高中物理奥赛讲义(热学)doc热学 (2)
高中物理奥赛指导教学
高中物理奥赛指导教学一、教学任务及对象1、教学任务本教学设计旨在为高中学生提供物理奥赛的专业指导。
教学任务包括对物理学中的重点、难点及竞赛热点的深入讲解,旨在帮助学生建立扎实的物理基础,提高解决复杂物理问题的能力。
通过本课程,学生将掌握物理奥赛的解题思路、技巧与方法,培养科学探究精神,为参加各类物理竞赛做好充分准备。
2、教学对象本教学设计的对象为高中学生,特别是对物理学科有浓厚兴趣、学有余力,并希望参加物理奥赛的学生。
这些学生在基础知识掌握、思维能力、学习兴趣等方面具备一定的基础,但需要在物理奥赛方面的专业指导,以提高竞赛成绩,拓展学科视野。
教学内容将根据学生的实际情况进行适度调整,确保教学效果的最大化。
二、教学目标1、知识与技能(1)掌握高中物理基础知识,包括力学、电磁学、热学、光学、原子物理学等模块的核心概念、原理和公式。
(2)了解物理奥赛试题的特点,熟悉各类题型的解题方法,提高解题速度和准确率。
(3)学会运用数学工具分析物理问题,如微积分、线性代数、概率论等,提升物理建模和计算能力。
(4)掌握科学探究的方法,如实验设计、数据分析、逻辑推理等,提高自主学习和解决问题的能力。
2、过程与方法(1)通过课堂讲解、案例分析、习题演练等多种教学方式,帮助学生掌握物理奥赛知识体系。
(2)采用问题驱动的教学方法,引导学生主动思考、提问,培养其发现问题和解决问题的能力。
(3)组织小组讨论、合作学习,促进学生之间的交流与合作,提高团队协作能力。
(4)定期进行模拟测试,检验学生的学习效果,及时调整教学策略。
3、情感,态度与价值观(1)激发学生对物理学科的兴趣和热情,培养其探究未知世界的勇气和毅力。
(2)培养学生严谨的科学态度,使其在学习和生活中遵循客观事实,追求真理。
(3)引导学生关注社会热点和科技发展,增强其社会责任感和使命感。
(4)通过物理奥赛的学习,帮助学生树立正确的价值观,认识到知识的力量,为其未来的发展奠定坚实基础。
2020年高中物理竞赛-热学A(联赛版)05热力学第二定律:卡诺定理(共15张PPT)
C ,
1 Qj 1 Tj
Qi
Ti
Qj Tj Qi Ti
Qj Qi Tj Ti
因为 Q j ' Q j , 则上式可写为
Qi Qj 0 Ti Tj
对所有i 、j 求和,即得 n Qi 0.
T i 1 i
其中等号适用于可逆过程, 不等号适用于不可逆过程。
dQ
若 n ,则 Ti Ti1 Ti 0, Qi dQ, 于是有
于是有
dW
(1
T2 T1
)dQ1
热机工作过程中
工质在高温处吸热 dQ1 C pdT1' 在低温处放热 dQ2 C pdT2 '
能量守恒 dW dQ1 dQ2 C pdT1'C pdT2 '
积分得 W C p (T 'T1) C p (T 'T2 ) C p (T1 T2 2T ')
有一热机,其输出功驱动B与A之间的制 TA ' 100K ,TB ' TC ' 300K
冷机将热量再传输到B或A。设A物体最 后达到的温度最高,则B、C两物体应有
TA ' 900K ,TB ' TC ' 100K
T ’=T ’, 即有 TB ' TC ' TA 解得:
显然,只有第一组解合理。
S TA ' CdT TB ' CdT TC ' CdT 0
T TA
T TB
T TC
即有 ln TA ln TB ln TC 0 于是有 TA 'TB 'TC ' TATBTC
TA
TB
TC
依题意,工作方式可能是A或B与C之间 TA ' 400K ,TB ' TC ' 150K
物理竞赛书目
书名1全国中学生物理竞赛模拟训练试卷精选2中学奥林匹克竞赛物理教程(含力学篇、电磁学篇两册)3中学奥林匹克竞赛物理讲座4中学物理奥赛辅导:热学、光学、近代物理5中学物理奥赛辅导:物理竞赛专题精编6高中物理奥林匹克竞赛教程7更高更妙的物理8更高更妙的物理(实验篇)9高中物理竞赛辅导讲义(通向金牌之路)10高中物理竞赛培优教程11高中物理竞赛培优教程习题全解12俄罗斯中学物理赛题新解500例13新编高中物理竞赛培训教材(共1、2两册)14高中物理竞赛题典15高中物理竞赛题典习题全解16冲刺全国高中物理竞赛17高中物理奥赛讲义(共1、2、3三册)18高中物理竞赛解题方法(含力学、电磁学两册)19高中物理竞赛实战演练(含高一、高二两册)20高中物理竞赛方法指导21全国中学生物理奥赛全真模拟试题与解析(含高一、高二两卷)22物理竞赛集训精编23高中物理竞赛解题指导/金牌之路24全国中学生物理竞赛1-20届试题解析:力学分册25全国中学生物理竞赛1-20届试题解析:电学分册26全国中学生物理竞赛1-20届试题解析:热学、光学与近代物理分册27全国中学生物理竞赛1-20届试题解析:实验分册28新编高中物理奥赛指导29新编高中物理奥赛实用题典30俄罗斯中学物理竞赛试题精编竞赛书籍31启东中学奥赛训练教程(高中物理)32启东中学奥赛精题详解(高中物理)33高中物理奥赛试题评析34物理学奥赛教程35高中物理竞赛全解题库36高中物理奥赛金牌全解题库37物理/点击金牌长沙市一中奥赛标准讲义38中学竞赛物理实训教程39金牌奥赛高级教程(含高一、高二)40国际奥赛试题全解—物理学41物理竞赛教程(含高一、高二、高三三册)年级42高中物理竞赛考前辅导43亚洲物理奥林匹克试题与解答第1届-第8届44多功能题典·高中物理竞赛45赛前集训(高中物理竞赛考前训练)46高中物理竞赛专题辅导/赛前集训47奥赛经典·分级精讲与测试系列-高一物理48奥赛经典·分级精讲与测试系列-高二物理49奥赛经典·解题金钥匙系列-高中物理50奥赛经典·高级教程系列-物理奥林匹克教程51奥赛经典·高级教程系列-物理奥林匹克实验教程52竞赛物理53竞赛物理习题解析5490年代国际物理奥赛试题及解答55国际物理奥林匹克竞赛的培训与选拔56全国高中应用物理知识竞赛辅导57高中物理奥赛解题方法与练习58全国中学生物理竞赛专辑59全国中学生物理竞赛实验指导书60奥赛物理题选61物理素质强化训练——金牌奥林匹克丛书62新概念高中物理读本(共三册)63新概念教程(含力学、电磁学、光学、热学、量子物理五册)64新概念物理题解(上、下册)65普通物理学教程电磁学(第二版)66普通物理学教程电磁学(第2版)习题分析与解答67热学68热学习题分析与解答69普通物理学教程力学70普通物理学教程热学71普通物理学教程光学72面向21世纪课程教材•原子物理学(第4版)73原子物理学(第4版)学习辅导书74理论力学教程75简明理论力学(第2版)76电动力学(第3版)77量子力学78高等数学(第6版)(上、下册)79热力学与统计物理80力学81力学习题与解答82光学83光学习题与解答84热力学与统计物理学85基础物理中的数学方法89物理竞赛解题方法漫谈90物理竞赛真题解析:热学·光学·近代物理学91中学物理竞赛模拟试题新编·第一辑92习题解答与剖析·力学篇93中学奥林匹克竞赛物理教程·电磁学篇(第2版)94中学物理竞赛辅导:实验篇即将出版普通物理高等数学95物理学难题集萃(上、下册)962006—2014全国大学自主招生真题解析•物理97中学生物理思维丛书作者出版社彭大斌中国青年出版社程嫁夫中国科学技术大学出版社程嫁夫中国科学技术大学出版社崔宏彬中国科学技术大学出版社江四喜中国科学技术大学出版社金鹏浙江教育出版社沈晨浙江大学出版社沈晨、许炎桥、袁张瑾浙江大学出版社张大同浙江大学出版社舒幼生浙江大学出版社钟小平浙江大学出版社袁张瑾、俞骁翀浙江大学出版社舒幼生、钟小平浙江大学出版社舒幼生、钟小平浙江大学出版社钟小平浙江大学出版社沈忠峰浙江大学出版社曹晓彬浙江大学出版社钟小平、倪国富浙江大学出版社舒幼生、程嫁夫、钟小平浙江大学出版社沈建民浙江大学出版社徐斌富武汉大学出版社舒幼生上海辞书出版社张大同陕西师范大学出版社全国中学生物理竞赛委员会常委会清华大学出版社全国中学生物理竞赛委员会常委会清华大学出版社全国中学生物理竞赛委员会常委会清华大学出版社全国中学生物理竞赛委员会常委会清华大学出版社范小辉南京师范大学出版社范小辉南京师范大学出版社刘海生南京师范大学出版社王建忠南京师范大学出版社王建忠南京师范大学出版社潘志明南京师范大学出版社江苏省物理学会南京大学出版社朱建廉南京大学出版社王建忠南京大学出版社吴建谋龙门书局李敏惠、熊天信科学出版社张承德科技文献出版社项昭义京华出版社彭大斌华东师范大学出版社张大同华东师范大学出版社郑永令华东师范大学出版社张大同、范小辉华东师范大学出版社范小辉华东师范大学出版社张大同华东师范大学出版社吴建谋湖南师范大学出版社黄洪才湖南师范大学出版社黄生训湖南师范大学出版社黄生训湖南师范大学出版社青一平湖南师范大学出版社宋善炎、纪风霞、黎双湖南师范大学出版社宋善炎、纪风霞、黎双湖南师范大学出版社舒幼生湖南教育出版社郑永令复旦大学出版社全国中学应用物理知识竞赛委员会北京师范大学出版社北京教育出版社全国中学生物理竞赛委员会北京大学出版社全国中学生物理竞赛常委会组织北京大学出版社舒幼生北京大学出版社金嗣炤安徽科学技术出版社赵凯华人民教育出版社赵凯华高等教育出版社赵凯华高等教育出版社梁灿彬高等教育出版社梁竹健高等教育出版社李椿高等教育出版社李椿高等教育出版社漆安慎 杜婵英高等教育出版社秦允豪高等教育出版社易明高等教育出版社杨福家高等教育出版社杨福家高等教育出版社周衍柏高等教育出版社哈尔滨工业大学理论力学教研室高等教育出版社郭硕鸿高等教育出版社钱伯初高等教育出版社同济大学数学系高等教育出版社汪志诚高等教育出版社舒幼生北京大学出版社舒幼生北京大学出版社赵凯华北京大学出版社钟锡华北京大学出版社林宗涵北京大学出版社王楚北京大学出版社中国科学技术大学出版社中国科学技术大学出版社中国科学技术大学出版社中国科学技术大学出版社中国科学技术大学出版社中国科学技术大学出版社中国科学技术大学出版社中国科学技术大学出版社中国科学技术大学出版社。
2020山大附中高中物理竞赛辅导课件(热学)道尔顿分压定理(共14张PPT)
布朗运动.
一. 微观模型 二.理想气体压强公式的推导
三.理想气体的温度和分子平均平动动能
一. 微观模型 1.T=V0/T0 即T/ T0= V1/ V0= P0 V1 / P0 V0 =PV / V0 P0 (2)
由(1),(2)联立得 PV
T
令R=
P0 V0 T0
理想气体有 PV=RT
P0 V0 T0
8.31 J
mol -1 K -1
气体动理论 2.1 理想气体的压强
•本节是典型的微观研究方法。 一般气体分子热运动的概念:
dA
x 在 dt 时间内与dA碰撞的分子数
Ni=ni vix dt dA( vix >0)
vi dt
斜柱体体积
dt 时间内传给 dA 的冲量为
dI = 1/2 2Ni mvix
vx2=
i ni vxi2 n
= 1/2 2 mnivix2 dt dA
P=
dI dt dA
=
nm
vx2
=
1 3 nm
v2=
什么是统计规律性 大量偶然事件从整体上反映出来的一种规律性。
定义: 某一事件 i 发生的概率为Pi Ni ---- 事件 i 发生的 次数 N ---- 各种事件发生的 总次数
例. 扔硬币
P
=
lim
N i
i N N
•统计规律有以下几个特点: (1)只对大量偶然的事件才有意义. (2)它是不同于个体规律的整体规律(量变到质 变). (3)总是伴随着涨落.
高中物理竞赛课件 第七章 热力学基础 (共67张PPT)
E i RT dE i RdT
2
2
CP
dQP dT
dQP
dE
PdV
i 2
RdT
RdT
PV RT d(PV) PdV VdP PdV RdT
14
单原子:i 3 双原子:i 5 多原子:i 6 二、三种等值过程
5
3
7
5
8
6
1.等容过程 特征:dV 0 dA 0
p
过程方程:
(1)状态d的体积Vd; (2)整个过程对外所做的功;
(3)整个过程吸收的热量.
p
2p1
c
解: (1)由绝热过程方程:
TcVc 1 TdVd 1
p1
ab
d
1
得:Vd
Tc Td
1
Vc
根据题意:
Td
Ta
p1V1 R
o v1 2v1
v
Vc 2V1
Tc
pcVc R
4 p1V1 R
4Ta
5
3
27
(2)整个过程对外所做的功;
真空
T
T0
2V0
∵绝热过程
(E E0) A 0
而 A=0
V0 1T0 (2V0) 1T T P0V0 P(2V0) P
E E0 (T T0)
始末两态满足 P0V0 P(2V0)
状态方程
T0
T
P
1 2
P0
26
例7-4 1mol单原子理想气体,由状态a(p1,V1)先等压加热至体积增大1倍,再等体加热至压 力增大1倍,最后再经绝热膨胀,使其温度降至初始温度,如图所示,试求:
i 2 1
1
i
高中物理奥林匹克竞赛——-热学复习参考
《热学》复习参考基本概念部分导论1.热学是研究什么的?(宏观:热现象;微观:热运动)物质的热现象(热运动)的规律、微观本质及其应用。
2.什么是热运动?它的特点是什么?(特点:粒子的大量性和运动的无规性)热运动——宏观物体内部大量微观粒子的一种永不停息的无规则运动。
特点:(1)单个粒子的运动具有极大的偶然性;(2)大量微观粒子组成的系统在整体上却遵循确定的规律。
3.热学研究的对象是什么?(对象:大量微观粒子组成的宏观系统)4.热学有哪些研究方法?(宏观:热力学;微观:统计物理)它们各自的特点是什么?热力学:结论具有高度的可靠性和普遍性。
但对热现象的本质无法了解,对一些热现象无法作出解释。
统计物理学的特点:能揭露热现象的本质。
但它对物质的微观结构所作的简化假设,使结论具有近似性,须用热力学来验证。
5.热学是怎么分类的?(从方法分:热力学、统计物理学;从对象的状态分:平衡态、非平衡态、相变)第一章1.平衡态1.1 什么是力学中的平衡?平衡态——所受合外力为0.1.2 什么是热学中的平衡态?平衡态——在不受外界影响的条件下,系统的宏观性质不随时间变化的状态。
1.3 平衡态是否只适用于孤立系?(一个处于平衡态的系统的子系统)孤立系——与外界没有任何相互作用的系统。
不是1.4 平衡态是否适用于有外场的系统?适用1.5 在研究大气时,重力场算不算“外界影响”?不算1.6 平衡态是否只适用于均匀系?(两相平衡共存;或外力场中)不是1.7 系统处于平衡态时,其宏观性质是否一定各处相同?(有外场时)是1.8什么是热平衡和热动平衡?热动平衡的条件是什么?热平衡——在传热的条件下达到的平衡。
热动平衡(1)这是一种动态平衡。
系统的宏观性质虽不随时间变化,但组成系统的微观粒子仍在不停地运动。
只不过微观粒子运动的平均效果不随时间变化。
(2)“系统的宏观性质不随时间变化”是相对的,绝对不变是不存在的。
故平衡态是理想状态。
1.9 从微观量子统计的角度,所谓平衡指的是什么?(细致平衡、H定理、最概然分布、玻尔兹曼关系)最概然值(最可几值)小球数最多的槽(或曲线的极大值处),表示小球落入该槽(或该处附近)的可能性最大,故该处的坐标x称为坐标的最概然值(最可几值)。
高中物理竞赛讲义(超级完整版)(1)汇编
最新高中物理竞赛讲义(完整版)目录最新高中物理竞赛讲义(完整版) (1)第0部分绪言 (5)一、高中物理奥赛概况 (5)二、知识体系 (5)第一部分力&物体的平衡 (6)第一讲力的处理 (6)第二讲物体的平衡 (8)第三讲习题课 (9)第四讲摩擦角及其它 (13)第二部分牛顿运动定律 (15)第一讲牛顿三定律 (16)第二讲牛顿定律的应用 (16)第二讲配套例题选讲 (24)第三部分运动学 (24)第一讲基本知识介绍 (24)第二讲运动的合成与分解、相对运动 (26)第四部分曲线运动万有引力 (28)第一讲基本知识介绍 (28)第二讲重要模型与专题 (30)第三讲典型例题解析 (38)第五部分动量和能量 (38)第一讲基本知识介绍 (38)第二讲重要模型与专题 (40)第三讲典型例题解析 (53)第六部分振动和波 (53)第一讲基本知识介绍 (53)第二讲重要模型与专题 (57)第三讲典型例题解析 (66)第七部分热学 (66)一、分子动理论 (66)二、热现象和基本热力学定律 (68)三、理想气体 (70)四、相变 (77)五、固体和液体 (80)第八部分静电场 (81)第一讲基本知识介绍 (81)第二讲重要模型与专题 (84)第九部分稳恒电流 (95)第一讲基本知识介绍 (95)第二讲重要模型和专题 (98)第十部分磁场 (107)第一讲基本知识介绍 (107)第二讲典型例题解析 (111)第十一部分电磁感应 (117)第一讲、基本定律 (117)第二讲感生电动势 (120)第三讲自感、互感及其它 (124)第十二部分量子论 (127)第一节黑体辐射 (127)第二节光电效应 (130)第三节波粒二象性 (136)第四节测不准关系 (140)第0部分绪言一、高中物理奥赛概况1、国际(International Physics Olympiad 简称IPhO)① 1967年第一届,(波兰)华沙,只有五国参加。
高中物理奥赛必看讲义——热学
热 学热学知识在奥赛中的要求不以深度见长,但知识点却非常地多(考纲中罗列的知识点几乎和整个力学——前五部分——的知识点数目相等)。
而且,由于高考要求对热学的要求逐年降低(本届尤其低得“离谱”,连理想气体状态方程都没有了),这就客观上给奥赛培训增加了负担。
因此,本部分只能采新授课的培训模式,将知识点和例题讲解及时地结合,争取让学员学一点,就领会一点、巩固一点,然后再层叠式地往前推进。
一、分子动理论1、物质是由大量分子组成的(注意分子体积和分子所占据空间的区别)对于分子(单原子分子)间距的计算,气体和液体可直接用3分子占据的空间,对固体,则与分子的空间排列(晶体的点阵)有关。
【例题1】如图6-1所示,食盐(N a Cl )的晶体是由钠离子(图中的白色圆点表示)和氯离子(图中的黑色圆点表示)组成的,离子键两两垂直且键长相等。
已知食盐的摩尔质量为58.5×10-3kg/mol ,密度为2.2×103kg/m 3,阿伏加德罗常数为6.0×1023mol -1,求食盐晶体中两个距离最近的钠离子中心之间的距离。
【解说】题意所求即图中任意一个小立方块的变长(设为a )的2倍,所以求a 成为本题的焦点。
由于一摩尔的氯化钠含有N A 个氯化钠分子,事实上也含有2N A 个钠离子(或氯离子),所以每个钠离子占据空间为 v =AmolN 2V 而由图不难看出,一个离子占据的空间就是小立方体的体积a 3, 即 a 3=A mol N 2V = Am ol N 2/M,最后,邻近钠离子之间的距离l = 2a 【答案】3.97×10-10m 。
〖思考〗本题还有没有其它思路?〖答案〗每个离子都被八个小立方体均分,故一个小立方体含有81×8个离子 = 21分子,所以…(此法普遍适用于空间点阵比较复杂的晶体结构。
) 2、物质内的分子永不停息地作无规则运动固体分子在平衡位置附近做微小振动(振幅数量级为0.1A 0),少数可以脱离平衡位置运动。
高中物理竞赛讲义-热力学第二定律-热传递方式
热力学第二定律 热传递方式一、热力学第二定律表述1:热量只能自发的从高温物体转移至低温物体。
如果想让热量由低温物体转移到高温物体,一定会引起其他变化(需要做功)。
热传递的方向性表述2:不可能从单一热源取热,把它全部变为功而不产生其他任何影响机械能、内能转化的方向性(能量耗散)表述3:有序到无序,熵增加第一类永动机:不需要动力的机器,它可以源源不断的对外界做功违反能量守恒定律第二类永动机:从单一热库吸收热量,全部用于做功。
违反热力学第二定律:机械能与内能的转化具有方向性,机械能可以转化内能,但内能却不能全部转化为机械能而不引起其它变化。
二、卡诺循环当高温热源和低温热源的温度确定之后,所有热机中,按照卡诺循环运行的热机效率是最高的。
(证明略)卡诺循环由两个等温过程和两个绝热过程组成。
从高温热源等温吸热Q 1,对外做功,并向低温热源散热Q 2。
两个绝热过程中,没有热传递,做功等于内能变化,为相反数。
2i W nR T =∆ 两个等温过程中,热量交换加上做功等于0,因此,在高温热源吸热:21111ln V Q W nRT V =-= 在低温热源放热:42223lnV Q W nRT V =-= 利用绝热过程的状态方程:2233PV PV γγ=,即 112132V nRT V nRT γγ--= 4411PV PV γγ=,即 114211V nRT V nRT γγ--= 有上述公式可得卡诺热机的效率,即最大效率:121211Q Q T T Q T η--== 如果将上述过程反过来,叫做逆卡诺循环,即在外界做功W 的帮助下,从低温热源吸热Q 2,向高温热源散热Q 1。
例如空调、冰箱都有这种功能。
(但现实中的空调、冰箱不一定满足逆卡诺循环的条件)。
对于逆卡诺循环,常用制冷系数进行描述:221212Q T Q Q T T ω==--例1、有一卡诺致冷机,从温度为-10℃的冷藏室吸取热量,而向温度为20℃的物体放出热量。
高中物理竞赛讲义 2-1静电场基本定理
dr
U
q
a ●
E
o
q
r
q 4 0
ra
dr q 2 r 4 0 ra
3.电势迭加原理 与一组点电荷相联系的电场在某一点上的电势,等 于与各个点电荷单独联系的电场在该点电势的代数和。
…基本定理 1.4 电势与场强的关系
4. 电势的计算
1.4.2 电势与电势迭加原理
…基本定理 1.3 静电场的环路定理
1.3.2 静电场的环路定理 1.环路定理 推论:当路径为闭合时,静电力做功为零,即
q0
l
E dl q0 q0
b
a c
E dl q0
a
b c
E dl
b
a c
E dl q0
b
a c
E dl 0
q S
ds
r
…基本定理 1.2 高斯定理
● q处于任意闭合曲面内
从 q 发出的电场线根数为 电场线穿出S 必定穿出S。 q
1.2.2 高斯定理
S
E dS
q
0
0
,终止在无限远。
● q处于任意闭合曲面外
q
q
S
S
E dS=0
q
S
S
从 q 发出的电场线根数为
面元的电通量为
1)引入 寻找确定带电体E分布的新途径
d E E dS EdS cos
d E 表示穿过面元 dS 的电场线根数 dN ;
3)直观意义
dN d E EdS cos EdS dS dN dS
高中物理培优辅导讲义:专题13-热学(含答案解析)
【知识精讲】一.分子动理论1.分子动理论的基本观点是:物质是由大量分子组成,分子永不停息的做无规则运动,分子之间总是同时存在相互作用的引力和斥力。
布朗运动的永不停息,说明液体分子运动的永不停息;布朗运动的无规则性,说明液体分子运动是无规则的。
分子力是斥力和引力的合力。
2. 解答分子动理论中的估算问题是对分子进行合理抽象,建立模型。
由于固体和液体分子间距很小,因此可以把固体和液体分子看作紧密排列的球体,小球直径即为分子直径。
一般情况下利用球体模型估算固体和液体分子个数、质量、体积、直径等。
设n 为物质的量,m 为物质质量,v 为物质体积,M 为摩尔质量,V 为摩尔体积,ρ为物质的密度。
则(1)分子数N =A A N M m nN ==A A N V v N M v =ρ. (2)分子质量AA N V N M m ρ==0. (3)分子体积A A N M N V v ρ==0 (4)对于固体或液体,把分子看作小球,则分子直径33066AN V v d ππ==。
对于气体,分子之间距离很大,可把每个气体分子所占空间想象成一个立方体,该立方体的边长即为分子之间的平均距离。
(1)若标准状态下气体体积为0V ,则气体物质的量n =30104.22-⨯V ; (2)气体分子间距330A N V v d ==AN M ρ=。
3. “用油膜法估测分子的大小”实验是把液体中油酸分子看做紧密排列的小球,把油膜厚度看做分子直径。
4.物体内所有分子动能的平均值叫做分子平均动能。
温度是分子平均动能的标志。
任何物体,只要温度相同,其分子平均动能就相等。
温度越高,分子平均动能越大。
由分子之间的相互作用和相对位置所决定的能,叫做分子势能。
分子势能与体积有关。
要注意体积增大,分子势能不一定增大。
物体中所有分子热运动的动能与分子势能之和叫做物体内能。
任何物体都有内能。
二.物态和物态变化1.固体和液体都是自然界存在的物质形态。
固体分晶体和非晶体,晶体分单晶体和多晶体。
高中物理竞赛讲义(完整版)
最新高中物理竞赛讲义(完整版)目录最新高中物理竞赛讲义(完整版) (1)第0部分绪言 (3)一、高中物理奥赛概况 (3)二、知识体系 (3)第一部分力&物体的平衡 (4)第一讲力的处理 (4)第二讲物体的平衡 (6)第三讲习题课 (6)第四讲摩擦角及其它 (10)第二部分牛顿运动定律 (12)第一讲牛顿三定律 (12)第二讲牛顿定律的应用 (12)第二讲配套例题选讲 (19)第三部分运动学 (20)第一讲基本知识介绍 (20)第二讲运动的合成与分解、相对运动 (21)第四部分曲线运动万有引力 (23)第一讲基本知识介绍 (23)第二讲重要模型与专题 (24)第三讲典型例题解析 (32)第五部分动量和能量 (32)第一讲基本知识介绍 (32)第二讲重要模型与专题 (34)第三讲典型例题解析 (45)第六部分振动和波 (45)第一讲基本知识介绍 (45)第二讲重要模型与专题 (48)第三讲典型例题解析 (57)第七部分热学 (57)一、分子动理论 (57)二、热现象和基本热力学定律 (59)三、理想气体 (60)四、相变 (66)五、固体和液体 (70)第八部分静电场 (70)第一讲基本知识介绍 (70)第二讲重要模型与专题 (73)第九部分稳恒电流 (82)第一讲基本知识介绍 (82)第二讲重要模型和专题 (86)第十部分磁场 (94)第一讲基本知识介绍 (94)第二讲典型例题解析 (97)第十一部分电磁感应 (102)第一讲、基本定律 (102)第二讲感生电动势 (105)第三讲自感、互感及其它 (108)第十二部分量子论 (111)第一节黑体辐射 (111)第二节光电效应 (113)第三节波粒二象性 (119)第四节测不准关系 (122)第0部分绪言一、高中物理奥赛概况1、国际(International Physics Olympiad 简称IPhO)① 1967年第一届,(波兰)华沙,只有五国参加。
高中物理热学(二 )
1.关于温度,下列说法中正确的是( )(A)气体的温度升高1℃,也可以说温度升高1K;温度下降5K,也就是温度下降5℃(B)温度由摄氏温度t升至2t,对应的热力学温度由T升至2T(C)绝对零度就是当一定质量的气体体积为零时,用实验方法测出的温度(D)随着人类制冷技术的不断提高,总有一天绝对零度会达到2.一定质量的气体在等温变化过程中,下列物理量中将发生变化的是( )(A)分子的平均动能(B)单位体积内的分子数(C)气体的压强(D)分子总数3.下列关于盖·吕萨克定律的说法中正确的是( )(A)对于一定质量的理想气体,在保持压强不变的情况下,温度每升高1℃时,其体积的增量是温度升高前体积的1/273(B)对于一定质量的理想气体.在保持压强不变的情况下,温度每升高1℃时,其体积的增量是它在0℃时体积的1/273(C)对于一定质量的气体,在保持压强不变的情况下,其体积与温度成止比(D)对于一定质量的气体,在保持压强不变的情况下,其体积与热力学温度成正比4.如图所示,将一只倒置的试管竖直地插入容器内,试管内原有的空气被压缩,此时,试管内外水面的高度差为h,若使试管插入水中的深度增大一些,则试管内外水面的高度差将( )(A)增大(B)减少(C)保持不变(D)无法确定5.如图所示,密封的U形管中装有水银,左、右两端都封有空气,两水银面的高度差为h.把U形管竖直浸没在热水中,高度差将( )(A)增大(B)减小(C)不变(D)两侧空气柱的长度未知,不能确定6.在冬季,剩有半瓶热水的暖水瓶经过一个夜晚,第二天拔瓶口的软木塞时觉得很紧,不易拔出来,主要原因是( )(A)软木塞受潮膨胀(B)瓶口因温度降低而收缩变小(C)白天气温升高,大气压强变大(D)瓶内气体因温度降低而压强减小7.人们常常用充气泵为金鱼缸内的水补充氧气,右图所示为充气泵气室的工作原理图.没大气压强为p0,气室中的气体压强为p,气通过阀门S1、S2与空气导管相连接,下列选项中正确的是( )(A)当橡皮碗被拉伸时,p>p0,S1关闭S2开通(B)当橡皮碗被拉伸时,p<p0,S1关闭,S2开通(C)当橡皮碗被压缩时,p>p0,S1关闭,S2开通(D)当橡皮碗被压缩时,p<p0,S1关闭,S2开通8.如图所示,轻弹a管(上端封闭,下端开口).使两段水银柱及被两段水银柱封闭的空气柱合在一起.若此过程中温度不变,水银柱与管壁密封很好,则b管水银柱的下端而A′与原来a管水银柱的下端面A相比,将( )(A)在同一高度(B)稍高 (C)稍低 (D)条件不足,无法判断9.粗细均匀,一端封闭的玻璃管开口向下竖直放插在水银槽中,这时管内的水银柱比槽内的水银面高出h ,水银柱在玻璃管内封有一定质量的气体,空气柱长度为L ,若保持水银面外的玻璃管的长度不变,面使玻璃管倾斜一定角度,这时玻璃内空气的长度为L ′,L 与L ′的关系是( )A .L ′> LB .L ′<LC .L ′=LD . 无法确定10.如图所示,竖直放置的U 形管a 管开口,b 管封闭,静止时b 管内水银面较高,两管内液面存在高度差h ,当装置处于以下过程时,错误..的说法是 (A )若外界大气压减小而其他条件不变则h 变小.(B )若将U 形管旋转90︒一定可使得h 为零.(C )若将U 形管旋转90︒可使得h 变大.(D )U 形管竖直向上加速运动时,若加速度不断增大会导致h 不断减小11、如图所示,A 端封闭有气体的U 形玻璃管倒插入水银槽中,当温度为T 1时,管中水银面处在M 处,温度为T 2时,管中水银面处在N 处,且M 、N 位于同一高度,若大气压强不变,则A .两次管中气体压强相等B .T 1时管中气体压强小于T 2时管中气体压强C .T 1<T 2D .T 1>T 212.在静止时,一端封闭一端开口的试管内有一段水银封闭住一段空气,若试管开口向下自由下落,水银柱相对于试管将会 ( )A .上升B . 稍下降C .维持原状D .完全被排到管外13.如图所示,A 、B 两容器容积相等,用粗细均匀的细玻璃管相连,两容器内装有不同气体,细管中央有一段水银柱,在两边气体作用下保持平衡时,A 中气体的温度为0℃,B 中气体温度为20℃,如果将它们的温度都降低10℃,则水银柱将 ( )A .向A 移动B .向B 移动C .不动D .不能确定14.如图所示,在两端封闭的玻璃管中间用水银柱将其分成体积相等的上下两部分,并充入温度相同的气体,若把它降低相同的温度(保持管竖直),则水银柱将 ( )A .下降B .上升C .不动D .无法确定15.房间里气温升高3℃时,房间内的空气将有1%逸出到房间外,由此可计算出房间内原来的温度是________℃.16.活塞式气泵是利用气体体积膨胀来降低气体压强的.已知某贮气筒的容积为V,气泵每抽一BAM N A次,抽出的气体体积为V′=V/2.设抽气过程中温度不变,贮气筒内原来气体的压强为p0,则对它抽气三次后,贮气筒内气体压强变为多少?17.氧气瓶在车间里充气时,压强达1.5×107Pa,运输到工地上发现压强降为1.35×107Pa,已知车间里的温度为27℃,工地上的温度为-3℃,试分析判断氧气瓶在运输途中是否漏气(氧气瓶本身的热膨胀忽略不计).18.一个容积为5L的没有气的篮球,用横截面积为5cm2、冲程为25cm的打气筒打气,在打第81次时,打气筒中活塞至少下压多少才能使空气进入篮球(设打气过程中气体的温度保持不变,p0=76cmHg)。
高中物理奥林匹克竞赛专题--热力学(共20张PPT)
2019/9/7
1
电量热法
2019/9/7
机械量热法
2
3.作功与传递热量的本质区别 (1)作功是通过物体作宏观位移来完成的
是物体的有规则运动与系统内分子无规则 运动之间的转换,从而改变系统的内能。
(2)传递热量是通过分子间相互作用来完成的
是系统外物体分子的无规则运动与系统内分子
无规则运动之间的转换,从而改变系统的内能。
(4)定性讨论: 等压压缩 V T E A0 Q0
(5)系统内能增量:EMi R(TT) 2
1
((67))Q系系统统 对的E 外热作量功:A:A M 2iPR(V (T2 2 VT1)1)MR(RT(2T2 T1T)1)
Mi
(6)系统内能增量:E
R(T 22
T) 1
M C
V
(T 2
T) 1
(7)系统对外作功: A EMi R(T T)
2 2 1
2019/9/7
12
返14
(8)过程方程的推导
dQdEPdVdQ 0
PdVdE
M
CV
dT(1)
PV M RT 微分 PdVVdP MRdT (2)
由(1)得:
dT
1 PdV
(3)
(3)代入(2):
Pd
MCV
VVdP
R
PdV
CV
两边乘CV: C V (Pd V V )d P (C P C V )Pd
CPCV R CVVdC PPPdV 0
两边同除 以CVPV
dP dV 0 两边积分 ln Pln VC '
dV
M
p
热力学第二定律(高中物理教学课件)完整版5
一.热力学第二定律
3.热力学第二定律的开尔文表述:不可能从单一 热库吸收热量,使之完全变成功,而不产生其他 影响。
①这是从机械能与内能转化的方向性角度来阐述的。 ②自发的方向是机械能转化成内能。机械能可以全部转 化为内能,而内能无法全部用来做功转换成机械能,效 率达不到100%。有人就曾经设想,把地球上的海水温度 降低0.1 ℃,放出的能量相当于1800万个核电站一年的发 电量 ,这是不可能的。 ③内能可以用来做功转换成机械能,但是有“其它影 响”,例如利用热机做功。
D.其实,能量守恒定律已经包含了热力学第一定 律和热力学第二定律
热机工作时从高温热库吸收的热量Q,只有 一部分用来做功W,转变为机械能,另一部分 热量要排放给低温热库(冷凝器或大气)。 即:热机用于做功的热量一定小于它从高温 热库吸收的热量,即W<Q。
热机工作时通常会产生漏气热损、散热热 损和摩擦热损等热量损失。如果没有漏气和 摩擦,也没有机体热量的损失,燃料产生的 热量也不可能完全转化成机械能,工质吸收 的热量不会全部变成功。例如,汽车排出气 体的温度一定会比空气的温度高,它会向空 气散热。
以上事例共同特征:一切与热现象有关的宏观自 然过程都是不可逆的。
一.热力学第二定律
1.热力学第二定律:反映宏观自然过程的方向性 的定律。 2.热力学第二定律的克劳修斯表述:热量不能自 发地从低温物体传到高温物体。 即:不可能将热量从低温物体传到高温物体而不 引起其它变化。
①这是从热传递的方向性角度来阐述的。 ②自发的方向是从高温物体指向低温物体。 ③热量可以从低温物体传到高温物体,但是引起了“其 它变化”,例如利用致冷机做功。
例3.根据热力学第二定律,下列判断正确的是(BCD) A.电流的能不可能全部变为内能 B.在火力发电机中,燃气的内能不可能全部变为电能 C.热机中,燃气内能不可能全部变为机械能 D.在热传导中,热量不可能自发地从低温物体传递给高温度物 体.
2020高中物理竞赛(热学篇)热力学基础(含真题)绝热方程的推导(共14张PPT)
p
c
Q1 绝热
b
绝热
o V1
d
Q2
a V2 V
二、致冷系数 工质对外作负功 A净 0
整个循环过程 工质从外界吸收热量的总和为Q2 放给外界的热量总和为Q1
p
a
b
A净
d
c
o
V
Q净 Q2 Q1 A净
Q1 Q2 ( A净 )
工质把从低温热源吸收的热量和外界对它所作的功
以热量的形式传给高温热源。
致冷系数
e
从低温处吸收的热量 外界对工质做净功大小
Q2 A净
Q2 Q1 Q2
电冰箱
p
a
b
d
c
V
Q净 Q1 Q2 Q净 A净 0
正循环过程是将吸收的热量中的一部分A净转化为 有用功,另一部分Q2放回给外界
一、热机 热机的效率
热机:通过工质使热量不断转换为功的机器。
热机效率
输出功 吸收的热量
A净 Q1
1
Q2 Q1
奥托循环
工质为燃料与空气的混合 物,利用燃料的燃烧热产 生巨大压力而作功。
o V1 2V1
V
解:(1)根据题意 Ta Td
又根据物态方程 pV M RT
Td
Ta
p1V1 R
M mol
Tc
pcVc R
4 p1V1 R
再根据绝热方程 TcVc
1
4Ta TdVd
p 12p1
c
Vd
( Tc Td
1
) 1Vc
1
4 1.671 .2V1
15.8V1
p1
ab
(2)先求各分过程的功
c
吸收热量的和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热 学热学知识在奥赛中的要求不以深度见长,但知识点却非常地多(考纲中罗列的知识点几乎和整个力学——前五部分——的知识点数目相等)。
而且,由于高考要求对热学的要求逐年降低(本届尤其低得“离谱”,连理想气体状态方程都没有了),这就客观上给奥赛培训增加了负担。
因此,本部分只能采新授课的培训模式,将知识点和例题讲解及时地结合,争取让学员学一点,就领会一点、巩固一点,然后再层叠式地往前推进。
一、分子动理论1、物质是由大量分子组成的(注意分子体积和分子所占据空间的区别)对于分子(单原子分子)间距的计算,气体和液体可直接用3分子占据的空间,对固体,则与分子的空间排列(晶体的点阵)有关。
【例题1】如图6-1所示,食盐(N a Cl )的晶体是由钠离子(图中的白色圆点表示)和氯离子(图中的黑色圆点表示)组成的,离子键两两垂直且键长相等。
已知食盐的摩尔质量为58.5×10-3kg/mol ,密度为2.2×103kg/m 3,阿伏加德罗常数为6.0×1023mol -1,求食盐晶体中两个距离最近的钠离子中心之间的距离。
【解说】题意所求即图中任意一个小立方块的变长(设为a )的2倍,所以求a 成为本题的焦点。
由于一摩尔的氯化钠含有N A 个氯化钠分子,事实上也含有2N A 个钠离子(或氯离子),所以每个钠离子占据空间为 v =AmolN 2V 而由图不难看出,一个离子占据的空间就是小立方体的体积a 3, 即 a 3=A mol N 2V = Am ol N 2/M ρ,最后,邻近钠离子之间的距离l = 2a 【答案】3.97×10-10m 。
〖思考〗本题还有没有其它思路?〖答案〗每个离子都被八个小立方体均分,故一个小立方体含有81×8个离子 = 21分子,所以…(此法普遍适用于空间点阵比较复杂的晶体结构。
)2、物质内的分子永不停息地作无规则运动固体分子在平衡位置附近做微小振动(振幅数量级为0.1A 0),少数可以脱离平衡位置运动。
液体分子的运动则可以用“长时间的定居(振动)和短时间的迁移”来概括,这是由于液体分子间距较固体大的结果。
气体分子基本“居无定所”,不停地迁移(常温下,速率数量级为102m/s )。
无论是振动还是迁移,都具备两个特点:a 、偶然无序(杂乱无章)和统计有序(分子数比率和速率对应一定的规律——如麦克斯韦速率分布函数,如图6-2所示);b 、剧烈程度和温度相关。
气体分子的三种速率。
最可几速率v P :f(v) =NN∆(其中ΔN 表示v 到v +Δv 内分子数,N 表示分子总数)极大时的速率,v P =μRT2=m k T 2 ;平均速率v :所有分子速率的算术平均值,v =πμRT 8=mk T8π;方均根速率2v :与分子平均动能密切相关的一个速率,2v =μRT 3=mk T3〔其中R 为普适气体恒量,R = 8.31J/(mol.K)。
k 为玻耳兹曼常量,k =AN R = 1.38×10-23J/K 〕 【例题2】证明理想气体的压强P = 32n K ε,其中n 为分子数密度,K ε为气体分子平均动能。
【证明】气体的压强即单位面积容器壁所承受的分子的撞击力,这里可以设理想气体被封闭在一个边长为a 的立方体容器中,如图6-3所示。
考查yoz 平面的一个容器壁,P =2a F① 设想在Δt 时间内,有N x 个分子(设质量为m )沿x 方向以恒定的速率v x 碰撞该容器壁,且碰后原速率弹回,则根据动量定理,容器壁承受的压力F =t p ∆∆=tmv 2N xx ∆∙ ② 在气体的实际状况中,如何寻求N x 和v x 呢?考查某一个分子的运动,设它的速度为v ,它沿x 、y 、z 三个方向分解后,满足v 2= 2x v + 2y v + 2z v分子运动虽然是杂乱无章的,但仍具有“偶然无序和统计有序”的规律,即2v = 2x v + 2y v + 2z v = 32x v ③这就解决了v x 的问题。
另外,从速度的分解不难理解,每一个分子都有机会均等的碰撞3个容器壁的可能。
设Δt = xv a,则 N x = 61·3N 总 = 21na 3④注意,这里的61是指有6个容器壁需要碰撞,而它们被碰的几率是均等的。
结合①②③④式不难证明题设结论。
〖思考〗此题有没有更简便的处理方法?〖答案〗有。
“命令”所有分子以相同的速率v 沿+x 、−x 、+y 、−y 、+z 、−z 这6个方向运动=61N 总 = 61na 3;而且v x = v(这样造成的宏观效果和“杂乱无章”地运动时是一样的),则 N x所以,P = 2a F = 2x x a t mv 2N ∙∆∙=2xx3a v a mv 2na 61∙∙=31nm 2x v = 32n K ε 3、分子间存在相互作用力(注意分子斥力和气体分子碰撞作用力的区别),而且引力和斥力同时存在,宏观上感受到的是其合效果。
分子力是保守力,分子间距改变时,分子力做的功可以用分子势能的变化表示,分子势能E P 随分子间距的变化关系如图6-4所示。
分子势能和动能的总和称为物体的内能。
二、热现象和基本热力学定律1、平衡态、状态参量a 、凡是与温度有关的现象均称为热现象,热学是研究热现象的科学。
热学研究的对象都是有大量分子组成的宏观物体,通称为热力学系统(简称系统)。
当系统的宏观性质不再随时间变化时,这样的状态称为平衡态。
b 、系统处于平衡态时,所有宏观量都具有确定的值,这些确定的值称为状态参量(描述气体的状态参量就是P 、V 和T )。
c 、热力学第零定律(温度存在定律):若两个热力学系统中的任何一个系统都和第三个热力学系统处于热平衡状态,那么,这两个热力学系统也必定处于热平衡。
这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。
2、温度a 、温度即物体的冷热程度,温度的数值表示法称为温标。
典型的温标有摄氏温标t 、华氏温标F (F = 59t + 32)和热力学温标T (T = t + 273.15)。
b 、(理想)气体温度的微观解释:K ε = 2ikT (i 为分子的自由度 = 平动自由度t + 转动自由度r + 振动自由度s 。
对单原子分子i = 3 ,“刚性”〈忽略振动,s = 0,但r = 2〉双原子分子i = 5 。
对于三个或三个以上的多原子分子,i = 6 。
能量按自由度是均分的),所以说温度是物质分子平均动能的标志。
c 、热力学第三定律:热力学零度不可能达到。
(结合分子动理论的观点2和温度的微观解释很好理解。
) 3、热力学过程a 、热传递。
热传递有三种方式:传导(对长L 、横截面积S 的柱体,Q = K LT T 21-S Δt )、对流和辐射(黑体表面辐射功率J = αT 4)b 、热膨胀。
线膨胀Δl = αl 0Δt【例题3】如图6-5所示,温度为0℃时,两根长度均为L 的、均匀的不同金属棒,密度分别为ρ1和ρ2 ,现膨胀系数分别为α1和α2 ,它们的一端粘合在一起并从A 点悬挂在天花板上,恰好能水平静止。
若温度升高到t ℃,仍需它们水平静止平衡,则悬点应该如何调整?【解说】设A 点距离粘合端x ,则 ρ1(2L − x )=ρ2(2L + x ) ,得:x = )(2)(L 2121ρ+ρρ-ρ 设膨胀后的长度分别为L 1和L 2 ,而且密度近似处理为不变,则同理有ρ1(2L 1 − x ′)=ρ2(2L 2 + x ′) ,得:x ′= )(2L L 212211ρ+ρρ-ρ另有线膨胀公式,有 L 1 = L (1 + α1t ),L 2 = L (1 + α2t ) 最后,设调整后的悬点为B ,则AB = x ′− x 【答案】新悬点和原来的悬点之间相距)(2122112ρ+ρρα-ραLt 。
〖说明〗如果考虑到密度变化的实际情况ρ1′=1L Lρ1 、ρ2′= 2L L ρ2 ,此题仍然是可解的,但最后的结果却复杂得多…c 、系统由一个平衡态变化到另一个平衡态,即构成一个热力学过程。
特殊的热力学过程有等压过程、等温过程、等容过程、绝热过程和自由膨胀等。
准静态过程:如果变化过程相对缓慢,则过程的每一个状态可视为平衡态,这样的过程也称为准静态过程。
循环:如果系统经过一系列的变化后,又回到原来的平衡态,我们成这个过程为循环。
d 、热力学第一定律:外界对系统所做的功W 和系统从外界吸收热量Q 之和,等于系统内能的增量ΔE ,即 ΔE = Q + W 。
热力学第一定律是能量守恒定律在热力学过程中的具体体现。
e 、热力学第二定律:克劳修斯表述(克劳修斯在1850年提出):热量总是自动的从高温物体传到低温物体,不可能自动地由低温物体向高温物体传递。
开尔文表述(开尔文在1851年提出):不存在这样一种循环过程,系统从单一热源吸取热量,使之完全变为有用功而不产生其他影响。
违背热力学第二定律并不违背能量守恒,它所展示的是热力学过程的不可逆性——即自发的热力学过程只会朝着混乱程度(熵)增大的方向发展。
三、理想气体1、气体实验三定律在压强不太大,温度不太低的条件下,气体的状态变化遵从以下三个实验定律 a 、玻意耳-马略特定律:一定质量气体温度不变时,P 1V 1 = P 2V 2或PV = 恒量 b 、查理定律:一定质量气体体积不变时,11T P = 22T P 或T P= 恒量c 、盖·吕萨克定律:一定质量气体压强不变时,11T V = 22T V 或T V= 恒量【例题4】如图6-6所示,一端封闭、内径均匀的玻璃管长L = 100cm ,其中有一段长L ′= 15cm 的水银柱把一部分空气封闭在管中。
当管水平放置时,封闭气柱A 长L A = 40cm 。
直至A 端气柱长"A L = 37.5cm 现把管缓慢旋转至竖直后,在把开口端向下插入水银槽中,为止,这时系统处于静止平衡。
已知大气压强P 0 = 75cmHg ,过程温度不变,试求槽内水银进入管内的水银柱的长度h 。
【解说】在全过程中,只有A 部分的气体质量是不变的,B 部分气体则只在管子竖直后质量才不变。
所以有必要分过程解本题。
过程一:玻管旋转至竖直 A 部分气体,L A ′='AAP P L A = 157575-×40 = 50cm 此时B 端气柱长L B ′= L − L A ′− L ′= 100 − 50 − 15 = 35cm 过程二:玻管出入水银槽A 部分气体(可针对全程,也可针对过程二),"AP = "'AAL L 'A P = 5.3750×60 = 80cmHgB 部分气体,"BL = "'BB P P 'B L = L A 0P P P '+"'B L =158075+×35 ≈ 27.6cm 最后,h = L - "A L − L ′− "B L 【答案】19.9cm 。