第1章 线性规划与单纯形法-第2节共29页文档

合集下载

线性规划与单纯形法(4)

线性规划与单纯形法(4)

• 右端常数项非正
两端同乘以 -1
• 约束条件为不等式
– 当约束方程为“≤”时,左端加入一个非负的松弛变量, 就把不等式变成了等式;
– 当约束条件为“≥”时,不等式左端减去一个非负的剩余 变量(也可称松弛变量)即可。
• 决策变量xk没有非负性要求 令xk=xk′-x k〃, xk=xk′,x k〃 ≥0
例1是二维空间(平面)线性规划问题,可用作 图法直观地来表述它的求解。
因存在 x1,x2 0
必须在直角坐标的第1象限内作图,求解。
23
图1-2
max z 2x1 3x2
x1 2x2 8
4 x1
16 4x2 12
x1, x2 0
24
图1-3 目标值在(4,2)点,达到最大值14 目标函数 max z 2x1 3x2
约,用量不能突破。
– 生产单位甲产品的零部件需耗用A车间的生产能力 1工时,
– 生产单位乙产品不需耗用A车间的生产能力, – A车间的能力总量为8工时,则A车间能力约束条件
表述为
x1
≤8
– 同理,B和C车间能力约束条件为
2x2 ≤12
3x1 +4 x2 ≤36
16
(3)目标函数。目标是利润最大化,用Z表示利润,则
1
S.t. x1 -3 x2 ≥3
x1 ≥0, x2 ≥0 -1
x1 -3 x2
1
2
=3
3
x1
-1
36
1.3 线性规划问题的标准型式
一 、标准型
• 线性规划问题的数学模型有各种不同的形式,如 – 目标函数有极大化和极小化; – 约束条件有“≤”、“≥”和“=”三种情况; – 决策变量一般有非负性要求,有的则没有。

第一章线性规划问题及单纯形解法演示文稿

第一章线性规划问题及单纯形解法演示文稿
线性规划问题的可行解集S是凸集 设X属于S,若x=0,则一定为极点;若x 0,则为极点的充要条件是:x的正分量所 对应的系数列向量线性无关。
只要存在可行解,就一定存在极点
极点的个数是有限的
最优解只可能在凸集的极点上,而不可能发生 在凸集的内部
38
第38页,共65页。
关于标准型解的若干基本概念:
Z=15x11+21x12+18x13+
20x21+25x22+16x23, x11+x12+x13≤200, x21+x22+x23≤150, x11+ x21 =100, x12+x22=80, x13+x23≥90, x13+x23≤120, xij≥0 ﹙i=1,2 j=1,2,3﹚.
10
第10页,共65页。
maxz( x) c x c x c x
11
22
nn
s.t.
a x a x a x b
11 1
12 2
1n n
1
ax 21 1
a x 22 2
a x 2n n
b 2
am1
x 1
a x m2 2
a x mn n
b m
x , x ,, x 0
1
2
n
12
第12页,共65页。
1、标准型的几种不同的表示方式
对有限个约束条件则其可行域的顶点也是有限的。
z=10000=50x1+100x
2
z=0=50x1+100x2
x2
x1+x2=300
AB C
E
z=27500=50x1+100x

第一章_线性规划

第一章_线性规划

第 一 节 线性规划问题及其数学模型
一、线性规划问题的数学模型
线性规划问题主要解决以下两类问题: 1、任务确定后,如何统筹安排,做到应用尽量少的人 力和物力资源来完成任务; 2、在一定量的人力、物力资源的条件下,如何安排、 使用他们,使完成的任务最多。
在生产管理和经济活动中,经常会遇到线性规划问 题,如何利用线性规划的方法来进行分析,下面举例 来加以说明。
表1-2
成分
产品来源
分析:很明显,该厂可以有多种不同的方案从A,B 两处采购原油,但最优方案应是使购买成本最小的一 个,即在满足供应合同单位的前提下,使成本最小的 一个采购方案。
解:设分别表示从A,B两处采购的原油量(单位:万 吨),建立的数学模型为:
m in S 200 x1 290 x2
3. 若存在无非负要求的变量。即有某一个变 量 xj 取正值或负值都可以。这时为了满足标准型 对变量的非负要求,可令 xj = xjˊ- xj〞, 其中: xjˊ、 xj〞 0 ,由于xjˊ可能大于也可能小于xj〞,故 xj 可以为正也可以为负。
上述的标准型具有如下特点: (1)目标函数求最大值; (2)所求的变量都要求是非负的; (3)所有的约束条件都是等式; (4)常数项非负。 综合以上的讨论可以说明任何形式的线
max Z x1 2x2 3x4 3x5 0x6 0x7
x1 x2 x4 x5 x6 7
x13x1x2
x4 x2
x5 2x4
x7 2 2x5 5
x1, x2, x4, , x7 0
第二节 线性规划问题的图解法及几何意义
例1-1:(计划安排问题)某工厂在计划期内安排 生产Ⅰ、Ⅱ两种产品,已知生产单位产品所占用的 设备A、B的台时、原材料的消耗及两种产品每件 可获利润见表所示:

第一章 线性规划及单纯形法

第一章 线性规划及单纯形法
37
线性规划问题的标准形式: 线性规划问题的标准形式:
max f = ∑ c j x
j =1 j n
n ∑ aij x j = bi , i = 1,2,L , m j =1 x j ≥ 0, j = 1,2,L , n
日产量( 日产量(吨) 9 5 7 21
11
)(模型 例2(运输问题)(模型) (运输问题)(模型)
minf = 2 x11 + 9 x12 + 10 x13 + 7 x14 + x21 + 3 x22 + 4 x23 + 2 x24 + 8 x31 + 4 x32 + 2 x33 + 5 x34 x11 + x12 + x13 + x14 = 9 x +x +x +x =5 23 24 21 22 x31 + x32 + x33 + x34 = 7 x11 + x21 + x31 = 3 s.t. x12 + x22 + x32 = 8 x13 + x23 + x33 = 4 x14 + x24 + x34 = 6 xij ≥ 0(i = 1,2,3; j = 1,2,3,4)
18
3、(线性规划)数学模型的三要素 、(线性规划) 、(线性规划 变量/决策变量 决策变量; ①变量 决策变量; 目标函数( ②目标函数(max/min); ); 约束条件。 ③约束条件。
19
决策变量: ①变量/决策变量:指决策者为实现规划目标采 变量 决策变量 取的方案、措施,是问题中要确定的未知量; 取的方案、措施,是问题中要确定的未知量;

第1章-线性规划及单纯形法-课件(1)

第1章-线性规划及单纯形法-课件(1)

✓ x1、 x2 0
IБайду номын сангаас
设备
1
原材料 A 4
原材料 B 0
利润
2
II 资源限量
2 8 台时
0
16kg
4
12kg
3
第一章 线性规划及单纯形法 运筹学
该计划的数学模型
✓ 目标函数 ✓ 约束条件
Max Z = 2x1 + 3x2
x1 + 2x2 8 4x1 16 4x2 12 x1、 x2 0
x1
✓ 美国航空公司关于哪架飞机用于哪一航班和哪些 机组人员被安排于哪架飞机的决策。
✓ 美国国防部关于如何从现有的一些基地向海湾运 送海湾战争所需要的人员和物资的决策。
✓ ……
第一章 线性规划及单纯形法 运筹学
二、线性规划问题的数学模型
✓ 1、一般形式 ✓ 2、简写形式 ✓ 3、表格形式 ✓ 4、向量形式 ✓ 5、矩阵形式
1、唯一最优解
max Z 2 x 1 3 x 2
2 x 1 2 x 2 12 ⑴
x1 4 x1
2 x2
8 16
⑵ ⑶
4 x 2 12 ⑷
x 1 0 , x 2 0
1 234 56
x2
⑶ ⑷
(4,2)
0 1 234 5678
x1


✓最优解:x1 = 4,x2 = 2,有唯一最优解Z=14。
第一章 线性规划及单纯形法 运筹学
三、线性规划模型的标准形式
✓ 1、标准形式 ✓ 2、转换方式
第一章 线性规划及单纯形法 运筹学
1、标准形式
maZx cjxj
xj
aijxj 0
bi

(完整版)运筹学胡运权第五版课件(第1章)

(完整版)运筹学胡运权第五版课件(第1章)
四运筹学研究的基本特点?系统的整体优化?多学科的配合?模型方法的应用五五运筹学研究的基本步骤运筹学研究的基本步骤?分析与表述问题?建立数学模型?对问题求解?对模型和模型导出的解进行检验?建立对解的有效控制?方案的实施第一章线性规划及单纯形法linearprogrammingandsimplexmethodggp11一般线性规划问题的数学模型11问题的提出例1用一块边长为a的正方形铁皮做一个无盖长方体容器应如何裁剪可使做成的容器的容积最大
(3)L.P. 的顶点与基可行解一一对应。
§1.3 单纯形法(Simplex Method)原理
3-1 预备知识:凸集与顶点
(1)凸集:对于集合C中任意两点连线段上的点,若全在C内, 则称集合C为凸集。
直观特征:图形从内部向外部凸出。
凸集
非凸集
(2)顶点:凸集中不在任意两点的连线段内部的点。
X1
转化为
(2)若约束条件为不等式,
则依次引入松弛变量或剩余变量(统称为松弛变量),
转化为等式约束条件。
约束为≥不等式,减去松弛变量,化为等式约束条件;
多 退
约束为≤不等式,加上松弛变量,化为等式约束条件。
少 补
注意:松弛变量在目标函数中系数全为0。
例:max z=2 x1+3 x2
2 x1+2 x2 12
s.t.
4x1
16
5 x2 15
x10, x2 0
标准化
max z 2x1 3x2 0x3 0x4 0x5
2x1 2x2 x3
12
s.t.
4
x1
5 x2
x4 16 x5 15
x1, x2 , x3, x4 , x5 0
(3)若决策变量xj≤0,则令

运筹学第1章

运筹学第1章

(第三版)《运筹学》教材编写组编清华大学出版社运筹学第1章线性规划与单纯形法第1节线性规划问题及其数学模型二.线性规划与目标规划第1章线性规划与单纯形法第2章对偶理论与灵敏度分析第3章运输问题第4章目标规划第1章线性规划与单纯形法第1节线性规划问题及其数学模型第2节线性规划问题的几何意义第3节单纯形法第4节单纯形法的计算步骤第5节单纯形法的进一步讨论第6节应用举例第1节线性规划问题及其数学模型•1.1 问题的提出•1.2 图解法•1.3 线性规划问题的标准形式•1.4 线性规划问题的解的概念第1节线性规划问题及其数学模型线性规划是运筹学的一个重要分支。

线性规划在理论上比较成熟,在实用中的应用日益广泛与深入。

特别是在电子计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了。

从解决技术问题的最优化设计到工业、农业、商业、交通运输业、军事、经济计划和管理决策等领域都可以发挥作用。

它已是现代科学管理的重要手段之一。

解线性规划问题的方法有多种,以下仅介绍单纯形法。

1.1 问题的提出从一个简化的生产计划安排问题开始例1某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表1-1所示。

资源产品ⅠⅡ拥有量设备 1 2 8台时原材料A40 16kg原材料B0 4 12kg续例1该工厂•每生产一件产品Ⅰ可获利2元,•每生产一件产品Ⅱ可获利3元,•问应如何安排计划使该工厂获利最多?如何用数学关系式描述这问题,必须考虑称它们为决策变量。

产品的数量,分别表示计划生产设II I,,21x x ∙12416482212121≤≤≤+∙x ;x ;x x ,x ,x 这是约束条件。

即有量的限制的数量多少,受资源拥生产021≥∙x ,x ,即生产的产品不能是负值这是目标。

最大如何安排生产,使利润,∙数学模型⎪⎪⎩⎪⎪⎨⎧≥≤≤≤++=0124164823221212121x ,x x x x x :x x z max 约束条件目标函数例2. 简化的环境保护问题靠近某河流有两个化工厂(见图1-1),流经第一化工厂的河流流量为每天500万立方米,在两个工厂之间有一条流量为每天200万立方米的支流。

第一章 线性规划

第一章 线性规划
第四节 线性规划的典型案例
线性规划
【开篇案例】
一、人力资源分配的问题
某旅行社为了迎接旅 游黄金周的到来,对一日 游导游人员的需求经过统 计分析如表所示。为了保 证导游充分休息,导游每 周工作 5天,休息两天, 并要求休息的两天是连续 的。问应该如何安排导游 人员的作息,既满足工作 需要,又使配备的导游人
下午5时14分
什么是规划?
• 以上问题无一例外都属于规划问题,涉及到求解最大值 和最小值
• 人们经常谈规划,比如国家有5年规划、10年规划、城市 有城市规划,个人有自己的人生规划.
• 规划是在现有的人力、物力水平下,使得目标达到最优 的全面、理性的计划
下午5时14分
线性规划
• 线性规划简介: • 运筹学中最成熟的一个分支 • 静态规划:单周期决策
第一节 下午5时14分 线性规划的一般模型
三、线性规划模型的特征
1. 模型隐含假定
作为严密的数学模型,线性规划蕴含着以下假定: (1)线性化假定
函数关系式f(x)= c1x1+c2x2+… +cnxn,称线性函数。 经济学中大多数函数都是非线性,通过偏导求最优。但在企业
运营决策中,经常考虑比较短时间内的计划安排,通过线性化 更便于应用。
乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?



资源限制
铸造工时(小时/件)
5
10
7
8000
机加工工时(小时/件)
6
4
8
12000
装配工时(小时/件)
3
2
2
10000
自产铸件成本(元/件)
3
5
4
外协铸件成本(元/件)

第一章 线性规划

第一章  线性规划

欢迎阅读第一章 线性规划§1 线性规划在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。

此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。

自从1947年G . B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。

特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。

1.1 线性规划的实例与定义C 三B 为其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ⨯矩阵。

例如线性规划的Matlab 标准型为1.3 线性规划问题的解的概念一般线性规划问题的标准型为∑==nj j j x c z 1min(3) ∑==≤n j ij ij m i b x a 1,,2,1 s.t. (4)可行解 满足约束条件(4)的解),,,(21n x x x x =,称为线性规划问题的可行解,而使目标函数(3)达到最小值的可行解叫最优解。

可行域 所有可行解构成的集合称为问题的可行域,记为R 。

1.4 线性规划的图解法图解法简单直观,有助于了解线性规划问题求解的基本原理。

我们先应用图解法来求解例1。

如上图所示,阴影区域即为LP 问题的可行域R 。

对于每一固定的值z ,使目标函数值等于z 的点构成的直线称为目标函数等位线,当z 变动时,我们得到一族平行直线。

让等位线沿目标函数值减小的方向移动,直到等位线与可行域有交点的最后位置,此时的交点(一个或多个)即为LP 的最优解。

对于例1,显然等位线越趋于右上方,其上的点具有越大的目标函数值。

不难看出,本例的最优解为T x )6,2(*=,最优目标值26*=z 。

从上面的图解过程可以看出并不难证明以下断言:(1)可行域R 可能会出现多种情况。

运筹学第一章

运筹学第一章
OR1
30
1.1.3解的概念
概念: 1、可行解:满足所有约束条件的解。 2、可行域:即可行解的集合。所有约束条件的交 集,也就是各半平面的公共部分。满足所有约 束条件的解的集合,称为可行域。 3、凸集:集合内任意两点的连线上的点均属于这 个集合。如:实心球、三角形。线性规划的可 行域是凸集。
OR1
OR1
27
线性规划图解法例题
(无界解)
max z x 2 y x y 1 2 x 4 y 3 x 0, y 0
OR1
28
线性规划图解法例题
(无解)
min z x 2 y x y 2 2 x 4 y 3 x 0, y 0
请问该 医院至 少需要 多少名 护士?
5
例题2建模
目标函数:min Z=x1+x2+x3+x4+x5+x6 约束条件: x1+x2 ≥70
x2+x3 ≥60 x3+x4 ≥ 50 x4+x5 ≥20 x5+x6 ≥30 非负性约束:xj ≥0,j=1,2,…6
OR1
6
例题3:运输问题
三个加工棉花的加工厂,并且有三个仓库供应棉花,各 供应点到各工厂的单位运费以及各点的供应量与需求量 分别如下表所示:问如何运输才能使总的运费最小?
OR1
14


从以上 5 个例子可以看出,它们都属于优化问题,它们 的共同特征: 1 、每个问题都用一组决策变量表示某一方案;这组决 策变量的值就代表一个具体方案,一般这些变量取值是 非负的。 2 、存在一定的约束条件,这些约束条件可以用一组线 性等式或线性不等式来表示。 3 、都有一个要求达到的目标,它可用决策变量的线性 函数(称为目标函数)来表示。按问题的不同,要求目 标函数实现最大化或最小化。 满足以上三个条件的数学模型称为线性规划的数学模型。

第一章线性规划及单纯形法

第一章线性规划及单纯形法

第一章线性规划及单纯形法6.6单纯形法小结Drawingontheexampl,thetwoaxisinterceptsareplotted.2、求初始基可行解并进行最优性检验Cj比值CBXBb 检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000令非基变量x1=0,x2=0,找到一个初始基可行解:x1=0,x2=0,x3=8,x4=12,x5=36,σj>0,此解不是最优(因为z=3x1+5x2+0x3+0x4+0x5)即X0=(0,0,8,12,36)T,此时利润Z=03、寻找另一基可行解Cj比值CBXBb检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000-12/2=636/4=9主元首先确定入基变量再确定出基变量检验数?j81010060101/2012300-21x3x2x5050-30300-5/20Cj比值CBXBb检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000-12/2=636/4=9令x1=0,x4=0,得x2=6,x3=8,x5=12,即得基可行解X1=(0,6,8,0,12)T此时Z=30σ1=3>0,此解不是最优迭代4、寻找下一基可行解Cj比值CBXBb检验数?jx1x2x3x4x53500081010060101/2012300-21x3x2x5050-30300-5/208-4检验数?j40012/3-1/360101/204100-2/31/3x3x2x1053-42000-1/2-1令x4=0,x5=0,得x1=4,x2=6,x3=4,即X0=(4,6,4,0,0)T?j<0最优解:X=(4,6,4,0,0)T最优值:Z=42小结:单纯形表格法的计算步骤①将线性规划问题化成标准型。

②找出或构造一个m阶单位矩阵作为初始可行基,建立初始单纯形表。

第1章线性规划与单纯形法

第1章线性规划与单纯形法

一、选择填空1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 二、判断正误1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 三、将下列问题化为标准型1.123412341231324237..2358,0,0,Max Z x x x x x x x x s t x x x x x x x =++++++≤⎧⎪-+=-⎨⎪≥≤⎩符号不限[解] 令'22x x =-,'445x x x =-,在约束1中引入非负的松弛变量6x ,约束2两边同乘以-1。

整理得:''12345''123456'123''12345623()()7..23()58,,,,,0Max Z x x x x x x x x x x x s t x x x x x x x x x =-++-⎧-++-+=⎪-+--=⎨⎪≥⎩即:12345123456123123456237..2358,,,,,0Max Z x x x x x x x x x x x s t x x x x x x x x x =-++--++-+=⎧⎪---=⎨⎪≥⎩2. Min Z=-x 1+5x 2-2x 3x 1 +x 2- x 3 ≤ 61 - x2 +3x3 ≥ 5x 1 + x 2 = 10x1 ≥0, x2 ≤0, x3符号不限[解] 首先,令对变量x3进行处理,令x3 = x’3- x4;再令x’2 = - x2。

然后对目标函数和约束条件进行标准化。

Max Z=x1+5x2+2x3-2x4x1 - x2 - x3+x4+x5 = 61 + x2 +3x3 - 3x4 -x6 = 5x1 - x2 = 10x1, x2, x3, x4, x5, x6≥0四、用图解法求解下列线性规1. min Z= - x1+2x2x1 - x2 ≥-2x1 +2x2 ≤6x1, x2 ≥0[解]根据上图,最优解为X*=(x1, x2)T =(6, 0)T,最优值为-6。

运筹学第一章

运筹学第一章
max z = - x1’ +2x2 +3( x3’ - x3” ) - x1’ +x2 – ( x3’ - x3” )-x4 = 9 st. 3x1’ +2x2 -4 ( x3’ - x3” )-x5= 7 x1’ +2x2 - 3 ( x3’ - x3” ) = 6 x1’ ≥ 0, x2 ≥ 0, x3’ ≥0 x3” ≥0
3.线性规划问题的标准形式 线性规划问题的标准形式 max z =- x1-2x2 -3x3 2 x1’+x2 +(x3’ - x3” )+ x4 = 9 3 x1’ +x2 +2 (x3’ - x3” ) –x5 = 4 st. -4 x1’ +2x2 +3 (x3’ - x3” ) =6 x1’ ≥ 0, x2 ≥0, x3’ ≥0 x3” ≥0
例1-1-2 ---1 min z = x1+2x2 +3x3 ﹣2 x1+x2 +x3 ≤9 st. ﹣3 x1+x2 +2x3 ≥ 4
4 x1-2x2 - 3x3 =﹣6
x1 ≤0, x2 ≥0, x3 无约束。 (1)min z = x1+2x2 +3x3 令Z=-Z’ min Z=min(-z ’)=max z ’
第一章 讲解内容
第一节: 第一节:线性规划问题及其数学模型 第二节: 第二节:线性规划问题的几何意义 第三节:单纯形法 第三节: 第四节: 第四节:单纯形法的计算过程 第五节: 第五节:单纯形法的进一步讨论 第六节: 第六节:应用案例
第一章 线性规划问题及其数学模型 1. 问题的提出 2.图解法(重点) 3. 线性规划问题的标准形式 4.线性规划问题的解的概念(重点、难点)

运筹学第一章

运筹学第一章

第一章、 线性规划和单纯形法1.1 线性规划的概念一、线性规划问题的导出1.(引例) 配比问题——用浓度为45%和92%的硫酸配置100t 浓度为80%的硫酸。

取45%和92%的硫酸分别为x1和x2t,则有: 求解二元一次方程组得解。

目的相同,但有5种不同浓度的硫酸可选(30%,45%,73%,85%,92%)会出现什么情况?设取这5种硫酸分别为 x1、x2、x3、x4、x5 t, 则有: ⎩⎨⎧⨯=++++=++++1008.092.085.073.045.03.01005432154321x x x x x x x x x x 请问有多少种配比方案?为什么?哪一种方案最好?假设5种硫酸价格分别为:400,700,1400,1900,2500元/t ,则有:2.生产计划问题如何制定生产计划,使三种产品总利润最大?考虑问题:⎩⎨⎧⨯=+=+1008.092.045.01002121x x x x ⎪⎩⎪⎨⎧=≥⨯=++++=++++++++=5,,2,1,01008.092.085.073.045.03.0100..250019001400700400543215432154321 j x x x x x x x x x x x t s x x x x x MinZ j(1)何为生产计划?(2)总利润如何描述?(3)还要考虑什么因素?(4)有什么需要注意的地方(技巧)?(5)最终得到的数学模型是什么?二、线性规划的定义和数学描述(模型)1.定义:对于求取一组变量xj (j =1,2,......,n),使之既满足线性约束条件,又使具有线性表达式的目标函数取得极大值或极小值的一类最优化问题称为线性规划问题,简称线性规划。

2.配比问题和生产计划问题的线性规划模型的特点:用一组未知变量表示要求的方案,这组未知变量称为决策变量;存在一定的限制条件,且为线性表达式;有一个目标要求(最大化,当然也可以是最小化),目标表示为未知变量的线性表达式,称之为目标函数; 对决策变量有非负要求。

第1章线性规划与单纯形法

第1章线性规划与单纯形法
26
线性规划问题的数学模型
7. 线性规划问题的解
线性规划问题
n
max Z cj xj (1) j 1
s.t
n j 1
aij
xj
bi
(i 1, 2,
, m) (2)
x
j
0,
j
1, 2,
, n (3)
求解线性规划问题,就是从满足约束条件(2)、(3)的方程组 中找出一个解,使目标函数(1)达到最大值。
解: Max z = 3x1–5x2’+5x2”–8x3 +7x4 s.t. 2x1–3x2’+3x2”+5x3+6x4+x5= 28 4x1+2x2’-2x2”+3x3-9x4-x6= 39 -6x2’+6x2”-2x3-3x4-x7 = 58 x1 ,x2’,x2”,x3 ,x4 ,x5 ,x6 ,x7 ≥ 0
x1 , x2 0, x3无约束
解:(1)因为x3无符号要求 ,即x3取正值也可取负值,标准 型中要求变量非负,所以
用 x3 x3 替换 x3 ,且 x3 , x3 0
20
线性规划问题的数学模型
(2) 第一个约束条件是“≤”号,在“≤”左端加入松驰变量x4, x4≥0,化为等式;
(3) 第二个约束条件是“≥”号,在“≥”左端减去剩余变量x5, x5≥0;
11
线性规划问题的数学模型
3. 建模条件 (1) 优化条件:问题所要达到的目标能用线型函数描述,且 能够用极值 (max 或 min)来表示;
(2) 限定条件:达到目标受到一定的限制,且这些限制能够 用决策变量的线性等式或线性不等式表示;
(3) 选择条件:有多种可选择的方案供决策者选择,以便找 出最优方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P1,P2,…,Pk
构成最大的线性独立向量组,其对应的解恰为X, 所以根据定义它是基可行解。
定理2 线性规划问题的基可行解X对应于可行 域D的顶点。
证:不失一般性,假设可行解X的前m个分量为正。

m
Pjx j b j 1
(1-8)
现在分两步来讨论,分别用反证法。
(1) 若X不是基可行解, 则它一定不是可行域D的顶点
得到
n
n
Pj xj Pj xj1 1xj2
j1
j1
n
n
n
Pj xj1 Pj xj2 Pj xj2
j1
j1
j1
bbb b
又 因 x j 1 , x j 2 0 , 0 , 1 0 , 所 以 x j ≥ 0 , j = 1 , 2 , … , n 。
由 此 可 见 X ∈ D , D 是 凸 集 。 证 毕 。
j1
• 因X(1)≠X(2),所以上式系数不全为零, 故向量组P1,P2,…,Pm线性相关,与假设 矛盾。即X不是基可行解。
引理2 若K是有界凸集,则任何一点X∈K 可表示为K的顶点的凸组合。
• 本引理证明从略,用以下例子说明这引理。
• 例5 设X是三角形中任意一点,X(1),X(2)和X(3) 是三角形的三个顶点,试用三个顶点的坐标 表示X(见图1-8)
n
Pjxj
j1
b,
xj 0
• 是凸集
证:为了证明满足线性规划问题的约束条件
n
Pjxj b, xj 0, j1,2,,n
j1
的所有点(可行解)组成的集合是凸集, 只要证明D中任意两点连线上的点必然在D内即可。

X1 x1 1,x2 1,, xn 1 T
X2 x1 2,x2 2,,xn 2 T
• 根据引理1,若X不是基可行解,则其正分量 所对应的系数列向量P1,P2,…,Pm线性相关, 即存在一组不全为零的数αi,i=1,2,…,m使得
• α1P1+α2P2+…+αmPm=0 (1-9)
• 用一个μ>0的数乘(1-9)式再分别与(1-8)式 相加和相减,
这样得到 (x1-μα1)P1+(x2-μα2)P2+…+(xm-μαm)Pm=b (x1+μα1)P1+(x2+μα2)P2+…+(xm+μαm)Pm=b
解 任选一顶点X(2),做一条连线XX(2);并延长交于 X(1)、X(3)连接线上一点X′。因X′是X(1)、X(3)连线
上一点,故可用X(1)、X(3)线性组合表示为
• X′=αX(1)+(1-α)X(3) 0<α<1 • 又因X是X′与X(2)连线上的一个点,故
• X=λX′+(1-λ)X(2) 0<λ<1 • 将X′的表达式代入上式得到
现取 X(1)=[(x1-μα1),(x2-μα2),…,(xm-μαm),0,…,0] X(2)=[(x1+μα1),(x2+μα2),…,(xm+μαm),0,…,0] 由X(1),X(2)可以得到X=(1/2)X(1)+(1/2)X(2),
即X是X(1),X(2)连线的中点
另一方面,当μ充分小时,可保证
2.1 基本概念
1. 凸集 2. 凸组合 3. 顶点
1.凸集
• 设K是n维欧氏空间的一点集,若任意两点X(1)∈K, X(2)∈K 的 连 线 上 的 所 有 点 αX(1)+(1-α)X(2)∈K , (0≤α≤1);则称K为凸集。

图1-7
• 实心圆,实心球体,实心立方体等都是凸集, 圆环不是凸集。从直观上讲,凸集没有凹入 部分,其内部没有空洞。图1-7中的(a)(b)是凸 集,(c)2)。
则有
n
Pjxj1 b,xj1 0, j1,2,,n
j1
n
Pjxj2 b,xj2 0, j1,2,,n
j1
令X=(x1,x2,…,xn)T为x(1),x(2)连线上的任意一点,即 X=αX(1)+(1-α)X(2) (0≤α≤1)
X的每一个分量是xj xj1 (1)xj2 ,将它代入约束条件,
3. 顶点
• 设K是凸集,X∈K;若X不能用不同的两点X(1)∈K 和X(2)∈K的线性组合表示为
• X=αX(1)+(1-α)X(2),(0<α<1) • 则称X为K的一个顶点(或极点)。
• 图中0,Q1,2,3,4都是顶点。
2.2 几个定理
• 定理1 域
若线性规划问题存在可行域,则其可行
DX
• X=λ[αX(1)+(1-α)X(3)]+(1-λ)X(2) • =λαX(1)+λ(1-α)X(3)+(1-λ)X(2)
• 使 X=αX(1)+(1-α) X(2) , 0<α<1 • 设X是基可行解,对应向量组P1…Pm线性独
立 X(1。),当X(j2>)是m可时行,域有的xj两=x点j(1。)=x应j(满2)=足0,由于
m
m
Pjxj1 b 与 Pjxj2 b
j1
j1
将这两式相减,即得
m Pj xj1 xj2 0
• 图1-2中的阴影部分 是凸集。
• 任何两个凸集的交集是凸集,见图1-7(d)
2. 凸组合
• 设X(1),X(2),…,X(k)是n维欧氏空间E中的k个点。 若存在μ1,μ2,…,μk,且0≤μi≤1, i=1,2,…,k;
k
i 1
i1
• 使X=μ1X(1)+μ2X(2)+…+μkX(k)
• 则称X为X(1),X(2),…,X(k)的凸组合。(当0<μi< 1时,称为严格凸组合).
• xi±μαi≥0,i=1,2,…,m • 即X(1),X(2)是可行解。 • 这证明了X 不是可行域 D 的顶点。
(2) 若X不是可行域D的顶点,则它一 定不是基可行解
因为X不是可行域 D 的顶点,故在可行域D 中可找到不同的两点 • X(1)=(x1(1),x2(1),…,xn(1))T • X(2)=(x1(2),x2(2),…,xn(2))T
引理 1 线性规划问题的可行解X=(x1,x2,…,xn)T为
基可行解的充要条件是X的正分量所对应的系数列向 量是线性独立的。
证: (1) 必要性由基可行解的定义可知。
(2) 充分性若向量P1,P2,…,Pk线性独立,
则必有k≤m;当k=m时,它们恰构成一个基,从而 X=(x1,x2,…,xk,0…0)为相应的基可行解。当k<m时, 则一定可以从其余的列向量中取出m-k个与
相关文档
最新文档