高中数学人教A版必修3课时作业:2 1.1.2.1程序框图与算法的顺序结构、条件结构 Word版含解析
高一数学人教A版必修三第一章 1.1 1.1.2 第一课时 程序框图、顺序结构
3.常见的程序框及其功能
图形符号
名称 功能 终端框(起止框) 表示一个算法的____ 结束 起始和____ ______________ 输入和____ 输出的 表示一个算法 ____ 输入、输出框 ______________ 信息 处理框(执行框) ______________ 判断框 __________
(6)在程序框图的图形符号内,用于描述的语言要简练、 清楚. 2.规则的记法 以上规则简记为:框图符号标准化;框内语言精练化; 框间流程方向化,从上到下,从左到右勿颠倒;起止框不可 少,判断框搞特殊:一进口,两出口.
[活学活用]
1.在程序框图中,表示判断框的图形符号的是 ( )
解析: 四个选项中的程序框依次为处理框, 输入、 输出框, 判断框和起止框. 答案:C
①任何一个程序框图都必须有起止框;②输入框、输出框可 以在算法中任何需要输入、输出的位置出现;③判断框是唯一具 有超过一个退出点的框图符号;④对于一个程序来说,判断框内 的条件是唯一的. A.1 个 C.3 个 B.2 个 D.4 个
(2)下列说法正确的是 A.程序框图中的图形符号可以由个人来确定
[随堂即时演练]
1.对程序框图叙述正确的是 A.表示一个算法的起始和结束,程序框是 B.表示一个算法输入和输出的信息,程序框是 C.表示一个算法的起始和结束,程序框是 D.表示一个算法输入和输出的信息,程序框是
解析:由程序框的算法功能可知,选项 C 正确. 答案:C
(
)
2.下列所画程序框图是已知直角三角形两直角边 a,b 求斜边 c 的 算法,其中正确的是 ( )
程序框图:
与顺序结构有关的读图问题
[例 3] 如图所示是解决某个问题而绘制的程序框图. 仔细分析各
高中数学(人教A版)必修三课时提升作业(二) 1.1.2 第1课时 程序框图、顺序结构 Word版含解析
温馨提示:
此套题为版,请按住,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭文档返回原板块。
课时提升作业(二)
程序框图、顺序结构
(分钟分)
一、选择题(每小题分,共分)
.下列关于程序框的功能描述正确的是( )
.()是处理框;()是判断框;()是终端框;()是输入、输出框
.()是终端框;()是输入、输出框;()是处理框;()是判断框
.()和()都是处理框;()是判断框;()是输入、输出框
.()和()的功能相同;()和()的功能相同
【解析】选.根据程序框图的规定,()是终端框,()是输入、输出框,()是处理框,()是判断框.
【补偿训练】程序框图中“”表示的意义是( )
.框图的开始或结束
.数据的输入或结果的输出
.赋值、执行计算的传送
.根据给定条件判断
【解析】选.在程序框图中,“”为输入、输出框,表示数据的
输入或结果的输出.
.(·梧州高一检测)下面哪个是判断框( )
【解析】选.判断框用菱形图形符号表示.
.如图所示的程序框是( )
.终端框.输入框
.处理框.判断框
【解析】选.因为矩形用来表示处理框,用来赋值或计算.
.(·佛山高一检测)下列关于流程线的说法,不正确的是( ) .流程线表示算法步骤执行的顺序,用来连接程序框
.流程线只要是上下方向就表示自上向下执行可以不要箭头
.流程线无论什么方向,总要按箭头的指向执行
.流程线是带有箭头的线,它可以画成折线
【解析】选.流程线上必须要有箭头来表示执行方向,故错误.
.(·益阳高一检测)如图所示程序框图中,其中不含有的程序框是( )。
人教A版高中数学必修3:1.1.2程序框图与算法的基本逻辑结构
例4.画程序框图, 对于输入的x值, 输出相应的y值.
0(x 0) y 1(0 x 1)
x(x 1)
开始
程序框图
输入x
是 x<0?
否 是
0≤x<1? 否
y=x
y=1 y=0
输出y 结束
知识探究(二):算法的循环结构
思考1:在算法的程序框图中,由按照一 定的条件反复执行的某些步骤组成的逻 辑结构,称为循环结构,反复执行的步 骤称为循环体,那么循环结构中一定包 含条件结构吗?
知识探究(一):算法的程序框图
表示算法的图形称为算法的程序框图又 称流程图,其中的多边形叫做程序框, 带方向箭头的线叫做流程线,程序框图 的含义是 用程序框、流程线及文字说
明来表示算法的图形.
图形符号
名称
功能
终端框
表示一个算法的起始和结束
(起止框)
输入、输出 框
表示一个算法输入和输出的 信息
处理框
普通高中课程标准试验教科书 人教A版数学必修3 第一章 算法初步
1.1.2 程序框图与算法 的基本逻辑结构
大庆铁人中学数学组 李莎
问题提出
1.算法的含义是什么?
在数学中,按照一定规则解决某一 类问题的明确和有限的步骤称为算法.
2.算法是由一系列明确和有限的计算步 骤组成的,我们可以用自然语言表述一 个算法,但往往过程复杂,缺乏简洁性, 因此,我们有必要探究使算法表达得更 加直观、准确的方法,这个想法可以通 过程序框图来实现.
n≤100?
是
是 n是偶数?
否 输出S
结束
S=S+n×n
否
例7:用“二分法”求方程 x2 2 0(x 0) 的近 似解的算法如何设计?
高中数学必修三课时作业13:1.1.2 第1课时 程序框图、顺序结构
1.1.2 程序框图与算法的基本逻辑结构第1课时程序框图、顺序结构1.下列关于程序框的功能描述正确的是()A.①是处理框;②是判断框;③是终端框;④是输入、输出框B.①是终端框;②是输入、输出框;③是处理框;④是判断框C.①和③都是处理框;②是判断框;④是输入、输出框D.①和③的功能相同;②和④的功能相同[解析]根据程序框图的规定,①是终端框,②是输入、输出框,③是处理框,④是判断框.[答案] B2.如图所示的算法框图表示的算法意义是()A.求边长为3,4,5的直角三角形面积B.求边长为3,4,5的直角三角形内切圆面积C.求边长为3,4,5的直角三角形外接圆面积D.求以3,4,5为弦的圆面积[解析]因为直角三角形内切圆半径r=a+b-c2,所以S=πr2表示该三角形内切圆的面积,故选B.[答案] B3.下面的框图是已知直角三角形两条直角边a,b,求斜边c的算法,其中正确的是()A B C D[解析] 由题意知应先输入a ,b ,再由公式计算c =a 2+b 2,最后输出c 结束,B 中的顺序错误;C 中的起止框错误;D 中的处理框错误,A 正确. [答案] A4.如图所示的程序框图的运行结果是________.[解析] 由题图知S =24+42=52,即程序框图运行的结果是52. [答案] 525.设计一个算法求方程5x +2y =22的正整数解,其最后输出的结果应为________.[解析] 因为求方程的正整数解时,应将x 从1开始输入,直到方程成立.当x =2时,y =6.当x =4时,y =1.故输出的结果应为⎩⎪⎨⎪⎧x =2,y =6,⎩⎪⎨⎪⎧x =4,y =1.[答案] ⎩⎨⎧x =2,y =6,⎩⎨⎧x =4,y =16.已知一个直角三角形的两条直角边长分别为a ,b ,设计一个算法,求该三角形的面积,并画出相应的程序框图. 解 算法如下:第一步,输入两直角边的长a ,b .第二步,计算S=12ab.第三步,输出S.程序框图如图:7.已知函数f(x)=x2-3x-2,求f(3)+f(-5)的值,设计一个算法并画出算法的程序框图.解自然语言算法如下:第一步,求f(3)的值.第二步,求f(-5)的值.第三步,计算y=f(3)+f(-5).第四步,输出y的值.程序框图如图所示:能力提升8.阅读如图所示的程序框图.若输入x为9,则输出的y的值为()A.8B.3C.2D.1[解析]运行程序框图可得x=9,a=92-1=80,b=80÷10=8,y=log28=3. [答案] B9.给出如图程序框图,若输出的结果为2,则①处的处理框内应填的是()A.x=2B.b=2C.x=1D.a=5[解析]∵结果是b=2,∴2=a-3,即a=5.当2x+3=5时,得x=1.[答案] C10.下列关于程序框图的说法中正确的有________(填序号).①用程序框图表示算法直观、形象,容易理解;②程序框图能够清楚地展现算法的逻辑结构,也就是通常所说的一图胜万言;③在程序框图中,起止框是任何流程图必不可少的;④输入、输出框可用在算法中任何需要输入、输出的位置.[解析]由程序框图的定义可知,①②③④都正确.[答案]①②③④11.如图所示,图①是计算图②中空白部分面积的一个框图,则“?”处应填________.[解析] 由题图②知S 阴影=2[a 2-π×(a2)2]=2a 2-πa 22,所以S 空白=a 2-S 阴影=a 2-2a 2+πa 22=π2a 2-a 2,故“?”处应填S =π2a 2-a 2. [答案] S =π2a 2-a 212.已知一个三角形的三边边长分别为2,3,4,设计一个算法,求出它的面积,并画出程序框图. 解 设计算法如下:第一步,取a =2,b =3,c =4. 第二步,计算p =a +b +c2. 第三步,计算 S =p (p -a )(p -b )(p -c ).第四步,输出S 的值. 程序框图如下:13.(选做题)如图所示的程序框图,当输入的x的值为0和4时,输出的值相等,根据该图和下列各小题的条件回答下面的几个问题.(1)该程序框图解决的是一个什么问题?(2)当输入的x的值为3时,求输出的f(x)的值;(3)要想使输出的值最大,求输入的x的值.解(1)该程序框图解决的是求二次函数f(x)=-x2+mx的函数值的问题.(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0,所以m=4.所以f(x)=-x2+4x.因为f(3)=-32+4×3=3,所以当输入的x的值为3时,输出的f(x)的值为3.(3)因为f(x)=-x2+4x=-(x-2)2+4,当x=2时,f(x)max=4,所以要想使输出的值最大,输入的x的值应为2.。
2020-2021学年数学人教A版必修3课件:课时作业 1-1-2-1 程序框图与顺序结构
R2= 4=2.
8.如图所示的程序框图是已知直角三角形两直角边 a,b 求
斜边 c 的算法,其中正确的是( C )
解析:A 项中,没有终端框,所以 A 项不正确; B 项中,输入 a,b 和 c= a2+b2顺序颠倒,且程序框错误, 所以 B 项不正确; D 项中,赋值框中 a2+b2=c 错误,应为 c= a2+b2,左 右两边不能互换,所以 D 项不正确;很明显 C 项正确.
课时作业2 程序框图与顺序结构
——基础巩固类——
1.对程序框叙述正确的是( Fra bibliotek )A.表示一个算法的起始和结束,程序框是
B.表示一个算法输入和输出的信息,程序框是 C.表示一个算法的起始和结束,程序框是 D.表示一个算法输入和输出的信息,程序框是
2.下列是流程图中的一部分,表示恰当的是( A )
12.已知点 P(x0,y0)和直线 l:Ax+By+C=0,分别用自然 语言和程序框图描述求点 P 到直线 l 的距离 d 的算法.
解:用自然语言描述的算法如下: 第一步,输入点 P 的坐标(x0,y0),输入常数 A,B,C. 第二步,计算 z1=Ax0+By0+C. 第三步,计算 z2=A2+B2. 第四步,计算 d= |zz1|2. 第五步,输出 d.
5.如图所示的程序框图表示的算法意义是( B )
A.边长为 3,4,5 的直角三角形面积 B.边长为 3,4,5 的直角三角形内切圆面积 C.边长为 3,4,5 的直角三角形外接圆面积 D.以 3,4,5 为弦的圆面积
6.如图是一个算法的程序框图,已知 a1=3,输出的结果为
7,则 a2 的值是( C )
解析:B 选项应该用处理框而非输入、输出框,C 选项应 该用输入、输出框而不是处理框,D 选项应该在出口处标明 “是”和“否”.
高中数学人教A版必修3课时作业:3 1.1.2.2程序框图与算法的循环结构 含解析
课时作业3程序框图与算法的循环结构|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.下列关于循环结构的说法正确的是()A.循环结构中,判断框内的条件是唯一的B.判断框中的条件成立时,要结束循环向下执行C.循环体中要对判断框中的条件变量有所改变才会使循环结构不会出现“死循环”D.循环结构就是无限循环的结构,执行程序时会永无止境地运行下去解析:由于判断框内的条件不唯一,故A错;由于当型循环结构中,判断框中的条件成立时执行循环体,故B错;由于循环结构不是无限循环的,故C正确,D错.答案:C2.如图所示程序框图的输出结果是()A.3B.4C.5 D.8解析:利用循环结构求解.当x=1,y=1时,满足x≤4,则x=2,y=2;当x=2,y=2时,满足x≤4,则x=2×2=4,y=2+1=3;当x=4,y=3时,满足x≤4,则x=2×4=8,y=3+1=4;当x=8,y=4时,不满足x≤4,则输出y=4.答案:B3.如图所示的程序框图输出的S是126,则①应为()A.n≤5? B.n≤6?C.n≤7? D.n≤8?解析:2+22+23+24+25+26=126,所以应填“n≤6?”.答案:B4.执行如图所示的程序框图,若输入n的值为3,则输出s的值是()A.1 B.2C.4 D.7解析:当i=1时,s=1+1-1=1;当i=2时,s=1+2-1=2;当i=3时,s=2+3-1=4;当i=4时,退出循环,输出s=4;故选C.答案:C5.(全国卷Ⅲ)执行如图所示的程序框图,如果输入的a=4,b =6,那么输出的n=()执行第一次循环的情况是:a=执行第二次循环的情况是:a=-2,b=2,b=4,a2,b=6,a=循环体的判断条件可知执行完第四次走出循环体,输出2-1,i=1<3,i=2<3,i=33=n,7.根据条件把图中的程序框图补充完整,求区间[1,1 000]内所有奇数的和,(1)处填________;(2)处填________.解析:求[1,1 000]内所有奇数和,初始值i=1,S=0,并且i<1 000,所以(1)应填S=S+i,(2)应填i=i+2.答案:(1)S=S+i(2)i=i+28.执行如图所示的程序框图,若输入的x的值为1,则输出的y 的值为________.解析:执行程序为x=1→x=2,y=3×22+1=13.答案:13三、解答题(每小题10分,共20分)9.(天津高一检测)设计一个算法,求1×2×3…×100的值,并画出程序框图.解析:算法步骤如下:第一步,S=1.第二步,i=1.第三步,S=S×i.第四步,i=i+1.第五步,判断i是否大于100,若成立,则输出S,结束算法;否则返回执行第三步.程序框图如图.10.高中某班一共有40名学生,设计程序框图,统计班级数学成绩良好(分数>80)和优秀(分数>90)的人数.解析:程序框图如图:|能力提升|(20分钟,40分)11.执行如图所示的程序框图,输出的结果为()A.(-2,2) B.(-4,0)C.(-4,-4) D.(0,-8)解析:x=1,y=1,k=0;s=0,t=2;x=0,y=2,k=1;s=-2,t=2,x=-2,y=2,k=2;s=-4,t=0,x=-4,y=0,k=3.输出(-4,0).答案:B12.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n位居民的月均用水量分别为x1,x2,…,x n(单位:吨).根据如图所示的程序框图,若n=2,且x1,x2分别为1,2,则输出的结果S为________.解析:当i=1时,S1=1,S2=1;当型循环结构法二直到型循环结构.某高中男子体育小组的50米短跑成绩6.4,6.5,7.0,6.8,7.1,7.3,6.9,7.4,7.5.设计一个算法,从这些成绩中搜索出并将这个算法用程序框图表示出来.算法如下:<6.8成立,则输出a,否则执行第三步.第三步,若没有数据了,则算法结束,否则返回第一步.程序框图如图所示.。
2020版高一数学 课时作业全册(含解析) 新人教A版必修3
20203目录[课时作业1] 算法的概念 (3)[课时作业2] 程序框图与算法的顺序结构、条件结构 (7)[课时作业3] 循环结构及应用 (14)[课时作业4] 输入语句、输出语句和赋值语句 (22)[课时作业5] 条件语句 (29)[课时作业6] 循环语句 (37)[课时作业7] 算法案例 (47)[课时作业8] 简单随机抽样 (52)[课时作业9] 系统抽样 (55)[课时作业10] 分层抽样 (59)[课时作业11] 用样本的频率分布估计总体分布 (65)[课时作业12] 用样本的数字特征估计总体的数字特征 (72)[课时作业13] 变量间的相关关系 (79)[课时作业14] 随机事件的概率 (86)[课时作业15] 概率的意义 (90)[课时作业16] 概率的基本性质 (95)[课时作业17] 古典概型 (101)[课时作业18] (整数值)随机数(random numbers)的产生 (106)[课时作业19] 几何概型 (110)[课时作业20] 均匀随机数的产生 (116)[课时作业1] 算法的概念[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分) 1.算法的有限性是指( ) A .算法必须包含输出B .算法中每个操作步骤都是可执行的C .算法的步骤必须有限D .以上说法均不正确解析:一个算法必须在有限步内结束称为算法的有穷性. 答案:C2.给出下面一个算法: 第一步,给出三个数x ,y ,z . 第二步,计算M =x +y +z . 第三步,计算N =13M .第四步,输出M ,N . 则上述算法是( ) A .求和 B .求余数C .求平均数D .先求和再求平均数解析:由算法过程知,M 为三数之和,N 为这三数的平均数. 答案:D3.已知一个算法: 第一步,m =a .第二步,如果b <m ,则m =b ,输出m ;否则执行第三步. 第三步,如果c <m ,则m =c ,输出m .如果a =3,b =6,c =2,那么执行这个算法的结果是( ) A .3 B .6 C .2 D .m解析:当a =3,b =6,c =2时,依据算法设计,执行后,m =a =3<b =6,c =2<3=m ,则c =2=m ,即输出m 的值为2.答案:C4.一个算法的步骤如下:第一步,输入x 的值; 第二步,计算x 的绝对值y ; 第三步,计算z =2y-y ; 第四步,输出z 的值.如果输入x 的值为-3,则输出z 的值为( ) A .4 B .5 C .6 D .8解析:根据算法的步骤计算: 第一步,输入x =-3. 第二步,计算x 的绝对值y =3. 第三步,计算z =2y -y =23-3=5. 第四步,输出z 的值为5. 答案:B5.对于解方程x 2-5x +6=0的下列步骤: ①设f (x )=x 2-5x +6;②计算判别式Δ=(-5)2-4×1×6=1>0; ③作f (x )的图象;④将a =1,b =-5,c =6代入求根公式x =-b ±Δ2a ,得x 1=2,x 2=3.其中可作为解方程的算法的有效步骤为( ) A .①② B.②③ C .②④ D.③④解析:解一元二次方程可分为两步:确定判别式和代入求根公式,故②④是有效的,①③不起作用.故选C.答案:C二、填空题(每小题5分,共15分) 6.给出下列算法: 第一步,输入x 的值.第二步,当x >4时,计算y =x +2;否则计算y =4-x . 第三步,输出y .当输入x =0时,输出y =________. 解析:∵x =0<4,∴y =4-x =2. 答案:27.已知A (-1,0),B (3,2),下面是求直线AB 的方程的一个算法,请将其补充完整:第一步,________.第二步,用点斜式写出直线AB 的方程y -0=12[x -(-1)].第三步,将第二步的方程化简,得到方程x -2y +1=0.解析:该算法功能为用点斜式方法求直线方程,第一步应为求直线的斜率,应为“计算直线AB 的斜率k =12”.答案:计算直线AB 的斜率k =128.下面给出了解决问题的算法:S 1,输入x .S 2,若x ≤1,则y =2x -3,否则y =x 2-3x +3. S 3,输出y .当输入的值为________时,输入值与输出值相等.解析:该算法的作用是计算并输出分段函数y =⎩⎪⎨⎪⎧x 2-3x +3,x >1,2x -3,x ≤1的函数值.因为输入值与输出值相等,所以当x >1时,x 2-3x +3=x ,解得x =3或x =1(舍去),当x ≤1时,2x -3=x ,解得x =3(舍去).答案:3三、解答题(每小题10分,共20分) 9.写出解方程x 2-2x -3=0的一个算法. 解析:算法一:第一步,移项,得x 2-2x =3.① 第二步,①式两边同时加1并配方,得(x -1)2=4.② 第三步,②式两边开方,得x -1=±2.③ 第四步,解③得x =3或x =-1.算法二:第一步,计算方程的判别式并判断其符号:Δ=(-2)2-4×(-3)=16>0. 第二步,将a =1,b =-2,c =-3代入求根公式x =-b ±b 2-4ac2a ,得x 1=3,x 2=-1.10.请设计一个判断直线l 1:y =k 1x +b 1(k 1≠0)与直线l 2:y =k 2x +b 2(k 2≠0)是否垂直的算法.解析:算法如下: 第一步,输入k 1,k 2的值. 第二步,计算u =k 1·k 2.第三步,若u =-1,则输出“垂直”;否则,输出“不垂直”.[能力提升](20分钟,40分)11.能设计算法求解下列各式中S 的值的是( ) ①S =12+14+18+ (12100)②S =12+14+18+…+12100+…;③S =12+14+18+…+12n (n 为确定的正整数).A .①② B.①③ C .②③ D.①②③解析:因为算法的步骤是有限的,所以②不能设计算法求解.易知①③能设计算法求解. 答案:B12.一个算法的步骤如下: 第一步,令i =0,S =2.第二步,如果i ≤15,则执行第三步;否则执行第六步. 第三步,计算S +i 并用结果代替S . 第四步,用i +2的值代替i . 第五步,转去执行第二步. 第六步,输出S .运行该算法,输出的结果S =________.解析:由题中算法可知S =2+2+4+6+8+10+12+14=58. 答案:5813.从古印度的汉诺塔传说中演变出一个汉诺塔游戏:如图有三根杆子A ,B ,C ,A 杆上有三个碟子(自上到下逐渐变大),每次移动一个碟子,要求小的只能叠在大的上面,最终把所有碟子从A 杆移到C 杆上.试设计一个算法,完成上述游戏.解析:第一步,将A 杆最上面的碟子移到C 杆上. 第二步,将A 杆最上面的碟子移到B 杆上. 第三步,将C 杆上的碟子移到B 杆上. 第四步,将A 杆上的碟子移到C 杆上. 第五步,将B 杆最上面的碟子移到A 杆上. 第六步,将B 杆上的碟子移到C 杆上.第七步,将A 杆上的碟子移到C 杆上.14.给出解方程ax 2+bx +c =0(a ,b ,c 为实数)的一个算法. 解析:算法步骤如下:第一步,当a =0,b =0,c =0时,解集为全体实数; 第二步,当a =0,b =0,c ≠0时,原方程无实数解; 第三步,当a =0,b ≠0时,原方程的解为x =-c b; 第四步,当a ≠0且b 2-4ac >0时,方程有两个不等实根 x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a;第五步,当a ≠0且b 2-4ac =0时,方程有两个相等实根x 1=x 2=-b2a ;第六步,当a ≠0且b 2-4ac <0时,方程无实根.[课时作业2] 程序框图与算法的顺序结构、条件结构[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.条件结构不同于顺序结构的特征是含有( ) A .处理框 B .判断框 C .输入、输出框 D .起止框解析:由于顺序结构中不含判断框,而条件结构中必须含有判断框,故选B. 答案:B2.给出以下四个问题:①输入一个数x ,输出它的绝对值;②求面积为6的正方形的周长;③求三个数a ,b ,c 中的最大数;④求函数f (x )=⎩⎪⎨⎪⎧3x -1,x ≤0,x 2+1,x >0的函数值.其中需要用条件结构来描述算法的有( )A .1个B .2个C .3个D .4个解析:其中①③④都需要对条件作出判断,都需要用条件结构,②用顺序结构即可.故选C.答案:C3.运行如图所示的程序框图,输出的结果为11,则输入的x 的值为( )A.6 B.5C.4 D.3解析:依题意,令2x-1=11,解得x=6,即输入的x的值为6.答案:A4.已知M=ln 2,N=lg 10,执行如图所示的程序框图,则输出S的值为( )A.1 B.ln 10C.ln 5 D.ln 2解析:依题意,可得M<N,故输出的S=M=ln 2,故选D.答案:D5.某市的出租车收费办法如下:不超过2千米收7元(即起步价7元),超过2千米的里程每千米收2.6元,另每车次超过2千米收燃油附加费1元(不考虑其他因素).相应收费系统的程序框图如图所示,则①处应填( )A .y =7+2.6xB .y =8+2.6xC .y =7+2.6(x -2)D .y =8+2.6(x -2) 解析:当x >2时,2千米内的收费为7元, 2千米外的收费为(x -2)×2.6, 另外燃油附加费为1元,所以y =7+2.6(x -2)+1=8+2.6(x -2). 答案:D二、填空题(每小题5分,共15分) 6.如图,该程序框图的功能是________.解析:该程序框图表示的算法是先输入五个数,然后计算这五个数的和,再求这五个数的平均数,最后输出它们的和与平均数.答案:求五个数的和以及这五个数的平均数7.阅读如图所示的程序框图,若运行该程序框图后,输出y 的值为4,则输入的实数x 的值为________.解析:由程序框图,得y =⎩⎪⎨⎪⎧(x +2)2,x ≥02x,x <0,若y =4,则有⎩⎪⎨⎪⎧x ≥0(x +2)2=4或⎩⎪⎨⎪⎧x <02x=4,解得x =0.答案:08.已知函数y =⎩⎪⎨⎪⎧log 2x ,x ≥22-x ,x <2,如图表示的是给定x 的值,求其对应的函数值y 的程序框图,则①②处分别应填写________.解析:程序框图中的①处就是分段函数解析式的判断条件,故填写“x <2?”,②处就是当x ≥2时的函数解析式,故填写“y =log 2x ”.答案:x <2?,y =log 2x三、解答题(每小题10分,共20分)9.已知半径为r 的圆的周长公式为C =2πr ,当r =10时,写出计算圆的周长的一个算法,并画出程序框图.解析:算法如下: 第一步,令r =10. 第二步,计算C =2πr . 第三步,输出C . 程序框图如图所示:10.为了节约能源,培养市民节约用电的良好习惯,某省居民生活用电价格将实行三档累进递增的阶梯电价:第一档,月用电量不超过200千瓦时,每千瓦时0.498元;第二档,月用电量超过200千瓦时但不超过400千瓦时,超出的部分每千瓦时0.548元;第三档,月用电量超过400千瓦时,超出的部分每千瓦时0.798元.(1)写出电费y (元)关于月用电量z (千瓦时)的函数关系式; (2)请帮助该省政府设计一个计算电费的程序框图. 解析:(1)所求的函数关系式为y =⎩⎪⎨⎪⎧0.498x ,0≤x ≤2000.498×200+(x -200)×0.548,200<x ≤4000.498×200+200×0.548+(x -400)×0.798,x >400,即y =⎩⎪⎨⎪⎧0.498x ,0≤x ≤2000.548x -10,200<x ≤4000.798x -110,x >400.(2)程序框图为[能力提升](20分钟,40分)11.阅读如图程序框图,如果输出的值y 在区间⎣⎢⎡⎦⎥⎤14,1内,则输入的实数x 的取值范围是( )A .[-2,0)B .[-2,0]C .(0,2]D .[0,2]解析:由题意得:2x∈⎣⎢⎡⎦⎥⎤14,1且x ∈[-2,2],解得x ∈[-2,0].答案:B12.阅读如图所示的程序框图,写出它表示的函数是________.解析:由程序框图知,当x >3时,y =2x -8;当x ≤3时,y =x 2,故本题框图的功能是输入x 的值,求分段函数y =⎩⎪⎨⎪⎧2x -8(x >3)x 2(x ≤3)的函数值.答案:y =⎩⎪⎨⎪⎧2x -8(x >3)x 2(x ≤3)13.已知函数y =⎩⎪⎨⎪⎧2x -1,x <0,x 2+1,0≤x <1,x 3+2x ,x ≥1,写出求该函数的函数值的算法,并画出程序框图.解析:算法如下: 第一步,输入x .第二步,如果x <0,那么y =2x -1,然后执行第四步;否则,执行第三步. 第三步,如果x <1,那么y =x 2+1;否则,y =x 3+2x . 第四步,输出y . 程序框图如图所示.14.如图所示的程序框图,其作用是:输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y 值相等,求这样的x 值有多少个?解析:由题可知算法的功能是求分段函数y =⎩⎪⎨⎪⎧x 2,x ≤2,2x -3,2<x ≤5,1x ,x >5的函数值,要满足题意,则需要⎩⎪⎨⎪⎧x ≤2,x 2=x (解得x =0或x =1)或⎩⎪⎨⎪⎧2<x ≤5,2x -3=x (x =3)或⎩⎪⎨⎪⎧x >5,1x=x ,(x=±1,舍去)∴满足条件的x 的值有3个.[课时作业3] 循环结构及应用[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.下列关于循环结构的说法正确的是( )A.循环结构中,判断框内的条件是唯一的B.判断框中的条件成立时,要结束循环向下执行C.循环体中要对判断框中的条件变量有所改变才会使循环结构不会出现“死循环”D.循环结构就是无限循环的结构,执行程序时会永无止境地运行下去解析:由于判断框内的条件不唯一,故A错;由于当型循环结构中,判断框中的条件成立时执行循环体,故B错;由于循环结构不是无限循环的,故C正确,D错.答案:C2.如图所示程序框图的输出结果是( )A.3 B.4C.5 D.8解析:利用循环结构求解.当x=1,y=1时,满足x≤4,则x=2,y=2;当x=2,y=2时,满足x≤4,则x=2×2=4,y=2+1=3;当x=4,y=3时,满足x≤4,则x=2×4=8,y=3+1=4;当x=8,y=4时,不满足x≤4,则输出y=4.答案:B3.如图所示的程序框图输出的S是126,则①应为( )A.n≤5? B.n≤6?C.n≤7? D.n≤8?解析:2+22+23+24+25+26=126,所以应填“n≤6?”.答案:B4.执行程序框图如图,若输出y的值为2,则输入的x应该是( )A.2或 3 B.2或± 3C.2 D.2或- 3解析:由程序框图可得:当x<0时,y=x2-1,∴x2-1=2,即x2=3,∴x=- 3.当x≥0时,y=2x-2,∴2x-2=2,∴2x=4=22.∴x=2,综上所述,x=2或- 3.答案:D5.执行如图所示的程序框图,如果输入的a=4,b=6,那么输出的n=( )A.3 B.4C.5 D.6解析:执行第一次循环的情况是:a=2,b=4,a=6,s=6,n=1;执行第二次循环的情况是:a=-2,b=6,a=4,s=10,n=2,执行第三次循环的情况是:a=2,b=4,a =6,s=16,n=3,执行第四次循环的情况是:a=-2,b=6,a=4,s=20,n=4.根据走出循环体的判断条件可知执行完第四次走出循环体,输出n值,n值为4.答案:B二、填空题(每小题5分,共15分)6.执行如图所示的程序框图,若输入n的值为3,则输出的S的值为________.解析:第一次运算:S=2-1,i=1<3,i=2,第二次运算:S=3-1,i=2<3,i=3,第三次运算:S=1,i=3=n,所以S的值为1.答案:17.根据条件把图中的程序框图补充完整,求区间[1,1 000]内所有奇数的和,(1)处填________;(2)处填________.解析:求[1,1 000]内所有奇数和,初始值i =1,S =0,并且i <1 000,所以(1)应填S =S +i ,(2)应填i =i +2.答案:(1)S =S +i (2)i =i +28.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n 等于________.解析:当n =1时,a =152,b =4,满足进行循环的条件.n =2,a =454,b =8,满足进行循环的条件. n =3,a =1358,b =16,满足进行循环的条件. n =4,a =40516,b =32,不满足进行循环的条件. 故输出的n 值为4. 答案:4三、解答题(每小题10分,共20分)9.设计一个算法,求1×2×3…×100的值,并画出程序框图.解析:算法步骤如下: 第一步,S =1. 第二步,i =1. 第三步,S =S ×i . 第四步,i =i +1.第五步,判断i 是否大于100,若成立,则输出S ,结束算法;否则返回执行第三步. 程序框图如图.10.如图所示程序框图中,有这样一个执行框x i =f (x i -1),其中的函数关系式为f (x )=4x -2x +1,程序框图中的D 为函数f (x )的定义域. (1)若输入x 0=4965,请写出输出的所有x i ;(2)若输出的所有x i 都相等,试求输入的初始值x 0. 解析:(1)当x 0=4965时,x 1=4x 0-2x 0+1=1119,而x 1∈D ,∴输 出x 1,i =2,x 2=4x 1-2x 1+1=15,而x 2=15∈D ,∴输出x 2,i =3,x 3=4x 2-2x 2+1=-1,而-1∉D ,退出循环,故x i 的所有项为1119,15.(2)若输出的所有x i 都相等,则有x 1=x 2=…=x n =x 0,即x 0=f (x 0)=4x 0-2x 0+1,解得:x 0=1或x 0=2,所以输入的初始值x 0为1或2时输出的所有x i 都相等.[能力提升](20分钟,40分)11.考拉兹猜想又名3n +1猜想,是指对于每一个正整数,如果它是奇数,则乘3再加1;如果它是偶数,则除以2.如此循环,最终都能得到1.阅读如图所示的程序框图,运行相应程序,输出的结果i =( )A .4B .5C .6D .7解析:当a =10时,不满足退出循环的条件,进入循环后,由于a 值不满足“a 是奇数”,故a =5,i =2;当a =5时,不满足退出循环的条件,进入循环后,由于a 值满足“a 是奇数”,故a =16,i =3;当a =16时,不满足退出循环的条件,进入循环后,由于a 值不满足“a 是奇数”,故a =8,i =4;当a =8时,不满足退出循环的条件,进入循环后,由于a 值不满足“a 是奇数”,故a =4,i =5;当a =4时,不满足退出循环的条件,进入循环后,由于a 值不满足“a 是奇数”,故a =2,i =6;当a =2时,不满足退出循环的条件,进入循环后,由于a 值不满足“a 是奇数”,故a =1,i =7;当a=1时,满足退出循环的条件,故输出结果为7.故选D.答案:D12.下列四个程序框图都是为计算22+42+62+…+1002而设计的.正确的程序框图为________(填序号);图③输出的结果为________________(只需给出算式表达式);在错误的程序框图中,不能执行到底的为________(填序号).解析:将每一个程序框图所表示的算法“翻译”出来,即可判断.答案:④22+42+62+ (982)13.某高中男子体育小组的50米短跑成绩(单位:s)如下:6.4,6.5,7.0,6.8,7.1,7.3,6.9,7.4,7.5.设计一个算法,从这些成绩中搜索出小于 6.8 s 的成绩,并将这个算法用程序框图表示出来.解析:算法如下:第一步,输入a.第二步,若a<6.8成立,则输出a,否则执行第三步.第三步,若没有数据了,则算法结束,否则返回第一步.程序框图如图所示:14.设计一个算法,求1×22×33×…×100100的值,并画出程序框图(分别用直到型循环结构和当型循环结构表示).解析:算法步骤如下(直到型循环结构):第一步,S=1.第二步,i=1.第三步,S=S×i i.第四步,i=i+1.第五步,判断i>100是否成立.若成立,则输出S,结束算法;否则,返回第三步.该算法的程序框图如图所示:算法步骤如下(当型循环结构):第一步,S=1.第二步,i=1.第三步,判断i≤100是否成立.若成立,则执行第四步;否则,输出S,结束算法.第四步,S=S×i i.第五步,i=i+1.该算法的程序框图如图所示:[课时作业4] 输入语句、输出语句和赋值语句[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.下列语句正确的个数是( )①输入语句INPUT a+2;②赋值语句x=x-5;③输出语句PRINT M=2.A.0 B.1C.2 D.3解析:①中输入语句只能给变量赋值,不能给表达式a+2赋值,所以①错误;②中x =x-5表示变量x减去5后再将值赋给x,即完成x=x-5后,x比原来的值小5,所以②正确;③中不能输出赋值语句,所以③错误.答案:B2.下列程序运行的结果是( )A.1 B.2C.3 D.4解析:由赋值语句的功能知:M=1,M=1+1=2,M=2+2=4,输出M的值为4,故选D.答案:D3.输入a=5,b=12,c=13,经下列赋值语句运行后,a的值仍为5的是( )解析:对于选项A,先把b的值赋给a,a的值又赋给b,这样a,b的值均为12;对于选项B,先把c的值赋给a,这样a的值就是13,接下来是把b的值赋给c,这样c的值就是12,再又把a的值赋给b,所以a的值还是13;对于选项C,先把a的值赋给b,然后又把b的值赋给a,所以a的值没变,仍为5;对于选项D,先把b的值赋给c,这样c的值是12,再把a的值赋给b,于是b的值为5,然后又把c的值赋给a,所以a的值为12.于是可知选C.答案:C4.给出下列程序:若输出的A的值为120,则输入的A的值为( )A.1 B.5C.15 D.120解析:该程序的功能是计算A×2×3×4×5的值,则120=A×2×3×4×5,故A=1,即输入A的值为1.答案:A5.下列程序执行后,变量a,b的值分别为( )A.20,15 B.35,35C.5,5 D.-5,-5解析:a=15,b=20,把a+b赋给a,因此得出a=35,再把a-b赋给b,即b=35-20=15,再把a-b赋给a,此时a=35-15=20,因此最后输出的a,b的值分别为20,15.答案:A二、填空题(每小题5分,共15分)6.阅读如图所示的算法框图,则输出的结果是________.解析:y=2×2+1=5,b=3×5-2=13.答案:137.下面程序的功能是求所输入的两个正数的平方和,已知最后输出的结果是3.46,试据此将程序补充完整.解析:由于程序的功能是求所输入的两个数的平方和,且最后输出的结果是3.46,所以3.46=1.12+x22.所以,x22=2.25.又x2是正数,所以x2=1.5.答案:1.58.已知A(x1,y1),B(x2,y2)是平面上的两点,试根据平面几何中的中点坐标公式设计一个程序,要求输入A,B两点的坐标,输出它们连线中点的坐标.现已给出程序的一部分,请在横线处把程序补充完整:解析:应填入中点坐标公式.答案:(x1+x2)/2 (y1+y2)/2三、解答题(每小题10分,共20分)9.给出程序框图,写出相应的程序语句.解析:程序如下:10.阅读下面的程序,根据程序画出程序框图.解析:程序框图如图所示.[能力提升](20分钟,40分)11.给出下列程序:此程序的功能为( )A.求点到直线的距离B.求两点之间的距离C.求一个多项式函数的值D.求输入的值的平方和解析:输入的四个实数可作为两个点的坐标,程序中的a,b分别表示两个点的横、纵坐标之差,而m,n分别表示两点横、纵坐标之差的平方;s是横、纵坐标之差的平方和,d 是平方和的算术平方根,即两点之间的距离,最后输出此距离.答案:B12.阅读下列两个程序,回答问题.①②(1)上述两个程序的运行结果是①____________;②________;(2)上述两个程序中的第三行有什么区别:________________________________________________________________________ ________________________________________________________________________.解析:(1)①中运行x=3,y=4,x=4,故运行结果是4,4;同理,②中的运行结果是3,3;(2)程序①中的“x=y”是将y的值4赋给x,赋值后x的值变为4;程序②中的“y=x”是将x的值3赋给y,赋值后y的值变为3.答案:(1)①4,4②3,3(2)程序①中的“x=y”是将y的值4赋给x,赋值后x的值变为4;程序②中的“y=x”是将x的值3赋给y,赋值后y的值变为313.已知函数y=x2+3x+1,编写一个程序,使每输入一个x值,就得到相应的y值.解析:程序如下:14.某粮库3月4日存粮50 000 kg,3月5日调进粮食30 000 kg,3月6日调出全部存粮的一半,求每天的库存粮食数,画出程序框图,写出程序.解析:程序框图如图所示.程序:[课时作业5] 条件语句 [基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.当a=3时,下面的程序段输出的结果是( )A.9 B.3C.10 D.6解析:因为a=3<10,所以y=2×3=6.答案:D2.运行下面程序,当输入数值-2时,输出结果是( )A.7 B.-3C.0 D.-16解析:该算法是求分段函数y =⎩⎨⎧3x ,x >0,2x +1,x =0,-2x 2+4x ,x <0,当x =-2时的函数值,∴y =-16. 答案:D3.下列程序语句的算法功能是( )A .输出a ,b ,c 三个数中的最大数B .输出a ,b ,c 三个数中的最小数C .将a ,b ,c 按从小到大排列D .将a ,b ,c 按从大到小排列解析:由程序语句可知,当比较a ,b 的大小后,选择较大的数赋给a ;当比较a ,c 的大小后,选择较大的数赋给a ,最后输出a ,所以此程序的作用是输出a ,b ,c 中最大的数.答案:A4.为了在运行下面的程序之后输出y =25,键盘输入x 应该是( )A .6B .5C .6或-6D .5或-5解析:程序对应的函数是y =⎩⎪⎨⎪⎧ (x +1)2,x <0,(x -1)2,x ≥0.由⎩⎪⎨⎪⎧ x <0,(x +1)2=25,或⎩⎪⎨⎪⎧ x ≥0,(x -1)2=25,得x =-6或x =6.答案:C5.已知程序如下:如果输出的结果为2,那么输入的自变量x 的取值范围是 ( )A .0B .(-∞,0]C .(0,+∞) D.R解析:由输出的结果为2,则执行了ELSE 后面的语句y =2,即x >0不成立,所以有x ≤0. 答案:B二、填空题(每小题5分,共15分)6.将下列程序补充完整.判断输入的任意数x 的奇偶性.解析:因为该程序为判断任意数x 的奇偶性且满足条件时执行“x 是偶数”,而m =x MOD 2表示m 除2的余数,故条件应用“m =0”.答案:m =07.如图,给出一个算法,已知输出值为3,则输入值为________.解析:本题的程序表示一个分段函数f(x)=⎩⎪⎨⎪⎧ x 2-3x -1,x≥0,log 2(x +5),x<0,∵输出值为3,∴⎩⎪⎨⎪⎧ x 2-3x -1=3,x≥0或⎩⎪⎨⎪⎧ log 2(x +5)=3,x<0,∴x=4,∴输入值x =4.答案:48.阅读下面程序(1)若输入a=-4,则输出结果为________;(2)若输入a=9,则输出结果为________.解析:分析可知,这是一个条件语句,当输入的值是-4时,输出结果为负数.当输入的值是9时,输出结果为9=3.答案:(1)负数(2)3三、解答题(每小题10分,共20分)9.编写求函数y=|x|的值的程序.解析:程序如下:10.给出如下程序(其中x满足:0<x<12).(1)该程序用函数关系式怎样表达?(2)画出这个程序的程序框图.解析:(1)函数关系式为y =⎩⎪⎨⎪⎧ 2x ,0<x ≤4,8,4<x ≤8,24-2x ,8<x <12.(2)程序框图如下:[能力提升](20分钟,40分)11.阅读下面的程序:程序运行的结果是( )A.3 B.3 4C.3 4 5 D.3 4 5 6解析:本题主要考查了条件语句的叠加,程序执行条件语句的叠加的过程中对于所有的条件都要进行判断,依次验证每一个条件,直到结束.在本题中共出现四次条件判断,每一个条件都成立,故输出结果为3 4 5 6.答案:D12.如下程序要使输出的y 值最小,则输入的x 的值为________.解析:本程序执行的功能是求函数y =⎩⎪⎨⎪⎧ (x -1)2(x ≥0),(x +1)2(x <0)的函数值.由函数的性质知,当x =1或x =-1时,y 取得最小值0.答案:-1或113.设计判断正整数m 是否是正整数n 的约数的一个算法,画出其程序框图,并写出相应的程序.解析:程序框图:程序为:14.到某银行办理跨行汇款,银行收取一定的手续费,汇款额不超过100元,收取1元手续费;超过100元但不超过5 000元,按汇款额的1%收取手续费;超过5 000元,一律收取50元手续费,画出描述汇款额为x 元,银行收取手续费y 元的程序框图,并写出相应的程序.解析:由题意,知y =⎩⎪⎨⎪⎧ 1,0<x ≤100,0.01x ,100<x ≤5 000,50,x >5 000.程序框图如图所示:程序如下:[课时作业6] 循环语句 [基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.下列程序运行后,输出的i的值等于( )A.9 B.8C.7 D.6解析:第一次:S=0+0=0,i=0+1=1;第二次:S=0+1=1,i=1+1=2;第三次:S=1+2=3,i=2+1=3;第四次:S=3+3=6,i=3+1=4;第五次:S=6+4=10,i=4+1=5;第六次:S=10+5=15,i=5+1=6;第七次:S=15+6=21,i=6+1=7,因此S=21>20,所以输出i=7.答案:C2.下列循环语句,循环终止时,i等于( )A.2 B.3C.4 D.5解析:当i<3时,执行循环体,因此,循环终止时i=3.答案:B3.如果以下程序运行后输出的结果是132,那么在程序中LOOP UNTIL后面的“条件”应为( )A.i>11 B.i>=11C.i<=11 D.i<11解析:该程序中使用了直到型循环语句,当条件不满足时执行循环体,满足时退出循环,由于输出的是132,132=12×11,故选D.答案:D4.下列程序执行后输出的结果是( )A.3 B.6C.10 D.15解析:由题意得,S=0+1+2+3+4+5=15.答案:D5.图中程序是计算2+3+4+5+6的值的程序.在WHILE后的①处和在s=s+i之后的②处所填写的语句可以是( )A.①i>1②i=i-1B.①i>1②i=i+1C.①i>=1 ②i=i+1D.①i>=1 ②i=i-1解析:程序框图是计算2+3+4+5+6的和,则第一个处理框应为i>1,i是减小1个,i=i-1,从而答案为:①i>1②i=i-1.答案:A二、填空题(每小题5分,共15分)6.阅读下面程序,输出S的值为________.解析:S=1,i=1;第一次:T=3,S=3,i=2;第二次:T=5,S=15,i=3;第三次:T =7,S =105,i =4,满足条件, 退出循环,输出S 的值为105. 答案:1057.下列程序表示的表达式是________(只写式子,不计算).解析:所给程序语句为WHILE 语句,是求12i +1的前九项和.所以表达式为13+15+…+117+119. 答案:13+15+…+117+1198.已知有如下两段程序:程序1运行的结果为________,程序2运行的结果为______.解析:程序1从计数变量i =21开始,不满足i ≤20,终止循环,累加变量sum =0,这个程序计算的结果是sum =0;程序2从计数变量i =21开始,进入循环,sum =0+21=21,i =i +1=21+1=22,i >20,循环终止,此时,累加变量sum =21,这个程序计算的结果是sum =21.答案:0 21三、解答题(每小题10分,共20分)9.编写程序,计算并输出表达式11+2+12+3+13+4+…+119+20的值.解析:利用UNTIL 语句编写程序如下 :10.分别用WHILE 语句和UNTIL 语句编写程序,求出使不等式12+22+32+…+n 2<1 000成立的n 的最大整数值.解析:方法一 利用WHILE 语句编写程序如下:方法二 利用UNTIL 语句编写程序如下:[能力提升](20分钟,40分)11.如下所示的程序,若最终输出的结果为6364,则在程序中横线处可填入的语句为( )A .i>=8B .i>=7C .i<7D .i<8解析:因为n =2,i =1,第1次循环:S =0+12=12,n =4,i =2;第2次循环:S =12+14=34,n =8,i =3;第3次循环:S =34+18=78,n =16,i =4;第4次循环:S =78+116=1516,n =32,i =5;第5次循环:S =1516+132=3132,n =64,i =6;第6次循环:S =3132+164=6364,n =128,i =7.此时输出的S =6364,故可填i >=7.答案:B12.下面是利用UNTIL 循环设计的计算1×3×5×…×99的一个算法程序.请将其补充完整,则横线处应分别填入①________②________.解析:补充如下:①S=S*i ②i>99答案:①S=S*i ②i>9913.高一(4)班共有60名同学参加数学竞赛,现已有这60名同学的竞赛分数,请设计一个将竞赛成绩优秀的同学的平均分输出的程序(规定89分以上为优秀).解析:程序如下:14.意大利数学家菲波那契在1202年出版的一本书里提出了这样的一个问题:一对兔子饲养到第二个月进入成年,第三个月生一对小兔,以后每个月生一对小兔,所生小兔能全部存活并且也是第二个月成年,第三个月生一对小兔,以后每月生一对小兔.问这样下去到年底应有多少对兔子?试画出解决此问题的程序框图,并编写相应的程序.解析:由题意可知,第一个月有一对小兔,第二个月有一对成年兔子,第三个月有两对兔子,从第三个月开始,每个月的兔子对数是前面两个月兔子对数的和.设第N个月有F 对兔子,第N-1个月有S对兔子,第N-2个月有Q对兔子,则F=S+Q.第N+1个月时,式中变量S的新值应变为第N个月兔子的对数(F的旧值),变量Q的新值应变为第N-1个月兔子的对数(S的旧值),这样,用S+Q求出变量F的新值就是第N+1个月兔子的对数,以此类推,可以得到一列数,这列数的第12项就是年底应有兔子的对数.我们可以先确定前两个月的兔子对数均为1,以此为基准,构造—个循环结构,让表示“第x个月”的i从3逐次增加1,一直变化到12,最后一次循环得到的F就是所求结果.程序框图如图所示.程序如下:。
高中数学(人教版A版必修三)配套课时作业:第一章 算法初步 1.1.2第3课时 Word版含答案
1.1.2程序框图与算法的基本逻辑结构第3课时循环结构、程序框图的画法课时目标1.掌握两种循环结构的程序框图的画法.2.能进行两种循环结构程序框图间的转化.3.能正确设置程序框图,解决实际问题.1.循环结构的定义在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构,反复执行的步骤称为循环体.一、选择题1.在循环结构中,每次执行循环体前对控制循环的条件进行判断,当条件满足时执行循环体,不满足则停止,这样的循环结构是()A.分支型循环B.直到型循环C.条件型循环D.当型循环答案 D2.下列关于循环结构的说法正确的是()A.循环结构中,判断框内的条件是唯一的B.判断框中的条件成立时,要结束循环向下执行C.循环体中要对判断框中的条件变量有所改变才会使循环结构不会出现“死循环”D.循环结构就是无限循环的结构,执行程序时会永无止境地运行下去答案 C解析由于判断框内的条件不唯一故A错;由于当型循环结构中,判断框中的条件成立时,执行循环体故B错;由于循环结构不是无限循环的,故C正确,D错.3.如图所示是一个循环结构的算法,下列说法不正确的是()A.①是循环变量初始化,循环就要开始B.②为循环体C.③是判断是否继续循环的终止条件D.①可以省略不写答案 D4.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4? B.k>5?C.k>6? D.k>7?答案 A解析由题意k=1时S=1,当k=2时,S=2×1+2=4;当k=3时,S=2×4+3=11,当k=4时,S=2×11+4=26,当k=5时,S=2×26+5=57,此时与输出结果一致,所以此时的k值为k>4.5.如果执行下面的程序框图,输入n=6,m=4,那么输出的p等于()A.720 B.360C.240 D.120答案 B解析①k=1,p=3;②k=2,p=12;③k=3,p=60;④k=4,p=360.而k=4时不符合条件,终止循环输出p=360.6.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A.S=S*(n+1) B.S=S*x n+1C.S=S*n D.S=S*x n答案 D解析赋值框内应为累乘积,累乘积=前面项累乘积×第n项,即S=S*x n,故选D.二、填空题7.下图的程序框图输出的结果是________.答案 20解析 当a =5时,S =1×5=5;a =4时,S =5×4=20; 此时程序结束,故输出S =20.8.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n 位居民的月均用水量分别为x 1,…,x n (单位:吨).根据如图所示的程序框图,若n =2,且x 1,x 2分别为1,2,则输出的结果S 为________.答案 14解析 当i =1时,S 1=1,S 2=1;当i =2时,S 1=1+2=3,S 2=1+22=5, 此时S =12(5-12×9)=14.i 的值变成3,从循环体中跳出输出S 的值为14.9.按下列程序框图来计算:如果x =5,应该运算________次才停止. 答案 4解析 x n +1=3x n -2,x 1=5,x 2=13,x 3=37,x 4=109,x 5=325>200,所以运行4次. 三、解答题10.画出计算1+12+13+…+1999的值的一个程序框图.解 由题意知:①所有相加数的分子均为1. ②相加数的分母有规律递增.解答本题可使用循环结构,引入累加变量S 和计数变量i ,S =S +1i ,i =i +1,两个式子是反复执行的部分,构成循环体.11.求使1+2+3+4+5+…+n>100成立的最小自然数n的值,画出程序框图.解设累加变量为S,程序框图如图.能力提升12.某班共有学生50人,在一次数学测试中,要搜索出测试中及格(60分以上)的成绩,试设计一个算法,并画出程序框图.解算法步骤如下:第一步,把计数变量n的初始值设为1.第二步,输入一个成绩r,比较r与60的大小.若r≥60,则输出r,然后执行下一步;若r<60,则执行下一步.第三步,使计数变量n的值增加1.第四步,判断计数变量n与学生个数50的大小,若n≤50,返回第二步,若n大于50,则结束.程序框图如图.1.循环结构需要重复执行同一操作的结构称为循环结构,即从某处开始,按照一定条件反复执行某一处理步骤.反复执行的处理步骤称为循环体.(1)循环结构中一定包含条件结构;(2)在循环结构中,通常都有一个起循环计数作用的变量,这个变量的取值一般都含在执行或中止循环体的条件中.2.三种基本结构的共同特点(1)只有一个入口.(2)只有一个出口,请注意一个菱形判断框有两个出口,而一个条件结构只有一个出口,不要将菱形框的出口和条件结构的出口混为一谈.(3)结构内的每一部分都有机会被执行到,也就是说对每一个框来说都应当有一条从入口到出口的路径通过它.如图1中的A,没有一条从入口到出口的路径通过它,就是不符合要求的程序框图.(4)结构内不存在死循环,即无终止的循环.像图2就是一个死循环.在程序框图中是不允许有死循环出现的.。
2021高中数学必修3人教A版作业:1.1.2 第1课时 程序框图与顺序结构、条件结构含解析
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.下列是流程图中的一部分,表示恰当的是()解析:B选项应该用处理框而非输入、输出框,C选项应该用输入、输出框而不是处理框,D选项应该在出口处标明“是”和“否”.故选A.答案: A2.下列函数的求值程序框图中需要用到条件结构的是()A.f(x)=x2-1 B.f(x)=2x+1C.f(x)={x2+1,x>0,x2-1,x<0D.f(x)=2x解析:分段函数求值需用到条件结构.答案: C3.阅读如图所示的程序框图,若输入的a,b,c的值分别是21,32,75,则输出的a,b,c 分别是()A.75,21,32 B.21,32,75C.32,21,75 D.75,32,21解析:输入21,32,75后,该程序框图的执行过程是:输入21,32,75,x=21.a=75.c=32.b=21.输出75,21,32.故选A.答案: A4.如图是计算函数y={ln(-x),x≤-2,0,-2<x≤3,2x,x>3的值的程序框图,在①②③处应分别填入的是()A.①y=ln(-x),②y=0,③y=2xB.①y=ln(-x),②y=2x,③y=0C.①y=0,②y=2x,③y=ln(-x)D.①y=0,②y=ln(-x),③y=2x解析:①处应填入自变量x≤-2时的解析式,②处应填入自变量x>3时的解析式,③处应填入自变量-2<x≤3时的解析式,故选B.答案: B二、填空题(每小题5分,共15分)5.下列关于算法框图的说法正确的是________.①算法框图只有一个入口,也只有一个出口;②算法框图中的每一部分都应有一条从入口到出口的路径通过它;③算法框图虽可以描述算法,但不如用自然语言描述算法直观.解析:由算法框图的要求知①②正确;由算法框图的优点知③不正确.答案:①②6.执行如图所示的程序框图,若输入x=10,输出y=4,则在图中“!”处可填入的语句是________(填序号).①x=x-1;②x=x-2;③x=x-3;④x=x-4.解析:将①②③④逐一填入“!”处,运行程序后,输出的结果分别是2,4,4,4,所以符合题意的有②③④.答案:②③④7.执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为________.解析:利用程序框图表示的算法逐步求解.当a=1,b=2时,a>8不成立,执行a=a+b后a的值为3,当a=3,b=2时,a>8不成立,执行a=a+b后a的值为5,当a=5,b=2时,a>8不成立,执行a=a+b后a的值为7,当a=7,b=2时,a>8不成立,执行a=a+b后a的值为9,由于9>8成立,故输出a 的值为9.答案:9三、解答题(每小题10分,共20分)8.已知两个单元分别存放了变量x和y,试交换两个变量的值,并输出x和y,请写出算法并画出程序框图.解析:算法如下.第一步,输入x,y.第二步,把x的值赋给p.第三步,把y的值赋给x.第四步,把p的值赋给y.第五步,输出x,y.程序框图如下.9.如图,是判断“美数”的程序框图,在[30,40]内的所有整数中“美数”的个数是多少?解析:由程序框图知美数是满足:能被3整除不能被6整除或能被12整除的数,在[30,40]内的所有整数中,所有的能被3整除的数有30,33,36,39,共有4个数,在这四个数中能被12整除的有36,在这四个数中不能被6整除的有33,39,所以在[30,40]内的所有整数中“美数”的个数是3个.。
人教A版高中数学必修三导练课时作业:1.1.2 第一课时 程序框图与算法的顺序结构、条件结构
1.1.2 程序框图与算法的基本逻辑结构第一课时程序框图与算法的顺序结构、条件结构选题明细表知识点、方法题号程序框图1,2顺序结构4,6,7条件结构3,5,8,9,10,11基础巩固1.对程序框叙述正确的是( C )(A)表示一个算法的起始和结束,程序框是(B)表示一个算法输入和输出的信息,程序框是(C)表示一个算法的起始和结束,程序框是(D)表示一个算法输入和输出的信息,程序框是解析:由程序框的算法功能可知,选C.2.下列关于程序框图的说法正确的是( D )①程序框图只有一个入口,也只有一个出口;②程序框图中的每一部分都应有一条从入口到出口的路径通过它;③流程线只要是上下方向就表示上下执行,可以不要箭头.(A)①②③(B)②③(C)①③(D)①②解析:根据程序框图的含义,①②正确;流程线也可以左右方向,必须有箭头,③错.故选D.3.(2019·湖北武汉调研)如果输入的t∈[-2,2],则输出的S属于( A )(A)[-4,2] (B)[-2,2](C)[-2,4] (D)[-4,0]解析:由题知,当t∈[-2,0)时,S=2t∈[-4,0),当t∈[0,2]时,S=-3t+t3=t(t-)(t+)∈[-2,2],综上S∈[-4,2],故选A.4.(2018·陕西延安中学期末)阅读如图所示的程序框图,若输入的a,b,c的值分别是21,32,75,则输出的a,b,c分别是( A )(A)75,21,32 (B)21,32,75(C)32,21,75 (D)75,32,21解析:由图知输入a=21,b=32,c=75后,x=21,a=75,c=32,b=21,故选A.5.某班有49位同学玩“数字接龙”游戏,具体规则按如图所示的程序框图执行(其中a为座位号),并以输出的值作为下一轮输入的值.若第一次输入的值为8,则第三次输出的值为( A )(A)8 (B)15 (C)20 (D)36解析:输入a=8后,则输出a=2×8-1=15;输入a=15,则输出a=2×15-1=29;输入a=29,不满足条件,a=29-25=4,a=2×4=8,输出a=8,故第三次输出的值为8,故选A.6.(2018·河北衡水高三模拟)古代著名数学典籍《九章算术》在“商功”篇章中有这样的描述:“今有圆亭,下周三丈,上周二丈,问积几何?”其中“圆亭”指的是正圆台体形建筑物.算法为:“上下底面周长相乘,加上底面周长自乘、下底面周长自乘的和,再乘以高,最后除以36.”可以用程序框图写出它的算法,如图,今有圆亭上底面周长为6,下底面周长为12,高为3,则它的体积为( D )(A)32 (B)29 (C)27 (D)21解析:由题意可得a=6,b=12,h=3,可得A=3×(6×6+12×12+6×12)=756,V==21.故程序输出V的值为21.故选D.7.已知一个直角三角形的两条直角边长分别为a,b,求该直角三角形内切圆的面积.试设计求解该问题的算法,并画出程序框图.解:算法步骤如下:第一步,输入a,b.第二步,计算c=.第三步,计算r=(a+b-c).第四步,计算S=πr2.第五步,输出面积S.相应程序框图如图.能力提升8.(2019·四川省雅安中学月考)根据下面的流程图操作,使得当成绩不低于60分时,输出“及格”,当成绩低于60分时,输出“不及格”,则( A )(A)1框中填“是”,2框中填“否”(B)1框中填“否”,2框中填“是”(C)1框中填“是”,2框中可以不填(D)2框中填“否”,1框中可以不填解析:模拟程序的运行,由题意可得当成绩不低于60分时,即满足判断框内的条件时,应该执行输出“及格”,故框1中填是;当成绩低于60分时,即不满足判断框内的条件时,输出“不及格”,则框2中填否.故选A.9.(2019·陕西省黄陵中学高三月考)设a=log23,b=ln 3,执行如图所示的程序框图,则输出的S的值为( C )(A)9+ln 3 (B)3-ln 3(C)11 (D)1解析:将a=log23,b=ln 3输入,a=log23=>ln 3,即a>b,故S=+=9+2=11,故选C.10.画出解关于x的不等式ax+b<0(a,b∈R)的程序框图.解:程序框图如图.探究创新11.设计算法判断一元二次方程ax2+bx+c=0是否有实数根,并画出相应的程序框图.解:算法步骤如下:第一步,输入一元二次方程的系数a,b,c.第二步,计算Δ=b2-4ac.第三步,判断Δ≥0是否成立.若Δ≥0成立,输出“方程有实根”;否则输出“方程无实根”.结束算法.相应的程序框图如图.由Ruize收集整理。
人教课标A高中数学必修三课后作业2程序框图顺序结构 含解析
课后作业(二)(时间45分钟)学业水平合格练(时间25分钟)1.在程序框图中,一个算法步骤到另一个算法步骤的连接用()A.连接点B.判断框C.流程线D.处理框[解析]流程线的意义是流程进行的方向,一个算法步骤到另一个算法步骤表示的是流程进行的方向,而连接点是当一个框图需要分开来画时,在断开处画上连接点.判断框是根据给定条件进行判断,处理框是赋值、计算、数据处理、结果传送,所以A,B,D都不对.故选C.[答案] C2.a表示“处理框”,b表示“输入、输出框”,c表示“起止框”,d表示“判断框”,以下四个图形依次为()A.abcd B.dcab C.bacd D.cbad[答案] D3.如果输入n=2,那么执行如下算法的结果是()第一步,输入n.第二步,n=n+1.第三步,n=n+2.第四步,输出n.A.输出3 B.输出4C.输出5 D.程序出错4.如图所示的程序框图表示的算法意义是( ) A .边长为3,4,5的直角三角形的面积 B .边长为3,4,5的直角三角形内切圆的面积 C .边长为3,4,5的直角三角形外接圆的面积 D .以3,4,5为弦的圆的面积[解析] 由直角三角形内切圆半径r =a +b -c2,知选B. [答案] B5.给出如图所示的程序框图:若输出的结果为2,则①处的执行框内应填的是( ) A .x =2 B .b =2 C .x =1D .a =5[解析] ∵b =2,∴2=a -3,即a =5.∴2x +3=5时,得x =1.6.根据下边的程序框图所表示的算法,输出的结果是________.[解析]该算法的第1步分别将X,Y,Z赋于1,2,3三个数,第2步使X取Y的值,即X取值变成2,第3步使Y取X的值,即Y的值也是2,第4步让Z取Y的值,即Z取值也是2,从而第5步输出时,Z的值是2.[答案] 27.写出如图所示程序框图的运行结果是________.[解析]S=log24+42=18.[答案]188.如图,输出的结果是____________.[解析]在第一个处理框中得到的是m=2,在第二个处理框中计算p=m+5,即p=2+5=7,在第三个处理框中计算m=p+5,即m=7+5=12,故输出m的值为12.[答案]129.已知一个直角三角形的两条直角边长分别为a,b,设计一个算法,求该三角形的面积,并画出相应的程序框图.[解]算法如下:第一步,输入两直角边的长a,b.第二步,计算S=12ab.第三步,输出S.程序框图如图.10.已知x=10,y=2,画出计算w=5x+8y的值的程序框图.[解]算法如下:第一步,令x=10,y=2.第二步,计算w=5x+8y.第三步,输出w的值.其程序框图如图所示.应试能力等级练(时间20分钟)11.如图是一个算法的程序框图,已知a1=3,输出的b=7,则a2等于()A.9 B.10C.11 D.12[解析] 由题意知该算法是计算a 1+a 22的值. ∴3+a 22=7,得a 2=11,故选C. [答案] C12.阅读如图所示的程序框图,若输出的结果为6,则①处执行框应填的是( )A .x =1B .x =2C .b =1D .b =2[解析] 若b =6,则a =7,∴x 3-1=7,∴x =2. [答案] B13.程序框图如图所示.则该程序框图的功能是_____________.[解析] 输入x 与y 的值,把x 的值赋于m ,则m 为x 的取值;把y 的值赋于x ,则x 为y 的取值;再把m 的值赋于y ,则完成x 与y 取值的交换.[答案] 交换两个变量x ,y 的值14.如图所示,图①是计算图②中空白部分面积的一个框图,则“?”处应填________.① ②[解析] 由题图②知S 阴影=2⎣⎢⎡⎦⎥⎤a 2-π×⎝ ⎛⎭⎪⎫a 22=2a 2-πa 22,所以S 空白=a 2-S 阴影=a 2-2a 2+πa 22 =π2a 2-a 2.故“?”处应填S =π2a 2-a 2.[答案] S =π2a 2-a 215.如图所示的程序框图,根据该图和下列各小题的条件回答下面问题.(1)该程序框图解决的是一个什么问题?(2)当输入的x 的值为0和4时,输出的值相等,问当输入的x 的值为3时,输出的值为多大?(3)在(2)的条件下要想使输出的值最大,输入的x 的值应为多大? [解] (1)该程序框图解决的是求二次函数f (x )=-x 2+mx 的函数值的问题.(2)当输入的x 的值为0和4时,输出的值相等, 即f (0)=f (4).因为f (0)=0,f (4)=-16+4m , 所以-16+4m =0,所以m =4,所以f (x )=-x 2+4x . 则f (3)=-32+4×3=3,所以当输入的x 的值为3时,输出的f (x )值为3. (3)因为f (x )=-x 2+4x =-(x -2)2+4,当x=2时,f(x)最大值=4,所以要想使输出的值最大,输入的x的值应为2.。
高二数学1.1.2第1课时程序框图、顺序结构课时作业新人教A版必修3
1.1.2 程序框图与算法的基本逻辑结构第1课时程序框图、顺序结构1.程序框图(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.(2)在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.2.常见的程序框、流程线及各自表示的功能图形符号名称功能终端框(起止框)表示一个算法的起始和结束输入、输出框表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框○连接点连接程序框图的两部分3.顺序结构(1)顺序结构的定义由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.(2)结构形式一、选择题1.下列关于程序框图的说法正确的是( )A.程序框图是描述算法的语言B.程序框图中可以没有输出框,但必须要有输入框给变量赋值C.程序框图虽可以描述算法,但不如用自然语言描述算法直观D.程序框图和流程图不是一个概念答案 A2.尽管算法千差万别,但程序框图按其逻辑结构分类共有( )A.2类 B.3类 C.4类 D.5类答案 B3.对终端框叙述正确的是( )A.表示一个算法的起始和结束,程序框是B.表示一个算法输入和输出的信息,程序框是C.表示一个算法的起始和结束,程序框是D.表示一个算法输入和输出的信息,程序框是答案 C4.下列程序框图所对应的算法和指向线分别为( )A.5步,5条 B.5步,4条C.3步,5条 D.3步,4条答案 D5.下列关于流程线的说法,不正确的是( )A.流程线表示算法步骤执行的顺序,用来连接程序框B.流程线只要是上下方向就表示自上向下执行可以不要箭头C.流程线无论什么方向,总要按箭头的指向执行D.流程线是带有箭头的线,它可以画成折线答案 B6.给出下列程序框图:若输出的结果为2,则①处的执行框内应填的是( )A.x=2 B.b=2 C.x=1 D.a=5答案 C解析因结果是b=2,∴2=a-3,即a=5.当2x+3=5时,得x=1.二、填空题7.以下给出对程序框图的几种说法:①任何一个程序框图都必须有起止框;②输入框只能紧接开始框,输出框只能紧接结束框;③判断框是唯一具有超出一个退出点的符号;④对于一个问题的算法来说,其程序框图判断框内的条件的表述方法是唯一的.其中正确说法的个数是________个.答案 2解析①③正确.因为任何一个程序框图都有起止框;输入、输出框可以在程序框图中的任何需要位置;判断框有一个入口、多个出口;判断框内的条件的表述方法不唯一.8.下面程序框图表示的算法的运行结果是________.答案6 6解析由题意P=5+6+72=9,S=9×4×3×2=63=6 6.9.根据下边的程序框图所表示的算法,输出的结果是______.答案 2解析该算法的第1步分别将X,Y,Z赋于1,2,3三个数,第2步使X取Y的值,即X 取值变成2,第3步使Y取X的值,即Y的值也是2,第4步让Z取Y的值,即Z取值也是2,从而第5步输出时,Z的值是 2.三、解答题10.已知半径为r的圆的周长公式为C=2πr,当r=10时,写出计算圆的周长的一个算法,并画出程序框图.解算法如下:第一步,令r=10.第二步,计算C=2πr,第三步,输出C.程序框图如图:11.已知函数y=2x+3,设计一个算法,若给出函数图象上任一点的横坐标x(由键盘输入),求该点到坐标原点的距离,并画出程序框图.解算法如下:第一步,输入横坐标的值x.第二步,计算y=2x+3.第三步,计算d=x2+y2.第四步,输出d.程序框图如图:能力提升12.画出用现代汉语词典查阅“仕”字的程序框图.解现代汉语词典检字有多种方法,如部首检字法、拼音检字法等.现以部首检字法为例加以说明.13.如图所示的程序框图,当输入的x的值为0和4时,输出的值相等,根据该图和下列各小题的条件回答下面的几个问题.(1)该程序框图解决的是一个什么问题?(2)当输入的x的值为3时,输出的f(x)的值为多大?(3)要想使输出的值最大,输入的x的值应为多大?(4)按照这个程序框图输出的f(x)值,当x的值大于2时,x值大的输出的f(x)值反而小,为什么?(5)要想使输出的值等于3,输入的x的值应为多大?(6)要想使输入的值与输出的值相等,输入的x的值应为多大?解(1)该程序框图解决的是求二次函数f(x)=-x2+mx的函数值的问题.(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0,所以m=4.所以f(x)=-x2+4x.因为f(3)=-32+4×3=3,所以当输入的x的值为3时,输出的f(x)的值为 3.(3)因为f(x)=-x2+4x=-(x-2)2+4,当x=2时,f(x)max=4,所以要想使输出的值最大,输入的x的值应为 2.(4)因为f(x)=-(x-2)2+4,所以函数f(x)在[2,+∞)上是减函数.所以在[2,+∞)上,x值大的对应的函数值反而小,从而当输入的x的值大于2时,x值大的输出的f(x)值反而小.(5)令f(x)=-x2+4x=3,解得x=1或x=3,所以要想使输出的值等于3,输入的x的值应为1或3.(6)由f(x)=x,即-x2+4x=x,得x=0或x=3,所以要想使输入的值和输出的值相等,输入的x的值应为0或3.。
人教版数学高二A版必修3作业 第1课时 程序框图、顺序结构
第一章 1.1 1.1.2第1课时A级基础巩固一、选择题1.任何一种算法都离不开的基本结构为导学号 4569203(D)A.逻辑结构B.条件结构C.循环结构D.顺序结构[解析]任何一种算法都离不开顺序结构.2.在程序框图中,算法中间要处理数据或计算,可分别写在不同的导学号 4569203 (A)A.处理框内B.判断框内C.输入、输出框内D.终端框内[解析]由处理框的意义可知,对变量进行赋值,执行计算语句,处理数据,结果的传送都可以放在处理框内,∴选A.3.如图所示程序框图中,其中不含有的程序框是导学号 4569203(C)A.终端框B.输入、输出框C.判断框D.处理框[解析]含有终端框,输入、输出框和处理框,不含有判断框.4.阅读下列程序框图:若输出结果为15,则①处的执行框内应填的是导学号 4569203( C ) A .x =-3 B .b =10 C .x =3D .a =32[解析] 先确定①处的执行框是给x 赋值,然后倒着推,b =15时,2a -3=15,a =9,当a =9时,2x +1=9,x =3,故选C .二、填空题5.如图中算法的功能是(a >0,b >0)__求以a 、b 为直角边的直角三角形斜边c 的长__.导学号 4569203[解析] 由d =a 2+b 2知,是求两数的平方和,而c =d ,故该算法的功能是求以a 、b 为直角边的直角三角形斜边c 的长.6.如图,输出的结果是__12__.导学号 4569203[解析]在第一个处理框中得到的是m=2,在第二个处理框中计算p=m+5,即p=2+5=7,在第三个处理框中计算m=p+5,即m=7+5=12,故输出m的值为12.三、解答题7.已知x=10,y=2,画出计算w=5x+8y值的程序框图.导学号 4569203[解析]算法如下:第一步,令x=10,y=2.第二步,计算w=5x+8y.第三步,输出w的值.其程序框图如图所示:8.已知一个圆柱的底面半径为R,高为h,求圆柱的体积.设计解决该问题的一个算法,并画出相应的程序框图.导学号 4569203[解析]算法如下:第一步,输入R,h,第二步,计算V=πR2h.第三步,输出V.程序框图如图所示:B级素养提升一、选择题1.如图所示的程序框图中,要想使输入的值与输出的值相等,输入的a值应为导学号 4569203(D)A.1 B.3C.1或3 D.0或3[解析]本题实质是解方程a=-a2+4a,解得a=0或a=3.2.阅读如图所示的程序框图,若输入的a、b、c的值分别是21、32、75,则输出的a、b、c分别是导学号 4569203(A)A.75,21,32 B.21,32,75C .32,21,75D .75,32,21[解析] 输入21,32,75后,该程序框图的执行过程是: 输入21,32,75.x =21.a =75.c =32.b =21. 输出75,21,32. 二、填空题3.如图所示的程序框图,输出的结果是S =7,则输入的A 值为__3__.导学号 4569203[解析] 该程序框图的功能是输入A ,计算2A +1的值.由2A +1=7,解得A =3. 4.图1是计算图2中阴影部分面积的一个程序框图,则图1中①处应填__S =4-π4a 2__.导学号 4569203[解析] 图2中,正方形的面积为S 1=a 2,扇形的面积为S 2=14πa 2,则阴影部分的面积为S =S 1-S 2=a 2-π4a 2=4-π4a 2.因此图1中①处应填入S =4-π4a 2. 三、解答题5.已知两个单元分别存放了变量x 和y ,试变换两个变量的值,并输出x 和y ,请写出算法并画出程序框图.导学号 4569203[解析] 算法如下: 第一步,输入x ,y .第二步,把x的值赋给p.第三步,把y的值域给x.第四步,把p的值赋给y.第五步,输出x,y.程序框图如下:C级能力拔高1.已知一个直角三角形的两条直角边长为a、b,斜边长为c,写出它的外接圆和内切圆面积的算法,并画出程序框图.导学号 4569203[解析]算法步骤如下:第一步,输入a,b.第二步,计算c=a2+b2.第三步,计算r=12(a+b+c),R=c2.第四步,计算内切圆面积S1=πr2,外接圆面积S2=πR2. 第五步,输出S1、S2,结束.程序框图如图.2.已知f(x)=x2-2x-3,求f(3),f(-5),f(5),并计算f(3)+f(-5)+f(5)的值.设计出解决该问题的一个算法,并画出程框图.导学号 4569203[解析]算法如下:第一步,令x=3.第二步,把x=3代入y1=x2-2x-3.第三步,令x=-5.第四步,把x=-5代入y2=x2-2x-3.第五步,令x=5.第六步,把x=5代入y3=x2-2x-3.第七步,把y1,y2,y3的值代入y=y1+y2+y3.第八步,输出y1,y2,y3,y的值.该算法对应的程序框图如图所示:。
高中数学人教A版必修三1.1.2《程序框图与算法基本逻辑结构-程序框图、顺序结构》教案设计
《程序框图、顺序结构》教学设计一、课标分析:按课标要求,通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.在具体问题的解决过程中,理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.二、教材分析:《程序框图、顺序结构》是人教版高中数学必修3第一章《算法初步》第一节《算法与程序框图》的内容,本节设计为4课时,今天所授内容为第一课时.本节内容是在学生学习了算法的概念的基础上进行的,算法通常可以编成计算机程序,让计算机执行并解决问题.这对高中学习算法提出了要求,也决定了高中算法学习的范围,即不仅掌握算法的概念,认识算法基本逻辑结构,还必须学习计算机能执行的算法程序,能用程序表达算法.三、学情分析:从知识结构上来说,学生在本章第一节已经了解了一些算法的基本思想,这是本节课的重要知识基础;从能力上来说,这个阶段的学生已经具有一定的分析问题、解决问题的能力,逻辑思维能力也初步形成,思维比较活跃但缺乏严谨性.因此,在设计教学中不仅要充分调动学生的学习积极性,更要注意培养学生严谨的数学思维.四、教学目标:1.知识与技能目标:(1)了解程序框图的概念,掌握各种图形符号的功能.(2)了解顺序结构的概念,能用程序框图表示顺序结构.2.过程与方法目标:(1)通过学习程序框图的各个符号的功能,培养学生对图形符号语言和数学文字语言的转化能力.(2)学生通过设计程序框图表达解决问题的过程,在解决具体问题的过程中理解程序框图的结构.3.情感、态度与价值观目标:学生通过动手,用程序框图表示算法,进一步体会算法的基本思想,体会程序框图表达算法的准确与简洁,培养学生的数学表达能力和逻辑思维能力.五、教学重点和难点:重点:各种图形符号的功能以及用程序框图表示顺序结构.难点:对顺序结构的概念的理解,用程序框图表示顺序结构.六、教学方法:合作探究、螺旋推进、激趣实验、多媒体课件教学.七、教学流程:顺序结构是由若干个依次执行的步骤组成的;这是任何一个算法都离不开的一种基本算法结构.用程序框图表示算法时,算法的逻辑结构展现得非常清楚,即顺序结构、条件结构和循环结构.并引出本节课的第三个内容:顺序结构.习例讲解例2.已知一个三角形的三边长分别为a, b, c,利用海伦-秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示.解析:算法步骤:第一步,输入三角形三边长a,b,c;第二步,计算;第三步,计算;第四步,输出S.程序框图:学生在学习了顺序结构的基础,教师通过此例题演示将用自然语言描述的算法改写成程序框图的过程,让学生感受简单程序框图画法,并通过练习进行模仿.a b cp2++=s p(p-a)(p-b)(p-c)=练习2.任意给定一个正实数,设计一个算法求以这个数为半径的圆面积,并画出程序框图表示.激趣探究趣味实验:有一杯饮料A和一杯清水B,如何快速交换两杯中的液体呢?具体的操作步骤是怎样的?教师提前隐藏了空杯X,教师让学生先行回答,可能学生的回答不着边际或者学生不知所措,然后教师拿出空杯开始实验演示.实验的引入,为例3的讲解作铺垫;同时,也引导学生用发散的思维看待问题.合作讨论例3.已知两个变量A和B的值,试设计一个交换这两个变量的值的算法,并画出程序框图.学生活动:让学生结合实验结论,四人为一小组,讨论例3,先讨论出来的小组派代表上黑板展示小组成果,即具体的算法步骤和程序框图,教师进行点评.算法步骤:第一步,输入A、B;第二步,令X=A;第三步,令A=B;第四步,令B=X;第五步,输出A、B.程序框图:通过兴趣实验,学生将抽象的数学思维变得直观形象,使本节课达到高潮;也使学生在探究问题的过程中,亲身经历解决问题的全过程,提高学生独立分析问题、解决问题的能力.练习3.写出下列算法的功能:(1)图(1)中算法的功能(a>0,b>0)______; (2)图(2)中算法的功能是____________.练习3的选取是为了培养学生的识图能力.归结总结让学生谈收获做总结,最后由教师做补充完善.一、程序框图及基本图形符号;二、三种逻辑结构及顺序结构;三、程序框图的画法.通过总结加深学生对程序框图和顺序结构的理解,提高学生交流讨论,总结的能力.布置作业1.书面作业:(1)已知摄氏温度C与华氏温度F之间的关系为F=1.8C+32.设计一个由摄氏温度求华氏温度的算法,并画出相应的程序框图.(2)已知变量A、B、C的值,试设计一个算法程序框图,使得A为B的值,B为C的值,C为A的值.(3)课本P20,B组1题.作业题目的选取与课堂例题联系紧密,且分层作业使得不同层次的学生得到不同程度的提高和发展.八、板书设计:九、教学预想:本节课采用的是情景导入式教学,从生活实际出发,开展对新知识的探索.这样的教学模式对学生的参与度要求较高,因此在教学设计中我要求学生在学习了程序框图概念、各种图形符号的名称和功能及三种逻辑结构后,结合上一节课用语言文字表示算法的基础上,自己动手画简单的顺序结构的程序框图,激发了学生学习的积极性.通过兴趣实验,学生将抽象的数学思维变得直观形象,使本节课达到高潮.本节课学生在探究问题的过程中,亲身经历解决问题的全过程,提高学生独立分析问题、解决问题的能力.设计整节课放手给学生,让他们交流讨论发言,很好地调动了学生学习的主动性,激发了学习的积极性,这也充分体现了新课标“以学生为主体”的思想.。
高中数学人教A版必修3第一章 1.1 1.1.2 第一课时 程序框图、顺序结构课件
[答案] (1)D (2)A
程序框图的理解 框图符合标准化,框内语言简练化,框间流程方向 化.从上到下,从左到右,勿颠倒.起止框不可少,判断 框一口进,两口出.顺序结构处处有.
[活学活用] 在程序框图中,表示判断框的图形符号的是
()
解析:选 C 四个选项中的程序框依次为处理框,输入、输 出框,判断框和起止框.
()
解析:选 B 由处理框的定义知选 B. 3.在程序框图中,算法中间要处理数据或计算,可以分别
写在不同的
()
A.处理框内
B.判断框内
C.输入、输出框内
D.起、止框内
解析:选 A 处理框表示的意义为赋值、执行计算语句、
结果的传送,故选 A,其他选项皆不正确.
4.阅读如图所示的程序框图,输入 a1=3,a2=4,则输出的结
用顺序结构表示算法
[典例] 求底面边长为 4,侧棱长为 5 的正四棱锥的侧面
积及体积,为该问题设计算法,并画出程序框图. [解] 算法一:第一步,a=4,c=5.
第二步,计算
R=
2 2 a.
第三步,计算 h= c2-R2,S1=a2.
第四步,计算 V=13S1h.
第五步,计算 h′=
c2-a42.
(1)框图①中 x=4 的含义是什么? (2)框图②中 y1=x3+2x+3 的含义是什么? (3)框图④中 y2=x3+2x+3 的含义是什么? [解] (1)框图①的含义是初始化变量,令 x=4. (2)框图②中 y1=x3+2x+3 的含义:该框图是在执行① 的前提下,即当 x=4 时,计算 x3+2x+3 的值,并令 y1 等 于这个值. (3)框图④中 y2=x3+2x+3 的含义:该图框是在执行③ 的前提下,即当 x=-2 时,计算 x3+2x+3 的值,并令 y2 等于这个值.
人教A版高中数学必修三课时作业第二课时程序框图与算法的循环结构
第二课时程序框图与算法的循环结构选题明细表知识点、方法题号循环结构的识别与解读1,2,3,4,6,7,8,9,10,11 循环结构的应用 5基础巩固1.在如图的算法中,如果输入A=138,B=22,则输出的结果是( A )(A)2 (B)4 (C)128 (D)0解析:开始执行是,C=6,A=22,B=6;执行是,C=4,A=6,B=4;执行是,C=2,A=4,B=2;执行是,C=0,A=2,B=0,输出的A值为2.故选A.2.(2019·北京市第八十中学月考)执行如图所示的程序框图,若输入的A,S分别为0,1,则输出的S等于( D )(A)4 (B)16 (C)27 (D)36解析:A=0,S=1,k=1;A=A+k=0+1=1,S=S·A=1×1=1,k=k+2=3;A=A+k=1+3=4,S=S·A=1×4=4,k=k+2=5;A=A+k=4+5=9,S=S·A=4×9=36,k≥4成立,结束运算.故S=36.选D.3.(2019·贵州省遵义市南白中学月考)执行如图所示的程序框图,输出的k值为( C )(A)2 (B)4 (C)6 (D)8解析:由S=12,k=0,执行循环体,k=2,S=10,不满足条件S≤0,执行否,k=4,S=6;不满足条件S≤0,执行否,k=6,S=0;满足条件S≤0,退出循环,输出k的值为6,故选C.4.(2019·天津一中月考)执行如图所示的程序框图,则输出的结果是( A )(A)1 (B)2 (C)3 (D)4解析:由题意,开始S=0,n=2,循环;n=2+1=3,M==,S=log2∉Z;否,n=3+1=4,M==,S=log2∉Z;否,n=4+1=5,M==,S=log2=1∈Z,是,输出S=1,故选A.5.(2019·河北唐山模拟)已知程序框图如图所示,则该程序框图的功能是( A )(A)求1-+-+…-的值(B)求1++++…+的值(C)求1++++…+的值(D)求1-+-+…+的值解析:输入a=1,n=1,S=0;S=1,a=-1,n=3;S=1-,a=1,n=5;S=1-+,a=-1,n=7;S=1-+-,a=1,n=9,…S=1-+-…-,a=1,n=21,21>19,退出循环,输出S=1-+-+…-,故选A.6.(2019·四川省遂宁市期中)执行如图所示的程序框图,若输入x=3,则输出y的值为.解析:输入x=3,第一次循环:y=2×3+1=7,|7-3|=4,执行否,x=7;第二次循环:y=2×7+1=15,|15-7|=8>7,执行是.所以结束循环,输出y=15.答案:157.阅读如图所示的流程图,输出的结果为.解析:第一次循环S=1,i=2;第二次循环S=2,i=3;第三次循环S=6,i=4;4>3,退出循环,输出S=6.答案:6能力提升8.执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为( B )(A)7 (B)8 (C)12 (D)16解析:若输入a=1,b=2,则第一次满足条件a<6,则a=2,第二次满足条件a<6,则a=2×2=4,第三次满足条件a<6,则a=4×2=8,此时不满足条件a<6,输出a=8,故选B.9.(2018·河南安阳35中模拟)执行如图的程序框图,如果输入的m=168,n=112,则输出的k,m的值分别为( C )(A)4,7 (B)4,56(C)3,7 (D)3,56解析:执行如图所示的程序框图.输入m=168,n=112,满足m,n都是偶数,k=1,m=84,n=56,满足m,n都是偶数,k=2,m=42,n=28,满足m,n都是偶数,k=3,m=21,n=14,不满足m,n都是偶数,满足m≠n,d=|m-n|=7,m=14,n=7,满足m≠n,d=|m-n|=7,m=7,n=7,不满足m≠n,退出循环,输出k=3,m=7.故选C.10.(2019·四川省攀枝花十二中月考)如图所示,程序框图(算法流程图)的输出结果是.解析:执行程序框图,有x=1,y=1,z=2,满足条件z≤50,有x=1,y=2,z=3,满足条件z≤50,有x=2,y=3,z=5,满足条件z≤50,有x=3,y=5,z=8,满足条件z≤50,有x=5,y=8,z=13,满足条件z≤50,有x=8,y=13,z=21,满足条件z≤50,有x=13,y=21,z=34,满足条件z≤50,有x=21,y=34,z=55,不满足条件z≤50,故输出z=55.答案:55探究创新11.(2018·江西省南昌市模拟)执行如图所示的程序框图,输出S的值为( C )(A)14 (B)15 (C)24 (D)30解析:开始S=0,i=1,满足i<5,执行是,i=i+1=2,此时不满足i为奇数,执行否,S=S+2i-1=0+2=2;第二次循环,满足i<5,执行i=i+1=3,此时满足i为奇数,执行S=S+2i-1=2+5=7;第三次循环,满足i<5,执行i=i+1=4,此时不满足i为奇数,执行S=S+2i-1=7+8=15;第四次循环,满足i<5,执行i=i+1=5,此时满足i为奇数,执行S=S+2i-1=15+9=24;第五次循环,不满足i<5,跳出循环, 输出S的值为24.故选C.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业2 程序框图与算法的顺序结构、条件结构 |基础巩固|(25分钟,60分)
一、选择题(每小题5分,共25分)
1.条件结构不同于顺序结构的特征是含有( ) A .处理框 B .判断框 C .输入、输出框 D .起止框
解析:由于顺序结构中不含判断框,而条件结构中必须含有判断框,故选B.
答案:B
2.下列是流程图中的一部分,表示恰当的是( )
解析:B 选项应该用处理框而非输入、输出框,C 选项应该用输入、输出框而不是处理框,D 选项应该在出口处标明“是”和“否”.故选A.
答案:A
3.(杭州高一期中)给出以下四个问题:①输入一个数x ,输出它的绝对值;②求面积为6的正方形的周长;③求三个数a ,b ,c 中的
最大数;④求函数f (x )=⎩⎪⎨⎪⎧
3x -1,x ≤0,
x 2+1,x >0
的函数值.其中需要用条
件结构来描述算法的有( )
A .1个
B .2个
C .3个
D .4个
解析:其中①③④都需要对条件作出判断,都需要用条件结构,②用顺序结构即可.故选C.
答案:C
4.已知如图所示的程序框图,若输入的x 值为1,则输出的y 值是( )
A.1 B.3
C.2 D.-1
解析:模拟程序框图的运行过程,如下:输入x=1,y=x+1=1+1=2,输出y=2.
答案:C
5.(德州高一检测)某市的出租车收费办法如下:不超过2千米收7元(即起步价7元),超过2千米的里程每千米收2.6元,另每车次超过2千米收燃油附加费1元(不考虑其他因素).相应收费系统的程序框图如图所示,则①处应填()
A.y=7+2.6x B.y=8+2.6x
C.y=7+2.6(x-2) D.y=8+2.6(x-2)
解析:当x>2时,2千米内的收费为7元,
2千米外的收费为(x-2)×2.6,
另外燃油附加费为1元,
所以y=7+2.6(x-2)+1
=8+2.6(x-2).
答案:D
二、填空题(每小题5分,共15分)
6.下列关于算法框图的说法正确的是________.
①算法框图只有一个入口,也只有一个出口;
②算法框图中的每一部分都应有一条从入口到出口的路径通过它;
③算法框图虽可以描述算法,但不如用自然语言描述算法直观.
解析:由算法框图的要求知①②正确;由算法框图的优点知③不正确.
答案:①②
7.阅读如图所示的程序框图,写出它表示的函数是________.
解析:由程序框图知,当x >3时,y =2x -8;当x ≤3时,y =x 2,
故本题框图的功能是输入x 的值,求分段函数y =⎩⎪⎨⎪⎧
2x -8(x >3)
x 2(x ≤3)
的函
数值.
答案:y =⎩
⎪⎨⎪⎧
2x -8(x >3)
x 2(x ≤3)
8.执行如图所示的程序框图,如果输入a =1,b =2,则输出的a 的值为________.
解析:利用程序框图表示的算法逐步求解.
当a =1,b =2时,a >8不成立,执行a =a +b 后a 的值为3,当a =3,b =2时,a >8不成立,执行a =a +b 后a 的值为5,当a =5,b =2时,a >8不成立,执行a =a +b 后a 的值为7,当a =7,b =2时,a >8不成立,执行a =a +b 后a 的值为9,由于9>8成立,故输出a 的值为9.
答案:9
三、解答题(每小题10分,共20分)
9.已知半径为r 的圆的周长公式为C =2πr ,当r =10时,写出计算圆的周长的一个算法,并画出程序框图.
40分)
长沙高二检测)阅读如图程序框图,如果输出的值则输入的实数x的取值范围是(
-2,0]
根据下面的程序框图所表示的算法
步分别将X,Y,
取值变成2,第3
的值,即Z取值也是
一个笼子里装有鸡和兔共m只,
一个计算鸡和兔各有多少只的算法,并画出程序框图.
,其作用是:输入
值与输出的y值相等,求这样的
算法的功能是
的函数值,要满足题意,则需要。