数学人教九上《圆》习题2

合集下载

人教版九年级数学上册第24章《圆》单元练习题(含答案)

人教版九年级数学上册第24章《圆》单元练习题(含答案)

人教版九年级数学上册第24章《圆》单元练习题(含答案)一、单选题1.已知点P 在半径为8的O 外,则( )A .8OP >B .8OP =C .8OP <D .8OP ≥ 2.在O 中,AB ,CD 为两条弦,下列说法:①若AB CD =,则AB CD =;②若AB CD =,则2AB CD =;③若2AB CD =,则弧AB=2弧CD ;④若2AOB COD ∠=∠,则2AB CD =.其中正确的有( )A .1个B .2个C .3个D .4个 3.O 的半径为10cm ,弦//AB CD .若12cm,16cm AB CD ==,则AB 和CD 的距离为( ) A .2cm B .14cm C .2cm 或14cm D .2cm 或10cm 4.如图,正五边形ABCDE 和正三角形AMN 都是O 的内接多边形,则BOM ∠的度数是( )A .36︒B .45︒C .48︒D .60︒5.如图,,OA OB 是O 的两条半径,点C 在O 上,若80AOB ∠=︒,则C ∠的度数为( )A .30︒B .40︒C .50︒D .60︒ 6.如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3m OA =,1.5m OB =,则阴影部分的面积为( )A .24.25m πB .23.25m πC .23m πD .22.25m π 7.如图,点,,,,A B C DE 在O 上,,42AB CD AOB =∠=︒,则CED ∠=( )A .48︒B .24︒C .22︒D .21︒8.如图,ABC 内接于O ,CD 是O 的直径,40ACD ∠=︒,则B ∠=( )A .70°B .60°C .50°D .40°9.如图,△ABC 内接于⊙O ,∠A =50°.E 是边BC 的中点,连接OE 并延长,交⊙O 于点D ,连接BD ,则∠D 的大小为( )A .55°B .65°C .60°D .75°10.已知圆锥的母线长8cm ,底面圆的直径6cm ,则这个圆锥的侧面积是( )A .96πcm 2B .48πcm 2C .33πcm 2D .24πcm 211.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A ,B 的读数分别为86°,30°,则∠ACB 的度数是( )A .28°B .30°C .36°D .56°12.如图,点A ,B 的坐标分别为(2,0),(0,2)A B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A .21+B .122+C .221+D .1222- 二、填空题13.如图,在Rt ABC △甲,90ABC ︒∠=,2AB =,23BC =,以点B 为圆心,AB 的长为半径作圆,交AC 于点E ,交BC 于点F ,阴影部分的面积为__________(结果保留π).14.如图,在Rt AOB 中,23,30,OB A O =∠=︒的半径为1,点P 是AB 边上的动点,过点P 作O 的一条切线PQ (其中点Q 为切点),则线段PQ 长度的最小值为____.15.如图,将半径为10cm 的圆形纸片沿一条弦AB 折叠,折叠后弧AB 的中点C 与圆心O 重叠,则弦AB 的长度为________cm .16.如图,A 、B 是⊙O 上的两点,AC 是过A 点的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于________度时,AC 才能成为⊙O 的切线.17.如图,ABC 是O 的内接三角形.若=45ABC ∠︒,2AC =,则O 的半径是______.18.如图,在正五边形ABCDE 中,连结AC ,以点A 为圆心,AB 为半径画圆弧交AC 于点F ,连接DF .则∠FDC 的度数是 _____.三、解答题19.如图,AD ,BD 是O 的弦,AD BD ⊥,且28BD AD ==,点C 是BD 的延长线上的一CD=,求证:AC是O的切线.点,220.请用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,Rt△ABC中,∠C=90°.求作:一个⊙O,使⊙O与AB、BC所在直线都相切,且圆心O在边AC上.21.如图,四边形ABCD内接于120,,,求证:ABC是等边三角形.O AB AC ADC=∠=︒22.如图,AB 是O 的直径,过点A 作O 的切线AC ,点P 是射线AC 上的动点,连接OP ,过点B 作BD //OP ,交O 于点D ,连接PD .(1)求证:PD 是O 的切线;(2)当APO ∠的度数为______时,四边形POBD 是平行四边形.23.如图,Rt ABC △中,90C ∠=︒,点O 在AC 上,以OA 为半径的半圆O 分别交AB ,AC 于点D ,E ,过点D 作半圆O 的切线DF ,交BC 于点F .(1)求证:BF DF =;(2)若4AO CE ==,1CF =,求BF 的长.24.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,AB ⊥CD ,连接AC ,OD .(1)求证:∠BOD =2∠A ;(2)连接DB ,过点C 作CE ⊥DB ,交DB 的延长线于点E ,延长DO ,交AC 于点F .若F 为AC 的中点,求证:直线CE 为⊙O 的切线.25.如图,AB 是O 的直径,CD 是O 的一条弦,,AB CD ⊥连接,.AC OD(1)求证:2;BOD A ∠=∠(2)连接DB ,过点C 作,CE DB ⊥交DB 的延长线于点E ,延长,DO 交AC 于点F ,若F 为AC 的中点,求证:直线CE 为O 的切线.26.石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为AB .桥的跨度(弧所对的弦长)26m AB =,设AB 所在圆的圆心为O ,半径OC AB ⊥,垂足为D .拱高(弧的中点到弦的距离)5m CD =.连接OB .(1)直接判断AD 与BD 的数量关系;(2)求这座石拱桥主桥拱的半径(精确到1m )参考答案1.A2.A3.C4.C5.B6.D7.D8.C9.B10.D11.A12.B13.π33+ 14.2215.10316.6017.118.3619.证明:连接AB ,∵AD BD ⊥,且28BD AD ==∴AB 为直径,AB 2=82+42=80,∵CD =2,AD =4∴AC 2=22+42=20∵CD =2,BD =8,∴BC 2=102=100∴222AC AB CB +=,∴90BAC ∠=︒∴AC 是O 的切线.20.解:作∠ABC 的平分线交AC 于O 点,以O 点为圆心,OC 为半径作圆,则O 为所求作的圆.21.证明:∵四边形ABCD 内接于O , ∴180ADC ABC ∠+∠=︒,又∵120ADC ∠=︒,∴180********ABC ADC ∠=︒-∠=︒-︒=︒, ∵AB AC =,∴AB AC =,∴ABC 是等边三角形.22.解:证明:连接OD ,∵P A 切⊙O 于A ,∴P A ⊥AB ,即∠P AO =90°,∵OP ∥BD ,∴∠DBO =∠AOP ,∠BDO =∠DOP , ∵OD =OB ,∴∠BDO =∠DBO ,∴∠DOP =∠AOP ,在△AOP 和△DOP 中,AO DO AOP DOP PO PO =⎧⎪∠=∠⎨⎪=⎩,∴△AOP ≌△DOP (SAS ),∴∠PDO =∠P AO ,∵∠P AO =90°,∴∠PDO =90°,即OD ⊥PD ,∵OD 过O ,∴PD 是⊙O 的切线;(2)由(1)知:△AOP ≌△DOP ,∴P A =PD ,∵四边形POBD 是平行四边形,∴PD =OB ,∵OB =OA ,∴P A =OA ,∴∠APO =∠AOP ,∵∠P AO =90°,∴∠APO =∠AOP =45°.23.(1)证明:连接OD ,如图,∵半圆O 的切线DF ,∴90ODF ∠=︒.∴90ADO BDF ∠+∠=︒.∵90C ∠=︒,∴90OAD B ∠+∠=︒.∵OA OD =,∴OAD ADO ∠=∠.∴B BDF ∠=∠.∴BF DF =.(2)解:连接OF .∵4AO CE ==,AO OE =,∴8OC =.∵9090C ODF ∠=︒=∠=︒,1CF =,∴2222265OF OC CF OD DF =+=+=.又∵4OD =,∴7DF BF ==.24.(1)证明:如图,连接AD ,∵AB 是⊙O 的直径,AB ⊥CD ,∴BC BD =,∴∠CAB =∠BAD ,∵∠BOD =2∠BAD ,∴∠BOD =2∠CAB ;(2)证明:如图,连接OC ,AD ,∵F为AC的中点,∴DF⊥AC,∴AD=CD,∴∠ADF=∠CDF,∵BC BD=,∴∠CAB=∠DAB,∵OA=OD,∴∠OAD=∠ODA,∴∠CDF=∠CAB,∵OC=OD,∴∠CDF=∠OCD,∴∠OCD=∠CAB,∵BC BC=,∴∠CAB=∠CDE,∴∠CDE=∠OCD,∵∠E=90︒,∴∠CDE+∠DCE=90︒,∴∠OCD+∠DCE=90︒,即OC⊥CE,∵OC为半径,∴直线CE为⊙O的切线.25.(1)证明:设AB交CD于点H,连接OC,由题可知,∴=,90OC OD∠=∠=︒,OHC OHD()Rt Rt HL COH DOH ≅∴,COH DOH ∴∠=∠,BC BD ∴=,COB BOD ∴∠=∠,2COB A ∠=∠,2BOD A ∴∠=∠;(2)证明:连接AD ,OA OD =,OAD ODA ∠=∠∴,同理可得:OAC OCA ∠=∠,OCD ODC ∠=∠, ∵点H 是CD 的中点,点F 是AC 的中点,OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠, 180OAD ODA OAC OCA OCD ODC ∠+∠+∠+∠+∠+∠=︒, 30OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠=︒, 223060COB CAO ∴∠=∠=⨯︒=︒, AB 为O 的直径,90ADB ∴∠=︒,90903060ABD DAO ∴∠=-∠=︒-︒=︒,60ABD COB ∴∠=∠=︒,OC DE ∴∥,CE BE ⊥,∴直线CE 为O 的切线. 26.解:∵半径OC AB ⊥, ∴AD BD =.故答案为:AD BD =.(2)设主桥拱半径为R ,由题意可知26AB =,5CD =, ∴11261322BD AB ==⨯=,5OD OC CD R =-=-, 在Rt OBD △中,由勾股定理,得222OB BD OD =+, 即22213(5)R R =+-, 解得19.4R =,∴19R ≈,因此,这座石拱桥主桥拱半径约为19m。

(人教版)重庆九年级数学上册第二十四章《圆》经典练习卷(答案解析)

(人教版)重庆九年级数学上册第二十四章《圆》经典练习卷(答案解析)

一、选择题1.下列说法不正确的是( )A .不在同一直线上的三点确定一个圆B .90°的圆周角所对的弦是直径C .平分弦的直径垂直于这条弦D .等弧所对的圆周角相等2.如图,AB 是О的直径,,CB CD 是О的弦,且,CB CD CD =与AB 交于点E ,连接OD .若40,AOD ∠=︒则D ∠的度数是( )A .20B .35C .40D .55 3.点P 到圆上各点的最大距离为10cm ,最小距离为6cm ,则此圆的半径为( ) A .8cmB .5cm 或3cmC .8cm 或2cmD .3cm 4.已知O 的直径10CD cm ,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( ) A .25 B .43 C .25或45 D .23或43 5.已知△ABC 的外心为O ,连结BO ,若∠OBA=18°,则∠C 的度数为( )A .60°B .68°C .70°D .72°6.下列事件属于确定事件的为( )A .氧化物中一定含有氧元素B .弦相等,则所对的圆周角也相等C .戴了口罩一定不会感染新冠肺炎D .物体不受任何力的时候保持静止状态 7.如图,在ABC 中,90C ∠=︒,7AB =,4AC =,以点C 为圆心、CA 为半径的圆交AB 于点D ,求弦AD 的长为( )A .4337B .327C .2337D .167 8.如图,⊙O 的直径12CD =,AB 是⊙O 的弦,AB CD ⊥,垂足为P ,:1:2CP PO =,则AB 的长为( )A .45B .215C .16D .8 9.如图,PA 切O 于点,A PB 切O 于点B PO ,交O 于点C ,下列结论中不一定成立的是( )A .PA PB =B .PO 平分APB ∠C .AB OP ⊥D .2PAB APO ∠=∠ 10.如图,AB 为⊙O 的直径,,C D 为⊙O 上的两点,若7OB BC ==.则BDC ∠的度数是( )A .15︒B .30C .45︒D .60︒ 11.如图,大半圆中有n 个小半圆,若大半圆弧长为1L ,n 个小半圆弧长的和为2L ,大半圆的弦AB ,BC ,CD 的长度和为3L .则( )A .123L L L =>B .123L L L =<C .无法比较1L 、2L 、3L 间的大小关系D .132L L L >>12.如图,ABC 的顶点A 是O 上的一个动点,90ACB ∠=︒,30BAC ∠=︒,边AC ,AB 分别交O 于点E ,D ,分别过点E ,D 作O 的切线交于点F ,且点F 恰好在边BC 上,连接OC ,若O 的半径为6,则OC 的最大值为( )A .393+B .2103+C .353+D .53 13.如图,半径为1cm 的P 在边长为9πcm ,12πcm ,15πcm 的三角形外沿三遍滚动(没有滑动)一周,则圆P 所扫过的面积为( )cm 2A .73πB .75πC .76πD .77π14.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在O 上,点D 在ADB 上,DA DB =,则AOD ∠的度数为( )A .112.5°B .120°C .135°D .150° 15.如图,P 与y 轴交于点()0,4M -,()0,10N -,圆心P 的横坐标为4-,则P 的半径为( )A .3B .4C .5D .6二、填空题16.如图,点A ,B ,C 在圆O 上,54ACB ∠=︒,则ABO ∠的度数是______.17.如图,30ACB ∠=︒,点O 是CB 上的一点,且6OC =,则以4为半径的O 与直线CA 的公共点的个数______.18.如图,Rt △ABC 的内切圆⊙I 分别与斜边AB 、直角边BC 、CA 切于点D 、E 、F ,AD =3,BD =2,则Rt △ABC 的面积为_______.19.如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,58AOB ∠=,B 是弧AC 的中点,则BDC ∠的度数为___________.20.如图,半径为10的扇形AOB 中,∠AOB=90°,C 为AB 上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E .若∠CDE=36°,则图中阴影部分的面积为____.21.如图,把边长为12的正三角形ABC 纸板剪去三个小正三角形(阴影部分),得到正六边形DEFGHK ,则剪去的小正三角形的边长为__________________.22.在△ABC 中,已知∠ACB =90°,BC =3,AC =4,以点C 为圆心,2.5为半径作圆,那么直线AB 与这个圆的位置关系分别是_________.23.在平面直角坐标系xOy 中,A (5,6),B (5,2),C (3,0),△ABC 的外接圆的圆心坐标为____.24.如图,正方形 ABCD 中,点 E 是 CD 边上一点,连接 AE ,过点 B 作 BG ⊥AE 于点 G , 连接 CG 并延长交 AD 于点 F ,当 AF 的最大值是 2 时,正方形 ABCD 的边长为______.25.如图,AB 是O 的直径,O 交BC 的中点于D ,DE AC ⊥于E ,连接AD ,则下列结论正确的有______(填序号) ①AD BC ⊥;②EDA B ∠=∠;③12OA AC =;④DE 是O 的切线.26.如图,⊙O 的半径为3,点A 是⊙O 外一点,OA =6,B 是⊙O 上的动点,线段AB 的中点为P ,连接 OA 、OP .则线段 OP 的最大值是______.三、解答题27.如图,在矩形ABCD 中,4AB =,6BC =.E 为CD 边上的一个动点(不与C 、D 重合),⊙O 是BCE 的外接圆.(1)若2CE =,⊙O 交AD 于点F 、G .求FG 的长度;(2)若CE 的长度为m ,⊙O 与AD 的位置关系随着m 的值变化而变化,试探索⊙O 与AD 的位置关系及对应的m 的取值范围.28.如图,AB 为O 的弦,,C D 是直线AB 上两点,且AC BD =,求证:C D ∠=∠.29.在O 中,弦CD 与直径AB 相交于点,62P ABC ∠=︒.(1)如图1,若100APC ∠=︒,求BAD ∠和CDB ∠的大小;(2)如图2,若CD AB ⊥,过点D 作O 的切线,与AB 的延长线相交于点E ,求E∠的大小.30.如图,在平面直角坐标系中,点P (3,4),连接OP ,将线段OP 绕点O 顺时针旋转270°得线段OP 1.(1)在图中作出线段OP 1,并写出P 1点的坐标;(2)求点P 在旋转过程中所绕过的路径长;(3)求线段OP 在旋转过程中所扫过的图形的面积.。

人教版九年级数学上册第24章《圆》选择专项练习题(含答案)

人教版九年级数学上册第24章《圆》选择专项练习题(含答案)

人教版九年级数学上册第24章《圆》选择专项练习题 1.若⊙A 的半径为5,圆心A 与点P 的距离是25,则点P 与⊙A 的位置关系是( ) A .P 在⊙A 上 B .P 在⊙A 外 C .P 在⊙A 内 D .不确定 2.扇形的半径为20cm ,扇形的面积2100cm π,则该扇形的圆心角为( ) A .120︒ B .100︒ C .90︒ D .60︒ 3.在下列命题中,正确的是( )A .长度相等的弧是等弧B .直径所对的圆周角是直角C .三点确定一个圆D .三角形的外心到三角形各边的距离相等 4.如图,点A 、B 、C 是⊙O 上的三个点,若∠AOB =82°,则∠C 的度数为( )A .82°B .38°C .24°D .41° 5.如图,AB 是O 的直径,点E ,C 在O 上,点A 是EC 的中点,过点A 画O 的切线,交BC 的延长线于点D ,连接EC .若58.5ADB ∠=︒,则ACE ∠的度数为( )A .29.5︒B .31.5︒C . 58.5︒D .63︒ 6.如图,在⊙O 中,半径r =5,弦AB =8,P 是弦AB 上的动点(不含端点A ,B ),若线段OP 长为正整数,则点P 的个数有( )A .2个B .5个C .4个D .3个 7.已知⊙O 的直径为12,直线l 上有一点P ,OP =6,则直线l 与⊙O 的位置关系是( )A.相交B.相切C.相离D.相切或相交8.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16cm,则球的半径为()A.103cm B.10cm C.102cm D.83cm9.一个圆锥体底面半径为3cm,高为4cm,则这个圆锥体的侧面积为()A.12πcm²B.28πcm²C.15πcm²D.20πcm²10.如图,A,B,C是⊙O上的三个点,若∠B=32°,则∠AOC=()A.64°B.58°C.68°D.55°11.如图,BD是⊙O的直径,点A、C在圆上,且CD=OB,则∠BAC=()A.120°B.90°C.60°D.30°12.下列命题:①平⾏四边形是中⾏对称图形,也是轴对称图形;②直径是最长的弦,半径是最短的弦;③过切点的直线是圆的切线;④三角形的外⾏是三条边垂直平分线的交点;⑤三角形的内⾏是三条内角平分线的交点;其中正确的有()A.1个B.2个C.3个D.4个13.如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.10 B.18 C.20 D.2214.下列关于圆的说法,正确的是()A.在同圆或等圆中,相等的弦所对的圆周角相等B.平分弦的直径垂直于弦C.圆的每一条直径所在的直线都是它的对称轴D.过三点可以作一个圆15.一个适当大的正六边形,它的一个顶点与一个边长为定值的小正六边形ABCDEF的中心O重合,且与边AB、CD相交于G、H(如图).图中阴影部分的面积记为S,三条线段GB、BC、CH的长度之和记为l,大正六边形在绕点O旋转过程中,下列说法正确的是()A.S变化,l不变B.S不变,l变化C.S变化,l变化D.S与l均不变16.下列四个命题:①直角三角形斜边上的中线等于斜边的一半;②对角线相等的平行四边形是菱形;③一组邻边相等的矩形是正方形;④三角形三条角平分线的交点是三角形的外心.其中真命题共有()A.1个B.2个C.3个D.4个17.下列说法正确的是()A.三角形三条中线的交点是三角形重心B.等弦所对的圆周角相等C.长度相等的两条弧是等弧D.三角形的外心到三边的距离相等18.如图,四边形ABCD内接于⊙O,若∠C=100°,则∠A的度数是()A .80°B .100°C .110°D .120°19.下列说法正确的是( )A .等弧所对的圆心角相等B .同弦所对的圆周角相等C .经过三点可以作一个圆D .相等的圆心角所对的弧相等20.如图,P 是O 外一点,PA 、PB 切O 于点A 、B ,点C 在优弧AB 上,若68P ∠=︒,则ACB ∠等于( )A .22︒B .34︒C .56︒D .68︒21.有四个命题:①直径相等的两个圆是等圆 ②长度相等的两条弧是等弧;③圆中最大的弦是过圆心的弦;④圆周角是圆心角的一半.其中真命题是( )A .①③B .①③④C .①④D .④22.⊙O 的直径是10,两平行弦的长度分别是6和8,那么这两弦的距离是( ) A .1 B .7 C .8 D .1或723.△ABC 的顶点都在⊙O 上,若∠BOC =120°,则∠BAC 等于( )A .60°B .90°C .120°D .60°或120° 24.如图,OA 为⊙O 的半径,弦BC ⊥OA 于点P .若BC =8,AP =2,则⊙O 的半径长为( )A .5B .6C .10D 1725.如图,两个同心圆的半径分别是3cm 和5cm ,大圆的一条弦AB 与小圆相切,则弦ABA .3cmB .4cmC .6cmD .8cm26.如图,已知O 的半径为2,AC 与O 相切,连接AO 并延长,交O 于点B ,过点C 作CD AB ⊥,交O 于点D ,连接BD ,若30A ∠=︒,则弦BD 的长为( )A .3B .5C .23D .3227.下列说法正确的是( )A .在同一平面内,三点确定一个圆B .等弧所对的圆心角相等C .旋转会改变图形的形状和大小D .平分弦的直径垂直于弦28.如图,⊙O 内切于ABC ,切点分别为D ,E ,F .已知50B ∠=︒,60C ∠=°,连接OE ,OF ,DE ,DF ,那么EDF ∠等于( )A .40︒B .55︒C .65︒D .70︒29.下列语句中:①平分弦的直径垂直于弦;②相等的圆心角所对的弧相等;③长度相等的两条弧是等弧;④圆是轴对称图形,任何一条直径都是它的对称轴;⑤圆内接四边形的对角互补;⑥在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等,不正确的有( )A .5个B .4个C .3个D .2个30.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角A .有一个内角小于60°B .每一个内角都小于60°C .有一个内角大于60°D .每一个内角都大于60°31.AB =12cm ,过A 、B 两点画半径为6cm 的圆,能画的圆的个数为( ) A .0个 B .1个 C .2个 D .无数个 32.“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”用现在的几何语言表达即:如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为点E ,CE =1寸,AB =10寸,则直径CD 的长度是( )A .12寸B .24寸C .13寸D .26寸33.如图,将边长为a 的正六边形123456A A A A A A 在直线l 上由图1的位置按顺时针方向向右作无滑动滚动,当正六边形旋转一周滚动到图2位置时,顶点1A 所经过的路径( )A 843a +B 423a +C 43a +D 423a + 34.已知⊙O 的半径为1,点P 在⊙O 外,则OP 的长( )A .大于1B .小于1C .大于2D .小于235.如图,在Rt △ABC 中,∠ACB =90°, AC =3,以点C 为圆心、CA 为半径的圆与AB 交于点D ,若点D 巧好为线段AB 的中点,则AB 的长度为( )A.32B.3 C.6 D.936.如图所示,在⊙O中,AB AC=,∠A=30°,则∠B=()A.150°B.75°C.60°D.15°37.如图,F为正方形ABCD的边CD上一动点,AB=2.连接BF,过A作AH⊥BF交BC于H,交BF于G,连接CG,当CG为最小值时,CH的长为()A.2B.225C.3﹣5D.3+538.如图,ABC内接与O,50A∠=,E是边BC的重点,连接OE并延长,交O于点D,连接BD,则DBC∠的大小为()A.55°B.6 C.25°D.75°39.已知圆心角为120°的扇形的面积为12π,则扇形的半径为( )A .4B .6C .43D .6240.如图O 的直径AB 垂直于弦CD ,垂足是E ,225A ∠=︒.,4OC =,CD 的长为( )A .22B .4C .42D .841.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠ABC =30°,AC =1,则⊙O 的半径为( )A .1B .2C .3D .2342.如图,点A 、B 、C 是⊙O 上的三个点,若∠AOB =66°,则∠C 的度数为( )A .33°B .34°C .44°D .46°43.已知⊙O 的直径是10,圆心O 到直线l 的距离是5,则直线l 和⊙O 的位置关系是( ) A .相离 B .相交 C .相切 D .无法确定 44.下列说法中一定正确的是( )A .相等的圆心角所对的弧相等B .圆上任意两点间的部分叫做圆弧C .平分弦的直径垂直于弦D .圆周角等于圆心角的一半45.已知O 的半径为2,点P 为O 内一定点,且1PO =,过点P 作O 的弦,其中最短的弦的长度是()A.4 B.3C.23D.246.如图,AB是☉O的直径,∠CAB=40°,则∠D=()A.60°B.30°C.40°D.50°47.下列说法:①优弧比劣弧长;②三点可以确定一个圆;③长度相等的弧是等弧;④经过圆内的一个定点可以作无数条弦;其中不正确的个数是()A.1个B.2个C.3个D.4个48.将一个底面半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是( )A.54︒B.126︒C.136︒D.144︒49.如图,⊙O的直径CD垂直弦AB于点E,且CE=4,OB=8,则AB的长为()A.3B.4 C.6 D.350.已知⊙O半径为6,圆心O在坐标原点上,点P的坐标为(3,4),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.不能确定51.⊙O的半径为5,点P到圆心O的距离为5,点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定52.如图.在⊙O中,直径AB⊥CD,下列说法不正确的是()A.AB是最长的弦B.∠ADB=90°C.PC=PD D.∠ABD=2∠ADC53.如图,在Rt ABC中,∠ACB=90°,∠A=54°,以BC为直径的⊙O交AB于点D.E是⊙O上一点,且CE=CD,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112°D.124°54.如图,Rt△ABC的直角顶点C在⊙O上滑动,且各边与⊙O分别交于点D,E,F,G,若EF,DG,DE的度数比为2:3:5,BE=BF,则∠A的度数为()A.30°B.32°C.34°D.36°55.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=40°,B为弧AN的中点,P 是直径MN上一动点,则PA+PB的最小值为()A.5B.3C.5D.356.如图,正方形ABCD的四个顶点分别在⊙O上,点P是弧CD上不同于点C的任意一点,则∠BPC=()A.45°B.60°C.75°D.90°57.如图,点A、B、P在⊙O上,且∠APB=50°.若点M是⊙O上的动点,要使△ABM为等腰三角形,则所有符合条件的点M有()A.1个B.2个C.3个D.4个58.O的半径为6cm,圆心O到直线l的距离为7cm,则直线l与O的位置关系是()A.相交B.相切C.相离D.不能确定59.如图,已知直线334y x=-与x轴、y轴分别交于A、B两点,P在以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB,则△PAB面积的最小值为()A.5.5 B.10.5 C.8 D.1260.如图,⊙O的半径为2,定点P在⊙O上,动点A,B也在⊙O上,且满足∠APB=30°,C为PB的中点,则点A,B在圆上运动的过程中,线段AC的最大值为()A.3B3C.3 2 D.3参考答案1.C2.C3.B4.D5.B6.D7.D8.B9.C10.A11.C12.B13.C14.C15.D16.B 17.A18.A19.A20.C21.A22.D23.D24.A25.D26.C27.B28.B29.A30.D 31.B32.D33.B34.A35.C36.B37.C38.C39.B40.C41.A42.A43.C44.B 45.C46.D47.C48.D49.D50.A51.C52.D53.B54.D55.B56.A57.D58.C 59.A60.A。

人教版九年级数学上册作业课件 第二十四章 圆 正多边形和圆 (2)

人教版九年级数学上册作业课件 第二十四章 圆 正多边形和圆 (2)

a,则正六
边形的面积为 6×21
×a×
3 2
a=32 3
a2,正方
形的面积为 a×a=a2,∴正六边形与正方形的面
(2积)易比得为O3F2=3 Ea2F∶=aF2=G,3 ∴3 ∠∶O2GF=12 (180°-60°-90°)=15°
16.如图①,②,③,④,M,N分别是⊙O的内接正三角形ABC,正方 形ABCD,正五边形ABCDE,正n边形ABCDEF…的边AB,BC上的点,且 BM=CN,连接OM,ON.
人教版
第二十四章 圆
24.3 正多边形和圆
1.各边_相__等__、各角也_相__等__的多边形是正多边形. 练习1:下列图形中是正多边形的是( D ) A.等腰三角形 B.菱形 C.矩形 D.正方形
2.正多边形外接圆的圆心叫做这个正多边形的_____,中外心接圆的 _____叫半做径正多边形的半径,正多边形每一边所对的圆心角叫做正多 边形的______中,心中角心到正多边形的一边的_____叫距做离正多边形的
(2)90° 72° (3)∠MON=36n0°
(1)求图①中∠MON的度数; (2)图②中∠MON的度数是_9_0_°___,_ 图③中∠MON的度数是_7_2_°___;_ (3)试探究∠MON的度数与正n边形的边数n的关系.(直接写出答案)
解:(1)连接OA,OB,图略.∵正三角形ABC内接于⊙O,∴AB=BC, ∠OAM=∠OBN=30°,∠AOB=120°.∵BM=CN,∴AM=BN,又 ∵OA=OB,∴△AOM≌△BON(SAS),∴∠AOM=∠BON,∴∠AOM+ ∠BOM=∠BON+∠BOM,∴∠AOB=∠MON=120°
∠DEB=72°,∴∠AME=∠EAC,∴ME=AE

人教版九年级上册数学《圆》同步练习题

人教版九年级上册数学《圆》同步练习题

九年级数学《圆》同步练习题一、选择题 :1. 以下说法正确的选项是 ()A. 垂直于半径的直线是圆的切线B. 经过三点必定能够作圆C. 圆的切线垂直于圆的半径D.每个三角形都有一个内切圆2. 三角形的外心是 ( )A. 三条中线的交点B.三条边的垂直均分线的交点C. 三个内角均分线的交点D.三条高的交点3. 如图 (1), 已知 PA 切⊙ O 于 B,OP 交 AB 于 C, 则图中能用字母表示的直角共有 ()个A.3B.4C.5D.6AOCPO100BBCA(1)(2)图 34. 已知⊙ O 的半径为 10cm, 弦 AB ∥ CD,AB=12cm,CD=16cm,则 AB 和 CD 的距离为()A.2cmB.14cmC.2cm或 14cm D.10cm或 20cm 5. 在半径为 6cm 的圆中 , 长为 2 cm 的弧所对的圆周角的度数为( )A.30 °B.100C.120°D.130°6. 如图 (2), 已知圆心角∠ AOB 的度数为 100° , 则圆周角∠ ACB 的度数是 ( )A.80°B.100 °C.120°D.130°7. 若两圆半径分别为 R 和 r(R>r), 圆心距为 d, 且 R 2+d 2=r 2+2Rd, 则两圆的地点关系为 ( )A. 内切B.内切或外切C.外切D.订交C8. 圆锥的母线长 5cm,底面半径长 3cm,那么它的侧面睁开图的圆心角是( )A.180°B.200 °C.225 °D.216 °AOB9.如图 (3) ,某城市公园的雕塑是由3 个直径为 1m 的圆两两相垒图 4立在水平的地面上,则雕塑的最高点到地面的距离为[ ]T DA .23 B.33C.22 D. 32图 52222AOB二、填空题 :P1. 假如⊙ O 的直径为 10cm, 弦 AB=6cm,那么圆心 O 到弦 AB 的距离为 ______cm.2. 如图 (4) ,在⊙ O 中,直径 AB 为 10cm ,弦 AC 为 6cm ,∠ACB 的均分线交⊙ O 于 D ,则BC=cm, ∠ ABD= °3. 如图 (5) :PT 切⊙ O 于点 T ,经过圆心的割线 PAB 交⊙ O 于点 A 和 B ,PT=4,PA=2,则⊙ O 的半径是;15.PA 、 PB 是⊙ O 的切线 ,A 、 B 为切点 , 若∠ AOB=136° , 则∠ P=______. 4. ⊙ O 的半径为 6, ⊙O 的一条弦 AB 长 6 3 , 以 3 为半径的齐心圆与直线AB 的地点关系是 __________.5. 两圆相切 , 圆心距为 10cm,已知此中一圆半径为 6cm, 则另一圆半径为 ____6. 两圆半径长分别为 R 和 r(R>r), 圆心距为 d, 若对于 x 的方程 x 2-2rx+(R-d) 2=0 有相等的实数根 , 则两圆的地点关系是 _________.1 、正方形 ABCD 中, AB=1,分别以 A 、C 为圆心作两个半径为R 、r ( R>r )的圆,当R 、 r 知足条件时,⊙ A 与⊙ C 有 2 个交点。

人教版九年级上册数学同步练习《圆》(习题+答案)

人教版九年级上册数学同步练习《圆》(习题+答案)

24.1圆内容提要1.平面上到定点的距离等于定长的点的集合叫做圆,其中定点为圆心,定长为半径.它包含两方面的意义:(1)圆上各点到定点(即圆心)的距离等于定长(即半径);(2)到定点的距离等于定长的点都在圆上.2.确定一个圆需要两个要素,即圆心与半径,其中圆心确定圆的位置,半径确定圆的大小.3.圆是中心对称图形,对称中心是圆心.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.4.圆是轴对称图形,其对称轴是任意一条经过圆心的直线.(1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;(2)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.5.圆周角的性质:(1)在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;(2)在同圆或等圆中,相等的圆周角所对的弧相等;(3)半圆或直径所对的圆周角是直角;(4)90 的圆周角所对的弦是直径;(5)圆内接四边形的对角互补.6.如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形.24.1.1圆基础训练1.以定点O为圆心,能作个圆,这些圆是圆;以定长R为半径作圆,能作个圆,这些圆是圆;以定点O为圆心,定长R为半径作圆,能且只能作个圆.2.如图,图中所画的有条直径,有条非直径的弦,以点A为一个端点的优弧有条,劣弧有条.3.如图,点A,B在O∠=︒,那么ABO∆是三角形.⊙上,60AOB4.下列命题为真命题的有()①直径是弦;②弦是直径;③半圆是弧,但弧不一定是半圆;④长度相等的两条弧是等弧.A.2个B.3个C.4个D.5个5.如图,AB是半圆O的直径,点P从点O出发,沿OA AB BO--的路径运动一周.设OP的长为s,运动时间为t,则下列图形能大致地刻画s与t之间关系的是()6.如图所示,已知矩形ABCD的对角线AC和BD相交于点O,试判断A,B,C,D四个点是否在同一个圆上.如果在,请给予证明;如果不在,请说明理由.7.如图,A,B,C为O∠=︒,求OAC∠的度数.OBC⊙上的三点,50OBA∠=︒,608.如图,AB,AC为O∠=∠.⊙的弦,连接CO,BO并延长分别交弦AB,AC于点E,F,B C 求证CE BF=.24.1.2垂直于弦的直径基础训练1.下列图形中能够得到AE BE=的图形有()个.2.如图,AB是O⊥,垂足为M,下列结论不一定成立的是()⊙的直径,弦CD ABA.CM DM=B.AC AD=C.2=AD BDD.BCD BDC∠=∠3.如图,AB是OCD=,那么AE的长AB=,8⊥,垂足为E,如果10⊙的直径,弦CD AB为()A.2 B.3 C.4 D.54.如图,AB是OAOB∠=︒,则弦AB的长是()OA=,120⊙的弦,半径2A.22B.23C.5D.355.如图,O⊙的直径为10,弦8AB=,P是弦AB上一个动点,那么OP长的取值范围是.6.下列命题正确的有()①弦的垂直平分线必过圆心;②平分弦的直径垂直于弦;③圆中两条非直径的相交弦不能互相平分.A.0个B.1个C.2个D.3个7.如图,AB是O=.⊙的弦,C,D为直线AB上两点,OC OD=,求证AC BD8.如图,某花园小区一圆形管道破裂,修理工准备更换一段新管道,现在量得污水水面宽度为80cm,水面到管道顶部距离为20cm,则修理工应准备内直径是多少的管道?24.1.3弧、弦、圆心角基础训练1.下列三个命题:①圆既是轴对称图形,又是中心对称图形;②垂直于弦的直径平分这条弦;③相等圆心角所对的弧相等,其中是真命题的是()A.①②B.②③C.①③D.①②③2.如图,在O∠=︒,则BOC∠等于()A⊙中,点C是AB的中点,若40A.40︒B.50︒C.70︒D.80︒3.如图,在O∠=∠,则AB与CD的大小关系是()AOB COD⊙中,圆心角2A .2AB CD = B .2AB CD >C .2AB CD < D .不能确定4.如图,在O ⊙中,AB AC =,70B ∠=︒,则A ∠的度数为 . 5.在O ⊙中,弦4AB =,弦心距为23,则圆心角AOB ∠为度.6.如图,AB 是O ⊙的直径,BC CD DE ==,35COD ∠=︒,则AOE ∠的度数为.7.已知A ,B 是O ⊙上的点,120AOB ∠=︒,C 是AB 的中点,求证:四边形OACB 是菱形.8.AC ,BD 为O ⊙的弦,且AC BD =,问AB 与CD 是否相等,为什么?9.如图,已知AB是O⊥,求⊥,DN AB⊙的直径,M,N分别是OA,OB的中点,CM AB证AC BD=.24.1.4圆周角基础训练1.如图,在O∠的度数是.∠=︒,则圆周角ACB⊙中,圆心角48AOB2.如图,O⊙的内接四边形ABCD,115∠=︒,则BOD∠=.A3.如图,A,B是O⊙上不与点A,B重合的任一点,则ACB∠AOB⊙上两点,且70∠=︒,C是O的度数是.4.如图,O⊥,垂足为N,则ON=()⊙的半径为13,弦AB的长度是24,ON ABA.5 B.7 C.9 D.115.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动,下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()6.如图,O∠等于()∠=︒,则DCFDOE⊙的直径CD过弦EF的中点G,40A.80︒B.50︒C.40︒D.20︒7.如图,AB是O=,请问BD与CD的⊙的直径,BD是O⊙的弦,延长BD到C,使AC AB大小有什么关系?试给予证明.8.如图,ABC⊙,交BC于点D,交CA的延长线于点E,∆中,AB AC=,以AB为直径作O连接AD ,DE .(1)求证:D 是BC 的中点;(2)若3DE =,2BD AD -=,求O ⊙的半径.能力提高1.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上,点A ,B 的读数分别为86︒,30︒,则ACB ∠的大小为( ) A .15︒B .28︒C .29︒D .34︒2.如图,O ⊙的弦AB 垂直平分半径OC ,若6AB =,则O ⊙的半径为( ) A .2B .22C .22D .623.如图,AB 是O ⊙的直径,15ACD ∠=︒,则BAD ∠的度数为( ) A .75︒B .72︒C .70︒D .65︒4.若O ⊙所在平面内有一点P ,这点P 到O ⊙上的点的最大距离为a ,最小距离为()b a b >,则此圆的半径为( ) A .2a b+ B .2a b- C .2a b +或2a b- D .a b +或a b -5.如图,水平放置的一个油管的截面上有油部分油面高CD为8cm,其中有油部分油面宽AB 为24cm,则截面半径为cm.6.如图O⊙的半径为1cm,弦AB,CD的长度分别为2cm,1cm,则弦AD,BC所夹的锐角APB∠=度.7.如图,CD是O⊙∠=︒,AE交OEOD⊙的直径,点E在圆上,点A在线段DC的延长线上,72于B,且AB OC=,求A∠的度数.8.如图,已知AB AC ADBAC∠的度数是多少?∠=︒,求CAD==,2CBD BDC∠=∠,449.已知,在OCD=,求AB与CD间的距离.AB=,8∥,半径为5,6⊙中,弦AB CD拓展探究1.如图,ABC⊙的内接三角形,点C是优弧BA上一点(点C与A,B不重合),设∆是O∠=,CβOABα∠=.(1)当35α=︒时,求β的度数;(2)猜想α与β之间的数量关系,并证明.2.如图,已知AB是O⊥,E是AC上一点,AE,DC的延长线相交于点⊙的直径,弦CD AB∠=∠.F,求证AED CEF3.如图,AD为ABC∠的平分线交AD于点E,∆外接圆的直径,AD BC⊥,垂足为点F,ABC连接BD,CD.(1)求证BD CD =;(2)请判断B ,E ,C 三点是否在以D 为圆心,以DB 的长为半径的圆上?并说明理由.24.1 参考答案:24.1.1 圆基础训练1.无数 同心 无数 等 1 2.1 2 4 4 3.等边 4.A 5.C6.提示:OA OB OC OD ===,点A ,B ,C ,D 到点O 的距离相等. 7.20︒ 8.略24.1.2 垂直于弦的直径基础训练1.B 2.C 3.A 4.B 5.35OP ≤≤ 6.C 7.略 8.100cm 24.1.3 弧、弦、圆心角基础训练1.A 2.B 3.A 4.40︒ 5.60 7.略 8.AB CD = 9.证明略 24.1.4 圆周角基础训练1.24︒ 2.130︒ 3.35︒或145︒ 4.A 5.D 6.D 7.BD CD =,证明略8.(1)证明略 (2)10r =能力提高1.B 2.A 3.A 4.C 5.13 6.75 7.24A ∠=︒ 8.88︒ 9.1或7 拓展探究1.(1)55︒;(2)90αβ+=︒,证明略.2.提示:连接BE,证明略.3.(1)证明略;(2)B,E,C三点在以点D为圆心,以DB为半径的圆上(提示:证DB DE DC==).。

人教版九年级数学上册第24章 圆 专题复习练习题(含答案)

人教版九年级数学上册第24章  圆 专题复习练习题(含答案)

人教版九年级数学上册第24章圆专题复习练习题专题1 与圆的基本性质有关的辅助线作法1.如图,点A,B,C,D分别是⊙O上的四点,∠BAC=50°,BD是直径,则∠DBC的度数是(A)A.40° B.50° C.20° D.35°6.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是(D) A.50° B.60° C.80° D.100°2.如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D.若⊙O的半径为2,则CD3.如图,在⊙O中,∠OAB=20°,则∠C的度数为110°.4.如图,在⊙O中,AB为直径,∠ACB的平分线交⊙O于点D,AB=6,则BD7.如图,已知A ,B ,C ,D 是⊙O 上的四个点,⊙O 的直径AB =2 3.若∠ACD =120°,则线段AD 的长为3.5.如图,⊙A 过点O ,C ,D ,点C 的坐标为(3,0),点B 是x 轴下方⊙A 上的一点,连接BO ,BD ,已知∠OBD =30°,则⊙A 的半径等于1.8.如图,A ,B ,C ,D 是⊙O 上的四个点,AB ︵=BC ︵.若∠AOB =58°,则∠D =29°.9.如图,⊙O 的弦AB =8,N 是AB ︵的中点,AN =25,则⊙O 的半径为5.10.如图,在⊙O 中,半径OA ⊥OB ,C ,D 为AB ︵的三等分点.弦AB 分别交OC ,OD 于点E ,F ,下列结论:①∠AOC =30°;②CE =DF ;③∠AEO =105°;④AE =CD =FB.其中正确的有①②③④.专题2 教材P90习题T14的变式与应用1.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.判断△ABC的形状,并证明你的结论.解:△ABC为等边三角形.证明:∵∠APC=∠ABC,∠CPB=∠BAC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°.∴∠ACB=60°.∴△ABC为等边三角形.【问题延伸1】求证:PA+PB=PC.证明:在PC上截取PD=AP,连接AD,如图.∵∠APC=60°,∴△APD 是等边三角形.∴AD =AP =PD ,∠ADP =60°,∠ADC =120°. ∵∠APB =∠APC +∠BPC =120°, ∴∠ADC =∠APB.在△APB 和△ADC 中,⎩⎪⎨⎪⎧∠ABP =∠ACD ,∠APB =∠ADC ,AP =AD ,∴△APB ≌△ADC(AAS). ∴BP =CD.又∵PD =AP ,∴PA +PB =PD +CD =PC.【问题延伸2】 若BC =23,点P 是AB ︵上一动点(异于点A ,B),求PA +PB 的最大值.解:由上题知PA +PB =PC ,要使PA +PB 最大,则PC 为直径,作直径BG ,连接CG.∴∠G =∠BAC =60°,∠BCG =90°.∵BC =23,∴BG =4.即PA +PB 的最大值为4. 2.如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC =∠APC =60°.(1)求证:△ABC 是等边三角形; (2)求圆心O 到BC 的距离OD.解:(1)证明:∵∠ABC =∠APC =60°,∠BAC =∠APC =60°,∴∠ABC =∠BAC =60°. ∴△ABC 是等边三角形. (2)连接OB ,OC.可得∠BOC =2∠BAC =2×60°=120°. ∵OB =OC ,∴∠OBD =∠OCD =12×(180°-120°)=30°.∵∠ODB =90°,∴OD =12OB =4.3.如图,点A ,B ,C ,D 在同一个圆上,且C 点为一动点(点C 不在BAD ︵上,且不与点B ,D 重合),∠ACB =∠ABD =45°.(1)求证:BD 是该圆的直径; (2)连接CD ,求证:2AC =BC +CD.证明:(1)∵∠ACB =45°, ∴∠ADB =∠ACB =45°. ∵∠ABD =45°, ∴∠BAD =90°. ∴BD 是该圆的直径.(2)在CD 的延长线上截取DE =BC ,连接EA. ∵∠ABD =∠ADB ,∴AB =AD.∵∠ADE +∠ADC =180°,∠ABC +∠ADC =180°,∴∠ABC =∠ADE. 在△ABC 和△ADE 中, ⎩⎪⎨⎪⎧AB =AD ,∠ABC =∠ADE ,BC =DE ,∴△ABC ≌△ADE(SAS). ∴∠BAC =∠DAE ,AC =AE. ∴∠BAC +∠CAD =∠DAE +∠CAD. ∴∠BAD =∠CAE =90°.∴CE 2=AC 2+AE 2=2AC 2,即CE =2AC. ∴2AC =DE +CD =BC +CD.专题3 切线的判定和性质综合1.如图,已知点O 为正方形ABCD 对角线上一点,以O 为圆心,OA 的长为半径的⊙O 与BC 相切于点M ,与AB ,AD 分别相交于点E ,F.求证:CD 与⊙O 相切.证明:连接OM ,过点O 作ON ⊥CD ,垂足为N. ∵⊙O 与BC 相切于点M , ∴OM ⊥BC.∵正方形ABCD 中,CA 平分∠BCD , ∴OM =ON.∴ON为⊙O的半径,∴CD与⊙O相切.2.如图,⊙O的直径为AB,点C在⊙O上,点D,E分别在AB,AC的延长线上,DE⊥AE,垂足为E,∠A=∠CDE.(1)求证:CD是⊙O的切线;(2)若AB=4,BD=3,求CD的长.解:(1)证明:连接OC,∵DE⊥AE,∴∠E=90°.∴∠CDE+∠DCE=90°.∵∠A=∠CDE,∴∠A+∠DCE=90°.∵OC=OA,∴∠A=∠ACO.∴∠ACO+∠DCE=90°.∴∠OCD=90°.∴OC⊥CD.又∵OC为⊙O的半径,∴CD是⊙O的切线.(2)∵AB=4,BD=3,∴OC =OB =12AB =2.∴OD =2+3=5.∴CD =OD 2-OC 2=52-22=21.3.如图,已知AB 是⊙O 的直径,AC ,BC 是⊙O 的弦,OE ∥AC 交BC 于点E ,过点B 作⊙O 的切线交OE 的延长线于点D ,连接DC 并延长交BA 的延长线于点F.(1)求证:DC 是⊙O 的切线;(2)若∠ABC =30°,AB =8,求线段CF 的长.解:(1)证明:连接OC , ∵AB 是⊙O 的直径, ∴∠ACB =90°.∵OE ∥AC ,∴∠OEB =∠ACB.∴OD ⊥BC ,由垂径定理,得OD 垂直平分BC. ∴DB =DC. ∴∠DBE =∠DCE.又∵OC =OB ,∴∠OBE =∠OCE. ∴∠DBO =∠OCD.∵DB 为⊙O 的切线,OB 是半径,∴∠OCD=∠DBO=90°,即OC⊥DC.∵OC是⊙O的半径,∴DC是⊙O的切线.(2)在Rt△ABC中,∠ABC=30°,∴∠CAB=60°.又∵OA=OC,∴△AOC是等边三角形.∴∠COF=60°.∴∠F=30°.∵AB=8,∴OC=4.∴OF=2OC=8.在Rt△COF中,CF=OF2-OC2=4 3.4.如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;(2)PO的延长线与⊙O交于点E,若⊙O的半径为3,PC=4,求弦CE的长.解:(1)证明:连接OC,过点O作OD⊥BP于点D.∵PA与⊙O相切,∴OC⊥PA.又∵∠APO=∠BPO,∴OC =OD.∴OD 为⊙O 的半径. ∴直线PB 与⊙O 相切. (2)过点C 作CH ⊥PE 于点H. ∵OC =3,PC =4, ∴OP =OC 2+PC 2=5. ∵S △OCP =12CH ·OP =12OC ·PC ,∴CH =OC ·PC OP =125.∴OH =OC 2-CH 2=95.∴EH =EO +OH =245.∴CE =EH 2+CH 2=1255.5.如图,AB 是⊙O 的直径,C 是⊙O 上一点,过点O 作OD ⊥AB ,交BC 的延长线于点D ,交AC 于点E ,F 是DE 的中点,连接CF.(1)求证:CF 是⊙O 的切线; (2)若∠A =22.5°,求证:AC =DC.证明:(1)∵AB 是⊙O 的直径, ∴∠ACB =∠ACD =90°.∵F是ED的中点,∴CF=EF=DF.∴∠AEO=∠FEC=∠FCE.∵OA=OC,∴∠OCA=∠OAC.∵OD⊥AB,∴∠OAC+∠AEO=90°.∴∠OCA+∠FCE=90°,即OC⊥FC.又∵OC是⊙O的半径,∴CF是⊙O的切线.(2)连接AD.∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°.∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°.∵AO=BO,∴AD=BD.∴∠ADO=∠BDO=22.5°.∴∠ADB=45°.∴∠CAD=∠ADC=45°.∴AC=CD.6.如图,在Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=2,DE=4,求圆的半径及AC的长.解:(1)直线CD与⊙O相切.理由:连接OC.∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD(SSS).∴∠ODC=∠OBC=90°.∴OD⊥DC.又∵OD为⊙O的半径,∴直线CD与⊙O相切.(2)设⊙O的半径为r,CD=CB=x.在Rt△OBE中,∵OE2=EB2+OB2,∴(4-r)2=r2+22.∴r=1.5.在Rt△EDC中,∵DE2+DC2=EC2,∴x2+42=(2+x)2.∴x=3.在Rt△ABC中,AC=AB2+BC2=32+32=3 2.∴圆的半径为1.5,AC的长为3 2.7.如图1,AB为半圆的直径,点O为圆心,AF为半圆的切线,过半圆上的点C作CD∥AB 交AF于点D,连接BC.(1)连接DO,若BC∥OD,求证:CD是半圆的切线;(2)如图2,当线段CD与半圆交于点E时,连接AE,AC,判断∠AED和∠ACD的数量关系,并证明你的结论.解:(1)证明:连接OC,∵CD∥AB,BC∥OD,∴四边形BODC是平行四边形.∴OB=CD.∵OA=OB,∴CD=OA.∴四边形ADCO是平行四边形.∵AF为半圆的切线,AB为半圆的直径,∴AB⊥AD.∴四边形ADCO是矩形.∴OC⊥CD.又∵OC为半圆的半径,∴CD是半圆的切线.(2)∠AED+∠ACD=90°.证明:连接BE,∵AB为半圆的直径,∴∠AEB=90°.∴∠EBA+∠BAE=90°. ∵CD∥AB,∴∠AED=∠BAE.又∵∠ACD=∠EBA,∴∠AED+∠ACD=90°.。

人教版九年级数学上册 《 圆 》单元练习题(含答案)

人教版九年级数学上册 《 圆 》单元练习题(含答案)

第24章圆一.选择题(共8小题)1.下列语句中不正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④长度相等的两条弧是等弧.A.3个B.2个C.1个D.4个2.⊙O半径为5,圆心O的坐标为(0,0),点P的坐标为(3,4),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.点P在⊙O上或外3.如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为()A.3 B.4 C.D.54.如图,两圆相交于A,B两点,小圆经过大圆的圆心O,点C,D分别在两圆上,若∠ADB =100°,则∠ACB的度数为()A.35°B.40°C.50°D.80°5.如图,设AD,BE,CF为三角形ABC的三条高,若AB=6,BC=5,EF=3,则线段BE的长为()A.B.4 C.D.6.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.7.已知:如图,△ABC内接于⊙O,AB为直径,弦CE⊥AB于F,C是弧AD的中点,连接BD 并延长交EC的延长线于点G,连接AD,分别交CE、BC于点P、Q.则下列说法中正确的个数为()①CO⊥AD;②∠COB=2∠GDC;③P是△ACQ的外心;④若tan∠ABC=,CF=8,则CQ=;⑤(FP+PQ)2=FP•FG;⑥PQ=QD.A.3 B.4 C.5 D.68.如图,已知AB=12,点C、D在AB上,且AC=DB=2,点P从点C沿线段CD向点D运动(运动到点D停止),以AP、BP为斜边在AB的同侧画等腰Rt△APE和等腰Rt△PBF,连接EF,取EF的中点G,则下列说法中正确的有()①△EFP的外接圆的圆心为点G;②△EFP的外接圆与AB相切;③四边形AEFB的面积不变;④EF的中点G移动的路径长为4.A.1个B.2个C.3个D.4个二.填空题(共8小题)9.如图,⊙O的半径为5cm,圆心O到AB的距离为3cm,则弦AB长为cm.10.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=54°,则∠BAD=.11.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为.12.如图所示,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是.13.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为.14.如图,菱形ABCD的边长为2,∠A=60°,以点B为圆心的圆与AD、DC相切,与AB、CB 的延长线分别相交于点E、F,则图中阴影部分的面积为.15.如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.若⊙O的半径为2,TC=,则图中阴影部分的面积是.16.如图,⊙O的半径为3cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以πcm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为s时,BP与⊙O相切.三.解答题(共6小题)17.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.18.如图:A、B、C是⊙O上的三点,∠AOB=50°,∠OBC=40°,求∠OAC的度数.19.如图,AD、BC是⊙O的两条弦,且AD=BC,求证:AB=CD.20.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=8,AC=6,求DE的长.21.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.22.如图,四边形ABCD是⊙O的内接四边形,AC为直径,=,DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)判断直线ED与⊙O的位置关系,并说明理由;(3)若CE=1,AC=4,求阴影部分的面积.参考答案一.选择题(共8小题)1.解:①和④、错误,应强调在同圆或等圆中;②、错误,应强调不是直径的弦;③、错误,应强调过圆心的直线才是它的对称轴.故选D.2.解:∵点P的坐标为(3,4),∴由勾股定理得,点P到圆心O的距离==5,∴点P在⊙O上,故选B.3.解:连接AC,∵在⊙O中,AB是直径,∴∠C=90°,∵AB=5,BC=3,∴AC==4,∵点P是上任意一点.∴4≤AP≤5.故选:A.4.解:连OA,OB,如图,∵A,B,O,D都在⊙O上,∴∠D+∠AOB=180°,而∠ADB=100°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.故选:B.5.解:∵AD,BE,CF为△ABC的三条高,易知B,C,E,F四点共圆∴△AEF∽△ABC∴,即cos∠BAC=∴sin∠BAC=∴在Rt△ABE中,BE=AB sin∠BAC=6=.故选:D.6.解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选:D.7.①证明∵C是弧AD的中点,∴∴弧AC=弧CD,∴CO⊥AD;②∵四边形ABDC是圆内接四边形,∴∠GDC=∠BAC,∵∠COB=2∠BAC,∴∠COB=2∠GDC;③证明:∵C是弧AD的中点,∴弧AC=弧CD,∴∠CAD=∠ABC,∵AB是⊙O的直径,∴∠ACB=90°.∴∠CAD+∠AQC=90°又∵CE⊥AB,∴∠ABC+∠PCQ=90°∴∠AQC=∠PCQ∴在△PCQ中,PC=PQ,∵CE⊥直径AB,∴弧AC=弧AE,∴弧AE=弧CD,∴∠CAD=∠ACE.∴在△APC中,有PA=PC,∴PA=PC=PQ∴P是△ACQ的外心.④解:∵CE⊥直径AB于F,∴在Rt△BCF中,由tan∠ABC==,CF=8,得BF=.∴由勾股定理,得BC==,∵AB是⊙O的直径,∴在Rt△ACB中,由tan∠ABC==,BC=,∴AC=10,易知Rt△ACB∽Rt△QCA,∴AC2=CQ•BC,∴CQ==;⑤证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°,又∵CF⊥AB,∴∠ABG+∠G=90°,∴∠DAB=∠G;∴Rt△AFP∽Rt△GFB,∴=,即AF•BF=FP•FG易知Rt△ACF∽Rt△CBF,∴CF2=AF•BF(或由射影定理得)∴FC2=PF•FG,由③,知PC=PQ,∴FP+PQ=FP+PC=FC∴(FP+PQ)2=FP•FG;⑥由题目条件无法得到PQ=QD.故选:C.8.解:如图,分别延长AE、BF交于点H.∵等腰Rt△APE和等腰Rt△PBF,∴∠A=∠FPB=45°,∠B=∠EPA=45°,∴AH∥PF,BH∥PE,∠EPF=180°﹣∠EPA﹣∠FPB=90°,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也为PH中点,即在P的运动过程中,G始终为PH的中点,∴G的运行轨迹为△HCD的中位线MN.∵CD=12﹣2﹣2=8,∴MN=4,即G的移动路径长为4.故④EF的中点G移动的路径长为4,正确;∵G为EF的中点,∠EPF=90°,∴①△EFP的外接圆的圆心为点G,正确.∴①④正确.连接PG,若GP与PF相等,△EFP的外接圆与一定与AB相交,只有当P是AB中点,此时GP⊥AB时,△EFP的外接圆与AB才相切,所以错误,故②错误;∵点P从点C沿线段CD向点D运动(运动到点D停止),易证∠EPF=90°,所以四边形面积便是三个直角三角形的面积和,设cp=x,则四边形面积S=∴AP不断增大,∴四边形的面积S也会随之变化,故③错误.故选:B.二.填空题(共8小题)9.解:连接OA,∵OC⊥AB,∴C为AB的中点,即AC=BC,在Rt△AOC中,OA=5cm,OC=3cm,根据勾股定理得:AC===4cm,∴AB=2AC=8cm.故答案为:8.10.解:连接BD,如图所示:∵∠ACD=54°,∴∠ABD=54°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=36°,答案为:36°.11.解:∵∠B=110°,∴∠ADE=110°.故答案为:110°.12.解:由于AC和BC值固定,点P在弧AD上,而B是圆心,所以PB的长也是定值,因此,只要AP的长为最大值,∴当P的运动到D点时,AP最长,∵弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,∴∠DBA=90°,∴由勾股定理得AD的长为5,∴周长为5×3+5=15+5.故答案为:15+5.13.解:作AB的中点E,连接EM、CE.在直角△ABC中,AB===10,∵E是直角△ABC斜边AB上的中点,∴CE=AB=5.∵M是BD的中点,E是AB的中点,∴ME=AD=2.∵5﹣2≤CM≤5+2,即3≤CM≤7.∴最大值为7,故答案为:7.14.解:设AD与圆的切点为G,连接BG,∴BG⊥AD,∵∠A=60°,BG⊥AD,∴∠ABG=30°,在直角△ABG中,BG=AB=×2=,AG=1,∴圆B的半径为,∴S△ABG=×1×=在菱形ABCD中,∠A=60°,则∠ABC=120°,∴∠EBF=120°,∴S阴影=2(S△ABG﹣S扇形)+S扇形FBE=2×(﹣)+=+.故答案为:+.15.解:连接OT、OD、DT,过O作OM⊥AD于M,∵OA=OT,AT平分∠BAC,∴∠OTA=∠OAT,∠BAT=∠CAT,∴∠OTA=∠CAT,∴OT∥AC,∵PC⊥AC,∴OT⊥PC,∵OT为半径,∴PC是⊙O的切线,∵OM⊥AC,AC⊥PC,OT⊥PC,∴∠OMC=∠MCT=∠OTC=90°,∴四边形OMCT是矩形,∴OM=TC=,∵OA=2,∴sin∠OAM=,∴∠OAM=60°,∴∠AOM=30°∵AC∥OT,∴∠AOT=180°﹣∠OAM=120°,∵∠OAM=60°,OA=OD,∴△OAD是等边三角形,∴∠AOD=60°,∴∠TOD=120°﹣60°=60°,∵PC切⊙O于T,∴∠DTC=∠CAT=∠BAC=30°,∴tan30°==,∴DC=1,∴阴影部分的面积是S梯形OTCD﹣S扇形OTD=×(2+1)×﹣=.故答案为:.16.解:连接OP;∵当OP⊥PB时,BP与⊙O相切,∵AB=OA,OA=OP,∴OB=2OP,∠OPB=90°;∴∠B=30°;∴∠O=60°;∵OA=3cm,∴==π,圆的周长为:6π,∴点P运动的距离为π或6π﹣π=5π;∴当t=1或5时,有BP与⊙O相切.三.解答题(共6小题)17.解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.18.解:∵OB=OC∴∠OCB=∠OBC=40°(2分)∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣40°﹣40°=100°(3分)∴∠AOC=∠AOB+∠BOC=50°+100°=150°(4分)又∵OA=OC∴∠OAC==15°(6分)19.证明:∵AD=BC,∴,∴,即,∴AB=CD.20.解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AOD=∠B=70°,∴∠CAB=90°﹣∠B=90°﹣70°=20°,∵OA=OD,∴∠DAO=∠ADO===55°,∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===2,∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=4,∴DE=OD﹣OE=4﹣.21.(1)证明:连接OE.∵OE=OB,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠EBC,∴∠EBC=∠OEB,∴OE∥BC,∴∠OEA=∠C,∵∠ACB=90°,∴∠OEA=90°∴AC是⊙O的切线;(2)解:连接OE、OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,∴OH=CE,∵BF=6,∴BH=3,在Rt△BHO中,OB=5,∴OH==4,∴CE=4.22.(1)证明:∵=,∴∠BAD=∠ACD,∵∠DCE=∠BAD,∴∠ACD=∠DCE,即CD平分∠ACE;(2)解:直线ED与⊙O相切.理由如下:连结OD,如图,∵OC=OD,∴∠OCD=∠ODC,而∠OCD=∠DCE,∴∠DCE=∠ODC,∴OD∥BC,∵DE⊥BC,∴OD⊥DE,∴DE为⊙O的切线;(3)解:作OH⊥BC于H,则四边形ODEH为矩形,∴OD=EH,∵CE=1,AC=4,∴OC=OD=2,∴CH=HE﹣CE=2﹣1=1,在Rt△OHC中,∠HOC=30°,∴∠COD=60°,∴阴影部分的面积=S扇形OCD﹣S△OCD =﹣•22=π﹣.。

新人教版初中数学九年级数学上册第四单元《圆》测试(包含答案解析)(2)

新人教版初中数学九年级数学上册第四单元《圆》测试(包含答案解析)(2)

一、选择题1.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65° 2.如图,AB 是半圆O 的直径,20BAC =︒∠,则D ∠的度数是( )A .70°B .100°C .110°D .120°3.已知△ABC 的外心为O ,连结BO ,若∠OBA=18°,则∠C 的度数为( )A .60°B .68°C .70°D .72°4.如图,AB 圆O 的直径,弦CD AB ⊥,垂足为M ,下列结论不成立的是( )A .CM DM =B .CB BD =C .ACD ADC ∠=∠ D .OM MB = 5.如图,A ,B ,C 三点在O 上,若120ACB ∠=︒,则AOB ∠的度数是( )A .60︒B .90︒C .100︒D .120︒ 6.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,28CDB ∠=︒,过点C 作⊙O 的切线交AB 的延长线于点E ,则E ∠等于( )A .28︒B .34︒C .44︒D .56︒ 7.如图,⊙O 的半径为2,四边形ADBC 为⊙O 的内接四边形,AB =AC ,∠D =112.5°,则弦BC 的长为( )A .2B .2C .22D .23 8.如图,在菱形ABCD 中,60A ∠=︒ ,3AB = ,A ,B 的半径分别为2和1,P ,E ,F 分别是CD 边、A 和B 上的动点,则PE PF +的最小值是( )A .333B .2C .3D .339.如图,⊙O 的半径为1,点 O 到直线 a 的距离为2,点 P 是直线a 上的一个动点,PA 切⊙O 于点 A ,则 PA 的最小值是( )A .1B .3C .2D .510.如图,⊙O 的直径2AB AM =,和BN 是它的两条切线,DE 切⊙O 于E ,交AM 于D ,交BN 于C ,则四边形ABCD 的面积S 的最小值为( )A .1B .2C .2D .4 11.如图,AB 为圆O 的直径,点C 在圆O 上,若∠OCA =50°,OB =2,则弧BC 的长为( )A .103πB .59π C .109π D .518π 12.在△ABC 中,∠ACB 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作弧BAC ,如图所示.若AB=4,AC=2,图中两个新月形面积分别为S 1,S 2,两个弓形面积分别为S 3,S 4,S 1-S 2=14π,则S 3-S 4的值是( )A .294πB .234πC .114πD .54π 二、填空题13.已知正方形MNKO和正六边形ABCDEF边长均为1,把正方形放在正六边形外边,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B顺时针旋转,使KN边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使NM边与CD边重合,完成第二次旋转;…在这样连续的旋转过程中,第一次点M在图中直角坐标系中的坐标是_______,第6次点M的坐标是_______.14.如图,点A,B,C在O上,顺次连接A,B,C,O.若四边形ABCO为平行∠=________︒.四边形,则AOC15.如图,已知正方形ABCD的边长为2,点M和N分别从B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM,BN交于点P,则PC长的最小值为____________.16.已知,O的弦AB与O的半径相等,则弦AB所对的圆周角的度数为______.17.如图,⊙O的半径为1,作两条互相垂直的直径AB、CD,弦AC是⊙O的内接正四边形的一条边.若以A为圆心,以1为半径画弧,交⊙O于点E,F,连接AE、CE,弦EC是该圆内接正n边形的一边,则该正n边形的面积为____.18.已知三角形三边分别为3、4、5,则该三角形内心与外心之间的距离为_____. 19.如图,四边形ABCD 内接于O ,若76A ∠=︒,则C ∠=_______ °.20.如图,△ABC 内接于O ,∠BAC=45°,AD ⊥BC 于D , BD=6,DC=4,则AD 的长是_____.三、解答题21.如图,AB ,DE 是⊙O 的直径,C 是⊙O 上的一点,且AD CE =.(1)求证:BE =CE ;(2)若∠B =50°,求∠AOC 的度数.22.如图,四边形ABCD 内接于⊙O ,AC 是⊙O 的直径,E 是AB 上一点,30AEO DAC ∠=∠=︒,连接BD .(1)求证:OAE CDB △≌△;(2)连接DE ,若DE AB ⊥,2OA =,求BC 的长.23.如图:在平面直角坐标系中,直线l 与两坐标轴分别相交,相交于C 、D 两点,且()6,0C ,30OCD ∠=︒,长度为2的线段AB (B 点在A 点右侧)在x 轴上移动,设点A的坐标为()0m ,.发现:(1)当以A 为圆心,AB 为半径的圆与直线l 相切时,求m 的值;应用:(2)当以A 为圆心,AB 为半径的A 与直线l 相交于M 、N 两点,且AMN 是等腰直角三角形,求m 的值.拓展:(3)直线l 上存在点P ,使得90APB ∠=︒,则m 的取值范围是_________(直接写出答案).24.已知:如图,ABC 中,BC AC =,以BC 为直径的O 交AB 于点O ,过点D 作DE AC ⊥于点E ,交BC 的延长线于点F .求证:(1)AD BD =,(2)DF 是O 的切线. 25.如图,长方形的长为a ,宽为2a ,用整式表示图中阴影部分的面积,并计算当2a =时阴影部分的面积(π取3.14).26.如图,O 是ABC 的外接圆,且AB AC =,点D 在弧BC 上运动,过点D 作//DE BC ,DE 交AB 的延长线于点E ,连接AD 、BD .(1)求证:ADB E ∠=∠;(2)当6AB =,3BE =时,求AD 的长?(3)当点D 运动到什么位置时,DE 是O 的切线?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据切线的性质得到OB ⊥AB ,OC ⊥AC ,求出∠BOC ,分点P 在优弧BC 上、点P 在劣弧BC 上两种情况,根据圆周角定理、圆内接四边形的性质计算即可.【详解】解:∵AB 、AC 是⊙O 的切线,∴OB ⊥AB ,OC ⊥AC ,∴∠OBA =90°,∠OCA =90°∵∠A =50°,∴∠BOC =360°﹣90°﹣90°﹣50°=130°,如图,当点P 在优弧BPC 上时,∠BPC =12∠BOC =65°, 当点P ′在劣弧BC 上时,∠BP ′C =180°﹣65°=115°,故选:C .【点睛】本题考查的是切线的性质、圆周角定理、圆内接四边形的性质,掌握圆的切线垂直于经过切点的半径及圆周角定理是解题的关键.2.C解析:C【分析】先根据圆周角定理可得90ACB ∠=︒,再根据直角三角形的性质可得70B ∠=︒,然后根据圆内接四边形的性质即可得.【详解】AB 是半圆O 的直径,90ACB ∴∠=︒,20BAC ∠=︒,9070B BAC ∴∠=︒-∠=︒, 又四边形ABCD 是圆O 内接四边形,180110D B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了圆周角定理、直角三角形的性质、圆内接四边形的性质,熟练掌握圆周角定理是解题关键.3.D解析:D【分析】连接OA,则OA=OB,可得∠OBA=∠OAB,再结合∠OBA=18°即可求得∠AOB=144°,再根据圆周角的性质即可求得∠C=72°.【详解】解:如图,连接OA,∵点O为ABC的外心,∴OA=OB,∴∠OBA=∠OAB,又∵∠OBA=18°,∴∠OAB=∠OBA=18°,∴∠AOB=180°-∠OAB-∠OBA=144°,∠AOB=72°,∴∠C=12故选:D.【点睛】本题考查了三角形的外心,圆周角定理,熟练掌握相关定义及性质是解决本题的关键.4.D解析:D【分析】根据垂径定理得到CM=DM,BC BD=,然后根据圆周角定理得=,AC AD∠ACD=∠ADC,而对于OM与MB的大小关系不能判断.【详解】解:∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,BC BD=,=,AC AD∴∠ACD=∠ADC.而无法比较OM,MB的大小,故选:D.【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.5.D解析:D【分析】在优弧AB上取一点D,连接AD、BD,根据圆内接四边形的性质计算可得∠D,然后根据圆周角定理即可求解.【详解】解:在优弧AB 上取一点D ,连接AD 、BD ,∵四边形ADBC 是⊙O 的内接四边形,∴∠D+∠ACB=180°,∵120ACB ∠=︒∴∠D=60°∴∠AOB=120°,故选:D .【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.6.B解析:B【分析】连接OC ,由CE 为圆O 的切线,利用切线的性质得到OC 垂直于CE ,由OA=OC ,利用等边对等角得到一对角相等,再利用外角性质求出∠COE 的度数,即可求出∠E 的度数.【详解】解:连接OC ,∵CE 为圆O 的切线,∴OC ⊥CE ,∴∠COE=90°,∵∠CDB 与∠BAC 都对BC ,且∠CDB=28°,∴∠BAC=∠CDB=28°,∵OA=OC ,∴∠OAC=∠OCA=28°,∵∠COE 为△AOC 的外角,∴∠COE=56°,则∠E=34°.故选:B.【点睛】此题考查了切线的性质,圆周角定理,等腰三角形的性质,以及三角形内角和定理,熟练掌握切线的性质是解本题的关键.7.C解析:C【分析】如图:连接OB、O C,先根据圆的内接四边形对角互补得到∠C=67.5°,再利用等腰三角形的性质和三角形内角和计算出∠BAC=45°,再根据圆周角定理可得∠BOC=90°,最后根据勾股定理求解即可.【详解】解:∵四边形ADBC为⊙O的内接四边形,∠D=112.5°∴∠C=180°-∠D=180°-112.5°=67.5°∵AC=AB∴∠BAC=180°-2∠C=45°∴∠BOC=90°∴BC=2222OB OC+=+=.2222故答案为C.【点睛】本题考查了圆内接四边形的性质、等腰直角三角形的性质和圆周角定理,掌握圆内接四边形的对角互补是解答本题的突破口.8.C解析:C【分析】+的最小值,进而求解即可.利用菱形的性质及相切两圆的性质得出P与D重合时PE PF【详解】解:作点A关于直线CD的对称点A´,连接BD,DA´,∵四边形ABCD是菱形,∴AB=AD,∵∠BAD=60°,∴△ABD是等边三角形,∴∠ADB=60°,∵∠BDC=∠ADB=60°,∴∠ADN =60°,∴∠A´DN=60°,∴∠ADB+∠ADA´=180°,∴A´,D,B在一条直线上,+最小,由此可得:当点P和点D重合,E点在AD上,F点在BD上,此时PE PF∵在菱形ABCD中,∠A=60°,∴AB=AD,则△ABD为等边三角形,∴BD=AB=AD=3,∵⊙A,⊙B的半径分别为2和1,∴PE=1,DF=2,+的最小值为3.∴PE PF故选C.【点睛】本题考查了菱形的性质,等边三角形的性质,点与圆的位置关系等知识.根据题意得出点P位置是解题的关键.9.B解析:B【分析】因为PA为切线,所以△OPA是直角三角形.又OA为半径为定值,所以当OP最小时,PA 最小.根据垂线段最短,知OP=2时PA最小.运用勾股定理求解.【详解】解:作OP⊥a于P点,则OP=2.根据题意,在Rt△OPA中,22-21=3-22OP OA故选:B.【点睛】此题考查了切线的性质及垂线段最短等知识点,如何确定PA最小时点P的位置是解题的关键,难度中等偏上.10.C解析:C【分析】由切线的性质得到AM、BN与AB垂直,过点D作DF⊥BC于F,,构造一个直角三角形DFC,再由切线长定理和勾股定理列方程,得出关于y的函数关系式,根据直角梯形的面积公式求解.【详解】∵AB是直径,AM、BN是切线,∴AM⊥AB,BN⊥AB,∴AM∥BN.过点D作DF⊥BC于F,则AB∥DF.∴四边形ABFD为矩形.∴DF=AB=2,BF=AD.∵DE、DA,CE、CB都是切线,∴根据切线长定理,设DE=DA=x,CE=CB=y.在Rt△DFC中,DF=2,DC=DE+CE=x+y,CF=BC﹣BF=y﹣x,∴(x+y)2=22+(y﹣x)2,∴y=1x,∴四边形的面积S=12AB(AD+BC)=12×2×(x+1x),即S=x+1x(x>0).∵(x +1x )﹣2=x ﹣2+1x 2≥0,当且仅当x =1时,等号成立. ∴x +1x≥2,即S ≥2, ∴四边形ABCD 的面积S 的最小值为2.故选:C .【点睛】考查了切线的性质、平行线的判定、矩形的性质和勾股定理,解题关键是作出辅助线. 11.C解析:C【分析】先根据等腰三角形的性质求出∠A ,再利用圆周角定理求得∠BOC ,最后根据弧长公式求求解即可.【详解】解:∵∠OCA =50°,OA =OC ,∴∠A =50°,∴∠BOC =100°∵BO =2, ∴1002101809BC l ππ⨯==. 故答案为C . 【点睛】本题主要考查了弧长公式应用以及圆周角定理,根据题意求得∠BOC 是解答本题的关键. 12.D解析:D【分析】根据AB 和AC 的长和圆的面积公式可求得S 1+S 3,S 2+S 4的值,然后再两值相减即可得出结论.【详解】解:∵AB=4,AC=2,∴S 1+S 3=2π,S 2+S 4=2π, ∴(S 1+S 3)﹣(S 2+S 4)=(S 1﹣S 2)+(S 3﹣S 4)=32π ∵S 1-S 2=14π, ∴S 3-S 4= 32π﹣14π= 54π, 故选:D .【点睛】本题考查了圆的面积,正确表示出S1+S3,S2+S4的值是解答的关键.二、填空题13.【分析】先将正方形旋转六次的图形画出确定六次旋转之后点的位置然后通过添加辅助线构造出直角三角形进而利用含角的直角三角形的性质求得再根据勾股定理求得再根据正六边形的性质线段的和差即可求得即可得解【详解解析:13,122⎛⎫+⎪⎪⎝⎭33,22⎛⎫⎪⎪⎝⎭【分析】先将正方形旋转六次的图形画出,确定六次旋转之后点M的位置,然后通过添加辅助线构造出直角三角形,进而利用30含角的直角三角形的性质求得12FH=、12CJ=,再根据勾股定理求得63JM=,再根据正六边形的性质、线段的和差即可求得32JF=,即可得解.【详解】解:经历六次旋转后点M落在点6M处,过M作MH x⊥于点H,过6M作6M J x⊥于点J,连接6IM,如图:∵在Rt AFH中,1AF=,60AFH∠=︒,30FAH∠=︒∴1122FH AF==∵已知点M 的纵坐标是12+,即12MH =+∴点M 的坐标是:1,12⎛ ⎝⎭; ∵在6Rt CJM 中,61CM =,660JCM ∠=︒,630CM J ∠=︒∴61122CJ CM ==,6JM == ∵点I 是正六边形的中心 ∴1IC IF == ∴32JF IF IC CJ =+-=∴点6M 的坐标是:32⎛ ⎝⎭.故答案是:1,12⎛ ⎝⎭;3,22⎛ ⎝⎭【点睛】本题考查了正多边形、旋转变换、含30角的直角三角形、勾股定理、线段的和差以及坐标系中的图形与坐标,体现了数形结合的数学思想.14.120【分析】连接OB 先证明四边形ABCD 是菱形然后再说明△AOB △OBC 为等边三角形最后根据等边三角形的性质即可解答【详解】解:如图:连接OB ∵点在上∴OA=OC=OB ∵四边形为平行四边形∴四边形解析:120【分析】连接OB ,先证明四边形ABCD 是菱形,然后再说明△AOB 、△OBC 为等边三角形,最后根据等边三角形的性质即可解答.【详解】解:如图:连接OB∵点A ,B ,C 在O 上∴OA=OC=OB∵四边形ABCO 为平行四边形∴四边形ABCO 是菱形∴OA=OC=OB=AB=BC∴△AOB 、△OBC 为等边三角形∴∠AOB=∠BOC=60°∴∠AOC=120°.故答案为120.【点睛】本题主要考查了圆的性质和等边三角形的性质,根据题意证得△AOB、△OBC为等边三角形是解答本题的关键.15.【分析】根据题意和正方形的性质可利用SAS证明△ABM≌△BCN得出∠BAM=∠CBN进而可证出∠APB=90°于是可得点P在以AB为直径的圆上运动运动路径是弧BG连接OC交圆O于P如图则此时PC最解析:5-1【分析】根据题意和正方形的性质可利用SAS证明△ABM≌△BCN,得出∠BAM=∠CBN,进而可证出∠APB=90°,于是可得点P在以AB为直径的圆上运动,运动路径是弧BG,连接OC交圆O于P,如图,则此时PC最小,进一步即可求解.【详解】解:由题意得:BM=CN,∵四边形ABCD是正方形,∴∠ABM=∠BCN=90°,AB=BC=2,在△ABM和△BCN中,∵AB=BC,∠ABM=∠BCN,MB=CN,∴△ABM≌△BCN(SAS),∴∠BAM=∠CBN,∵∠ABP+∠CBN=90°,∴∠ABP+∠BAM=90°,∴∠APB=90°,∴点P在以AB为直径的圆上运动,设圆心为O,运动路径是弧BG,是这个圆的1,如4图所示:连接OC 交圆O 于P ,此时PC 最小,∵AB =2,∴OP =OB =1,由勾股定理得:OC =22215+=,∴PC =OC ﹣OP =51-;故答案为:51-.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理和圆的有关性质等知识;熟练掌握上述知识,证出点P 在以AB 为直径的圆上运动是解题关键.16.或【分析】由的半径为厘米弦的长为厘米可得等边三角形因此再利用圆周角定理和圆内接四边形的性质求出弦所对的圆周角注意所对的圆周角有两种情形【详解】解:如图为等边三角形则设弦所对的圆周角为当点在弦所对的优 解析:30或150︒【分析】由O 的半径为r 厘米,弦AB 的长为r 厘米,可得OAB 等边三角形,因此60AOB ∠=︒,再利用圆周角定理和圆内接四边形的性质求出弦AB 所对的圆周角.注意AB 所对的圆周角有两种情形.【详解】解:如图,OA OB AB r ===,ABO ∴为等边三角形,则60AOB ∠=︒.设弦AB 所对的圆周角为ACB ∠,当点C 在弦AB 所对的优弧上,则60230ACB ∠=︒÷=︒;当点C 在弦AB 所对的劣弧上,则18030150ACB ∠=︒-︒=︒.所以弦AB 所对的圆周角为30或150︒,故答案为:30或150︒.【点睛】本题考查了圆周角定理.同弧所对的圆周角相等,并且等于它所对的圆心角的一半.同时考查了圆内接四边形的对角互补和等边三角形的性质.17.3【分析】利用正多边形和圆的关系可知弦EC 是该圆内接正十二边形的一边所以∠EOC=30°然后计算出△EOC 的面积最后乘以12即为该多边形的面积【详解】解:如图所示连接EO 作EF ⊥CO 交CO 于点F 由题解析:3【分析】利用正多边形和圆的关系可知弦EC 是该圆内接正十二边形的一边,所以∠EOC=30°,然后计算出△EOC 的面积,最后乘以12即为该多边形的面积.【详解】解:如图所示,连接EO ,作EF ⊥CO 交CO 于点F由题意可得n =12∴∠EOC=30°∴EF=12EO=12∴S △EOC =1·2EF CO =11××122=14 ∴该正12边形的面积=12 S △EOC =3故答案为:3【点睛】本题主要考查圆的内接正多边形的性质及其应用,解题的关键是灵活运用有关定理来分析、判断、推理或解答.18.【分析】利用三角形三边分别为345可得三角形是直角三角形根据内切圆的性质可判定四边形OECE 是正方形所以用r 分别表示:CE =CD =rAE =AN =3−rBD =BN =4−r ;再利用AB 作为相等关系求出r5 【分析】利用三角形三边分别为3、4、5,可得三角形是直角三角形,根据内切圆的性质可判定四边形OECE 是正方形,所以用r 分别表示:CE =CD =r ,AE =AN =3−r ,BD =BN =4−r ;再利用AB 作为相等关系求出r =1,则可得AN =2,N 为圆与AB 的切点,M 为AB 的中点,根据直角三角形中外接圆的圆心是斜边的中点,即M 为外接圆的圆心;在Rt △OMN 中,先求得MN =AM−AN =12,由勾股定理可求得OM 的长. 【详解】解:∵三角形三边分别为3、4、5,∴32+42=52,∴三角形是直角三角形,如图,设Rt△ABC,∠C=90°,AC=3,BC=4,AB=5,设Rt△ABC的内切圆的半径为r,则OD=OE=r,∵∠C=90°,∴CE=CD=r,AE=AN=3﹣r,BD=BN=4﹣r,∴4﹣r+3﹣r=5,解得r=1,∴AN=2,在Rt△OMN中,MN=AM﹣AN=12,∴OM=52.55【点睛】此题考查了直角三角形的外心与内心概念、勾股定理的逆定理、内切圆的性质.解决本题的关键是掌握直角三角形的外心与内心概念.19.104【分析】根据圆内接四边形的对角互补列式计算即可【详解】解:∵四边形ABCD内接于⊙O∴∠A+∠C=180°∴∠C=180°﹣∠A=180°﹣76°=104°故答案为:104【点睛】本题考查的是解析:104【分析】根据圆内接四边形的对角互补列式计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∴∠C=180°﹣∠A=104°,故答案为:104.【点睛】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.20.12【分析】连接OAOBOC过点O作OE⊥AD于EOF⊥BC于F根据圆周角定理得到∠BOC=90°再根据等腰直角三角形的性质计算求出OB再由DF=BD-BF得出DF然后等腰直角三角形的性质求出OF根解析:12【分析】连接OA、OB、OC过点O作OE⊥AD于E,OF⊥BC于F,根据圆周角定理得到∠BOC=90°,再根据等腰直角三角形的性质计算,求出OB,再由DF=BD-BF得出DF,然后等腰直角三角形的性质求出OF,根据勾股定理求出AE,再根据AD=AE+OF得到答案.【详解】解:∵BD=6,DC=4,∴BC=BD+DC=10∵∠BAC=45°,∴∠BOC=90°,∴252==OB BC连接OA、OB、OC过点O作OE⊥AD于E,OF⊥BC于F,∴BF=FC=5,∴DF=BD-BF=1,∵∠BOC=90°,BF=FC∴OF=1BC=5,2∵AD⊥BC,OE⊥AD,OF⊥BC,∴四边形OFDE为矩形,∴OE=DF=1,DE=OF=5,在Rt△AOE中,227,=-=AE OA OE∴AD=AE+DE=12.本题考查的是三角形的外接圆,掌握圆周角定理、垂径定理、等腰直角三角形的性质是解题的关键.三、解答题21.(1)见解析;(2)20°【分析】(1)根据∠AOD=∠BOE 可知AD BE ,再由AD CE =即可得出结论; (2)先根据等腰三角形的性质求出∠BOE 的度数,再由BE=CE 可得出∠BOE=∠COE ,根据补角的定义即可得出结论.【详解】解:(1)证明:∵∠AOD=∠BOE ,∴AD BE .∵AD CE =,∴BE CE =,∴BE=CE ;(2)∵∠B=50°,OB=OE ,∴∠BOE=180°-50°-50°=80°.∵由(1)知,BE=CE ,∴∠COE=∠BOE=80°,∴∠AOC=180°-80°-80°=20°.【点睛】本题考查的是圆心角、弧、弦的关系,熟知在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等是解答此题的关键.22.(1)见解析;(2. 【分析】(1)借助同圆中,同弧上的圆周角相等,利用AAS 证明全等;(2) 过O 作OH AB ⊥,利用三角形全等,勾股定理,建立一元二次方程求解即可.【详解】解:(1)证明:∵AC 是O 的直径,∴90ADC ∠=︒.∵30CAD ∠=︒,∴2AC CD =.∵2AC OA =,∴OA CD =.∵BC BC =,CD CD =,∴EAO CDB ∠=∠,CAD CBD ∠=∠.∵AEO DAC ∠=∠,∴AEO CBD ∠=∠.∴OAE CDB △≌△;(2)解:连接DE ,过O 作OH AB ⊥于H ,∴AH HB =.∵AO OC =,∴2BC OH =.设OH x =,∵30OEA CAD ∠=∠=︒, ∴3HE x =.由(1)知OAE CDB △≌△,∴AE DB =.∵AD AD =,∴60ABD ACD ∠=∠=︒.∵DE AB ⊥,∴30BDE ∠=︒.∴2DB BE =,AE DB =.∴2AE BE =.设AH HB y ==, 则3AE y x =+,3BE y x =-. ∴()323y x y x =. ∴33y x =.在Rt OAH 中,2OA =,33AH x =,OH x =,222OH AH OA +=,()2222x +=.解得17x =,27x =-(舍去).∴7OH =.∴2BC OH ==. 【点睛】本题考查了圆周角的性质,垂径定理,勾股定理,方程思想,熟练运用圆周角定理,作辅助线,构造垂径定理是解题的关键.23.(1)2m =;(2)6m =-6m =+3)3m 7≤≤【分析】(1)在平面直角坐标系中作出直线l 并画出当以A 为圆心,AB 为半径的圆与直线l 相切时的图形,由切线的性质可得Rt ACE △,然后再根据含30角的直角三角形的性质、圆的基本性质求得24AC AE ==,最后利用线段的和差求得2OA OC AC =-=,即可得到点A 的坐标,进而求得m 的值;(2)由AMN 相对于x 轴的位置分两种情况进行讨论,添加辅助线过点A 作AF MN ⊥、过点A 作AG MN ⊥,根据等腰直角三角形的性质可求得MN =根据等腰三角形的三线合一以及直角三角形斜边上的中线等于斜边的一半可求得AF =、AG =30角的直角三角形的性质求得AC =而利用线段的和差求得6OA =-、6OA =+A 的坐标,进而求得m 的值;(3)以AB 为直径作Q ,根据直径所对的圆周角是直角可在Q 上找到符合要求的点P 使得90APB ∠=︒.当Q 在x 轴上向右平移的过程中,直线l 和Q 的位置关系从相离到相切再到相交、再到相切、最后再相离,其中当直线l 和Q 相切或相交时直线l 上存在点P ,使得90APB ∠=︒.画出图形,求得当直线l 和Q 相切于x 轴上方或下方点P 时点A 的坐标,即可求得相应的m 的值,最后可得m 的取值范围.【详解】解:(1)∵当以A 为圆心,AB 为半径的圆与直线l 相切于点E 时,连接AE ,如图:∴AE CD ⊥∵2AE AB ==,30ACE ∠=︒∴在Rt ACE △中,24AC AE ==∵()6,0C∴6OC =∴2OA OC AC =-=∴点A 的坐标为()2,0∴2m =.(2)①当AMN 在x 轴上方时,过点A 作AF MN ⊥,如图:∵AMN 是等腰直角三角形∴90MAN ∠=︒,2AM AN == ∴2222MN AM AN =+=∵AF MN ⊥ ∴122AF MN == ∵30ACF ∠=︒ ∴在Rt ACF 中,222AC AF ==∴622OA OC AC =-=-∴点A 的坐标为()622,0- ∴622m =-;②当AMN 在x 轴下方时,过点A 作AG MN ⊥,如图:∵AMN 是等腰直角三角形∴90MAN ∠=︒,2AM AN == ∴2222MN AM AN =+=∵AG MN ⊥ ∴122AG MN ==∵30ACG OCD ∠=∠=︒ ∴在Rt ACG 中,222AC AG ==∴622OA OC AC =+=+∴点A 的坐标为(622,0+ ∴622m =+∴综上所述,622m =-622m =+(3)当点P 位于x 轴上方点1P 时直线l 和Q 相切,当点P 位于线段12PP (不包含两端点)上时直线l 和Q 相交,当点P 位于x 轴下方点2P 时直线l 和Q 相切,如图:直线l 和Q 相切于x 轴上方点1P 时,连接11PQ∴11PQ l ⊥,22P Q l ⊥∵11222A B A B == ∴111111112PQ AQ A B ===,222222112P Q A Q A B === ∵112230PCQ P CQ ∠=∠=︒∴在11Rt PCQ 中,11122Q C PQ ==;在22Rt P CQ 中,22222Q C P Q ==∴11113OA OC Q C AQ =--=;22227OA OC Q C A Q =+-=∴此时,点A 的坐标为()3,0或()7,0∴3m =或7m =∴直线l 上存在点P ,使得90APB ∠=︒,则m 的取值范围是3m 7≤≤. 故答案是:3m 7≤≤【点睛】本题考查了平面直角坐标系中坐标与图形、含30角的直角三角形的性质、圆的基本性质、直线与圆的位置关系、切线的性质、等腰直角三角形的性质、直角三角形的性质、线段的和差等知识点,渗透了分类讨论的数学思想,熟练掌握相关知识点是解题的关键. 24.(1)证明见解析;(2)证明见解析.【分析】(1)如图(见解析),先根据圆周角定理可得90BDC ∠=︒,再根据等腰三角形的三线合一即可得证;(2)先根据等腰三角形的三线合一可得ACD BCD ∠=∠,再根据等腰三角形的性质可得ODC BCD ∠=∠,从而可得ACD ODC ∠=∠,然后根据平行线的判定与性质可得OD DF ⊥,最后根据圆的切线的判定即可得证.【详解】(1)如图,连接CD ,BC 是O 的直径,90BDC ∴∠=︒,即CD AB ⊥,又BC AC =,CD ∴是AB 边上的中线(等腰三角形的三线合一),AD BD ∴=;(2)如图,连接OD ,,BC AC CD AB =⊥,ACD BCD ∴∠=∠,OC OD =,ODC BCD ∴∠=∠,ACD ODC ∴=∠∠,//OD AC ∴,DE AC ⊥,即DF AC ⊥,OD DF ∴⊥,又OD 是O 的半径,DF ∴是O 的切线.【点睛】本题考查了等腰三角形的三线合一、圆周角定理、圆的切线的判定等知识点,较难的是题(2),熟练掌握圆的切线的判定定理是解题关键.25.2(2)4a π-,1.14 【分析】根据对称性用a 表示出阴影的面积,再将a=2代入求解即可.【详解】解:由题意可知:S 阴=211442222a a a π⎡⎤⎛⎫-⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 2(2)4a π-= 当2a =时,S 阴=(3.142)4 1.144-⨯=.【点睛】本题考查列代数式、代数式求值、圆的面积公式、三角形的面积公式,解答的关键是找出面积之间的关系,利用基本图形的面积公式解决问题.26.(1)见解析;(2)AD =3)理由见解析.【分析】(1)根据圆周角定理及平行线的性质不难求解;(2)根据题意证明ABD ADE ∼,列出比例式即可求解;(3)要使DE 是圆的切线,那么D 就是切点,AD ⊥DE ,又根据AD 过圆心O ,BC ∥ED ,根据垂径定理可得出D 应是弧BC 的中点.【详解】(1)在ABC 中,∵AB AC =,∴ABC C ∠=∠.∵//DE BC ,∴ABC E ∠=∠,∴E C ∠=∠.又∵ADB C ∠=∠,∴ADB E ∠=∠.(2)解:∵ABC AED ∠=∠,A ABC CB =∠∠,ADB ACB ∠=∠,∴ADB E ∠=∠,BAD BAD ∠=∠,∴ABD ADE ∼, ∴AB AD AD AE=, 又6AB =,3BE =, ∴AD =.(3)当点D 是弧BC 的中点时,DE 是O 的切线. ∵当点D 是弧BC 的中点时,AD BC ⊥,且AD 过圆心O , 又∵//DE BC ,∴AD ED ⊥.∴DE 是O 的切线. 【点睛】本题主要考查了圆周角定理,切线的判定,平行线的性质,垂径定理相似三角形的判定与性质等知识点,正确运用好圆心角,弧,弦的关系是解题的关键.。

人教版数学九年级上册《圆》测试题及答案

人教版数学九年级上册《圆》测试题及答案

圆基础知识+两套题附参考答案与圆有关的位置关系1.点与圆的位置关系共有三种:① 点在圆外 ,② 点在圆上 ,③ 点在圆内 ;对应的点到圆心的距离d 和半径r 之间的数量关系分别为: ①d > r ,②d = r ,③d < r.2.直线与圆的位置关系共有三种:① 相交 ,② 相切 ,③ 相离 ; 对应的圆心到直线的距离d 和圆的半径r 之间的数量关系分别为: ①d < r ,②d = r ,③d > r.3.圆与圆的位置关系共有五种:① 内含 ,② 相内切 ,③ 相交 ,④ 相外切 ,⑤ 外离 ; 两圆的圆心距d 和两圆的半径R 、r (R ≥r )之间的数量关系分别为:①d < R-r ,②d = R-r ,③ R-r < d < R+ r ,④d = R+r ,⑤d > R+r. 4.圆的切线 垂直于 过切点的半径;经过 直径 的一端,并且 垂直于 这条 直径 的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长 相等,这点与圆心之间的连线 平分 这两条切线的夹角。

与圆有关的计算1.圆的周长为 2πr ,1°的圆心角所对的弧长为 180rπ ,n °的圆心角所对的弧长为 180rn π ,弧长公式为180r n lπ=n 为圆心角的度数上为圆半径) .2. 圆的面积为 πr 2,1°的圆心角所在的扇形面积为 3602r π ,n °的圆心角所在的扇形面积为S= 360n 2R π⨯ = rl 21(n 为圆心角的度数,R 为圆的半径). 3.圆柱的侧面积公式:S= 2 πr l (其中r 为 底面圆 的半径 ,l 为 圆柱 的高.)4. 圆锥的侧面积公式:S=πr l (其中r 为 底面 的半径 ,l 为 母线 的长.) 圆锥的侧面积与底面积之和称为圆锥的全面积A 组一、选择题(每小题3分,共45分)1.在△ABC 中,∠C=90°,AB =3cm ,BC =2cm,以点A 为圆心,以2.5cm 为半径作圆,则点C 和⊙A 的位置关系是( )。

人教版数学九年级上册第二十四章《圆》知识点及练习题(附答案)

人教版数学九年级上册第二十四章《圆》知识点及练习题(附答案)

⼈教版数学九年级上册第⼆⼗四章《圆》知识点及练习题(附答案)《圆》章节知识点复习和练习附参考答案⼀、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离⼤于定长的点的集合; 3、圆的内部:可以看作是到定点的距离⼩于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆⼼,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、⾓的平分线:到⾓两边距离相等的点的轨迹是这个⾓的平分线;4、到直线的距离相等的点的轨迹是:平⾏于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平⾏线距离相等的点的轨迹是:平⾏于这两条平⾏线且到两条直线距离都相等的⼀条直线。

⼆、点与圆的位置关系1、点在圆内 ? d r < ? 点C 在圆内;2、点在圆上 ? d r = ? 点B 在圆上;3、点在圆外 ? d r > ? 点A 在圆外;三、直线与圆的位置关系1、直线与圆相离 ? d r > ? ⽆交点;2、直线与圆相切 ? d r = ? 有⼀个交点;3、直线与圆相交 ? d r < ? 有两个交点;四、圆与圆的位置关系外离(图1)? ⽆交点 ? d R r >+;外切(图2)? 有⼀个交点 ? d R r =+;相交(图3)? 有两个交点 ? R r d R r -<<+;内切(图4)? 有⼀个交点 ? d R r =-;内含(图5)? ⽆交点 ? d R r <-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆⼼,并且平分弦所对的两条弧;(3)平分弦所对的⼀条弧的直径,垂直平分弦,并且平分弦所对的另⼀条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径②AB CD ⊥③CE DE = ④弧BC =弧BD ⑤弧AC =弧AD中任意2个条件推出其他3个结论。

人教版九年级(上)《圆》数学试卷二(中难度)【解析】

人教版九年级(上)《圆》数学试卷二(中难度)【解析】

人教版九年级(上)《圆》数学试卷二(中难度)【解析】参考答案与试题解析一.解答题(共50小题)1.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点且AP=AC.(1)求证:P A是⊙O的切线;(2)若AB=2+,BC=4,求⊙O的半径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥P A,∴P A是⊙O的切线;(2)解:过点C作CE⊥AB于点E.在Rt△BCE中,∠B=60°,BC=4,∴BE=BC=2,CE=2,∵AB=2+,∴AE=AB﹣BE=,在Rt△ACE中,AC==3,在Rt△P AO中,OA=AP=,∴⊙O的半径为.2.如图,△ABC是⊙O的内接三角形,BC是⊙O的直径,过点O作OF⊥BC,交AC于点E,连接AF,且AF是⊙O的切线.(1)求证:AF=EF.(2)若⊙O的半径为5,AB=,求AF的长.【解答】解:(1)如图,连接OA,∵AF为⊙O的切线,∴∠OAF=90°,∴∠OAC+∠F AC=90°,∵∠FEA=∠OEC,OF⊥BC,∴∠OEC+∠OCE=90°,∵∠OCE=∠OAC,∴AF=EF;(2)∵⊙O的半径为5,∴BC=10,在Rt△ABC中,AB=,根据勾股定理,得AC==3,∵∠ECO=∠BCA,∠EOC=∠CAB=90°,∴△EOC∽△BAC,∴=,即=,解得OE=,由(1)可知:AF=EF,设AF=EF=x,∴OF=EF+OE=x+,在Rt△AOF中,根据勾股定理,得AF2+OA2=OF2,即x2+52=(x+)2,解得x=.答:AF的长为.3.如图,AB为⊙O的直径,C,D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF ⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若∠BAC=∠DAC=30°,BC=2,求劣弧的长l.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∵∠AEC=90°,∴∠OCF=∠AEC=90°,∴EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=∠DAC=30°,BC=2,∴∠BOC=60°,AB=2BC=4,∴OB=AB=2,∴的长==π.4.如图所示,AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,CD与⊙O有公共点E,且AD=DE.(1)求证:CD是⊙O的切线;(2)若AB=12,BC=4,求AD的长.【解答】(1)证明:连接OD,OE,∵AD切⊙O于A点,AB是⊙O的直径,∴∠DAB=90°,∵AD=DE,OA=OE,OD=OD,∴△ADO≌△EDO(SSS),∴∠OED=∠OAD=90°,∴CD是⊙O的切线;(2)解:过C作CH⊥AD于H,∵AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,∴∠DAB=∠ABC=∠CHA=90°,∴四边形ABCH是矩形,∴CH=AB=12,AH=BC=4,∵CD是⊙O的切线,∴AD=DE,CE=BC,∴DH=AD﹣BC=AD﹣4,CD=AD+4,∵CH2+DH2=CD2,∴122+(AD﹣4)2=(AD+4)2,∴AD=9.5.如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=10.C是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为6,求线段BP的长.【解答】(1)证明:如图,连结OB,则OP=OB,∴∠OBP=∠OPB=∠CP A,AB=AC,∴∠ACB=∠ABC,而OA⊥l,即∠OAC=90°,∴∠ACB+∠CP A=90°,即∠ABP+∠OBP=90°,∴∠ABO=90°,OB⊥AB,故AB是⊙O的切线;(2)解:由(1)知:∠ABO=90°,而OA=10,OB=OP=6,由勾股定理,得:AB=8,过O作OD⊥PB于D,则PD=DB,∵∠OPD=∠CP A,∠ODP=∠CAP=90°,∴△ODP∽△CAP,∴,又∵AC=AB=8,AP=OA﹣OP=4,∴PC==4,∴PD==,∴BP=2PD=.6.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,交BC于F.(1)若∠ABC=40°,∠C=80°,求∠CBD的度数;(2)求证:DB=DE;(3)若AB=6,AC=4,BC=5,求DE的长.【解答】解:(1)∵∠ABC=40°,∠C=80°,∴∠BAC=180°﹣40°﹣80°=60°,∵点E是△ABC的内心,∴∠CAD=∠BAD=BAC=30°,∴∠CBD=∠CAD=30°.答:∠CBD的度数为30°;(2)证明:如图,连接BE,∴∠1=∠2,∠3=∠4,∵∠2=∠6,∴∠1=∠6,∵∠5=∠1+∠3,∠DBE=∠6+∠4=∠1+∠3,∴∠5=∠DBE,∴DB=DE;(3)∵∠1=∠2,AB=6,AC=4,BC=5,∴==,∴BF=3,CF=2,∵∠6=∠2,∠D=∠C,∴△BDF∽△ACF,∴===2,=,∴DF=BD,DF•AF=BF•CF=6,∵∠1=∠2=∠6,∠BDF=∠ADB,∴△DBF∽△DAB,∴=,∴BD2=DF•DA=DF(AF+DF)=DF•AF+DF2=6+(BD)2,解得BD=2,∴DE=BD=2.答:DE的长为2.7.如图①,AB为⊙O的直径,点C在⊙O上,AD平分∠CAB,AD与BC交于点F,过点D作DE⊥AB于点E.(1)求证:BC=2DE;(2)如图②,连接OF,若∠AFO=45°,半径为2时,求AC的长.【解答】(1)证明:如图①中,延长DE交⊙O于G,连接AG.∵AB⊥DG,AB是直径,∴=,DE=EG,∵AD平分∠CAB,∴∠CAD=∠DAB,∴=,∴=,∴BC=DG=2DE.(2)解:如图②中,作FR⊥AB于R,OS⊥AD于S.∵AD平分∠CAB,FC⊥AC,FR⊥AB,∴∠CAD=∠BAD=x,FC=FR,∴∠FBO=90°﹣2x,∵∠AFO=45°,∴∠FOB=45°+x,∴∠OFB=180°﹣(90°﹣2x)﹣(45°+x)=45°+x,∴∠FOB=∠OFB∴BF=BO=OA,∵∠FRB=∠ACB=90°,∠FBR=∠ABC,∴△BFR∽△BAC,∴==,∴AC=2FR=2FC,∴tan∠F AR=tan∠F AC=,设SO=t,AS=2t,SF=SO=t,则t2+4t2=4,∵t>0,∴t=,∴AF=3t=,设CF=m,则AC=2m,则有5m2=,∵m>0,∴m=,∴AC=2m=.8.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O 为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E.F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求⊙O的半径.【解答】解:(1)线BC与⊙O的位置关系是相切,理由是:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD为半径,∴线BC与⊙O的位置关系是相切;(2)设⊙O的半径为R,则OD=OF=R,在Rt△BDO中,由勾股定理得:OB2=BD2+OD2,即(R+2)2=(2)2+R2,解得:R=4,即⊙O的半径是4.9.如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆.(1)如图1,求证:AD是⊙O的切线;(2)如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.若AD =2,CD=3,求GF的长.【解答】(1)证明:如图1,连接OA,OB,OC.在△OAC和△OAB中,,∴△OAC≌△OAB(SSS),∴∠OAC=∠OAB,∴AO平分∠BAC,∴AO⊥BC.又∵AD∥BC,∴AD⊥AO,∴AD是⊙O的切线.(2)如图2,连接AE.∵∠BCE=90°,∴∠BAE=90°.又∵AF⊥BE,∴∠AFB=90°.∵∠BAG+∠EAF=∠AEB+∠EAF=90°,∴∠BAG=∠AEB.∵∠ABC=∠ACB=∠AEB,∴∠BAG=∠ABC,∴AG=BG.在△ADC和△AFB中,,∴△ADC≌△AFB(AAS),∴AF=AD=2,BF=CD=3.设FG=x,在Rt△BFG中,FG=x,BF=3,BG=AG=x+2,∴FG2+BF2=BG2,即x2+32=(x+2)2,∴x=,∴FG=.10.如图,已知点A、C、D在⊙O上,⊙O的半径为2,CD为⊙O的直径,直线AB∥CD 且∠ADC=60°,将线段AD绕点A逆时针旋转得到线段AF,点D的对应点为点F,且点F在射线AB上,连接FC;(1)求线段AF的长;(2)若点E是上的一点,连接EF,DE,过点F作FH⊥DE于H,延长FH交⊙O 于G,若EF=2,求FG的长.【解答】解:(1)设⊙O交AB于T,连接OT,OA.∵OA=OD,∠ADO=60°,∴△AOD是等边三角形,∴∠AOD=60°,AD=OA,∵AB∥CD,∴∠OAT=∠AOD=60°,∵OA=OT,∴△AOT是等边三角形,∴AT=OA=AD,∵AD=AF,∴点F与T重合,∴AT=AD=OA=2.(2)连接OE,EG,过点O作OK⊥EF于K.∵OK⊥EF,∴EK=KF=,∴OK===,∴KO=KE=KF,∴∠EOF=90°,∴∠EGF=∠EOF=45°,∵DE⊥FG,∴∠EGH=90°,∴HE=HG,∵∠DOF=∠AOD+∠AOF=60°+60°=120°,∴∠DEF=∠DOF=60°,在Rt△EFH中,EH=EF•cos60°=,FH=EF•sin60°=,∵HG=HE=,∴FG=FH+HG=+.11.如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)若∠CBD=30°,BC=3,求⊙O半径.【解答】解:(1)证明:如图,连接OD,∵OD=OB=OA,∴∠OBD=∠ODB,∠ODA=∠OAD,∵∠CDA=∠CBD,∴∠CDA=∠ODB.∵AB为⊙O的直径,∴∠ADB=∠ODB+∠ODA=90°,∴∠CDA+∠ODA=∠ODC=90°.∴OD⊥CD,∴CD是⊙O的切线;(2)∵∠CBD=30°,∠OBD=∠ODB,∴∠AOD=∠OBD+∠ODB=60°,∴∠C=30°.∵∠ODC=90°.∴OD=OB=OC,∴OB=BC,∵BC=3,∴OB=1,∴⊙O半径为1.12.如图,在△ABC中,AB=CB,AB是⊙O的直径,D为⊙O上一点,且弧AD=弧BD,直线l经过点C、D,连接AD,交BC于点E,若∠CAD=∠CBA.(1)求证:直线l是⊙O的切线;(2)求的值.【解答】解:(1)如图1,连接BD,连接OD,过点C作CF⊥AB于点F,∵,∴∠DAB=∠ABD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠DAB=∠DBA=45°,设∠ABC=α,∵BA=BC,∴∠BAC=∠BCA=,∵∠CAD=∠CBA=α,∴∠BAC=∠BAD+∠CAD=45°+α,∴,∴α=30°,∴CF=,∵,∴OD=CF,∵,∴AD=BD,∵OA=OB,∴OD⊥AB,∵DP⊥AB,∴CF∥OD∴四边形ODCF是矩形,∴∠ODC=90°,∴直线l是⊙O的切线;(2)如图2,过点E作EG⊥AB于点G,由(1)知,∠CAD=∠ABE=30°,CD∥AB,∴∠ADC=∠EAB=45°,则△ACD∽△BEA,∴,∴AE=CD,∵∠DAB=45°、∠ABC=30°,∴BE=2EG=2×AE=AE=CD=2CD,∴.13.如图,AB为⊙O的直径,C、D为圆上的两点,OC∥BD,弦AD与BC,OC分别交于E、F.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径.【解答】(1)证明:∵AB是圆的直径,∴∠ADB=90°,∵OC∥BD,∴∠AFO=∠ADB=90°,∴OC⊥AD∴=.(2)解:连接AC,如图,∵=,∴∠CAD=∠ABC,∵∠ECA=∠ACB,∴△ACE∽△BCA,∴,∴AC2=CE•CB,即AC2=1×(1+3),∴AC=2,∵AB是圆的直径,∴∠ACB=90°,∴AB===2,∴⊙O的半径为.14.如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)判断BD与CF的数量关系?说明理由.【解答】解:(1)证明:如图,连接AO,∵⊙O是等边三角形ABC的外接圆,∴AO平分∠BAC,∴,∵AE∥BC,∴∠CAE=∠BCA=60°,∴∠OAE=∠OAC+∠CAE=90°,∴OA⊥AE,∴EA为⊙O的切线;(2)BD=CF,理由如下:∵△ABC为正三角形,∴AB=AC,∠BAC=∠ABC=60°;∵A、B、C、D四边共圆,∴∠ADF=∠ABC=60°,∵DF=DA,∴△ADF为正三角形,∴∠DAF=60°=∠BAC,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAD=∠CAF,在△BAD与△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF.所以BD与CF的数量关系为相等.15.如图,CD为⊙O的直径,弦AB⊥CD,垂足为H,P是CD延长线上一点,DE⊥AP,垂足为E,∠EAD=∠HAD.(1)求证:AE为⊙O的切线;(2)已知P A=2,PD=1,求⊙O的半径和DE的长.【解答】解:(1)证明:连接AO并延长交⊙O于点M,连接MD,如图,∵AB⊥CD,∴=,∴∠M=∠BAD,∵∠EAD=∠HAD.∴∠M=∠EAD,∵AM为直径,∴∠ADM=90°,∴∠M+∠MAD=90°,∴∠EAD+∠MAD=90°,即∠MAE=90°,∴AM⊥AE,∴AE为⊙O的切线;(2)∵∠EAD=∠HAD,DH⊥AH,DE⊥AE,AD=AD,∴△AHD≌△AED(AAS)∴DE=DH,AH=AE,设DE=x,AH=y,则DH=x,AE=y,∵∠EPD=∠HP A,∠PED=∠PHA=90°,∴Rt△PED∽Rt△PHA,∴==,即==,∴解得x=,y=,即DE的长为,AH=,设圆的半径为r,则OH=r﹣,在Rt△OAH中,(r﹣)2+()2=r2,解得r=,即⊙O的半径为.答:⊙O的半轻和DE的长分别为:,.16.如图,在△ABC中,AB=AC,AE是BC边上的高,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB为⊙O的直径.(1)求证:AM是⊙O的切线;(2)当BC=10,AE=12时,求AM的长度.【解答】(1)证明:连接OM.∵OB=OM,∴∠1=∠3,又BM平分∠ABC交AE于点M,∴∠1=∠2,∴∠2=∠3,∴OM∥BE.∵AB=AC,AE是角平分线,∴AE⊥BC,∴OM⊥AE,∴AE与⊙O相切;(2)∵AB=AC,AE是BC边上的高,∴BE=BC=5,∵当BC=10,AE=12,∴AB===13,∵OM∥BE,∴△AOM∽△ABE,∴==,∴==,解得:AM=.17.如图,在△ABC中,AC=BC,以BC为直径作⊙O,交AC于点M,作CD⊥AC交AB 延长线于点D,E为CD上一点,且BE=DE.(1)证明:BE为⊙O的切线;(2)若AM=8,AB=8,求BE的长.【解答】(1)证明:∵CD⊥AC,∴∠ACD=90°,∴∠A+∠D=90°,∵AC=BC,BE=DE,∴∠A=∠ABC,∠D=∠DBE,∴∠ABC+∠DBE=90°,∴∠CBE=180°﹣90°=90°,∴CB⊥BE,∴BE为⊙O的切线;(2)解:连接BM,∵BC为⊙O的直径,∴BM⊥AC,∵AM=8,AB=8,∴BM==16,∵AC=BC,∴CM=BC﹣AM=BC﹣8,∵BC2=BM2+CM2,∴BC2=162+(BC﹣8)2,∴BC=20,∴AC=BC=20,∵BM⊥AC,AC⊥CD,∴BM∥CD,∴∠MBC=∠BCE,∵∠BMC=∠CBM=90°,∴△BMC∽△CBE,∴,∴=,∴BE=15.18.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,作DE⊥AC于点E.(1)求证:DE与⊙O相切;(2)若BD=2,AE=1,求⊙O的半径.【解答】(1)证明:连接OD,如图,∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠B=∠ODB,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE为⊙O的切线;(2)∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴CD=BD=2,又∵DE⊥AC,∴∠ADC=∠DEC,又∵∠C=∠C,∴△CDE∽△CAD,∴=,∴=,∴AC=5,∴⊙O的半径为.19.如图,以△ABC的边AC为直径的⊙O恰好为△ABC的外接圆,∠ABC的平分线交⊙O 于点D,过点D作DE∥AC交BC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=4,BC=2,求DE的长.【解答】(1)证明:连接OD,∵AC是⊙O的直径,∴∠ABC=90°,∵BD平分∠ABC,∴∠ABD=45°,∴∠AOD=90°,∵DE∥AC,∴∠ODE=∠AOD=90°,∴DE是⊙O的切线;(2)解:在Rt△ABC中,AB=4,BC=2,∴AC==2,∴OD=,过点C作CG⊥DE,垂足为G,则四边形ODGC为正方形,∴DG=CG=OD=,∵DE∥AC,∴∠CEG=∠ACB,∴tan∠CEG=tan∠ACB,∴=,即=,解得:GE=,∴DE=DG+GE=.20.如图,AB是⊙O的直径,点E是的中点,CA与⊙O相切于点A交BE延长于点C,过点A作AD⊥OC于点F,交⊙O于点D,交BC于点Q,连接BD.(1)求证:BD=AF;(2)若BD=2,求CQ的长.【解答】证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵点E是弧AB的中点,∴∠ABE=45°,∵CA与⊙O相切于点A,∴∠BAC=90°,∴AB=AC,∵AD⊥OC于点F,∴∠AFC=∠ADB=90°,∵∠F AC+∠BAD=90°,∠F AC+∠ACF=90°,∴∠BAD=∠ACF.在△ABD和△CAF中∴△ABD≌△CAF(AAS),∴BD=AF.(2)解:∵BD=2,∴AF=BD=2,∵AD⊥OC于点F,∴AD=2AF=4=CF,在Rt△ABD中,AB==,在Rt△ABC中,BC=AB=,∵∠AFC=∠ADB=90°,∠FQC=∠DQB,∴△BDQ∽△CFQ,∴,∴CQ=2BQ,∴CQ=BC=.21.如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.【解答】(1)证明:∵四边形ABCD内接于圆.∴∠ABC+∠ADC=180°,∵∠ABC=60°,∴∠ADC=120°,∴∠ADB=∠CDB=60°,∴∠ACB=∠ADB=60°,∠BAC=∠CDB=60°,∴∠ABC=∠BCA=∠BAC,∴△ABC是等边三角形.(2)过点A作AM⊥CD,垂足为点M,过点B作BN⊥AC,垂足为点N.∴∠AMD=90°,∵∠ADC=120°,∴∠ADM=60°,∴∠DAM=30°,∴DM=AD=1,AM===,∵CD=3,∴CM=CD+DM=1+3=4,∴S△ACD=CD•AM=×=,Rt△AMC中,∠AMD=90°,∴AC===,∵△ABC是等边三角形,∴AB=BC=AC=,∴BN=BC=,∴S△ABC=×=,∴四边形ABCD的面积=+=,∵BE∥CD,∴∠E+∠ADC=180°,∵∠ADC=120°,∴∠E=60°,∴∠E=∠BDC,∵四边形ABCD内接于⊙O,在△EAB和△DCB中,,∴△EAB≌△DCB(AAS),∴△BDE的面积=四边形ABCD的面积=.22.如图,在等腰△ABC中,AB=AC,点D是BC上一点,以BD为直径的⊙O过点A,连接AD,∠CAD=∠C.(1)求证:AC是⊙O的切线;(2)若AC=4,求⊙O的半径.【解答】(1)证明:如图:连接OA,∵OA=OB,∴∠OBA=∠OAB,∵AB=AC,∴∠OBA=∠C,∴∠OAB=∠C,∵∠CAD=∠C,∴∠OAB=∠CAD,∵BD是直径,∴∠BAD=90°,∵∠OAC=∠BAD﹣∠OAB+∠CAD=90°,∴AC是⊙O的切线;(2)解:由(1)可知AC是⊙O的切线,∴∠OAC=90°,∠AOD=2∠B,∵AB=AC,∴∠B=∠C,∴∠AOC+∠C=2∠B+∠C=3∠C=90°,∴∠B=∠C=30°,在Rt△ABD中,BD===,∴OB=,∴⊙O的半径为.23.如图,在△ABC中,∠B=90°,点D为AC上一点,以CD为直径的⊙O交AB于点E,连接CE,且CE平分∠ACB.(1)求证:AE是⊙O的切线;(2)连接DE,若∠A=30°,求.【解答】(1)证明:连接OE,如图1所示:∵CE平分∠ACB,∴∠ACE=∠BCE,又∵OE=OC,∴∠ACE=∠OEC,∴∠BCE=∠OEC,∴OE∥BC,∴∠AEO=∠B,又∵∠B=90°,∴∠AEO=90°,即OE⊥AE,∵OE为⊙O的半径,∴AE是⊙O的切线;(2)解:连接DE,如图2所示:∵CD是⊙O的直径,∴∠DEC=90°,∴∠DEC=∠B,又∵∠DCE=∠ECB,∴△DCE∽△ECB,∴=,∵∠A=30°,∠B=90°,∴∠ACB=60°,∴∠DCE=∠ACB=×60°=30°,∴=cos∠DCE=cos30°=,∴=.24.如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.【解答】(1)证明:∵在△AME中,ME=3,AE=4,AM=5,∴AM2=ME2+AE2,∴△AME是直角三角形,∴∠AEM=90°,又∵MN∥BC,∴∠ABC=∠AEM=90°,∴AB⊥BC,∵AB为直径,∴BC是⊙O的切线;(2)解:连接OM,如图,设⊙O的半径是r,在Rt△OEM中,OE=AE﹣OA=4﹣r,ME=3,OM=r,∵OM2=ME2+OE2,∴r2=32+(4﹣r)2,解得:r=,∴AB=2r=.25.如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.【解答】(1)证明:连接OF,如图1所示:∵CD⊥AB,∴∠DBC+∠C=90°,∵OB=OF,∴∠DBC=∠OFB,∵EF=EC,∴∠C=∠EFC,∴∠OFB+∠EFC=90°,∴∠OFE=180°﹣90°=90°,∴OF⊥EF,∵OF为⊙O的半径,∴EF是⊙O的切线;(2)解:连接AF,如图2所示:∵AB是⊙O的直径,∴∠AFB=90°,∵D是OA的中点,∴OD=DA=OA=AB=×4=1,∴BD=3OD=3,∵CD⊥AB,CD=AB=4,∴∠CDB=90°,由勾股定理得:BC===5,∵∠AFB=∠CDB=90°,∠FBA=∠DBC,∴△FBA∽△DBC,∴=,∴BF===,∴CF=BC﹣BF=5﹣=.26.如图,OM是⊙O的半径,过M点作⊙O的切线AB,且MA=MB,OA,OB分别交⊙O 于C,D.求证:AC=BD.【解答】证明:∵OM是⊙O的半径,过M点作⊙O的切线AB,∴OM⊥AB,∵MA=MB,∴△ABO是等腰三角形,∴OA=OB,∵OC=OD,∴OA﹣OC=OB﹣OD,即:AC=BD.27.如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A,B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;(2)若AD=2,求的长(结果保留π).【解答】(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠ABC=∠D=60°,∵AC⊥BC,∴∠ACB=90°,∴∠BAC=30°,∵BE=AB,∴∠E=∠BAE,∵∠ABC=∠E+∠BAE=60°,∴∠E=∠BAE=30°,∵OA=OB,∴∠ABO=∠OAB=30°,∴∠OBC=30°+60°=90°,∴OB⊥CE,∴EC是⊙O的切线;(2)解:∵四边形ABCD是平行四边形,∴BC=AD=2,过O作OH⊥AM于H,则四边形OBCH是矩形,∴OH=BC=2,∴OA==4,∠AOM=2∠AOH=60°,∴的长度==.28.中心为O的正六边形ABCDEF的半径为6cm,点P,Q同时分别从A,D两点出发,以1cm/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为t(s).(1)求证:四边形PBQE为平行四边形;(2)求矩形PBQE的面积与正六边形ABCDEF的面积之比.【解答】(1)证明:∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=F A,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,∴AP=DQ=t,PF=QC=6﹣t,在△ABP和△DEQ中,,∴△ABP≌△DEQ(SAS),∴BP=EQ,同理可证PE=QB,∴四边形PEQB为平行四边形.(2)解:连接BE、OA,则∠AOB==60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=6,BE=2OB=12,当t=0时,点P与A重合,Q与D重合,四边形PBQE即为四边形ABDE,如图1所示:则∠EAF=∠AEF=30°,∴∠BAE=120°﹣30°=90°,∴此时四边形ABDE是矩形,即四边形PBQE是矩形.当t=6时,点P与F重合,Q与C重合,四边形PBQE即为四边形FBCE,如图2所示:同法可知∠BFE=90°,此时四边形PBQE是矩形.综上所述,t=0s或6s时,四边形PBQE是矩形,∴AE==6,∴矩形PBQE的面积=矩形ABDE的面积=AB×AE=6×6=36;∵正六边形ABCDEF的面积=6△AOB的面积=6×矩形ABDE的面积=6××36=54,∴矩形PBQE的面积与正六边形ABCDEF的面积之比=.29.如图,△ABC的外角∠BAM的平分线与它的外接圆相交于点E,连接BE,CE,过点E 作EF∥BC,交CM于点D.求证:(1)BE=CE;(2)EF为⊙O的切线.【解答】证明:(1)∵四边形ACBE是圆内接四边形,∴∠EAM=∠EBC,∵AE平分∠BAM,∴∠BAE=∠EAM,∵∠BAE=∠BCE,∴∠BCE=∠EAM,∴∠BCE=∠EBC,∴BE=CE;(2)如图,连接EO并延长交BC于H,连接OB,OC,∵OB=OC,EB=EC,∴直线EO垂直平分BC,∴EH⊥BC,∴EH⊥EF,∵OE是⊙O的半径,∴EF为⊙O的切线.30.如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.【解答】解:(1)连接BF,OC,∵AB是⊙O的直径,∴∠AFB=90°,即BF⊥AD,∵CE⊥AD,∴BF∥CE,连接OC,∵点C为劣弧的中点,∴OC⊥BF,∵BF∥CE,∴OC⊥CE,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)连接OF,CF,∵OA=OC,∠BAC=30°,∴∠BOC=60°,∵点C为劣弧的中点,∴,∴∠FOC=∠BOC=60°,∵OF=OC,∴∠OCF=∠COB,∴CF∥AB,∴S△ACF=S△COF,∴阴影部分的面积=S扇形COF,∵AB=4,∴FO=OC=OB=2,∴S扇形FOC=,即阴影部分的面积为:.31.如图,已知AB是⊙O的直径,直线BC与⊙O相切于点B,过点A作AD∥OC交⊙O 于点D,连接CD.(1)求证:CD是⊙O的切线.(2)若AD=4,直径AB=12,求线段BC的长.【解答】(1)证明:连接OD,如图所示:∵OA=OD,∴∠ODA=∠OAD.∵AD∥CO,∴∠COD=∠ODA,∠COB=∠OAD.∴∠COD=∠COB.∵OD=OB,OC=OC,∴△ODC≌△OBC(SAS).∴∠ODC=∠OBC.∵CB是圆O的切线且OB为半径,∴∠CBO=90°.∴∠CDO=90°.∴OD⊥CD.又∵CD经过半径OD的外端点D,∴CD为圆O的切线.(2)解:连接BD,∵AB是直径,∴∠ADB=90°.在直角△ADB中,BD===8,∵∠ADB=∠OBC=90°,且∠COB=∠BAD,∴△ADB∽△OBC.∴=,即=.∴BC=12.32.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,∠DCA=∠B.(1)求证:CD是⊙O的切线;(2)若DE⊥AB,垂足为E,DE交AC于点F,求证:△DCF是等腰三角形.【解答】证明:(1)连接OC,∵OC=OA,∴∠OCA=∠A,∵AB是⊙O的直径,∴∠BCA=90°,∴∠A+∠B=90°,∵∠DCA=∠B,∴∠OCA+∠DCA=∠OCD=90°,∴OC⊥CD,∴CD是⊙O的切线;(2)∵∠OCA+∠DCA=90°,∠OCA=∠A,∴∠A+∠DCA=90°,∵DE⊥AB,∴∠A+∠EF A=90°,∴∠DCA=∠EF A,∵∠EF A=∠DFC,∴∠DCA=∠DFC,∴△DCF是等腰三角形.33.如图,在Rt△ABC中,∠ACB=90°,以AB为直径作⊙O,过点C作直线CD交AB 的延长线于点D,使∠BCD=∠A.(1)求证:CD为⊙O的切线;(2)若DE平分∠ADC,且分别交AC,BC于点E,F,当CE=2时,求EF的长.【解答】(1)证明:如图,连接OC,∵AB为⊙O的直径,∴∠ACB=90°,即∠A+∠ABC=90°,又∵OC=OB,∴∠ABC=∠OCB,∵∠BCD=∠A,∴∠BCD+∠OCB=90°,即∠OCD=90°,∵OC是圆O的半径,∴CD是⊙O的切线;(2)解:∵DE平分∠ADC,∴∠CDE=∠ADE,又∵∠BCD=∠A,∴∠A+∠ADE=∠BCD+∠CDF,即∠CEF=∠CFE,∵∠ACB=90°,CE=2,∴CE=CF=2,∴EF=.34.如图,△ABC内接于⊙O,AB是⊙O的直径.直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.(1)求证:直线DC是⊙O的切线;(2)若BC=2,∠CAB=30°,求图中阴影部分的面积(结果保留π).【解答】(1)证明:连接OC,∵AB是⊙O的直径.直线l与⊙O相切于点A,∴∠DAB=90°,∵DA=DC,OA=OC,∴∠DAC=∠DCA,∠OAC=∠OCA,∴∠DCA+∠ACO=∠DAC+∠CAO,即∠DCO=∠DAO=90°,∴OC⊥CD,∴直线DC是⊙O的切线;(2)解:∵∠CAB=30°,∴∠BOC=2∠CAB=60°,∵OC=OB,∴△COB是等边三角形,∴OC=OB=BC=2,∴CE=OC=2,∴图中阴影部分的面积=S△OCE﹣S扇形COB=﹣=2﹣.35.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC,垂足为点E.(1)求证:△ABD≌△ACD;(2)判断直线DE与⊙O的位置关系,并说明理由.【解答】(1)证明:∵AB为⊙O的直径,∴AD⊥BC,在Rt△ADB和Rt△ADC中,∴Rt△ABD≌Rt△ACD(HL);(2)直线DE与⊙O相切,理由如下:连接OD,如图所示:由△ABD≌△ACD知:BD=DC,又∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE与⊙O相切.36.如图,AB是⊙O的直径,E,C是⊙O上两点,且=,连接AE,AC.过点C作CD⊥AE交AE的延长线于点D.(1)判定直线CD与⊙O的位置关系,并说明理由;(2)若AB=4,CD=,求图中阴影部分的面积.【解答】(1)证明:连接OC,∵=,∴∠CAD=∠BAC,∵OA=OC,∴∠BAC=∠ACO,∴∠CAD=∠ACO,∴AD∥OC,∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连接OE,连接BE交OC于F,∵=,∴OC⊥BE,BF=EF,∵AB是⊙O的直径,∴∠AEB=90°,∴∠FED=∠D=∠EFC=90°,∴四边形DEFC是矩形,∴EF=CD=,∴BE=2,∴AE===2,∴AE=AB,∴∠ABE=30°,∴∠AOE=60°,∴∠BOE=120°,∵=,∴∠COE=∠BOC=60°,连接CE,∵OE=OC,∴△COE是等边三角形,∴∠ECO=∠BOC=60°,∴CE∥AB,∴S△ACE=S△COE,∵∠OCD=90°,∠OCE=60°,∴∠DCE=30°,∴DE=CD=1,∴AD=3,∴图中阴影部分的面积=S△ACD﹣S扇形COE=3﹣=﹣.37.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.【解答】解:(1)BC与⊙O相切,理由:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,∵∠EAD=∠DAC,∴△ADE∽△ACD,∴=,=,∴AC=,∴CD===,∵OD⊥BC,AC⊥BC,∴OD∥AC,∴△OBD∽△ABC,∴,∴=,∴BD=.38.如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB于点P,交⊙O于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.【解答】解:(1)CB与⊙O相切,理由:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵CP=CB,∴∠CPB=∠CBP,∵∠CPB=∠APO,∴∠CBP=∠APO,在Rt△AOP中,∵∠A+∠APO=90°,。

人教版九年级数学上册《24.1.1-圆》同步练习题-附答案

人教版九年级数学上册《24.1.1-圆》同步练习题-附答案

人教版九年级数学上册《24.1.1 圆》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.把圆规的两脚分开,两脚间的距离是3厘米,再把有针尖的一只脚固定在一点上,把装有铅笔尖的一只脚旋转一周,就画出一个圆,则这个圆的()A.半径是3厘米B.直径是3厘米C.周长是3π厘米D.面积是3π厘米2.已知⊙O的半径长7cm,P为线段O A的中点,若点P在⊙O上,则OA的长是()A.等于7cm B.等于14cm C.小于7cm D.大于14cm3.下列说法正确的是()A.同弧或等弧所对的圆心角相等B.所对圆心角相等的弧是等弧C.弧长相等的弧一定是等弧D.平分弦的直径必垂直于弦4.已知O的半径为5,则该圆中最长的弦的长是()A.52B.53C.10 D.155.如图,在平面直角坐标系中,Q(3,4),P是在以Q为圆心,2为半径的⊙Q上一动点,设P点的横坐标为x,A(1,0)、B(-1,0),连接P A、PB,则P A2+PB2的最大值是A.64 B.98 C.100 D.1246.如图,在矩形ABCD中,AB=10,BC=12,E是矩形内部的一个动点,连接AE BE CE DE,,,,下列选项中的结论错误..的是()A .0261CE <<B .无论点E 在何位置,总有2222AE CE BE DE +=+C .若AE BE ⊥,则线段CE 的最小值为8D .若60EAD EBC ∠+∠=︒,AE BE +的最大值为23 7.下列命题是假命题的是( )A .不在同一直线上的三点确定一个圆B .矩形的对角线互相垂直且平分C .正六边形的内角和是720°D .角平分线上的点到角两边的距离相等8.下列命题正确的是( )A .相等的圆心角所对的弧是等弧B .等圆周角对等弧C .任何一个三角形只有一个外接圆D .过任意三点可以确定一个圆9.下列条件中,能确定圆的是( )A .以已知点O 为圆心B .以1cm 长为半径C .经过已知点A ,且半径为2cmD .以点O 为圆心,1cm 为半径10.下列条件中,能确定一个圆的是( )A .经过已知点MB .以点O 为圆心,10cm 长为半径C .以10cm 长为半径D .以点O 为圆心二、填空题11.如图,在平面直角坐标系中,点A 的坐标为(0,12),点B 的坐标为(5,0),动点P 在以A 为圆心,7为半径的圆周上运动,连接BP .(1)当动点P 与点B 距离最远时,此时线段BP 的长度为 ;(2)连接OP ,当OBP ∆为等腰三角形时,则P 点坐标为 .12.(1)图⊙中有 条弧,分别为 ;(2)写出图⊙中的一个半圆 ;劣弧: ;优弧: .13.如图,在⊙ABC 中,AC =BC ,⊙ACB =90°,以点A 为圆心,AB 长为半径画弧,交AC 延长线于点D ,则AC CD 的值为 ;过点C 作CE ⊙AB ,交BD 于点E ,连接BE ,则CE AD的值为 .14.如图,在矩形ABCD 中,AB =6,AD =8,E 是AB 边的中点,F 是线段BC 的动点,将△EBF 沿EF 所在直线折叠得到△EB ´F ,连接B ´D ,则B ′D 的最小值是 .15.如图,在O 中,点A 、B 在圆上,且AB OA =,则OAB ∠的度数为 °.16.直径为6cm 的圆周长是 cm .17.如图,点A 、B 在O 上,且AB BO =.ABO ∠的平分线与AO 相交于点C ,若3AC =,则O 的周长为 .(结果保留π)18.如图,在矩形ABCD 中,AB=2,AD=3,动点P 在矩形的边上沿B C D A →→→运动.当点P 不与点A 、B 重合时,将ABP 沿AP 对折,得到AB P ',连接CB ',则在点P 的运动过程中,线段CB '的最小值为 .19.直线4y x =+分别与x 轴、y 轴相交于点M 、N ,边长为2的正方形OABC 的一个顶点O 在坐标系的原点,直线AN 与MC 相交于点P ,若正方形绕着点O 旋转一周,则点P 到点()0,2长度的最小值是 .20.国际奥委会会旗上的图案是由代表五大洲的五个圆环组成,现在在某体育馆前的草坪上要修剪出此图案.已知,每个圆环的内、外半径分别为4米和5米,图中重叠部分的每个小曲边四边形的面积都为1平方米,若修剪每平方米的人工费用为10元,则修剪此图案所花费的人工费为 元(π取3).三、解答题21.综合与实践【问题背景】“夏至”过后,越来越多的市民喜欢去海边游玩。

人教版初中数学九年级数学上册第四单元《圆》测试卷(有答案解析)(2)

人教版初中数学九年级数学上册第四单元《圆》测试卷(有答案解析)(2)

一、选择题1.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在⊙O 上,点D 在优弧ADB 上,DA DB =,则AOD ∠的度数为( )A .165°B .155°C .145°D .135°2.下列说法不正确的是( )A .不在同一直线上的三点确定一个圆B .90°的圆周角所对的弦是直径C .平分弦的直径垂直于这条弦D .等弧所对的圆周角相等3.下列说法:(1)三点确定一个圆;(2)直径所对的圆周角是直角;(3)平分弦的直径垂直于弦,并且平分弦所对的弧;(4)相等的圆心角所对的弧相等;(5)圆内接四边形的对角互补.其中正确的个数为( )A .1个B .2个C .3个D .4个4.如图,AB 是半圆O 的直径,20BAC =︒∠,则D ∠的度数是( )A .70°B .100°C .110°D .120° 5.点P 到圆上各点的最大距离为10cm ,最小距离为6cm ,则此圆的半径为( ) A .8cmB .5cm 或3cmC .8cm 或2cmD .3cm 6.已知正方形的边长a ,其内切圆的半径为r ,外接圆的半径为R ,则::R r a =( ) A .2:1:2 B .2:1:1 C .2:1:1 D .2:2:4 7.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D 、C .若∠ACB=30°,AB= 3,则阴影部分的面积( )A .32B .33C .3π26-D .3π36- 8.如图所示,AB 是O 的直径,点C ,D 在O 上,21BDC ∠=︒,则AOC ∠的度数是( )A .136°B .137°C .138°D .139° 9.如图,PA 切O 于点,A PB 切O 于点B PO ,交O 于点C ,下列结论中不一定成立的是( )A .PA PB =B .PO 平分APB ∠C .AB OP ⊥D .2PAB APO ∠=∠ 10.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,28CDB ∠=︒,过点C 作⊙O 的切线交AB 的延长线于点E ,则E ∠等于( )A .28︒B .34︒C .44︒D .56︒ 11.已知圆锥的底面半径为3cm ,母线长为6cm ,则圆锥的侧面积是( ) A .18cm 2B .218cm πC .27cm 2D .227cm π 12.在扇形中,∠AOB =90°,面积为4πcm 2,用这个扇形围成一个圆锥的侧面,这个圆锥的底面半径为 ( )A .1cmB .2cmC .3nD .4cm二、填空题13.已知O 的直径10AB =cm ,CD 是O 的弦,AE CD ⊥,垂足为点E ,BF CD ⊥,垂足为点F ,且8CD =cm ,则BF AE -的长为________cm .14.如图所示,在平面直角坐标系中,正六边形OABCDE 边长是6,则它的外接圆圆心P 的坐标是______.15.如图,,PA PB 切⊙O 于,A B ,点C 在AB 上,DE 切⊙O 于C ,10cm,PO =⊙O 的半径为6cm ,则PDE △的周长是_________cm .16.如图,AB AC 、分别为O 的内接正方形、内接正三角形的边,BC 是圆内接正n 边形的一边,则n 的值为_______________________.17.如图,半径为10的扇形AOB 中,∠AOB=90°,C 为AB 上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E .若∠CDE=36°,则图中阴影部分的面积为____.18.如图,在扇形AOB 中90AOB ∠=︒,正方形CDEF 的顶点C 是AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为2________.19.小红在手工制作课上,用面积为215cm π,半径为15cm 的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为_______cm .20.如图所示,在⊙O 中,AB 为弦,交AB 于AB 点D ,且OD=DC ,P 为⊙O 上任意一点,连接PA ,PB ,若⊙O 的半径为1,则S △PAB 的最大值为_____.三、解答题21.如图,AB 是⊙O 的直径,点C 在⊙O 上,BD 平分ABC ∠交⊙O 于点D ,过点D 作DE BC ⊥,垂足为E .(1)求证:DE 与⊙O 相切;(2)若10AB =,6AD =,求DE 的长.22.如图,已知,90Rt ABC ACB ∆∠=︒.(1)请在图中用无刻度的直尺和圆规作一个圆,使得圆心О在边AC 上,且与边,AB BC 所在直线相切(不写作法,保留作图痕迹);(2)在(1)的条件下,若9,12AC BC ==,求O 的半径. 23.如图,若O 是ABC 的外接圆,AD 为直径,60ABC ∠=︒.(1)求DAC ∠的度数;(2)若4=AD ,求阴影部分的面积.24.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,求大正方形的面积.25.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠CAE=∠ADC .(1)求证:AE 是⊙O 的切线;(2)若⊙O 的半径为2,∠B=60°,求图中阴影部分的面积.(结果保留根号和π) 26.如图,O 中,AB CD =,A C ∠=∠,AB 与CD 交于点P .求证=DP BP .【参考答案】***试卷处理标记,请不要删除一、选择题解析:D【分析】连接OB,根据平行四边形的性质可得∠OAB=∠C=45°,再根据等腰三角形的等边对等角得∠OBA=∠OAB=45°,则∠AOB=90°,由DA=DB得∠AOD=∠BOD,进而可求得∠AOD的度数.【详解】解:连接OB,∵四边形ABCO是平行四边形,∴∠OAB=∠C=45°,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠AOB=90°,∵DA=DA,∴∠AOD=∠BOD=1(360°﹣90°)=135°,2故选:D.【点睛】本题考查平行四边形的性质,等腰三角形的性质,圆心角、弧、弦的关系等知识,熟练掌握平行四边形的性质和等腰三角形的性质,熟知等弦所对的圆心角相等是解答的关键.2.C解析:C【分析】根据确定圆的条件对A进行判断;根据垂径定理的推论对C进行判断;根据圆周角定理及其推论对B、D进行判断.【详解】解:A.不在同一直线上的三点确定一个圆,说法正确;B. 90°的圆周角所对的弦是直径,说法正确;C. 平分弦(非直径)的直径垂直于弦,所以B选项错误;D. 等弧所对的圆周角相等,说法正确;故选:C【点睛】此题主要考查了圆的相关知识的掌握.解答此题的关键是要熟悉课本中的性质定理.解析:B【分析】根据确定圆的条件、直径的性质、垂径定理、圆周角定理、圆内接四边形的性质一一判断即可.【详解】解:(1)任意三点确定一个圆;错误,应该是不在同一直线上的三点可以确定一个圆; (2)直径所对的圆周角是直角;正确;(3)平分弦的直径垂直于弦;并且平分弦所对的弧,错误,直径与直径互相平分,但不一定互相垂直;(4)相等的圆心角所对的弧相等;错误,应该是在同圆或等圆中;(5)圆内接四边形对角互补;正确;故选:B .【点睛】本题考查确定圆的条件、直径的性质、垂径定理、圆周角定理、圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.C解析:C【分析】先根据圆周角定理可得90ACB ∠=︒,再根据直角三角形的性质可得70B ∠=︒,然后根据圆内接四边形的性质即可得.【详解】AB 是半圆O 的直径,90ACB ∴∠=︒,20BAC ∠=︒,9070B BAC ∴∠=︒-∠=︒, 又四边形ABCD 是圆O 内接四边形,180110D B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了圆周角定理、直角三角形的性质、圆内接四边形的性质,熟练掌握圆周角定理是解题关键.5.C解析:C【分析】分析题意,本题应分两种情况讨论:(1)点P 在圆内;(2)点P 在圆外;根据“一个点到圆的最大距离和最短距离都在过圆心的直线上”可知,点P 到圆的最大距离与最小距离的和或差即是圆的直径,进而即可得出半径的长.【详解】当点P 在圆内时,圆的直径是10+6=16cm ,所以半径是8cm .当点P 在圆外时,圆的直径是10-6=4cm ,所以半径是2cm .故选C .【点睛】本题考查了圆的有关性质,熟知一个点到圆的最大距离和最短距离都在过圆心的直线上是解题的关键.6.A解析:A【分析】经过圆心O 作正方形一边AB 的垂线OC ,垂足是C .连接OA ,则在直角△OAC 中,∠AOC=45°.OC 是边心距r ,OA 即半径R ,进而即可求解【详解】如图:作出正方形的边心距,连接正方形的一个顶点和中心可得到一直角三角形 在中心的直角三角形的角为360°÷4÷2=45°,∴内切圆的半径为2a ,外接圆的半径为22a , ∴::R r a22a :2a :a=2:1:2 故选A【点睛】本题主要考查正多边形的外接圆与内切圆的半径,掌握相关概念,作出图形,是解题的关键.7.C解析:C【分析】首先求出∠AOB ,OB ,然后利用S 阴=S △ABO −S 扇形OBD 计算即可.【详解】连接OB .∵AB 是⊙O 切线,∴OB ⊥AB ,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=3,∠A=30°,∴OB=ABtan30°=1,∴S阴=S△ABO−S扇形OBD=12×1×3−2601360π⋅=3π26-.故选:C.【点睛】本题考查切线的性质、等腰三角形的性质、勾股定理,直角三角形30度角性质,解题的关键是学会分割法求面积,记住扇形面积公式,属于中考常考题型.8.C解析:C【分析】利用圆周角定理求出∠BOC即可解决问题.【详解】解:∵∠BOC=2∠BDC,∠BDC=21°,∴∠BOC=42°,∴∠AOC=180°-42°=138°.故选:C.【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理,属于中考常考题型.9.D解析:D【分析】利用切线长定理证明△PAG≌△PBG即可得出.【详解】解:连接OA,OB,AB,AB交PO于点G,由切线长定理可得:∠APO=∠BPO,PA=PB,又∵PG=PG,∴△PAG≌△PBG,从而AB⊥OP.因此A.B.C都正确.无法得出AB=PA=PB,可知:D是错误的.综上可知:只有D是错误的.故选:D.【点睛】本题考查了切线长定理、全等三角形的判定和性质,关键是利用切线长定理解答.10.B解析:B【分析】连接OC,由CE为圆O的切线,利用切线的性质得到OC垂直于CE,由OA=OC,利用等边对等角得到一对角相等,再利用外角性质求出∠COE的度数,即可求出∠E的度数.【详解】解:连接OC,∵CE为圆O的切线,∴OC⊥CE,∴∠COE=90°,∵∠CDB与∠BAC都对BC,且∠CDB=28°,∴∠BAC=∠CDB=28°,∵OA=OC,∴∠OAC=∠OCA=28°,∵∠COE为△AOC的外角,∴∠COE=56°,则∠E=34°.故选:B.【点睛】此题考查了切线的性质,圆周角定理,等腰三角形的性质,以及三角形内角和定理,熟练掌握切线的性质是解本题的关键.11.B解析:B【分析】已知底面半径即可求得底面周长,即展开图中,扇形的弧长,然后根据扇形的面积公式即可求解.【详解】解:底面周长是2×3π=6π,则圆锥的侧面积是:12×6π×6=18π(cm 2). 故选:B .【点睛】 本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.12.A解析:A【分析】圆锥的底面周长等于侧面展开图的扇形弧长,因而要先求扇形的弧长,根据扇形的面积公式2360n R S π=,可以求出扇形的半径,就可以求出弧长. 【详解】 解:根据扇形的面积公式2360n R S π=得到:2904360R ππ=; ∴R=4,则弧长9042180cm ππ⋅==, 设圆锥的底面半径为r ,则2π=2πr ;∴r=1cm .故选:A .【点睛】 本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.二、填空题13.6【分析】如图作OH ⊥CD 于H 连接AH 延长AH 交BF 于K 连接OC 证明AE=FK 利用勾股定理求出OH 再利用三角形的中位线定理求出BK 即可解决问题【详解】解:如图作OH ⊥CD 于H 连接AH 延长AH 交BF 于解析:6【分析】如图,作OH ⊥CD 于H ,连接AH ,延长AH 交BF 于K ,连接OC .证明AE=FK ,利用勾股定理求出OH ,再利用三角形的中位线定理求出BK 即可解决问题.【详解】解:如图,作OH ⊥CD 于H ,连接AH ,延长AH 交BF 于K ,连接OC .∵OH ⊥CD ,∴CH=DH=4(cm ),∠CHO=90°,∴222254OC CH -=-=3(cm ),∵AE ⊥CD ,BF ⊥CD ,∴AE ∥OH ∥BF ,∵OA=OB ,∴EH=FH ,∵∠AEH=∠KFH=90°,∠AHE=∠FHK ,∴△AEH ≌△KFH (AAS ),∴AH=HK ,AE=FK ,∵AO=OB ,∴OH=12BK , ∴BK=6(cm ),∴BF-AE=BF-FK=BK=6(cm ).故答案为6.【点睛】本题考查了垂径定理,勾股定理,三角形的中位线定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.14.【分析】如图所示连接POPA 过点P 作PG ⊥OA 于点G 由正六边形推出为等边三角形进而求出OGPG 的长度即可求得P 点坐标【详解】解:如图所示连接POPA 过点P 作PG ⊥OA 于点G 则∵多边形为正六边形∴∵∴ 解析:(3,33【分析】如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,由正六边形OABCDE 推出OPA 为等边三角形,进而求出OG 、PG 的长度即可求得P 点坐标.【详解】解:如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,则90OGP ∠=︒, ∵多边形OABCDE 为正六边形,∴60OPA ∠=︒,∵PO PA =,∴OPA 为等边三角形,又∵PG ⊥OA ,∴PG 平分OPA ∠,∴30OPG ∠=︒,又∵OA=6, ∴11163222OG OP OA ===⨯=, ∴由勾股定理得:22226333PG OP OG =-=-=,∴P 的坐标是()3,33, 故答案为:()3,33【点睛】本题考查正多边形外接圆的问题,熟练掌握正多边形的性质,灵活运用三角形相关知识解决边角关系是本题的关键.15.16【分析】连接OAOB 由切线长定理可得:PA=PBDA=DCEC=EB ;由勾股定理可得PA 的长△PDE 的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB 即可求得△PDE 的周长【详解解析:16【分析】连接OA 、OB ,由切线长定理可得:PA=PB ,DA=DC ,EC=EB ;由勾股定理可得PA 的长,△PDE 的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB ,即可求得△PDE 的周长.【详解】解:连接OA 、OB ,如图所示:∵PA 、PB 为圆的两条切线,∴由切线长定理可得:PA=PB ,同理可知:DA=DC ,EC=EB ;∵OA ⊥PA ,OA=6cm ,PO=10cm ,∴由勾股定理得:PA=8cm ,∴PA=PB=8cm ;∵△PDE 的周长=PD+DC+CE+PE ,DA=DC ,EC=EB ;∴△PDE 的周长=PD+DA+PE+EB=PA+PB=16cm ,故答案为:16.【点睛】本题考查的是切线长定理,分析图形时关键是要仔细探索,找出图形的各对相等切线长. 16.【分析】根据正方形以及正三边形的性质得出进而得出即可得出n 的值【详解】解:如图所示连接AOBOCO ∵ABAC 分别为⊙O 的内接正方形内接正三边形的一边∴∴∴故答案为:12【点睛】此题主要考查了正多边形解析:12【分析】 根据正方形以及正三边形的性质得出360904AOB ︒∠==︒,3603120AOC ==︒∠︒,进而得出30BOC ∠=︒,即可得出n 的值.【详解】解:如图所示,连接AO ,BO ,CO .∵AB 、AC 分别为⊙O 的内接正方形、内接正三边形的一边,∴360904AOB ︒∠==︒,3603120AOC ==︒∠︒, ∴30BOC ∠=︒,∴3601230n ︒==︒, 故答案为:12.【点睛】此题主要考查了正多边形和圆的性质,根据已知得出30BOC ∠=︒是解题关键. 17.10π【分析】连接OC 易得△ODE ≌△ECO 所以扇形OBC 的面积就是图中阴影部分的面积因此求得扇形OBC 的面积即可【详解】解:如下图连接OC ∵∠AOB=90°CD ⊥OACE ⊥OB ∴四边形ODCE 为矩解析:10π【分析】连接OC ,易得△ODE ≌△ECO ,所以扇形OBC 的面积就是图中阴影部分的面积,因此求得扇形OBC 的面积即可.【详解】解:如下图连接OC ,∵∠AOB=90°、CD ⊥OA 、CE ⊥OB∴四边形ODCE 为矩形∴OD=CE ,OE 为公共边∴△ODE ≌△ECO∴△ODE 的面积=△ECO 的面积∴图中阴影部分的面积=2236361010360360O BC SOB πππ-==⨯=. 故答案为:10π.【点睛】本题考查扇形面积的计算和矩形的性质.其关键是用矩形性质对阴影部分进行等积变换,发现△ODE 的面积=△ECO 的面积. 18.【分析】连结OC 根据勾股定理可求OC 的长根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积依此列式计算即可求解【详解】连接如图∵在扇形中又故答案为:【点睛】考查了正方形的性质和扇形面解析:24π-【分析】连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解.【详解】连接OC ,如图,∵在扇形AOB 中,90AOB ∠=︒,AC BC =,45COD ∴∠=︒,又CD DE ⊥,45OCD COD ∴∠=∠=︒,OD CD ∴==4OC ∴==,224541243602ODC BOC S S Sππ⨯∴=-=-⨯=-阴影扇形. 故答案为:24π-.【点睛】考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度. 19.1【分析】根据扇形的面积公式与圆的周长公式即可求解【详解】由得:扇形的弧长=(厘米)圆锥的底面半径=(厘米)故答案是:1【点睛】本题主要考查圆锥的底面半径掌握圆锥的侧面扇形弧长等于底面周长是解题的关键 解析:1【分析】根据扇形的面积公式与圆的周长公式,即可求解.【详解】 由1=2S lR 扇形得:扇形的弧长=215152ππ⨯÷=(厘米), 圆锥的底面半径=221ππ÷÷=(厘米).故答案是:1.【点睛】本题主要考查圆锥的底面半径,掌握圆锥的侧面扇形弧长等于底面周长,是解题的关键. 20.【分析】作直径CE 连OAAEBE 利用垂经定理的AD=BD 在利用勾股定理计算出AD 则AB=2AD 当点P 与点E 重合时P 点到AB 的距离最大然后根据三角形面积公式求解即可【详解】延长CD 交⊙O 于点E 连接OA解析:4【分析】作直径CE ,连OA 、AE 、BE ,利用垂经定理的AD=BD ,在利用勾股定理计算出AD ,则AB=2AD ,当点P 与点E 重合时,P 点到AB 的距离最大,然后根据三角形面积公式求解即可.【详解】延长CD 交⊙O 于点E ,连接OA ,AE ,BE 如图,∵OA=OC=1,OD=CD ,∴OD=CD=12OC=12, ∵OC ⊥AB ,∴AD=2232OA OD -=, AD=BD=12AB , AB=2AD=3,∴sin ∠OAD=12OD OA =, ∴∠OAD=30º, ∴∠AOD =90º-∠OAD =60º,∵OA =OE ,∴∠OAE=∠OEA ,∵∠AOD=∠OAE+∠OEA ,∴∠OAE=∠OEA=30º,∵CE ⊥AB ,∴AE=BE ,∴∠OEB=∠OEA=30º,∴∠AEB=∠OEB+∠OEA=60º,∴△ABE 是等边三角形,∴AE=AB=3,DE=2232AE AD -=, S △ABE =1332AB DE =, ∵在△ABP 中,当点P 与点E 重合时,AB 边上的高取最大值,此时△ABP 的面积最大, ∴S △ABP 的最大值=334. 故答案为:334.【点睛】本题考查三角形面积,掌握垂经定理,勾股定理,和引辅助线构造图形,找到当点P 与点E 重合时,P 点到AB 的距离最大,然后根据三角形面积公式求解是解题关键.三、解答题21.(1)见解析;(2)245 【分析】(1)连接OD ,由BD 为角平分线得到OBD CBD ∠=∠,再由OB=OD ,利用等边对等角得到ODB OBD ∠=∠,从而得出ODB CBD ∠=∠,利用内错角相等两直线平行得到OD 与BE 平行,由DE 垂直于BE 得到OD 垂直于DE ,即可得证;(2)过D 作DH AB ⊥于H ,根据HL 得出△≌△Rt ADH Rt CDE ,得出AH CE =,再根据勾股定理得出22221068BD AB AD =-=-=,再利用等积法即可得出DE 的长.【详解】(1)证明:连接OD .∵OD OB =,∴ODB OBD ∠=∠.∵BD 平分ABC ∠,∴OBD CBD ∠=∠.∴ODB CBD ∠=∠,∴//OD BE .∴180BED ODE ∠+∠=︒.∵BE DE ⊥,∴90BED ∠=︒.∴90ODE ∠=︒.∴OD DE ⊥.∴DE 与O 相切;(2)过D 作DH AB ⊥于H .∵BD 平分ABC ∠,DE BE ⊥,∴DH DE =.∵AD CD =,∴AD CD =.∴()Rt ADH Rt CDE HL △≌△,∴AH CE =.∵AB 是O 的直径,∴90ADB ∠=︒. ∵10AB =,6AD =, ∴22221068BD AB AD -=-=.∵1122AB DH AD BD ⋅=⋅,∴245DH =. ∴245DE =. 【点睛】 此题考查了切线的判定,角平分线的性质、圆周角定理、平行线的判定与性质等知识,熟练掌握切线的判定方法是解本题的关键,属于中考常考题型.22.(1)见解析;(2)O 的半径为4 【分析】(1)先作∠ABC 的角平分线,交AC 于点O ,然后过O 作AB 的垂线,交AB 于E ,以O 为圆心,OE 为半径作圆即可;(2)先利用勾股定理求出AB ,然后由OBC ABO ABC S S S ∆∆∆+=即可求出O 的半径.【详解】解:(1)如图所示:(2)设直线AB 与O 切于点D ,连接OD ,则,OD AB ⊥90,ACB ∴∠=︒22222291215AB AC BC ∴=+=+=.15,AB ∴=设O 的半径为,r由得OBC ABO ABC S S S ∆∆∆+=1215912,r r +=⨯4,r ∴=即O 的半径为4【点睛】本题考查了尺规作图,切线的性质,理解题意熟练掌握角平分线和垂线的作图是解题的关键.23.(1)30°;(2)233π+ 【分析】连接DC,则有ABC ADC ∠=∠ 利用AD 是直径,得到90ACD ∠= ,便可求出DAC ∠. 根据(1)的结论和已知,先求出AOC s、OCD S 扇形 便可求出阴影部分面积.【详解】解:(1)连接DC 如图所示∵60ABC ∠=︒∴ABC ADC ∠=∠60=︒∵AD 是直径∴90ACD ∠=∴DAC ∠=30°(2)连接OC,作OE ⊥ AC,垂足为E∵4=AD∴AO=OD=OC=230OCA DAC ∴∠=∠=60DOC ∴∠=在Rt AOE 中OE=1、3∴3∴AOC s =12OE AC •3∴OCD S 扇形=2360n R π 2602360π⨯ =23π ∴阴影部分面积为:233π+. 【点睛】 本题考查了圆周角性质,圆直径所对的圆周角是直角,扇形面积计算,属于基础题. 24.64cm 2【分析】连接OA 、OB 、OE ,证Rt △ADO ≌Rt △BCO ,推出OD=OC ,设AD=a ,则OD=12a ,由勾股定理求出OA=OB=OE=5a ,求出EF=FC=4cm ,在△OFE 中由勾股定理求出a ,即可求出答案.【详解】解:连接OA 、OB 、OE ,∵四边形ABCD 是正方形,∴AD=BC ,∠ADO=∠BCO=90°,∵在Rt △ADO 和Rt △BCO 中∵OA OB AD BC=⎧⎨=⎩, ∴Rt △ADO ≌Rt △BCO ,∴OD=OC ,∵四边形ABCD 是正方形,∴AD=DC ,设AD=acm ,则OD=OC=12DC=12AD=12acm , 在△AOD 中,由勾股定理得:5acm , ∵小正方形EFCG 的面积为16cm 2,∴EF=FC=4cm ,在△OFE 中,由勾股定理得:5a)2=42+(12a+4)2, 解得:a=-4(舍去),a=8,∴正方形面积为264cm故答案为:64cm².【点睛】本题考查了全等三角形的性质和判定,勾股定理的应用,主要考查学生运用定理进行计算的能力,用的数学思想是方程思想.25.(1)见解析;(2)433π- 【分析】(1)根据AB 是直径得到∠ACB=90°,根据已知条件得到∠BAE =90°,即可得到结果; (2)作OM ⊥AC ,垂足为M ,求得AM=3,根据扇形的面积计算公式计算即可;【详解】(1)证明:∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,∵∠B=∠ADC=∠CAE ,∴∠BAE=∠BAC+∠EAC=∠BAC+∠B=90°,∴ BA ⊥AE ,∴AE 是⊙O 的切线.(2)解:作OM ⊥AC ,垂足为M .∵∠B=60°,∴∠AOC=2∠B=120°,∴∠AOM=∠COM=60°, ∴OM=12AO=1, ∴3 ∴AC=2AM=23∴S 阴=S 扇形AOC -S △AOC =120414-231336023ππ.【点睛】本题主要考查了切线的证明和扇形的面积计算,准确分析计算是解题的关键. 26.见解析.【分析】根据已知条件和圆周角定理证明△APD ≌△CPB 即可得到DP=BP .【详解】证明:∵AB CD,∴CD = AB,∴ CD- CA= AB - AC,∴ AD = BC.又∵∠A=∠C,∠APD=∠CPB,∴△APD≌△CPB.∴DP=BP.【点睛】本题考查了全等三角形的判定以及圆心角定理:在同圆或等圆中圆心角相等,弧相等,弦相等,弦心距相等,在这几组相等关系中,只要有一组成立,则另外几组一定成立.。

人教版九年级数学上册圆的练习题

人教版九年级数学上册圆的练习题

人教版九年级数学上册圆的练习题练一一、选择题1.若⊙O的半径为5㎝,点A到圆心O的距离为4㎝,那么点A与圆心O的位置关系是()A。

点A在圆外B。

点A在圆上C。

点A在圆内D。

不能确定2.在⊙O中,已知弦AB的长为8㎝,AB的弦心距为3㎝,则⊙O的半径为()A。

7㎝B。

5㎝C。

7㎝D。

3㎝3.如图,半径为10的⊙O中,弦AB的长为16,则这条弦的弦心距为()A。

6B。

8C。

10D。

124.下列命题中,①圆是轴对称图形;②圆是中心对称图形;③圆既是轴对称图形,又是中心对称图形;④圆是轴对称图形,对称轴是直径;⑤圆是中心对称图形,对称中心是圆心。

其中正确的命题是()A。

①②③B。

①②⑤C。

①②③⑤D。

②③④⑤5.如图所示,正方形ABCD内接于⊙O,P是劣弧AD上任意一点,则∠ABP+∠DCP=()A。

90°B。

60°C。

45°D。

30°6.以已知点O为圆心作圆,可以作()圆A。

1个B。

2个C。

3个D。

无数个7.若圆心角∠PCB=60°,则弧PCB所对的圆周角等于()A。

30°B。

40°C。

60°D。

80°8.如图,A、B、C是⊙O上的三点,∠AOC=100°则∠ABC的度数是()A。

30°B。

45°C。

50°D。

60°9.如图,AB为⊙O的直径,点C在⊙O上,若∠A=40°,则∠B等于()A。

80°B。

60°C。

50°D。

40°二、填空题11.已知⊙O的半径为4cm,A为线段OP的中点,当OP=5 cm时,点A在⊙O 上;当OP=8cm时,点A在⊙O 上;当OP=10 cm时,点A在⊙O 外。

12.如图,弓形的弦长AB为23cm,高CD为1cm,则弓形所在圆的半径为12cm。

13.一条弦把圆心分成1:3两部分,则劣弧所对的圆心角为120°。

2022学年人教版版九年级数学上册24章《圆》单元试题及答案解析

2022学年人教版版九年级数学上册24章《圆》单元试题及答案解析

2022学年九年级数学上册24章《圆》单元试题(满分:120分)一、选择题1.⊙O半径为5,弦AB长为8,M是弦AB上一个动点,则线段OM长最小值为()A.2 B.3 C.4 D.52.已知点A,B,C是直径为6cm的⊙O上的点,且AB=3cm,AC=3cm,则∠BAC度数为()A.15°B.75°或15°C.105°或15°D.75°或105°3.⊙O过点B,C,圆心O在等腰直角△ABC内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A. B.2 C. D.34.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是()A.2 B.4 C.4 D.85.如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2B.2C.2D.46.如图,△ABC内心为I,连接AI并延长交△ABC的外接圆于D,则线段DI与DB的关系是()A.DI=DBB.DI>DBC.DI<DBD.不确定7.在直角三角形ABC中,∠C=60°,以AB为直径的半圆交斜边BC于D,则△ACD与△ABD的面积之比为()A.1:2B.1:3C.2:3D.3:48.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为( )A.133B.92C.4133D.2 59.如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为()A.rB.1.5rC.2rD.2.5r10.如图,以O为圆心的圆与直线y=-x+交于A、B两点,若△OAB恰为等边三角形,则弧AB的长度为()A.πB.πC. πD.π11.如图,正三角形ABC的边长为4cm,D,E,F分别为BC,AC,AB的中点,以A,B,C三点为圆心,2cm为半径作圆.则图中阴影部分面积为( )A.(2-π)cm 2B.(π-)cm 2C.(4-2π)cm 2D.(2π-2)cm 212.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( ) A.22 B.32 C. 2 D. 3 二 、填空题13.如图,已知AB=AC=AD ,∠CBD=2∠BDC ,∠BAC=44°,则∠CAD 的度数为 .14.如图,AB 是⊙O 的弦,AB =6,点C 是⊙O 上的一个动点,且∠ACB =45°.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是 .15.如图,将△ABC 放在每个小正方形的边长均为1的网格中,点A ,B ,C 均落在格点上,用一个圆面去覆盖△ABC ,能够完全覆盖这个三角形的最小圆面的半径是________.16.在Rt △ABC 中,∠C=90°,AC=5,BC=12,若以点C 为圆心,r 为半径所作的圆与斜边AB 只有一个公共点,则r 的取值范围是_____________17.如图,已知⊙P 的半径为2,圆心P 在抛物线y=12x 2-1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为______________.18.如图,分别以边长为2的等边三角形ABC 的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O 是△ABC 的内切圆,则阴影部分面积为 .三、解答题19.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.(1)求证:AD=AN;(2)若AB=4,ON=1,求⊙O的半径.20.如图所示,C是⊙O上的中点,弦AB=6cm,E为OC上任意一点,动点F从点A出发,以1cm/s的速度沿AB方向向点B匀速运动,若y=AE2-EF2,求y关于动点F的运动时间x(s)(0≤x≤6)的函数表达式.21.如图,有两条公路OM,ON相交成30°角,沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿公路ON方向行驶时,在以点P为圆心,50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.已知重型运输卡车P沿公路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时,卡车P与学校A的距离;(2)求卡车P沿公路ON方向行驶一次给学校A带来噪声影响的时间.22.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10 cm,母线OE(OF)长为10 cm.在母线OF上的点A处有一块爆米花残渣,且FA=2 cm,一只苍蝇从杯口的点E处沿圆锥表面爬行到点A.(1)求该圆锥形纸杯的侧面积;(2)此苍蝇爬行的最短距离是多少?23.如图,已知直线PA交⊙O于A,B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,AP=AC.(1)求证:PA是⊙O的切线;(2)若AB=4+3,BC=23,求⊙O的半径.25.如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;(3)求证:CD=HF.参考答案1.B2.D.3.C.4.C5.A.6.A.7.B8.A ;9.C.10.C11.C ;12.A.13.答案为:88°.14.答案为:3 2.15.答案为: 5.16.答案为:5<r ≤12或r=6013;17.答案为:(6,2)或(-6,2);18.答案为:53π﹣23.19.20.解:如图所示,延长CO 交AB 于点G.∵C 是的中点,∴CG ⊥AB ,AG=AB=3(cm).∴AE 2=AG 2+EG 2,EF 2=FG 2+EG 2.当0≤x ≤3时,AF=x(cm),FG=(3-x)(cm),∴y=AE 2-EF 2=AG 2+EG 2-FG 2-EG 2=AG 2-FG 2=9-(3-x)2=6x-x 2. 当3<x ≤6时,AF=x(cm),FG=(x-3)(cm),∴y=AE 2-EF 2=AG 2+EG 2-FG 2-EG 2=AG 2-FG 2=9-(x-3)2=6x-x 2.∴y=6x-x 2(0≤x ≤6).21.解:(1)过点A 作ON 的垂线段,交ON 于点P ,如图①.21在Rt △AOP 中,∠APO=90°,∠POA=30°,OA=80米,所以AP=12OA=80×12=40(米),即对学校A 的噪声影响最大时,卡车P 与学校A 的距离是40米.(2)以点A 为圆心,50米长为半径画弧,交ON 于点D ,E ,连接AD ,AE ,如图②.在Rt △ADP 中,∠APD=90°,AP=40米,AD=50米,所以DP=AD 2-AP 2=502-402=30(米).同理可得EP=30米,所以DE=60米.又因为18千米/时=5米/秒,605=12(秒),所以卡车P 沿公路ON 方向行驶一次给学校A 带来噪声影响的时间为12秒.22.解:(1)由题意,得底面半径r=5 cm ,母线长l=10 cm ,则圆锥侧面积为S 侧=πrl=50π(cm 2).(2)将圆锥沿母线OE 剪开,则得到扇形的圆心角θ=rl ·360°=510×360°=180°.连结AE ,如图所示,即AE 为苍蝇爬行的最短路径,且OA=8 cm ,OE=10 cm ,θ1=12θ=90°.故苍蝇爬行的最短距离AE=OA 2+OE 2=164=241(cm).23.解:(1)连接OC ,证∠DAC=∠CAO=∠ACO ,∴PA ∥CO ,又∵CD ⊥PA ,∴CO ⊥CD ,∴CD 为⊙O 的切线(2)过O 作OF ⊥AB ,垂足为F ,∴四边形OCDF 为矩形.∵DC +DA=6,设AD=x ,则OF=CD=6-x ,AF=5-x ,在Rt △AOF 中,有AF 2+OF 2=OA 2,即(5-x)2+(6-x)2=25,解得x 1=2,x 2=9,由AD <DF 知0<x <5,故x=2,从而AD=2,AF=5-2=3,由垂径定理得AB=2AF=6.24.解:(1)证明:连接OA .∵∠B=60°,∴∠AOC=2∠B=120°.又∵OA=OC ,∴∠OAC=∠OCA=30°.又∵AP=AC ,∴∠P=∠ACP=30°. ∴∠OAP=∠AOC-∠P=90°.∴OA ⊥PA .又∵点A 在⊙O 上,∴PA 是⊙O 的切线.(2)解:过点C 作CE ⊥AB 于点E .在Rt △BCE 中,∠B=60°,BC=23,∴BE=0.5BC=3,CE=3.∵AB=4+3,∴AE=AB-BE=4.∴在Rt △ACE 中,AC=5.∴AP=AC=5.∴在Rt △PAO 中,OA=533.∴⊙O 的半径为533.25.(1)证明:(1)如图,连接OE.∵BE ⊥EF ,∴∠BEF=90°,∴BF 是圆O 的直径,∴OB=OE ,∴∠OBE=∠OEB ,∵BE 平分∠ABC ,∴∠CBE=∠OBE ,∴∠OEB=∠CBE ,∴OE ∥BC ,∴∠AEO=∠C=90°,∴AC 是⊙O 的切线;(2)证明:∵∠C=∠BHE=90°,∠EBC=∠EBA ,∴BEC=∠BEH ,∵BF 是⊙O 是直径,∴∠BEF=90°,∴∠FEH+∠BEH=90°,∠AEF+∠BEC=90°,∴∠FEH=∠FEA ,∴FE 平分∠AEH.(3)证明:如图,连结DE.∵BE 是∠ABC 的平分线,EC ⊥BC 于C ,EH ⊥AB 于H ,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE ,∵∠C=∠EHF=90°,∴△CDE ≌△HFE (AAS ),∴CD=HF ,。

(含答案)九年级数学人教版上册课时练第24章《24.3 正多边形和圆》(2)

(含答案)九年级数学人教版上册课时练第24章《24.3 正多边形和圆》(2)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练第24章圆24.3正多边形和圆一、选择题1.一个正八边形中最长的对角线等于a,最短的对角线等b,则这个正八边形的面积为()A.a2+b2B.a2﹣b2C.a+b D.ab2.O的内接多边形周长为O的外切多边形周长为,则下列各数中与此圆的周长最接近的是()A.p B.2p C.3p D.4p3.下列命题:①垂直于弦的直径平分弦,并且平分弦所对的两条弧;②在同圆或等圆中相等的圆心角所对的弧相等;③在同圆或等圆中如果两条弦相等,那么它们所对的圆心角相等;④圆内接四边形的对角互补.其中正确的命题共有()A.4个B.3个C.2个D.1个4.如图,PA、PB是⊙O的切线,A、B为切点,∠APB=40°,点C是⊙O上不同于A,B的任意一点,则∠ACB的度数为()A.70°B.40°C.110°D.70°或110°5.如图,AB、AC是⊙O的切线,B、C为切点,∠A=50°,点P是圆上异于B、C的点,则∠BPC的度数是()A.65°B.115°C.115°或65°D.130°或65°6.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是()A .弦AB 的长等于圆内接正六边形的边长B .弦AC 的长等于圆内接正十二边形的边长C .AC =BCD .∠BAC =30°7.如图,边长为4的正六边形ABCDEF 的中心与坐标原点O 重合,AF ∥x 轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转60°,当n =2020时,顶点A 的坐标为()A .(﹣2,)B .(﹣2,﹣)C .(2,﹣)D .(2,)8.如图,在⊙O 中,OA =AB ,OC ⊥AB ,则下列结论正确的有()①弦AB 的长等于圆内接正六边形的边长;②弦AC 的长等于圆内接正十二边形的边长;③AC =BC ;④∠BAC =30°.A .1个B .2个C .3个D .4个9.如图,在O 中,点A ,B ,C 在O 上,且100ACB °Ð=,则a Ð=()A .80°B .100°C .120°D .160°10.如图,AB 是半圆O 的直径,20BAC =°∠,则D Ð的度数是()A .70°B .100°C .110°D .120°二、填空题11.一条弦所对的圆心角的度数为95°,这条弦所对的圆周角的度数为______.12.若正八边形的边长为2,则此正八边形的面积是______.13.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心,若20ADB Ð=°,则这个正多边形的边数为__.14.如图,在扇形AOB 中,点C 、D 在AB 上,连接AD 、BC 交于点E ,若120AOB Ð=°,CD 的度数为50°,则AEB Ð=_____°.15.如图所示,A 、B 、C 、D 是一个正n 边形的顶点,O 为其中心,若∠ADB =18°,则n =____.三、解答题16.如图,在三角形ABC 中,∠C =90°,I 是内心,直线BI 与AC 交于点D ,过点D 作DE //AI 与BC 交于点E ,直线EI 与AB 交于点F .证明:DF ⊥AI .17.如图,在圆内接正六边形ABCDEF 中,半径4,OC OG BC =^,垂足为G ,求这个正六边形的中心角、边长和边心距.18.如图,正六边形ABCDEF 的中心为原点O ,顶点,A D 在x 轴上,半径为2cm .求其各个顶点的坐标.19.如图,O 的半径为R ,求O 的内接正六边形、O 的外切正六边形的边长比:AB A B ¢¢和面积比:S S 内外.20.已知等腰ABC 中,AB =AC .(1)如图1,若O 为ABC 的外接圆,求证:AO BC ^;(2)如图2,若10AB AC ==,12BC =,I 为ABC 的内心,连接IC ,过点I 作ID BC ∥交AC 于点D ,求ID 的长.21.已知A 、B 、C 、D 四点在同一圆上,请仅用无刻度直尺完成下列作图.(不写作法,保留作图痕迹)(1)如图①,AB =CD ,在图①中作出该圆的一条直径;(2)如图②,AB 、BC 、CD 是圆内接正五边形的三条边,在图②中作出该圆的圆心.22.如图,六边形ABCDEF 是O 的内接正六边形.(1)求证:在六边形ABCDEF 中,过顶点A 的三条对角线四等分BAF Ð.(2)设O 的面积为1S ,六边形ABCDEF 的面积为2S ,求12S S的值.23.如图M 、N 分别是⊙O 的内接正三角形ABC 、正方形ABCD 、正五边形ABCDE 、…、正n 边形ABCDEFG…的边AB 、BC 上的点,且BM =CN ,连接OM 、ON(1)求图1中∠MON 的度数(2)图2中∠MON 的度数是,图3中∠MON 的度数是(3)试探究∠MON 的度数与正n 边形边数n 的关系是____参考答案1.D 2.C 3.A 4.D 5.C 6.D 7.B 8.C 9.D 10.C 11.47.5°或132.5°.12.413.九14.14515.1016.证明:∵AID Ð是ABI △的外角,∴114522AID BAI ABI BAC ABC Ð=Ð+Ð=Ð+Ð=°,∵//DE AI ,∴EDI AID Ð=Ð,而1452ECI ACB EDI Ð=Ð=°=Ð,∴E 、C 、D 、I 四点共圆,∴18090DIE ACB Ð=°-Ð=°,∴90DIF Ð=°,又9045AIF AID FAI DAI Ð=°-°=ÐÐ=Ð,,AI =AI ,∴△ADI ≌△AFI (ASA ),∴AD AF =,即ADF 是等腰三角形,且AI 是顶角的角平分线,∴DF AI ^.17.解:连接OD ,∵六边形ABCDEF 为正六边形,∴360606COD °Ð==°.∵OC OD =,∴COD △为等边三角形.∴4CD OC ==,∵六边形ABCDEF 是正六边形,∴4BC =,∵OG BC ^,∴114222CG BC ==´=,在Rt COG 中,由勾股定理得:∴OG ===∴正六边形ABCDEF 的中心角为60°,边长为4,边心距为18.解:过点E 作EG ⊥x 轴,垂足为G ,连接OE ,∵OE=OD ,∠EOD =360606°=°,∴△OED 是正三角形,∠EOG =60°,∠OEG =30°,∵OE =2cm ,∠OGE =90°,∴OG =12OE =1cm ,EG cm ,点E 的坐标为(1),又由题意知点D 的坐标为(2,0),由图形的对称性可知A (-2,0),B (-1),C (1),F (-1).故这个正六边形ABCDEF 各个顶点的坐标分别为A (-2,0),B (-1,),C (1,),D (2,0),E (1),F (-1).19.解:连接OC OD OC OD ¢¢、、、,如下图:由正多边形的性质可得:60DOC D OC ¢¢Ð=Ð=°,OD OC =,OC OD ¢¢=∴OCD OC D ¢¢△、△为等边三角形∴OD OC CD R ===,C D OC OD ¢¢¢¢==由题意可得:OD C D ¢¢⊥,∴30C OD ¢Ð=°设'C D x =,则2OC x ¢=,由勾股定理得222(2)x R x +=解得3x R =,3C D OC OD R ¢¢¢¢===::2AB A B CD C D ¢¢¢¢==∵30C OD ¢Ð=°∴1302COC COD C OD COD ¢¢Ð=Ð-Ð=°=Ð,OH 为COD Ð的角平分线∴OH CD^在Rt ODH △中,30DOH Ð=°,OD R =,解得2=OH R2124DOC S CD OH R =´=△,2123D OC S C D OD R ¢¢¢¢=´△22:6:3:4:436DOC D OC S S S R R S ¢¢===△外△内故:2AB A B ¢¢=;:4:3S S =外内20.(1)证明:连接OB 、OC ,∵AB =AC ,∴A 在BC 的垂直平分线上又∵OB =OC ,∴O 也在BC 的垂直平分线上∴AO BC ^(2)连接AI 并延长交BC 于点F ,过点I 分别作IG AC ^于点G ,IH AB ^于点H∵AB AC =,I 为ABC 的内心,∴AF BC ^,6BF CF ==,∴8AF ==设IH IF IG r ===,由ABC ABI BCI ACIS S S S =++V V V V 可得:()1110101212822r ++×=´´∴3r =设CF CG a ==,则10AH AG a ==-,12BF BH a==-∴101210a a -+-=解得:6a =即6CG =∵ID BC ∥,CI 平分,ACB Ð∴123Ð=Ð=Ð∴设ID DC x ==,6DG x=-在Rt IGD △中,222IG GD ID +=∴()22236x x +-=解得:154x =∴154ID =21.解:(1)如图,EF 即为所求;(2)如图,点O即为所求.22.解:(1)连接AE,AD,AC,∵六边形ABCDEF是O的内接正六边形,∴EF=ED=CD=BC,∴∠FAE=∠EAD=∠DAC=∠CAB,即过顶点A的三条对角线四等分BAFÐ;(2)过点O作OG⊥DE于G,连接OE,设圆O的半径为r,∴EF=BC=ED=r,AD=2r,在正六边形ABCDEF中,∠OED=∠ODE=60°,∴∠EOG=30°,r,∴EG=12r,∴OG=2∴正六边形ABCDEF 的面积=1622r r ´´=22r ,圆O 的面积=2r p ,∴12S S2.23.(1)如图,连接OB 、OC ,则OC OB =,ABC 是O 内接正三角形,\中心角3603120BOC °Ð==°,∵点O 是O 内接正三角形ABC 的内心,∴1130,3022OBM ABC OCN ACB Ð=Ð=°Ð=Ð=°,∴OBM OCN Ð=Ð,在OMB △和ONC 中,BM CN OBM OCN OB OC =ìïÐ=Ðíï=î,∴()OMB ONC SAS @,∴BOM CON Ð=Ð,∴120MON BON BOM BON CON BOC Ð=Ð+Ð=Ð+Ð=Ð=°,故答案为:120°;(2)如图1,连接OB 、OC ,四边形ABCD 是O 内接正方形,\中心角360904BOC °Ð==°,同(1)的方法可证:90MON BOC Ð=Ð=°;如图2,连接OB 、OC ,五边形ABCDE 是O内接正五边形,\中心角360725BOC °Ð==°,同(1)的方法可证:72MON BOC Ð=Ð=°,故答案为:90°,72°;(3)由上可知,MON Ð的度数与正三角形边数的关系是3603MON °Ð=,MON Ð的度数与正方形边数的关系是3604MON °Ð=,MON Ð的度数与正五边形边数的关系是3605MON °Ð=,归纳类推得:MON Ð的度数与正n 边形边数n 的关系是360MON n°Ð=,故答案为:360MON n °Ð=.。

最新部编人教版九上数学圆的认识习题

最新部编人教版九上数学圆的认识习题
第二十四章 圆源自第1课时 圆的认识学习目标
1.理解圆及其相关概念,熟知 圆的定义. 2.通过观察实验,理解圆的对 称性,知道圆既是轴对称图形 又是中心对称图形.
精典范例
【例 1】如图,在⊙O 中,
直径是 AB ,
弦有 AC,BC,AB ,
半径有 OA,OB,OC ,
劣弧有 劣弧AC,劣弧BC

优弧有 优弧CBA,优弧CAB .
OA=OB, ∠AOF=∠BOE, OF=OE,
∴△AOF≌△BOE(SAS),∴AF=BE.
巩固训练
4.如图,在⊙O 中,∠B=60°,则△AOB 是( C ) A.等腰三角形 B.直角三角形 C.等边三角形 D.不等边三角形
5.如图,在△ABC 中,∠ACB=90°,∠A=40°,以 C 为圆 心,CB 长为半径的圆交 AB 于点 D,连接 CD,则∠ACD=
8.若圆的半径为 4.5,则此图中弦 AB 长度的取值范围是 0<AB≤9 .
9.如图,在⊙O 中,若∠A=45°,半径为 5,求 AB 的长. 52
2.下列说法错误的是( C ) A.圆有无数条直径 B.连接圆上任意两点之间的线段叫做弦 C.过圆心的线段是直径 D.能够重合的圆叫做等圆
3.如图,AB,CD 为⊙O 的两条直径,点 E,F 在直径 CD 上, 且 CE=DF.求证:AF=BE.
证明:∵AB,CD 为⊙O 中两条直径, ∴OA=OB,OC=OD. ∵CE=DF,∴OE=OF. 在△AOF 和△BOE 中,
(A )
A.10° C.20°
B.15° D.25°
6.如图,AB 是⊙O 的直径,BC 是⊙O 的弦,若∠AOC=80°, 则∠B= 40° .
7.如图, AB 是直径, AB,CD,EF 是弦, 以 E 为端点的劣弧有________________________, 以 A 为端点的优弧有________________________.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档