矩阵分析第6章答案

合集下载

矩阵分析

矩阵分析
m
k − d +1
. .
1 ak Ck λi ∑k =0 m k −1
∑k =0 ak λi
m
k
p(λi ) p' (λi ) p′′(λi ) / 2! p(λi ) ... = ...
... ... ... ...
p(d −1) (λi ) . . p' (λi ) p(λi ) d×d
p( J 2 )
∑m ak λi k k =0 p(J p(Ji)= ‖ Σk=0makJik
1 ak Ck λi ∑k =0 m
k −1
... ... ... ... ... ... ...
1 (d −1)!
∑k =0 ak λi
m
k
ak Ckd −1λi ∑k =0 .
=PAP (PAP-1)k=PAP-1PAP-1. A=diag(J1,J2,J3)= A2=diag(J
1,J2,J3
. .PAP-1PAP-1=PAkP-1 PAP
J3
J1
J2
)2
=
J1 J2
J1 J2 J 3
0 1 1 1 0 0 1 0 −1
.用初等 .用初等 P -1=
0 1 0 1 −1 1 0 1 − 1
A-2E=
0 0 0 2 0 0 2 2 = 1 −1 1 1 1 1 − 1 −1 3 2 1 −1 1 0 1 1 0 0 1 0 − 1 1 0 = 1 − 1 1 0 1

《矩阵分析》(第3版)史荣昌,魏丰.第四章课后习题答案

《矩阵分析》(第3版)史荣昌,魏丰.第四章课后习题答案

第四章 矩阵分析4-1.(1)对矩阵A 只做初等行变换得到行简化阶梯形矩阵82100-55212311125141010551312114001-5582100-5521211251,0105513114001-55A B C A BC ⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=-→⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦=取于是即为其满秩分解表达式(2)对矩阵A 只做初等行变换得到行简化阶梯形矩阵1101010-10-1011110111123131000001110-10-101,0111123A B C A BC ⎡⎤⎡⎤⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=取于是即为其满秩分解表达式(3)对矩阵A 只做初等行变换得到行简化阶梯形矩阵12101212101212213300112124314500000048628100000001112121012,2300112146A B C A BC ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=取于是即为其满秩分解表达式(4)对矩阵A 只做初等行变换得到行简化阶梯形矩阵120111012011036142360011-1024022270000016121757300000010101201103136,0011-1020270000016173A B C A BC ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=取于是即为其满秩分解表达式4-2.解:首先注意到A 的秩为1,同时计算出HAA 的特征值12=6=0λλ,,所以A 的奇异值1=6.σ然后分别计算出属于12λλ,的标准正交特征向量.]] []121211112121,1-1,1,.3111111=[,]T TH HU UV A UVV V VAηηηηη-====⎡⎤⎢⎥=∆==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎢⎢⎢⎢⎢⎢⎥⎢⎥⎣⎦⎤⎥==⎢⎥⎥⎣⎦,记,现在计算取于是r000003333HrA U V⎤⎥⎤=⎥⎥⎢⎣⎦⎥⎦⎥⎢⎥⎣⎦=∆=⎦⎥⎦或者4-3.解:(1)容易验证H H H HAA A A BB B B==,所以A,B是正规矩阵.(2)下面求A的谱分解:[][]21231123232323111(+1)(-2)=2==-1.=2=.==-1=10-1=1-0.=0=.TTTTTH E A A G λλλλλλλξλλααααξξξξ-===故的特征值为:,对于特征值,其对应的特征向量对于特征值,其对应的特征向量,,,,1,将,正交化和单位化得,,于是2223311133311133311133300111110636221210003331110226H H G ξξξξ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢=+=+⎢⎥⎢⎢⎥⎢⎢⎢⎥⎢⎣⎢⎥⎣⎦-⎡⎤-⎢⎥⎢⎥=+--⎢⎥⎢⎥-⎢⎥-⎣⎦122113331213331111236333=2A G G ⎡⎤⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦-因此即为其谱分解.矩阵B 的谱分解参照矩阵A 的谱分解方法. 4-4. 解:已知矩阵024102211042A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦[][][]21231212331231231(+1)(+2),==-1=-2==-1=-2,1,0,4,0,1=-2=4,2,1.244[,,]102011T TTE A A A P P AP λλλλλλλλααλααααααα--==---⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦-=求得所以其对应的特征值为:,对应于特征值,其对应的特征向量对应于特征值,其对应的特征向量为:,,线性无关,所以矩阵可对角化,所以矩阵是单纯矩阵于是而且有:11231112223311161212100211010,()366002221333122112111=--=-=6331263126322433312263311212632T TTTT TT P G G βββαβαβαβ-⎡⎤-⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤-⎢⎥⎢⎥⎢⎥=+=--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦==取:,,,,,,,,令122433312263311212632A G G A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=-+故即为矩阵的谱分解表达式.4-5.解:[][][]12312i 20000-i 0000500000,=5==0000=51,0,02001,0,0,=1,0,0-i 00100H H H H TT T H HHA A AA AA AA U V A U A V λλλδληηη-⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎡⎤⎢⎥==∆⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎢=∆=⎢⎢⎣⎦,求出的特征值为,所以的奇异值为:求出对应于的特征根:==H⎡⎤⎥⎥⎥⎥⎢⎥⎣⎦4-6.解:()()()1231212112204002000i ,0100-i 000000(-1)(-4)=4,=1,=02=2,=1,14=1,0,04=0,1,010,0100H H H H T H TH A A AA E AA AA AA AA U λλλλλλλααμμμμ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦-=⇒⎡⎤∆=⎢⎥⎣⎦⎡⎤⎢⎥==⎢⎢⎣⎦,所以的奇异值为:特征值为的单位特征向量为:特征值为的单位特征向量为:于是1111100-i 102100110-i 00H H H HV A U A U V -⎥⎥⎡⎤=∆=⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥=∆=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦因此所以4-7.解:(1) 首先求出矩阵A 的特征多项式212322082(+2)(-6)06=-2==6A (6E-A)=14204206E-A=8400000000E A aa a λλλλλλλλλ---=--=---⎡⎤⎡⎤⎢⎥⎢⎥--→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦所以其特征值为:,由于是单纯矩阵,从而r 有此可知:a=0;(2) 由上知a=0;()21231212331112223220=820-(+2)(-6)006==6;=-2,==6=0 =001=-2=0125524551TT T H H A E A A G G λλλλλλλλααλαααααα⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⇒⎫⎪⎭⎫⎪⎭⎛⎫ ⎪ ⎪⎪=+== ⎪ ⎪ ⎪ ⎪⎝⎭所以,求出对应于的单位正交特征向量为:,,,求出对应于的单位特征向量为:因此,的投影矩阵,31212552455062H A G G α⎛⎫- ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭=-4-8.解: (1)3i -13i -1-i 0i -i 0i -1-i 0-1-i 0,.HH H A A AA A A A ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=,所以是正规矩阵 (2)()()())()()()212311223312312314122 1.2==-1=0,-i,1,,=0.8801,0.3251i,0.3251,=0.4597,0.6280i 0.6280,=TTTTTE A λλλλλλλλαλαλααααηηη-=+-+=+==-===求出与求出与求出与对应的特征向量为:将单位化得到单位特征向量为:,111222333112233,,=TH H HG G G A G G G ηηηηηηλλλ⎛ ⎝⎭===++所以4-9.解:对矩阵A 只作初等行变换100071415610290102000147712401525001772655700000310007141102901020077,1245250017726500000.A ABC BC A -⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→→⎢⎥⎢⎥--⎢⎥⎢⎥--⎢⎥⎣⎦⎢⎥⎣⎦-⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦= 的秩为,且前三个列向量线性无关,故容易验证:4-10.解: 对矩阵A 只作初等行变换110130-331321421=261070013339311100000211012130-3321,210013333.2113210-361,93A A B C BC A A B C ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦ 的秩为,且第一,第三个列向量线性无关,故容易验证:的秩为,且第二,第三个列向量线性无关,故10992100133.BC A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=容易验证:4-11.解:()()1231231231231===0=00=0004400TTTH A Schmidt U R U A R ααααααυυυυυυ-⎛ ⎝⎛⎝⎛⎝⎡⎢⎢⎢==⎢⎢⎢⎢⎣⎡⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎣⎦将,,的列向量,,用方法标准正交化得,命,,,则111335---1444420111==-=--2222-1131=.H x R U b Ax b -⎥⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦不难验证4-12.解:5000000005,0,0A H H AA AA ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦因为的特征值为,故4-13.解:2123111111202000202(-4),=4==0A=2=2.=4==,10111012HH HT T HHHAAE AA AAAA UV A Uλλλλλλαλ-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦-=∆=⎡⎤=∆=∙=⎢⎥⎢⎥⎣⎦⎢⎥所以的特征值,,的奇异值为,的特征值的单位特征向量u u因此:不难验1122124.3.443301001HHHHH HA U VAAUA AU A A VU=∆=⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎢⎢=⎢⎥⎢⎥⎣⎦=证这是定理表达形式.下面介绍定理..表述形式.又的零特征值所对应的次酉矩阵的零特征值所对应的次酉矩阵V于是AA的酉矩阵与的酉矩阵分别为V⎤⎥⎥=⎢⎥⎥⎢⎥⎥⎥⎦⎥⎦,且2000000HD A UDV ⎡⎤∆⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=不难验证4-14. 解:()()()12312111121111400010(1)(4),000=4=1=02=2=1=14=1001=01010==010010010=U V 010H HH H H H H H AA E AA AA A AA u AA u U u u V A U i A λλλλλλλαα-⎡⎤⎢⎥=-=--⎢⎥⎢⎥⎣⎦⎡⎤∆⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤=∆=⎢⎥⎣⎦∆=,的特征值,,所以的奇异值,,的特征值为的单位特征向量的特征值为的单位特征向量于是因此所以3222121010043300=0=110010(,)=010,V=V 0001100201001001000100HH Hi AA u U U U U i A UDV i ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦若要写成定理..形式还得计算U,V.特征值为的单位特征向量故所以4-15.解:242-24-2422-4-2-2-2252-2-5H i i A i i i i A i i i i -⎡⎤⎡⎤⎢⎥⎢⎥==-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦由于所以A 是反Hermite 矩阵.2123121233111222-424+22==(+6i)(-3i)-22A ==-6i =3i.==-6i =0==3i 221=i -33354i2i -999-TTT H H iE A i i iA G λλλλλλλλλλλααλααααα+-=⎛ ⎝⎛⎫ ⎪⎝⎭=+= 的特征值,属于特征值的正交单位特征向量,属于特征值的正交单位特征向量,,因此的正交投影矩阵为233124i529992i 2899944i 2i 9994i 429992i 219996i 3i H G A A G G αα⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤-⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦=-所以的谱分解式为:+4-16..解:130i 2202031-i 022HA A ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦由于所以A 是Hermite 矩阵.()21231212331112213--i 220-20==(-2)(+1)31-i 0-22A ==2=-1.==2=010=0=-1=01i 022010i 1-022TTTH H E A A G G λλλλλλλλλλλααλααααα-=⎡⎤⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎣⎦ 的特征值,属于特征值的正交单位特征向量,,,属于特征值的正交单位特征向量因此的正交投影矩阵为233121i 0-22010i 10222-H A A G G αα⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦=所以的谱分解式为:4-17. . .解:先求A 的特征值和特征向量,由21234-603+50=(-1)(+2)36-1==1=-2.E A A λλλλλλλλλ--=故的特征值为:,()()()()1231212331123=1-3-60360=0360=2-1,0=0,0,1=-2-3-60360=0360=-11,1201111,,101()=122011010TTT Tx x x x x x P P λααλαααα-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--⎡⎤⎡⎢⎥==--⎢⎥⎢⎥⎣⎦⎣当时,由方程组求得特征向量为:,,当时,由方程组求得特征向量为:,所以,()()()1231112223312=1,1,0,=-1,-2,1,=1,2,022*******,1201211202TTTT TT G G A A G G βββαβαβαβ⎤⎢⎥⎢⎥⎢⎥⎦--⎡⎤⎡⎤⎢⎥⎢⎥=+=--==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦=-因此于是所求投影矩阵为的谱分解表达式为4-18.解: 因为()()1122r r 1122r 20112012012r 11122r r 1122r r 220111011201=+++=++++=++++=(G +G ++G )+()++()=(++++)G +(++++)G ++(+k k k k r s s ss s s s s s A G G G A G G G f a a a a f A a E a A a A a A a a G G G a G G G a a a a a a a a a a λλλλλλλλλλλλλλλλλλλλλλλ=+++++++++ 若则()()()211122+++)=G +G ++s s r ra a f f f G λλλλλ 4-19.解:方法一:A 是单纯矩阵()()()()()31234123123441234-1-11-11-1=(-1)(+3)-11-11-1-1===1=-3.===1=1100=101,0=-100,1=-3=1-1-1,111-11100-1,,,=010-10011T T TTE A A P λλλλλλλλλλλλλλαααλααααα-=⎡⎤⎢⎢=⎢⎢⎣故的特征值为:,属于特征值的正交单位特征向量,,,,,,,,,属于特征值的正交单位特征向量,,所以1123411122331111-44443111--4444,()=1311--44441131444413111131=-=-4444444411131111=-=--44444444314+T TTT TT TT P A G ββββαβαβαβ-⎡⎤⎢⎥⎢⎥⎢⎥⎥⎢⎥⎥⎢⎥⎥⎢⎥⎥⎢⎥⎦⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=+=因此,,,,,,,,,,,,,,因此的正交投影矩阵为11444131144441131444411134444⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎣⎦244121111-4444111144441111--444411114444-3H G A A G G αβ⎡⎤-⎢⎥⎢⎥⎢⎥--⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦=所以的谱分解式为:方法二:A 是正规矩阵.由方法一中已知A 的特征值1234===1=-3λλλλ,,把1234αααα,,,Schmidt 方法标准正交化得123441112233244=00=0=1111=--22223111444413114444+113144441113444411-44T T TTT T TH G G υυυαυυυυυυυυυ⎫⎫⎛⎪⎪ ⎭⎝⎭⎛⎫⎪⎝⎭⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥=+=⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎣⎦-==,,,把单位化得 ,,,正交投影矩阵121144111144441111--444411114444-3A A G G ⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦=所以的谱分解式为:。

矩阵与数值分析部分习题解答

矩阵与数值分析部分习题解答

其具有6位有效数字。 故
*

y y* zz , 于是, y
*
1 4 1 1 k n 26 10 y y 10 10 2 2 2
y y* y z
* *
z z* z
*


0.5 104 0.5 106 59.9833 4.09407
可见,用公式 f ( x) ln x
k
k 2 k A A ( I A ) 5.证明ρ(A)<1时,

1 注意,绝对收敛的函数幂级数 f t t 1 t , t 1,则 证明(1): k 0 1 t k 1 k s t f t t f t kt kt 令 2 1 t 1 t 2 k 1 k 0
3 。 节点为: x1 h , x2 2h , x3 3h 4 8 8
相应的方程组为:
2 1 h 2 0 1 h 2 0 u1 h u2 1 2 2 u 3


2 先令 y x x 1 ,由于开方用六位函数表,则 y 的误差为已
知, 故应看成 z g ( y) ln( y) , 由 y的误差限
* ln( y ) ln( y )。 误差限
y y * 求g(y)的
解:当x=30时,求 y 30 302 1 , 用六位开方表得
xi a ih,
h 称为步长。
i 0,1,
,N, h
ba N
于是我们得区间 I=[a, b]的一个网格剖分。 xi称为网格节点,
h
a x0 x1

第六章 线性空间 习题答案

第六章 线性空间 习题答案

第六章 线性空间3.检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1)次数等于n (1n ≥)的实系数多项式的全体,对于多项式的加法和数量乘法;2)设A 是一个n n ⨯实矩阵,A 的实系数多项式()f A 的全体,对于矩阵的加法和数量乘法; 3)全体n 级实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4)平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法; 5)全体实数的二元数列,对于下面定义的运算:1122121212(,)(,)(,)a b a b a a b b a a ⊕=+++,211111(1)(,)(,)2k k k a b ka kb a -=+; 6)平面上全体向量,对于通常的加法和如下定义的数量乘法:k =0 α;7)集合与加法同6),数量乘法定义为:k = αα;8)全体正实数+R ,加法与数量乘法定义为:a b ab ⊕=,k k a a = .解 1)不能构成实数域上的线性空间.因为两个n 次多项式相加不一定是n 次多项式,所以对加法不封闭. 2)能构成实数域上的线性空间.事实上,{()|()[]}V f f x x =∈R A 即为题目中的集合,显然,对任意的(),()f g V ∈A A ,及k ∈R ,有()()()f g h V +=∈A A A ,()()()kf kf V =∈A A ,其中()()()h x f x g x =+.这就说明V 对于矩阵的加法和数量乘法封闭.容易验证,这两种运算满足线性空间定义的1~8条,故V 构成实数域上的线性空间.3)能构成实数域上的线性空间.由于矩阵的加法和和数量乘法满足线性空间定义的1~8条性质,故只需证明对称(反对称,上三角)矩阵对加法与数量乘法是否封闭即可.而两个对称(反对称,上三角)矩阵的和仍为对称(反对称,上三角)矩阵,一个数k 乘对称(反对称,上三角)矩阵也仍为对称(反对称,上三角)矩阵.于是,n 级实对称(反对称,上三角)矩阵的全体,按照矩阵的加法和数量乘法,都构成实数域上的线性空间.4)不能构成实数域上的线性空间.因为,两个不平行与某一向量α的两个向量的和可能平行于α,例如:以α为对角线的任意两个向量的和都平行于α,从而不属于题目中的集合.5)能构成实数域上的线性空间.事实上,{(,)|,}V a b a b =∈R 即为题目中的集合.显然,按照题目中给出的加法和数量乘法都封闭.容易验证,对于任意的(,)a b ,(,)i i a b V ∈,1,2,3i =;,k l ∈R ,有①由于两个向量的分量在加法中的位置是对称的,故加法交换律成立; ②直接验证,可知加法的结合律也成立;③由于(,)(0,0)(0,00)(,)a b a b a b ⊕=+++=,故(0,0)是V 中加法的零元素;④如果11111(,)(,)(,)(0,0)a b a b a a b b aa ⊕=+++=,则有211(,)(,)a b a a b =--,即2(,)aa b --为(,)a b 的负元素;⑤21(11)1(,)(1,1)(,)2a b a b a a b -=+= ; ⑥222(1)(1)(1)((,))(,)(,[]())222l l l l k k k l a b k la lb a kla k lb a la ---=+=++ 2(1)(,)()(,)2kl kl kla klb a kl a b -=+= ; ⑦22(1)(1)(,)(,)(,)(,)22k k l l k a b l a b ka kb a la lb a --⊕=+⊕+ 222(1)(1)(,)22k k l l ka la kb a lb a kla --=+++++2(1)(1)[(),()]2k k l k l a k l b a ++-=+++()(,)k l a b =+ ;⑧1122121212[(,)(,)](,)k a b a b k a a b b a a ⊕=+++212121212(1)[(),()()]2k k k a a k b b a a a a -=+++++, 而221122111222(1)(1)(,)(,)(,)(,)22k k k k k a b k a b ka kb a ka kb a --⊕=+⊕+ 22212112212(1)(1)(,)22k k k k ka ka kb a kb a k a a --=+++++212121212(1)[(),()()]2k k k a a k b b a a a a -=+++++, 即11221122[(,)(,)](,)(,)k a b a b k a b k a b ⊕=⊕ .于是,这两种运算满足线性空间定义的1~8条,所以V 构成实数域上的一个线性空间.6)不能构成实数域上的线性空间.因为1=≠0 αα,故不满足定义的第5条规律. 7)不能构成实数域上的线性空间.因为()2k l k l αα+=≠=+=+ ααααα,故不满足定义的第7条规律. 8)能构成实数域上的线性空间.由于两个正实数相乘还是正实数,正实数的指数还是正实数,故+R 对定义的加法和数量乘法都是封闭的.容易验证,对于任意的,a b +∈R ,,k l ∈R ,有①a b ab ba b a ⊕===⊕;②()()()()a b c ab c abc a bc a b c ⊕⊕=⊕==⊕=⊕⊕; ③11a a a ⊕==,即1是定义的加法⊕的零元素; ④111a a a a ⊕==,即1a是a 的负元素; ⑤11a a a == ;⑥()()()()ll klkklk l a k a a a a kl a ===== ; ⑦()()()k lk l k l a aa a k a l a ++===⊕⑧()()()()()kk kk a b k ab ab a b k a k b ⊕====⊕ .于是,这两种运算满足线性空间定义的1~8条,所以+R 构成实数域上的一个线性空间. 『方法技巧』直接根据定义逐条验证即可,但是也要注意验证所给的加法和数量乘法是封闭的. 4.在线性空间中,证明:1)k =00;2)()k k k -=-αβαβ.『解题提示』利用线性空间定义的运算所满足的规律和性质.证明 1)证法1 由于对任意的向量α,存在负向量-α,使得()+-=0αα,故(())()(1)(())0k k k k k k k k =+-=+-=+-=+-==00αααααααα;证法2 对于任意的向量α,有()k k k k +=+=00ααα,左右两边再加上k α的负向量k -α,即可得k =00;2)利用数量乘法对加法的分配律,得到()()k k k k -+=-+=αββαββα,等式两边再加上k β的负向量k -β,即可得()k k k -=-αβαβ. 5.证明:在实函数空间中,21,cos ,cos2t t 是线性相关的.『解题提示』只需要说明其中一个向量可以由其他向量线性表出即可.证明 由于在实函数空间中,有1cos 22cos 2-=t t ,即cos 2t 可由另外两个向量线性表出,故21,cos ,cos 2t t 是线性相关的.7.在4P 中,求向量ξ在基1234,,,εεεε下的坐标,设2)1234(1,1,0,1),(2,1,3,1),(1,1,0,0),(0,1,1,1),(0,0,0,1)====--=εεεεξ. 解法1 设ξ在基1234,,,εεεε下的坐标为1234(,,,)k k k k ',则有11223344k k k k =+++ξεεεε.2)将向量等式按分量写出,得12312342412420,0,30,1.k k k k k k k k k k k k ++=⎧⎪+++=⎪⎨-=⎪⎪+-=⎩ 解方程组,得12341,0,1,0k k k k ===-=,即为ξ在基1234,,,εεεε下的坐标.解法2 将1234,,,εεεε和ξ作为矩阵的列构成一个矩阵()1234,,,,=εεεεξA ,对A 进行初等行变换,将其化成最简阶梯形矩阵,从而确定ξ与1234,,,εεεε的线性关系.2)对A 进行初等行变换,得到1210010001111100100003010001011101100010⎛⎫⎛⎫⎪ ⎪⎪⎪=→→ ⎪⎪-- ⎪ ⎪-⎝⎭⎝⎭A ,于是13=-ξεε.『方法技巧』解法1,利用了待定坐标法,将线性关系转化成线性方程组,解线性方程组即可;解法2,利用了初等行变换不改变列向量之间的线性关系,将向量组构成的矩阵化成最简阶梯形矩阵,从而观察出向量的坐标.8.求下列线性空间的维数与一组基: 1)数域P 上的空间n nP ⨯;2)n nP⨯中全体对称(反对称,上三角)矩阵作成的数域P 上的空间;『解题提示』根据各个线性空间的特点,构造出这些线性空间的一组基,同时也可以给出它们的维数. 解 1)n nP⨯是数域P 上全体n 级矩阵的全体,按照矩阵的加法和数量乘法,构成的线性空间.对于任意的1,i j n ≤≤,令ij E 表示第i 行第j 列的元素为1,其余元素均为0的n 级矩阵.根据矩阵的线性运算以及矩阵相等的定义,容易验证ij E ,,1,2,,i j n =是线性无关的,且任意n 级矩阵A 均可由它们线性表出,从而为n nP⨯的一组基.于是n nP⨯的维数为2n .2)仍然使用1)中的符号,并记{|}n n S P ⨯'=∈=A A A ,{|}n n T P ⨯'=∈=-A A A ,{()|0,}n n ij ij N a P a i j ⨯==∈=>A .则,按照矩阵的加法和数量乘法,,,S T N 分别表示n nP ⨯中全体对称、反对称、上三角矩阵全体构成的线性空间.容易验证①ii E ,1,2,,i n = ;ij ji +E E ,1i j n ≤<≤,构成线性空间S 的一组基,其维数为(1)122n n n ++++=. ②ij ji -E E ,1i j n ≤<≤,构成线性空间T 的一组基,其维数为(1)12(1)2n n n -+++-=. ③ii E ,1,2,,i n = ;ij E ,1i j n ≤<≤,构成线性空间N 的一组基,其维数为(1)122n n n ++++=. 『方法技巧』求已知线性空间的基和维数,构造出它的一组基尤为关键,这需要注意观察线性空间元素的特征,利用线性空间中元素之间的关系进行分析.9.在4P 中,求由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵,并求向量ξ在所指基下的坐标.设1)1234(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),=⎧⎪=⎪⎨=⎪⎪=⎩εεεε1234(2,1,1,1),(0,3,1,0),(5,3,2,1),(6,6,1,3),=-⎧⎪=⎪⎨=⎪⎪=⎩ηηηη 1234(,,,)x x x x =ξ在1234,,,ηηηη下的坐标; 2)1234(1,2,1,0),(1,1,1,1),(1,2,1,1),(1,1,0,1),=-⎧⎪=-⎪⎨=-⎪⎪=--⎩εεεε1234(2,1,0,1),(0,1,2,2),(2,1,1,2),(1,3,1,2),=⎧⎪=⎪⎨=-⎪⎪=⎩ηηηη (1,0,0,0)=ξ在1234,,,εεεε下的坐标; 『解题提示』由于题目是在4维向量空间4P 中讨论,这里可以采用定义法或借助第三组基求过渡矩阵;对于求ξ在指定基下的坐标可以采用待定系数法,也可以采用坐标变换法.解 1)由于1234,,,εεεε为4维单位向量,故i η,1,2,3,4i =在基1234,,,εεεε下的坐标向量即为iη本身,故123420561336(,,,)11211013⎛⎫ ⎪⎪== ⎪- ⎪⎝⎭ηηηηA 即为由基1234,,,εεεε到1234,,,ηηηη的过渡矩阵.又由于1234(,,,)x x x x =ξ在基1234,,,εεεε下的坐标向量即为ξ本身,根据坐标变换公式,可知ξ在1234,,,ηηηη下的坐标为111222133344412927331129231900182773926y x x y x x y x x y x x ---⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭A , 即1123421234314412344111,93914123,27932712,3371126.279327y x x x x y x x x x y x x y x x x x ⎧=+--⎪⎪⎪=+--⎪⎨⎪=-⎪⎪⎪=--++⎩2)由于这一题目是在4维向量空间4P 中讨论,故根据本章教材内容全解的基变换一节求过渡矩阵方法(3)可知,由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵为112341234(,,,)(,,,)-=A εεεεηηηη111112021212111131110021101111222----⎛⎫⎛⎫⎪ ⎪--⎪ ⎪= ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭. 令12341234(,,,),(,,,)==B C εεεεηηηη,则根据初等矩阵与初等变换的对应,可以构造2n n ⨯矩阵=()P B C ,对矩阵P 实施初等行变换,当把B 化成单位矩阵E 时,矩阵C 就化成了1-B C :1111202121211113=1110021101111222---⎛⎫ ⎪-- ⎪ ⎪- ⎪⎝⎭P 10001001010011010010011101010⎛⎫ ⎪ ⎪→→ ⎪ ⎪⎝⎭1()-=E B C 于是,由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵为11001110101110010-⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭A B C . 另外,设1234,,,e e e e 为4P 的单位向量组成的自然基,那么12341234(,,,)(,,,)=e e e e B εεεε.于是1123412341100(1,0,0,0)(,,,)(,,,)0000-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭e e e e B ξεεεε, 因此,ξ在1234,,,εεεε下的坐标为112134111111021210011100001110y y y y ----⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭B . 类似地,构造矩阵=()'P Bξ,并对其进行初等行变换,将B 化成单位矩阵E 时,矩阵'ξ就化成了1-'B ξ: 11111110003/132121001005/13=()1110000102/130111000013/13---⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪'→→= ⎪⎪-- ⎪ ⎪-⎝⎭⎝⎭P EB ξ,所以,(1,0,0,0)=ξ在1234,,,εεεε下的坐标为12343512133y y y y ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭. 『方法技巧』利用n 维向量空间中的向量构成矩阵,将求过渡矩阵问题转化成求一个矩阵的逆与另一个矩阵(或向量)的乘积问题,注意在计算这样的矩阵乘法时,利用初等变换与初等矩阵的对应,构造一个新的矩阵,利用初等行变换就可求得.10.继第9题1),求一非零向量ξ,它在基1234,,,εεεε与1234,,,ηηηη下有相同的坐标. 解 根据上一题的讨论可知,由1234,,,εεεε到1234,,,ηηηη的过渡矩阵为123420561336(,,,)11211013⎛⎫ ⎪ ⎪== ⎪- ⎪⎝⎭ηηηηA . 设所求向量为1234(,,,)x x x x '=ξ,由于1234,,,εεεε为4维单位向量,故ξ在基1234,,,εεεε下的坐标向量即为ξ本身,故根据坐标变换公式,可知ξ在1234,,,ηηηη下的坐标为1-A ξ.因此,如果ξ在两组基下的坐标相同,那么1-=A ξξ.左右两边乘以A ,可得=A ξξ,即()-=0A E ξ,也就是说ξ是齐次线性方程组()-=0A E X 的解.利用消元法求得方程组的解为12341111x x k x x ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, 其中k 是任意常数.于是(,,,)k k k k '=ξ,k 是非零常数,即为所求向量.『特别提醒』利用坐标变换公式,将求向量问题转化成了求解线性方程组问题.12.设12,V V 都是线性空间V 的子空间,且12V V ⊂,证明:如果1V 的维数与2V 的维数相等,那么12V V =.证明 设12dim dim V V r ==.那么①如果0r =,则1V 与2V 都是零空间,从而,12V V =.②如果0r >,任取1V 的一组基12,,,r ααα,由于21V V ⊂,且12,V V 的维数相等,故,根据基的定义,12,,,r ααα也是2V 的一组基,于是1122(,,,)r V L V == ααα.『方法技巧』这个题目的结论,在证明两个线性空间相等时经常使用. 14.设100010312⎛⎫⎪= ⎪ ⎪⎝⎭A ,求33P⨯中全体与A 可交换的矩阵所成子空间的维数和一组基.『解题提示』可以待定所求矩阵的元素,利用交换关系、矩阵的相等以及解线性方程组,即可求得.解 设111213212223313233x x x x x x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭X 是与A 交换的任意一个矩阵.首先将矩阵A 分解成100000010000001311⎛⎫⎛⎫ ⎪ ⎪=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A EB .由于单位矩阵E 与任何矩阵都可交换,故X 与A 可交换当且仅当X 与B 可交换.事实上,由()=+=+=+AX E B X EX BX X BX ,()=+=+=+XA X E B XE XB X XB可知=AX XA 当且仅当=BX XB .将=BX XB 按元素写出,即为131313232323333333112131122232132333300030003333x x x x x x x x x x x x x x x x x x ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪++++++⎝⎭⎝⎭, 从而132311213133122232330,33,3,x x x x x x x x x x ==⎧⎪++=⎨⎪++=⎩ 即132331331121323312220,33,3.x x x x x x x x x x ==⎧⎪=--⎨⎪=--⎩ 这是一个含有9个未知数的线性方程组,取1112212233,,,,x x x x x 为自由未知量,依次取值为5维单位向量,得线性方程组的一个基础解系为1100000300⎛⎫ ⎪= ⎪ ⎪-⎝⎭X ,2010000030⎛⎫ ⎪= ⎪ ⎪-⎝⎭X ,3000100100⎛⎫ ⎪= ⎪ ⎪-⎝⎭X ,4000010010⎛⎫ ⎪= ⎪ ⎪-⎝⎭X ,5000000311⎛⎫⎪= ⎪ ⎪⎝⎭X .于是12345,,,,X X X X X 即为所求空间的一组基,且这个空间的维数为5.『方法技巧』本题中,利用单位矩阵的良好性质,将求与A 交换的矩阵的形式转化成一个与相对简单的矩阵B 可交换的形式,这能够给计算带来简便.19.设1V 与2V 分别是齐次方程组120n x x x +++= 与121n n x x x x -==== 的解空间,证明12n P V V =⊕.证法1 由于齐次方程组120n x x x +++= 的一组基础解系为111111100,,,010001n ----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα,即为其解空间的一组基,从而1121(,,,)n V L -= ααα.另外,齐次方程组12n x x x === 的一组基础解系为(1,1,,1)'= β,即为其解空间的一组基,从而2()V L =β.又由于向量组121,,,,n - αααβ组成的n 级矩阵的行列式111111001(1)0010110011n n +---=-≠, 故121,,,,n - αααβ线性无关,从而121dim (,,,,)n L n -= αααβ,而121(,,,,)n n L P -⊂ αααβ,所以,根据习题12可知,121(,,,,)n n P L -= αααβ.于是,12121121(,,,)()(,,,,)n n n V V L L L P --+=+== αααβαααβ,且12dim dim dim n P V V =+,故12n P V V =⊕.证法2 由于齐次方程组120n x x x +++= 的一组基础解系为111111100,,,010001n ----⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα, 即为其解空间的一组基,从而1121(,,,)n V L -= ααα.另外,齐次方程组12n x x x === 的一组基础解系为(1,1,,1)'= β,即为其解空间的一组基,从而2()V L =β.对于任意的12V V ∈ ξ,不妨设112211n n k k k l --=+++= ξαααβ,则112211n n k k k l --+++-=0 αααβ,按分量写开,即为1211210,0,0,0.n n k k k l k l k l k l -------=⎧⎪-=⎪⎪-=⎨⎪⎪-=⎪⎩ 直接解得1210n k k k l -===== ,从而=0ξ.因此12{}V V =0 .所以1212dim()dim dim V V V V n +=+=,而显然12n V V P +⊂,根据习题12可知,12n V V P +=,结合12{}V V =0 ,有12n P V V =⊕.证法3 设1212(,,,)n a a a V V =∈ ξ,即1V ∈ξ且2V ∈ξ,那么12120,.n n a a a a a a +++=⎧⎨===⎩ 直接解得120n a a a ==== ,即=0ξ.因此12{}V V =0 .另外,对于任意的12(,,,)n n x x x P =∈ η,显然有1212(,,,)(,,,)(,,,)n n x x x x x x x x x x x x ==---+ η, 其中121()n x x x x n=+++ ,且121(,,,)n x x x x x x V ---∈ ,2(,,,)x x x V ∈ .所以12n P V V =+. 结合12{}V V =0 ,有12n P V V =⊕.『方法技巧』证法3的证明更为直接和简便.20.证明:如果12V V V =⊕,11112V V V =⊕,那么21211V V V V ⊕⊕=.证法1 由题设知,11122V V V V =++.由于12V V V =⊕,故12dim dim dim V V V =+.又因为11112V V V =⊕,所以11112dim dim dim V V V =+.于是11122dim dim dim dim V V V V =++.因此21211V V V V ⊕⊕=.证法2 由题设知,11122V V V V =++.设11122=++0ααα,其中11112223,,V V V ∈∈∈ααα,那么,由11122()=++0ααα及12V V V =⊕,可得11122,+==00ααα.再由11112V V V =⊕可得1112==0αα,于是,零向量的表示法唯一,从而21211V V V V ⊕⊕=.。

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后知识题目解析

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后知识题目解析

第1章 线性空间和线性变换(详解)1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用ij E (,1,2,,1)i j i n <=-表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵.显然,ii E ,ij E 都是对称矩阵,ii E 有(1)2n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1)2n n +个矩阵线性表示,此即对称矩阵组成(1)2n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1)2n n -.评注:欲证一个集合在加法与数乘两种运算下是一个(1)2n n +维线性空间,只需找出(1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1)2n n +个向量线性表示即可.1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可.1-3 解:方法一 设11223344x x x x =+++A E E E E即123412111111100311100000x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦故 12341231211203x x x x x x x x x x +++++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦于是12341231,2x x x x x x x +++=++=1210,3x x x +==解之得12343,3,2,1x x x x ==-==-即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.方法二 应用同构的概念,22R ⨯是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T,1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有1111110003111020100311000001021000300011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.1-4 解:证:设112233440k k k k αααα+++=即1234123412313412411111110110110110k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤==⎢⎥++++⎣⎦于是12341230,0k k k k k k k +++=++= 1341240,0k k k k k k ++=++=解之得12340k k k k ====故1234,,,αααα线性无关. 设123412341231341241111111011011011a b x x x x c d x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤=⎢⎥++++⎣⎦于是12341230,0x x x x x x x +++=++= 1341240,0x x x x x x ++=++=解之得122,x b c d a x a c =++-=-34,x a d x a b =-=-1234,,,x x x x 即为所求坐标.1-5 解:方法一 (用线性空间理论计算)32312233410()121,,,021,1,(1),(1)p x x x x x y y x x x y y ⎡⎤⎢⎥⎢⎥⎡⎤=+=⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤=---⎣⎦⎢⎥⎢⎥⎣⎦又由于23231,1,(1),(1)111101231,,,00130001x x x x x x ⎡⎤---⎣⎦⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥-⎢⎥⎣⎦于是()p x 在基231,1,(1),(1)x x x ---下的坐标为11234111113012306001306000122y y y y -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦方法二 将3()12p x x =+根据幂级数公式按1x -展开可得32323()12(1)(1)(1)(1)(1)(1)(1)2!3!36(1)6(1)2(1)p x x p p p p x x x x x x =+''''''=+-+-+-=+-+-+- 因此()p x 在基231,1,(1),(1)x x x ---下的坐标为[]3,6,6,2T.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些.1-6 解:①设[][]12341234,,,,,,=ββββααααP将1234,,,αααα与1234,,,ββββ代入上式得20561001133611001121011010130011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦P 故过渡矩阵1100120561100133601101121001110131122223514221915223112822-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦P②设1212343410(,,,)10y y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξββββ将1234,,,ββββ坐标代入上式后整理得11234792056181336027112111310130227y y y y -⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦评注:只需将,i i αβ代入过渡矩阵的定义[][]12341234,,,,,,=ββββααααP 计算出P .1-7 解:因为12121212{,}{,}{,,,}span span span +=ααββααββ由于秩1212{,,,}3span =ααββ,且121,,ααβ是向量1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ. 方法一 设1212{,}{,}span span ∈ξααββ,于是由交空间定义可知123411212111011030117k k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦解之得1222122,4,3(k l k l l l l =-==-为任意数)于是11222[5,2,3,4]T k k l =+=-ξαα(很显然1122l l ββ=+ξ)所以交空间的维数为1,基为[5,2,3,4]T-.方法二 不难知12121212{,}{,},{,}{,}span span span span ''==ααααββββ其中2213[2,2,0,1],[,2,1,0]3TT ''=--=-αβ.又12{,}span 'αα也是线性方程组 13423422x x x x x x =-⎧⎨=-⎩ 的解空间.12{,}span 'ββ是线性方程组13423413232x x x x x x ⎧=-+⎪⎨⎪=-⎩ 的解空间,所以所求的交空间就是线性方程组1342341342342213232x x x x x x x x x x x x =-⎧⎪=-⎪⎪⎨=-+⎪⎪=-⎪⎩ 的解空间,容易求出其基础解系为[5,2,3,4]T-,所以交空间的维数为1,基为[5,2,3,4]T -.评注:本题有几个知识点是很重要的.12(1){,,,}n span ααα的基底就是12,,,nααα的极大线性无关组.维数等于秩12{,,,}n ααα.1212(2){,}{,}span span +ααββ1212{,,,}span =ααββ.(3)方法一的思路,求交1212{,}{,}span span ααββ就是求向量ξ,既可由12,αα线性表示,又可由12,ββ线性表示的那部分向量.(4)方法二是借用“两个齐次线性方程组解空间的交空间就是联立方程组的解空间”,将本题已知条件改造为齐次线性方程组来求解.1-8解:(1):解出方程组1234123420510640x x x x x x x x ---=⎧⎨---=⎩(Ⅰ)的基础解系,即是1V 的基,解出方程组123420x x x x -++=(Ⅱ)的基础解系,即是2V 的基; (2): 解出方程组1234123412342051064020x x x x x x x x x x x x ---=⎧⎪---=⎨⎪-++=⎩的基础解系,即为12V V ⋂的基;(3):设{}{}1121,,,,,k l V span V span ααββ==,则11,,,,,k l ααββ的极大无关组即是12V V +的基. 1-9解:仿上题解.1-10解: 仿上题解.1-11 证:设210121()()()0k k l l l l --++++=ξξξξA AA①用1k -A从左侧成①式两端,由()0k=ξA 可得10()0k l -=ξA因为1()0k -≠ξA,所以00l =,代入①可得21121()()()0k k l l l --+++=ξξξA AA②用2k -A从左侧乘②式两端,由()0k=ξA可得00l =,继续下去,可得210k l l -===,于是21,(),(),,()k -ξξξξA AA线性无关.1-12 解:由1-11可知,n 个向量210,(),(),,()n -≠ξξξξAAA线性无关,它是V 的一个基.又由21212121[,(),(),,()][(),(),,()][(),(),,(),0]000010000100[,(),(),,()]0000010n n n n n n----⨯==⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ξξξξξξξξξξξξξξA A A AA A A A AAA AA 所以A在21,(),(),,()n -ξξξξA AA 下矩阵表示为n 阶矩阵0000100001000000010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦评注:n 维线性空间V 中任何一组n 个线性无关的向量组都可以构成V 的一个基,因此21,(),(),,()n -ξξξξA AA是V 的一个基.1-13证: 设()()()111,,,,,,,,,,,r s m r s A A ξξξββααα==设11,,,,,,r r s ξξξξξ是的极大无关组,则可以证明11,,,,,,r r s ααααα是的极大无关组.1-14 解:(1)由题意知123123[,,][,,]=ααααααA A123123111[,,][,,]011001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦βββααα设A在基123,,βββ下的矩阵表示是B ,则11111123111011103011001215001244346238--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦B P AP (2)由于0A ≠,故0=AX 只有零解,所以A的核是零空间.由维数定理可知A的值域是线性空间3R .1-15解:已知()()2323,,,,A αααααα=11A(1) 求得式()()2323,,,,P εεεααα=11中的过渡矩阵P ,则1B P AP -=即为所求; (2)仿教材例1.5.1.(见<矩阵分析>史荣昌编著.北京理工大学出版社.) 1-16解:设()23,,A ααα=1,则{}23(),,;()R A span N A ααα=1就是齐次方程组0Ax = 的解空间. 1-17证:由矩阵的乘法定义知AB BA 与的主对角线上元素相等,故知AB BA 与的迹相等;再由1-18 题可证.1-18证:对k 用数学归纳法证。

第6章 矩阵的Kronecker积与Hadmard积

第6章 矩阵的Kronecker积与Hadmard积
Biblioteka 例题2(P . 144) ,设
求[(AI) +(IB)]的特征值和特征向量 例题3:证明对任何方阵,有
A B
e
e e e e
A B B
A
6. 3 矩阵的向量化算子和K-积
向量化算子Vec
定义(P . 143)设 A=[aij]m n 则
Vec(A) = (a11 a21 … am1; a12 a22 … am2 ;…; a1n a2n … amj)T 性质:(P . 146) 1. Vec是线性算子: Vec(k1A+k2B)=k 1Vec ( A ) +k2 Vec ( B) 2 定理6. 10(P . 146)Vec(ABC) =(CT A) VecB 3 Vec(AX) =(I A) VecX 4 Vec(XC) =(CT I) VecX
Kronecker与矩阵等价、相似关系 定理6.5(P . 141)
设矩阵A,B,为同阶的等价矩阵,则(AI)等价于(IB) 设方阵A相似与JA,方阵B相似于JB,则(AB) 相似于 (JAJB)
K-积特征值和特征向量
定理6.6(P . 142)设AF m m 的特征值特征向量分别是i, xi,B F n n的特征值、特征向量分别是 j , yj,则 (AB) 的特征值是ij 。特征向量是(xiyj) 。 (AI) +(IB) 的特征值是i + j ,特征向量是(xiyj)
介绍应用
向量化算子
重点:K-积及其应用
61 Kroneker积和Hadamard积的定义
定义6. 1(P . 136)
设矩阵A=[aij]m n和B=[bij]st矩阵 ,则A, B 的 Kronecker被定义为AB: AB=[aijB]mn 设A =[aij]m n和B=[bij] m n为同阶矩阵,则A和B 的Hadamard被定义为A B: AB= [aijbij]m n

第六章习题课线性代数 (3)

第六章习题课线性代数 (3)

性指数, 并且秩相同.应选(B).
例 8 用正交变换化二次型 f (x1, x2 , x3 ) x12 2x22 3x32 4x1x2 4x2 x3 为标准形, 并求
出该正交变换.
1

二次型的对应矩阵为
A


2
2 2
0 2

.则由
A
的特征方程
0 2 3
解得 a 3.于是
5 A 1
1 5
3 3 .
3 3 3
5 1 3 I A 1 5 3 ( 4)( 9) ,
3 3 3
所以 A 的特征值为 1 0, 2 4, 3 9 .
(2)由(1)知存在正交矩阵 P , 使得
注 用正交变换 X PY 化二次型为标准形, 这类题若要求写出正交变换 X UY , 计
5
算量大.若只要求知道结果, 即仅需知道标准形, 则计算量不大.在解答中要注意区分和判 断.
例 12 已知二次曲面方程 x2 ay2 z2 2bxy 2xz 2yz 4 可以经过正交变换
绕 y 轴旋转而成的空间曲面的性质, 可以得到该曲面可
y2


4
z2
1绕 y 轴旋转而成,
也可由
x2

y2 4
1绕 y 轴旋转而成.
x 0
z 0
例6
空间曲线
x2 y2 4
所属曲线类型是
.
z c
解 该曲线可由平行与 xoy 平面的一平面 z c 截双曲柱面 x2 y2 4 所得, 为双曲线.

二次型
f

李庆扬-数值分析第五版第6章习题答案(20130819)

李庆扬-数值分析第五版第6章习题答案(20130819)

试考察解此方程组的雅可比迭代法及高斯-赛德尔迭代法的收敛性。 雅可比迭代的收敛条件是
( J ) ( D 1 ( L U )) 1
高斯赛德尔迭代法收敛条件是
(G ) (( D L) 1U ) 1
因此只需要求响应的谱半径即可。 本题仅解 a),b)的解法类似。 解:
3.设线性方程组
a11 x1 a12 x2 b1 a11 , a12 0 a21 x1 a22 x2 b2
证明解此方程的雅可比迭代法与高斯赛德尔迭代法同时收敛或发散, 并求两种方 法收敛速度之比。 解:
a A 11 a21

a12 a22
5. 何谓矩阵 A 严格对角占优?何谓 A 不可约? P190, 如果 A 的元素满足
aij aij ,i=1,2,3….
j 1 j i
n
称 A 为严格对角占优。 P190 设 A (aij )nn (n 2) ,如果存在置换矩阵 P 使得
A PT AP 11 0
x ( k 1) x ( k )

10 4 时迭代终止。
2 1 5 (a)由系数矩阵 1 4 2 为严格对角占优矩阵可知,使用雅可比、高斯 2 3 10
赛德尔迭代法求解此方程组均收敛。[精确解为 x1 4, x 2 3, x3 2 ] (b)使用雅可比迭代法:
2.给出迭代法 x ( k 1) Bx (k ) f 收敛的充分条件、误差估计及其收敛速度。 迭代矩阵收敛的条件是谱半径 ( B0 ) 1 。其误差估计为
1 k
(k) Bk (0)
R ( B) ln B k 迭代法的平均收敛速度为 k

多元统计分析课后练习答案

多元统计分析课后练习答案

2 p
1
2 1
1
Σ1
2 2
1
2 p
则 f ( x1,..., xp )
p
1
Σ
2
22 12
2 p
1/2
exp
1 (x
μ) Σ1
2
1
2 1
1
2 2
( x μ)
1
2 p
p
1
12
2
1
p exp
1 (x1 1 )2
2
2 1
1 ( x2 2
3) 2
2 2
...
1 (xp 2
p )2
2 p
p
1
exp
i1 i 2
( xi
计算: 边远及少数民族聚居区社会经济发展水平的指标数据 .xls
T 2 =9* (-2003.23 2.25 -1006.11 2.71 12.01)*s^-1* (-2003.23 2.25
-1006.11 2.71 12.01)’=9*50.11793817=451,06144353 F 统计量 =45.2>6.2 拒绝零假设,边缘及少数民族聚居区的社会经济发展水平与 全国平均水平有显著差异。
4、什么是逐步判别分析? 答:具有筛选变量能力的判别方法称为逐步判别分析法。 逐步判别分析法就是先 从所有因子中挑选一个具有最显著判别能力的因子, 然后再挑选第二个因子, 这 因子是在第一因子的基础上具有最显著判别能力的因子, 即第一个和第二个因子 联合起来有显著判别能力的因子; 接着挑选第三个因子, 这因子是在第一、 第二 因子的基础上具有最显著判别能力的因子。 由于因子之间的相互关系, 当引进了 新的因子之后, 会使原来已引入的因子失去显著判别能力。 因此, 在引入第三个 因子之后就要先检验已经引入的因子是否还具有显著判别能力, 如果有就要剔除 这个不显著的因子;接着再继续引入,直到再没有显著能力的因子可剔除为止, 最后利用已选中的变量建立判别函数。

矩阵分析与计算 (朱元国 饶玲 严涛 张军 李宝成 著) 国防工业出版社 课后答案

矩阵分析与计算 (朱元国 饶玲 严涛 张军 李宝成 著) 国防工业出版社 课后答案




( )( ) = ������ Λ������ −1 ������ ������������ −1 = ������������,

( )( ) ������������ = ������ ������������ −1 ������ Λ������ −1 = ������ ������Λ������ −1 = ������ Λ������������ −1
概率与数理统计 第二, C语言程序设计教程 第 西方经济学(微观部分) C语言程序设计教程 第 复变函数全解及导学[西 三版 (浙江大学 三版 (谭浩强 张 (高鸿业 著) 中 二版 (谭浩强 张 安交大 第四版]
社区服务
社区热点
进入社区
/
2009-10-15

其中 ������ 和 Λ 是对角矩阵。于是有
w.
m
co m
ww
w.
2. (两个可对角化矩阵������, ������ ∈ ������ ������×������ 称为同时可对角化的,如果存在
co
m
矩阵分析与计算 第1章习题解答与提示
1
第1章 习题解答与提示
课后答案网
同一个相似变换矩阵������ ∈ ������ ������×������ ,使得������ −1 ������������ 和������ −1 ������������ 同为对角矩 阵。)
充分性 若������和������ 同时可对角化,则存在可逆矩阵������ ,使得 ������ = ������ ������������ −1 , ������ = ������ Λ������ −1 ,
是对应������的特征向量,而������是������的单特征值,所以������, ������������ 线性相关。因

矩阵论课后习题答案

矩阵论课后习题答案

第一章 线性空间与线性映射 习题一 (43-45)1、(1)对于V y x ∈∀,,x y x y x y x y y x y x y x y x +=⎪⎪⎭⎫⎝⎛+++=⎪⎪⎭⎫ ⎝⎛+++=+112211112211;(2)对于V z y x ∈∀,,,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+++=++))()(1111112221111112112211121112211z y z x y x z y x z y x y x z z y x y x z y x z z y x y x y x z y x ,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛++++⎪⎪⎭⎫ ⎝⎛=++))()(1111112221111111122211111221121z y z x y x z y x z y x z y x z y z y x z y x z y z y z y x x z y x ,即)()(z y x z y x ++=++。

(3)对于⎪⎪⎭⎫⎝⎛=00θ和V x ∈∀,显然x x x x x x x =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+++=+21121000θ; (4)对于V x ∈∀,令⎪⎪⎭⎫⎝⎛--=2211x x x y , 则θ=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--+-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+0021221211221121x x x x x x x x x x x y x ,即x y -=。

(5)对于R ∈∀μλ,和V x ∈∀,有x x x x x x x x x x x x x x x x x x x x x x x )()()]()[(21)()()2(21)()()]1()1([21)1(21)1(2121212212122212121221121212121μλμλμλμλμλμλμλμλμλμλμλλμμμλλμλμλμμμμλλλλμλ+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛--+++++=⎪⎪⎪⎭⎫ ⎝⎛+-+-+++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+(6)对于R ∈∀λ和V y x ∈∀,,有⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎭⎫ ⎝⎛+++=+211112211112211))(1(21)()()(y x y x y x y x y x y x y x y x λλλλλλ, ⎪⎪⎪⎭⎫ ⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛-+-++-++++=⎪⎪⎪⎭⎫ ⎝⎛+-++-++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+211112211112212211122111122122121121212121))(1(21)()()1(21)1(21)()1(21)1(21)1(21)1(21y x y x y x y x y x y y x y x y x y x y x y y x x y x y y y x x x y x λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ,即y x y x λλλ+=+)(。

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案讲课讲稿

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案讲课讲稿

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案第1章 线性空间和线性变换(详解)1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用ij E (,1,2,,1)i j i n <=-L 表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵.显然,ii E ,ij E 都是对称矩阵,ii E 有(1)2n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1)2n n +个矩阵线性表示,此即对称矩阵组成(1)2n n +维线性空间.同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1)2n n -.评注:欲证一个集合在加法与数乘两种运算下是一个(1)2n n +维线性空间,只需找出(1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1)2n n +个向量线性表示即可.1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可.1-3 解:方法一 设11223344x x x x =+++A E E E E即123412111111100311100000x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ 故12341231211203x x x x x x x x x x +++++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦于是12341231,2x x x x x x x +++=++=1210,3x x x +==解之得12343,3,2,1x x x x ==-==-即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --.方法二 应用同构的概念,22R ⨯是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T ,1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有1111110003111020100311000001021000300011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --.1-4 解:证:设112233440k k k k αααα+++=即1234123412313412411111110110110110k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤==⎢⎥++++⎣⎦于是12341230,0k k k k k k k +++=++=1341240,0k k k k k k ++=++=解之得12340k k k k ====故1234,,,αααα线性无关. 设123412341231341241111111011011011a b x x x x c d x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤=⎢⎥++++⎣⎦于是12341230,0x x x x x x x +++=++= 1341240,0x x x x x x ++=++=解之得122,x b c d a x a c =++-=-34,x a d x a b =-=-1234,,,x x x x 即为所求坐标.1-5 解:方法一 (用线性空间理论计算)32312233410()121,,,021,1,(1),(1)p x x x x x y y x x x y y ⎡⎤⎢⎥⎢⎥⎡⎤=+=⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤=---⎣⎦⎢⎥⎢⎥⎣⎦又由于23231,1,(1),(1)111101231,,,00130001x x x x x x ⎡⎤---⎣⎦⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥-⎢⎥⎣⎦于是()p x 在基231,1,(1),(1)x x x ---下的坐标为11234111113012306001306000122y y y y -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦方法二 将3()12p x x =+根据幂级数公式按1x -展开可得32323()12(1)(1)(1)(1)(1)(1)(1)2!3!36(1)6(1)2(1)p x x p p p p x x x x x x =+''''''=+-+-+-=+-+-+- 因此()p x 在基231,1,(1),(1)x x x ---下的坐标为[]3,6,6,2T.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些. 1-6 解:①设[][]12341234,,,,,,=ββββααααP将1234,,,αααα与1234,,,ββββ代入上式得20561001133611001121011010130011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦P 故过渡矩阵1100120561100133601101121001110131122223514221915223112822-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦P②设1212343410(,,,)10y y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξββββ将1234,,,ββββ坐标代入上式后整理得11234792056181336027112111310130227y y y y -⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦评注:只需将,i i αβ代入过渡矩阵的定义[][]12341234,,,,,,=ββββααααP计算出P .1-7 解:因为12121212{,}{,}{,,,}span span span +=ααββααββ由于秩1212{,,,}3span =ααββ,且121,,ααβ是向量1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ.方法一 设1212{,}{,}span span ∈ξααββI ,于是由交空间定义可知123411212111011030117k k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦解之得1222122,4,3(k l k l l l l =-==-为任意数)于是11222[5,2,3,4]T k k l =+=-ξαα(很显然1122l l ββ=+ξ)所以交空间的维数为1,基为[5,2,3,4]T -. 方法二 不难知12121212{,}{,},{,}{,}span span span span ''==ααααββββ其中2213[2,2,0,1],[,2,1,0]3TT ''=--=-αβ.又12{,}span 'αα也是线性方程组13423422x x x x x x =-⎧⎨=-⎩ 的解空间.12{,}span 'ββ是线性方程组13423413232x x x x x x ⎧=-+⎪⎨⎪=-⎩ 的解空间,所以所求的交空间就是线性方程组1342341342342213232x x x x x x x x x x x x =-⎧⎪=-⎪⎪⎨=-+⎪⎪=-⎪⎩ 的解空间,容易求出其基础解系为[5,2,3,4]T -,所以交空间的维数为1,基为[5,2,3,4]T -.评注:本题有几个知识点是很重要的.12(1){,,,}n span αααL 的基底就是12,,,n αααL 的极大线性无关组.维数等于秩12{,,,}n αααL .1212(2){,}{,}span span +ααββ1212{,,,}span =ααββ.(3)方法一的思路,求交1212{,}{,}span span ααββI 就是求向量ξ,既可由12,αα线性表示,又可由12,ββ线性表示的那部分向量.(4)方法二是借用“两个齐次线性方程组解空间的交空间就是联立方程组的解空间”,将本题已知条件改造为齐次线性方程组来求解.1-8解:(1):解出方程组1234123420510640x x x x x x x x ---=⎧⎨---=⎩(Ⅰ)的基础解系,即是1V 的基, 解出方程组123420x x x x -++=(Ⅱ)的基础解系,即是2V 的基; (2): 解出方程组1234123412342051064020x x x x x x x x x x x x ---=⎧⎪---=⎨⎪-++=⎩的基础解系,即为12V V ⋂的基;(3):设{}{}1121,,,,,k l V span V span ααββ==L L ,则11,,,,,k l ααββL L 的极大无关组即是12V V +的基. 1-9解:仿上题解.1-10解: 仿上题解.1-11 证:设210121()()()0k k l l l l --++++=ξξξξL A AA①用1k -A从左侧成①式两端,由()0k=ξA可得10()0k l -=ξA因为1()0k -≠ξA,所以00l =,代入①可得21121()()()0k k l l l --+++=ξξξL A A A②用2k -A从左侧乘②式两端,由()0k=ξA可得00l =,继续下去,可得210k l l -===L ,于是21,(),(),,()k -ξξξξL A AA 线性无关.1-12 解:由1-11可知,n 个向量210,(),(),,()n -≠ξξξξL A AA线性无关,它是V 的一个基.又由21212121[,(),(),,()][(),(),,()][(),(),,(),0]000010000100[,(),(),,()]00000010n n n n n n----⨯==⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ξξξξξξξξξξξξξξL L L L L L L M M M M L LA A A AA A A A AAA A A 所以A在21,(),(),,()n -ξξξξL A AA下矩阵表示为n 阶矩阵00001000010000000010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦L L L M M M M L L评注:n 维线性空间V 中任何一组n 个线性无关的向量组都可以构成V 的一个基,因此21,(),(),,()n -ξξξξL A A A是V 的一个基.1-13证: 设()()()111,,,,,,,,,,,r s m r s A A ξξξββααα==L L L L L 设11,,,,,,r r s ξξξξξL L L 是的极大无关组,则可以证明11,,,,,,r r s αααααL L L 是的极大无关组. 1-14 解:(1)由题意知123123[,,][,,]=ααααααA A123123111[,,][,,]011001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦βββααα 设A在基123,,βββ下的矩阵表示是B ,则11111123111011103011001215001244346238--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦B P AP (2)由于0A ≠,故0=AX 只有零解,所以A的核是零空间.由维数定理可知A的值域是线性空间3R .1-15解:已知()()2323,,,,A αααααα=11A(1) 求得式()()2323,,,,P εεεααα=11中的过渡矩阵P ,则1B P AP -=即为所求; (2)仿教材例1.5.1.(见<矩阵分析>史荣昌编著.北京理工大学出版社.) 1-16解:设()23,,A ααα=1,则{}23(),,;()R A span N A ααα=1就是齐次方程组0Ax = 的解空间. 1-17证:由矩阵的乘法定义知AB BA 与的主对角线上元素相等,故知AB BA 与的迹相等;再由1-18 题可证. 1-18证:对k 用数学归纳法证。

矩阵分析考试重点

矩阵分析考试重点
对矩阵B而言,因
det(I - B) ( a)n (1)n1( )(1)n1 ( a)n 故Dn () ( a)n ,
所以A与B的第n阶行列式因子不相同, 从而A与B不相似。
2-5 设 A 为数域F 上旳 n 阶方阵且存在 正整数n 使得 An I ,证明: A 与对角矩
阵相同且主对角线上旳元素均为 n 次单位根。
证明: 因为 A是一种正定H-阵, 所以存在可
逆矩阵 Q 使得
A QHQ
这表白 A 是可逆旳. 于是
A B A AA1B A I A1B
另一方面注意矩阵 A1 依然为正定H-阵, 而 矩阵 B 为H-反阵, 由上面旳例题结论可知
矩阵 A1B旳特征值实部为零, 那么矩阵 I A1B
旳特征值中不可能有零, 从而
从而
A B B (QH )1 AQ1 I B
3-21 设 A 是一种正定旳H-阵, 且又是酉矩 阵, 则 A I
证明: 因为 A是一种正定H-阵, 所以必存在
酉矩阵U U nn 使得
1
AU
2
U H ,
n
0 i R
因为 A 又是酉矩阵, 所以 i 1
这么必有 i 1 , 从而 A I
2-2 设 0 ,证明: n 阶矩阵
a 1
A
a
1

a
相同。
a
B
a
a
证明 : 计算A旳行列式因子。显然
Dn () ( a)n
下面看 n 1 阶行列式因子。有一种 n 1
阶子式要注意,即
1
a 1
(1)n1
a 1
轻易计算出 Dn1() 1 从而 D1() D2 () Dn1() 1 d1() 1, d2 () 1, , dn1() 1, dn() ( a)n

战略管理智慧树知到课后章节答案2023年下石河子大学

战略管理智慧树知到课后章节答案2023年下石河子大学

战略管理智慧树知到课后章节答案2023年下石河子大学石河子大学第一章测试1.企业战略是企业在适应和主动利用环境变化的过程中,为建立和发挥优势而做出的一系列重大、长期和根本性的决策及所采取的一系列行动。

()A:错 B:对答案:对2.资源基础模式认为,如果企业选择一个有吸引力的产业,而且成功地执行了与产业特征相匹配的战略,那么它就可以获取超额利润。

()A:错 B:对答案:错3.企业的竞争优势不是天生的,而是企业在适应和利用环境过程中通过一系列重大、长期和根本性的决策及行动创造的,企业竞争优势的建立、保持和发挥需要企业坚定的承诺,科学的决策和迅速而富有创新的行动,而有效的企业战略管理恰恰与企业的承诺、决策和行动的管理密不可分。

()A:对 B:错答案:对4.()是企业总体的、最高层次的战略。

A:经营层战略B:公司层战略C:市场战略D:职能层战略答案:公司层战略5.战略分析包括企业外部环境分析和( )两部分。

A:企业内部环境或条件分析B:企业管理情况分析C:企业经营情况分析D:市场环境分析答案:企业内部环境或条件分析6.企业战略概念起源于( )。

A:企业市场营销工作B:企业计划工作C:企业预算工作D:企业会计工作答案:企业计划工作7.企业竞争优势的建立、保持和发挥与下列哪些因素密不可分()。

A:行动创新B:行动迅速C:承诺坚定D:决策科学答案:行动创新;行动迅速;承诺坚定;决策科学8.下列关于明茨伯格5P战略定义的表述中,正确的有()。

A:战略是一种观念,通过个人的期望和行为形成共享,变成企业共同的期望和行为B:5个P代表计划、计谋、定位、政治和模式C:战略是有意识的、有目的的开发和制定的计划D:战略是一种计谋,该计谋是有准备和意图的答案:战略是有意识的、有目的的开发和制定的计划;战略是一种计谋,该计谋是有准备和意图的第二章测试1.企业外部环境是指在特定时期中所有处于企业之外而又将对企业的存在和发展产生影响的各种因素的总和。

第6章自底向上优先分析法

第6章自底向上优先分析法

第6章⾃底向上优先分析法⾃底向上分析⽅法,也称移进-归约分析法,粗略地说它的实现思想是对输⼊符号串⾃左向右进⾏扫描,并将输⼊符逐个移⼊⼀个后进先出栈中,边移⼊边分析,⼀旦栈顶符号串形成某个句型的句柄时,(该句柄对应某产⽣式的右部),就⽤该产⽣式的左部⾮终结符代替相应右部的⽂法符号串,这称为归约。

重复这⼀过程直到归约到栈顶中只剩⽂法的开始符号时则为分析成功,也就确认输⼊串是⽂法的句⼦。

本章将在介绍⾃底向上分析思想基础上,着重介绍算符优先分析法。

例6.1,设⽂法G[S]为:(1)S→aAcBe(2)A→b(3)A→Ab(4)B→d对输⼊串abbcde#进⾏分析,检查该符号串是否是G[S]的句⼦。

由于⾃底向上分析的移进-归约过程是⾃顶向下最右推导的逆过程,⽽最右推导为规范推导,⾃左向右的归约过程也称为规范归约。

容易看出对输⼊串abbcde的最右推导为:S aAcBe aAcde aAbcde abbcde由此我们可以构造它的逆过程即归约过程。

先设⼀个后进先出的符号栈,并把句⼦左括号”#”号放⼊栈底。

对上述分析过程也可看成⾃底向上构造语法树的过程,每步归约都是构造⼀棵⼦树,最后当输⼊串结束时刚好构造出整个语法树。

在上述移进-归约或⾃底向上构造语法树的过程中,考虑⼏个问题:u 何时移进?u 何时归约?u 将哪个字符串归约?当⼀个⽂法⽆⼆义性时,那么它对⼀个句⼦的规范推导是唯⼀的,规范规约也必然是唯⼀的。

因⽽每次归约时要找当前句型的句柄,也就是说,任何时候栈中的符号串和剩余的输⼊串组成⼀个句型,当句柄出现在栈顶符号串中时,则可⽤句柄归约,这样⼀直归约到输⼊串只剩结束符,⽂法符号栈中只剩开始符号。

由此可见,⾃底向上分析的关键问题是在分析过程中如何确定句柄,即如何知道何时在栈顶符号串中已形成某句型的句柄。

然⽽⾃底向上的分析算法很多,我们仅在本章和第7章介绍⽬前常⽤的算符优先分析和LR类分析法。

6.1 ⾃底向上优先分析法概述优先分析法⼜可分简单优先法和算符优先分析法。

数据结构_第六章_图_练习题与答案详细解析(精华版)

数据结构_第六章_图_练习题与答案详细解析(精华版)

图1. 填空题⑴ 设无向图G中顶点数为n,则图G至少有()条边,至多有()条边;若G为有向图,则至少有()条边,至多有()条边。

【解答】0,n(n-1)/2,0,n(n-1)【分析】图的顶点集合是有穷非空的,而边集可以是空集;边数达到最多的图称为完全图,在完全图中,任意两个顶点之间都存在边。

⑵ 任何连通图的连通分量只有一个,即是()。

【解答】其自身⑶ 图的存储结构主要有两种,分别是()和()。

【解答】邻接矩阵,邻接表【分析】这是最常用的两种存储结构,此外,还有十字链表、邻接多重表、边集数组等。

⑷ 已知无向图G的顶点数为n,边数为e,其邻接表表示的空间复杂度为()。

【解答】O(n+e)【分析】在无向图的邻接表中,顶点表有n个结点,边表有2e个结点,共有n+2e个结点,其空间复杂度为O(n+2e)=O(n+e)。

⑸ 已知一个有向图的邻接矩阵表示,计算第j个顶点的入度的方法是()。

【解答】求第j列的所有元素之和⑹ 有向图G用邻接矩阵A[n][n]存储,其第i行的所有元素之和等于顶点i的()。

【解答】出度⑺ 图的深度优先遍历类似于树的()遍历,它所用到的数据结构是();图的广度优先遍历类似于树的()遍历,它所用到的数据结构是()。

【解答】前序,栈,层序,队列⑻ 对于含有n个顶点e条边的连通图,利用Prim算法求最小生成树的时间复杂度为(),利用Kruskal 算法求最小生成树的时间复杂度为()。

【解答】O(n2),O(elog2e)【分析】Prim算法采用邻接矩阵做存储结构,适合于求稠密图的最小生成树;Kruskal算法采用边集数组做存储结构,适合于求稀疏图的最小生成树。

⑼ 如果一个有向图不存在(),则该图的全部顶点可以排列成一个拓扑序列。

【解答】回路⑽ 在一个有向图中,若存在弧、、,则在其拓扑序列中,顶点vi, vj, vk的相对次序为()。

【解答】vi, vj, vk【分析】对由顶点vi, vj, vk组成的图进行拓扑排序。

第6章_矩阵的Kronecker积与Hadmard积

第6章_矩阵的Kronecker积与Hadmard积

K-积特征值和特征向量
定理6.6( 142) 定理6.6(P . 142)设A∈F m × m 的特征值特征向量分别是λi, 的特征值特征向量分别是λ xi,B ∈ F n × n的特征值、特征向量分别是 µj , yj,则 的特征值、 (A⊗B) 的特征值是λiµj 。特征向量是(xi⊗yj) 。 ⊗ 的特征值是λ 特征向量是 (A⊗I) +(I⊗B) 的特征值是λi + µj ,特征向量是 i⊗yj) 特征向量是(x ⊗ ⊗ 的特征值是λ
第 6章 矩阵的Kroneker积和 矩阵的Kroneker积和Hadamard积 积和Hadamard积
The Kroneker Product and Hadamard Product
概述:
内容: 内容: 介绍Kronecker积和 积和Hadamard积 介绍Kronecker积和Hadamard积 讨论
H-积的基本性质: 积的基本性质: 为同阶矩阵, 设A,B为同阶矩阵,则
AoB=BoA B=Bo kA) B=Ao (kA)oB=Ao(kB) Ao(B+C)=AoB+AoC B+C)=AoB+A C=A (AoB)oC=Ao(BoC) (AoB)H=AHoBH
Kronecker和Hadamard的关系 Kronecker和Hadamard的关系: 的关系:
3 − 1 A= 0 1
例题2 例题2(P . 144) ,设 144) 设
2 0 , B = 1 − 1 −1
求(A⊗B)的特征值和特征向量 ⊗ 的特征值和特征向量 求[(A⊗I) +(I⊗B)]的特征值和特征向量 ⊗ ⊗ 的特征值和特征向量 例题3 证明对任何方阵, 例题3:证明对任何方阵,有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 矩阵函数(详解)6-1 解:A 的Jordan 标准形是210020002⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦J 变换矩阵P 和1-P 分别为1011010100,111101011-⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦P P 所以得1()()p p -=A P J P1()()011(2)(2)00101000(2)011110100(2)011(2)00(2)(2)(2)(2)(2)(2)(2)(2)1009899910p p p p p p p p p p p p p p p -='⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥'''=-⎢⎥'''⎢⎥-+⎣⎦⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A P J P6-2 解:不难验算得1001000()0000i d i i -⎡⎤⎢⎥⎢⎥-=≠⎢⎥⎢⎥⎣⎦J λE ()0i d i i -=J λE因此,Jordan 块i J 的最小多项式为()id i -λλ,显然它等于i J 的初等因子。

6-3 解:(1)A 的Jordan 标准形为1111⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦J 故A 的最小多项式为2(1)λ-。

(2)A 的Jordan 标准形为 1010-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦J 故A 的最小多项式为2(1)λλ+。

(3)A 的Jordan 标准形为 112-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦J 故A 的最小多项式为(1)(2)λλ+-。

(4)A 的Jordan 标准形为 010010⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦J 故A 的最小多项式为2λ。

设()p λ与()q λ是两个不同的多项式,对于n 阶矩阵A 满足什么条件使得()()p q =A A 。

为了研究这个问题及引进矩阵函数定义的需要,我们首先给出关于函数在矩阵A 的谱上的定义。

6-4 解:由题意得Jordan 标准形为100021002⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦J 变换矩阵P 和1-P 分别为1052010100,102031305-⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦P P (1)00()0(2)(2)0(2)f f f f f ⎡⎤⎢⎥'=⎢⎥⎢⎥⎣⎦J 以()f A 的Jordan 表示为1()()052(1)000101000(2)(2)1020310(2)305f f f f f f -=⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥'=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A P J P 为了计算所求矩阵函数,()f A 可写为(2)15(2)025(2)()0(1)09(2)0(2)15(2)f f f f f f f f ''+-⎡⎤⎢⎥=⎢⎥''⎢⎥-⎣⎦A 当()x f x e =时,2(2)(2)f f e '==,(1)f e =故222216025009014e e e e e e ⎡⎤-⎢⎥=⎢⎥⎢⎥-⎣⎦A 当()tx f x e =时,22(2),(2),(1)t t t f e f te f e '===故2222(115)0250090(115)t t t tt t e t e e e te e t ⎡⎤+-⎢⎥=⎢⎥⎢⎥-⎣⎦A 当()cos f x x =时,(2)cos 2,(2)sin 2,(1)cos1f f f '==-=,故cos 215sin 2025sin 2cos 0cos109sin 20cos 215sin 2-⎡⎤⎢⎥=⎢⎥⎢⎥-+⎣⎦A 当3()sin 2f x x π=时,3(2)0,(2),(1)12f f f π'==-=-45750223sin 01022745022πππππ⎡⎤-⎢⎥⎢⎥=-⎢⎥⎢⎥-⎢⎥⎣⎦A6-5 解:A 的最小多项式2()(2)x x ϕ=-A得(1,1,2)k l ==1()1x ϕ=得112()(2)x a f x f ===122()(2)x da f x f dx='==得()(2)(2)(2)p x f f x '=+-因此()f A 的拉格朗日——西勒维斯特内插多项式表示是()()(2)(2)(2)f p f f '==+-A A E A E为了计算所求矩阵函数,把A 代入上式得(2)00()(2)(2)(2)(2)(2)(2)(2)(2)f f f f f f f f f f ⎡⎤⎢⎥'''=-⎢⎥'''⎢⎥-+⎣⎦A 当()tx f x e =时,22(2),(2)t t f e f te '==,所以22222220(1)(1)t t tt t t t t e e te e t te te te e t ⎡⎤⎢⎥=-⎢⎥⎢⎥-+⎣⎦A 当()sin f x x =时,(2)sin 2,(2)cos 2f f '==所以sin 200sin cos 2sin 2cos 2cos 2cos 2cos 2sin 2cos 2⎡⎤⎢⎥=-⎢⎥⎢⎥-+⎣⎦A 当()cos f x x π=时,(2)1,(2)0f f '==,故100cos 010001π⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦A E 当1()(1)f x x -=-时,(2)1,(2)1f f '=-=,故1100()121110--⎡⎤⎢⎥-=-⎢⎥⎢⎥-⎣⎦E A 当()arctan 2x f x =时,1(2),(2)44f f π'==,故00arctan 1112111πππ⎡⎤⎢⎥=-⎢⎥⎢⎥-+⎣⎦A 当10()f x x =时,109(2)2,(2)102f f '==⨯,故109200210810101012⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A6-6 解:A 的最小多项式2()(1)(2)x x x ϕ=--A得(1,2)k =1()2x x ϕ=-,22()(1)x x ϕ=-得12(1,2)λλ==1111()(1)()x f x a f x ϕ===- 1211()(1)(1)()x d f x a f f dx x ϕ=⎛⎫'==-- ⎪⎝⎭ 2122()(2)()x f x a f x ϕ===[]2()(1)((1)(1)(1)(2)(2)(1)p x f f f x x f x '=--+--+-因此()f A 的拉格朗日——西勒维斯特内插多项式表示为[]2()()(1)((1)(1)()(2)(2)()f P f f f f '==--+--+-A A E A E A E A E(*)当()sin 2f x x π=时,(1)1,(1)0,(2)0f f f '===,代入(*)式得100sin (2)0102110π⎡⎤⎢⎥=--=⎢⎥⎢⎥-⎣⎦A A A E 当()tx f x e =时,2(1),(1),(2)t t t f e f te f e '===,代入(*)式得[]22222(1)()(2)()(1)(2)()107320000410000210111t t t t t t t t e e e t e e t t e t t e t e t ⎡⎤=--+--+-⎣⎦=--+-+---+⎡⎤⎡⎤⎢⎥⎢⎥=--+⎢⎥⎢⎥⎢⎥⎢⎥-+-⎣⎦⎣⎦A E A E A E A E E A A E A E6-7 解:A 的最小多项式2()(2)x x ϕ=-A由题意得01()p x a a x =+,1()p x a '=把(2),(2)f f '代入上二式011(2)(2)2,(2)(2)f p a a f p a ''==+==解之得01(2)2(2),(2)a f f a f ''=-=于是矩阵函数()f A 的多项式表示为[]()()(2)2(2)(2)f p f f f ''==-+A A E A当()tx f x e =时,2(2),(2)t tx f e f te '==将其代入上式可得210011t t e e t t t t t t ⎡⎤⎢⎥=-⎢⎥⎢⎥-+⎣⎦A 6-8 解:A 的最小多项式2()(1)(2)x x x ϕ=--A由题意得201212(),()2p x a a x a x p x a a x'=++=+把(1),(2),(1)f f f '代入上二式得01212(1)(1),(1)(1)2f p a a a f p a a ''==++==+000(2)(2)24f p a a a ==++解之得01(2)2(1),2(1)3(1)2(2)a f f a f f f ''=-=+-2(2)(1)(1)a f f f '=--所以()f A 的多项式表示为[][][]2()(2)2(1)2(1)3(1)2(2)(2)(1)(1)f f f f f f f f f '''=-++-+--A E A A当()sin2f x xπ=时,(1)1,(1)0,(2)0f f f '===,故2100()2010110f ⎡⎤⎢⎥=-=⎢⎥⎢⎥-⎣⎦A A A6-9 解:所求矩阵幂级数之对应的数项幂级数为10110kk k k x ∞+=+∑ 由积分学幂级数理论知1002211211(1)()(10)1010101123()(1)()10101010110()()101010101(1)1(1)(10)101010k kk k k k k k x x k x x x x k x x x x x x ∞∞+==+--+=+<⎛⎫=++++++ ⎪⎝⎭'⎡⎤=+++⎢⎥⎣⎦'⎡⎤=--=-<⎢⎥⎣⎦∑∑因此矩阵幂级数之和2111()(()10)101010k k k k ρ∞-+=+=-<∑A A E A所给矩阵A 的谱半径2ρ=,所以21()10--E A 即为所求矩阵幂级数之和。

矩阵函数()f A 为(2)00()(2)(2)(2)(2)(2)(2)(2)(2)f f f f f f f f f f ⎡⎤⎢⎥'''=-⎢⎥'''⎢⎥-+⎣⎦A当21()(1)1010x f x -=-时,55(2),(2)32128f f '==,于是240015()1311010128115-⎡⎤⎢⎥-=⎢⎥⎢⎥-⎣⎦A E 此即104001513110128115k k k k ∞+=⎡⎤+⎢⎥=⎢⎥⎢⎥-⎣⎦∑A6-10 (1)证明:()f A 有定义表明()f x 在A 的影谱上有定义。

相关文档
最新文档