全国各地2018年中考数学真题汇编整式31题

合集下载

(完整版)2018年辽宁省沈阳市中考数学试题含答案

(完整版)2018年辽宁省沈阳市中考数学试题含答案

辽宁省沈阳市2018年中考数学试卷一、选择题<每小题3分,共24分)1.<3分)<2018•沈阳)0这个数是< )A .正数B.负数C.整数D.无理数考点:有理数.分析:根据0的意义,可得答案.解答:解:A、B、0不是正数也不是负数,故A、B错误;C、是整数,故C正确;D、0是有理数,故D错误;故选:C.点评:本题考查了有理数,注意0不是正数也不是负数,0是有理数.2.<3分)<2018•沈阳)2018年端午节小长假期间,沈阳某景区接待游客约为85000人,将数据85000用科学记数法表示为< )b5E2RGbCAPA .85×103B.8.5×104C.0.85×105D.8.5×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将85000用科学记数法表示为:8.5×104.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.<3分)<2018•沈阳)某几何体的三视图如图所示,这个几何体是< )A .圆柱B.三棱柱C.长方体D.圆锥考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为长方形可得为长方体.故选C.点评:本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间的想象能力.4.<3分)<2018•沈阳)已知一组数据:1,2,6,3,3,下列说法正确的是< )A .众数是3B.中位数是6C.平均数是4D.方差是5考点:众数;算术平均数;中位数;方差.分析:利用众数、算术平均数、中位数及方差的定义分别求解后即可确定正确的选项.解答:解:A、数据3出现2次,最多,故众数为3正确;B、排序后位于中间位置的数为3,故中位数为3,故选项错误;C、平均数为3,故选项错误;D、方差为2.4,故选项错误.故选A.点评:本题考查了众数、算术平均数、中位数及方差的定义,属于基础题,比较简单.5.<3分)<2018•沈阳)一元一次不等式x﹣1≥0的解集在数轴上表示正确的是< )A .B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.分析:先求出不等式的解集,再在数轴上表示出来即可.解答:解:移项得,x≥1,故此不等式组的解集为:x≥1.在数轴上表示为:.故选A.点评:本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.6.<3分)<2018•沈阳)正方形是轴对称图形,它的对称轴有< )A .2条B.4条C.6条D.8条考点:轴对称图形.分析:正方形既是矩形,又是菱形,具有矩形和菱形的轴对称性,由此可知其对称轴.解答:解:正方形的对称轴是两对角线所在的直线,两对边中点所在的直线,对称轴共4条.故选:B.点评:本题考查了正方形的轴对称性.关键是明确正方形既具有矩形的轴对称性,又具有菱形的轴对称性.7.<3分)<2018•沈阳)下列运算正确的是< )A .<﹣x3)2=﹣x6B.x4+x4=x8C.x2•x3=x6D.xy4÷<﹣xy)=﹣y3考点:整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可作出判断;B、原式合并得到结果即可找出判断;C、原式利用同底数幂的乘法法则计算得到结果,即可找出判断;D、原式利用单项式除以单项式法则计算即可得到结果.解答:解:A、原式=x6,故选项错误;B、原式=2x4,故选项错误;C、原式=x5,故选项错误;D、原式=﹣y3,故选项正确.故选:D.点评:此题考查了整式的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.8.<3分)<2018•沈阳)如图,在△ABC中,点D在边AB上,BD=2AD,DE∥BC交AC于点E,若线段DE=5,则线段BC的长为< )p1EanqFDPwA .7.5B.10C.15D.20考点:相似三角形的判定与性质.分析:由DE∥BC,可证得△ADE∽△ABC,然后由相似三角形的对应边成比例求得答案.解答:解:∵DE∥BC,∴△ADE∽△ABC,∴=,∵BD=2AD,∴=,∵DE=5,∴=,∴DE=15.故选C.点评:此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.二、填空题<每小题4分,共32分)9.<4分)<2018•沈阳)计算:= 3 .考点:算术平方根.分析:根据算术平方根的定义计算即可.解答:解:∵32=9,∴=3.点评:本题较简单,主要考查了学生开平方的运算能力.10.<4分)<2018•沈阳)分解因式:2m2+10m= 2m<m+5).考点:因式分解-提公因式法.分析:直接提取公因式2m,进而得出答案.解答:解:2m2+10m=2m<m+5).故答案为:2m<m+5).点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.11.<4分)<2018•沈阳)如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,PM⊥l于点P,若∠1=50°,则∠2= 40 °.DXDiTa9E3d考点:平行线的性质;垂线.分析:根据两直线平行,内错角相等,即可求得∠3=∠1,根据PM⊥l 于点P,则∠MPQ=90°,即可求解.解答:解:∵直线a∥b,∴∠3=∠1=50°,又∵PM⊥l于点P,∴∠MPQ=90°,∴∠2=90°﹣∠3=90°﹣50°=40°.故答案是:40.点评:本题重点考查了平行线的性质及垂直的定义,是一道较为简单的题目.12.<4分)<2018•沈阳)化简:<1+)=.考点:分式的混合运算.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,约分即可得到结果.解答:解:原式=•=•=.故答案为:.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.13.<4分)<2018•沈阳)已知一次函数y=x+1的图象与反比例函数y=的图象相交,其中有一个交点的横坐标是2,则k的值为 6 .RTCrpUDGiT考点:反比例函数与一次函数的交点问题.分析:把x=2代入一次函数的解读式,即可求得交点坐标,然后利用待定系数法即可求得k的值.解答:解:在y=x+1中,令x=2,解得y=3,则交点坐标是:<2,3),代入y=得:k=6.故答案是:6.点评:本题考查了用待定系数法确定函数的解读式,是常用的一种解题方法.同学们要熟练掌握这种方法.14.<4分)<2018•沈阳)如图,△ABC三边的中点D,E,F组成△DEF,△DEF三边的中点M,N,P组成△MNP,将△FPM与△ECD涂成阴影.假设可以随意在△ABC中取点,那么这个点取在阴影部分的概率为.5PCzVD7HxA考点:三角形中位线定理;几何概率.分析:先设阴影部分的面积是x,得出整个图形的面积是,再根据几何概率的求法即可得出答案.解答:解:∵D、E分别是BC、AC的中点,∴DE是△ABC的中位线,∴ED∥AB,且DE=AB,∴△CDE∽△CBA,∴==,∴S△CDE=S△CBA.同理,S△FPM=S△FDE=S△CBA.∴S△FPM=+S△CDE=S△CBA.则=.故答案是:.点评:本题考查了三角形中位线定理和几何概率.几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件<A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件<A)发生的概率.15.<4分)<2018•沈阳)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元<20≤x≤30,且x为整数)出售,可卖出<30﹣x)件.若使利润最大,每件的售价应为25 元.jLBHrnAILg考点:二次函数的应用.分析:本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.解答:解:设最大利润为w元,则w=<x﹣20)<30﹣x)=﹣<x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.点评:本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.16.<4分)<2018•沈阳)如图,▱ABCD中,AB>AD,AE,BE,CM,DM分别为∠DAB,∠ABC,∠BCD,∠CDA的平分线,AE与DM相交于点F,BE与CM相交于点H,连接EM.若▱ABCD的周长为42cm,FM=3cm,EF=4cm,则EM= 5 cm,AB= 13 cm.xHAQX74J0X考点:矩形的判定与性质;勾股定理的应用;平行四边形的性质;相似三角形的应用.专题:综合题.分析:由条件易证∠AEB=∠AFD=∠DMC=90°.进而可证到四边形EFMN 是矩形及∠EFM=90°,由FM=3cm,EF=4cm可求出EM.易证△ADF≌△CBN,从而得到DF=BN;易证△AFD∽△AEB,从而得到4DF=3AF.设DF=3k,则AF=4k.AE=4<k+1),BE=3<k+1),从而有AD=5k,AB=5<k+1).由▱ABCD的周长为42cm可求出k,从而求出AB长.解答:解:∵AE为∠DAB的平分线,∴∠DAE=∠EAB=∠DAB,同理:∠ABE=∠CBE=∠ABC,∠BCM=∠DCM=∠BCD,∠CDM=∠ADM=∠ADC.∵四边形ABCD是平行四边形,∴∠DAB=∠BCD,∠ABC=∠ADC,AD=BC.∴∠DAF=∠BCN,∠ADF=∠CBN.在△ADF和△CBN中,.∴△ADF≌△CBN<ASA).∴DF=BN.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∴∠EAB+∠EBA=90°.∴∠AEB=90°.同理可得:∠AFD=∠DMC=90°.∴∠EFM=90°.∵FM=3,EF=4,∴ME==5<cm).∵∠EFM=∠FMN=∠FEN=90°.∴四边形EFMN是矩形.∴EN=FM=3.∵∠DAF=∠EAB,∠AFD=∠AEB,∴△AFD∽△AEB.∴=.∴=.∴4DF=3AF.设DF=3k,则AF=4k.∵∠AFD=90°,∴AD=5k.∵∠AEB=90°,AE=4<k+1),BE=3<k+1),∴AB=5<k+1).∵2<AB+AD)=42,∴AB+AD=21.∴5<k+1)+5k=21.∴k=1.6.∴AB=13<cm).故答案为:5、13.点评:本题考查了平行四边形的性质、平行线的性质、矩形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识,综合性较强.三、解答题<17、18各8分,19题10分,共26分)17.<8分)<2018•沈阳)先化简,再求值:{<a+b)2﹣<a﹣b)2}•a,其中a=﹣1,b=5.LDAYtRyKfE考点:整式的混合运算—化简求值.分析:先利用完全平方公式和整式的乘法计算化简,再进一步代入求得数值即可.解答:解:[<a+b)2﹣<a﹣b)2]•a =<a2+2ab+b2﹣a2+2ab﹣b2)•a =4ab•a=4a2b;当a=﹣1,b=5时,原式=4×<﹣1)2×5=20.点评:此题考查整式的混合运算与化简求值,注意先利用公式计算化简,再进一步代入求得数值即可.18.<8分)<2018•沈阳)如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别在边AD,BC上,且DE=CF,连接OE,OF.求证:OE=OF.Zzz6ZB2Ltk考点:全等三角形的判定与性质;矩形的性质.专题:证明题.分析:欲证明OE=OF,只需证得△ODE≌△OCF即可.解答:证明:如图,∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,AC=BD,OD=BD,OC=AC,∴OD=OC,∴∠ODC=∠OCD,∴∠ADC﹣∠ODC=∠BCD﹣∠OCD,即∠EDO=∠FCO,∴在△ODE与△OCF中,,∴△ODE≌△OCF<SAS),∴OE=OF.点评:本题考查了全等三角形的判定与性质,矩形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.<10分)<2018•沈阳)在一个不透明的盒子里有红球、白球、黑球各一个,它们除了颜色外其余都相同.小明从盒子里随机摸出一球,记录下颜色后放回盒子里,充分摇匀后,再随机摸出一球,并记录下颜色.请用列表法或画树状图<树形图)法求小明两次摸出的球颜色不同的概率.dvzfvkwMI1考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明两次摸出的球颜色不同的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有9种等可能的结果,小明两次摸出的球颜色不同的有6种情况,∴小明两次摸出的球颜色不同的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.四、每小题10分,共20分20.<10分)<2018•沈阳)2018年世界杯足球赛于北京时间6月 13日 2时在巴西开幕,某媒体足球栏目从参加世界杯球队中选出五支传统强队:意大利队、德国队、西班牙队、巴西队、阿根廷队,对哪支球队最有可能获得冠军进行了问卷调查.为了使调查结果有效,每位被调查者只能填写一份问卷,在问卷中必须选择这五支球队中的一队作为调查结果,这样的问卷才能成为有效问卷.从收集到的4800份有效问卷中随机抽取部分问卷进行了统计,绘制了统计图表的一部分如下:rqyn14ZNXI球队名称百分比意大利17%德国a西班牙10%巴西38%阿根廷0根据统计图表提供的信息,解答下列问题:<1)a= 30% ,b= 5% ;<2)根据以上信息,请直接在答题卡中补全条形统计图;<3)根据抽样调查结果,请你估计在提供有效问卷的这4800人中有多少人预测德国队最有可能获得冠军.考点:条形统计图;用样本估计总体.分析:<1)首先根据意大利有85人,占17%,据此即可求得总人数,则根据百分比的定义求得b的值,然后利用1减去其它各组的百分比即可求得a的值;<2)根据百分比的定义求得德国、西班牙的人数,即可解答;<3)利用总人数4800,乘以对应的百分比即可求解.解答:解:<1)总人数是:85÷17%=500<人),则b==5%,a=1﹣17%﹣10%﹣38%﹣5%=30%;<2)<3)4800×30%=1440<人).点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据.21.<10分)<2018•沈阳)某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.EmxvxOtOco考点:一元二次方程的应用.专题:增长率问题.分析:设每月获得的利润的增长率是x,然后用x分别表示出2月份和3月份,根据“3月份的利润比2月份的利润增加4.8万元”列方程求解.解答:解:设这个增长率为x.依题意得:200<1+x)2﹣20<1+x)=4.8,解得 x1=0.2,x2=﹣1.2<不合题意,舍去).0.2=20%.答:这个增长率是20%.点评:本题考查了一元二次方程的应用.此题中要求学生能够根据利润率分别用x表示出每一年的利润.能够熟练运用因式分解法解方程.五、本题10分22.<10分)<2018•沈阳)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.SixE2yXPq5<1)求证:AD=CD;<2)若AB=10,cos∠ABC=,求tan∠DBC的值.考点:圆周角定理;勾股定理;圆心角、弧、弦的关系;解直角三角形.分析:<1)由AB为直径,OD∥BC,易得OD⊥AC,然后由垂径定理证得,=,继而证得结论;<2)由AB=10,cos∠ABC=,可求得OE的长,继而求得DE,AE的长,则可求得tan∠DAE,然后由圆周角定理,证得∠DBC=∠DAE,则可求得答案.解答:<1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OD⊥AC,∴=,∴AD=CD;<2)解:∵AB=10,∴OA=OD=AB=5,∵OD∥BC,∴∠AOE=∠ABC,在Rt△AEO中,OE=OA•cos∠AOE=OA•cos∠ABC=5×=3,∴DE=OD=OE=5﹣3=2,∴AE===4,在Rt△AED中,tan∠DAE===,∵∠DBC=∠DAE,∴tan∠DBC=.点评:此题考查了圆周角定理、垂径定理以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.六、本题12分23.<12分)<2018•沈阳)如图,在平面直角坐标系中,四边形OABC的顶点O为坐标原点,点C在x轴的正半轴上,且BC⊥OC于点C,点A的坐标为<2,2),AB=4,∠B=60°,点D是线段OC上一点,且OD=4,连接AD.6ewMyirQFL<1)求证:△AOD是等边三角形;<2)求点B的坐标;<3)平行于AD的直线l从原点O出发,沿x轴正方向平移.设直线l被四边形OABC截得的线段长为m,直线l与x轴交点的横坐标为t.kavU42VRUs①当直线l与x轴的交点在线段CD上<交点不与点C,D重合)时,请直接写出m 与t的函数关系式<不必写出自变量t的取值范围)y6v3ALoS89②若m=2,请直接写出此时直线l与x轴的交点坐标.考点:一次函数综合题.分析:<1)过点A作AM⊥x轴于点M,根据已知条件,依据三角函数求得∠AOM=60°,根据勾股定理求得OA=4,即可求得.<2)过点A作AN⊥BC于点N,则四边形AMCN是矩形,在Rt△ABN中,根据三角函数求得AN、BN的值,从而求得OC、BC 的长,得出点B的坐标.<3)①如图3,因为∠B=60°,BC=4,所以PC=12,EM=m,因为OC=8,所以PO=4,OF=t,DF=t﹣m,所以PD=4+<t﹣m),根据△PDE∽△PCB即可求得m=t+2;②如图4,△OEF是等边三角形所以OF=EF=m=2,在Rt△PCF'中∠CF'P=60°,∠BPE'=∠CPF'=30°,所以BP=PE'÷si n∠B=,PC=4﹣=,根据勾股定理求得CF'=,所以OF'=8+=.解答:解:<1)如图2,证明:过点A作AM⊥x轴于点M,∵点A的坐标为<2,2),∴OM=2,AM=2∴在Rt△AOM中,tan∠AOM===∴∠AOM=60°由勾股定理得,OA===4∵OD=4,∴OA=OD,∴△AOD是等边三角形.<2)如图2,解:过点A作AN⊥BC于点N,∵BC⊥OC,AM⊥x轴,∴∠BCM=∠CMA=∠ANC=90°∴四边形ANCM为矩形,∴AN=MC,AM=NC,∵∠B=60°,AB=4,∴在Rt△ABN中,AN=AB•SinB=4×=6,BN=AB•CosB=4×=2∴AN=MC=6,CN=AM=2,∴OC=OM+MC=2+6=8,BC=BN+CN=2+2=4,∴点B的坐标为<8,4).<3)①如图3,m=t+2;②如图4,<2,0),<,0).点评:本题考查了等边三角形的性质,矩形的性质,直角三角函数的应用以及勾股定理的应用.七、本题12分24.<12分)<2018•沈阳)如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形 ABE.点F是对角线BD上一动点<点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.M2ub6vSTnP<1)求AO的长;<2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=AM;<3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.考点:四边形综合题.分析:<1)在RT△OAB中,利用勾股定理OA=求解,<2)由四边形ABCD是菱形,求出△AFM为等边三角形,∠M=∠AFM=60°,再求出∠MAC=90°,在RT△ACM中tan∠M=,求出AC.<3)求出△AEM≌△ABF,利用△AEM的面积为40求出BF,在利用勾股定理AF===,得出△AFM的周长为3.解答:解:<1)∵四边形ABCD是菱形,∴AC⊥BD,OB=OD=BD,∵BD=24,∴OB=12,在RT△OAB中,∵AB=13,∴OA===5,<2)如图2,∵四边形ABCD是菱形,∴BD垂直平分AC,∴FA=FC,∠FAC=∠FCA,由已知AF=AM,∠MAF=60°,∴△AFM为等边三角形,∴∠M=∠AFM=60°,∵点M,F,C三点在同一条直线上,∴∠FAC+∠FCA=∠AFM=60°,∴∠FAC=∠FCA=30°,∴∠MAC=∠MAF+∠FAC=60°+30°=90°,在RT△ACM中∵tan∠M=,∴tan60°=,∴AC=AM.<3)如图,连接EM,∵△ABE是等边三角形,∴AE=AB,∠EAB=60°,由<1)知△AFM为等边三角形,∴AM=AF,∠MAF=60°,∴∠EAM=∠BAF,在△AEM和△ABF中,,∴△AEM≌△ABF<SAS),∵△AEM的面积为40,△ABF的高为AO ∴BF•AO=40,BF=16,∴FO=BF﹣BO=16﹣12=4AF===,∴△AFM的周长为3.点评:本题主要考查四边形的综合题,解题的关键是灵活运用等过三角形的性质及菱形的性质.八、本题14分25.<14分)<2018•沈阳)如图1,在平面直角坐标系中,二次函数y=﹣x2+12的图象与y轴交于点A,与x轴交于B,C两点<点B在点C的左侧),连接AB,AC.0YujCfmUCw<1)点B的坐标为<﹣9,0),点C的坐标为<9,0);<2)过点C作射线CD∥AB,点M是线段AB上的动点,点P是线段AC上的动点,且始终满足BM=AP<点M不与点A,点B重合),过点M作MN∥BC分别交AC于点Q,交射线CD于点N <点 Q不与点P重合),连接PM,PN,设线段AP的长为n.eUts8ZQVRd①如图2,当n<AC时,求证:△PAM≌△NCP;②直接用含n的代数式表示线段PQ的长;③若PM的长为,当二次函数y=﹣x2+12的图象经过平移同时过点P和点N 时,请直接写出此时的二次函数表达式.sQsAEJkW5T。

中考数学试题分类汇编 整式与分式

中考数学试题分类汇编 整式与分式

中考数学试题分类汇编:整式与分式一、选择题1、实数a 、b 在数轴上的位置如图所示,则化简代数式||a +b –a 的结果是( ) A .2a +b B .2a C .a D .b2、计算)3(623m m -÷的结果是( )(A )m 3- (B )m 2- (C )m 2m 3 3、下列计算中,正确的是( )A .33x x x =∙B .3x x x -=C .32x x x ÷=D .336x x x += 4、下列运算正确的是( ) A.321x x -= B.22122xx--=-C.236()a a a -=· D.236()a a -=-4、化简:(a +1)2-(a -1)2=( )(A )2 (B )4 (C )4a (D )2a 2+25、下列计算中,正确的是( )A .325a b ab +=B .44a a a =∙ C .623a a a ÷= D .3262()a b a b = 6.对于非零实数m ,下列式子运算正确的是( )A .923)(m m =;B .623m m m =⋅;C .532m m m =+;D .426m m m =÷。

7.下列因式分解正确的是( )A .x x x x x 3)2)(2(342++-=+-;B .)1)(4(432-+-=++-x x x x ;C .22)21(41x x x -=+-;D .)(232y x y xy x y x xy y x +-=+-。

8、下列计算正确的是( )A 、623a a a =∙B 、4442b b b =∙C 、1055x x x =+ D 、87y y y =∙ 9、代数式2346x x -+的值为9,则2463x x -+的值为( )A .7 B .18 C .12D .9 10、下列各式中,与2(1)a -相等的是( )A .21a -B .221a a -+ C .221a a -- D .21a + 二、填空题1、当x=2,代数式21x -的值为_______.2、因式分解:xy 2–2xy +x = .3、分解因式:2218x -= .4、分解因式:2x -9= 。

【最强汇编】各省市中考数学试题按知识点分类汇编(代数式、整式及单项式、多项式的有关概念)

【最强汇编】各省市中考数学试题按知识点分类汇编(代数式、整式及单项式、多项式的有关概念)

知识点5:代数式、整式及单项式、多项式的有关概念一.选择题1.(湖南益阳)有一种石棉瓦(如图4),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为A. 60n厘米B. 50n厘米C. (50n+10)厘米D. (60n-10)厘米答案:C2. (新疆乌鲁木齐市)若且,,则的值为()A.B.1 C.D.答案:C3. (湘潭市)下列命题是假.命题的是()A. 若,则x+<y+B. 单项式的系数是-4C. 若则D. 平移不改变图形的形状和大小答案:B4. (镇江)用代数式表示“的3倍与的差的平方”,正确的是()A. B. C. D.答案:A5. (湖北天门)设计一个商标图案如图中阴影部分,矩形ABCD中,AB=2BC,且AB=8cm,以点A为圆心,AD为半径作圆与BA的延长线相交于点F,则商标图案的面积等于()A、(4π+8)cm2B、(4π+16)cm2C、(3π+8)cm2D、(3π+16)cm2答案:A6.二.填空题1. (浙江金华)、如果x+y=-4,x-y=8,那么代数式的值是 cm。

答案:-322.(年四川巴中市)20.大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则.答案:3.(年四川巴中市)在长为m,宽为m的一块草坪上修了一条1m宽的笔直小路,则余下草坪的面积可表示为;现为了增加美感,把这条小路改为宽恒为1m的弯曲小路(如图6),则此时余下草坪的面积为.答案:(或)(或)4.年成都市)已知y = x – 1,那么x2– 2xy + 3y2– 2的值是 .答案:15.(年江苏省连云港市)当时,代数式的值为.答案:6. (山东济南).当x=3,y=1时,代数式(x+y)(x-y)+y2的值是__________.答案:37. ( 四川广安)若是同类项,则.答案:-28. (厦门市)一盒铅笔12支,盒铅笔共有支.答案:12n9.(青海西宁)回收废纸用于造纸可以节约木材.根据专家估计,每回收一吨废纸可以节约3立方米木材,那么回收吨废纸可以节约立方米木材.答案:10.(青海)对单项式“”,我们可以这样解释:香蕉每千克5元,某人买了千克,共付款元.请你对“”再给出另一个实际生活方面的合理解释:.某人以5千米/时的速度走了小时,他走的路程是千米。

江苏中考数学历年真题分类 整式计算及因式分解

江苏中考数学历年真题分类 整式计算及因式分解

江苏中考数学历年真题分类整式计算及因式分解一、单选题(共31题;共62分)1.(2分)(2021·徐州)下列计算正确的是()A.(a3)3=a9B.a3·a4=a12C.a2+a3=a5D.a6÷a2=a3【答案】A【解析】【解答】A. (a3)3=a9,符合题意;B. a3·a4=a7≠a12,不符合题意;C. a2+a3≠a5,不符合题意;D. a6÷a2=a4≠a3,不符合题意故答案为:A【分析】根据幂的乘方、同底数幂的乘法及除法、合并同类项分别进行计算,然后判断即可. 2.(2分)(2021·南通)下列计算正确的是()A.a3+a3=a6B.a3⋅a3=a6C.(a2)3=a5D.(ab)3=ab3【答案】B【解析】【解答】解:A. a3+a3=2a3,选项计算错误,不符合题意;B. a3⋅a3=a6,选项计算正确,符合题意;C. (a2)3=a6,选项计算错误,不符合题意;D. (ab)3=a3b3,选项计算错误,不符合题意;故答案为:B.【分析】根据合并同类项、同底数幂的乘法、幂的乘方、积的乘方分别进行计算,然后判断即可. 3.(2分)(2021·常州)计算(m2)3的结果是()A.m5B.m6C.m8D.m9【答案】B【解析】【解答】解:(m2)3= m6,故答案为:B.【分析】直接根据幂的乘方法则进行计算.4.(2分)(2021·盐城)计算:a2⋅a的结果是()A.a3B.a2C.a D.2a2【答案】A【解析】【解答】a2⋅a=a2+1=a3故答案为:A【分析】同底数幂相乘,底数不变,指数相加,据此计算即可.5.(2分)(2021·无锡)下列运算正确的是()A.a2+a=a3B.(a2)3=a5C.a8÷a2=a4D.a2⋅a3=a5【答案】D【解析】【解答】解:A. a2+a,不是同类项,不能合并,故该选选错误,B. (a2)3=a6,故该选项错误,C. a8÷a2=a6,故该选项错误,D. a2⋅a3=a5,故该选项正确,故答案为:D.【分析】根据合并同类项、幂的乘方、同底数幂的除法、同底数幂的乘法分别计算,然后判断即可. 6.(2分)(2021·镇江)如图,输入数值1921,按所示的程序运算(完成一个方框内的运算后,把结果输入下一个方框继续进行运算),输出的结果为()A.1840B.1921C.1949D.2021【答案】D【解析】【解答】解:把1921代入得:(1921﹣1840+50)×(﹣1)=﹣131<1000,把﹣131代入得:(﹣131﹣1840+50)×(﹣1)=1921>1000,则输出结果为1921+100=2021.故答案为:D.【分析】输入1921,根据程序计算,如果结果小于1000,就返回继续计算,直到结果大于1000,就和100相加,输出结果,结束程序.7.(2分)(2021·镇江)如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为A1,A2,A3,每列的三个式子的和自左至右分别记为B1,B2,B3,其中,值可以等于789的是()A.A1B.B1C.A2D.B3【答案】B【解析】【解答】解:由题意得:A1=2n+1+2n+3+2n+5=789,整理得:2n=260,则n不是整数,故A1的值不可以等于789;A2=2n+7+2n+9+2n+11=789,整理得:2n=254,则n不是整数,故A2的值不可以等于789;B1=2n+1+2n+7+2n+13=789,整理得:2n=256=28,则n是整数,故B1的值可以等于789;B3=2n+5+2n+11+2n+17=789,整理得:2n=252,则n不是整数,故B3的值不可以等于789;故答案为:B.【分析】把每行和每列的三个数分别求和,根据其和为789列等式求解,结合n为整数,分别进行验证,即可解答.8.(2分)(2021·淮安)计算(x5)2的结果是()A.x3B.x7C.x10D.x25【答案】C【解析】【解答】解:(x5)2=x5×2=x10.故答案为:C.【分析】幂的乘方法则是底数不变,指数相乘,据此计算即可.9.(2分)(2021·宿迁)下列运算正确的是()A.2a−a=2B.(a2)3=a6C.a2·a3=a6D.(ab)2=ab2【答案】B【解析】【解答】解:A、2a−a=a,故该选项错误;B、(a2)3=a6,故该选项正确;C、a2·a3=a5,故该选项错误;D、(ab)2=a2b2,故该选项错误;故答案为:B.【分析】根据合并同类项:合并同类项后,所得项的系数为合并前各项系数的和,字母连同它的指数不变;幂的乘方:底数不变,指数相乘;同底数幂相乘:底数不变,指数相加;积的乘方:把积的每一个因式分别乘方,再把所得的积相乘可分别求解,即可得结果.10.(2分)(2021·南京)计算(a2)3⋅a−3的结果是()A.a2B.a3C.a5D.a9【答案】B【解析】【解答】解:原式= a6·a−3=a3;故答案为:B.【分析】利用幂的乘方,底数不变,指数相乘,先算乘方运算,再利用同底数幂相乘的法则进行计算.11.(2分)(2021·连云港)下列运算正确的是()A.3a+2b=5ab B.5a2−2b2=3C.7a+a=7a2D.(x−1)2=x2+1−2x【答案】D【解析】【解答】解:A,3a与2b不是同类项,不能合并,故答案为:错误,不符合题意;B,5a2与2b2不是同类项,不能合并得到常数值,故答案为:错误,不符合题意;C,合并同类项后7a+a=8a≠7a2,故答案为:错误,不符合题意;D,完全平方公式:(x−1)2=x2−2x+1=x2+1−2x,故答案为:正确,符合题意;故答案为:D.【分析】根据合并同类项及完全平方公式分别进行计算,然后判断即可.12.(2分)下列计算正确的是()A.a2+2a2=3a4B.a6÷a3=a2C.(a−b)2=a2−b2D.(ab)2=a2b2【答案】D【解析】【解答】解:A、a2+2a2=3a2,故A错误;B、a6÷a3=a3,故B错误;C、(a−b)2=a2−2ab+b2,故C错误;D、(ab)2=a2b2,故D正确;故答案为:D.【分析】由合并同类项、同底数幂除法,完全平方公式、积的乘方,分别进行判断,即可得到答案. 13.(2分)下列计算正确的是()A.a3+a3=a6B.(a3)2=a6C.a6÷a2=a3D.(ab)3=ab3【答案】B【解析】【解答】解:a3+a3=2a3,因此选项A不正确;(a3)2=a3×2=a6,因此选项B正确;a6÷a2=a6−2=a4,因此选项C不正确;(ab)3=a3b3,因此选项D不正确;故答案为:B.【分析】根据合并同类项、同底数幂的乘除法、幂的乘方、积的乘方的计算法则进行计算即可. 14.(2分)下列运算正确的是()A.2a−a=2B.a3⋅a2=a6C.a3÷a=a2D.(2a2)3=6a5【答案】C【解析】【解答】A. 2a−a=a,故错误;B. a3⋅a2=a5,故错误;C. a3÷a=a2,正确;D. (2a2)3=8a6,故错误;故答案为:C.【分析】根据整式的加减与幂的运算法则即可判断.15.(2分)(2020·扬州)下列各式中,计算结果为m6的是()A.m2⋅m3B.m3+m3C.m12÷m2D.(m2)3【答案】D【解析】【解答】A. m2⋅m3=m5,不符合题意B. m3+m3=2m3,不符合题意C. m12÷m2=m10,不符合题意D. (m2)3=m6,符合题意故答案为:D【分析】根据同底数幂的乘方和除法运算法则,合并同类项法则,幂的乘方运算法则即可求解. 16.(2分)(2020·苏州)下列运算正确的是()A.a2⋅a3=a6B.a3÷a=a3C.(a2)3=a5D.(a2b)2=a4b2【答案】D【解析】【解答】解:A、a2⋅a3=a5,此选项错误;B、a3÷a=a2,此选项错误;C、(a2)3=a6,此选项错误;D、(a2b)2=a4b2,此选项正确;故答案为:D.【分析】根据幂的运算法则逐一计算可得.17.(2分)(2020·南京)计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a8【答案】B【解析】【解答】解:(a3)2÷a2=a6÷a2=a4.故答案为:B.【分析】先计算幂的乘方,再计算同底数幂的除法,从而可得答案.18.(2分)(2020·连云港)下列计算正确的是().A.2x+3y=5xy B.(x+1)(x−2)=x2−x−2C.a2⋅a3=a6D.(a−2)2=a2−4【答案】B【解析】【解答】解:A、2x与3y不是同类项不能合并运算,故错误;B、多项式乘以多项式,运算正确;C、同底数幂相乘,底数不变,指数相加,a2⋅a3=a5,故错误;D、完全平方公式,(a−2)2=a2−4a+4,故错误故答案为:B【分析】根据合并同类项、多项式乘以多项式,同底数幂相乘,及完全平方公式进行运算判断即可. 19.(2分)(2020·淮安)计算t3÷t2的结果是()A.t2B.t C.t3D.t5【答案】B【解析】【解答】解:原式=t3−2=t.故答案为:B.【分析】根据同底数幂的除法法则,底数不变,指数相减计算即可.20.(2分)(2020·淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205B.250C.502D.520【答案】D【解析】【解答】解:设两个连续奇数中的较小一个奇数为x,则另一个奇数为x+2由这两个奇数得到的“幸福数”为(x+2)2−x2=2(2x+2)=4(x+1)观察四个选项可知,只有选项D中的520能够整除4即520÷4=130故答案为:D.【分析】设两个连续奇数中的较小一个奇数为x,则另一个奇数为x+2,先得出由这两个奇数得到的“幸福数”为4(x+1),再看四个选项中,能够整除4的即为答案.21.(2分)(2020·常州)计算m6÷m2的结果是()A.m3B.m4C.m8D.m12【答案】B【解析】【解答】解:m6÷m2=m6−2=m4.故答案为:B.【分析】直接利用同底数幂除法的运算法则:底数不变,指数相减解答即可.22.(2分)(2019·泰州)若2a−3b=−1,则代数式4a2−6ab+3b的值为()A.-1B.1C.2D.3【答案】B【解析】【解答】解:4a2−6ab+3b=2a(2a−3b)+3b=−2a+3b=−(2a−3b)=1故答案为:B.【分析】先将原式转化为2a(2a-3b)+3b,再整体代入,可得到代数式-(2a-3b),然后再代入可求值。

全国各地2018年中考数学真题汇编 整式(31题)【精品】

全国各地2018年中考数学真题汇编 整式(31题)【精品】

2018年中考数学真题汇编:整式(31题)一、选择题1. (2018四川内江)下列计算正确的是()A. B.C. D.【答案】D2.(2018广东深圳)下列运算正确的是( )A. B.C. D.【答案】B3.(2018浙江义乌)下面是一位同学做的四道题:①.② .③.④ .其中做对的一道题的序号是()A. ①B.② C.③ D. ④【答案】C4.下列运算正确的是()A. B.C. D.【答案】A5.下列运算正确的是()。

A. B.C.D.【答案】C6.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【答案】B7.下列运算正确的是()A. B.C. D.【答案】C8.计算的结果是()A. B.C.D.【答案】B9.下列运算正确的是()A. B.C. D.【答案】C10.计算的结果是()A. B.C.D.【答案】C11.下列计算正确的是()A. B. C.D.【答案】D12.下列计算结果等于的是()A. B.C.D.【答案】D13.下列运算正确的是()A.B.C.D.【答案】C14.下列运算正确的是()A. B.C. D.【答案】D15.下列计算正确的是()。

A.(x+y)2=x2+y2B.(-xy2)3=-x3y6C.x6÷x3=x2D.=2【答案】D16.下面是一位同学做的四道题①(a+b)2=a2+b2,②(2a2)2=-4a4,③a5÷a3=a2,④a3·a4=a12。

其中做对的一道题的序号是()A. ①B.② C.③ D. ④【答案】C17.下列计算正确的是()A.a3+a3=2a3B.a3·a2=a6C.a6÷a2=a3D.(a3)2=a5【答案】A18.计算结果正确的是()A. B.C.D.【答案】B19.下列计算正确的是( )A. B. C.D.【答案】C20.在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD-AB=2时,S2-S1的值为()A.2aB.2bC.2a-2bD.-2b【答案】B二、填空题(共6题;共6分)21.计算:________.【答案】-4x722.计算的结果等于________.【答案】23.已知x,y满足方程组,则x2-4y2的值为________。

实数的运算(含二次根式 三角函数特殊值的运算)(解析版)2018年数学全国中考真题-2

实数的运算(含二次根式 三角函数特殊值的运算)(解析版)2018年数学全国中考真题-2

2018年数学全国中考真题实数的运算(含二次根式 三角函数特殊值的运算)(试题二)解析版一、选择题 1. 计算的结果等于( ) A. 5 B. C. 9 D.【答案】C【解析】分析:根据有理数的乘方运算进行计算. 详解:(-3)2=9, 故选C .点睛:本题考查了有理数的乘方,比较简单,注意负号.2. (2018黑龙江绥化,4,3分) 下列运算正确的是( ) A.2a +3a =5a 2B.552-=-)( C.a 3·a 4=a12D.(π-3)0=1【答案】D.【解析】解:A 、235a a a +=,故错误; B 255-=(),故错误;C 、34347·a a a a +==,故错误;D 、0(3)1π-=,故正确.故选:D.【知识点】合并同类项,二次根式的性质,同底数幂的乘法,零指数幂的意义3. (湖北省咸宁市,1,3)咸宁冬季里某一天的气温为- 3℃〜2 ),则这一天的温差是( )A .1℃B .-1℃C .5℃D .-5℃ 【答案】C【解析】解:根据“温差=最高气温-最低气温”,2℃-(-3))=2℃+3℃=5℃,故选C . 【知识点】有理数的减法运算4. (2018吉林省,1, 2分)计算(﹣1)×(﹣2)的结果是( ) A .2B .1C .﹣2D .﹣3【答案】A【解析】根据“两数相乘,同号得正”即可求出(﹣1)×(﹣2)=2.故选A .【知识点】有理数的乘法5. (2018贵州铜仁,10,4)计算990013012011216121++++++ 的值为( ) A. 1100 B. 99100 C. 199D. 10099【答案】B【解析】∵21-121121=⨯=,31-2132161=⨯=,41-31431121=⨯=,51-41541201=⨯=, 61-51651301=⨯=,……,1001-90110099199001=⨯=, ∴990013012011216121++++++ =11111111111122334455699100 =1991100100.6.(2018云南省昆明市,12,4分)下列运算正确的是( )A .2193-=⎛⎫ ⎪⎝⎭B . 020181-=- C . 32326(0)a a a a -⋅=≠ D =【答案】C .【解析】A 选项是幂的乘方,213-⎛⎫ ⎪⎝⎭=(13-)×(13-)=19,故A 选项错误; B 选项02018-1-(-2)=3,故B 选项错误;3232a a -⋅=3×2·32a -=6a ,故C 选项正确是同底数幂的乘法,其法则是底数不变,指数相加,即32325a a a a +⋅==,故C 选项正确;D ==故D 选项错误,故选C .【知识点】幂的乘方;同底数幂的乘法;零指数幂;负指数幂;合并同类二次根式7. (2018湖北恩施州,16,3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图6,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 个.【答案】1838.【解析】本题为探索规律型,由题意可知,因为满六进一,从右到左依次排列的绳子分别代表绳结束乘以6的0次幂,6的1幂,6的2次幂,6的3次幂,6的4次幂.她一共采集到的野果数量为1838个.8. (2018辽宁锦州,6,3分)下列运算正确的是A 、7a -a=6B 、a 2·a 3=a 5C 、(a 3)3=a 6D 、(ab)4=ab 4【答案】B ,【解析】:根据合并同类项、幂的乘方、同底数幂的乘法、积的乘方法则进行解答. 二、填空题1. (2018湖北省江汉油田潜江天门仙桃市,12,3分)112()2--= .【答案】0【解析】直接利用二次根式的化简、绝对值的性质和负整数指数幂的性质分别化简,再计算.2323)21(23331=--+=--+-【知识点】二次根式分母有理化,绝对值,负整数指数幂2. (湖北省咸宁市,5,3)按一定顺序排列的一列数叫做数列,如数列:1111,,,,,261220则这个数列的前2018个数的和为__________. 【答案】20182019【解析】11111111,,,,,21262312342045====⨯⨯⨯⨯则第2018个数为120182019⨯ 则这个数列的前2018个数的和为111111223344520182019+++++⨯⨯⨯⨯⨯ =1111111111223344520182019-+-+-+-++- =112019-=20182019【知识点】探究规律3. (2018年黔三州,19,3)根据下列各式的规律,在横线处填空: 11+12−1=12,13+14−12=112,15+16−13=130,17+18−14=156,... (1)2017+12018− =12017×2018 . 【答案】11009【解析】按照等式顺序,第一个为11+12−1=12,第二个为13+14−1(3−1)÷2+1=13×4,第3个式子15+16−1(5−1)÷2+1=15×6,17+18−1(7−1)÷2+1=17×8,… …以此类推,12017+12018−1(2017−1)÷2+1 =12017×2018 . 【知识点】等式规律探索4. (2018江苏常州,9,2)计算:3-1-=_______. 【答案】2 【解析】21313=-=--5. (2018四川巴中,21(1),6分)(1)计算:│-2│ -2cos 60°+()-1-(2018-)0【答案】原式=2-2×+6-1=2﹣1+6﹣1=6.【解析】依据数的绝对值意义,│-2│=2;由特殊角的三角函数值得cos 60°=;由负整数指数幂的意义得()-1=611=6或者()-1=(6-1)-1=6;根据a 0=1(a ≠0)得(2018-)0=1.6.(2018广西南宁,17,3) 观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是 . 【答案】3,【解析】∵30=1,31=3,32=9,33=27,34=81∴各位数4个数一循环, ∴(2018+1)÷4=504余3, ∴1+3+9=13∴30+31+32+…+32018的结果的个位数字3.7. (2018湖北十堰,14,3分) 对于实数a ,b ,定义运算“)”如下,a )b =a 2-ab ,例如,5)3=52-5*3=10.若(x +1))(x -2)=6,则x 的值为 . 【答案】1【解析】由于(x +1))(x -2)=6,所以(x +1)2-(x +1)(x -2)=6,即有3x +3=6,解得x =1,故答案为:1.8. (2018湖北随州11,3分)8|2-2+2tan45°=______.【答案】4.【解析】842⨯2根据“负数的绝对值等于它的相反数”可得|2-2|=22-2;熟记特殊角的三角函数值可得2tan45°=2×1=2,所以原式=222)+2=222+2=4.三、解答题1. (2018省市,题号,分值)计算:11220182-⎛⎫--+ ⎪⎝⎭【思路分析】先计算各项的值,进而求得结果,一个负数的绝对值为它的相反数,任何非零数的零次幂都为1,一个数的-1次幂相当于它的倒数 【解题过程】原式=2-1+2=3【知识点】绝对值;零指数幂和负整指数幂;有理数加减2. (2018省市,题号,分值)先化简,再求值:22221644a a a aa-+-,其中a 【思路分析】先将分式化简,再将a 值代入求值【解题过程】()()()222244216224444a a a a a a a a a a a a +--==+-+-,当a =2时,原式 【知识点】分式的乘除;二次根式3. (2018广西省桂林市,19,6分)1103)6cos 45+2---︒⎛⎫⎪⎝⎭.【思路分析】先算出每一个式子的值,再依据混合运算顺序,依次计算即可.1103)6cos 45+2---︒⎛⎫ ⎪⎝⎭=6+121232-⨯=-=. 【知识点】实数的四则运算;特殊角三角函数值的运用;负指数次幂;0次幂;二次根式的化简4. (2018黑龙江省龙东地区,21,5分) 先化简,再求值:2221(1)21a a a a a a --÷+++,其中a =sin30°. 【思路分析】先化简分式,再求a 的值,最后把a 的值代入计算即可.【解题过程】解:原式=2222(1)()(1)(1)a a a a a a a a a a ++-+-++=22(1)(1)(1)(1)a a a a a a +++-=1aa -.当a =sin30°=12时,原式=-1.【知识点】分式的化简求值;特殊角的锐角三角函数值;平方差公式;完全平方公式5. (2018山东省东营市,19①,4分) 计算:02018112133012)tan ()()--︒+-- 【思路分析】根据绝对值、0指数、三角函数、负数的偶次幂、分数的负整数指数幂的法则性质进行计算即可。

宁夏2018年中考数学试题(word版含答案解析)

宁夏2018年中考数学试题(word版含答案解析)

一、选择题<下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1、<2018•宁夏)计算a2+3a2的结果是< )A、3a2B、4a2C、3a4D、4a4考点:合并同类项。

分析:本题考查整式的加法运算,实质上就是合并同类项,根据运算法则计算即可.解答:解:a2+3a2=4a2.故选B.点评:整式的加减运算实际上就是合并同类项,这是各地中考的常考点.2、<2018•宁夏)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AB的长是< )b5E2RGbCAPA、2B、4C、2D、4考点:矩形的性质;等边三角形的判定与性质。

分析:本题的关键是本题的关键是利用等边三角形和矩形对角线的性质即锐角三角函数关系求长度.解答:解:∵在矩形ABCD中,AO=AC,DO=BD,AC=BD,∴AO=DO,又∵∠AOD=60°,∴∠ADB=60°,∴∠ABD=30°,∴=tan30°,即=,∴AB=2.故选C.点评:本题考查了矩形的性质和锐角三角函数关系,具有一定的综合性,难度不大属于基础性题目.3、<2018•宁夏)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是< )p1EanqFDPwA、5cmB、6cmC、7cmD、8cm考点:等腰梯形的性质;等边三角形的判定与性质;平行四边形的判定与性质。

专题:计算题。

分析:过D作DE∥AB交BC于E,推出平行四边形ABED,得出AD=BE=2cm,AB=DE=DC,推出等边三角形DEC,求出EC的长,根据BC=EB+EC即可求出答案.DXDiTa9E3d解答:解:过D作DE∥AB交BC于E,∵DE∥AB,AD∥BC,∴四边形ABED是平行四边形,∴AD=BE=2cm,DE=AB=4cm,∠DEC=∠B=60°,AB=DE=DC,∴△DEC是等边三角形,∴EC=CD=4cm,∴BC=4cm+2cm=6cm.故选B.点评:本题主要考查对等腰梯形的性质,平行四边形的性质和判定,全等等边三角形的性质和判定等知识点的理解和掌握,把等腰梯形转化成平行四边形和等边三角形是解此题的关键.RTCrpUDGiT 4、<2018•宁夏)一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x,十位数字为y,所列方程组正确的是< )5PCzVD7HxAA、B、C、D、考点:由实际问题抽象出二元一次方程组。

2018年广西柳州市中考数学试题含答案解析

2018年广西柳州市中考数学试题含答案解析

2018年广西柳州市中考数学试题含答案解析.;;参考答案与试题解析一、选择题(每题只有一个正确选项,本题共12小题,每题3分;,共36分)1.(3.00分)计算:0+(﹣2)=();A.﹣2 B.2C.0D.﹣20【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:0+(﹣2)=﹣2.故选:A.【点评】此题主要考查了有理数的加法,正确掌握运算法则是解题关键.2.(3.00分)如图,这是一个机械模具,则它的主视图是;().D..BC.A【分析】根据主视图的画法解答即可.【解答】解:主视图是从几何体正边看得到的图形,题中的几何体从正边看,得到的图形是并列的三个正方形和一个圆,其中圆在左边正方形的上面;,故选:C..【点评】本题考查几何体的三视图画法.根据主视图是从几何体正边看得到的图形解答是关键.3.(3.00分)下列图形中,是中心对称图形的是.()1 / 18..A..正三角形.B圆.C正五边形.D等腰梯形【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.4.(3.00分)现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为()2 / 18..D.1 B .CA.利用概率公式计算即可得.【分析】其中抽到红桃种等可能结果,4张纸牌中任意抽取一张牌有4【解答】解:∵从种结果,1A的只有,∴抽到红桃A的概率为.B故选:P的概率本题主要考查概率公式的应用,解题的关键是掌握随机事件A【点评】可能出现的结果数÷所有可能出现的结果数.A=事件(A))人,用科学记数法可表示为(.(3.00分)世界人口约70000000005 9107910×D.C.7×100.7A.9×10B .7×10n确为整数.10,na其中1≤||×【分析】科学记数法的表示形式为a10<的形式,的绝对值与小数点n的值时,要看把原数变成a时,小数点移动了多少位,定n1是正数;当原数的绝对值小于时,n10移动的位数相同.当原数绝对值大于是负数.n时,9.×10【解答】解:7000000000=7.故选:Cn的10【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×的值.n为整数,表示时关键要正确确定a的值以及a||<10,n形式,其中1≤)(6.3.00分)如图,图中直角三角形共有(个4个3 D..个.个.A1 B2 C可作有一个角是直角的三角形是直角三角形,【分析】根据直角三角形的定义:3 / 18.判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.sinB==()BC=4ABC中,∠C=90°,,AC=3,则3.007.(分)如图,在Rt△.D. B .CA.【分析】首先利用勾股定理计算出AB长,再计算sinB即可.【解答】解:∵∠C=90°,BC=4,AC=3,∴AB=5,=sinB=∴,故选:A.【点评】此题主要考查了锐角三角函数,关键是正确计算出AB的长.8.(3.00分)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°4 / 18.【分析】直接利用圆周角定理即可得出答案.所对的弧都是,与∠CB【解答】解:∵∠,∠B=24°∴∠C=.故选:D在同圆或等本题主要考查圆周角定理,解题的关键是掌握圆周角定理:【点评】圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.折出售,假如现在要买一斤,那么元,现在按8(3.00分)苹果原价是每斤a9.)需要付费()元0.8(a+.C1.8a元D.元A.0.8a B.0.2a元可得答案.原售价×”=【分析】根据“实际售价【解答】解:根据题意知,买一斤需要付费0.8a元,故选:A.【点评】本题主要考查列代数式,解题的关键是掌握代数式的书写规范及实际问题中数量间的关系.10.(3.00分)如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x)的扇形统计图,由图可知,学生的数学平均成绩在60≤x<70之间的国家占()A.6.7% B.13.3% C.26.7% D.53.3%【分析】根据扇形统计图直接反映部分占总体的百分比大小,可知学生成绩在60≤x<69之间的占53.3%.【解答】解:由图可知,学生的数学平均成绩在60≤x<70之间的国家占53.3%.故选:D.【点评】本题考查了扇形统计图的应用.利用统计图获取信息时,必须认真观察、5 / 18.分析、研究统计图,才能作出正确的判断和解决问题.11.(3.00分)计算:(2a)?(ab)=()22b3a3ab D.2a.b C.A.2ab B【分析】直接利用单项式乘以单项式运算法则计算得出答案.2b.)=2a2a)?(ab【解答】解:(故选:B.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.y=,则a的取值范围是()(12.3.00分)已知反比例函数的解析式为2a=±≠±2 D..≠A.a2B.a≠﹣2 Ca【分析】根据反比例函数解析式中k是常数,不能等于0解答即可.【解答】解:由题意可得:|a|﹣2≠0,解得:a≠±2,故选:C.【点评】此题主要考查了反比例函数,关键是根据反比例函数关系式中k的取值范围解答.二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共1836分)13.(3.00分)如图,a∥b,若∠1=46°,则∠2=46°.【分析】根据平行线的性质,得到∠1=∠2即可.【解答】解:∵a∥b,∠1=46°,∴∠2=∠1=46°,故答案为:46.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位6 / 18.角相等.14.(3.00分)如图,在平面直角坐标系中,点A的坐标是(﹣2,3).【分析】直接利用平面直角坐标系得出A点坐标.【解答】解:由坐标系可得:点A的坐标是(﹣2,3).故答案为:(﹣2,3).【点评】此题主要考查了点的坐标,正确利用平面坐标系是解题关键.15.(3.00分)不等式x+1≥0的解集是x≥﹣1.【分析】根据一元一次不等式的解法求解不等式.【解答】解:移项得:x≥﹣1.故答案为:x≥﹣1.【点评】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.2﹣9=0的解是x=3,x(3.00分)一元二次方程x=﹣3.16.21【分析】利用直接开平方法解方程得出即可.2﹣9=0解:∵x,【解答】2=9,∴x解得:x=3,x=﹣3.21故答案为:x=3,x=﹣3.21【点评】此题主要考查了直接开平方法解方程,正确开平方是解题关键.7 / 18.17.(3.00分)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,y场,则可列出方程组为.负【分析】根据比赛总场数和总分数可得相应的等量关系:胜的场数+负的场数=8;胜的积分+平的积分=14,把相关数值代入即可.【解答】解:设艾美所在的球队胜x场,负y场,∵共踢了8场,∴x+y=8;∵每队胜一场得2分,负一场得1分.∴2x+y=14,故列的方程组为,.故答案为【点评】本题考查了列二元一次方程组,根据总场数和总分数得到相应的等量关系是解决本题的根据.AD=,AC=DCA=30°中,∠BCA=90°,∠,,Rt18.(3.00分)如图,在△ABC.BC的长为5则【分析】作辅助线,构建直角三角形,先根据直角三角形30度角的性质和勾股CE=,及ED的长,可得CD的长,证明△定理得:AE=,BFD∽△BCA,列比例式可得BC的长.【解答】解:过A作AE⊥CD于E,过D作DF⊥BC于F,AC=,,中,∠Rt△AECACD=30°,,∴AE=CE=8 / 18.==ED=,△RtAED中,,DE==∴CD=CE+∵DF⊥BC,AC⊥BC,∴DF∥AC,∴∠FDC=∠ACD=30°,=,∴CD=CF=,DF=∴∵DF∥AC,∴△BFD∽△BCA,∴,=,∴BF=,∴+BC==5,∴故答案为:5.【点评】本题考查了相似三角形的性质和判定、直角三角形30度角的性质及勾股定理,熟练运用勾股定理计算线段的长是关键.三、解答题(每题只有一个正确选项,本题共8小题,共66分)9 / 18.2+3..(6.00分)计算:19【分析】先化简,再计算加法即可求解.2+3【解答】解:3=4+.=7二【点评】考查了二次根式的加减法,关键是熟练掌握二次根式的加减法法则:再把被开方数相同的二次次根式相加减,先把各个二次根式化成最简二次根式,根式进行合并,合并方法为系数相加减,根式不变.≌.求证:△ABC,∠A=∠E,AC=EC相交于点20.(6.00分)如图,AE和BDC.△EDC【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断.【解答】证明:∵在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).【点评】本题主要考查了全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.求该同学这五次投实心球的平均成绩.【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:该同学这五次投实心球的平均成绩为:=10.4.10 / 18.故该同学这五次投实心球的平均成绩为10.4m.【点评】此题考查了平均数,解题的关键是掌握平均数的计算公式.=.分)解方程22.(8.00【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣4=x,解得:x=4,经检验x=4是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(8.00分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.【分析】(1)由菱形的四边相等即可求出其周长;(2)利用勾股定理可求出BO的长,进而解答即可.【解答】解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长=2×4=8;(2)∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,BO=∴,BD=2∴【点评】本题主要考查菱形的性质,能够利用勾股定理求出BO的长是解题关键.y=的图象交于的图象与反比例函数+分)如图,一次函数(24.10.00y=mxbA11 / 18.(﹣,n)两点.,3,1)B((1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.y=的图象经过A(3,1)【分析】(1)根据反比例函数,即可得到反比例函数y=的解析式为;(﹣,n)代入反比例函数解析式,可得n=﹣6,把A(3,1)2()把B,B(﹣,﹣6)代入一次函数y=mx+b,可得一次函数的解析式为y=2x﹣5.y=的图象经过A(3,1),)∵反比例函数【解答】解:(1∴k=3×1=3,y=∴反比例函数的解析式为;(﹣,n)把B)代入反比例函数解析式,可得2(﹣n=3,解得n=﹣6,(﹣,﹣6)∴B,(﹣,﹣6)代入一次函数By=mx+b,可得,13A把(,),解得,12 / 18.∴一次函数的解析式为y=2x﹣5.【点评】本题考查了利用图象解决一次函数和反比例函数的问题.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.25.(10.00分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;CE=AD;AD于点E,求证:2)过点C作⊙O的切线CE交((3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.(1)利用AB是⊙O的直径和AD是⊙O的切线判断出∠ACD=∠DAB=90°,【分析】即可得出结论;(2)利用切线长定理判断出AE=CE,进而得出∠DAC=∠EAC,再用等角的余角相等判断出∠D=∠DCE,得出DE=CE,即可得出结论;(3)先求出tan∠ABD值,进而得出GH=2CH,进而得出BC=3BH,再求出BC建立方程求出BH,进而得出GH,即可得出结论.【解答】解:(1)∵AB是⊙O直径,∴∠ACD=∠ACB=90°,∵AD是⊙O的切线,13 / 18.∴∠BAD=90°,∴∠ACD=∠DAB=90°,∵∠D=∠D,∴△DAC∽△DBA;(2)∵EA,EC是⊙O的切线,∴AE=CE(切线长定理),∴∠DAC=∠ECA,∵∠ACD=90°,∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,∴∠D=∠DCE,∴DE=CE,∴AD=AE+DE=CE+CE=2CE,CE=AD;∴(3)如图,在Rt△ABD中,AD=6,AB=3,ABD==2tan∠,∴过点G作GH⊥BD于H,ABD==2∠,∴tan,GH=2BH∴下方半圆的中点,AB∵点F是直径,∴∠BCF=45°,∠CHG﹣∠BCF=45°∴∠CGH=,∴CH=GH=2BH,+CH=3BH∴BC=BH=2tan∠ABC=,ABC在Rt△中,,AC=2BC∴222,+BC=AB根据勾股定理得,AC22,=9BC4BC∴+14 / 18.BC=,∴,∴3BH=,BH=∴GH=2BH=∴,在Rt△CHG中,∠BCF=45°,GH=.CG=∴【点评】此题是圆的综合题,主要考查了切线的性质,切线长定理,锐角三角函数,相似三角形的判定和性质,勾股定理,求出tan∠ABD的值是解本题的关键.2(,0),B与x轴交于A两点(点B(26.10.00分)如图,抛物线y=axc+bx+ OC,∠OAC的平分线A在点的左侧),与y轴交于点C,且OB=3OA=AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;为圆心,HC为半径作⊙HPF)当直线为抛物线的对称轴时,以点H,点Q3(上的一个动点,求AQ+EQ为⊙H的最小值.15 / 18.的坐标,利用两根式求出抛物线的解析式即可;、CA、B【分析】(1)求出的解析式,根据方程即可解决问题;AH(2)求出直线,﹣,此时KHA上取一点K,使得(﹣HK=(3)首先求出⊙H的半径,在2,推=AQKQ=,由HQ∽△=HK?HA,可得△QHKAHQ=,推出,可得)E的值最小,由此求出点+KQE共线时,AQ+QE=KQ+EQ,可得当E、Q、AQ出坐标即可解决问题;坐标,点K,3),﹣,C(0,,0)(【解答】解:1)由题意A,(B(﹣30),)(x﹣(设抛物线的解析式为y=ax+3),a=0把C(,﹣3)代入得到2.﹣+∴抛物线的解析式为y=x3x,OAC==中,2)在Rt△AOCtan∠(,OAC=60°∴∠,∵AD平分∠OAC,OAD=30°∴∠,∴OD=OA?tan30°=1,,﹣∴D(01),xAD∴直线的解析式为y=﹣116 / 18.2,m﹣1),F(m,H+m﹣3),(m0由题意P(m),m,∵FH=PH,2+m﹣﹣(m∴13﹣)m=m﹣1或(舍弃)﹣解得m=,的值为﹣m.∴当FH=HP时,(3)如图,∵PF是对称轴,(﹣,﹣2H)F,(﹣,0),∴∵AH⊥AE,∴∠EAO=60°,EO=OA=3∴,∴E(0,3),∵C(0,﹣3),HC==2,∴AH=2FH=4,QH=CH=1,∴,﹣)(﹣HK=,此时K,K在HA上取一点,使得2,=1,HK?HA=1∵HQ2,∽△HQ=HK?HA,可得△QHKAHQ∴,∴==17 / 18.KQ=AQ∴,∴AQ+QE=KQ+EQ,=.=QEQ、K共线时,AQ+的值最小,最小值、∴当E【点评】本题考查二次函数综合题、一次函数的应用、一元二次方程、圆的有关知识、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.18 / 18.。

黑龙江省哈尔滨市2018年中考数学真题试题(含解析)

黑龙江省哈尔滨市2018年中考数学真题试题(含解析)

黑龙江省哈尔滨市2018年中考数学真题试题一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C.D.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m23.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.96.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3 7.(3.00分)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=18.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2 C.5 D.109.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.210.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为.12.(3.00分)函数y=中,自变量x的取值范围是.13.(3.00分)把多项式x3﹣25x分解因式的结果是14.(3.00分)不等式组的解集为.15.(3.00分)计算6﹣10的结果是.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C.D.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:A.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m2【分析】直接利用完全平方公式以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、(m+n)2=m2+2mn+n2,故此选项错误;B、(mn)3=m3n3,正确;C、(m3)2=m6,故此选项错误;D、m•m2=m3,故此选项错误;故选:B.【点评】此题主要考查了完全平方公式以及积的乘方运算、同底数幂的乘除运算,正确掌握运算法则是解题关键.3.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.【解答】解:A、此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;B、此图形不是轴对称图形,是中心对称图形,此选项不符合题意;C、此图形既是轴对称图形,又是中心对称图形,此选项符合题意;D、此图形是轴对称图形,但不是中心对称图形,此选项不符合题意;故选:C.【点评】本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【分析】俯视图有3列,从左到右正方形个数分别是2,1,2.【解答】解:俯视图从左到右分别是2,1,2个正方形.故选:B.【点评】本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.9【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【解答】解:连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6﹣3=3.故选:A.【点评】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.6.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3 【分析】直接利用二次函数图象与几何变换的性质分别平移得出答案.【解答】解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x+1)2﹣1.故选:A.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.7.(3.00分)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2 C.5 D.10【分析】根据菱形的性质得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根据勾股定理求出AB即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==,∴AO=3,在Rt△AOB中,由勾股定理得:AB===5,故选:C.【点评】本题考查了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.9.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.2【分析】把点的坐标代入函数解析式得出方程,求出方程的解即可.【解答】解:∵反比例函数y=的图象经过点(1,1),∴代入得:2k﹣3=1×1,解得:k=2,故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k的方程是解此题的关键.10.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=【分析】由GE∥BD、GF∥AC可得出△AEG∽△ABD、△DFG∽△DCA,根据相似三角形的性质即可找出==,此题得解.【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.故选:D.【点评】本题考查了相似三角形的判定与性质,利用相似三角形的性质找出==是解题的关键.二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为9.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×108【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)函数y=中,自变量x的取值范围是x≠4 .【分析】根据分式分母不为0列出不等式,解不等式即可.【解答】解:由题意得,x﹣4≠0,解得,x≠4,故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围,掌握分式分母不为0是解题的关键.13.(3.00分)把多项式x3﹣25x分解因式的结果是x(x+5)(x﹣5)【分析】首先提取公因式x,再利用平方差公式分解因式即可.【解答】解:x3﹣25x=x(x2﹣25)=x(x+5)(x﹣5).故答案为:x(x+5)(x﹣5).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.14.(3.00分)不等式组的解集为3≤x<4 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.15.(3.00分)计算6﹣10的结果是4.【分析】首先化简,然后再合并同类二次根式即可.【解答】解:原式=6﹣10×=6﹣2=4,故答案为:4.【点评】此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为(﹣2,4).【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【解答】解:∵y=2(x+2)2+4,∴该抛物线的顶点坐标是(﹣2,4),故答案为:(﹣2,4).【点评】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:=.故答案为:.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是6πcm2.【分析】先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.【解答】解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴=3π,解得:R=4,所以此扇形的面积为=6π(cm2),故答案为:6π.【点评】本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.【点评】本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为4.【分析】设EF=x,根据三角形的中位线定理表示AD=2x,AD∥EF,可得∠CAD=∠CEF=45°,证明△EMC是等腰直角三角形,则∠CEM=45°,证明△ENF≌△MNB,则EN=MN=x,BN=FN=,最后利用勾股定理计算x的值,可得BC的长.【解答】解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ACB=∠CAD=45°,∵EM⊥BC,∴∠EMC=90°,∴△EMC是等腰直角三角形,∴∠CEM=45°,连接BE,∵AB=OB,AE=OE∴BE⊥AO∴∠BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ENF≌△MNB,∴EN=MN=x,BN=FN=,Rt△BNM中,由勾股定理得:BN2=BM2+MN2,∴,x=2或﹣2(舍),∴BC=2x=4.故答案为:4.【点评】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=4cos30°+3tan45°时,所以a=2+3原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【分析】(1)利用数形结合的思想解决问题即可;(2)利用数形结合的思想解决问题即可;【解答】解:(1)如图所示,矩形ABCD即为所求;(2)如图△ABE即为所求;【点评】本题考查作图﹣应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?【分析】(1)由“诗词”的人数及其所占百分比可得总人数;(2)总人数减去其他种类的人数求得“书法”的人数即可补全条形图;(3)用总人数乘以样本中“国画”人数所占比例.【解答】解:(1)本次调查的学生总人数为24÷20%=120人;(2)“书法”类人数为120﹣(24+40+16+8)=32人,补全图形如下:(3)估计该中学最喜爱国画的学生有960×=320人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.【分析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S△ADE=AE•DE=•2a•a=a2,∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,则S△ADC=AC•DE=•(2a+2a)•a=2a2=2S△ADE;在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,∴S△ABE=AE•BE=•(2a)•2a=2a2,S△ACE=CE•BE=•(2a)•2a=2a2,S△BHG=HG•BE=•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.【点评】本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【分析】(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【解答】解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:,解得:,答:每个A型放大镜和每个B型放大镜分别为20元,12元;(2)设购买A型放大镜m个,根据题意可得:20a+12×(75﹣a)≤1180,解得:x≤35,答:最多可以购买35个A型放大镜.【点评】本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER 的面积与△DHK的面积的差为,求线段BR的长.【分析】(1)由正方形的四个角都为直角,得到两个角为直角,再利用同弧所对的圆周角相等及角平分线定义,等量代换即可得证;(2)如图2,过H作HM⊥KD,垂足为点M,根据题意确定出△BEP≌△HKM,利用全等三角形对应边相等即可得证;(3)根据3HF=2DF,设出HF=2a,DF=3a,由角平分线定义得到一对角相等,进而得到正切值相等,表示出DM=3a,利用正方形的性质得到△BED≌△DFB,得到BE=DF=3a,过H作HS ⊥BD,垂足为S,根据△BER的面积与△DHK的面积的差为,求出a的值,即可确定出BR 的长.【解答】(1)证明:如图1,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,∵∠F=∠A=90°,∴∠F=∠ABC,∵DA平分∠EDF,∴∠ADE=∠ADF,∴∠ABE=∠ADF,∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF,∴∠CBE=∠DHG;(2)如图2,过H作HM⊥KD,垂足为点M,∵∠F=90°,∴HF⊥FD,∵DA平分∠EDF,∴HM=FH,∵FH=BP,∴HN=BP,∵KH∥BN,∴∠DKH=∠DLN,∴∠ELP=∠DLN,∴∠DKH=∠ELP,∵∠BED=∠A=90°,∴∠BEP+∠LEP=90°,∵EP⊥BN,∴∠BPE=∠EPL=90°,∴∠LEP+∠ELP=90°,∴∠BEP=∠ELP=∠DKH,∵HM⊥KD,∴∠KMH=∠BPE=90°,∴△BEP≌△HKM,∴BE=HK;(3)解:如图3,连接BD,∵3HF=2DF,BP=FH,∴设HF=2a,DF=3a,∴BP=FH=2a,由(2)得:HM=BP,∠HMD=90°,∴tan∠HDM=tan∠FDH,∴==,∴DM=3a,∵四边形ABCD为正方形,∴AB=AD,∴∠ABD=∠ADB=45°,∵∠ABF=∠ADF=∠ADE,∠DBF=45°﹣∠ABF,∠BDE=45°﹣∠ADE,∴∠DBF=∠BDE,∵∠BED=∠F,BD=BD,∴△BED≌△DFB,∴BE=FD=3a,过H作HS⊥BD,垂足为S,∵tan∠ABH=tan∠ADE==,∴设AB=3m,AH=2m,∴BD=AB=6m,DH=AD﹣AH=m,∵sin∠ADB==,∴HS=m,∴DS==m,∴BS=BD﹣DS=5m,∴tan∠BDE=tan∠DBF==,∵∠BDE=∠BRE,∴tanBRE==,∵BP=FH=2a,∴RP=10a,在ER上截取ET=DK,连接BT,由(2)得:∠BEP=∠HKD,∴△BET≌△HKD,∴∠BTE=∠KDH,∴tan∠BTE=tan∠KDH,∴=,即PT=3a,∴TR=RP﹣PT=7a,∵S△BER﹣S△DHK=,∴BP•ER﹣HM•DK=,∴BP•(ER﹣DK)=BP•(ER﹣ET)=,∴×2a×7a=,解得:a=(负值舍去),∴BP=1,PR=5,则BR==.【点评】此题属于圆综合题,涉及的知识有:正方形的性质,角平分线性质,全等三角形的判定与性质,三角形的面积,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.【分析】(1)利用勾股定理求出BC的长即可解决问题;(2)如图2中,连接CE、CF.想办法证明△CEF是等边三角形,AF⊥CF即可解决问题;(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.想办法证明△APF是等边三角形,AT⊥PB即可解决问题;【解答】解:(1)如图1中,∵y=﹣x+,∴B(,0),C(0,),∴BO=,OC=,在Rt△OBC中,BC==7,∵四边形ABCD是菱形,∴AB=BC=7,∴OA=AB﹣OB=7﹣=,∴A(﹣,0).(2)如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠AOB=60°,∴∠APB=∠ACB,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACR≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∵△CEF是等边三角形,∴∠CEF=60°,EC=CF,∵∠AFE=30°,∠CEF=∠H+∠EFH,∴∠H=∠CEF﹣∠EFH=30°,∴∠H=∠EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠PEC=∠AEH,∴△CPE≌△HAE,∴∠PCE=∠H,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠TCF=∠CTP﹣∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,∴AT⊥PF,设 BF=m,则AE=PE=m,∴PF=AP=2m,TF=TP=m,TB=2m,BP=3m,在Rt△APT中,AT==m,在Rt△ABT中,∵AT2+TB2=AB2,∴(m)2+(2m)2=72,解得m=或﹣(舍弃),∴BF=,AT=,BP=3,sin∠ABT==,∵OK=PQ=BP•sin∠PBQ=3×=3,BQ==6,∴OQ=BQ﹣BO=6﹣=,∴P(﹣,3)【点评】本题考查一次函数综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、菱形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建方程解决问题,属于中考压轴题.。

代数式及整式(46题)(原卷版)—2024年中考数学真题分类汇编(全国通用)

代数式及整式(46题)(原卷版)—2024年中考数学真题分类汇编(全国通用)

代数式及整式(46题)一、单选题1.(2024·辽宁·中考真题)下列计算正确的是( )A .2352a a a +=B .236a a a ×=C .()325a a =D .2(1)a a a a +=+2.(2024·江苏常州·中考真题)计算222a a -的结果是( )A .2B .2aC .23aD .42a 3.(2024·四川巴中·中考真题)下列运算正确的是( )A .33a b ab+=B .325a a a ×=C .()8240a a a a ÷=≠D .()222a b a b -=-4.(2024·四川雅安·中考真题)下列运算正确的是( )A .34a b ab +=B .()325a a =C .326a a a ×=D .54a a a ÷=5.(2024·四川资阳·中考真题)下列计算正确的是( )A .325a a a +=B .32a a a -=C .()325a a =D .523a a a ÷=6.(2024·湖北·中考真题)223x x ×的值是( )A .25xB .35xC .26xD .36x 7.(2024·湖北武汉·中考真题)下列计算正确的是( )A .236a a a ×=B .()1432a a =C .()2236a a =D .()2211a a +=+8.(2024·福建·中考真题)下列运算正确的是( )A .339a a a ×=B .422a a a ÷=C .()235a a =D .2222a a -=9.(2024·广东·中考真题)下列计算正确的是( )A .2510a a a ×=B .824a a a ÷=C .257a a a -+=D .()5210a a =10.(2024·云南·中考真题)按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,第n 个代数式是( )A .2n xB .()1n n x -C .1n nx +D .()1n n x +11.(2024·山东济宁·中考真题)如图,用大小相等的小正方形按照一定规律拼正方形.第一幅图有1个正方形,第二幅图有5个正方形,第三幅图有14个正方形……按照此规律,第六幅图中正方形的个数为( )A .90B .91C .92D .9312.(2024·甘肃兰州·中考真题)计算:22(1)2a a a --=( )A .aB .a -C .2aD .2a-13.(2024·四川成都·中考真题)下列计算正确的是( )A .()2233x x =B .336x y xy +=C .()222x y x y +=+D .()()2224x x x +-=-14.(2024·湖南长沙·中考真题)下列计算正确的是( )A .642x x x ÷=B =C .325()x x =D .222()x y x y +=+15.(2024·山东·中考真题)下列运算正确的是( )A .437a a a +=B .()2211a a -=-C .()2332a b a b =D .()2212a a a a +=+16.(2024·山东泰安·中考真题)下列运算正确的是( )A .22223x y xy x y-=-B .82224422x y x y x ÷=C .()()22x y x y x y ---=-D .()22346x y x y =17.(2024·四川·中考真题)下列计算正确的是( )A .()2222a a +=+B .2a a a +=C .23515a a a ×=D .()222a b a b +=+18.(2024·四川眉山·中考真题)如图,图1是北京国际数学家大会的会标,它取材于我国古代数学家赵爽的“弦图”,是由四个全等的直角三角形拼成.若图1中大正方形的面积为24,小正方形的面积为4,现将这四个直角三角形拼成图2,则图2中大正方形的面积为( )A .24B .36C .40D .4419.(2024·内蒙古呼伦贝尔·中考真题)下列计算正确的是( )A .()341226a a -=-B .253a a a -÷=C .111a a a a +-=D .()()2233a b a ab b a b +-+=+20.(2024·吉林长春·中考真题)下列运算一定正确的是( )A .236a a a ×=B .236a a a ×=C .()222ab a b =D .()235a a =21.(2024·青海·中考真题)计算1220x x -的结果是( )A .8xB .8x -C .8-D .2x 22.(2024·四川广安·中考真题)下列运算中,正确的是( )A .235a a a +=B .()32628a a -=-C .22(1)1a a -=-D .842a a a ÷=23.(2024·四川德阳·中考真题)下列计算正确的是( )A .236a a a ×=B .()a b a b--=-+C .()211a a a +=+D .222()a b a b +=+24.(2024·四川南充·中考真题)下列计算正确的是( )A .235a a a +=B .842a a a ÷=C .236a a a ×=D .()326327a a =25.(2024·四川泸州·中考真题)下列运算正确的是( )A .34325a a a +=B .236326a a a ×=C .()23624a a -=D .62344a a a ÷=26.(2024·四川达州·中考真题)下列计算正确的是( )A .235a a a +=B .()22224a a a +=++C .()3236928ab a b -=-D .1262a a a ÷=27.(2024·四川宜宾·中考真题)下列计算正确的是( )A .2a a a +=B .532a a -=C .2326x x x ×=D .32()()x x x-÷-=28.(2024·四川遂宁·中考真题)下列运算结果正确的是( )A .321a a -=B .236a a a ×=C .()44a a -=-D .()()2339a a a +-=-29.(2024·四川广安·中考真题)代数式3x -的意义可以是( )A .3-与x 的和B .3-与x 的差C .3-与x 的积D .3-与x 的商二、填空题30.(2024·四川雅安·中考真题)如图是1个纸杯和若干个叠放在一起的纸杯的示意图,在探究纸杯叠放在一起后的总高度H 与杯子数量n 的变化规律的活动中,我们可以获得以下数据(字母),请选用适当的字母表示H = .①杯子底部到杯沿底边的高h ;②杯口直径D ;③杯底直径d ;④杯沿高a .31.(2024·四川德阳·中考真题)若一个多项式加上234y xy +-,结果是2325xy y +-,则这个多项式为 .32.(2024·山东济宁·中考真题)已知2210a b -+=,则241b a +的值是 .33.(2024·四川广安·中考真题)若2230x x --=,则2241x x -+= .34.(2024·吉林长春·中考真题)单项式22a b -的次数是 .35.(2024·上海·中考真题)计算()()a b b a +-= .36.(2024·江苏苏州·中考真题)计算:32x x ×= .37.(2024·黑龙江大庆·中考真题)已知1a a +=,则221a a +的值是 .38.(2024·四川·中考真题)已知223x x +=,那么2245x x +-的值是 .39.(2024·山东泰安·中考真题)单项式23ab -的次数是 .40.(2024·四川乐山·中考真题)计算:2a a += .三、解答题41.(2024·江苏常州·中考真题)先化简,再求值:()()211x x x +-+,其中1x =.42.(2024·山东济宁·中考真题)先化简,再求值:(4)(2)(2)x y x x y x y -++-,其中12x =,2y =.43.(2024·重庆·中考真题)计算:(1)()()()312a a a a -+-+;(2)22241244x x x x -æö+÷ç÷--+èø.44.(2024·四川南充·中考真题)先化简,再求值:()23(2)3x x x x +-+÷,其中2 x =-.45.(2024·内蒙古通辽·中考真题)先化简,再求值:()()()()224+--+-a b a b a b a b ,其中2==a b .46.(2024·湖南长沙·中考真题)先化简,再求值:()()()2233m m m m m --++-,其中52m =.。

2018年陕西省中考数学试卷(含答案解析版)

2018年陕西省中考数学试卷(含答案解析版)

2018年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分。

每小题只有一个选项是符合题意的)1.(3.00分)(2018•陕西)﹣711的倒数是()A.711B.−711C.117D.−1172.(3.00分)(2018•陕西)如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥3.(3.00分)(2018•陕西)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个 B.2个 C.3个 D.4个4.(3.00分)(2018•陕西)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.−12B.12C.﹣2 D.25.(3.00分)(2018•陕西)下列计算正确的是()A.a2•a2=2a4B.(﹣a2)3=﹣a6C.3a2﹣6a2=3a2D.(a﹣2)2=a2﹣4 6.(3.00分)(2018•陕西)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为( )A .43√2B .2√2C .83√2D .3√27.(3.00分)(2018•陕西)若直线l 1经过点(0,4),l 2经过点(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为( )A .(﹣2,0)B .(2,0)C .(﹣6,0)D .(6,0)8.(3.00分)(2018•陕西)如图,在菱形ABCD 中.点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,连接EF 、FG 、CH 和HE .若EH=2EF ,则下列结论正确的是( )A .AB=√2EFB .AB=2EFC .AB=√3EFD .AB=√5EF9.(3.00分)(2018•陕西)如图,△ABC 是⊙O 的内接三角形,AB=AC ,∠BCA=65°,作CD ∥AB ,并与⊙O 相交于点D ,连接BD ,则∠DBC 的大小为( )A .15°B .35°C .25°D .45°10.(3.00分)(2018•陕西)对于抛物线y=ax 2+(2a ﹣1)x +a ﹣3,当x=1时,y >0,则这条抛物线的顶点一定在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(共4小题,每小题3分,计12分)11.(3.00分)(2018•陕西)比较大小:3√10(填“>”、“<”或“=”).12.(3.00分)(2018•陕西)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为.13.(3.00分)(2018•陕西)若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.14.(3.00分)(2018•陕西)如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=12AB;G、H是BC边上的点,且GH=13BC,若S1,S2分别表示△EOF和△GOH的面积,则S1与S2之间的等量关系是.三、解答题(共11小题,计78分。

2018年河北省中考数学试题及参考答案案

2018年河北省中考数学试题及参考答案案

2018年河北省初中毕业生升学文化课考试数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分.每小题给出的四个选项中,只有一项是符合题目要求的)1.(2018河北中考,1,3分,★☆☆)下列图形具有稳定性的是( )A.B.C.D.2.(2018河北中考,2,3分,★☆☆)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A.4B.6C.7D.103.(2018河北中考,3,3分,★☆☆)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A.l1B.l2C.l3D.l44.(2018河北中考,4,3分,★☆☆)将9.52变形正确的是( )A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.525.(2018河北中考,5,3分,★☆☆)图中三视图对应的几何体是( )A.B.C.D.6.(2018河北中考,6,3分,★☆☆)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ7.(2018河北中考,7,3分,★☆☆)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是( )A.B.C.D.8.(2018河北中考,8,3分,★☆☆)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C9.(2018河北中考,9,3分,★☆☆)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x 乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是( )A.甲B.乙C.丙D.丁10.(2018河北中考,10,3分,★☆☆)图中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个B.3个C.4个D.5个11.(2018河北中考,11,2分,★★☆)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为( )A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°12.(2018河北中考,12,2分,★★☆)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按如图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加( )A.4cm B.8cm C.(a+4)cm D.(a+8)cm13.(2018河北中考,13,2分,★★☆)若2n+2n+2n+2n=2,则n=( )A.﹣1B.﹣2C.0D.1 414.(2018河北中考,14,2分,★★☆)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.(2018河北中考,15,2分,★★★)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.(2018河北中考,16,2分,★★★)对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值.”甲的结果是c=1,乙的结果是c=3或4,则( )A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确卷Ⅱ(非选择题,共78分)二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(2018河北中考,17,3分,★☆☆)计算:123--= .18.(2018河北中考,18,3分,★☆☆)若a,b互为相反数,则a2﹣b2= .19.(2018河北中考,19,4分,★★☆)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而902︒=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(2018河北中考,20,8分,★☆☆)嘉淇准备完成题目:化简(x2+6x+8)-(6x+5x2+2).发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21.(2018河北中考,21,9分,★☆☆)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22.(2018河北中考,22,9分,★★☆)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试 (1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.23.(2018河北中考,23,9分,★★☆)如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN;(2)当MN=2BN时,求α的度数;(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.24.(2018河北中考,24,10分,★★★) 如图,直角坐标系,xOy 中,一次函数y =-21x +5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4). (1)求m 的值及l 2的解析式; (2)求S △AO C -S △BOC 的值;(3)一次函数y =kx +1的图象为l 3,且l 1,l 2,l 3不能围成三角形,直接写出k 的值.25.(2018河北中考,25,10分,★★★)如图,点A 在数轴上对应的数为26,以原点O为圆心,OA 为半径作优弧AB ,使点B 在O 右下方,且tan ∠AOB =43,在优弧AB 上任取一点P ,且能过P 作直线l ∥OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连结OP .(1)若优弧AB 上一段AP 的长为13π,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线l 与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接写出这时x 的值.26.(2018河北中考,26,11分,★★★)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于B,与滑道y=kx(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5;M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.2018年河北省初中毕业生升学文化课数学试卷试题答案全解全析1.答案:A解析:因为三角形具有稳定性,四边形和其他多边形具有不稳定性,故选A.考查内容:三角形的稳定性.命题意图:本题主要考查了学生对三角形具有稳定性和四边形具有不稳定性的识记,难度较低.2.答案:B解析:∵8.1555×1010=81 555 000 000,∴81 555 000 000中“0”的个数为6个.故选B.一题多解:10次幂相当于把8.1555的小数点向右移动10位,然后可以发现结果为6个0.考查内容:科学记数法.命题意图:本题考查了学生把用科学记数法表示的数还原成原数的能力,难度较低.3.答案:C解析:根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析可得,该图形的对称轴是直线l3,故选C.考查内容:轴对称图形对称轴的判断.命题意图:本题主要考查了学生对轴对称图形和其对称轴的理解,难度较低.4.答案:C解析:9.52=(10﹣0.5)2=102﹣2×10×0.5+0.52,故选C.考查内容:完全平方公式.命题意图:本题考查了学生应用完全平方公式进行计算的能力,难度较低.5.答案:C解析:首先可画出各个图形的三视图,然后对照给出的三视图,观察图形可知选项C符合三视图的要求,故选C.考查内容:由三视图判断几何体.命题意图:本题主要考查了学生由三视图判断几何体的能力,难度较低.6.答案:D解析:Ⅰ是过直线外一点作这条直线的垂线;Ⅱ是作线段的垂直平分线;Ⅲ是过直线上一点作这条直线的垂线;Ⅳ是作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选D.考查内容:尺规作图—基本作图.命题意图:本题主要考查了学生对这四种基本尺规作图方法的掌握,难度较低.7.答案:A解析:设的质量为x,的质量为y,的质量为Z,假设A正确,则x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意.故选A.考查内容:等式的性质.命题意图:本题是代数式和方程的结合,考查学生对代数式和方程的实际应用能力,难度较低.8.答案:B解析:∵PA=PB,∴△APB是等腰三角形.在等腰三角形中,顶角的平分线、底边上的中线、底边上的高线重合(即“三线合一”),故作其中的任何一线均可使结论得到证明.A项中作的是顶角平分线,C项中作的是底边的中线,D项中作的是底边的高线,B项中的作法使点C同时满足两个条件:①是AB的中点;②PC⊥AB,不一定能实现,故B项错误.故选B.考查内容:等腰三角形性质的应用.命题意图:本题主要考查学生对等腰三角形的性质(三线合一)的掌握情况,同时考查运用全等三角形的判定来加以证明的能力,难度不大.9.答案:D解析:∵x乙=x丁>x甲=x丙,∴乙、丁的麦苗比甲、丙要高,∵s 甲2=s 丁2<s 乙2=s 丙2,∴甲、丁麦苗的长势比乙、丙的长势整齐, 综上,麦苗又高又整齐的是丁.故选D . 考查内容:算术平均数;方差.命题意图:本题主要考查了学生对方差的意义的理解和应用掌握,难度较小. 10.答案:B解析:①﹣1的倒数是﹣1,原题错误,该同学判断正确; ②|﹣3|=3,原题计算正确,该同学判断错误;③1、2、3、3的众数为3,原题错误,该同学判断错误; ④20=1,原题正确,该同学判断正确;⑤2m 2÷(﹣m )=﹣2m ,原题正确,该同学判断正确.故选B . 考查内容:绝对值;倒数;整式的除法;零指数幂;众数.命题意图:本题主要考查学生对倒数的定义、绝对值的性质、众数的定义、零指数幂的定义及单项式除以单项式的法则的掌握和运用,难度较小. 11.答案:A解析:如图.∵AP ∥BC ,∴∠EBF =∠DAB =50°.∴∠FBG =∠EBG ﹣∠EBF =80°﹣50°=30°,此时的航行方向为北偏东30°,故选A .考查内容:方位角的知识.命题意图:本题主要考查学生对方位角的辨识和运用,难度适中. 12.答案:B解析:∵原正方形的周长为acm , ∴原正方形的边长为4acm , ∵将它按图的方式向外等距扩1cm ,∴新正方形的边长为(4a+2)cm , 则新正方形的周长为4(4a+2)=a +8(cm ),因此需要增加的长度为a +8﹣a =8cm .一题多解:将小正方形的各边分别延长,交大正方形的各边于一点,在各个顶点处形成边长为1的正方形,原正方形周长为a cm ,所以新正方形的周长为(a +8)cm ,所以需增加8cm . 考查内容:正方形的周长; 列代数式.命题意图:本题主要考查学生根据图形的数量关系列代数式的能力,难度适中. 13.答案:A解析:∵2n +2n +2n +2n =2,∴4×2n =2,∴2×2n =1,∴21+n =1,∴1+n =0,∴n =﹣1.故选A . 考查内容:同底数幂的乘法.命题意图:本题考查了学生对同底数幂的乘法的理解和运用,难度适中. 14.答案:D解析::∵221x x x --÷21x x -=221x x x --•21xx - =221x x x --•()21x x-- =()21x x x --•()21x x --=()2x x--=2x x-, ∴出现错误是在乙和丁,故选D . 考查内容:分式的乘除法.命题意图:本题主要考查学生运用分式的乘除法法则进行运算,难度适中. 15.答案:B解析::如图,连接AI 、BI .∵点I 为△ABC 的内心,∴AI 平分∠CAB ,∴∠CAI =∠BAI ,由平移得:AC ∥DI ,∴∠CAI =∠AID ,∴∠BAI =∠AID ,∴AD =DI , 同理可得:BE =EI ,∴△DIE 的周长=DE +DI +EI =DE +AD +BE =AB =4, 即图中阴影部分的周长为4,故选B .考查内容:三角形的内切圆与内心、平移的性质.命题意图:本题主要考查了学生对三角形内心的定义、平移的性质及角平分线的定义等知识的掌握和运用,难度较大. 16.答案:D解析:对于抛物线L :y =-x (x -3)+c (0≤x ≤3),当x =0时,y =c ;当x =3时,y =c .如图(1),当L 与l 相切时,则关于x 的一元二次方程-x (x -3)+c =x +2,即x 2-2x +2-c =0有两个相等的实数根,即△=(-2)2-4×(2-c )=0,解得c =1.如图(2),当直线l 恰好经过点(0,c )时,则c =0+2=2;如图(3),当直线l 恰经过点(3,c )时,则c =3+2=5,故当2<c ≤5时,L 与l 相交,且有唯一公共点.综上可知,满足条件的c 的值为1,3,4,5,即甲、乙的结果合在一起也不正确.故选D .考查内容:一次函数图象上点的坐标特征;二次函数图象上点的坐标特征.命题意图:本题主要考查了学生对二次函数图象上点的坐标特征和一次函数图象上点的坐标特征和一元二次方程的根的判别式等知识点的灵活运用,难度较大. 17.答案:2 123--4=2. 考查内容:算术平方根的求法.命题意图:本题主要考查学生对算术平方根的理解和掌握,难度较小.18.答案:0解析:∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0.考查内容:相反数;运用公式法进行因式分解.命题意图:本题主要考查了学生运用公式法分解因式的能力以及对相反数的定义的理解和运用,难度较低.19.答案:1421解析:图2中的图案外轮廓周长是:8﹣2+2+8﹣2=14;设∠BPC=2x,∴以∠BPC为内角的正多边形的边数为:3601802x-=18090x-,以∠APB为内角的正多边形的边数为:360x,∴图案外轮廓周长是=18090x-﹣2+360x﹣2+360x﹣2=18090x-+720x﹣6,根据题意可知:2x的值只能为60°,90°,120°,144°,当x越小时,周长越大,∴当x=30时,周长最大,此时的图案定为会标,∴会标的外轮廓周长是=1809030-+72030﹣6=21.考查内容:正多边形和圆.命题意图:本题主要考查了学生阅读理解问题的能力和对正多边形的边数与内角、外角的关系理解和运用,难度较大.20.解析:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6.(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得,a=5.考查内容:整式的加减运算.命题意图:本题主要考查学生对整式的加减运算的掌握,难度较低.21.解析:(1)抽查的学生总数为6÷25%=24(人),读书为5册的学生数为24﹣5﹣6﹣4=9(人),所以条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率=1024=512;(3)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了3人.故答案为3.考查内容:扇形统计图;条形统计图;中位数;概率公式.命题意图:本题主要考查了学生对统计与概率的掌握与运用,难度较低.22.解析:尝试:(1)由题意得前4个台阶上数的和是﹣5﹣2+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1﹣2﹣5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.考查内容:图形的变化规律型问题.命题意图:本题主要考查了学生对图形的变化规律的探究能力,难度适中.23.解析:(1)证明:∵P是AB的中点,∴PA=PB,在△APM和△BPN中,∵,,,A BAPM BPNPA PB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△APM≌△BPN(ASA);(2)解:由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)解:∵△BPN的外心在该三角形的内部,∴△BPN是锐角三角形,∵∠B=50°,∴40°<∠BPN<90°,即40°<α<90°.考查内容:三角形全等的判定及性质;三角形外接圆.命题意图:本题主要考查学生解决三角形和圆的综合题的能力,难度适中.24.解析:(1)把C(m,4)代入一次函数y=﹣12x+5,可得4=﹣12m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,y=﹣12x+5,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC﹣S△BOC=12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(2,4)时,k=32;当l2,l3平行时,k=2;当11,l3平行时,k=﹣12;故k的值为32或2或﹣12.考查内容:三角形全等的判定及性质;三角形外接圆.命题意图:本题主要考查学生对一次函数的综合应用的掌握,难度较大.25.解析:(1)如图1中,由26180nπ⋅⋅=13π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB=43=OPOQ,∴OQ=392,∴x=392.(2)如图当直线PQ与⊙O相切时时,x的值最小.在Rt△OPQ中,OQ=OP÷45=32.5,此时x的值为﹣32.5.(3)分三种情况:①如图2中,作OH⊥PQ于H,设OH=4k,QH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5.此时x的值为31.5.②如图3中,作OH⊥PQ交PQ的延长线于H.设OH=4k,QH=3k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5+3k)2,整理得:k2+3k﹣20.79=0,解得k=﹣6.3(舍弃)或3.3,∴OQ=5k=16.5,此时x的值为﹣16.5.③如图4中,作OH⊥PQ于H,设OH=4k,AH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k 2﹣3k ﹣20.79=0, 解得k =6.3或﹣3.3(舍弃), ∴OQ =5k =31.5不合题意舍弃. 此时x 的值为﹣31.5.综上所述,满足条件的x 的值为﹣16.5或31.5或﹣31.5. 考查内容:几何综合.命题意图:本题主要考查学生对几何知识的综合应用能力,同时考查学生对分类讨论思想的应用,难度较大.26.解析:(1)由题意,点A (1,18)代入y =k x ,得18=1k,∴k =18. 设h =at 2,把t =1,h =5代入,得a =5,∴h =5t 2. (2)∵v =5,AB =1, ∴x =5t +1. ∵h =5t 2,OB =18, ∴y =﹣5t 2+18.由x =5t +1,则t =()115x -, ∴y =﹣2211289(1)185555x x x -+=-++.当y =13时,13=﹣21(1)185x -+,解得x =6或﹣4. ∵x ≥1, ∴x =6. 把x =6代入y =18x,得y =3, ∴运动员在与正下方滑道的竖直距离是13﹣3=10(米). (3)把y =1.8代入y =﹣5t 2+18,得t 2=8125, 解得t =1.8或﹣1.8(负值舍去), ∴x =10,∴甲坐标为(10,1.8)恰号落在滑道y =18x上, 此时,乙的坐标为(1+1.8v 乙,1.8).由题意:1+1.8v乙﹣(1+5×1.8)>4.5,∴v乙>7.5.考查内容:二次函数和反比例函数的综合.命题意图:本题主要考查二次函数和反比例函数的待定系数法以及函数图象上的临界点问题,难度较大.- 21 -。

2018年哈尔滨市中考数学试题及答案

2018年哈尔滨市中考数学试题及答案

哈 尔 滨 市 2018 年 初 中 升 学 考 试数 学 试 卷考生须知:1.本试卷满分为120分,考试时间为120分钟。

2.答题前,考生先将自己的”姓名”、“考号”、“考场"、”座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题纸上答题无效。

4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

5.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷选择题(共30分)(涂卡)一、选择题(每小题3分,共计30分) 1.75-的绝对值是( ). (A)75 (B)57 (C)75- (D)57- 2.下列运算一定正确的是( ).(A)()222n m n m +=+ (B)()333n m mn = (C)()523m m = (D)22m m m =⋅3.下列图形中既是轴对称图形又是中心对称图形的是( ).4.六个大小相同的正力体搭成的几何体如图所示,其俯视图是( ).5. 如图,点P 为⊙O 外一点,PA 为⊙0的切线,A 为切点,PO 交⊙0于点B ,∠P=30°,OB=3,则线段BP 的长为( ). (A)3 (B)33 (C)6 (D)9 6.将抛物线y=-5x 2+l 向左平移1个单位长度,再向下平移2个单位长度, 所得到的抛物线为( ).(A) y=-5(x+1)2-1 (B)y=-5(x-1)2-1 (C)y=-5(x+1)2+3 (D)y=-5(x-1)2+3 7.方程3221+=x x 的解为( ). (A)x=-1 (B)x=0 (C) x=53 (D)x=1 8.如图,在菱形ABCD 中,对角线AC 、BD 相交于点0,BD=8,tan ∠ABD=43, 则线段AB 的长为( ).(A)7 (B)27 (C)5 (D)109.已知反比例函数xk y 32-=的图象经过点(1,1),则k 的值为( ). (A)-1 (B)0 (C)1 (D)210.如图,在△ABC 中,点D 在BC 边上,连接AD,点G 在线段AD 上,GE ∥BD,且交AB 于点E,GF ∥AC,且交CD 于点F,则下列结论一定正确的是( ).(A)AD AGAE AB = (B)AD DGCF DF =(C)BD EG AC FG = (D)DFCF BE AE =第Ⅱ卷非选择题(共90分)二、填空题(每小3分,共计30分)11.将数920 000 000用科学记数法表示为 . 12.函数45y -=x x 中,自变量x 的取值范围是 . 13.把多项式x 3-25x 分解因式的结果是 .14.不等式组{1215325≥---x x x >的解集为 . 15.计算5110-56的结果是 . 16.抛物线y=2(x+2)2+4的顶点坐标为 .17.一枚质地均匀的正方体骰子,骰子的六个面上分別刻有1到6的点数,张兵同学掷一次骰子,骰 子向上的一面出现的点数是3的倍数的概率是 .18.一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是 .19.在△ABC 中, AB=AC,∠BAC=100°,点D 在BC 边上,连接AD,若△ABD 为直角三角形,则∠ADC 的 度数为 .20. 如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点0,AB=OB ,点E 、点F 分别是OA 、OD 的中点,连接EF,∠CEF=45°EM ⊥BC 于点M,EM 交BD 于点N,FN=10,则线段BC 的长为 .三、解答题(其中21~22题各7分,23~24题备8分,25-27题各10分,共计60分21(本题7分)先化简,再求代数式429621-12-+-÷⎪⎭⎫ ⎝⎛-a a a a 的值,其中a=4cos30°+3tan45°. 22.(本题7分)如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.(1) 在图中画出以线段AB 为一边的矩形ABCD(不是正方形),且点C 和点D 均在小正方形的顶点上;(2) 在图中画出以线段AB 为一腰,底边长为22的等腰三角形ABE,点E 在小正方形的顶点上.连接CE,请直接写出线段CE 的长.23.(本题8分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图.请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?24.(本题8分)已知:在四边形ABCD 中,对角线AC 、BD 相交于点E ,且AC ⊥BD,作BF ⊥CD 垂足为点F,BF 与AC 交于点G.∠BGE=∠ADE.(1)如图1,求证:AD=CD ;(2)如图2,BH 是△ABE 的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.25.(本题10分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型,B 型两种型号的放大镜,若购买8个A 型放大镜和5个B 型放大镜需用220元;若购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元?(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A 型放大镜?26.(本题10分)已知:⊙O 是正方形ABCD 的外接圆,点E 在弧AB 上,连接BE 、DE,点F 在弧AD 上,连接BF,DF,BF 与DE 、DA 分别交于点G 、点H,且DA 平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH 上取一点N (点N 不与点A 、点H 重合),连接BN 交DE 于点L,过点H 作HK ∥BN 交DE 于点K,过点E 作EP ⊥BN 垂足为点P ,当BP=HF 时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF 时,延长EP 交⊙0于点R,连接BR,若△BER 的面积与△DHK 的面积的差为47,求线段BR 的长.27.(本题10分)已知:在平面直角坐标系中,点0为坐标原点,点A 在x 轴的负半轴上,直线3273+-=x y 与x 轴、y 轴分别交于B 、C 两点,四边形ABCD 为菱形.(1)如图1,求点A 的坐标;(2)如图2,连接AC,点P 为△ACD 内一点,连接AP 、BP,BP 与AC 交于点G,且∠APB=60°,点E 在线段AP 上,点F 在线投BP 上,且BF=AE.连接AF 、EF,若∠AFE=30°,求AF 2+EF 2的值;(3)如图3在(2)的条件下,当PE=AE 时,求点P 的坐标.一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C.D.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:A.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m2【分析】直接利用完全平方公式以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、(m+n)2=m2+2mn+n2,故此选项错误;B、(mn)3=m3n3,正确;C、(m3)2=m6,故此选项错误;D、m•m2=m3,故此选项错误;故选:B.【点评】此题主要考查了完全平方公式以及积的乘方运算、同底数幂的乘除运算,正确掌握运算法则是解题关键.3.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.【解答】解:A、此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;B、此图形不是轴对称图形,是中心对称图形,此选项不符合题意;C、此图形既是轴对称图形,又是中心对称图形,此选项符合题意;D、此图形是轴对称图形,但不是中心对称图形,此选项不符合题意;故选:C.【点评】本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【分析】俯视图有3列,从左到右正方形个数分别是2,1,2.【解答】解:俯视图从左到右分别是2,1,2个正方形.故选:B.【点评】本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3B.3C.6D.9【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP 的长.【解答】解:连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6﹣3=3.故选:A.【点评】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.6.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1B.y=﹣5(x﹣1)2﹣1C.y=﹣5(x+1)2+3D.y=﹣5(x ﹣1)2+3【分析】直接利用二次函数图象与几何变换的性质分别平移得出答案.【解答】解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x+1)2﹣1.故选:A.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.7.(3.00分)方程=的解为()A.x=﹣1B.x=0C.x=D.x=1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2C.5D.10【分析】根据菱形的性质得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根据勾股定理求出AB即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==,∴AO=3,在Rt△AOB中,由勾股定理得:AB===5,故选:C.【点评】本题考查了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.9.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1B.0C.1D.2【分析】把点的坐标代入函数解析式得出方程,求出方程的解即可.【解答】解:∵反比例函数y=的图象经过点(1,1),∴代入得:2k﹣3=1×1,解得:k=2,故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k的方程是解此题的关键.10.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=【分析】由GE∥BD、GF∥AC可得出△AEG∽△ABD、△DFG∽△DCA,根据相似三角形的性质即可找出==,此题得解.【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.故选:D.【点评】本题考查了相似三角形的判定与性质,利用相似三角形的性质找出==是解题的关键.二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为9.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×108【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)函数y=中,自变量x的取值范围是x≠4.【分析】根据分式分母不为0列出不等式,解不等式即可.【解答】解:由题意得,x﹣4≠0,解得,x≠4,故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围,掌握分式分母不为0是解题的关键.13.(3.00分)把多项式x3﹣25x分解因式的结果是x(x+5)(x﹣5)【分析】首先提取公因式x,再利用平方差公式分解因式即可.【解答】解:x3﹣25x=x(x2﹣25)=x(x+5)(x﹣5).故答案为:x(x+5)(x﹣5).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.14.(3.00分)不等式组的解集为3≤x<4.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.15.(3.00分)计算6﹣10的结果是4.【分析】首先化简,然后再合并同类二次根式即可.【解答】解:原式=6﹣10×=6﹣2=4,故答案为:4.【点评】此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为(﹣2,4).【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【解答】解:∵y=2(x+2)2+4,∴该抛物线的顶点坐标是(﹣2,4),故答案为:(﹣2,4).【点评】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:=.故答案为:.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是6πcm2.【分析】先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.【解答】解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴=3π,解得:R=4,所以此扇形的面积为=6π(cm2),故答案为:6π.【点评】本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.【点评】本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD 于点N,FN=,则线段BC的长为4.【分析】设EF=x,根据三角形的中位线定理表示AD=2x,AD∥EF,可得∠CAD=∠CEF=45°,证明△EMC是等腰直角三角形,则∠CEM=45°,证明△ENF≌△MNB,则EN=MN=x,BN=FN=,最后利用勾股定理计算x的值,可得BC的长.【解答】解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ACB=∠CAD=45°,∵EM⊥BC,∴∠EMC=90°,∴△EMC是等腰直角三角形,∴∠CEM=45°,连接BE,∵AB=OB,AE=OE∴BE⊥AO∴∠BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ENF≌△MNB,∴EN=MN=x,BN=FN=,Rt△BNM中,由勾股定理得:BN2=BM2+MN2,∴,x=2或﹣2(舍),∴BC=2x=4.故答案为:4.【点评】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=4cos30°+3tan45°时,所以a=2+3原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【分析】(1)利用数形结合的思想解决问题即可;(2)利用数形结合的思想解决问题即可;【解答】解:(1)如图所示,矩形ABCD即为所求;(2)如图△ABE即为所求;【点评】本题考查作图﹣应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?【分析】(1)由“诗词”的人数及其所占百分比可得总人数;(2)总人数减去其他种类的人数求得“书法”的人数即可补全条形图;(3)用总人数乘以样本中“国画”人数所占比例.【解答】解:(1)本次调查的学生总人数为24÷20%=120人;(2)“书法”类人数为120﹣(24+40+16+8)=32人,补全图形如下:(3)估计该中学最喜爱国画的学生有960×=320人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.【分析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE ,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S△ADE=AE•DE=•2a•a=a2,∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,则S=AC•DE=•(2a+2a)•a=2a2=2S△ADE;△ADC在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,=AE•BE=•(2a)•2a=2a2,∴S△ABES△ACE=CE•BE=•(2a)•2a=2a2,S△BHG=HG•BE=•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.【点评】本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【分析】(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【解答】解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:,解得:,答:每个A型放大镜和每个B型放大镜分别为20元,12元;(2)设购买A型放大镜m个,根据题意可得:20a+12×(75﹣a)≤1180,解得:x≤35,答:最多可以购买35个A型放大镜.【点评】本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.【分析】(1)由正方形的四个角都为直角,得到两个角为直角,再利用同弧所对的圆周角相等及角平分线定义,等量代换即可得证;(2)如图2,过H作HM⊥KD,垂足为点M,根据题意确定出△BEP≌△HKM,利用全等三角形对应边相等即可得证;(3)根据3HF=2DF,设出HF=2a,DF=3a,由角平分线定义得到一对角相等,进而得到正切值相等,表示出DM=3a,利用正方形的性质得到△BED≌△DFB,得到BE=DF=3a,过H作HS⊥BD,垂足为S,根据△BER的面积与△DHK的面积的差为,求出a的值,即可确定出BR的长.【解答】(1)证明:如图1,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,∵∠F=∠A=90°,∴∠F=∠ABC,∵DA平分∠EDF,∴∠ADE=∠ADF,∵∠ABE=∠ADE,∴∠ABE=∠ADF,∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF,∴∠CBE=∠DHG;(2)如图2,过H作HM⊥KD,垂足为点M,∵∠F=90°,∴HF⊥FD,∵DA平分∠EDF,∴HM=FH,∵FH=BP,∴HN=BP,∵KH∥BN,∴∠DKH=∠DLN,∴∠ELP=∠DLN,∴∠DKH=∠ELP,∵∠BED=∠A=90°,∴∠BEP+∠LEP=90°,∵EP⊥BN,∴∠BPE=∠EPL=90°,∴∠LEP+∠ELP=90°,∴∠BEP=∠ELP=∠DKH,∵HM⊥KD,∴∠KMH=∠BPE=90°,∴△BEP≌△HKM,∴BE=HK;(3)解:如图3,连接BD,∵3HF=2DF,BP=FH,∴设HF=2a,DF=3a,∴BP=FH=2a,由(2)得:HM=BP,∠HMD=90°,∵∠F=∠A=90°,∴tan∠HDM=tan∠FDH,∴==,∴DM=3a,∵四边形ABCD为正方形,∴AB=AD,∴∠ABD=∠ADB=45°,∵∠ABF=∠ADF=∠ADE,∠DBF=45°﹣∠ABF,∠BDE=45°﹣∠ADE,∴∠DBF=∠BDE,∵∠BED=∠F,BD=BD,∴△BED≌△DFB,∴BE=FD=3a,过H作HS⊥BD,垂足为S,∵tan∠ABH=tan∠ADE==,∴设AB=3m,AH=2m,∴BD=AB=6m,DH=AD﹣AH=m,∵sin∠ADB==,∴HS=m,∴DS==m,∴BS=BD﹣DS=5m,∴tan∠BDE=tan∠DBF==,∵∠BDE=∠BRE,∴tanBRE==,∵BP=FH=2a,∴RP=10a,在ER上截取ET=DK,连接BT,由(2)得:∠BEP=∠HKD,∴△BET≌△HKD,∴∠BTE=∠KDH,∴tan∠BTE=tan∠KDH,∴=,即PT=3a,∴TR=RP﹣PT=7a,∵S△BER﹣S△DHK=,∴BP•ER﹣HM•DK=,∴BP•(ER﹣DK)=BP•(ER﹣ET)=,∴×2a×7a=,解得:a=(负值舍去),∴BP=1,PR=5,则BR==.【点评】此题属于圆综合题,涉及的知识有:正方形的性质,角平分线性质,全等三角形的判定与性质,三角形的面积,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.【分析】(1)利用勾股定理求出BC的长即可解决问题;(2)如图2中,连接CE、CF.想办法证明△CEF是等边三角形,AF⊥CF即可解决问题;(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP 设截取BT=PA,连接AT、CT、CF、PC.想办法证明△APF是等边三角形,AT⊥PB即可解决问题;【解答】解:(1)如图1中,∵y=﹣x+,∴B(,0),C(0,),∴BO=,OC=,在Rt△OBC中,BC==7,∵四边形ABCD是菱形,∴AB=BC=7,∴OA=AB﹣OB=7﹣=,∴A(﹣,0).(2)如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠AOB=60°,∴∠APB=∠ACB,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACR≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP 设截取BT=PA,连接AT、CT、CF、PC.∵△CEF是等边三角形,∴∠CEF=60°,EC=CF,∵∠AFE=30°,∠CEF=∠H+∠EFH,∴∠H=∠CEF﹣∠EFH=30°,∴∠H=∠EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠PEC=∠AEH,∴△CPE≌△HAE,∴∠PCE=∠H,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠TCF=∠CTP﹣∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,∴AT⊥PF,设BF=m,则AE=PE=m,∴PF=AP=2m,TF=TP=m,TB=2m,BP=3m,在Rt△APT中,AT==m,在Rt△ABT中,∵AT2+TB2=AB2,∴(m)2+(2m)2=72,解得m=或﹣(舍弃),∴BF=,AT=,BP=3,sin∠ABT==,∵OK=PQ=BP•sin∠PBQ=3×=3,BQ==6,∴OQ=BQ﹣BO=6﹣=,∴P(﹣,3)【点评】本题考查一次函数综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、菱形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建方程解决问题,属于中考压轴题.。

全国181套中考数学试题分类汇编3整式

全国181套中考数学试题分类汇编3整式

3:整式一、选择题1.(天津3分)若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是(A)0x y z ++= (B) 20x y z +-= (C) 20y z x +-= (D)2=0x z y +-【答案】D 。

【考点】代数式变形,完全平方公式。

【分析】∵()()2222()4()()=24x z x y y z x xz z xy xz y yz -----+---+()()()()()222222=244=44=2x xz z xy yz y x z y x z yx z y ++-+++-+++-∴由()22=0x z y +-得2=0x z y +-。

故选D 。

2.(重庆4分)计算(a 3)2的结果是A 、aB 、a 5C 、a 6D 、a 9【答案】C 。

【考点】幂的乘方。

【分析】根据底数不变,指数相乘的幂的乘方法则计算即可:(a 3)2=a 3×2=a 6。

故选C 。

3.(重庆潼南4分)计算3 a •2 a 的结果是A .6aB .6a 2C. 5aD. 5a2【答案】B 。

【考点】单项式乘单项式。

【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可:∵3 a •2 a =6112a a +=,故选B 。

4.(浙江舟山、嘉兴3分)下列计算正确的是(A )32x x x =⋅ (B )2x x x =+(C )532)(x x =(D )236x x x =÷【答案】A 。

【考点】同底数幂的乘法,合并同类项,幂的乘方,同底数幂的除法。

【分析】根据同底数幂的乘法、合并同类项、幂的乘方、同底数幂的除法的运算法则计算即可:A 、正确;B 、x +x =2x ,选项错误;C 、(x 2)3=x 6,选项错误;D 、x 6÷x 3=x 3,选项错误。

中考数学历年各地市真题 整式及整式方程

中考数学历年各地市真题 整式及整式方程

中考数学历年各地市真题整式与整式方程4.(济宁市)把代数式 322363x x y xy -+分解因式,结果正确的是 A .(3)(3)x x y x y +- B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y - 6.(济宁市)若0)3(12=++-+y y x ,则y x -的值为A .1B .-1C .7D .-712.(济宁市)若代数式26x x b -+可化为2()1x a --,则b a -的值是 . 9.(青岛市)= . 11.(青岛市)(1)解方程组:34194x y x y +=⎧⎨-=⎩7.(南通市)关于x 的方程12mx x -=的解为正实数,则m 的取值范围是A .m ≥2B .m ≤2C .m >2D .m <213.(南通市)分解因式:2ax ax -= ▲ . 12.(盐城市)因式分解:=-a a 422▲5.(盐城市)下列说法或运算正确的是 A .1.0×102有3个有效数字 B .222)(b a b a -=-C .532a a a =+D .a 10÷a 4= a 610.(盐城市)使2-x 有意义的x 的取值范围是 ▲ .15.(连云港市)若关于x 的方程x 2-mx +3=0有实数根,则m 的值可以为___________.(任意给出一个符合条件的值即可) 2.(泰州市)下列运算正确的是( )A.623a a a =∙ B. 632)(a a -=- C. 33)(ab ab = D.428a a a =÷ 8.(泰州市)已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( )A.Q P >B. Q P =C. Q P <D.不能确定 19. (泰州市)(8分)计算(1)12)21(30tan 3)21(001+-+---OABC第10题图·16.(淮安市)小明根据方程5x+2=6x-8编写了一道应用题.请你把空缺的部分补充完整. 某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个; .请问手工小组有几人?(设手工小组有x 人) 2.(连云港市)下列计算正确的是( )A .a +a =x 2B .a 〃a 2=a 2C .(a 2) 3=a 5D .a 2 (a +1)=a 3+1 2.(淮安市)计算32a a ⋅的结果是A .a 6B .a 5C .2a 3D .a 2.(常德市)分解因式:269___________.x x ++=3.(常德市)______.=4.(常德市)方程2560x x --=的两根为( )A 。

中考数学备考之整式选择题60题

中考数学备考之整式选择题60题

中考数学备考之整式选择题60题一.单项式(共3小题,满分6分,每小题2分)1.(2分)(2018•云南)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n 2.(2分)(2022•攀枝花)下列各式不是单项式的为()A.3B.a C.D.x2y3.(2分)(2021•海南)下列整式中,是二次单项式的是()A.x2+1B.xy C.x2y D.﹣3x二.多项式(共2小题,满分4分,每小题2分)4.(2分)(2014•佛山)多项式2a2b﹣ab2﹣ab的项数及次数分别是()A.3,3B.3,2C.2,3D.2,25.(2分)(2013•佛山)多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3B.2,﹣3C.5,﹣3D.2,3三.整式的加减(共3小题,满分6分,每小题2分)6.(2分)(2022•德州)已知M=a2﹣a,N=a﹣2(a为任意实数),则M﹣N的值()A.小于0B.等于0C.大于0D.无法确定7.(2分)(2022•重庆)对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.38.(2分)(2022•重庆)在多项式x﹣y﹣z﹣m﹣n中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.3四.整式的加减—化简求值(共1小题,满分2分,每小题2分)9.(2分)(2021•甘肃)对于任意的有理数a,b,如果满足+=,那么我们称这一对数a,b为“相随数对”,记为(a,b).若(m,n)是“相随数对”,则3m+2[3m+(2n ﹣1)]=()A.﹣2B.﹣1C.2D.3五.同底数幂的乘法(共2小题,满分4分,每小题2分)10.(2分)(2022•朝阳)下列运算正确的是()A.a8÷a4=a2B.4a5﹣3a5=1C.a3•a4=a7D.(a2)4=a6 11.(2分)(2022•镇江)下列运算中,结果正确的是()A.3a2+2a2=5a4B.a3﹣2a3=a3C.a2•a3=a5D.(a2)3=a5六.幂的乘方与积的乘方(共6小题,满分12分,每小题2分)12.(2分)(2022•毕节市)计算(2x2)3的结果,正确的是()A.8x5B.6x5C.6x6D.8x613.(2分)(2022•淄博)计算(﹣2a3b)2﹣3a6b2的结果是()A.﹣7a6b2B.﹣5a6b2C.a6b2D.7a6b214.(2分)(2022•福建)化简(3a2)2的结果是()A.9a2B.6a2C.9a4D.3a415.(2分)(2022•娄底)下列式子正确的是()A.a3•a2=a5B.(a2)3=a5C.(ab)2=ab2D.a3+a2=a5 16.(2分)(2022•武汉)计算(2a4)3的结果是()A.2a12B.8a12C.6a7D.8a717.(2分)(2022•宿迁)下列运算正确的是()A.2m﹣m=1B.m2•m3=m6C.(mn)2=m2n2D.(m3)2=m5七.同底数幂的除法(共6小题,满分12分,每小题2分)18.(2分)(2022•盐城)下列计算,正确的是()A.a+a2=a3B.a2•a3=a6C.a6÷a3=a2D.(a2)3=a6 19.(2分)(2022•河北)计算a3÷a得a,则“?”是()A.0B.1C.2D.320.(2分)(2022•丹东)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(ab)3=a3b3D.a8÷a2=a4 21.(2分)(2022•日照)下列运算正确的是()A.a6÷a2=a3B.a4•a2=a6C.(a2)3=a5D.a3+a3=a6 22.(2分)(2022•黔东南州)下列运算正确的是()A.a6÷a2=a3B.a2+a3=a5C.﹣2(a+b)=﹣2a+b D.(﹣2a2)2=4a423.(2分)(2022•宜昌)下列运算错误的是()A.x3•x3=x6B.x8÷x2=x6C.(x3)2=x6D.x3+x3=x6八.单项式乘单项式(共5小题,满分10分,每小题2分)24.(2分)(2022•锦州)下列运算正确的是()A.(﹣4ab2)2=8a2b4B.﹣a6÷a3=﹣a3C.2a3•a2=2a6D.a3+a3=2a625.(2分)(2022•常德)计算x4•4x3的结果是()A.x B.4x C.4x7D.x1126.(2分)(2022•陕西)计算:2x•(﹣3x2y3)=()A.6x3y3B.﹣6x2y3C.﹣6x3y3D.18x3y3 27.(2分)(2022•黔西南州)计算(﹣3x)2•2x正确的是()A.6x3B.12x3C.18x3D.﹣12x3 28.(2分)(2022•赤峰)下列运算正确的是()A.a3+a2=a5B.a2•a3=a6C.2a•3a2=6a3D.(﹣a4)3=﹣a7九.单项式乘多项式(共4小题,满分8分,每小题2分)29.(2分)(2021•兰州)计算:2a(a2+2b)=()A.a3+4ab B.2a3+2ab C.2a+4ab D.2a3+4ab30.(2分)(2019•柳州)计算:x(x2﹣1)=()A.x3﹣1B.x3﹣x C.x3+x D.x2﹣x31.(2分)(2019•邵阳)以下计算正确的是()A.(﹣2ab2)3=8a3b6B.3ab+2b=5abC.(﹣x2)•(﹣2x)3=﹣8x5D.2m(mn2﹣3m2)=2m2n2﹣6m332.(2分)(2021•兰州)计算:a2(a﹣2b)=()A.a3﹣a2b B.a3﹣2a2b C.a3﹣2ab2D.a3﹣a2b2一十.多项式乘多项式(共3小题,满分6分,每小题2分)33.(2分)(2019•荆门)下列运算不正确的是()A.xy+x﹣y﹣1=(x﹣1)(y+1)B.x2+y2+z2+xy+yz+zx=(x+y+z)2C.(x+y)(x2﹣xy+y2)=x3+y3D.(x﹣y)3=x3﹣3x2y+3xy2﹣y334.(2分)(2019•台湾)计算(2x﹣3)(3x+4)的结果,与下列哪一个式子相同?()A.﹣7x+4B.﹣7x﹣12C.6x2﹣12D.6x2﹣x﹣12 35.(2分)(2022•南通)已知实数m,n满足m2+n2=2+mn,则(2m﹣3n)2+(m+2n)(m ﹣2n)的最大值为()A.24B.C.D.﹣4一十一.完全平方公式(共9小题,满分18分,每小题2分)36.(2分)(2022•枣庄)下列运算正确的是()A.3a2﹣a2=3B.a3÷a2=aC.(﹣3ab2)2=﹣6a2b4D.(a+b)2=a2+ab+b237.(2分)(2022•资阳)下列计算正确的是()A.2a+3b=5ab B.(a+b)2=a2+b2C.a2×a=a3D.(a2)3=a538.(2分)(2022•郴州)下列运算正确的是()A.a3+a2=a5B.a6÷a3=a2C.(a+b)2=a2+b2D.=539.(2分)(2022•德州)下列运算正确的是()A.a2+2a2=3a4B.(2a2)3=8a6C.a3•a2=a6D.(a﹣b)2=a2﹣b240.(2分)(2022•沈阳)下列计算结果正确的是()A.(a3)3=a6B.a6÷a3=a2C.(ab4)2=ab8D.(a+b)2=a2+2ab+b241.(2分)(2022•湘西州)下列运算正确的是()A.3a﹣2a=a B.(a3)2=a5C.2﹣=2D.(a﹣1)2=a2﹣142.(2分)(2022•眉山)下列运算中,正确的是()A.x3•x5=x15B.2x+3y=5xyC.(x﹣2)2=x2﹣4D.2x2•(3x2﹣5y)=6x4﹣10x2y43.(2分)(2022•东营)下列运算结果正确的是()A.3x3+2x3=5x6B.(x+1)2=x2+1C.x8÷x4=x2D.=244.(2分)(2022•西宁)下列运算正确的是()A.a2+a4=a6B.(a﹣b)2=a2﹣b2C.(a2b)3=a6b3D.a6÷a6=a一十二.完全平方公式的几何背景(共3小题,满分6分,每小题2分)45.(2分)(2020•枣庄)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b246.(2分)(2013•常州)有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为()A.a+b B.2a+b C.3a+b D.a+2b47.(2分)(2012•乌鲁木齐)图(1)是边长为(a+b)的正方形,将图(1)中的阴影部分拼成图(2)的形状,由此能验证的式子是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2﹣(a2+b2)=2abC.(a+b)2﹣(a﹣b)2=4ab D.(a﹣b)2+2ab=a2+b2一十三.平方差公式(共4小题,满分8分,每小题2分)48.(2分)(2022•上海)下列运算正确的是()A.a2+a3=a6B.(ab)2=ab2C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b249.(2分)(2022•成都)下列计算正确的是()A.m+m=m2B.2(m﹣n)=2m﹣nC.(m+2n)2=m2+4n2D.(m+3)(m﹣3)=m2﹣950.(2分)(2022•赤峰)已知(x+2)(x﹣2)﹣2x=1,则2x2﹣4x+3的值为()A.13B.8C.﹣3D.551.(2分)(2022•广元)下列运算正确的是()A.x2+x=x3B.(﹣3x)2=6x2C.3y•2x2y=6x2y2D.(x﹣2y)(x+2y)=x2﹣2y2一十四.平方差公式的几何背景(共4小题,满分8分,每小题2分)52.(2分)(2020•牡丹江)如图(1)所示在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个矩形如图(2)所示,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b253.(2分)(2022•百色)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(ab)2=a2b254.(2分)(2021•宜昌)从前,古希腊一位庄园主把一块边长为a米(a>6)的正方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的一边增加6米,相邻的另一边减少6米,变成矩形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A.没有变化B.变大了C.变小了D.无法确定55.(2分)(2020•郴州)如图1,将边长为x的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释下列哪个等式()A.x2﹣2x+1=(x﹣1)2B.x2﹣1=(x+1)(x﹣1)C.x2+2x+1=(x+1)2D.x2﹣x=x(x﹣1)一十五.整式的除法(共5小题,满分10分,每小题2分)56.(2分)(2022•聊城)下列运算正确的是()A.(﹣3xy)2=3x2y2B.3x2+4x2=7x4C.t(3t2﹣t+1)=3t3﹣t2+1D.(﹣a3)4÷(﹣a4)3=﹣1 57.(2分)(2022•台湾)计算多项式6x2+4x除以2x2后,得到的余式为何?()A.2B.4C.2x D.4x58.(2分)(2022•齐齐哈尔)下列计算正确的是()A.ab2÷ab=b B.(a﹣b)2=a2﹣b2C.2m4+3m4=5m8D.(﹣2a)3=﹣6a359.(2分)(2022•绍兴)下列计算正确的是()A.(a2+ab)÷a=a+b B.a2•a=a2C.(a+b)2=a2+b2D.(a3)2=a560.(2分)(2020•台湾)计算2x2﹣3除以x+1后,得商式和余式分别为何?()A.商式为2,余式为﹣5B.商式为2x﹣5,余式为5C.商式为2x+2,余式为﹣1D.商式为2x﹣2,余式为﹣1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中考数学真题汇编:整式(31题)
一、选择题
1. (2018四川内江)下列计算正确的是()
A. B.
C. D.
【答案】D
2.(2018广东深圳)下列运算正确的是( )
A. B.
C. D.
【答案】B
3.(2018浙江义乌)下面是一位同学做的四道题:①.② .③
.④ .其中做对的一道题的序号是()
A. ①B . ② C.
③ D.

【答案】C
4.下列运算正确的是()
A. B.
C. D.
【答案】A
5.下列运算正确的是()。

A. B.
C.
D.
【答案】C
6.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()
B. 2
C. 3
D. 4
【答案】B
7.下列运算正确的是()
A. B.
C.
D.
【答案】C
8.计算的结果是()
A. B.
C.
D. 【答案】B
9.下列运算正确的是()
A. B.
C. D.
【答案】C
10.计算的结果是()
A. B.
C.
D.
【答案】C
11.下列计算正确的是()
A. B. C.
D.
【答案】D
12.下列计算结果等于的是()
C.
D.
【答案】D
13.下列运算正确的是()
A.
B.
C.
D.
【答案】C
14.下列运算正确的是()
A. B.
C. D .
【答案】D
15.下列计算正确的是()。

A.(x+y)2=x2+y2
B.(-xy2)3=-x3y6
C.x6÷x3=x2
D.=2
【答案】D
16.下面是一位同学做的四道题①(a+b)2=a2+b2,②(2a2)2=-4a4,③a5÷a3=a2,④a3·a4=a12。

其中做对的一道题的序号是()
A. ①B . ② C.
③ D.

【答案】C
17.下列计算正确的是()
B.a3·a2=a6
C.a6÷a2=a3
D.(a3)2=a5
【答案】A
18.计算结果正确的是()
A. B.
C.
D.
【答案】B
19.下列计算正确的是( )
A. B. C.
D.
【答案】C
20.在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD-AB=2时,S2-S1的值为()
A.2a
B.2b
C.2a-2b
D.-2b
【答案】B
二、填空题(共6题;共6分)
21.计算:________.
【答案】-4x7
22.计算的结果等于________.
23.已知x,y满足方程组,则x2-4y2的值为________。

【答案】-15
24.计算:a-3a=________。

【答案】-2a
25.化简的结果是________.
【答案】
26.分解因式:________·
【答案】(x+3)(x-3)
三、计算题(共4题;共35分)
27.计算或化简.
(1);
(2).
【答案】(1)解:()-1+| −2|+tan60°
=2+(2- )+
=2+2- +
=4
(2)解:(2x+3)2-(2x+3)(2x-3)
=(2x)2+12x+9-[(2x2)-9]
=(2x)2+12x+9-(2x)2+9
=12x+18
28.先化简,再求值:(x-1)2+x(3-x),其中x= .
【答案】解:原式=x2-2x+1+3x-x2,
=x+1,
∵x= 时,
∴原式= +1= .
29.计算:
(1)
(2)
【答案】(1)解:原式= =
(2)解:原式=
=
=
30.
(1)计算:
(2)化简:
【答案】(1)=4- +1=5-
(2)=m2+4m+4+8-4=m2+12
四、解答题(共1题;共5分)
31.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:
小明发现这三种方案都能验证公式:
a2+2ab+b2=(a+b)2,
对于方案一,小明是这样验证的:
a2+ab+ab+b2=a2+2ab+b2=(a+b)2
请你根据方案二,方案三,写出公式的验证过程。

【答案】方案二:a2+ab+b(a+b)=a2+ab+ab+b2=a2+2ab+b2=(a+b)2方案三:a2+b(a+a +b)×2=a2+ab+ab+b2=a2+2abtb2=(a+b)2。

相关文档
最新文档