电通量高斯定理

合集下载

电通量,高斯定理

电通量,高斯定理

电通量、高斯定理1、均匀电场的场强E与半径为R 的半球面的轴线平行,则通过半球面的电场强度通量φ = πR 2E ,若在半球面的球心处再放置点电荷q ,q不改变E分布,则通过半球面的电场强度通量 φ =πR 2E ±q/2ε0。

2、真空中的高斯定理的数学表达式为∑⎰=⋅0/εq s d E i s ,其物理意义是静电场是有源场。

3、一点电荷q 位于一位立方体中心,立方体边长为a ,则通过立方体每个表面的E的通量是q/6ε0;若把这电荷移到立方体的一个顶角上,这时通过电荷所在顶角的三个面E的通量是 0 ,通过立方体另外三个面的E的通量是 q/8ε0。

4、两个无限大均匀带正电的平行平面,电荷面密度分别为σ1和σ2,且σ1>σ2,则两平面间电场强度的大小是( C )(A)(B) (C)(D) 5、应用高斯定理求场强E时,要求E的分布具有对称性,对于没有对称性的电场分布,例如电偶极子产生的电场,高斯定理就不再成立,你认为这种说法:( B )(A)正确 (B)错误 (C)无法判断6、下述带电体系的场强分布可能用高斯定理来计算的是( D )(A)均匀带电圆板 (B)有限长均匀带电棒 (C)电偶极子 (D)带电介质球(电荷体密度是离球心距离r 的函数) 7、如果在静电场中所作的封闭曲面内没有净电荷,则( C )(A)封闭面上的电通量一定为零,场强也一定为零;()0212/εσσ+()021/εσσ+()0212/εσσ-()021/εσσ-(B)封闭面上的电通量不一定为零,场强则一定为零;(C)封闭面上的电通量一定为零;场强不一定为零;(D)封闭面上的电通量不一定为零;场强不一定为零。

8、无限长均匀带电圆柱体,电荷体密度为ρ,半径为R,求柱体内外的场强分布解:作一半径为r,高为h的同轴圆柱面为高斯面根据对称性分析,圆柱面侧面上任一点的场强大小相等,方向沿矢径方向⎰⎰⎰⎰⋅+⋅+⋅=⋅侧面下底上底s dEs dEs dEs dEs=⎰⋅侧面s dE=E⎰侧面ds=2rhEπ(1)r < R时, ∑=ρπhrqi2,2/2ερππhrrhE=,2ερrE=(2)r > R时, ∑=ρπhRqi2,2/2ερππhRrhE=,rRE22ερ=∴=E)(,2)(,22RrrRRrr><ερερ。

电通量高斯定理

电通量高斯定理
穿入曲面的电力线,电通量为负值; 与曲面相切或未穿过曲面的电力线,对通量无贡献。
5
三、高斯定理
1、真空中的高斯定理
穿过任一闭合曲面的电通量 等于该 曲面内所包围的所有电荷的代数和除以 ,而与闭合面外的电荷无关。
∑qi 是曲面S 内的电荷的代数和,这里的E是总电场(电 力线穿过曲面处的电场)、是S面内外所有电荷共同产生的 电场。
通过整个闭合球面S的电通量
e
d
s
e
qds
s 4 0r 2
q
4 0r 2
ds q
s
0
7
2)任意闭合曲面S/:
在该曲面外作一个以点电荷q 为中心的球面S
由于电力线的连续性、同前例
e
S
E
ds
q ε0
3)曲面S不包围q
n0
dS
S
从q发出的电力线
穿出任意闭合曲面
因为只有与S 相切的锥体内的电力线才通过S,但每一条 电力线一进一出闭合曲面、正负通量相互抵消,如下图。
10
3、正确理解高斯定理
1)高斯面上各点的场强E,例如P点的 EP 是所有在场的电荷
共同产生。高斯定理中的e只与高斯面内的电荷有关。

P
qB
qC
qD

q

q
q A
2)高斯面内的电量为零,只能说明通过高斯面的e为零,但
不能说明高斯面上各点的E一定为零。
11
四、高斯定理的应用:
对于某些具有特殊对称性的带电体,利用高斯定理可以方 便地求出电场分布。 1、均匀带电球面的电场:(设总电量为q、球面的半径为R)
为对称。
19
设P为柱面外之一点,过

电通量真空中静电场的高斯定理

电通量真空中静电场的高斯定理

高斯定理的适用范围
真空环境
高斯定理适用于真空中静电场的情况,即没有电流和 变化的磁场。
静态场
高斯定理适用于描述静态场,即电场不随时间变化的 情况。
远场近似
对于远处的观察者或大尺度的空间区域,高斯定理提 供了一种近似描述电场分布的方法。
02 电通量与静电场的关系
电通量的概念
电通量是电场中穿过某一封闭曲面内 的电场线数,表示电场分布的强度和 方向。
详细描述
首先,根据微积分基本定理,电场E可以表示为电势V的负梯度,即E=-grad(V)。然后,对任意闭合曲面S 的体积分,有∫∫∫E⋅dV=∫∫(E⋅dS)⋅dV=∫∫∫grad(V)⋅dV=∫∫∫dV=∫∫V⋅dS。由于E⋅dS的方向与dS的方 向相同,因此高斯定理成立。
证明方法二:利用高斯公式
05 高斯定理的推广
推广到非均匀电场
总结词
在非均匀电场中,高斯定理的应用范围得到 扩展,可以描述电场分布的不均匀性。
详细描述
在非均匀电场中,电场线不再是均匀分布, 而是呈现出复杂的空间变化。高斯定理通过 引入电通量密度概念,能够准确描述这种非 均匀分布的电场特性。
推广到非线性电场
总结词
高斯定理在非线性电场中同样适用,可以描 述电场随空间和时间变化的非线性行为。
高斯定理是静电场的基本定理之一,它表明穿过任意封闭曲面的电通量等于该曲面 所包围的电荷量。
电通量与静电场的关系是相互依存的,电通量的计算需要依赖于静电场的分布,而 静电场的分布又受到电荷分布的影响。
03 高斯定理的证明
证明方法一:利用微积分基本定理
总结词
通过微积分基本定理,将电场分布表示为电势函数的梯度,再利用积分性质证明高斯定理。

2电通量 高斯定理

2电通量 高斯定理

小结
1、点电荷
E q 4 0 r 2
2、均匀带电球面
0 q E 2 4 r 0
rR rR
3、均匀带电球体
E E
qr 40 R q 40 r
2 3
,r R ,r R
4、无限长均匀带电直线
E 20 r
5、无限长均匀带电圆柱面
6、无限长均匀带电圆柱体
· Q
· q
D
练习 一个带电量为q的点电荷位于立方体的中心处, 则通过侧面a b c d的电场强度通量等于:
q 1) 6 0 q 2) 12 0 q 3) 24 0 q 4) 48 0
· q
A
练习 一个带电量为q的点电荷位于立方体的顶角处, 则通过侧面a b c d的电场强度通量等于:
q 1) 6 0 q 2) 12 0 q 3) 24 0 q 4) 48 0
q1 q2
S
E ds:
q


S 内的净电荷
通过S的电通量, 只有S内电荷有贡献
2、 揭示了静电场中“场”和“源”的关系
q : 发出 q 0 条电场线,是电场线的“头”
q : 吸收 q 0 条电场线,是电场线的“尾”
静电场的重要性质 —— 静电场是有源场
四、高斯定理的应用
Q1 Q2 1) 2 4 0 r
3) 2 4 0 r 4) 2 4 0 r Q2 Q1
Q1 Q2 2) 2 4 0 r
Q1 R1 r
Q2
· P
(3)
R2
练习
一点电荷 , 放在球形高斯面的中心处 . 下列那 一种情况,通过高斯面的电通量发生变化:
A) 将另一点电荷放在高斯面外. B) 将另一点电荷放进高斯面内. C) 将球心处的点电荷移开,但仍在在高斯面内. D) 将高斯面半径缩小.

大学物理-电通量-高斯定理

大学物理-电通量-高斯定理
❖ 一、求场强的思路
高斯定理反映的是电通量与电荷的关系,而不是场强 与电荷的直接联系。要通过电通量计算场强,就需要 在高斯定理表达式中,将场强从积分号中提出来,这 就导致要求电场的分布具有某种特殊的对称性。
几类对称性:
❖ 电场分布轴对称 ❖ 电场分布球对称 ❖ 电场分布面对称
二、 高斯定理的解题步骤:
大学物理
上册
§7. 3 电通量 高斯定理
§7. 3 电通量 高斯定理
7-3-1 电场线及其性质
❖ 标量场: 在空间各点存在着一个标量,它的数值是 空间位置的函数,如温度场、气压场
❖ 矢量场:在空间各点存在着一个矢量,它的值是空 间位置的函数,如流速场、电场、磁场 ▪ 场线:就是一些有方向的曲线,其上每一点的切 线方向都和该点的场矢量方向一致,场线的疏密 反映矢量的大小。
解: 对称性分析 E具有球对称作高斯面——球面
1) rR
电通量
e E1 dS E1 dS E14r2
s1
电量 qi 0
用高斯定理求解
+
+ +
R
+
+
r
E
+ +q
+
+
+
+
+
+++ +
E14r2 0 E1 0
e E 22d )S E r2 d RS E 2 4 r2
++
+
E
+
s2
S
E d S E 1 d S E 2 d S E n d S
S
S
S
S
0q1 0 q0 2 qn 0

大学物理电通量高斯定理

大学物理电通量高斯定理

高斯定理的应用范围
在静电场中,高斯定理广泛应用 于电荷分布和电场关系的分析。
在恒定磁场中,高斯定理可以用 来分析磁通量与电流之间的关系

高斯定理是解决物理问题的重要 工具之一,尤其在计算电场分布 、求解电势、分析带电体的相互
作用等方面具有广泛应用。
02
电通量和高斯定理的关系来自 电通量的定义和性质总结词
大学物理电通量高斯定理
汇报人: 202X-01-04
contents
目录
• 高斯定理的概述 • 电通量和高斯定理的关系 • 高斯定理的证明 • 高斯定理的应用实例
01
高斯定理的概述
高斯定理的内容
总结了电荷分布与电场之间的关系, 指出在空间中任一封闭曲面内的电荷 量与该封闭曲面上的电场通量之间存 在正比关系。
利用电场线证明高斯定理
总结词:直观明了
详细描述:通过电场线的闭合曲线围成的面积的电通量与该闭合曲线所包围的电荷量的关系,证明高 斯定理。
利用高斯公式证明高斯定理
总结词:数学严谨
详细描述:利用高斯公式,将空间分成无数小的体积元,再通过求和得到整个空间的电场分布,从而证明高斯定理。
利用微积分证明高斯定理
详细描述
高斯定理是描述电通量与电荷分布关系的定理,它指出在任意闭合曲面内的电荷量等于该闭合曲面所包围的体积 内电场线的总条数。这个定理表明,电荷分布与电场线数之间存在一定的关系,即电荷分布影响电场线的分布。
电通量和高斯定理的推导过程
总结词
通过数学推导,我们可以证明高斯定理的正确性。首先,我们定义电场线密度为电场强 度与垂直于曲面的面积之比,然后利用微积分原理和格林公式,推导出高斯定理的表达
公式表达为:∮E·dS = 4πkQ,其中 ∮E·dS表示封闭曲面上的电场通量,Q 表示曲面内的电荷量。

10.3 电通量 高斯定理

10.3 电通量 高斯定理

σ
Φe = ∫ E dS
= ∫ E dS +
侧 左 底 右 底
S
∫ E dS + ∫ E dS
右 底
= 0+
∫ E dS + ∫ E dS
左 底
= 0 + E1S + E2S
根据高斯定理
两个底面对称
E1 = E2 = E
Φe = σ S / ε0
∴ E=
σ 2ε0
讨论
无限大均匀带电板
ρ
10.3 电通量
一、电力线(电场线)
dN
高斯定理
场强方向沿电力线切线方 场强方向沿电力线切线方 向,场强大小取决于电力 线的疏密 线的疏密
E
dS⊥
+
-
dN E= dS⊥
电力线起始于正电荷 或无穷远处), ),终止 (或无穷远处),终止 于负电荷( 于负电荷(或无穷远 处)。 电力线不相交。 线不相交。
E 垂直带电平面 ,取关于平
板对称的圆柱面为高斯面。 板对称的圆柱面为高斯面。 为高斯面 S d
ρSd 板外: 板外: Φe = 2ES = ε0
ρd E= 2ε0
板内: Φe = 2ES = 板内:
x
ρS 2x ε0
S d
ρx E= ε0
讨论
无限大均匀带电板 E
E 垂直带电平面 ,取关于平
板对称的圆柱面为高斯面。 板对称的圆柱面为高斯面。 x
二、电通量
穿过任意曲面的电力 穿过任意曲面的电力线条 数称为通过该面的电通量 1. dS 面元的电通量 面元的电
E
θ θ
n
dΦe = dN = EdS⊥ = Ecosθ dS = dS n E

大学物理高斯定理

大学物理高斯定理

大学物理高斯定理简介大学物理中,高斯定理(也称为电通量定理)是电学领域中的一个重要定理,它描述了电场通过一个封闭曲面的总电通量与该曲面内的电荷量之间的关系。

高斯定理的数学表达式是一个面积分,通过对电场和曲面的特性进行积分计算,我们可以计算得到相应的电通量。

定理表述高斯定理可以用数学公式表述如下:其中, - 表示对封闭曲面 S 的面积分; - 表示电场的向量;- 表示面元矢量; - 是真空中的介电常数(气体中也可近似使用该值); - 表示电荷密度在封闭曲面内的体积分。

解读根据高斯定理,电通量与环绕其的电荷量成正比。

如果电场线密集,表示电通量会相应增大,而如果电场线稀疏,表示电通量相应减少。

因此,高斯定理为我们提供了一种计算电场分布和电荷分布之间关系的方法。

高斯定理的背后思想是通过找到一个适当的曲面,使得计算曲面上的电场更加容易,从而求得电场的总电通量。

这个曲面可以是球面、柱面、立方体等等,具体选择曲面要与问题的几何特征和对称性相匹配。

应用举例例子1:均匀带电球考虑一个均匀带电球体,电荷密度为,半径为。

我们想通过高斯定理计算球内外的电场。

在这种情况下,由于球具有球对称性,我们选择一个以球心为中心的球面作为高斯曲面。

根据球对称性,球的电场在球面上处处相等,并且与球面的法线垂直。

因此,和在点积后等于,其中是球面上的电场强度。

曲面的面积元等于球的表面积元。

因此,高斯定理可简化为:等式的右边是整个球的表面积,用!表示。

由于电场是球对称的,且垂直于球面,所以电场与面积元相乘的结果在整个球面上是相等的。

由于曲面上的电场都是相等的,整个球面的面积元乘以电场强度后等于电场强度乘以整个球面的面积,所以可以简化为:解得:其中,为球内的总电荷量。

例子2:无限长均匀带电线考虑一个无限长均匀带电线,线密度为。

我们想通过高斯定理计算线外的电场。

在这种情况下,由于线具有柱对称性,我们选择一个以线为轴的柱面作为高斯曲面。

我们将柱面的两个底面分别设为 A 和 B,其中 A 的面积为,B 的面积为。

电通量高斯定理

电通量高斯定理
该定理是静电场的基本定理之,对 于研究静电场的分布和性质具有重要 意义。
03 电通量高斯定理的应用场 景
静电场计算
静电场计算是电通量高斯定理的重要 应用场景之一。通过使用高斯定理, 可以方便地计算出给定区域内电荷产 生的电场强度和电势分布。
在实际应用中,静电场计算广泛应用 于电子设备、电磁兼容性分析、材料 科学等领域。
内的电荷分布仍然满足高斯定理。这一理论为分析复杂电场问题提供了重要的基础。
电通量高斯定理与麦克斯韦方程组的关系
要点一
总结词
要点二
详细描述
电通量高斯定理是麦克斯韦方程组的一个推论,表明在时 变电磁场中,电场线闭合的特性与电荷守恒定律相一致。
麦克斯韦方程组是描述电磁场运动的基本方程,其中包括 了波动方程、高斯定理和安培环路定律等。在高斯定理中 ,它指出在时变电磁场中,电场线闭合的特性与电荷守恒 定律相一致。这意味着在变化的电磁场中,电荷分布的变 化必须满足电荷守恒定律,从而保持电场线的闭合性。这 一关系表明了电通量高斯定理与麦克斯韦方程组之间的紧 密联系。
推动科学发展
电通量高斯定理的发现和应用,推动了科学技术的进步和发展。在电子工程、通信工程、生物医学工程 等领域,电通量高斯定理都发挥了重要的作用,为各种先进技术和设备的研发提供了重要的理论支持。
对未来研究的展望
要点一
深入研究电磁场的内 在机制
随着科学技术的发展,对电磁场的内 在机制和规律的认识越来越深入。未 来可以进一步深入研究电通量高斯定 理的内在机制和规律,探索更加复杂 和深入的电磁场问题。
02 电通量高斯定理的公式与 推导
公式表述
公式
$oiint_{S} vec{E} cdot dvec{S} = frac{1}{varepsilon_{0}} iint_{S} rho dS$

电场的电通量与高斯定理

电场的电通量与高斯定理

电场的电通量与高斯定理电场的电通量是描述电场线通过一个封闭曲面的程度的物理量,它在物理学中有着重要的应用。

而高斯定理则是计算电场电通量的一种重要方法。

本文将探讨电场的电通量的概念及计算方法,以及高斯定理的原理和应用。

1. 电场的电通量电场的电通量是指单位时间内通过垂直于电场线的面积的电场线数目。

常用符号表示为Φ,单位为“麦可伏伦/米平方”(C·V/m^2)。

电通量的大小与电场线的密度有关,电场线越密集,则电通量越大。

2. 电通量的计算电通量的计算可以通过积分来实现。

设曲面S为一个封闭曲面,并在曲面上选取微小面元dS,该微小面元的面积为ΔS。

假设电场E在该面元上的投影长度为E⊥,则通过该微小面元的电场线条数为E⊥·ΔS。

将所有微小面元上的电场线条数相加,就可以得到通过整个曲面的电通量Φ,即Φ = ∫ E⊥ · dS。

3. 高斯定理的原理高斯定理主要应用于具有对称性的电场问题。

它指出,对于任意封闭曲面S,通过该曲面的电通量Φ与该封闭曲面所包围的总电荷量Q之间存在以下关系:Φ = Q/ε0,其中ε0为真空中的电介质常数,约等于8.85 × 10^-12 C^2/N·m^2。

4. 高斯定理的应用高斯定理在电场问题的求解中具有广泛的应用。

通过选择合适的封闭曲面,可以简化电场问题的求解过程。

例如,当电场具有球对称性时,可以选择以球心为中心的球面作为封闭曲面,这样可以使计算过程更加简化。

5. 实例分析考虑一个均匀带电球体,球心位于原点,半径为R,总电荷量为Q。

我们希望计算通过球面的电通量。

根据高斯定理,可以选择以球心为中心,球面为封闭曲面进行计算。

由于球对称性,电场E在球面上的大小处处相等。

根据球面积分的计算公式,可以得到Φ = E · 4πR^2。

而球内的总电荷量为Q,因此根据高斯定理,我们可以得到Φ = Q/ε0。

将上述两个等式联立,可以解得E = Q / (4πε0R^2)。

电介质的高斯定理

电介质的高斯定理

电介质的高斯定理
高斯定理又称为电通量定理,是描述电场分布的一条基本定理,它是高斯定律的一部分。

高斯定理是指在电介质中,通过一个闭合曲面的电通量与该曲面所包围电荷的代数和成正比。

具体而言,电介质的高斯定理可以用如下公式表示:
∮E·dA = Q/ε
其中,∮E·dA表示通过闭合曲面的电场E与面元dA的点积之和,Q表示该闭合曲面所包围的电荷量,ε表示电介质的介电常数。

高斯定理表明,电场通过一个闭合曲面的总电通量与这个曲面所包围的总电荷成正比关系。

通过这个定理,可以方便地计算电场分布及电荷分布之间的关系。

在应用高斯定理时,需要注意以下几点:
1. 选择合适的闭合曲面:闭合曲面可以是球面、柱面、平面等等,具体的选择要根据实际情况来确定。

一般来说,如果电
荷分布比较对称,选择球面作为闭合曲面较为方便。

2. 计算电场通量:通过选择的闭合曲面计算电场与面元的点积之和,即计算∮E·dA。

这一步需要根据具体的电场分布来进行计算,可以利用库仑定律等来求解。

3. 计算电荷量:根据实际情况确定闭合曲面所包围的电荷量Q。

如果已知电荷分布,可以直接计算;如果未知,则需要根据已知的电场分布来进行推导。

4. 确定介电常数:介电常数ε是电介质的一个属性,它反映了电场在电介质中的传播速度和电荷分布的影响程度。

不同的介电常数对应不同的电介质材料,可以通过实验测量或者查找资料获得。

通过以上步骤,可以利用高斯定理计算电场的分布以及与电荷之间的关系。

高斯定理不仅适用于电介质,还可以用于真空中的电场分布计算,只是在真空中介电常数ε的值为真空介电常数ε0。

电通量和高斯定理

电通量和高斯定理

05 电通量与高斯定理的意义 和影响
对电磁学理论的意义
描述电场分布
建立电磁场理论
电通量是描述电场分布的重要物理量, 通过高斯定理,我们可以计算出空间 中任意区域的电场强度和电通量密度。
电通量与高斯定理是电磁场理论中的 基础概念,为后续的麦克斯韦方程组 等理论奠定了基础。
揭示电场性质
高斯定理揭示了电场的一个重要性质, 即电场线总是闭合的,这一性质对于 理解电场的产生和传播机制具有重要 意义。
散度定理法
利用散度定理计算电通量, 公式为:∮E⋅dS=∫E⋅dS。
微元法
将闭合曲面划分为若干个 小面元,分别计算每个面 元的电通量,最后求和得 到总电通量。
02 高斯定理的表述
定理的表述
高斯定理的表述
在封闭曲面S内,总电荷量Q等于该封闭曲面内电通量Φ的积分, 即 ∫∫Σ Q = ∫∫Σ dΦ。
电通量的物理意义
表示电场分布的特性
电通量的大小反映了电场在某个闭合 曲面上的分布情况,可以用来描述电 场的强弱和方向。
与电荷分布的关系
电通量的大小与电荷分布有关,电荷 分布的不同会导致电通量的变化。
电通量的计算方法
01
02
03
公式法
根据电场强度E和闭合曲 面S的面积S,计算电通量。 公式为:Φ=∫∫E⋅dS。
要点一
总结词
要点二
详细描述
高斯定理是求解电场的强大工具,通过合理选择高斯面可 以简化问题求解过程。
高斯定理表述为:“通过任意闭合曲面的电场强度通量等 于该闭合曲面所包围的电荷量与真空电容率的比值。”在 求解电场问题时,可以根据问题的对称性和电荷分布情况 选择合适的高斯面,从而将复杂的积分运算简化为简单的 代数运算。例如,在求解无限大均匀带电平面或球壳产生 的电场时,利用高斯定理可以快速得出结果。

9-3 电通量 高斯定理

9-3 电通量 高斯定理

A B
D C
B A
q
C
q e 6 0
D
例:如图所示,在正方体的某一顶点上有一点电 荷q,求通过面ABCD的电通量。 q
B A
C
D
q e 24 0
2. 当电场分布具有高度对称性时求场强分布 步骤: (1) 对称性分析,确定电场强度的大小和方向的 分布特征。 (2) 根据电场的对称性作高斯面,计算电通量。
S S S
0
q Ar4r dr
2 0
R
R
dr
r
r
(r R)
q 2 e E dS EdS E dS E 4r
S S S
0
q Ar 4r dr
2 0
r
第二种情形:电场呈现轴对称分布
例、如图所示,一无限长直均匀带电线,单位长 度的电量为 ,求其空间电场分布。
a. E是髙斯面各面元处的电场强度,是由全部电
0
q2
q4
课堂练习:当点电荷q4在曲面外移动时,通过闭合 曲面的电通量是否发生变化?P点的电场强度是否 发生变化?当点电荷q1在曲面内移动时又如何?
q4 q1 q2
P
q3
对电通量没有影响,但是,对P点的电场强度有影响。
三、高斯定理的应用
1 e E dS
R1 r R2
q1 4 / 3(r R ) EII 4r 3 0 4 / 3( R2 R )
2
R3
R1 I II
III
R2
R2 r R3
EIII 4r
2
0
q1
r R3
EIV
q1 q2 4 0 r 2

电通量_高斯定理

电通量_高斯定理
r<R
电量 ∑ qi = 0 由高斯定理 电量
P
r>R
∑q
i
= lλ
由高斯定理
E=0
λ E = 2π ε0 r
关于电通量
高斯定理的练习 1 Φ e = ∫ E • ds = ∑ qi
s
ε0
教材:P164 例1 P169 例2 P170例3 例4 P190 5-2 5-14 5-15 5-17 5-18 5-19 5-20 5-21
例.如图所示,一个带电量为 q 的点电荷位于正立方体的 A 角 上,则通过侧面 abcd 的电场 强度通量等于:
a
d
A
q
(A)q /6ε0 ; (B)q /12ε0 ; (C)q /24ε0 ; (D)q /36ε0 .
q
●q
●q
c
b
位于中 心 位于一顶点
过每一面的通量
[C] 若将此电荷移到正方体的一个顶点上,则通过整个正 方体表面的电场强度通量为 。q 8ε 0
3 r ρ 4 π 高斯定理 E 4 πr 2 = ε0 3
∑ qi ε0
ρr qr q 场强大小 E = = 场强大小 E = 3 4 πε 0 r 2 3ε 0 4 πε 0 R
q
∴E =
q e 2 r 4π ε0 r
r≥R
r≤R
oo RR
1 qr e, E= 3 r 4π ε0 R
5-4
电场强度通量
电场中的高斯定理
Eb
一.电场线(电场的图示法) c b 1、 E 方向:切线 E ∆N E a 2、 电场强度大小 E = ∆S a ⊥ 性质:不闭合;不相交; 定义:面积矢量 起于正、止于负。 S = Sn n 为面积的法向 闭合曲面的方向: 由曲面内指向曲面外 n n n n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r ' E2 3 o
2
5-4 高斯定理 1.电场线的切线方向为该点的电场强度的方向,电场 线不能相交; 2.电场线数密度与该点 电场强度大小成正比; 3.电场线从正电荷出发 终止于负电荷。在没有 电荷的地方不能中断; 4.电场线不能闭合。 电场线是人为想象 的一组虚拟几何线,不 是电场中客观存在的。
10/22/2012 6:32:40 PM 3
10/22/2012 6:32:40 PM
q1
q2
S
11
高斯面上的电场强度与闭合曲面内外的电荷有关。
5-4 高斯定理
1 SE dS o 1 SE dS o
q
i 1
n
i
讨论
qq SE dS 0 o


dV
3.闭合曲面内电荷的代数和为零,并不意味着曲面上 的电场强度一定为零。
r
o
R
由高斯定理得:
1 4 3 E 4r r o 3 r E 10/22/2012 6:32:40 PM 3 o
2
19
5-4 高斯定理
r >R
2
2 E 4r E dS E dS
S S
1 4 3 E 4r R o 3
5-4 高斯定理
E dS 二、电场强度通量
通过电场中某一个面的电场线数叫做通过这个面 dS
en
的电场强度通量,简称电通量(electric field flux)。 面元dS的电通量:
d e EdS EdS cos 引入面积矢量 dS dS en d e E dS
q
i 1
n
i
讨论
q E dS 1 S o


dV
2.空间的电场是由高斯面内外的电荷共同激发 通量仅与曲面内的电荷有关,但是曲面上任意一点P 的电场强度
EP q1 e r1 2 4 o r1 1 1
r1
P
r2
q2 e r2 2 4 o r2
假设静电场由一组点电荷q1、q2…qi…qj…激发
E E1 E2 Ei E j
作高斯面S,由电场的叠加,得通过高斯面的电通量
ห้องสมุดไป่ตู้ E dS E1 dS E2 dS
1 SE dS (q1 q2 qi qn ) o
1 SE dS o 1 SE dS o
q
i 1
n
i
讨论


dV
1. 高斯定理与电场线的性质③相一致,是用数学语言 表明静电场是有源场。电荷q发出的电场线与电量q成 正比。
q1
q2
10/22/2012 6:32:40 PM 9
5-4 高斯定理
1 E dS
S
S
S
S
S
电场内任意一个闭合曲面的电通量等于该曲面 1 所包围的所有电荷的代数和除以o。这就是真空中静 SE dS dV qj o 电场的高斯定理。
10/22/2012 6:32:40 PM 8
o
q
i 1
n
q1
i
qn
qi
5-4 高斯定理
理学院
大学物理教学中心
College of Science
第五章 静电场 5-4 高斯定律
10/22/2012 6:32:40 PM
1
5-4 高斯定理
一、电场线 为了形象描述电场,可用一组电场线描述电场的分布 两个等量异号电荷的电场 两个等量同号电荷的电场 点电荷的电场
10/22/2012 6:32:40 PM
E 2 o r er
q
1

S
r
L

10/22/2012 6:32:40 PM 22
5-4 高斯定理
例题 求无限大均匀带电平面的静电场场强分布。 解:无限长均匀带电平面的电荷为面对称分布,电场 强度也是面对称。见图。 取垂直带电面的圆柱 面为高斯面,高斯面底面 与电场强度一致,侧面与 电场强度平行。侧面的电 通量
均匀带电球体中存在 一个球型空腔。
R R'
O O'
10/22/2012 6:32:40 PM
25
5-4 高斯定理
R R'
O O'
R

=
O
+
R'
O'

将带电球体分解: 分解后的带电体,电荷分布具有球对称。由高斯 定理可分别求出带电球体内的电场分布。再叠加得空 腔内的电场分布。
10/22/2012 6:32:40 PM 26
1 SE dS o 1 SE dS o
q
i 1
n
i
讨论
S2


dV
S1
S3
10/22/2012 6:32:40 PM
qq E dS 0 SSE dS 1 3 2 o o
10
5-4 高斯定理
1 SE dS o 1 SE dS o
S S
E0
10/22/2012 6:32:40 PM 17
5-4 高斯定理
rR
E
q 2 E dS E dS E 4r
S S
o
q er 2 4 o r 1
o
rR
E0
E
rR
E q er 2 4 o r 1
R
r
曲面上任意一点P的 电场强度不等于零。
Ep q er 1 2 4 o r1 1 1
P
r1
q
r2 q
q er 2 2 4 o r2
10/22/2012 6:32:40 PM
S
12
5-4 高斯定理
三.高斯定理的应用
1 E dS
s
o
q
i
高斯定理是一个积分定理,它表明静电场是有源 场,这反映了静电场的基本性质。高斯定理是静电场 的基本方程。
5-4 高斯定理 由高斯定理,可求得均 匀带电大球内一点的电场强 度
r E1 3 o

O
r
同理可求得小球内一 点的电场强度
E2
10/22/2012 6:32:40 PM
r'
O'
r '

3 o
27
5-4 高斯定理
r E1 3 o r r ' E 3 o 3 o
解:(1)外法线方向如图, 由高斯定律
2 2 E dS 4R1 E1 4R2 E2
S
en
en
R2 R1

4 o 3
R1 R2
3 3
E1
E2
10/22/2012 6:32:40 PM
14
5-4 高斯定理
4 3 2 2 3 E dS 4R1 E1 4R2 E 2 R1 R2 S 3 o



3 o R2 E 2 R1 E1
2 2


R1 R2
3
3
4.42 10
13
C/m
3
(2)外法线方向如图,由 高斯定理
4 2 2 SE dS 4R2 E2 R2 o
en
R2
E
o E 2 8.85 10
10/22/2012 6:32:40 PM
3 R E er 2 3 o r r E rR 3 o
E
o
R
r
rR
3 R E er 2 3 o r
R
20
10/22/2012 6:32:40 PM
5-4 高斯定理
例题 求无限长均匀带电直线周围静电场的场强分布。
解:无限长均匀带电直线的电荷为轴对称分布,电场 强度也是轴对称沿径向辐射。 取同轴圆柱面为高斯面, 高斯面上下端面法线方向与电 S 场强度方向平行,侧面与电场 强度平行,上下端面的电通量 r
2
o
q
1
q
2
4 o R
2
dS
s
4 o R
4R
q o
6
通过球面的通量与球面的几何大小无关。
10/22/2012 6:32:40 PM
5-4 高斯定理
二、高斯定理 假设任意形状的曲面S包围点电荷q,通过曲面S 的电通量
E dS
S
q
如果点电荷q在曲 面S之外,通过曲 面S的电通量 E dS •若q>0,
E dS 0

E dS 0
10/22/2012 6:32:40 PM

21
5-4 高斯定理
E dS
S
E dS E dS
侧 端
E dS E 2rL

L 当r时,E,你 o o 该如何如解释呢? 由高斯定理可得:
dS E
5
5-4 高斯定理
在真空中将一个点电荷置于半径为R的球面中心O, 在球面上电场强度为
E q er 2 4 o R 1
dS
R
穿过闭合球面的电通量:
1 q e dS e E dS 2 r s 4 R s o
e 1 q
0 2
相关文档
最新文档