的图象关于点(−π12,0)对称B .函数f (x )的图象关于x =π2直线对称 C .函数f (x )在区间[−π3,π6]上单调递增D .y =1与图象y =f(x)(−π12≤x ≤23π12)的所有交点的横坐标之和为8π311.(5分)已知公差不为0的等差数列{a n }的前n 项和为S n ,若a 9=S 17,则下列说法正确的是( ) A .a 8=0B .a 9=0C .a 1=S 16D .S 8>S 1012.(5分)如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,P 为线段BC 1上的动点,下列说法正确的是( )A .对任意点P ,DP ∥平面AB 1D 1B .三棱锥P ﹣A 1DD 1的体积为16C .线段DP 长度的最小值为√62D .存在点P ,使得DP 与平面ADD 1A 1所成角的大小为π3三、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡的相应位置上. 13.(5分)若随机变量X ~B (n ,13),且E (X )∈N *,写出一个符合条件的n = .14.(5分)已知函数g (x )=f (x )+2,若f (x )是奇函数,且g (1)=3,则g (﹣1)= .15.(5分)函数f(x)=1+12x +cosx 在(0,π2)上的单调递增区间是 .16.(5分)取一条长度为1的线段,将它三等分,去掉中间一段,留剩下的两段;再将剩下的两段分别三等分,各去掉中间一段,留剩下的更短的四段;……;将这样的操作一直继续下去,直至无穷,由于在不断分割舍弃过程中,所形成的线段数目越来越多,长度越来越小,在极限的情况下,得到一个离散的点集,称为康托尔三分集.若在第n 次操作中去掉的线段长度之和不小于160,则n 的最大值为 .(参考数据:lg 2≈0.3010,lg 3≈0.4771)四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤,必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效.17.(10分)已知数列{a n }的前n 项和S n 满足2S n =n 2+3n ,n ∈N *. (1)求{a n }的通项公式;(2)求数列{1a 2n−1⋅a 2n+1}的前n 项和T n .18.(12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若asinBcosC +csinBcosA =12b ,且a ≥b .(1)求角B 的值;(2)若A =π6,且△ABC 的面积为4√3,求BC 边上的中线AM 的长.19.(12分)某同学参加篮球投篮测试,罚球位上定位投中的概率为34,三步篮投中的概率为45,测试时罚球位上投篮投中得2分,三步篮投中得1分,不中得0分,每次投篮的结果相互独立,该同学罚球位上定位投篮1次,三步上篮2次. (Ⅰ)求“该同学罚球位定位投篮投中且三步篮投中1次”的概率; (Ⅱ)求该同学的总得分X 的分布列和数学期望.20.(12分)如图,在四棱锥P ﹣ABCD 中,P A ⊥平面ABCD ,AD ∥BC ,AD ⊥CD ,且AD =CD =√2,BC =2√2,P A =1. (1)求证:AB ⊥PC ;(2)在线段PD 上,是否存在一点M ,使得二面角M ﹣AC ﹣D 的大小为45°,如果存在,求BM 与平面MAC 所成角的正弦值,如果不存在,请说明理由.21.(12分)设椭圆E :x 2a 2+y 2b2=1(a >b >0),椭圆的右焦点恰好是直线x +y −√3=0与x 轴的交点,椭圆的离心率为√32. (1)求椭圆E 的标准方程;(2)设椭圆E 的左、右顶点分别为A ,B ,过定点N (﹣1,0)的直线与椭圆E 交于C ,D 两点(与点A ,B 不重合),证明:直线AC ,BD 的交点的横坐标为定值. 22.(12分)已知f (x )=lnx +ax (a ∈R ). (1)讨论f (x )的单调性;(2)当a =1时,若f (x )≤k (x +1)+b 在(0,+∞)上恒成立,证明:2k+b−2k−1的最小值为﹣e +1.2021-2022学年广东省东莞市七校高三(上)联考数学试卷(12月份)参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑. 1.(5分)已知集合A ={1,2,3},B ={x |0<x ≤2},则A ∩B =( ) A .{2,3}B .{0,1,2,3}C .{1,2}D .{1,2,3}【解答】解:∵集合A ={1,2,3},B ={x |0<x ≤2}, ∴A ∩B ={1,2}. 故选:C .2.(5分)已知z =1﹣i ,则z(z +2i)=( ) A .2+iB .2﹣iC .﹣2iD .2i【解答】解:∵z =1﹣i ,∴z(z +2i)=(1+i )(1﹣i +2i )=(1+i )2=2i . 故选:D .3.(5分)二项式(2x −√x)5展开式中,x 3的系数等于( ) A .10B .﹣10C .80D .﹣80【解答】解:由于二项式(2x −√x)5展开式的通项公式为T r +1=C 5r •(2x )5﹣r(−√x)r =(﹣1)r •25﹣r C 5r x 5−r2,令5−r2=3,解得r =4,∴展开式中x 3的系数是(﹣1)4•25﹣4C 54=10.故选:A .4.(5分)6个人排队,其中甲、乙、丙3人两两不相邻的排法有( ) A .30种B .144种C .5种D .4种【解答】解:这是不相邻问题,采用插空法,先排其余的3名同学,有A 33种排法,出现4个空,将甲、乙、丙插空,所以共有A 33A 43=144种排法, 故选:B .5.(5分)已知圆柱的底面半径为1,母线长为2,则该圆柱的外接球的体积为( ) A .5√5π6B .8√2π3C .20√5π3D .64√2π3【解答】解:圆柱的轴截面是边长为2的正方形,其外接圆的半径为√2, 则圆柱的外接球的半径为√2,可得该圆柱的外接球的体积为V =43π×(√2)3=8√2π3. 故选:B .6.(5分)若tan α=3,则1+cos2αsin2α=( )A .−12B .13C .±13D .2【解答】解:∵tan α=3,则1+cos2αsin2α=2cos 2α2sinαcosα=cosαsinα=1tanα=13,故选:B .7.(5分)已知双曲线C 的离心率为√3,F 1,F 2是C 的两个焦点,P 为C 上一点,|PF 1|=3|PF 2|,若△PF 1F 2的面积为4√2,则双曲线C 的实轴长为( ) A .1B .2C .4D .6【解答】解:由题意知,点P 在右支上,则|PF 1|﹣|PF 2|=2a ,又|PF 1|=3|PF 2|, ∴|PF 1|=3a ,|PF 2|=a ,又e =ca =√3,∴|F 1F 2|=2c =2√3a ,则在△PF 1F 2中,cos ∠F 1PF 2=9a 2+a 2−12a 22⋅3a⋅a =−13, ∴sin ∠F 1PF 2=2√23,故S △PF 1F 2=12⋅a ⋅3a ⋅2√23=4√2,解得a =2, ∴实轴长为2a =4, 故选:C .8.(5分)已知函数f (x )={lnxx,x >01−x 2,x ≤0,若函数g (x )=f (x )﹣k 有三个零点,则( )A .1<k ≤eB .−1e<k <0 C .0<k <1eD .1e<k <1【解答】解:当x >0时,f (x )=lnx x ,∴f '(x )=1−lnx x 2, 令f '(x )=0,得x =e ,∴当x ∈(0,e )时,f '(x )>0,f (x )单调递增; 当x ∈(e ,+∞)时,f '(x )<0,f (x )单调递减, 又f (e )=lne e =1e ,当x ≤0时,f (x )=1﹣x 2单调递增,画出函数f (x )的图像,如图所示,∵函数g (x )=f (x )﹣k 有三个零点,即方程f (x )﹣k =0有三个不等实根, ∴函数y =f (x )与y =k 有三个交点, 由图像可知,0<k <1e, 故选:C .二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.请把正确选项在答题卡中的相应位置涂黑.9.(5分)如图所示,在5×5的方格中,点O ,A ,B ,C 均为小正方形的顶点,则下列结论正确的是( )A .OB →=OA →+OC →B .|OA →|=|OC →|=12|OB →| C .AC →=OB →−2OC →D .OA →⋅OB →=OC →⋅OB →【解答】解:由图知,四边形OABC 为菱形,选项A ,由平行四边形加法法则知,OB →=OA →+OC →,即A 正确;选项B ,|OA →|=|OC →|=√17,|OB →|=√34,所以不满足|OA →|=|OC →|=12|OB →|,即B 错误;选项C ,AC →=OC →−OA →=OC →−(OB →+BA →)=OC →−(OB →−OC →)=−OB →+2OC →,即C 错误;选项D ,因为四边形OABC 为菱形,所以∠AOB =∠COB ,且|OA →|=|OC →|,由平面向量数量积的运算法则知,OA →•OB →=OC →•OB →成立,即D 正确. 故选:AD .10.(5分)已知函数f (x )=A sin (ωx +φ)(其中A >0,ω>0,|φ|<π)的部分图象如图所示,则下列结论正确的是( )A .函数f (x )的图象关于点(−π12,0)对称B .函数f (x )的图象关于x =π2直线对称 C .函数f (x )在区间[−π3,π6]上单调递增D .y =1与图象y =f(x)(−π12≤x ≤23π12)的所有交点的横坐标之和为8π3【解答】解:根据函数f (x )=A sin (ωx +φ)(其中A >0,ω>0,|φ|<π)的部分图象, 可得A =2,14×2πω=2π3−5π12,∴ω=2.结合五点法作图,可得2×5π12+φ=π,∴φ=π6,故f (x )=2sin (2x +π6).令x =−π12,求得f (x )=0,可得函数f (x )的图象关于点(−π12,0)对称,故A 正确; 令x =π2,求得f (x )=﹣1,不是最值,故函数f (x )的图象关不于x =π2直线对称,故B 错误;在区间[−π3,π6]上,2x +π6∈[−π2,π2],函数f (x )单调递增,故C 正确;当x∈[−π12,23π12],2x+π6∈[0,4π],直线y=1与图象y=f(x)(−π12≤x≤23π12)的4个交点关于直线2x+π6=3π2对称.设这4个交点的横坐标分别为a、b、c、d,a<b<c<d,则(2a+π6)+(2d+π6)=2×3π2,(2b+π6)+(2c+π6)=2×3π2,故所有交点的横坐标之和为a+b+c+d=8π3,故D正确,故选:ACD.11.(5分)已知公差不为0的等差数列{a n}的前n项和为S n,若a9=S17,则下列说法正确的是()A.a8=0B.a9=0C.a1=S16D.S8>S10【解答】解:由{a n}是等比数列,得S17=172(a1+a17)=17a9,又a9=S17,得a9=17a9,解得a9=0,所以选项B正确;由于a8=a9﹣d,且d≠0,所以a8≠0,选项A错误;由a9=a1+8d=0,得a1=﹣8d,则S16=16a1+16×152d=16×(﹣8d)+15×8d=﹣8d=a1,所以选项C正确;若该数列a1<0,d>0,则当n≤8时,a n<0,当n=9时,a n=0,当n≥10时,a n>0,此时S8<S10=S8+a9+a10,选项D错误;故选:BC.12.(5分)如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,P为线段BC1上的动点,下列说法正确的是()A.对任意点P,DP∥平面AB1D1B .三棱锥P ﹣A 1DD 1的体积为16C .线段DP 长度的最小值为√62D .存在点P ,使得DP 与平面ADD 1A 1所成角的大小为π3【解答】解:连接DB ,由BB 1∥DD 1,且BB 1=DD 1, 得四边形DD 1B 1B 为平行四边形,∴DB ∥D 1B 1,由DB ⊄平面AB 1D 1,D 1B 1⊂平面AB 1D 1, 得BD ∥平面AB 1D 1,同理DC 1∥平面AB 1D 1,又BD ∩DC 1=D ,可得平面DBC 1∥平面AB 1D 1, ∴对任意点P ,DP ∥平面AB 1D 1,故A 正确; V P−A 1DD 1=V C 1−A 1DD 1=13×12×1×1×1=16,故B 正确; 当P 为BC 1中点时,DP ⊥BC 1,此时线段DP 长度的最小值为12+(√22)2=√62,故C正确;当P 在线段BC 1上运动时,DP 长度的最小值为√62,最大值为√2, 则PC 长度的范围为[√22,1],而P 到平面ADD 1A 1的距离为定值1, 则DP 与平面ADD 1A 1所成角的正切值∈[√22,1]. 最大值小于√3,则不存在点P ,使得DP 与平面ADD 1A 1所成角的大小为π3,故D 错误. 故选:ABC .三、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡的相应位置上. 13.(5分)若随机变量X ~B (n ,13),且E (X )∈N *,写出一个符合条件的n = 3 .【解答】解:令n =3时,则随机变量X ~B (3,13),E (X )=3×13=1∈N ∗, 故n =3,符合题意. 故答案为:3.14.(5分)已知函数g (x )=f (x )+2,若f (x )是奇函数,且g (1)=3,则g (﹣1)= 1 .【解答】解:函数g (x )=f (x )+2,若f (x )是奇函数,则g (﹣x )+g (x )=f (﹣x )+2+f (x )+2=[f (﹣x )+f (x )]+4=0+4=4, 所以g (﹣1)=4﹣g (1)=4﹣3=1. 故答案为:1.15.(5分)函数f(x)=1+12x +cosx 在(0,π2)上的单调递增区间是 (0,π6) . 【解答】解:函数f(x)=1+12x +cosx ,可得f ′(x )=12−sin x ,令12−sin x >0,因为x ∈(0,π2),所以,解得x ∈(0,π6), 故答案为:(0,π6).16.(5分)取一条长度为1的线段,将它三等分,去掉中间一段,留剩下的两段;再将剩下的两段分别三等分,各去掉中间一段,留剩下的更短的四段;……;将这样的操作一直继续下去,直至无穷,由于在不断分割舍弃过程中,所形成的线段数目越来越多,长度越来越小,在极限的情况下,得到一个离散的点集,称为康托尔三分集.若在第n 次操作中去掉的线段长度之和不小于160,则n 的最大值为 8 .(参考数据:lg 2≈0.3010,lg 3≈0.4771) 【解答】解:第一次操作去掉的线段长度为13,第二次操作去掉的线段长度之和为23•13,第三次操作去掉的线段长度之和为23•23•13,……第n 次操作去掉的线段长度之和为(23)n−1•13,由题意知,(23)n−1•13≥160,则(23)n ≥130, 则nlg 23≥−lg 30=﹣1﹣lg 3,所以n (lg 2﹣lg 3)≥﹣1﹣lg 3,即n ≤1+lg3lg3−lg2, 又lg 2≈0.3010,lg 3≈0.4771, 可得n ≤8,故n 的最大值为8. 故答案为:8.四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤,必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效.17.(10分)已知数列{a n }的前n 项和S n 满足2S n =n 2+3n ,n ∈N *. (1)求{a n }的通项公式; (2)求数列{1a2n−1⋅a 2n+1}的前n 项和T n .【解答】解:(1)当n =1时,2S 1=4,∴a 1=2,当n ≥2时,2S n−1=(n −1)2+3(n −1),又2S n =n 2+3n , 两式相减得2a n =2n +2,所以a n =n +1, 故{a n }的通项公式为a n =n +1(n ∈N ∗). (2)由(1)知1a 2n−1a 2n+1=12n(2n+2)=14×1n(n+1)=14(1n−1n+1),∴T n =14[(11−12)+(12−13)+⋅⋅⋅+(1n−1n+1)]=14(1−1n+1)=n 4n+4. 18.(12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若asinBcosC +csinBcosA =12b ,且a ≥b .(1)求角B 的值;(2)若A =π6,且△ABC 的面积为4√3,求BC 边上的中线AM 的长. 【解答】解:(1)因为a sin B cos C +c sin B cos A =12b , 由正弦定理得sin A sin B cos C +sin C sin B cos A =12sin B ,因为sin B ≠0,整理得sin A cos C +sin C cos A =12,即sin (A +C )=12,得sin B =12,又a ≥b ,所以0<B <π2,可得B =π6.(2)由(1)知B =π6,若A =π6,可得C =2π3, 则S △ABC =12ab sin C =12a 2sin2π3=4√3,所以a =4,a =﹣4(舍),又在△AMC 中,AM 2=AC 2+MC 2﹣2AC •MC cos 2π3,所以AM 2=AC 2+(12AC )2﹣2AC •12AC cos2π3=42+22﹣2×4×2×(−12)=28,所以AM =2√7.19.(12分)某同学参加篮球投篮测试,罚球位上定位投中的概率为34,三步篮投中的概率为45,测试时罚球位上投篮投中得2分,三步篮投中得1分,不中得0分,每次投篮的结果相互独立,该同学罚球位上定位投篮1次,三步上篮2次. (Ⅰ)求“该同学罚球位定位投篮投中且三步篮投中1次”的概率; (Ⅱ)求该同学的总得分X 的分布列和数学期望.【解答】解:(Ⅰ)设该同学“罚球位上定位投中”为事件A ,“三步篮投中”为事件B , “该同学罚球位定位投篮投中且三步篮投中1次”为事件C , 则P (A )=34P (B )=45所以P (C )=34⋅C 21⋅45⋅15=625;(Ⅱ)X 的可能取值为0,1,2,3,4,所以P(X=0)=(1−34)⋅C20⋅(45)0⋅(15)2=1100,P(X=1)=(1−34)⋅C21⋅45⋅15=8100,P(X=2)=34⋅C20⋅(45)0⋅(15)2+14⋅C22⋅(45)2=19100,P(X=3)=34⋅C21⋅45⋅15=24100,P(X=4)=34⋅C22⋅(45)2=48100,所以X的分布列为:X01234P11008100191002410048100故E(X)=0×1100+1×8100+2×19100+3×24100+4×48100=3.1,则该同学得分的数学期望是3.1分.20.(12分)如图,在四棱锥P﹣ABCD中,P A⊥平面ABCD,AD∥BC,AD⊥CD,且AD =CD=√2,BC=2√2,P A=1.(1)求证:AB⊥PC;(2)在线段PD上,是否存在一点M,使得二面角M﹣AC﹣D的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.【解答】(1)证明:由已知得四边形ABCD是直角梯形,由AD=CD=√2,BC=2√2,可得AB=AC=2,故△ABC是等腰直角三角形,即AB⊥AC,∵P A⊥平面ABCD,AB⊂平面ABCD,∴P A⊥AB,又P A∩AC=A,∴AB⊥平面P AC,又PC⊂平面P AC,∴AB⊥PC.(2)解:取BC的中点E,连接AE,则AE⊥BC,建立如图所示的空间直角坐标系,A (0,0,0),C(√2,√2,0),D(0,√2,0),P (0,0,1), B(√2,−√2,0),PD →=(0,√2,−1),AC →=(√2,√2,0), 设PM →=tPD →(0≤t ≤1), 则点M 为(0,√2t ,1−t), 所以AM →=(0,√2t ,1−t),设平面MAC 的法向量是n →=(x ,y ,z), {AC →⋅n →=√2x +√2y =0AM →⋅n →=√2ty +(1−t)z =0, 令x =1,n →=(1,−1,√2t1−t ),又m →=(0,0,1)是平面ACD 的一个法向量,∴|cos〈m →,n →〉|=|m →⋅n →||m →||n →|=|√2t 1−t |√2+(√2t 1−t)=cos45°=√22,解得t =12,即点M 是线段PD 的中点.此时平面MAC 的一个法向量可取n →=(1,−1,√2),BM →=(−√2,2√2,12), 设BM 与平面MAC 所成的角为θ, 则sinθ=|cos〈n →,BM →〉|=|n →⋅BM →||n →|⋅|BM →|=2√69, ∴BM 与平面MAC 所成角的正弦值为2√69.21.(12分)设椭圆E :x 2a 2+y 2b 2=1(a >b >0),椭圆的右焦点恰好是直线x +y −√3=0与x 轴的交点,椭圆的离心率为√32. (1)求椭圆E 的标准方程;(2)设椭圆E 的左、右顶点分别为A ,B ,过定点N (﹣1,0)的直线与椭圆E 交于C ,D 两点(与点A ,B 不重合),证明:直线AC ,BD 的交点的横坐标为定值. 【解答】解:(1)∵直线x +y −√3=0与x 轴的交点为(√3,0),∴c =√3. 又∵e =ca =√32,∴a =2, ∴b 2=a 2﹣c 2=1. ∴椭圆E 的标准方程为x 24+y 2=1.(2)证明:由(1)可得A (﹣2,0),B (2,0).由题知过点N (﹣1,0)的斜率不为0,故设直线的方程为x =my ﹣1, 设C (x 1,y 1),D (x 2,y 2).联立{x =my −1x 24+y 2=1,整理,得(4+m 2)y 2﹣2my ﹣3=0,Δ=4m 2+12(4+m 2)>0,∴y 1+y 2=2m 4+m 2,y 1y 2=−34+m 2. 设直线AC 的方程为y =y 1x 1+2(x +2),直线BD 的方程为y =y2x 2−2(x −2), 联立两条直线方程,解得x =2⋅y 1(x 2−2)+y 2(x 1+2)y 2(x 1+2)−y 1(x 2−2)①, 将x 1=my 1﹣1,x 2=my 2﹣1代入①,得x =2⋅2my 1y 2+(y 1+y 2)−4y 1(y 1+y 2)+2y 1②, 将y 1+y 2=m 4+m 2,y 1y 2=−34+m 2代入②,得x =2.−4(m4+m 2+y 1)2(m 4+m 2+y 1)=−4,∴直线AC ,BD 的交点的横坐标为定值﹣4. 22.(12分)已知f (x )=lnx +ax (a ∈R ). (1)讨论f (x )的单调性;(2)当a =1时,若f (x )≤k (x +1)+b 在(0,+∞)上恒成立,证明:2k+b−2k−1的最小值为﹣e +1.【解答】解:(1)因为f ′(x )=1x +a (x >0), 当a ≥0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增,当a <0时,若x ∈(0,−1a)时,f ′(x )>0,f (x )单调递增, 若x ∈(−1a,+∞)时,f ′(x )<0,f (x )单调递减, 综上,当a ≥0时,f (x )在(0,+∞)上单调递增,当a <0时,f (x )在(0,−1a )上单调递增,f (x )在(−1a ,+∞)上单调递减. (2)证明:因为lnx +x ≤k (x +1)+b 在(0,+∞)上恒成立, 所以b ≥lnx +x ﹣k (x +1)在(0,+∞)上恒成立, 设g (x )=lnx +x ﹣k (x +1), 所以g ′(x )=1x +1﹣k (x >0),当k ≤1时,g ′(x )>0,g (x )在(0,+∞)上单调递增, 此时b ≥g (x )不恒成立, 当k >1时,若x ∈(0,1k−1)时,g ′(x )>0,g (x )单调递增,若x ∈(1k−1,+∞)时,g ′(x )<0,g (x )单调递减,所以g (x )max =g (1k−1)=ln1k−1+1k−1−k (1k−1+1)=﹣ln (k ﹣1)﹣k ﹣1,所以b ≥﹣ln (k ﹣1)﹣k ﹣1, 又因为2k+b−2k−1=2+bk−1≥2+−ln(k−1)−k−1k−1=1−ln(k−1)+2k−1, 令t =k ﹣1>0, h (t )=1−lnt+2t, 所以h ′(t )=lnt+1t 2, 当t ∈(0,1e)时,h ′(t )<0,h (t )单调递减, 当t ∈(1e ,+∞)时,h ′(t )>0,h (t )单调递增,所以h (t )min =h (1e)=﹣e +1,所以2k+b−2k−1的最小值为﹣e +1.。

2019届广东省重点中学高三上学期第一次联考数学(文)试题含答案

2019届广东省重点中学高三上学期第一次联考数学(文)试题含答案

2019届广东省重点中学高三上学期第一次联考试题数学(文)第I 卷 (选择题, 共60分)一、选择题(共12小题,每小题5分,共60分,每小题只有一个正确答案)在每小题给出的四个选项中,只有一项是最符合题目要求的,选出正确的选项并将该选项在答题卡上涂黑。

1. 已知全集U =R , 集合{}2|20N A x x x =∈-≤, {}2,3B =, 则=)(B C A U A .∅ B .{}0 C .{}1 D .{}0,12.复数21iz =+,则2z =( ) A .2- B .2 C .2i - D .2i3.在等比数列{}n a 中,1344a a a ==,则6a =( ) A .6 B .8± C .8- D .84.函数)sin(ϕω+=x A y 的部分图象如图所示,则A. )6sin(2π+=x yB. )62sin(2π-=x yC. )3sin(2π+=x yD. )32sin(2π-=x y5.函数22cos ()sin ()44y x x ππ=+-+的最小正周期为A .4πB .2πC .πD .2π6.已知双曲线14222=-y a x 的渐近线方程为x y 332±=,则此双曲线的离心率是( )A.72B.133C.53D.2137.执行下面的程序框图,如果输入的1a =-,则输出的 S =A .2B .3C .4D .58.变量x ,y 满足22221x y x y y x +⎧⎪--⎨⎪-⎩≤≥≥,则3z y x =-的取值范围为()A .[]1,6B .[]2,6C .[]2,5D .[]1,29图中均为正方形,则该几何体的体积为( )A .16B .163C .83D .810.已知x ,y 均为正实数,且1x +2+1y +2=16,则x +y 的最小值为( )A .24B .32C .20D .2811.已知函数()f x 是R 上的奇函数,对于(0)x ∀∈+∞,,都有(2)()f x f x +=-,且(]01x ∈,时,()21xf x =+,则)2018()2017(f f +的值为( ) A .1 B .2 C .3 D .412.已知函数⎪⎩⎪⎨⎧>≤+-=1215)3()(x x ax x a x f 是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,3)B .(0,3]C .(0,2)D .(0,2]第Ⅱ卷(共90分)一、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题纸上)13.设函数2log ,0()4,0xx x f x x >⎧=⎨≤⎩,则[(1)]f f -=14.曲线)1ln(2+=x y 在点()0,0处的切线方程为15.不共线向量a ,b 满足a b =,且()2a a b ⊥-,则a 与b 的夹角为16.已知函数22)(),)(1)(3()(-=++++=x x g m x m x m x f ,若对任意R x ∈,有)(xf>0 或)(xg>0 成立,则实数m的取值范围是三、解答题:(本大题共6小题,共70分)17.(本小题满分12分)某学校有初级教师21人,中级教师14人,高级教师7人,现采用分层抽样的方法从这些教师中抽取6人对绩效工资情况进行调查.(1)求应从初级教师,中级教师,高级教师中分别抽取的人数;(2)若从抽取的6名教师中随机抽取2名做进一步数据分析,求抽取的2名均为初级教师的概率。

2019-2020学年度广东省高三第一次联考文科数学

2019-2020学年度广东省高三第一次联考文科数学

2019-2020学年度广东省高三第一次联考文科数学第I 卷(选择题,共60分)一.选择题(每小题只有一个选项符合题意。

每小题5分,共 60 分) 1.若集合{}2,0,1,{|10}A B x x x =-=-或,则A B ⋂= ( ) A. {}2- B. {}1 C. {}2,1- D. {}2,0,1-2.复数11iz i-=+(i 为虚数单位)的虚部是( ) A. 1 B. -1 C. i D. i -3.“真人秀”热潮在我国愈演愈烈,为了了解学生是否喜欢某“真人秀”节目,在某中学随由()()()()()22n ad bc K a b c d a c b d -=++++算得()22110403020207.860506050K ⨯⨯-⨯=≈⨯⨯⨯.参照附表,得到的正确结论是( )A. 在犯错误的概率不超过0.1%的前提下,认为“喜欢该节目与性别有关”B. 在犯错误的概率不超过0.1%的前提下,认为“喜欢该节目与性别无关”C. 有99%以上的把握认为“喜欢该节目与性别有关”D. 有99%以上的把握认为“喜欢该节目与性别无关”4.若3sin 5α=-,且α为第三象限角,则()tan 45α+等于( )A. 7B. 17C. 1D. 05.设等差数列 的前 项和为 ,已知 ,则 ( ) A. 16 B. 20 C. 24 D. 266.已知,a b 是不共线的向量, 2AB a b λ=+, ()1AC a b λ=+-,且,,A B C 三点共线,则λ= ( )A. -1B. -2C. -2或1D. -1或27.已知圆2220x y x my +-+=上任意一点M 关于直线0x y +=的对称点N 也在圆上,则m 的值为( )A. 1-B. 1C. 2-D. 2 8.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数N 除以正整数m 后的余数为n ,则记为()mod N n m =,例如()112mod3=,现将该问题以程序框图的算法给出,执行该程序框图,则输出的n 等于( )A. 21B. 22C. 23D. 249.某几何体的三视图如图所示,其正视图和侧视图都是边长为该几何体的外接球的表面积为( )A. 9πB. 16πC. 24πD. 36π10.已知()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,若将它的图象向右平移6π个单位长度,得到函数()g x 的图象,则函数()g x 的图象的一条对称轴的方程为( ) A. 12x π=B. 4x π=C. 3x π=D. 2x π=11.已知函数()1x f x e =-, ()243g x x x =-+-,若有()()f a g b =,则b 的取值范围是( )A. 22⎡+⎣B. (2+C. []1,3D. ()1,312.已知为双曲线的左,右焦点,点为双曲线右支上一点,直线与圆相切,且,则双曲线的离心率为()A. B. C. D.第II卷(非选择题,共90分)二.填空题(本大题共4小题,每小题5分,共20分)三.解答题(本大题共6小题,共70分.第22,23题为选考题,考生根据要求作答)2019-2020学年度广东省高三第一次联考文科数学数 学(文科)答案一.选择题1.若集合{}2,0,1,{|10}A B x x x =-=-或,则A B ⋂= ( ) A. {}2- B. {}1 C. {}2,1- D. {}2,0,1- 【答案】C【解析】因为{}2,0,1,{|10}A B x x x =-=-或,则{}2,1A B ⋂=-. 本题选择C 选项.2.复数11iz i-=+(i 为虚数单位)的虚部是( )A. 1B. -1C. iD. i - 【答案】B【解析】由题意有: ()1111i i i i i i-++==-- , 据此可得复数11ii+-(i 为虚数单位)的虚部是1 . 本题选择A 选项.3.“真人秀”热潮在我国愈演愈烈,为了了解学生是否喜欢某“真人秀”节目,在某中学随由()()()()()22n ad bc K a b c d a c b d -=++++算得()22110403020207.860506050K ⨯⨯-⨯=≈⨯⨯⨯.参照附表,得到的正确结论是( )A. 在犯错误的概率不超过0.1%的前提下,认为“喜欢该节目与性别有关”B. 在犯错误的概率不超过0.1%的前提下,认为“喜欢该节目与性别无关”C. 有99%以上的把握认为“喜欢该节目与性别有关”D. 有99%以上的把握认为“喜欢该节目与性别无关”【答案】C【解析】因为7.810.828<,所以不能在犯错误的概率不超过00.10 的前提下,认为“喜欢该节目与性别有关”;又 因为7.8 6.635> ,所以0990以上的把握认为“喜欢该节目与性别有关”,故选C.【方法点睛】本题主要考查独立性检验的应用,属于难题.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)4.若3sin 5α=-,且α为第三象限角,则()tan 45α+等于( )A. 7B. 17C. 1D. 0【答案】A【解析】因为35sin α=-,且α为第三象限角,所以4sin 3cos ,tan ,5cos 4αααα==-==()tan45tan tan 457.1tan45tan ααα+∴+==-本题选择A 选项.5.设等差数列 的前 项和为 ,已知 ,则 ( ) A. 16 B. 20 C. 24 D. 26 【答案】D【解析】。

广东佛山S7高质量发展联盟七校联考数学试卷--参考答案

广东佛山S7高质量发展联盟七校联考数学试卷--参考答案

2023-2024学年上学期佛山市S7高质量发展联盟高三联考试卷数学学科参考答案正确;,则两个变量的线性相关性越强,故C正确;种安排方法,A正确;种安排方法,B错误;1=,故D正确;2()451225727P ξ==⨯⨯=()1211457235P ξ==⨯⨯=()42115113557257270P ξ==⨯⨯+⨯⨯=,()451265727P ξ==⨯⨯=所以ξ的分布列如下:ξ12456P135137027135137027数学期望()11321132123012456357073570735E ξ=⨯+⨯+⨯+⨯+⨯+⨯=.……………12分21.【详解】(1)由题可知452p+=,解得2p =.所以E 的标准方程为24y x =;…………2分(2)(i )由(1)知,2044y =⨯,且00y >,解得04y =,所以(4,4)P .设221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则121144444PA y k y y -==+-,同理可得,244PB k y =+,则1244444PA PB k k y y ⨯=⨯=-++,即()12124200y y y y +++=.当直线AB 斜率存在时,直线AB 的方程为221211212444y y y y y x y y ⎛⎫--=- ⎪⎝⎭-,整理得()121240x y y y y y -++=.所以()11420(4)0x y y y --++=,即()12445y x y y +=-+,所以直线AB 过定点(5,4)-;当直线AB 的斜率不存在时120y y +=,可得11220,5y x ==.综上,直线AB 过定点(5,4)-.…………7分(ii )设()()1122,,,A x y B x y ,当直线AB 斜率存在时,设直线AB 的方程为(5)454y k x kx k =--=--,与抛物线E 联立得24,54y x y kx k ⎧=⎨=--⎩,消去x 得()22221084(54)0k x k k x k -++++=,由题意0∆>,所以222121221084(54),k k k x x x x k k ++++==.所以()()2211221222(54)1084||||1111k k k FA FB x x x x x x k k +++⋅=++=+++=++。

广东省中山市第一中学等七校2021届高三数学第一次联考试题 文(含解析)

广东省中山市第一中学等七校2021届高三数学第一次联考试题 文(含解析)

广东省中山市第一中学等七校2021届高三数学第一次联考试题 文(含解析)新人教A 版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部份。

总分值为150分,考试历时为120分钟. 第Ⅰ卷(选择题,共50分)【试卷综析】试题比较平稳,大体符合高考温习的特点,稳中有变,变中求新,适当调整了试卷难度,表现了稳中求进的精神.考查的知识涉及到函数、三角函数、数列、导数等几章知识,重视学科基础知识和大体技术的考察,同时偏重考察了学生的学习方式和思维能力的考察,这套试题以它的知识性、思辩性、灵活性,基础性充分表现了考素养,考基础,考方式,考潜能的检测功能.试题中无偏题,怪题,起到了引导高中数学向全面培育学生数学素养的方向进展的作用.一、选择题:本大题共10小题,每题5分,共50分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.【题文】一、已知全集U R =,集合{}|21x A x =>,{}|41B x x =-<<,那么A B 等于( )A.(0,1)B.(1,)+∞C. (4,1)-D. (,4)-∞- 【知识点】交集及其运算. A1【答案解析】A 解析:由A 中的不等式变形得:2x >1=20,解得:x >0,即A=(0,+∞), ∵B=(﹣4,1),∴A∩B=(0,1).应选:A .【思路点拨】求出A 中不等式的解集确信出A ,找出A 与B 的交集即可. 【题文】二、已知i 为虚数单位,复数(2)z i i =-的模z =( )A. 1B.3 C .5 D.3【知识点】复数求模. L4【答案解析】C 解析:∵z=i (2﹣i )=2i+1,∴|z|=,应选:C .【思路点拨】依照复数的有关概念直接进行计算即可取得结论. 【题文】3、在等差数列{}n a 中,已知1071=+a a ,那么=+53a a ()A. 7B. 8C. 9D. 10【知识点】等差数列的性质. D2【答案解析】D 解析:在等差数列{an}中,∵a1+a7=10,∴a3+a5=a1+2d+a1+4d=a1+(a1+6d ) =a1+a7=10.应选:D .【思路点拨】在等差数列{an}中,由a1+a7=10,能求出a3+a5的值.【题文】4、设,a b 是两个非零向量,那么“0>⋅b a ”是“,a b 夹角为锐角”的( ) A.充分没必要要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也没必要要条件【知识点】数量积的符号与两个向量的夹角范围的关系.充分条件;必要条件. A2 F3 【答案解析】B 解析:当 >0时,与的夹角<>可能为锐角,也可能为零角,故充分性不成立;当与的夹角<>为锐角时,>0必然成立,故必要性成立.综上,>0是与的夹角<>为锐角的必要而不充分条件,应选B . 【思路点拨】先看当 >0时,可否推出与的夹角<>是不是为锐角,再看当与的夹角<>为锐角时,>0是不是必然成立,然后依照充分条件、必要条件的概念进行判定.【题文】5、在“魅力咸阳中学生歌手大赛”竞赛现场上七位评委为某选手打出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方不同离为( )A.5和1.6B.85和1.6C. 85和0.4D. 5和0.4 【知识点】茎叶图;众数、中位数、平均数. I2【答案解析】B 解析:依照题意可得:评委为某选手打出的分数还剩84,84,84,86,87, 因此所剩数据的平均数为=85,所剩数据的方差为[(84﹣85)2+(84﹣85)2+(86﹣85)2+(84﹣85)2+(87﹣85)2]=1.6.应选B .【思路点拨】依照均值与方差的计算公式,分别计算出所剩数据的平均数和方差分即可.【题文】6、若是直线m l ,与平面γβα,,知足:,,,//,γααγβ⊥⊂=m m l l 那么必有( ) A.m l ⊥⊥,γα B.βγα//,m ⊥ C.m l m ⊥,//β D.γαβα⊥,//【知识点】空间中直线与平面之间的位置关系. G3 G4 G5【答案解析】A 解析:∵m ⊂α和m ⊥γ⇒α⊥γ,∵l=β∩γ,l ⊂γ.∴l ⊥m ,应选A . 【思路点拨】m ⊂α和m ⊥γ⇒α⊥γ,l=β∩γ,l ⊂γ.然后推出l ⊥m ,取得结果. 【题文】7、如下图,某几何体的正视图(主视图),侧视图(左视图) 和俯视图别离是等腰梯形,等腰直角三角形和长方形,那么该 几何体体积为( )A .53B .423C .73D .103【知识点】由三视图求面积、体积. G2【答案解析】A 解析:由三视图知几何体是直三棱柱削去两个相同的三棱锥, 由侧视图得三棱柱的底面为直角边长为1的等腰直角三角形,三棱柱侧棱长为4, ∴三棱柱的体积为=2,由正视图与俯视图知两个三棱锥的高为1,∴三棱锥的体积为××1×1×1=,∴几何体的体积V=2﹣2×=.应选A .【思路点拨】由三视图知几何体是直三棱柱削去两个相同的三棱锥,依照侧视图得三棱柱的底面为直角边长为1的等腰直角三角形,三棱柱侧棱长为4.【题文】8、概念运算“⊗”为:两个实数b a ,的“ab ”运算原理如下图,假设输人2,311cos2==b a π, 那么输出P =( )A.-2 B .0 C 、2 D.4 【知识点】程序框图. L1【答案解析】D 解析:由程序框图知,算法的功能是求P=的值,∵a=2cos =2cos=1<b=2,∴P=2×(1+1)=4.应选:D .【思路点拨】算法的功能是求P=的值,利用三角诱导公式求得a 、b 的值,代入计算241正视俯视侧视可得答案.【题文】9、在长为12 厘米的线段AB 上任取一点C ,现作一矩形,邻边长别离等 于线段,AC CB 的长,那么该矩形面积大于20平方厘米的概率为( )A.61B. 31C. 32D. 54【知识点】几何概型. K3【答案解析】C 解析:设AC=x ,那么BC=12﹣x ,矩形的面积S=x (12﹣x )>20 ∴x2﹣12x+20<0,∴2<x <10由几何概率的求解公式可得,矩形面积大于20cm2的概率P==,应选C【思路点拨】设AC=x ,那么BC=12﹣x ,由矩形的面积S=x (12﹣x )>20可求x 的范围,利用几何概率的求解公式可求结论. 【题文】10、如图,))(,(00x f x P 是函数)(x f y =图像上一点,曲线)(x f y =在点P 处的切线交x 轴于点A ,x PB ⊥轴,垂足为B若PAB ∆的面积为12,那么0f x '()与0()f x 知足关系式( )A.00f x f x ='()()B.200f x f x ⎡⎤=⎣⎦'()() C. 00f x f x =-'()() D. 200f x f x ⎡⎤=⎣⎦'()() 【知识点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程. B12 【答案解析】B 解析:设A 的坐标为(a ,0),由导数的几何意义得: f'(x0)为曲线y=f (x )在x=x0处切线的斜率, 故P 点处的切线方程为y ﹣f (x0)=f'(x0)(x ﹣x0),令y=0,那么0﹣f (x0)=f'(x0)(x ﹣x0),即x=x0﹣,即a=x0﹣,又△PAB 的面积为,∴AB•PB=,即(x0﹣a )•f(x0)=1,∴•f(x0)=1即f'(x0)=[f (x0)]2,应选B .【思路点拨】依照导数的几何意义:f'(x0)为曲线y=f (x )在x=x0处切线的斜率,写出切线方程,令y=0,求出A 点的坐标,别离求出AB ,PB 长,运用三角形的面积公式,化简即可. 第II 卷(非选择题,共100分)二、填空题:本大题共4小题,每题5分,共20分,其中14~15题是选做题,考生只需选做其中一题,两题全答的,只以第14小题计分.【题文】11.函数⎩⎨⎧≤>=030log )(2x x x x f x,那么=)]41([f f ___【知识点】分段函数的函数值. B1 【答案解析】 解析:,故答案为: 【思路点拨】先求,,故代入x >0时的解析式;求出=﹣2,,再求值即可.【题文】12. 假设目标函数2z kx y =+在约束条件2122x y x y y x -≤⎧⎪+≥⎨⎪-≤⎩下仅在点(1,1)处取得最小值,那么实数k 的取值范围是 .【知识点】简单线性计划. E5【答案解析】(﹣4,2). 解析:作出不等式对应的平面区域,由z=kx+2y 得y=﹣x+,要使目标函数z=kx+2y 仅在点B (1,1)处取得最小值,那么阴影部份区域在直线z=kx+2y 的右上方,∴目标函数的斜率﹣大于x+y=2的斜率且小于直线2x ﹣y=1的斜率,即﹣1<﹣<2,解得﹣4<k <2,即实数k 的取值范围为(﹣4,2),故答案为:(﹣4,2).【思路点拨】作出不等式对应的平面区域,利用线性计划的知识,确信目标取最优解的条件,即可求出k 的取值范围.NM CABO【题文】13. 已知1cos 7α=,13cos()14αβ-=,且π02βα<<<,那么cos β= .【知识点】两角和与差的余弦函数;同角三角函数间的大体关系.C5 C2 【答案解析】 解析:因为cosα=,cos (α﹣β)=,且0,∴α﹣β>0,因此sinα==,α﹣β∈(0,),sin (α﹣β)==,cosβ=cos[(α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)==故答案为:.【思路点拨】通过α、β的范围,求出α﹣β的范围,然后求出sinα,sin (α﹣β)的值,即可求解cosβ.【题文】14.(坐标系与参数方程)在极坐标系中圆4cos ρθ=的圆心到直线()6R πθθ=∈的距离是【知识点】简单曲线的极坐标方程. N3【答案解析】1 解析:∵圆ρ=4cosθ,∴ρ2=4ρcosθ.化为一般方程为x2+y2=4x ,即(x ﹣2)2+y2=4,∴圆心的坐标为(2,0).∵直线θ=(ρ∈R),∴直线的方程为y=x ,即x ﹣y=0.∴圆心(2,0)到直线x ﹣y=0的距离=1.故答案为:1.【思路点拨】先将极坐标方程化为一般方程,可求出圆心的坐标,再利用点到直线的距离公式即可求出答案 【题文】15.(几何证明选讲)如图,点B 在⊙O 上, M 为直径AC 上一点,BM 的延长线交⊙O 于N ,45BNA ∠= ,假设⊙O 的半径为233OM , 那么MN 的长为【知识点】与圆有关的比例线段. N1【答案解析】2 解析:∵∠BNA=45°,圆心角AOB 和圆周角ANB 对应着相同的一段弧,∴∠AOB=90°,∵⊙O 的半径为2,OA=OM ,∴OM=2,在直角三角形中BM==4,∴依照圆内两条相交弦定理有4MN=(2+2)(2﹣2),∴MN=2, 故答案为:2【思路点拨】依照圆心角AOB 和圆周角ANB 对应着相同的一段弧,取得角AOB 是一个直角,依照所给的半径的长度和OA ,OM 之间的关系,求出OM 的长和BM 的长,依照圆的相交弦定理做出结果. 三、解答题:本大题共6小题,共80分,解许诺写出文字说明、证明进程或演算步骤.【题文】16.(此题总分值12分)已知向量(3sin ,cos )a x x =,(cos ,cos )b x x =,设函数()f x a b =⋅.(Ⅰ)求函数()f x 单调增区间;(Ⅱ)假设[,]63x ππ∈-,求函数()f x 的最值,并指出()f x 取得最值时x 的取值.【知识点】平面向量数量积的运算;三角函数中的恒等变换应用. F3 C7 【答案解析】(Ⅰ),(k∈Z);(Ⅱ)f (x )取得最小值0,现在,f (x )取得最大值,现在.解析:(Ⅰ)∵=当,k∈Z, 即,k∈Z,即,k∈Z 时,函数f (x )单调递增,∴函数f (x )的单调递增区间是,(k∈Z);(Ⅱ)∵f(x )=sin (2x+)+,当时,,∴,∴当时,f(x)取得最小值0,现在2x+=﹣,∴,∴当时,f(x)取得最大值,现在2x+=,∴.【思路点拨】(Ⅰ)利用向量的数量积求出f(x)的解析式,再利用三角函数的图象与性质求出单调区间;(Ⅱ)由三角函数的图象与性质,结合区间x∈[﹣,],求函数f(x)的最值和对应x的值.【题文】17、(此题总分值12分)某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,取得相关的数据如下表:节能意识弱节能意识强总计20至50岁45954大于50岁103646总计5545100(1)由表中数据直观分析,节能意识强弱是不是与人的年龄有关?(2)假设全小区节能意识强的人共有350人,那么估量这350人中,年龄大于50岁的有多少人?(3)按年龄分层抽样,从节能意识强的居民中抽5人,再是这5人中任取2人,求恰有1人年龄在20至50岁的概率。

高三第一次联考数学文试题Word版含答案

高三第一次联考数学文试题Word版含答案

届七校联合体高三第一次联考文科数学学校:宝安中学 潮阳一中 桂城中学 南海中学 普宁二中 中山一中 仲元中学一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合U ={x |x <5,x ∈N *},M ={x |x 2-5x +6=0},则∁U M = A .{1,4}B .{1,5}C .{2,3}D .{3,4}2.在复平面内,设z =1+i(i 是虚数单位),则复数2z +z 2对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.若双曲线22221-=x y a b的一条渐近线经过点(3, -4),则此双曲线的离心率为A.73 B. 54 C. 43 D. 534.若x ,y 满足10220,40x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩则x+2y 的最大值为A .132B .6C .11D .10 5.设1132113,,ln 23a b c π⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则 A.c a b << B. c b a << C. a b c << D. b a c <<6.如图给出的是计算12+14+16+…+120的值的一个程序框图,其中判断框内应填入的条件是A .i >10?B .i <10?C .i >20?D .i <20?7.一个几何体的三视图如图,其中 正视图是腰长为2的等腰三角形,俯视图 是半径为1的半圆,则该几何体的体积是 A.B.C.D.8.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =2,S △ABC=2,则b 的值为A. 3B.322C.2 2D.239.在如图所示的圆型图案中有12片树叶,构成树叶的圆弧均相同且所对的圆心角为3π,若在圆内随机取一点,则此点取自树叶(即图中阴影部分)的概率是A. 332-πB. 634-πC.13-32π D. 2310.给出四个函数,分别满足①f (x +y )=f (x )+f (y ),②g (x +y )=g (x )·g (y ),③h (x ·y )=h (x )+h (y ),④m (x ·y )=m (x )·m (y ).又给出四个函数的图象,那么正确的匹配方案可以是A .①甲,②乙,③丙,④丁B .①乙,②丙,③甲,④丁C .①丙,②甲,③乙,④丁D .①丁,②甲,③乙,④丙11. 已知函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上的最小值为-2,则ω的取值范围是 A.⎝⎛⎦⎤-∞,-92∪[6,+∞) B.⎝⎛⎦⎤-∞,-92∪⎣⎡⎭⎫32,+∞ C.(-∞,-2]∪[6,+∞) D.(-∞,-2]∪⎣⎡⎭⎫32,+∞12.已知抛物线214=y x ,AB 为过焦点的弦,过、A B 分别作抛物线的切线交于点F ,则 ① 若AB 斜率为1,则4=AB ; ② min 2=AB ; ③1=-M y ; ④若AB 斜率为1,则1=M x ; ⑤4⋅=-A B x x以上结论正确的个数是A.1个B.2个C. 3个D. 4个二、填空题:本题共4小题,每小题5分,共20分。

广东省高三上学期语文第一次联考试卷

广东省高三上学期语文第一次联考试卷

广东省高三上学期语文第一次联考试卷姓名:________ 班级:________ 成绩:________一、选择题 (共1题;共6分)1. (6分) (2019高二下·吉林期中) 阅读下面文字,完成下列小题。

手机、外卖、朋友圈、抖音、支付宝……这些新生事物与你的生活________,回顾这些年网络流行的一些风向,不难发现潮流年年变化,不可________,而不变的是年轻人始终能够敏感地追上潮流、乐在其中。

古语有云“近朱者赤,近墨者黑”,年轻人正处于三观塑造期,他们追逐流行风潮,必将“润物细无声”般内化于价值观念与思维方式之中。

相较于过往,如今的潮流风向标主要发源于网络,更新更快、花样更多,某些短视频在十几秒钟内以声情并茂的形式就可将信息传递给受众,虽然(),却也________。

如若不加选择地终日追逐,部分年轻人空虚迷茫的状态只怕更甚。

当下,价值多元、选择爆棚,如果每次都________,任凭人生的主题被一次次冲散,那很可能就真的失去了自我。

青年人朝气蓬勃、风华正茂,正是学本领、长才干、拓视野的黄金年龄,正是大展拳脚、实现抱负的关键时期。

青年的生活,除了眼前的搞怪视频、偶尔的轻松娱乐,还应该有科学、文化、艺术等饱满且值得追寻的日常。

与其在屏幕中“坐井观天”、被流行文化消费,倒不如躬耕于自己的人生主题,努力实现价值与尊严。

有媒体研究者曾说:“毁掉我们的不是我们所憎恨的东西,而恰恰是我们所热爱的东西。

”警惕“娱乐至死”、拒绝浮躁,静下来寻找值得交付的热爱,无论是一首好诗、一篇好文、一曲好歌,恐怕都比十来秒的视觉冲击有意义得多。

(1)下列在文中括号内补写的语句,最恰当的一项是()A . 大众能够通过短视频,以新奇、有趣的形式接触到专业知识B . 以新奇、有趣的形式传递专业知识是短视频的优势C . 这种短视频以新奇、有趣的形式传递给大众专业知识D . 专业知识是通过短视频,以新奇、有趣的形式接触到大众的(2)依次填入文中横线上的成语,全都恰当的一项是()A . 息息相关相提并论鱼龙混杂随遇而安B . 休戚相关相提并论泥沙俱下随遇而安C . 息息相关同日而语泥沙俱下随波逐流D . 休戚相关同日而语鱼龙混杂随波逐流(3)文中画线的部分有语病,下列修改最恰当的一项是()A . 正处于三观塑造期的年轻人,他们所追逐的流行风潮,必将“润物细无声”般内化于价值观念与思维方式之中。

广东省东莞市数学高三上学期文数第一次大联考试卷

广东省东莞市数学高三上学期文数第一次大联考试卷

广东省东莞市数学高三上学期文数第一次大联考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019高三上·赤峰月考) 已知集合,,则等于()A .B .C .D .2. (2分)(2020·海南模拟) 若复数的虚部小于0,,且,则()A .B .C .D .3. (2分)为了解一片速生林的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出样本的频率分布直方图(如图),那么在这100株树木中,底部周长大于110cm的株数是()A . 70B . 60C . 30D . 804. (2分) (2016高三上·湖北期中) 已知sin2α= ,则cos2(α+ )=()A .B .C .D .5. (2分) (2017高一下·安庆期末) 表示如图中阴影部分所示平面区域的不等式组是()A .B .C .D .6. (2分)(2018·陕西模拟) 已知函数的最小正周期为,则该函数的图象()A . 关于点对称B . 关于点对称C . 关于直线对称D . 关于直线对称7. (2分) (2016高一上·德州期中) 若对任意非零实数a,b,若a*b的运算规则如图的程序框图所示,则(3*2)*4的值是()A .B .C .D . 98. (2分)如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则P﹣DCE三棱锥的外接球的体积为()A .B .C .D .9. (2分)(2017·雨花模拟) 已知数列{an}是公差为2的等差数列,且a1 , a2 , a5成等比数列,则S8=()A . 36B . 49C . 64D . 8110. (2分)下列说法错误的是()A . 平面α与平面β相交,它们只有有限个公共点B . 经过一条直线和这条直线外的一点,有且只有一个平面C . 经过两条相交直线,有且只有一个平面D . 如果两个平面有三个不共线的公共点,那么这两个平面重合11. (2分)椭圆,为上顶点,为左焦点,为右顶点,且右顶点到直线的距离为,则该椭圆的离心率为()A .B .C .D .12. (2分) (2019高三上·天津月考) 设函数,,若,则()A .B .C .D .二、填空题 (共4题;共5分)13. (1分) (2015高二上·湛江期末) 过抛物线x2=4y的焦点F作直线AB,CD与抛物线交于A,B,C,D四点,且AB⊥CD,则• + • 的最大值等于________.14. (1分)(2018·河北模拟) 已知在等腰梯形中,,,,双曲线以,为焦点,且与线段,(包含端点,)分别有一个交点,则该双曲线的离心率的取值范围是________.15. (2分) (2018高一下·包头期末) 在中,内角,,所对的边分别为,,,已知,,,则边长 ________或________.16. (1分) (2015高二上·常州期末) 已知f(x),g(x)都是定义在R上的函数,且满足以下条件:①f(x)=ax•g(x)(a>0,a≠1);②g(x)≠0;③f(x)•g'(x)>f'(x)•g(x);若,则a=________.三、解答题 (共7题;共70分)17. (15分) (2016高二上·芒市期中) 已知数列{an}中,a1=3,an+1=can+m(c,m为常数)(1)当c=1,m=1时,求数列{an}的通项公式an;(2)当c=2,m=﹣1时,证明:数列{an﹣1}为等比数列;(3)在(2)的条件下,记bn= ,Sn=b1+b2+…+bn,证明:Sn<1.18. (15分)(2017·武威模拟) 某校高三共有900名学生,高三模拟考之后,为了了解学生学习情况,用分层抽样方法从中抽出若干学生此次数学成绩,按成绩分组,制成如下的频率分布表:组号第一组第二组第二组第四组分组[70,80)[80,90)[90,100)[100,110)频数642220频率0.060.040.220.20组号第五组第六组第七组第八组分组[110,120)[120,130)[130,140)[140,150]频数18a105频率b0.150.100.05(1)若频数的总和为c,试求a,b,c的值;(2)为了了解数学成绩在120分以上的学生的心理状态,现决定在第六、七、八组中用分层抽样方法抽取6名学生,在这6名学生中又再随机抽取2名与心理老师面谈,令第七组被抽中的学生数为随机变量ξ,求随机变量ξ的分布列和数学期望;(3)估计该校本次考试的数学平均分.19. (5分)已知四棱锥P﹣ABCD的底面ABCD是边长为2的正方形,E、F分别为棱BC、AD的中点,PD⊥底面ABCD,且直线PA与直线BC所成的角为45°.(Ⅰ)求证:DE∥平面PFB;(Ⅱ)求四棱锥P﹣ABCD的体积.(Ⅲ)在线段PB上是否存在点Q,使得FQ⊥面PBC?请说明理由.20. (5分) (2018高二上·台州期末) 已知直线:与抛物线交于,两点,记抛物线在,两点处的切线,的交点为.(Ⅰ)求证:;(Ⅱ)求点的坐标(用,表示);(Ⅲ)若,求△ 的面积的最小值.21. (15分) (2016高三上·吉林期中) 已知函数f(x)= .(1)求函数f(x)的单调区间;(2)若g(x)=xf(x)+mx在区间(0,e]上的最大值为﹣3,求m的值;(3)若x≥1时,有不等式f(x)≥ 恒成立,求实数k的取值范围.22. (5分)在平面直角坐标系xoy中,圆C的参数方程为(t为参数).在极坐标系(与平面直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,直线l的方程为.(Ⅰ)求圆C的普通方程及直线l的直角坐标方程;(Ⅱ)设直线l被圆C截得的弦长为,求m的值.23. (10分)(2018·永州模拟) 已知函数 .(1)解不等式;(2)若对任意的,均存在,使得成立,求实数的取值范围.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共70分) 17-1、17-2、17-3、18-1、18-2、18-3、19-1、20-1、21-1、21-2、21-3、22-1、23-1、23-2、。

高三第一次联考数学文试题 Word版含答案[ 高考]

高三第一次联考数学文试题 Word版含答案[ 高考]

仲元中学 中山一中 南海中学2013—2014学年 高三第一次联考潮阳一中 宝安中学 普宁二中数学(文科)一 选择题(每小题5分,共50分)1. 已知集合{}{}|1,|21x M x x N x =<=>,则M N = ( )A .∅B .{}|0x x <C .{}|1x x <D .{}|01x x <<2.已知a 是实数,()(1)a i i -+是纯虚数(i 是虚数单位),则a =( ) A .1 B .-1 CD3)A .23±B .23C .23- D .214.设条件:0p a >;条件2:0q a a +≥,那么p 是q 的什么条件( ).A .充分非必要条件B .必要非充分条件C .充分且必要条件D .非充分非必要条件5.已知直线b a ,都在平面α外, 则下列推断错误的是( )A .αα////,//a b b a ⇒B .αα//,a b b a ⇒⊥⊥C .b a b a ////,//⇒ααD .b a b a //,⇒⊥⊥αα 6.方程223xx -+=的实数解的个数为( )A .2B .3C .1D .4 7.设等比数列{}n a 的公比2q =, 前n 项和为n S ,则42S a =( ) A. 2B. 4C.152 D. 1728.已知向量(3,4)a =, (2,1)b =-,如果向量a xb +与b 垂直,则x 的值为( )A.233B.323C.2D. 25-9.如图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那 么这个几何体的全面积为 ( ) A .3π2B .2πC .3πD .4π10.函数)1x (f +是R 上的奇函数,0)]f(x -))[f(x x -(x R,x ,x 212121<∈∀,则0)x 1(f >- 的解集是( )A )0,(-∞B ),0(+∞C )1,1(-D ),1()1,(+∞⋃--∞二.填空题:(本大题每小题5分,共20分,把答案填在题后的横线上) (一)必做题(11~13题)Ks5u11.对任意非零实数,a b ,若a b ⊗的运算原理如右图程序框图所示,则32⊗= .12. 已知2()3(2),(2)f x x xf f ''=+则= .13.已知,x y 满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩(k 为常数) ,若3z x y =+的最大值为8,则k = .Ks5u(二)选做题(14 ~15题,考生只能从中选做一题;两道题都做的,只记第一题的分)14.(坐标系与参数方程选做题) 在平面直角坐标系xOy 中,点()P x y ,是椭圆2213x y +=上的一个动点,则S x y =+的最大值为 .15.(几何证明选讲选做题)如图,平行四边形ABCD 中,:1:2AE EB =, AEF ∆的面积为6,则ADF ∆的面积为 .三.解答题:(本大题共6小题,共80分,要求写出必要的解答过程) 16.(本小题满分12分)已知1tan 3α=-,cos β=,(0,)αβπ∈ (1)求tan()αβ+的值;(第15题图)(第11题图)(2)求函数())cos()f x x x αβ=-++的最大值. 17.(本小题满分12分)某高校在某年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示.(1)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试? (3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A 考官进行面试,求:第4组至少有一名学生被考官A 面试的概率?18.(本小题满分14分)长方体1111ABCD A B C D -中,1AA ,2AB BC ==,O 是底面对角线的交点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省2017届高三七校第一次联考(文数)广东省2017届高三七校第一次联考数 学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.集合(){}lg 10M x x =-<,集合{}11N x x =-≤≤,则M N ⋂=A. ()0,1B. [)0,1C. []1,1-D. [)1,1-2.设复数z 满足11zz+-=i ,则=z (A )1 (B )2 (C )3 (D )23. 从数字1,2,3中任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( )1.3A 1.6B 1.2C 2.3D4. 若||1a =r ,||2b =r,且()a a b ⊥-r r r ,则向量,a b r r 的夹角为( )A . 45°B . 60°C . 120°D .135° 5. 实数a =20.2,b =log20.2,c =(2)0.2的大小关系正确的是 ( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a6.将函数cos(2)6y x π=-的图象向左平移14个周期后,所得图象对应的解析式( ).cos(2)12A y x π=+ .cos(2)3B y x π=+ 2.cos(2)3C y x π=- 5.cos(2)12D y x π=-7. 在ABC ∆中,c ,b ,a 是角A ,B ,C 的对边,若c ,b ,a 成等比数列,045=A ,则=cBsin b ( )A .21B .23C .22 D .43 8.如图,网格纸的各小格都是正方形,粗线画出的是一个三棱锥的左视图和俯视图,则该三棱锥的主视图可能是( )A BC D左视图 俯视图9、下列函数为奇函数的是( )A. ()31f x x =- B. ()cos f x x x =+C. ()sin f x x x =D. ()(211f x g x x =+ 10、如图所示的程序框图的运行结果为( ) A. 1- B.12C. 1D. 2 11. 过双曲线()222210,0x y a b a b -=>>的左焦点(,0)F c -,作圆2224a x y +=的切线,切点为E ,延长FE 交双曲线右支于点,P若2OP OE OF =-u u u r u u u r u u u r,则双曲线的离心率为( )A 1010102 12. 已知函数()ln(1),0212,20xx x f x x +<≤⎧=⎨--≤≤⎩,若函数()y f x =图象与直线y kx k =+有3个交点,则实数k 的取值范围是( )1.0,A e ⎛⎫ ⎪⎝⎭ 1.0,2B e ⎛⎫⎪⎝⎭ln 31.[,)32C e ln 31.[,)3D e 第Ⅱ卷本卷包括必考题和选考题两部分。

第13题~第21题为必考题,每个考生都必须做答。

第22题~第24题为选考题,考生根据要求做答。

二.填空题:本大题共4小题,每小题5分。

13.实数,x y 满足1030330x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则1z x y =++的最大值为 .14.设△ABC 的内角为A ,B ,C ,所对的边分别是a ,b ,c .若ab c b a c b a =++-+))((,则角C=__________.15.已知曲线()ln f x x x =⋅在点()()1,1f 处的切线与曲线2y x a =+相切,则a =_________.16.如图,在三棱锥A BCD -中,ACD ∆与BCD ∆都是边长为2的正三角形,且平面ACD ⊥平面BCD ,则该三棱锥外接球的表面积为________.开始结束2016i ?≥ 是否2,1a i ==1i i =+输出a11a a=-(第10题图)三.解答题:解答应写出文字说明,证明过程或演算步骤。

(17)(本小题满分12分)已知数列{}n a 为等差数列,n S 为其前n 项和,若320a =,3428S S =+. (1)求数列{}n a 的通项公式; (2)设*1(N )1n n b n S =∈-,12n n T b b b =++⋅⋅⋅+,求n T .(18)(本小题满分12分)如图,四棱锥P ABCD -,侧面PAD 是边长为2的正三角形,且与底面垂直,底面ABCD 是60ABC ∠=︒的菱形,M 为PC 的中点。

(1) 求证:;PC AD ⊥(2) 求点D 到平面PAM 的距离。

(19)(本小题满分12分)某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元;未售出的产品,每盒亏损30元。

根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示,该同学为这个开学季购进了160盒该产品,以x (单位:盒,100200)x ≤≤ 表示这个开学季内的市场需求量,Y (单位:元)表示这个开学季内经销该产品的利润。

(1)根据直方图估计这个开学季内市场需求量x 的平均数和众数; (2)将Y 表示为x 的函数;(3)根据直方图估计利润不少于4800元的概率。

(20)(本小题满分12分)如图,已知圆E :22(3)16x y ++=,点(3,0)F ,P 是圆E 上任意一点.线段PF 的垂直平分线和半径PE 相交于Q . (1)求动点Q 的轨迹Γ的方程;(2)已知,,A B C 是轨迹Γ的三个动点,点A 在一象限,B 与A 关于 原点对称,且||||CA CB =,问△ABC 的面积是否存在最小值?若存在,求出此最小值及相应直线AB 的方程;若不存在,请说明理由.(21)(本小题满分12分)已知函数21()ln 2f x x ax bx =--. (1)当12a b ==时,求)(x f 的单调区间; (2)当0,1a b ==-时,方程()f x mx =在区间21,e ⎡⎤⎣⎦内有唯一实数解,求实数m 的取值范围.请考生在第22、23、24题中任选一题做答。

如果多做,则按所做的第一题计分,答题时请写清题号。

(22)(本小题满分10分)选修4—1:几何证明选讲如图△ABC 是圆O 的内接三角形,PA 是圆O 的切线,切点为A ,PB 交AC 于点E ,交圆O 于点D ,PA PE =,45ABC ∠=︒, 1PD =,8DB =.(1)求△ABP 的面积; (2)求弦AC 的长.(23)(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρsin 2=,[)0,2θ∈π. (Ⅰ)求曲线C 的参数方程;(Ⅱ)在曲线C 上求一点D ,使它到直线l :3332x t y t ⎧=+⎪⎨=-+⎪⎩(t 为参数)的距离最长,求出点D的直角坐标.(24)(本小题满分10分)选修4—5:不等式选讲已知函数()22,f x x x a a R =---∈. (1)当3a =时,解不等式()0f x >;(2)当(),2x ∈-∞时,()0f x <恒成立,求a 的取值范围.数学(文科)参考答案一、选择题(60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 选项 A A A A C B C A D A C D二、填空题(20分)13、4; 14、; 15、; 16、。

三、解答题17、解:(1)设数列的公差为,由得: ------------ 2分由,得………………………………………………………4分故数列的通项公式为:………………………………6分(2)由(1)可得………………………8分…………………………………9分…………………12分18、解:(1)取中点连接依题意可知均为正三角形,----------------4分(2)点D到平面PAM的距离即为点D到平面的距离,由(1)可知平面为三棱锥的高。

-------------6分在在所以--------------------8分设点到平面的距离为,由得又,解得所以点D到平面PAM的距离为。

----------------------12分19. 解:(1)由频率直方图得:需求量为110的频率=,需求量为130的频率=,需求量为150的频率=,需求量为170的频率=,需求量为190的频率=,----3分所以这个开学季内市场需求量x的众数是150,平均数--------5分(2)因为每售出1盒该产品获利润50元,未售出的产品,每盒亏损30元,所以当时,,----------7分当--------------------------------9分所以(3)因为利润不少于4800元,所以,解得所以由(1)知利润不少于4800元的概率-----------------12分20.解:(1)在线段的垂直平分线上,所以;得,---------------------------2分又,所以点的轨迹是以为焦点,长轴长为4的椭圆.. ……………………………………4分(2)由点在一象限,与关于原点对称,设,在的垂直平分线上,.,,同理可得,……………6分……………………8分,当且仅当时取等号,所以,…………………………………11分当直线,. ………………………………12分(21)解:(1)依题意,知的定义域是当,----2分令。

当当时,,此时单调递减。

所以,的增区间为,减区间为。

-------------------5分(2)法一:当因为方程在区间内有唯一实数解,所以有唯一实数解。

所以,则-------------------------7分令得得所以在区间上是增函数,在区间上是减函数。

---------------9分------------------10分所以或 ---------------------12分法二:转化为,即与的图象在上只有一个交点。

----6分当它们相切时,设切点,所以时一个交点;----------8分直线过点时的斜率,此时,--------9分当斜率即时,它们的图象在上只有一个交点。

---------11分综上,或。

--------------12分22.(本小题满分10分)【解析】(1)因为是圆的切线,切点为,所以,又,所以,.因为,,所以由切割线定理有,所以,------------3分所以△的面积为.………………(5分)(2)在△中,由勾股定理得,又,,--------------7分所以由相交弦定理得,所以,故.……(10分)23. (本小题满分10分)【解析】(Ⅰ)由,,可得. -------1分所以曲线的普通方程为).--------------3分从而曲线C的参数方程为----------------------5分(Ⅱ)法一:因为直线的参数方程为(为参数),消去得直线的普通方程为.……………………6分过圆心C作,则直线,-----------7分代入圆C:得---------9分所以点D的直角坐标为 -----------------10分法二:利用圆C的参数方程求点D直角坐标。

相关文档
最新文档