第四章 矩阵的特征值(4)总20

合集下载

线性代数第四章矩阵的特征值

线性代数第四章矩阵的特征值
Api i pi (i 1, 2,L , n),
令 P ( p1 p2 L pn ), 则P 可逆,且
AP ( Ap1 Ap2 L Apn ) (1 p1 2 p2 L n pn )
1

( p1 p2 L
pn
)

2
O
P,

n

2. 求出矩阵A对应于所有特征值的特征向量
若A有一个t重特征值,对应的特征向量在线性 无关的意义下小于t,则A不与对角矩阵相似。
3.写出对角矩阵和相似变换矩阵。 特征值和特征向量的对应.
1. 求出n阶矩阵A的所有特征值 2. 求出矩阵A对应于所有特征值的特征向量 3.写出对角矩阵和相似变换矩阵。
3 1
的λ都是方阵A的特征值.
定义4.2 设A为n阶矩阵,含有未知量λ的矩阵λI-A
称为A的特征矩阵,其行列式
I A
为λ的n次多项式,称为A的特征多项式, I A 0
称为A的特征方程.
求n阶矩阵的特征值和特征向量的步骤:
1. 由矩阵A的特征方程 I A 0 求出A的特征值 1,2 ,L s (s n 2k )
所以 P 1 AP , 即A与对角矩阵Λ相似.
定理的证明告诉我们,如果n阶矩阵A与对角矩 阵Λ相似,则Λ的主对角线上的元素就是A的全部
特征值.相似矩阵P的列是对应于Λ对角线上 元素的特征向量。
推论 若n阶矩阵A有n个两两不同的特征值,则
A必与对角矩阵Λ相似
推论 若n阶矩阵A有n个特征值,则可相似对 角化<==>A的任ti重特征值有对应ti个线性无
A


4 1
3 0
0 2

矩阵的特征值与特征向量总结-全文可读

矩阵的特征值与特征向量总结-全文可读
解得特征值为
2•
第二步:对每个特征值 代入齐次线性方程组 求非零解.
齐次线性方程组为 系数矩阵
2•
得基础解系
是对应于
类似可以求得 A的属于特征
值 的全部特征向量分别为
是不为零的常数.
2•
所以
是矩阵f (A)的一个特征值.
2•
3. 特征多项式f )的性质
( 在特征多项式
中有一项是主对角线上元素的连乘积:
f )的展开式的其余各项为
(ቤተ መጻሕፍቲ ባይዱ
2•
设f ) = 0的根
(

,则有
性质1 设 n 阶方阵 A 的 n个特征
值为

称为矩阵A的迹,记为
2•
性质2 若A的特征值是 , X是A的对应于 的特征向量,
(1) kA的特征值是 ;(k是任意常数) k
(m是正整数)
(3) 若A可逆,则A -1的特征值

且X 仍然是矩

-1 , 的特征值是 分别对应于
的特征向量.
2•
为x的多项式, 则f (A)的特征值
为 证
再继续施行上述步骤 m - 2 次, 就

2•
其它请同学们自己证明.
3•
例6 已知三阶方阵A的特征值为1、2、3, 求矩阵 的A行*+列E式.
解 由性质1(2)知
则矩阵A*的特征值 所以矩阵A*的特征值分别是6,3,2,A*+E的特征值
是值A, 的属于特征值 λ = 5的特征向
量;
6•
7•
故由定义4.1知, λ = 5也 1、X2、X3 的特征值, 即是对X于 λ = 5的特征向量是不唯一
的.

计算方法(5)第四章 矩阵特征值和特征向量的计算

计算方法(5)第四章 矩阵特征值和特征向量的计算

n
使得u 0

i xi
i 1
n
n
uk Auk1 Aku0 Ak (i xi ) iik xi
i 1
i 1

1k [1x1

n i2
( i 1
)k i xi ]
由1 0, 1 i (i 2, 3,L , n) 得
lim(
对矩阵A1用乘幂法得 uk

A-1u
k

1
因为A1 的计算
比较麻烦,而且往往不能保持矩阵A 的一些好性质
(如稀疏性),因此,反幂法在实际计算时以求解
方程组
Auk

u
k
,代替迭代
1
uk
A-1uk1求得uk,每
迭代一次要解一线性方程组。 由于矩阵在迭代过
程中不变,故可对A 先进行三角分解,每次迭代只 要解两个三角形方程组。

2 p 2 n
2 n
2 n 2
1 p 21 2 n 1 n 1 2 1 n 1
因此,用原点平移法求1可使收敛速度加快。
三、反幂法
反幂法是计算矩阵按模最小的特征值及特征向 量的方法,也是修正特征值、求相应特征向量的最 有效的方法。
0
0.226

0.975
做正交相似变换后得到
3.366
A3 =R2 AR2T


0.0735
0.317
0.0735 1.780
0
0.317
0

1.145
雅可比方法是一个迭代过程,它生成的是一个矩阵的
序列 Ak,当k越大时Ak就越接近于对角矩阵,从而

第四章矩阵的特征值和特征向量

第四章矩阵的特征值和特征向量

即,0不是A的特征值,或者,A的任一特征值不等于零
充分性:设A的任一特征值不等于零,假设A不可逆 则 det A 0, 于是det(0E-A)=det(-A)=(-1)n det A 0 所以=0是A的一个特征值,矛盾
m 是A的m个不同 的特征值,1, m分别是A的属于1,2 m的特征向量, 则1, m线性无关
T
特征值1的全部特征向量为c11 (c1 0, 常数)
对于3=2,解对应的齐次线性方程组(2E A) X 0,
1 1 -1 x1 0 0 0 3 x2 0 0 0 1 x 0 3
定义4.2 A (aij )为n阶矩阵,含有未知数的矩阵 E A称为 A的特征矩阵,其行列式
E A
a11 a12 a21 a22
an1 an 2
a1n a2 n
ann
称为A的特征多项式。 det( E A) 0称为A的特征方程。
定理4.1:设A (aij )为n阶矩阵,则0是A的特征值, 是 A的属于0的特征向量的充要条件是,0为特征方程 det( E A) 0的根, 是齐次线性方程组(0 E A) X 0 的非零解。
(2)由(4.1)式知:向量 是齐次线性方程组(0 E A) 0 ( 0)的非零解。而该方程组有非零解的充分必要条件是 其系数行列式 0 E A 0.
(3) 矩阵A的特征值0,即以为变量的一元n次方程
E A 0的根。
(4) 如果已经求出方程 E A 0的根,则齐次线 性方程组(0 E A) X 0的任意非零解,都是A的 属于0的特征向量。
对于1 2, 解齐次线性方程组(2 E A) X=0,即解 -5 -4 x1 0 x -5 -4 2 0

(线性代数)第四章 矩阵的特征值和特征向量

(线性代数)第四章 矩阵的特征值和特征向量
an − a1
∴η1
=
a2 − a1
1 0 0 0 ,η 2 = 1 ,L ,η n −1 = 0 M M M 0 1 0
对应λ=0的 =0的 特征向量为 k1η1 + L + kn −1η n −1 , k ,L , k 不全 n −1 1
第四章 矩阵的特征值和特征向量
§4.1 相似矩阵
§4.1 相似矩阵 一. 相似矩阵的定义和性质 AP= 都是n阶方阵, 若有可逆矩阵P 设A, B都是n阶方阵, 若有可逆矩阵P, 使P−1AP=B, 则称矩阵A 相似. 记为A 相似变换矩阵. 则称矩阵A与B相似. 记为A~B. P为相似变换矩阵. 相似是相抵的特例 相似必相抵,反之不然. 特例: 注1: 相似是相抵的特例: 相似必相抵,反之不然. 注2: 矩阵间的相似关系是一种等价关系 (1) 反身性: A~A; 反身性: P−1AP =B (2) 对称性: A~B ⇒ B~A; 对称性: PBP−1 =A (3) 传递性: A~B, B~C ⇒ A~C. 传递性: 相抵关系下的不变量: 相抵关系下的不变量:矩阵的秩 相似关系下的不变量: 相似关系下的不变量: 矩阵的秩
第四章 矩阵的特征值和特征向量
§4.2 特征值与特征向量
解: |λE–A| = (λ+1)(λ –2)2. +1)( 所以A 所以A的特征值为λ1= –1, λ2= λ3= 2. (–E–A)x = 0的基础解系: ξ1=(1,0,1)T. 的基础解系: 对应于λ1= –1的特征向量为kξ1 (0≠k∈R). 的特征向量为k (0≠ (2E–A)x = 0的基础解系: (2E 的基础解系: ξ2=(0, 1, –1)T, ξ3=(1, 0, 4)T. =2的特征向量为 的特征向量为k 对应于λ2=λ3 =2的特征向量为k2ξ2 +k3ξ3 (k2, k3不同时为零). 不同时为零).

矩阵的特征值

矩阵的特征值
2
山财大数学与数量经济学院杨素香
Ax x
(1)
2.求法
整理(1)式,得 ( A)x o
(2)
x 特征向量 可看成方程组(2)的非零解.
特征向量
转 化
方程组(2)的非零解.
存在条件
特征值
确 定
A 0
3
总结求矩阵特征值与特征向量的方法:
第一步:令
A 0 求特征值 .
第二步:对于每一个 , 求 A x o 基础解系,
定理4.1 n阶方阵 A与它的转置矩阵 AT 有相同的特征值.
证明 考察它们的特征多项式
AT AT A .
这说明它们有相同的特征多项式,所以特征值相同.
注: A与AT有没有相同的特征向量呢? 看下面的例子:

1
A
0
1 1
,1
2
1是特征值, 10
是其特征向量,
AT
1 0
1
2
2
, 2
3,
由于
A1
1 4
1
1
1 2
1 2
1 2
1
,
所以1 1 是A的一个特征值,而
1
1 2
是A的属于1
1
的特征向量
1 1 1 3 1 所以 2 3 是A的一个特征值,而
A2
4
1
2பைடு நூலகம்
6
3
2
32 ,
2
1 2
是A的属于
2
3
的特征向量
3
3
6 6
0
0
x1 x2
0
0
的一个基础解系为
1
2
1 ,2
0 0

线性代数 第四章 矩阵的特征值与特征向量

线性代数 第四章 矩阵的特征值与特征向量

例 设 是 A 的一个特征值,证明:(1) 2 是 A2 的一个特征值;(2)当 A 可逆时, 1 是 A1 的一个 特征值.
证 设 是 A 的属于特征值 的特征向量,即 Aα α ( 0 )
(1)在 Aα α 两边左乘 A ,得 A2α Aα 2α 所以, 2 是 A2 的一个特征值,且 是 A2 的属于特 征值 2 的特征向量.
在上述讨论中,表达式 A0 40 反映了矩阵 A 作用在向量0 上只改变了常数倍,我们把具有这 种性质的非零向量0 称为矩阵 A 的特征向量,数 4 称为对应于0 的特征向量.
定义 1 设 A 是 n 阶方阵,如果存在数 和非零 列向量 ,使得 Aα α .则称 为 A 的一个特征值, 称为矩阵 A 的属于特征值 的一个特征向量.
(2)当 A 可逆时,由 Aα α 有 α A1α ,因为 0 , 知 0 ,故 A1α 1α ,则 1 是 A1 的一个特征值.
将此例推广为一般情况,有
结论:若 是 A 的一个特征值,则 m ( m N ) 是 Am 的一个特征值;() 是 ( A) 的特征值,其中 ( ) a0 a1 L am m , ( A) a0 E a1 A L am Am .

已知向量
1 1

A
2 5
1 a
2 3
的一个特
1
1 b 2
征向量,试确定 a,b 及特征向量 所对应的特征值 .
解 由特征值和特征向量的定义 Aα α ,有
2 5 1
1 a b
2 3
1
1
1 1

2 1 1
1
2
a
b 1
于是 1 , 2 a ,b 1 所以 a 3, b 0, 1

第4章矩阵的特征值

第4章矩阵的特征值

第4章矩阵的特征值矩阵的特征值是线性代数中非常重要的概念,它在许多领域都有广泛的应用。

本文将介绍矩阵的特征值的定义、性质和计算方法,并探讨其在科学与工程中的应用。

1.特征值的定义和性质给定一个n阶方阵A,非零向量X称为矩阵A的特征向量,如果满足AX=λX,其中λ是一个常数,称为矩阵A的特征值。

根据这个定义,我们可以得到特征值的一些性质:(1)特征值可以是实数或复数。

当矩阵A是实矩阵时,特征值可以是实数或者是成对出现的复共轭数对。

例如,对于一个2阶实矩阵,它可以有两个实特征值,也可以是一个实特征值和一个复特征值对。

(2)特征值和特征向量的数量相等。

对于一个n阶矩阵A,它有n个特征值和n个对应的特征向量。

(3)特征值和矩阵的迹、行列式有关。

矩阵的迹是指所有主对角元素之和,行列式是指矩阵的特征值之积。

特别地,对于一个2阶方阵A,它的特征值满足特征值之和等于迹(A)、特征值之积等于行列式(A)。

2.特征值的计算方法(1)特征值分解:特征值分解是将一个可对角化的矩阵A分解为A=QΛQ^(-1),其中Q是一个正交矩阵,Λ是一个对角矩阵,对角线上的元素就是矩阵A的特征值。

通过特征值分解,我们可以得到矩阵A的特征值和特征向量。

(2)QR算法:QR算法是一种迭代方法,用于逼近一个矩阵A的特征值和特征向量。

首先,将矩阵A分解为QR,其中Q是一个正交矩阵,R是一个上三角矩阵。

然后,迭代计算QR,直到收敛为止。

最后,对于得到的上三角矩阵R,它的对角线上的元素就是矩阵A的特征值。

3.特征值在科学与工程中的应用特征值在科学与工程中有广泛的应用,这里介绍两个典型的例子。

(1)特征值在量子力学中的应用:量子力学是研究微观粒子行为的物理学理论。

量子力学中的波函数可以表示为特征值和特征向量的线性组合。

特征值表示了粒子的能量,特征向量表示了粒子的状态。

通过解特征值问题,我们可以得到粒子的能量和对应的状态。

(2)特征值在图像处理中的应用:图像处理是一种对数字图像进行分析和处理的技术。

数值分析第四章矩阵特征值与特征向量的计算

数值分析第四章矩阵特征值与特征向量的计算
B=A-0I
其中0为代选择参数. 设A的特征值为1, 2, …, n, 则B的特征值为1-0, 2-0, …, n-0, 而且A, B
的特征向量相同.
13
仍设A有主特征值1, 且 1 2 , 取0使得
1 0 i 0 (i 1) 1-0是B=A0I的主特征值

max i 0 i1 1 0
征向量为u1, u2, …, un. 且满足条件
1 2 3 n
u1, u2, …, un线性无关.
此时1一定是实数!
幂法: 求1及其相应的特征向量.
1通常称为主特征值.
3
➢ 幂法基本思想
给定初始非零向量x(0), 由矩阵A构造一向量序列
x(1) Ax(0)
x
(
2
)
Ax (1)
10
2 1 0 例 用幂法求矩阵 A 0 2 1
0 1 2
的按模最大的特征值和相应的特征向量.
取 x(0)=(0, 0, 1)T, 要求误差不超过103.
解 y0 x0 0,0,1T ,
x1 Ay0 0,1,2T , 1 max(x(1) ) 2,
y(1) x(1) (0,0.5, 1)T
能达到较y(0)0,
x(k1) ( A * I )1 y(k )
y ( k 1)
x ( k 1) max(x(k1) )
(k 0,1,2, ).
迭代向量x(k+1)可以通过解方程组求得
( A * I )x(k1) y(k)
26
1
x(2) Ay(1) 0.5, 2, 2.5T ,
2
max(x(2) )
2.5,
11
y(2) x(2) (0.2, 0.8, 1)T

教案--第四章 矩阵的特征值

教案--第四章 矩阵的特征值

交的向量组,则称 1, 2 ,, r 是向量空间 V 的正交基. ② 若 e1 , e2 , , er 是向量空间 V 的一个基, e1 , , er 两两 正交, 且都是单位向量, 则称 e1 , , er 是向量空间 V 的一个 规范正交基(或标准正交基). 若 e1 , , er 是 V 的一个规范正交基, 则 V 中任一向量 能由 e1 , , er 线性表示, 设表示式为
1/ 2 1/ 3 1 (1) 1 / 2 1 1 / 2 ; 1/ 3 1/ 2 1 1/ 9 8 / 9 4 / 9 (2) 8 / 9 1 / 9 4 / 9 . 4 / 4 4 / 9 7 / 9
P121
2
4⑵
1.《经济应用数学基础》编写组编,线性代数与线性规划学习指导,同心出版社,
课外阅读 资料或自主 学习体系安 排
1995 2.张天德,线性代数习题精选精解,山东科学技术出版社,2009 3. /special/opencourse/daishu.html,麻省理工公开课:线 性代数 本节介绍了向量内积以及正交的概念, 特别是向量组基的规范正交化转化方
1 ,, k ;再经过单位化,得到一组与 1 ,, r 等价的规范
正交组 e1 , e2 ,, er 五、正交矩阵与正交变换 定义 6 若 n 阶方阵 A 满足
AT A E (即 A1 AT ),
则称 A 为正交矩阵, 简称正交阵. 定理 2
注: 由 AT A E 与
AAT E 等价,定理
在 空 间 解 析 几 何 中 , 向 量 x {x1 , x2 , x3} 和 y { y1 , y2 , y3} 的长度与夹角等度量性质可以通过两个向量

线性代数 第四章矩阵的特征值和特征向量

线性代数 第四章矩阵的特征值和特征向量
1 2
m
线性无关.
推论 若 n 方阵有互不相同的特征值
1 , 2 ,, m
则其对应的特征向量 x1 , x2 ,, xm 线性无关。
定理3
设n阶方阵A的全部特征值是1,2, ,n,则 (1) 1 2 n a11 a22 ann aii
4.1.2 特征值与特征向量的性质
定理1 n 阶方阵 A 与它的转置矩阵 AT 有相同的特征值。
定理2
设 n 方阵 A 有互不相同的特征值 1,2, ,m, (i E A)x 0 的基础解系为 i1, i 2, , iri (i 1, ,m),则 2,
11 , 12 , , 1r ; 21 , 22 ,, 2 r ;; m1 , m 2 ,, mr
解 A的特征多项式为
2 0 4
1 2 1
1 0 3
2
A E
(2 )
2 4
1 3
(2 )( 2 6 4) (2 )( 2 2)
( 1)( 2)
A的特征值为
1 1, 2 3 2
B AB D
1
由B可逆便知: 1 , , n 都是非零向量,因而都是A的特征
向量,且
1 , , n
线性无关。
推论
如果n阶矩阵A的特征值 1 , , n 互不相同 则相似于对角矩阵
1 n
定理
n 阶 矩阵 A 与对角矩阵相似的充分必要条件是 对于每一个
AP P
P AP
1
必要性
设A相似于对角矩阵
d1 D dn
即存在可逆矩阵B,使得

数值计算方法第04章矩阵特征值与特征向量的计算

数值计算方法第04章矩阵特征值与特征向量的计算
3 2 7 A1 3 4 1 2 1 3
• 计算出k=2时的x和y。 • (保留四位有效数字)
22
二、幂法的加速
因为幂法的收敛速度是线性的,而且依赖 于比值 2 /1 ,当比值接近于1时,幂法收敛 很慢。幂法加速有多种,介绍两种。
23
幂法的加速—原点移位法 应用幂法计算矩阵A的主特征值的收敛速度主要
26
4 14 0 , 2.9, 用原点移位法求矩 例:A 5 13 0 0 1 0 2.8 -4 阵A的按模最大的特征值,要求误差不超过10 。 解:取x (0) (1,1,1)T , 按x ( k 1) ( A pI )x (k )进行计算 0 6.9 14 A 0 I 5 10.1 0 0 0.1 1 (3.1000568, 2.214326, 0.9687661) 4 3.1000568
在一定条件下, 当k充分大时: 相应的特征向量为:
x 1 x
x
( k 1)
( k 1 ) i (k ) i
10
幂法的理论依据 对任意向量x(0), 有 x ( 0 ) i ui , 设1不为零.
i 1 n
x
( k 1 )
Ax
n i 1
(k )
A
k 1
x
(0) n
1 Ak 1 i ui i k i ui i 1

k 1 1
2 k 1 n k 1 1u1 ( ) 2 u2 ( ) n un 1 1
k 1 1 1u1
故 1 xi( k 1) xi( k ) x(k+1)为1的特征向量的近似向量(除一个因子外).

第四章-矩阵的特征值与特征向量问题讲解

第四章-矩阵的特征值与特征向量问题讲解

Ax 2 x
1 2 x 0,
则x 0, 与定义矛盾.
12
注记
4. 若λ是矩阵A的r重特征值,对应λ有s个线性 无关的特征向量,则1≤s≤r; 若A为实对称矩阵,则对应特征值λ 恰有r 个线性无 关的特征向量。
5. 实对称矩阵的特征值是实数,属于不同特 征值的特征向量正交。
13
注记
6. 设 n阶方阵 A aij 的特征值为1, 2 ,, n ,记:
定义:设A是n阶方阵, 是一复数,如果方程 Ax x
存在非零解向量,则称 为方阵A的特征值, 相应的非零解向量x 称为与特征值 对应的特征向量, 此特征值与特征向量x称为一特征对, P(A )=det(I A)称为矩阵A的特征多项式。
4
注记
1. 特征向量x 0, 特征值问题是对方阵而 言的. 2. n阶方阵A的特征值,就是使齐次线性方程组
0.2 0.3 0.1 4
G1 = {z:|z – 1| 0.6};G2 = {z:|z – 3| 0.8}; G3 = {z:|z + 1| 1.8};G4 = {z:|z + 4| 0.6}。
G4
G1
G2
G3
注:定理推断A的n个特征值全落在n个盖氏圆
上,但未说明每个圆盘内都有一个特征值。
20
对应的特征值1,2,…,n,满足
|1| > |2| … |n|
(4.1.1)
26
1.基本思想
因为{v1,v2,…,vn}为Cn的一组基,故:
任给x(0) 0,
n
x (0) aivi
所以有:
i 1
n
n
Ak x(0) Ak ( aivi ) ai Akvi

矩阵的特征值与特征向量

矩阵的特征值与特征向量


1

所以,A 的特征值为 1 2 , 2 3 1,
7
当 1 2 时, 解方程组 ( 2 I A ) x 0 ,
1 x1 2 1 x 2 0, 即 1 2 x 3 1 解之得基础解系为 p 1 1 , 1 2 1 1 1
故 1是 A1的特征值, 且 x 也是 A1对应于1的特征向量.
24
性质2 矩阵 A 和 AT 的特征值相同. 证 因为 IAT = ( I)TAT = ( IA)T 所以 det ( IA) = det ( IAT)
因此, A 和AT 有完全相同的特征值.
补充 性质 设 是方阵 A 的特征值.设
(*)式中不含 的常数项为
a 11 a 21 a n1 a 12 a 22 an2 a1n a2n a nn
21
( 1) A ,
n
即 c n ( 1) A
n
f 所以, ( ) I A ( 1 )( 2 ) ( n )
的全部特征向量.
9

2 设矩阵 A 2 0
2 1 2
0 2 , 求 A 的特征值. 0
解 A 的特征多项式为
2 I A
2 0 2 0 2 ( 2 )( 1 )( 4 ),
1
2

所以,A 的特征值为 1 2 , 2 1 , 3 4 . 特征值的计算不容易!!
0 A 1 1 1 0 1 1 1 0
所以 k 1 p 1 是对应于 1 2 的全部特征向量;

第4章矩阵的特征值

第4章矩阵的特征值
山财大数学与数量经济学院杨素香
12
例4.求三阶方阵
a A a a
的特征值及特征向量.

(1)先求特征根
a a a
( a )3 0
A
得A的特征根
1 2 3 a.
13
山财大数学与数量经济学院杨素香
1 2 3 a.
21
山财大数学与数量经济学院杨素香
推论: 设1 , 2 ,
i 1 , i 2 ,
特征向量,则向量组 11 ,12 , ,1t1 ,21 ,22 , 线性无关.
结论: 1) k 为 kA 的特征值. 2)

k

A k的特征值
3) +1 为 A+ I 的特征值.
4) tr ( A) a11 a22
ann 1 2
n
5)
1
A =12
n
, n为其特征值,则
6) 若A可逆,1 , 2 ,
1 1 , , , 1 2 n
为 A 1 的特征值,
A
1 , 2 , , n
A
A

A
的特征值。
22
山财大数学与数量经济学院杨素香 第五 章 第 一节 矩阵的特征值与特征向量
( n ) ( 1)n 12
n ) n 1
n
所以有tr ( A) a11 a22
令=0,即有 A =(1)n 12
ann 1 2
n,即 A =12
n
n
24
山财大数学与数量经济学院杨素香
例1.三阶方阵A的特征值为-1,2,3,求
1 1 1 1 1 A1 1 , 4 1 2 2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Q,使Q-1AQ为对角矩阵.

正交矩阵P化对称阵A为对角阵
将实对称矩阵对角化的步骤:
(1) 求 矩 阵 的 特 征 根 ; (2 求 对 应 的 特 征 向 量 ; ) (3 若 i 是m 重 特 征 根 检 验 其 对 应 的 个 特 征 ) , m 向 量 是 否 正 交将 其 单 位 正 交 化 ; , ( ) 写 出 其 对 应 的 正 交 矩 Q和 对 角 阵 . 4 阵

1 2
T 1
T 1
2 0.
1 2 , 2 0. 即1与 2正交.
, 补充定理:设A是实对称矩阵 是A的k重特征 根, 则A恰有k个对应于的线性无 关的特征向量 .
因不同的特征值对应的特征向量已知是 正交的(定理4.12),但同一特征值的线性无 关的特征向量并不正交;可用施密特正交化方
例3:已知三阶矩阵A的特征值
1 1, 2 1, 3 2 设 B A 5A
3
2
求矩阵B的特征值以及与之相似的对角矩阵 解 因为三阶矩阵A有三个不同的特征值,所以 存在可逆矩阵P使
3
1 1 P AP 1 从而: 2
2
1 1 4 1 1 1 3 A 5 A P 1 P 5P 1 P P 6 P 2 2 12
得 1 4, 2 1, 3 2.
第二步 由 A i E x 0, 求出A的特征向量
对 1 4,由 A 4 E x 0, 得
2 x1 2 x2 0 2 2 x1 3 x2 2 x3 0 解之得基础解系 1 2 . 1 2x 4x 0 2 3
由一个线性无关向量组 生成满 足上述性质的正交向量 组的过程, 称为将该向量组正交化 。
5.正交矩阵 (1) QTQ=I Q为正交矩阵. (2)若Q为正交矩阵,则其行列式的值为1或-1; (3)若Q为正交矩阵,则Q可逆,且Q-1=QT;
(4)若P、Q为正交矩阵,则它们的积PQ也是
正交矩阵. (5)Q为正交矩阵 Q的列(行)向量组是单位 正交向量组.
3的特征向量, 故它们必两两正交.
第四步 将特征向量单位化
i 令 i , i 1,2,3. i
2 3 23 得 1 2 3 , 2 1 3 , 1 3 2 3 作
1 3 量正交
化,对有重根的特征值的特征向量均作正交化
后可得一个正交向量组,再将该正交向量组单
位化,即可得到单位正交向量组,合并可得正交 矩阵.
故有:n阶实对称矩阵 有必n个线性无关的 A
特征向量;从而 阶实对称矩阵 必与一对 n A 角矩阵相似。
定理4.13 设A为实对称矩阵,则存在正交矩阵
4 1 即 P BP 6 12
由定理3, 所以B的特征值为-4,-6,-12 从而所求与B相似的对角矩阵为:
4 6 12
小结
1.对称矩阵的性质:
(1)特征值为实数; (2)属于不同特征值的特征向量正交; (3)特征值的重数和与之对应的线性无关的 特征向量的个数相等; (4)必存在正交矩阵,将其化为对角矩阵, 且对角矩阵对角元素即为特征值. 2.利用正交矩阵将对称阵化为对角阵的步骤: (1)求特征值;(2)找特征向量; (3)将特征向量单位化;(4)最后正交化.
第三节 实对称矩阵的特征值 和特征向量(二)
实对称矩阵的相关结论 用正交矩阵 P 化实对称矩阵 A 为对角形
矩阵的方法
一、实对称矩阵的相关结论
定理4.11
实对称矩阵的特征根是实数.
推论:n阶实对称矩阵有n个实特征根
(重根按重数计算)
定理4.12
实对称矩阵的对应于不同特征值
的特征向量是正交的。
证明
1 2 0 例1.设实对称矩阵 2 2 2 , A 0 2 3 1 求正交矩阵 ,使Q AQ为对角矩阵。 Q
2 2 2 例2、设实对称矩阵 2 A 5 4 , 2 4 5 1 求正交矩阵 ,使Q AQ为对角矩阵。 Q
(1) T 0 与 正交
( 2)如果R n 中的非零向量组 1, 2, , s 两两正交, i j 0( i j , i , j 1,2, , s ) 即:
T
则称该向量组是正交向 量组
( 3) R 中 的正交向量组必线性无关
n
4.施密特正交化方法
练 习
对实对称矩阵
1
使 P AP 为对角阵. 解 第一步
2 A E 2 0
2 2 0 A 2 1 2 ,求出正交矩阵 P 0 2 0
求 A 的特征值
2 1 2 2 4 1 2 0 0
复习
1.向量的内积的概念及性质
内积具有下列运算性质:
(1)
T T
(对称性) (线性性)
( 2) ( k ) k
T T
( 3) ( )
T T T
(4) T 0 (其中等号当且仅当 =0时成立)
(正定性)
2.向量的长度及性质
1 4 x1 2 x2 0 2 x1 3 x2 2 x3 0 解之得基础解系 3 2 . 2 2x 2x 0 2 3
第三步
将特征向量正交化
由于1 , 2 , 3是属于A的3个不同特征值1 , 2 ,
3 3 . 3
2 2 1 1 P 1 , 2 , 3 2 1 2 , 3 1 2 2 4 0 0 1 P AP 0 1 0 . 0 0 2

作 业
作业: P200 22(2) 23
a a a
T 2 1 2 2
2 n
向量的长度有下述性质:
(1)非负性: 0;当且仅当 0时, 0.
(2)齐次性: (3)三角不等式: (4)柯西-布涅柯夫斯基不等式:

T
3.正交向量组
对 2 1,由 A E x 0, 得
x1 2 x2 0 2 x1 2 x3 0 2x x 0 2 3
2 解之得基础解系 2 1 . 2
对 3 2,由 A 2 E x 0, 得
11 A1 , 2 2 A 2 , 1 2 ,
A对称, A AT ,
T 1 T T
T T 1 1 1 A 1 1 AT 1 A,
T T T 于是 11 2 1 A 2 1 2 2 T , 2 1 2
相关文档
最新文档