第12课时 一元二次方程小结与复习(二)

合集下载

高中第一册(下)数学小结与复习(2-3-4-5-6)

高中第一册(下)数学小结与复习(2-3-4-5-6)

小结与复习(2)一、讲解X 例:例1在△ABC 中,已知cosA =135,sinB =53,则cosC 的值为…………() A. 6516 B.6556 C. 65566516或 D. 6516- 例2在△ABC 中,∠C>90︒,则tanAtanB 与1的关系适合………………()A. tanAtanB>1B. tanAtanB<1C. tanAtanB =1D.不确定例3已知434π<α<π,40π<β<,53)4cos(-=α+π,135)43sin(=β+π, 求sin(α + β)的值 例4已知sin α + sin β =22,求cos α + cos β的X 围 例5设α,β∈(2π-,2π),tan α、tan β是一元二次方程04332=++x x 的两个根,求α + β例6 设方程sin x x m =在开区间(0,2π)内有相异的两个实数根α,β,求m 的取值X 围及α+β的值.例7 已知sin(π-α) -cos(π + α) =42(0<α<π),求sin(π + α) + cos(2π-α)的值 例8 已知2sin(π-α) -cos(π + α) = 1 (0<α<π),求cos(2π-α) + sin(π + α)的值 三、作业:《精析精练》P66 能力测试小结与复习(3)一、讲解X 例:例1已知),2(,61)4sin()4sin(ππ∈α=α-πα+π,求sin4α的值 例2已知3sin 2α + 2sin 2β = 1,3sin2α- 2sin2β = 0,且α、β都是锐角,求α+2β的值 例3已知sin α是sin θ与cos θ的等差中项,sin β是sin θ、cos θ的等比中项, 求证:α=θ+π=β2cos 2)4(cos 22cos 2 例4已知sin α = a sin(α+β) (a >1),求证:a-ββ=β+αcos sin )tan( 例5如图半⊙O 的直径为2,A 为直径MN 延长线上一点,且OA=2,B 为半圆周上任一点,以AB 为边作等边△ABC (A 、B 、C 按顺时针方向排列)问∠AOB 为多少时,四边形OACB 的面积最大?这个最大面积是多少?解:设∠AOB=θ则S △AOB =sin θ S △ABC =243AB 作BD ⊥AM, 垂足为D, 则BD=sin θ OD=-cos θAD=2-cos θ∴22222)cos 2(sin ϑϑ-+=+=AD BD AB=1+4-4cos θ=5-4cos θ∴S △ABC =43(5-4cos θ)=ϑcos 3435- 于是S 四边形OACB =sin θ-3cos θ+435=2sin(θ-3π)+435 ∴当θ=∠AOB=65π时四边形OACB 的面积最大,最大值面积为2+435例6 求函数y=3tan(x 6π+3π)的定义域、最小正周期、单调区间。

初一【数学(人教版)】《解决实际问题与一元二次方程小结复习(二)》【教案匹配版】国家级中小学精品课程

初一【数学(人教版)】《解决实际问题与一元二次方程小结复习(二)》【教案匹配版】国家级中小学精品课程
生产的块数
大月饼
2 0.05
x
x 0.05
小月饼
4 0.02 4500-x
4500 x 0.02
初中数学
初中数学初一上册
二、典型例题
例1 某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小 月饼.制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉.现共有面 粉4500kg,制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?
解:设用xkg面粉生产大月饼,则用(4500-x)kg面粉生产小月饼.
4500 x 2x . 0.02 0.05
解方程得
4500 x 2x .
2
5
检验: x=2500是原方程的解且符
x=2500. 合实际意义.
4500-x=2000.
答:用2500kg面粉生产大月饼,用2000kg面粉生产小月饼,能
初中数学
初中数学初一上册
二、典型例题
例1 某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小 月饼.制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉.现共有面 粉4500kg,制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?
分析一: 每盒(块)
每块需面粉(kg) 面粉分配(kg)
分析:商店优惠方式 甲商店:一副乒乓球拍送一盒乒乓球; 乙商店:乒乓球拍和乒乓球全部九折.
初中数学
初中数学初一上册
二、典型例题
(1)若这个班计划购买6盒乒乓球,则在甲商店付款_5_2_5__元, 在乙商店付款__5_8_5_元;
分析:某班计划购买 乒乓球拍 乒乓球
商店优惠方式 甲商店:一副乒乓球拍送一盒乒乓球;
分析:某班计划购买

一元二次方程小结与复习

一元二次方程小结与复习

一元二次方程小结与复习教学目标:1、了解一元二次方程的概念,掌握一元二次方程的公式解法和其他解法;能够根据方程的特征,灵活运用一元二次方程的解法求方程的根2、理解一元二次方程的根的判别式,会运用它解决一些简单问题3、进一步培养学生快速准确的计算能力4、进一步培养学生严密的逻辑推理与论证能力,进一步培养学生的分析问题、解决问题的能力 教学重点:一元二次方程的解法及判别式难点配方法⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧≠=++<∆=∆>∆-=∆≥--±-=≥=+=,方程无实数根当个相等的实数根,方程有当个不相等的实数根方程有当判别式称为一元二次方程根的根的判别式降次、转化因式分解法)(公式法的形式配方法:配成完全平方)型方程或直接开平方法,适用于换元法解法常数项一次项系数二次项系数一般式:方程的整式方程为一元二次高次数为数,且含有未知数的最定义:只含有一个未知0202,0,42b 042242x 0()2(2c b )0(0ax 22ac ac b a ac b b p p n mx p x a a c bx 一元二次方程 课堂练习(检查学生知识学习程度)练习1 指出下列哪些是一元二次方程,并写出二次项系数,一次项系数以及常数项)()(1(03)1)(6(12)3)(12)(5(022)4(021)3(0)2)(3x )2(32122222≠=-+-+=+-=+-=-+=-+=-m m mx x m x x x y x x x x x x结论:判断一个方程是否是一元二次方程,先看它是不是一元整式方程,然后再通过去括号,移项,合并同类项等步骤化简整理后,再看未知数的最高次数是不是2一元二次方程的四种解法1. 直接开平方法2.配方法3.公式法4.因式分解法 延伸 配方法例 解方程86)-3)(x x 5-x 8-x 202-4x 371x 3222=+==-=+(因式分解法公式法配方法)(直接开平方法x练习2 选择适当方法解下列方程1256)(4015x 430175229)132122222222=---=+++=+-=+-=-x x x x x x x x x x x x 、、、、(、4. 解:设x +=2x t ,则原方程可化简为 6t t 2=+即 (t+3)(t-2)=0解之得 2,321=-=t t1,2,0(322122=-=∴<∆-=+=+x x x x x x 原方程的解为无解)或练习31、求m 为什么实数时,方程036)12=+--x x m (,根①有实数根②没有实数。

第二章 一元二次函数、方程和不等式复习与小结)课件-高一数学人教A版(2019)必修第一册)

第二章 一元二次函数、方程和不等式复习与小结)课件-高一数学人教A版(2019)必修第一册)

常量(如1)替换,变量替换(消元)
返回
6.二次函数与一元二次方程、不等式的关系:
(1)形式上
二次函数 y=ax2+bx+c
(2)数值上 二次函数函数 y=ax2+bx+c的零点
一元二次方程 ax2+bx+c=0
右边化为0, 左边设为y
一元二次不等式 ax2+bx+c<0(或>0)
一元二次方程 ax2+bx+c=0的根
a b a b 0; 2.两个实数大小关系的基本事实: a b a b 0;
a b a b 0.
利用这个事实可以采取作差法可以对一些代数式的大小进 行了比较也可以证明不等式:
(1)作差; (2)变形;
目的:便于判定差的符号 常用的方法:因式分解、配方、通分、分子有理化等 (3)定号; 当差的符号不确定时,一般需要分类讨论 (4)作结论。 根据当差的正负与实数大小关系的基本事实作出结论 返回
1
1
ab
返回
4.基本不等式及其推导
对任意的a 0,b 0,有 ab a b 2
当且仅当a b时,等号成立
(1)基本不等式的常见变形:
① a+b≥2 ab ;
② ab≤( a+b )2 2
代数特征: 两个正数的几何平均数不大于它们的算术平均数,当且仅 当这两个正数相等时,二者相等. 几何解释: 圆O的半弦CD不大于圆的半径OD,当且仅当C与圆心O 重合时,二者相等。 (2)基本不等式的推导和证明: ①利用两个实数大小关系的基本事实用作差法得出;
求a b的最小值以及此时a的值。
解: 方法1
a0 , b0
由a b ab - 3得 a b ab - 3 ( a b )2 3

一元二次方程的小结与复习

一元二次方程的小结与复习

《一元二次方程的小结与复习》教学案年级: 九 学科: 数学 主备人: 关雯清教学目标:1、系统复习并熟练掌握本章所学内容2、熟练掌握一元二次方程的概念及解法,b 2-4ac 的符号与根的情况之间的关系。

3、会解决与一元二次方程有关的问题4、熟练掌握一元二次方程的应用,提高分析问题和解决问题的能力。

教学重点:》1、掌握一元二次方程的概念及解法,b 2-4ac 的符号与根的情况之间的关系。

2、 会解决与一元二次方程有关的问题 教学难点:1、能根据不同的一元二次方程的特点,选用恰当的方法求解,使解题过程简单合理。

2、掌握一元二次方程的应用,提高分析问题和解决问题的能力。

教学方法:讲练结合第一课时|教学过程:一:知识梳理与例题讲解1.一元二次方程的概念:形如:______________________ 2、一元二次方程的解法: (1):____________ (2)______________ (3)_______________(4)公式法:求根公式:____________________________ 例题讲解 \1.下列关于x 的方程:其中是一元二次方程的有( ) 个 个 个 个2、关于x 的方程(m+3)x |m|-1-2x+4=0是一元二次方程,则m=3、将方程3x 2=5x+2化为一元二次方程的一般形式为___________.4、配方:x 2-12x+________=(x- )2!5、我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. 1)4(,02)3(,53)2(,032)1(223222=+=+-=+=--y x x x xx x x①2310x x -+=; ②2(1)3x -=;③230x x -=; ④224x x -=.#三、巩固练习:1.关于x 的方程221(1)50a a a x x --++-=是一元二次方程,则a =__________.2.方程20xx 的解是______________;方程2(3)5(3)x x x -=-的解是______________。

《一元二次方程》教学反思

《一元二次方程》教学反思

《一元二次方程》教学反思(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如述职报告、工作计划、合同协议、心得体会、策划方案、条据书信、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as job reports, work plans, contract agreements, insights, planning plans, policy letters, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《一元二次方程》教学反思《一元二次方程》教学反思范文(精选14篇)在发展不断提速的社会中,我们需要很强的课堂教学能力,反思指回头、反过来思考的意思。

一元二次方程的教案设计

一元二次方程的教案设计

一元二次方程的教案设计元二次方程教案篇一一、素质教育目标(一)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题.(二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力.二、教学重点、难点1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题.2.教学难点:根据数与数字关系找等量关系.三、教学步骤(一)明确目标(二)整体感知:(三)重点、难点的学习和目标完成过程1.复习提问(1)列方程解应用问题的步骤?①审题,②设未知数,③列方程,④解方程,⑤答.(2)两个连续奇数的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整数).2.例1 两个连续奇数的积是323,求这两个数.分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法).设较小的奇数为x,则另一奇数为x+2,设较小的奇数为x-1,则另一奇数为x+1;设较小的奇数为2x-1,则另一个奇数2x+1.以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法.解法(一)设较小奇数为x,另一个为x+2据题意,得x(x+2)=323.整理后,得x2+2x-323=0.解这个方程,得x1=17,x2=-19.由x=17得x+2=19,由x=-19得x+2=-17答:这两个奇数是17,19或者-19,-17.解法(二)设较小的奇数为x-1,则较大的奇数为x+1.据题意,得(x-1)(x+1)=323.整理后,得x2=324.解这个方程,得x1=18,x2=-18.当x=18时,18-1=17,18+1=19.当x=-18时,-18-1=-19,-18+1=-17.答:两个奇数分别为17,19;或者-19,-17.解法(三)设较小的奇数为2x-1,则另一个奇数为2x+1.据题意,得(2x-1)(2x+1)=323.整理后,得4x2= 324.解得,2x=18,或2x=-18.当2x=18时,2x-1=18-1=17;2x+1=18+1=19.当2x=-18时,2x-1=-18-1=-19;2x+1=-18+1=-17答:两个奇数分别为17,19;-19,-17.引导学生观察、比较、分析解决下面三个问题:1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?2.解题中的x出现了负值,为什么不舍去?答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数.3.选出三种方法中最简单的一种.练习1.两个连续整数的积是210,求这两个数.2.三个连续奇数的和是321,求这三个数.3.已知两个数的和是12,积为23,求这两个数.学生板书,练习,回答,评价,深刻体会方程的思想方法.例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数.分析:数与数字的关系是:两位数=十位数字×10+个位数字.三位数=百位数字×100+十位数字×10+个位数字.解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2)+x.据题意,得10(x-2)+x=3x(x-2)整理,得3x2-17x+20=0当x=4时,x-2=2,10(x-2)+x=24.答:这个两位数是24.练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数.(35,53)2.一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数.教师引导,启发,学生笔答,板书,评价,体会.(四)总结,扩展1奇数的表示方法为 2n+1,2n-1,……(n为整数)偶数的表示方法是2n(n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数.数与数字的关系两位数=(十位数字×10)+个位数字.三位数=(百位数字×100)+(十位数字×10)+个位数字.……2.通过本节课内容的比较、鉴别、分析、综合,进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途.四、布置作业教材P.42中A1、2元二次方程教案篇二【教材分析】一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。

第二章一元二次方程复习

第二章一元二次方程复习
教学重点
1.一元二次方程的四种解法:开平方发、配方法、公式法、因式分解法;
2.列一元二次方程解决实际生活中的问题.
教学难点
1.列一元二次方程解决实际问题;
2.转化的思想方法
教学方法
“尝试指导,效果回授”教学法
学法指导
发现法、练习法、合作学习。
教学资源
借助多媒体展示引例及变式训练题组,增大课堂容量,吸引学生眼球,最大限度地激发学生的学习兴趣,优化课堂结构,提高课堂教学效率。
3、先独立思考完成题组二第2、3题,参与小组讨论评价,总结归纳第3题解法特技。
4、独立完成题组三第1题(只列不解),体会方法多样性。
【媒体应用分析】
利用大屏幕依次出示问题三个题组,结合学生回答,相机出示相关问题的解答过程及知识要点,以期增大课堂容量,展示学生思维活动过程,提高课堂教学有效性。
【设计意图】
活动四全课小结,
通过具有一定综合性变式题组训练学生综合运用本章及其以前的知识灵活解决问题,达到举一反三、触类旁通。
活动五推荐作业,延展提升
通过精选作业进一步加深和巩固一元二次方程的有关知识
教学程序
教学内容
师生互动
媒体使用与教学评价
活动一揭示课题,提出要求
一、揭示并板书课题
2章一元二次方程复习与小结
二、出示复习要求
活动四全课小结,提炼升华
1、回忆活动二本章的知识点
2、教师概括:其中“三个一”是一个概念:一元二次方程;一种思想:降次;一个应用:列一元二次方程解应用题;“一个四”是一元二次方程的四种解法(略)。
【教师活动】
1、提问:通过本节学生有哪些收获?还有哪些困惑?
知识分析
本节是复习课,是在学生已经学习了本章的全部内容后进行的。重点帮助学生在搜整建构知识网络、查补缺漏,通过变式训练拓展延伸、升华主题。公式法是解一元二次方程的通法,对于任何一元二次方程都适用,但是在解题时,应具体分析方程的特点,选择适当的方法。对于利用方程解决实际问题,可以让学生对所学过的方程(组)进行整体的回顾,找出解决问题的关键,并兼顾与整式、分式、不等式以及几何等知识.

一元二次方程小结与复习总结

一元二次方程小结与复习总结

返回
1、甲公司前年缴税40万元,到今年共缴税135万 元,若设该公司缴税的年增长率为x,则根据题 意可列方程为 40+40(1+x)+40(1+x)2=135 。
2、甲公司前年缴税40万元,去年和今年共缴税95 万元,若设该公司缴税的年增长率为x,则根据题 意可列方程为 40(1+x)+40(1+x)2=95。
当 把 真 心 喂 过狗 叼 着中
分析:单个利润×销售量=总利润
解:若设台灯的售价应定为x元,则可列方程为
( x-30
)(
600
-10×; x
3
40
)=10000
若设每个台灯涨价x元,则可列方程为
x (40-30+x )( 600 -10×。3 )=10000
2、春秋旅行社为吸引市民组团去天水湾风景区旅 游,推出了如下收费标准:如果人数不超过25人, 人均旅游费用为1000元;如果人数超过25人,每 增加1人,人均旅游费用降低20元,但人均旅游费 用不得低于700元。
3、甲公司前年缴税40万元,今年缴税48.4万元,
若设该公司缴税的年增长率为x,则根据题意可列
方程为 40(1+x)2=48.4

返回
1、某商场将进货价为30元的台灯以40元售出,平 均每月能售出600个,调查表明,这种台灯的售价 每上涨3元,其销售量就能减少10个,为了实现平 均每月10000元的销售利润,这种台灯的售价应定 为多少?
(10+x )( 500 - 20x )=6000 解这个方程得:x1=5 , x2=10 要使顾客得到实惠应取x=5
答:每千克水果应涨价 5元.
返回
今 天 睡 姿 决 定劳资 明天发 型 算你 狠,我 不配 有 本事 ,躲着 别出来 。 不牛 逼咋做

第十五章分式教材分析

第十五章分式教材分析

例:已知分式 x 3 的值为0,求x
的值。
x 3
易犯错误
3、利用分式基本性质把分子、分母都乘以(或除以 )非零整式M时,只乘(或除)其中某些项,有漏乘 (或漏除)的项。
例:下列各式从左到右的变形是否正确:
(1)
m =- m -m-n m-n
a+x=a+1
(2) b+x b+1
易犯错误
4、化为通分母的分式后的符号容易出错,从而导致 结果错误。
例:计算:
4 -x+2 x-2 x-2
容易忽视分数线具有括号的作用。
易犯错误
5、混合运算时,运算顺序易出错。
例:计算
容易先运算乘法,后运算除法,同级运 算,在没有括号的情况下,按顺序进行。
易犯错误
6.对于 a0 常常会忽视 a 0 ;在进行 an 变换 时易把负号写到分式的前面去;在10n 中会
生活小常识
用科学记数法填空: (1)1微秒=_1_×__1_0_-6___秒; (2)1毫克=_1_×__1_0_-3___克=_1_×__1_0_-6___千克; (3)1微米=_1_×__1_0_-4___厘米=_1_×_1_0_-_6 ___ 米; (4)1纳米=_1_×__1_0_-3___微米=_1_×_1_0_-_9 ___米; (5)1平方厘米=_1_×__1_0_-4___平方米; (6)1毫升= _1_×__1_0_-_3__ 升=_1_×__1_0_-_6__立方米.
本章难点
1、分式的四则混合运算---它是整式运算、 因式分解和分式运算的综合运用; 2、分式方程的增根问题; 3、列分式方程解决实际问题---与列整式方 程相比,尽管涉及的基本数量关系相同,但是由 于含有未知数的式子可以是整式或分式,所以更 具灵活性,学生会感到困难。

第二章 《一元二次方程》单元小结与复习

第二章 《一元二次方程》单元小结与复习

★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三Βιβλιοθήκη ★专题四★专题一★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二
★专题三
★专题四
★专题一
★专题二

解一元一次方程(二)

解一元一次方程(二)

3.3 解一元一次方程(二)──去括号与去分母内容简介本节继续结合一些实际问题讨论一元一次方程,重点讨论两方面的问题:(1)如何根据实际问题列方程?(2)如何解方程?这节重点讨论解方程中的“去括号”和“去分母”,这样就可以解各种类型的一元一次方程,并归纳出一元一次方程解法的一般步骤.本节从一道“用电问题”,引出解方程中的“去括号”问题;又从古代埃及的纸莎草文书中的一道题,引出带有分母的一元一次方程,进而讨论用去分母的方法解这类方程.在本节中,以解一个具体方程的过程为例,用框图形式表示了一元一次方程解法的一般步骤.教学目标1.会根据题意列方程.2.会去括号、去分母解一元一次方程.3.了解一元一次方程解法的一般步骤.4.会通过列方程解决实际问题,并会将含有分母的方程化归成熟悉的方程,逐步体会化归的方法,掌握解方程的程序化方法.5.结合实际问题中得出的方程,会用“去括号”和“去分母”解一元一次方程,进一步体会化归思想.6.通过实际情景问题引入,提高学生的兴趣,激发学生探究欲望.教学重点本节的重点是通过实际问题讨论解方程中的“去括号”和“去分母”,理解各种类型的一元一次方程,并归纳出一元一次方程解法的一般步骤.在列方程求解的过程中经常用到“去括号”和“去分母”两种变形运算,是代数的基础知识和基本技能.在教学中重点抓住分析括号中的符号、系数问题,去分母时保证方程同解等重点内容.随着方程形式复杂程度的加深,要求运算能力也随之提高.教学难点本节的难点是根据实际问题列方程,并能正确求解,解方程过程中正确去括号和去分母.由于实际问题的类型多种多样,问题中的数量关系不一定明显,列方程成为教学中难点,因此列方程解决问题要反复逐步细化,多种形式展示方程求解的一般步骤.“去括号”和“去分母”变形时,保证方程同解是难点之一,如去括号时的负号问题等.课时安排4课时.1第1课时教学内容去括号.教学目标1.掌握解一元一次方程中“去括号”的方法,并能解此类型的方程.2.了解一元一次方程解法的一般步骤.3.通过归纳一元一次方程解法的一般步骤,体会解方程的程序化思想方法.4.通过具体实例引入新问题(如何去括号),激发学生的学习兴趣.教学重点通过“去括号”解一元一次方程.教学难点在去括号时括号内符号的变化过程.教学过程一、复习旧知导入新课按具体步骤解下列方程:2x+5x-3x+12=24-2x.按移项、合并同类项、系数化为1的步骤进行求解,并和同学一起回忆这个步骤.二、创设情境讲授新课问题1某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2 000 kW•h(千瓦•时),全年用电15万kW•h.这个工厂去年上半年每月平均用电是多少?提问:你会用方程解这道题吗?让学生自主分析列出式子(设出未知量、找出各个量和他们之间的关系,列出式子).设上半年每月平均用电x kW•h,则下半年每月平均用电(x-2 000)kW•h;上半年共用电6x kW•h,下半年共用电6(x-2 000)kW•h.根据全年用电15万kW•h,列得方程6x+6(x-2 000)=150 000.如果去括号,就能简化方程的形式.下面的框图表示了解这个方程的流程:23由上可知,这个工厂去年上半年每月平均用电13 500 kW•h . 思考:本题还有其他列方程的方法吗?用其他方法列出的方程怎样解? 设上半年平均每月用电x 度,列方程x +x -2 000=6150000即方程中等号左右两边都是一年中每两个月的平均用电量,解法为2x -2 000=25 000,2x =27 000, x =13 500.从以上例子中归纳总结出解含括号的一元一次方程的步骤:去括号、移项、合并同类项、系数化为1.三、实例分析 巩固提高例1 解下列方程:(1)2x -(x +10)=5x +2(x -1); (2)3x -7(x -1)=3-2(x +3). 解:(1)去括号,得2x -x -10=5x +2x -2.移项,得2x -x -5x -2x =-2+10.合并同类项,得-6x =8.系数化为1,得x =-43. (2)去括号,得3x -7x +7=3-2x -6.移项,得3x-7x+2x=3-6-7.合并同类项,得-2x=-10.系数化为1,得x=5.四、小结这节课学习到了什么?和上节课相比今天所学的一元一次方程有什么不同?解含括号的一元一次方程的基本步骤是什么?去括号是应注意哪些事项?五、作业教科书第98页习题3.3第1题第2课时教学内容去括号.教学目标1.进一步掌握列一元一次方程解应用题的方法步骤.2.通过分析行程问题中顺流速度、逆流速度、水流速度、静水中的速度的关系,以及零件配套问题中的等量关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用.3.培养学生自主探究和合作交流意识和能力,体会数学的应用价值.教学重点分析问题中的数量关系,找出能够表示问题全部含义的相等关系,•列出一元一次方程,并会解方程.教学难点找出能够表示问题全部含义的相等关系,列出方程.教学过程一、复习提问1.行程问题中的基本数量关系是什么?路程=速度×时间可变形为:速度=路程/时间,时间=路程/速度.2.相遇问题或追及问题中所走路程的关系?相遇问题:双方所走的路程之和=全部路程+原来两者间的距离(原来两者间的距4离).追及问题:快速行进路程=慢速行进路程+原来两者间的距离或快速行进路程-慢速行进路程=原路程(原来两者间的距离).二、讲授新知例2 一艘船从甲码头到乙码头顺流而行,用了2 h;从乙码头返回甲码头逆流而行,用了2.5 h.已知水流的速度是3 km/h,求船在静水中的平均速度.分析:一般情况下可以认为这艘船往返的路程相等,由此得出:顺流速度×顺流时间=逆流速度×逆流时间.解:设船在静水中的平均速度为x km/h,则顺流速度为(x+3) km/h,逆流速度为(x -3) km/h.根据往返路程相等,列得2(x+3)=2.5(x-3).去括号,得2x+7=2.5x-7.5.移项合并同类项,得0.5x=13.5.系数化为1,得x=27.答:船在静水中的平均速度为27 km/h.三、巩固练习教科书第99页第7题.练习:在风速为24 km/h的条件下,一架飞机顺风从A机场飞到B机场要用2.8 h,它逆风飞行同样的航线要用3h.求:(1)无风时这架飞机在这一航线的平均航速;(2)两机场之间的航程.解:(1)若设无风时飞机的航速为x km/h,那么与上例类似,可得顺风飞行的速度为(x+24)km/h,逆风飞行的速度为(x-24)km/h.根据往返路程相等,列得2.8(x+24)=3(x-24).去括号,得2.8x+67.2=3x-72.移项合并同类项,得-0.2x=139.2.系数化为1,得x=696.(2)两机场之间的航程为2.8(x+24)=2.8(696+24)=2016 km.答:(1)无风时这架飞机在这一航线的平均航速为696 km/h;(2)两机场之间的航56程是2016 km .四、小结通过以上问题的讨论,我们进一步体会到列方程解决实际问题的关键是正确地建立方程中的等量关系.另外在求出x 值后,一定要检验它是否合理,虽然不必写出检验过程,但这一步绝不是可有可无的.五、作业教科书第98页习题3.3第2(1)(2)、8题.第3课时教学内容 去分母. 教学目标1.掌握解一元一次方程中“去分母”的方法. 2.了解一元一次方程解法的一般步骤.3.体会解方程的程序化思想方法,发展用方程方法分析问题、解决问题的能力. 教学重点通过“去分母”解一元一次方程. 教学难点探究通过“去分母”的方法解一元一次方程. 教学过程 一、创设问题情境纸莎草文书,是古代埃及人用象形文字写在一种特殊的草上的著作,至今已有3700多年的历史了,在文书中记载了很多有关数学的问题,其中一个是:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.求这个数是多少?提出问题:同学们能不能用方程解决这个问题?大家思考并列式子.老师对同学们的回答进行总结.二、新课讲解这个问题可以用现在的数学符号表示,设这个数是x ,根据题意得方程.32x +21x +71x +x =33. 这样的方程中有些系数是分数,如果能化去分母,把系数化成整数,则可以使这些方程中的计算更简便些.7我们知道,等式两边乘同一个数,结果仍相等.这个方程中各分母的最小公倍数是42,方程两边同乘42,得:42×32x +42×21x +42×71x +42x =42×33. 即28x +21x +6x +42x =1 386. 合并同类项,得97x =1 386.系数化为1,得x =971386. 建议:先让学生尝试独立解答,老师巡视,观察学生的解题方法,并请同学表述解法及解法依据.第一种:直接合并同类项的方法;第二种:去分母的方法. 提问:不同的解法有什么各自的特点?老师引导学生分析并对比两种方法,得到共识:当方程中就含有分数系数时,先去分母可以使解题更加方便、快捷.上节课,我们学习了教科书第99页练习第7题的一种解法,请同学们想一想还有没有另外的解法.练习:在风速为24 km/h 的条件下,一架飞机顺风从A 机场飞到B 机场要用2.8 h ,它逆风飞行同样的航线要用3h .求:(1)无风时这架飞机在这一航线的平均航速;(2)两机场之间的航程.解法2 如果设两城之间的航程为x km ,你能列方程吗?这时它们之间的相等关系是什么?分析:由两城间的航程x km 和顺风飞行需2.8小时,逆风飞行需要3小时,可得顺风飞行的速度为8.2x km/h ,逆风飞行的速度为3xkm/h .在这个问题中,飞机在无风时的速度是不变的,即飞机在顺风飞行和逆风飞行中,无风时这架飞机在这一航线的平均航速相等,根据这个相等关系,列得方程8.2x -24=3x+24. 移项、去分母(这里要求得两个分母的最小公倍数,最小公倍数是42)、合并同类项、系数化为1,得x =2 016.无风时这架飞机在这一航线的平均航速8.2x -24=8.22016-24=696 km/h .老师出一个题目:53210232213+--=-+x x x 问同学们怎样求解?通过讨论先去分母,然后求解.可以分组讨论,得出正确的去分母方法.8然后归纳总结出去分母的方法:在方程两边乘以所有分母的最小公倍数;依据是“等式两边同时乘同一个数,结果仍相等”.结合本题思考,让学生总结解这种方程的一般操作过程:去分母—去括号—移项—合并同类项—系数化为1.三、归纳总结总结这节课学习到了什么?和上节课相比我们这节课有什么新的内容?在解含有分数的方程时应该按什么步骤进行?去分母对解方程有什么作用?去分母时应注意什么问题?四、作业教科书第98页习题3.3第3题.第4课时教学内容 去分母. 教学目标使学生灵活应用解方程的一般步骤,提高综合解题能力. 教学重点灵活应用解题步骤. 教学难点在“灵活”二字上下功夫. 教学过程 一、复习一元一次方程的解题步骤、分数的基本性质. 二、讲授新知接着看看上节课的方程,并以之为例,看看解有分数系数的一元一次方程的步骤.方程53210232213+--=-+x x x 中各分母的最小公倍数是10,方程的两边乘10,于是方程左边变为10×⎪⎭⎫⎝⎛-+2213x =10×213+x -10×2=5(3x +1)-10×2,去了分母,方程右边变为910×⎪⎭⎫⎝⎛+--5321023x x =10×1023-x -10×532+x =(3x -2)-2(2x +3). 下面的框图表示了解这个方程的流程.归纳:解一元一次方程的一般步骤包括:去分母、去括号、移项、合并同类项、系数化为 1 等. 通过这些步骤可以使以 x 为未知数的方程逐步向着x =a 的形式转化,这个过程主要依据等式的基本性质和运算律等.三、实例分析 例3 解下列方程(1)21+x -1=2+42x -; (2)3x +21-x =3-312-x .解:(1)去分母(方程两边乘4),得2(x +1)-4=8+(2-x ).去括号,得2x +2-4=8+2-x .移项,得2x +x =8+2-2+4.合并同类项,得3x =12.系数化为1,得x =4.(2)去分母(方程两边乘6),得18x +3(x -1)=18-2(2x -1).去括号,得18x +3x -3=18-4x +2.10移项,得18x +3x +4x =18+2+3.合并同类项,得25x =23.系数化为1,得x =2523. 四、小结若方程的分母是小数,应先利用分数的性质,把分子、分母同时扩大若干倍,此时分子要作为一个整体,需要补上括号,注意不是去分母,不能把方程其余的项也扩大若干倍.五、作业教科书第98页习题3.3第4、11题.。

北师大9年级上册 一元二次方程 第二章 小结与复习

北师大9年级上册 一元二次方程 第二章 小结与复习
因式分解
(ax + m)2 = n (a ≠ 0,n≥0) x2 + px + q = 0 ( p2 - 4q≥0) ax2 + bx +c = 0 (a ≠ 0,b2 - 4ac≥0) (ax + m)(bx + n) = 0 (ab ≠ 0)
三、一元二次方程的实际应用 列方程解应用题的一般步骤:
图2
方法总结
解决有关图形面积问题时,除了掌握所学面积公 式外,还要会将不规则图形分割或组合成规则图形, 并找出各部分图形面积之间的关系,再列方程求解.
平移转化
(注:这里的横坚斜小路的水平宽度都相等)
课堂小结
一元二次方 概念:①整式方程;②一元;③二次

程的定义 一般形式:ax2 + bx + c = 0 (a ≠ 0)
【易错提示】由于原方程是一元二次方程,所以 m 的值为 1 不符合其定义,应舍去,要引起注意.
针对训练
2. 一元二次方程 x2 + px - 2 = 0 的一个根为 2,则 p 的 值为 -1 .
考点三 一元二次方程的解法
例3 (1) 用配方法解方程 x2 - 2x - 5 = 0 时,原方程应变为 (A ) A.(x - 1)2 = 6 B.(x + 2)2 = 9 C.(x + 1)2 = 6 D.(x - 2)2 =
解析 本题为销售中的利润问题,设公司每天的销售价
为 x 元. 则其基本数量关系列表分析如下:
单件利润(元) 销售量(件) 每天利润(元)
正常销售
4
32
128
涨价销售
x - 20
32 - 2(x - 24)
150

二次函数知识点总结最新8篇

二次函数知识点总结最新8篇

二次函数知识点总结最新8篇高中二次函数知识点总结篇一1、按部就班,环环相扣数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。

所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题,一定要把每一个环节都学牢。

2、概念记清,基础夯实千万不要忽视最基本的概念、公理、定理和公式,每新学一个定理或者定义的时候,都要在理解的基础上去深挖每一个字眼,有时候少说一两个字,都可能导致结果的不同。

要在刚开始学概念的时候就弄清楚,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。

3、适当做题,巧做为主学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉中考的题型,训练要做到有的放矢。

有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。

数学需要实践,需要大量做题,但要“埋下头去做题,抬起头来想题”,在做题中关注思路、方法、技巧,要“苦做”更要“巧做”。

考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。

4、记录错题,避免再犯俗话说,“一朝被蛇咬,十年怕井绳”,可是同学们常会一次又一次地掉入相似甚至相同的“陷阱”里。

因此,建议大家在平时的做题中就要及时记录错题,更重要的是还要想一想为什么会错、以后要特别注意哪些地方,这样就能避免不必要的失分。

毕竟,中考或者在平时考试当中是“分分必争”,一分也失不得。

这样复习时,这个错题本也就成了宝贵的复习资料。

5、集中兵力,攻下弱点每个人都有自己的“软肋”,如果试题中涉及到你的薄弱环节,一定会成为你的最痛。

因此一定要通过短时间的专题学习,集中优势兵力,打一场漂亮的歼灭战,避免变成“瘸腿”。

初中二次函数知识点总结篇二教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯教学重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

高中数学《一元二次函数、方程和不等式》小结与复习第2课时教学设计

高中数学《一元二次函数、方程和不等式》小结与复习第2课时教学设计

一元二次函数、方程和不等式小结与复习第2课时教学设计一、内容和内容解析1.内容基本不等式及变形公式的运用, 用函数观点理解方程和不等式的基本思想方法,三个二次的综合应用.2.内容解析利用基本不等式求最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创设应用基本不等式的条件.从方程角度认识不等式,体会一元二次方程、一元二次不等式的联系性.已知一元二次不等式的解集,能分析出原方程的根,画出二次函数图象,重点培养学生逆向思维能力.从函数角度认识不等式,体会二次函数、一元二次不等式关系的整体性.体会一元二次不等式恒成立问题与二次函数图象的结合问题,重点培养数形结合能力.二、目标和目标解析1.目标(1)会用基本不等式解决常见的最值问题.(2)利用二次函数、方程和不等式的关系解决一元二次不等式的有关问题,从而进一步体会用函数观点统一方程和不等式的数学思想.2.目标解析达成上述目标的标志是:(1)学生在求解代数式最值的过程中能够注意一正、二定、三相等的条件,能够通过适当的变形,借助基本不等式解决相关最值问题.(2)学生能够利用三个二次的关系,灵活地解决和二次函数以及一元二次不等式有关的问题.三、教学问题诊断分析在利用基本不等式解决最值时,学生往往容易忽视基本不等式使用的前提条件和等号成立的条件,因此,在教学过程中,应借助辨析的方式让学生充分领会基本不等式成立的三个限制条件(一正、二定、三相等)在解决最值问题中的作用.设计意图:从问题出发,营造教学环境,引导学生进行一题多解,拓展思维.多数学生会用方法一来求解,因此师生共同总结应用基本不等式.例1的表面为二元,实则化归为一元,利用基本不等式或者二次函数来解决,提醒学生注意变量的取值范围问题.设计意图:这个问题的设计主要为了启发学生构造的思维,没有定值时,要创造定值,要将表达式变形,让学生发现如何创造性的用“1”在解答过程中进行过渡,并总结“1”的代换方法.设计意图:通过乘以、除以“1”或将“1”代入分子等变化,可以构造变式之积为定值,但不是万能的,设计此题,鼓励学生灵活运用,合理化归.同时将分母看成一个整体变量,将已知代数式构造成分母的形式.通过一系列的问题,让学生明白数学的学习不只是学习解题的套路,更要通过不断地思考变换的问题,让自己思维更广阔,增强自己的思维能力,培养将未知转化为已知的能力.(二)从方程角度认识不等式,体会一元二次方程、一元二次不等式的联系性设计意图:由一元二次不等式的解集推出原不等式,这种开放式问题,可以考查不等式的解与方程的根之间的关系,也培养学生逆向思维能力.(三)从函数角度认识不等式,体会二次函数、一元二次不等式关系的整体性设计意图:突出等价转化思想.追问6:本题若无“二次不等式”的条件,还应考虑a=0的情况,但对本题来讲,a=0时,式子不恒成立.(想想为什么?)设计意图:围绕一元二次不等式展开,突出体现数形结合的思想,同时学会分类讨论.(四)归纳总结、布置作业布置作业:教科书复习参考题2第5,6,7,8题.五、目标检测设计。

一元二次方程小结与复习

一元二次方程小结与复习

∴x1=3
33 x 2
x2=0
返 回
用配方法解方程。
①x2-2x-3=0 解:x2-2x=3 ②3x2-2x-5=0 解: 3x2-2x=5
2 3 2 2x 3 5 x= 3 1 5 1 2= +( )2 x+( 3 ) 3 3 1 16 2= (x- 3 ) 9 1 4 x- 3 =± 3 1 4 x= 3± 3 5
返 回
知识回顾
二、一元二次方程的解法
1. 一元二次方程的解.
满足方程,有根就是两个 2.一元二次方程的几种解法 (1)直接开平方法(2)因式分解法 (3) 配方法 (4)公式法
二、一元二次方程的解法
1、直接开平方法。 (x+m)2=n(n≥ 0)
练 习
2、配方法。 ①化——将二次项系数化为1。 ②移——将常数项移到方程的右边。 ③配——在方程两边同时加上一次项系数一半的平
方,使原方程变为(x+m)2=n (n≥ 0)
的形式。 ④开——用直接开平方法解出方程。
练 习
解下列方程。
x2=3 解:x=± 3 (x+1)2=5 解:x+1=± 5 x=-1± 5 (2x-3)2=9 解:2x-3=±3 2x=3±3
∴x1= 3
x2=- 3
∴ x1=-1+ 5
x2=-1- 5
数字问题
1、若一个三位数的个位数字是a,十位 数字是b,百位数字是c,则这个三位数 可表示为 100c+10b+a 。
2.有一个两位数,它的十位数字与个位数字的和是5.把这个 两位数的十位数字与个位数字互换后得到另一个两位 数,两个两位数的积为763.求原来的两位数.
解 : 设这个两位数的个位数字为x, 根据题意, 得

第12章一次函数小结评价与复习PPT课件(沪科版)

第12章一次函数小结评价与复习PPT课件(沪科版)

6. 填空题:
有下列函数:① y 6x 5 , ② y = 2 x ,
③ y x 4 , ④ y 4x 3 . 其中过原点的直
线是__②___;函数y随x的增大而增大的是_①__、__②__、__③__;函 数y随x的增大而减小的是__④____;图象在第一、二、三象 限的是__③___.
解不等式ax+b>0(a,
求直线y= ax+b在 x轴上
b是常数,a≠0) . 从“形”的角度看 方的部分(射线)所对
应的横坐标的取值范
围.
四、一次函数与二元一次方程 一般地,任何一个二元一次方程都可以转化为一次函
数y=kx+b(k、b为常数,且k≠0)的情势,所以每个二元一 次方程都对应一个一次函数,也对应一条直线.
10· · O· s5·=2x 1·(00≤x≤5) x(秒)
课堂小结




解析法 列表法 图象法
一次函数y=kx+b(k,b为常数, 且k≠0),特例y=kx(k为常 数,且k≠0).
一次函数与一元一次 方程、一元一次不等式
一次函数与二 元一次方程
用待定系数 法求一次函 数的解析式
1. 设所求的一次函数表达式为y=kx+b; 2. 根据已知条件列出关于k、b的方程组; 3. 解方程,求出k、b; 4. 把求出的k,b代回表达式即可.
x
当x>1时,y1在y2上方,据此解题即可.
【答案】C.
方法总结 本题考查了一次函数与一元一次不等式,从函数的角度看,
就是寻求一次函数y=ax+b的值大于(或小于)0的自变量x的取 值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上 (或下)方部分所有的点的横坐标所构成的集合.

一元二次方程教案(教案)一元二次方程的解法

一元二次方程教案(教案)一元二次方程的解法

一元二次方程教案(教案)一元二次方程的解法第1篇第2篇第3篇第4篇第5篇更多顶部第一篇:配方法解一元二次方程的教案第二篇:一元二次方程复习教案(正式)第三篇:4.2.3一元二次方程的解法(教案)第四篇:教案一元二次方程的应用第五篇:一元二次方程根的分布教案更多相关范文第一篇:配方法解一元二次方程的教案配方法解一元二次方程的教案教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第22章第2节第1课时。

一、教学目标(一)知识目标1、理解求解一元二次方程的实质。

2、掌握解一元二次方程的配方法。

(二)能力目标1、体会数学的转化思想。

2、能根据配方法解一元二次方程的一般步骤解一元二次方程。

(三)情感态度及价值观通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。

二、教学重点配方法解一元二次方程的一般步骤三、教学难点具体用配方法的一般步骤解一元二次方程。

四、知识考点运用配方法解一元二次方程。

五、教学过程(一)复习引入1、复习:解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

2、引入:二次根式的意义:若x2=a(a为非负数),则x叫做a的平方根,即x=&plusmn;&radic;a。

实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。

(二)新课探究通过实际问题的解答,引出我们所要学习的知识点。

通过问题吸引学生的注意力,引发学生思考。

问题1:一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?问题1重在引出用直接开平方法解一元二次方程。

这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来,具体解题步骤:2解:设正方体的棱长为x dm,则一个正方体的表面积为6xdm2列出方程:60x2=1500x2=25x=&plusmn;5因为x为棱长不能为负值,所以x=5即:正方体的棱长为5dm。

初中数学九年级上册第二章 小结与复习

初中数学九年级上册第二章 小结与复习

解得 x1=1.8 (舍去), x2=0.2=20%.
答:平均每次下调的百分率是20%.
例8 为了响应市委政府提出的建设绿色家园的号召,我 市某单位准备将院内一个长为30m,宽为20m的长方形空 地,建成一个矩形的花园,要求在花园中修两条纵向平 行和一条弯折的小道,剩余的地方种植花草,如图所示, 要是种植花草的面积为532m2,,那么小道的宽度应为多 少米?(所有小道的进出口的宽度相等,且每段小道为 平行四边形) 解:设小道进出口的宽为xcm (30-2x)(20-x)=532 x2-35x+34=0 x1=1 x2=34(舍去) 答:小道进出口的宽度应为1米.
针对训练
3.菱形ABCD的一条对角线长为6,边AB的长是方程 x2-7x+12=0的一个根,则菱形ABCD的周长为( A )
A. 16
B. 12
C. 16或12 D. 24
4.用公式法和配方法分别解方程:x2-4x-1=0
(要求写出必要解题步骤).
公式法:a 1,b -4,c -1.
A. x2+x=0
C.3x2-4x+1=0
B. 5x2-4x-1=0
D. 4x2-5x+2=0
6.(开放题)若关于x的一元二次方程x2-x+m=0有两个
不相等的实数根,则m的值可能是 0 (写出一个即
可).
考点五 一元二次方程的根与系数的关系 例5 已知一元二次方程x2-4x-3=0的两根为m,n,
(2)设元:就是设未知数,分直接设与间接设,应根据实际需要恰当选取设元法.
(3)列方程:就是建立已知量与未知量之间的等量关系.列方程这一环节最重 要,决定着能否顺利解决实际问题.
(4)解方程:正确求出方程的解并注意检验其合理性.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
娄底一中初中三年级第一学期学科:数学导学案(上课时间:年月日)
主备:肖海军辅备:初三年级组审核:朱宋德批准:授课人:班级:学生姓名:小组:评价:
第12课时
一元二次方程——小结与复习(二)
【使用说明与学法指导】
1.自学教材P30~31,认真完成导学案上的问题,初步评估自己完成目标的情况。
2.把自己的疑问写出来,以求课堂上解决。
【学习目标】
1、建立一元二次方程的数学模型,用于解决实际问题。
2、培养学生分析问题、解决问题的能力。
一、预习自学
【基础自测】
1、已知m方程 的一个根,则代数式 的值等于()
A.—1 B.0C.1 D.2
2.某商品原价100元,连续两次涨价 后售价为120元,列方程正确的是
A. B.
C. D.
3、若关于x的一元二次方程x2+(k+3)x+k=0的一根是-2,则另一个根是______
(1)求商场经营该商品原来一天可获利润多少元?
(2)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
例2教材P31页C组
【中考达标】
1、若一个等腰三角形的三边长均满足方程x2-6x+8=0,则此三角形的周长为.
2、某商场第一季度的利润是82.75万元,其中一月份的利润是25万元,若利润平均月增长率为 ,则根据题意列方程为
试问小华选择哪种方案更优惠,请说明理由。
【我的疑惑】
3、将4个数 排成2行2列,两边各加一条竖直线记成 ,定义 ,上述记号就叫做2阶行列式.若 ,则 .
【创新培优】
菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,为了加快销售,对价格经过两次下调后,批发价为每千克3.2元。(1)求平均每次下调的百分率;
(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元。
6、当t取什么值时,关于x的一元二次方程x2-x-2=2x+t有两个相等的实数根?此时这相等的两个实数根是多少?
7、一块正方形的铁皮,在它的四角各截去边长为5cm的小正方形,折成一个无盖的长方体盒子,它的容积是2000cm ,求原铁皮的边长。
二、和谐探究:
例1、某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
4、若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是______.
5、娄底市2009年平均房价为每平方米2000元.连续两年增长后,2011年平均房价达到每平方米2420元,设这两年平均房价年平均增长率为x,依题意可列方程为__________________,此方程适宜用______________解。
相关文档
最新文档