考研数学线性代数重点归纳
数学专业考研复习资料线性代数重点知识点整理
数学专业考研复习资料线性代数重点知识点整理数学专业考研复习资料:线性代数重点知识点整理一、向量与矩阵1. 向量的定义和性质- 向量的表示与运算- 单位向量和零向量- 向量的线性相关性2. 矩阵的定义和性质- 矩阵的基本运算- 矩阵的转置和逆矩阵- 矩阵的秩和行列式二、线性方程组1. 线性方程组的概念- 线性方程组的解和解的存在唯一性- 齐次线性方程组和非齐次线性方程组2. 线性方程组的解法- 列主元消元法- 矩阵的初等变换和阶梯形矩阵 - 高斯消元法和高斯约当法三、线性空间和子空间1. 线性空间的定义和性质- 线性空间的子空间和直和- 基和维数的概念- 线性空间的同构与等价2. 子空间的性质与判定- 线性子空间的交与和- 维数公式和秩-零化定理- 子空间的降维与升维四、线性变换和特征值1. 线性变换的定义和性质- 线性变换的表示和运算- 线性变换的核与像- 线性变换的矩阵表示和判定2. 特征值和特征向量- 特征方程和特征值的求解 - 特征空间和特征子空间- 相似矩阵和对角化矩阵五、内积空间和正交变换1. 内积的定义和性质- 内积的基本性质和判定- 正交向量和正交子空间- 构造内积空间2. 正交变换和正交矩阵- 正交变换的性质和表示- 正交矩阵的特点和运算- 正交矩阵的对角化和特征值六、二次型和正定矩阵1. 二次型的定义和性质- 二次型的标准形和规范形 - 二次型的正定性和负定性- 二次型的规约和降维2. 正定矩阵的定义和性质- 正定矩阵的判定和运算- 正定矩阵的特征值和特征向量- 正定矩阵及其应用总结:线性代数是数学专业考研中的重要内容之一。
通过对向量与矩阵、线性方程组、线性空间和子空间、线性变换和特征值、内积空间和正交变换、二次型和正定矩阵等知识点的学习和掌握,能够为考研复习提供有力的理论基础和解题方法。
在复习过程中,需要注重概念的理解、性质的掌握以及应用题的练习,同时注意归纳总结和思维方法的培养。
考研数学线性代数复习要点
考研数学线性代数复习要点对于考研数学中的线性代数部分,掌握好复习要点至关重要。
线性代数在考研数学中占据着重要的地位,其特点是概念多、定理多、符号多、运算规律多,并且前后知识的联系紧密。
以下是为大家梳理的线性代数复习要点。
一、行列式行列式是线性代数中的基础概念,其计算方法和性质是必须要熟练掌握的。
1、行列式的定义要理解行列式的定义,特别是二阶和三阶行列式的计算方法。
对于高阶行列式,可以通过行列式的性质将其化为上三角行列式或下三角行列式来计算。
2、行列式的性质熟练掌握行列式的性质,如行列式转置值不变、两行(列)互换行列式变号、某行(列)乘以常数加到另一行(列)行列式不变等。
这些性质在行列式的计算中经常用到。
3、行列式按行(列)展开定理掌握行列式按行(列)展开定理,能够将高阶行列式降阶计算。
二、矩阵矩阵是线性代数的核心内容之一,需要重点掌握。
1、矩阵的运算包括矩阵的加法、数乘、乘法、转置等运算。
要特别注意矩阵乘法的规则和性质,以及矩阵乘法不满足交换律这一特点。
2、矩阵的逆理解逆矩阵的定义和存在条件,掌握求逆矩阵的方法,如伴随矩阵法和初等变换法。
3、矩阵的秩掌握矩阵秩的定义和求法,了解矩阵秩的性质。
矩阵的秩在判断线性方程组解的情况等方面有重要应用。
4、分块矩阵了解分块矩阵的概念和运算规则,能够灵活运用分块矩阵解决一些复杂的矩阵问题。
三、向量向量是线性代数中的重要概念,与线性方程组和矩阵的秩密切相关。
1、向量的线性表示理解向量线性表示的概念,掌握判断向量能否由一组向量线性表示的方法。
2、向量组的线性相关性掌握向量组线性相关和线性无关的定义和判定方法,这是线性代数中的重点和难点。
3、向量组的秩理解向量组的秩的概念,掌握求向量组秩的方法。
4、向量空间了解向量空间的基本概念,如基、维数等。
四、线性方程组线性方程组是线性代数的核心内容之一,在考研中经常出现。
1、线性方程组的解掌握线性方程组有解、无解和有唯一解、无穷多解的判定条件。
考研数学线性代数重点整理
考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。
以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。
2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。
3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。
4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。
5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。
6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。
7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。
8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。
9. 乘法单位元:对于任意的矢量v,有1v = v。
二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。
以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。
2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。
- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。
3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。
对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。
4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。
线性代数考研知识点总结
线性代数考研知识点总结线性代数是数学的一个重要分支,它研究向量空间及其上的线性变换。
在计算机科学、物理学、工程学等领域中,线性代数都有着广泛的应用。
在考研中,线性代数是一个必考的科目,以下是线性代数考研的一些重要知识点总结。
1. 向量空间:向量空间是线性代数的基础概念,它包括一组向量和一些满足特定条件的运算规则。
向量空间中的向量可以进行加法和数乘运算,满足交换律、结合律和分配律。
2. 向量的线性相关性和线性无关性:如果向量可以通过线性组合表示为另一组向量的形式,那么这组向量就是线性相关的;如果向量不满足线性相关的条件,那么它们就是线性无关的。
3. 矩阵:矩阵是线性代数中的另一个重要概念,它是一个由数字排列成的矩形阵列。
矩阵可以用于表示线性变换、解线性方程组等。
常见的矩阵类型有方阵、对称矩阵、对角矩阵、单位矩阵等。
4. 行列式:行列式是一个用于刻画矩阵性质的重要工具。
行列式可以用来计算线性变换的缩放因子,判断矩阵是否可逆,以及计算矩阵的逆等。
5. 矩阵的相似和对角化:两个矩阵A和B,如果存在一个非奇异矩阵P,使得PAP^(-1)=B,那么矩阵A和B就是相似的。
相似的矩阵有着相同的特征值和特征向量。
对角化是指将一个矩阵通过相似变换变成对角矩阵的过程。
6. 线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。
线性变换可以用矩阵表示,相应的矩阵称为线性变换的矩阵表示。
线性变换可以进行合成、求逆等操作。
7. 内积空间:内积空间是一个带有内积运算的向量空间。
内积运算满足对称性、线性性、正定性等性质。
内积空间可以用来定义向量的长度、夹角、正交性等概念。
8. 特征值和特征向量:对于一个线性变换,如果存在一个非零向量使得线性变换作用在该向量上等于该向量的某个常数倍,那么这个常数就是该线性变换的特征值,而对应的非零向量就是特征向量。
特征值和特征向量可以用来分析矩阵的性质,求解线性方程组等。
9. 奇异值分解:奇异值分解是矩阵分解的一种常用方法,它将一个矩阵分解为三个矩阵的乘积,其中一个矩阵是正交矩阵,另两个矩阵是对角矩阵。
考研数学一大纲详解线性代数部分考点归纳
考研数学一大纲详解线性代数部分考点归纳线性代数是考研数学一科目中的一部分,具有重要的地位和作用。
掌握好线性代数的知识,不仅有助于我们在考试中获得高分,还可以帮助我们在将来的学习和研究中更好地应用数学知识。
本文将针对考研数学一大纲中的线性代数部分,对考点进行详细解析和归纳。
一、向量空间及其基本性质1. 向量空间的概念2. 向量空间的基本性质3. 闭子空间的概念与性质4. 有限维向量空间与无限维向量空间的性质5. 向量的线性相关与线性无关6. 向量组与矩阵的秩7. 基底与维数的概念及其性质二、矩阵的运算及其性质1. 矩阵的加法和数乘2. 矩阵的乘法及其性质3. 矩阵的转置4. 矩阵的逆及其性质5. 矩阵的秩与逆的关系6. 矩阵的行列式及其性质7. 克拉默法则三、特征值、特征向量与对角化1. 特征值与特征向量的概念2. 特征多项式及其性质3. 对角化的条件4. 相似矩阵的性质5. 可对角化矩阵与不可对角化矩阵的区别6. Jordan标准形四、线性方程组的解法1. 线性方程组的消元法2. 线性方程组的矩阵表示与向量表示3. 齐次线性方程组与非齐次线性方程组4. 初等变换和增广矩阵的关系5. 矩阵的秩与线性方程组解的关系6. 非齐次线性方程组的通解和特解以上是考研数学一大纲中线性代数部分的主要考点和知识点的归纳,希望对考生们在备考中有所帮助。
在复习过程中,需要注重对基本概念的理解和记忆,同时通过大量的练习来提高对知识的掌握程度。
同时,考生还应该注重对知识的应用能力的培养,能够将所学的线性代数知识应用于实际问题中。
最后,祝愿所有备战考研的同学们都能够取得优异的成绩,顺利进入心仪的研究生院校。
相信通过努力的学习和不断的积累,成功将会属于你们!加油!。
天津市考研数学线性代数重点知识总结
天津市考研数学线性代数重点知识总结线性代数是数学的一个重要分支,也是考研数学的一门重要课程。
对于考研数学线性代数的学习,我们需要掌握一些重点知识。
本文将对天津市考研数学线性代数的重点知识进行总结和讲解。
一、向量空间和线性变换1. 向量空间的定义及性质向量空间是线性代数中最基本的概念之一。
向量空间的定义包括十条性质,分别是封闭性、结合律、零向量、相反元、标量乘法、分配律、单位向量、范数、内积和正交。
掌握这些定义及性质,对于理解向量空间的本质和性质具有重要意义。
2. 线性变换的定义及性质线性变换是指在向量空间中进行的一种特殊的变换方式。
线性变换具有保持加法和标量乘法结构的性质,即线性变换满足线性性质。
线性变换的定义包括保持加法和标量乘法两个性质,同时还有线性变换的矩阵表示、复合和逆变换等重要性质需要掌握。
二、矩阵和行列式1. 矩阵的定义及基本运算矩阵是线性代数中另一个重要的概念,是一个矩形的数表。
矩阵的基本运算包括矩阵的加法、数乘和乘法等。
此外,矩阵的转置、乘法的结合律和分配律等性质也是需要掌握的重点。
2. 行列式的定义及性质行列式是一种用于描述矩阵的重要工具。
行列式的定义包括两种形式,一种是二阶行列式的定义,另一种是n阶行列式的定义。
行列式具有很多性质,如行列式的转置、乘法、行交换和性质不变性等。
掌握行列式的定义及性质对于矩阵的运算及线性方程组的求解非常重要。
三、线性方程组1. 线性方程组的基本概念线性方程组是线性代数中一个重要的研究对象。
线性方程组的基本概念包括齐次线性方程组和非齐次线性方程组的定义及性质。
齐次线性方程组的解空间是一个向量空间,而非齐次线性方程组的解空间则是一个平行于齐次线性方程组解空间的平面。
2. 线性方程组的求解方法线性方程组的求解包括高斯消元法、矩阵的行变换及矩阵的逆等方法。
高斯消元法是线性方程组求解的一种常用方法,它通过矩阵的行变换将线性方程组转化为简化行阶梯形矩阵,然后利用简化行阶梯形矩阵求解线性方程组。
考研数学线性代数必背知识点
反对称矩阵 A = A 。
0 0 0 0 1 0 3 0 (A ) * 0 03 0 01 0 0* * *对称矩阵 A = A 。
考研数学知识点-线性代数第一讲 基本知识二.矩阵和向量1.线性运算与转置① A + B = B + A② (A + B ) + C = A + (B + C )③ c (A + B ) = cA + cB (c + d )A = cA + dA④ c (dA ) = (cd )A⑤ cA = 0 ™ c = 0 或 A = 0 。
向量组的线性组合〈 1 ,〈 2 ,⊄ ,〈 s ,T 三.矩阵的初等变换,阶梯形矩阵 ♣初等行变换 初等变换分 ♦ ♥初等列变换 三类初等行变换 ①交换两行的上下位置 A B ②用非零常数 c 乘某一行。
③把一行的倍数加到另一行上(倍加变换) 阶梯形矩阵 转置 c 1〈 1 + c 2〈 2 + ⊄ + c s 〈 s 。
A 的转置 A T (或 A 2 )4 1 0 1 0 2 0 0 25 2 0 0 1 2 1 4 3 T T= A①如果有零行,则都在下面。
②各非零行的第一个非 0 元素的列号自上而下严格 (A ± B )T = A T ± B T单调上升。
或各行左边连续出现的 0 的个数自上而下严格单调 (cA )T = c (A T )。
上升,直到全为 0 。
台角:各非零行第一个非 0 元素所在位置。
简单阶梯形矩阵: 3. n 阶矩阵3.台角位置的元素都为 1 n 行、 n 列的矩阵。
对角线,其上元素的行标、列标相等 a 11 , a 22 ,⊄对角矩阵 0 * 00 0 *4.台角正上方的元素都为 0。
每个矩阵都可用初等行变换化为阶梯形矩阵和简单 阶梯形矩阵。
如果 A 是一个 n 阶矩阵 A 是阶梯形矩阵 ® A 是上三角矩阵,反之不一定, 数量矩阵 0 3 0 = 3E0 0 3单位矩阵 0 1 0 E 或I0 0 1如 0 0 1 0 1 0 是上三角,但非阶梯形 0 0 1 四.线性方程组的矩阵消元法 用同解变换化简方程再求解 上(下)三角矩阵 0 * *0 0 *T 1 三种同解变换: ①交换两个方程的上下位置。
考研线性代数知识点归纳
考研线性代数知识点归纳线性代数是现代数学的一个重要分支,广泛应用于各个领域,特别是在计算机科学、物理学、经济学等方面。
对于考研生来说,线性代数是必修课程之一,也是很多专业课程的基础。
在考研线性代数的学习中,掌握并灵活运用重要的知识点是取得好成绩的关键。
本文将对考研线性代数的知识点进行归纳总结,希望能够帮助考生更好地备考。
1. 矩阵与向量矩阵是线性代数中的一种基本概念,其是一个矩形的数表,由各种数(或者说称之为元素)构成。
向量是矩阵的一种特殊形式,它是一个只有一个列的矩阵。
在考研线性代数中,需要了解和掌握矩阵的基本性质,包括矩阵的运算法则、矩阵的转置、逆矩阵等。
同时,还需要了解向量的运算法则、向量空间的性质等。
2. 线性方程组线性方程组是线性代数中的一个重要概念,它由未知数及其系数构成的等式组成。
考研中常涉及到的线性方程组有齐次线性方程组和非齐次线性方程组。
对于齐次线性方程组,需要了解齐次方程的基本性质、解空间的概念以及求解齐次方程组的方法。
对于非齐次线性方程组,需要了解非齐次方程的基本性质、解的存在唯一性以及求解非齐次方程组的方法。
3. 行列式行列式是线性代数中的另一个重要概念,它是一个标量,通过矩阵的元素按照一定规则的运算得到。
在考研线性代数中,需要了解行列式的定义、性质以及基本的运算规则。
同时,还需要了解行列式的计算方法,包括拉普拉斯展开法、性质法等。
4. 特征值与特征向量特征值与特征向量也是线性代数中的一个重要概念,它们与矩阵的特征有关。
在考研线性代数中,需要了解特征值与特征向量的定义、性质以及求解方法。
特征值与特征向量在矩阵对角化、线性变换等方面具有重要的应用,也是考研中常考的一个重点。
5. 线性空间线性空间是指由向量构成的集合,并满足一定的运算性质。
在考研线性代数中,需要了解线性空间的定义、性质以及基本的运算规则。
同时,还需要了解线性相关性与线性无关性的概念,以及线性相关性与线性无关性的判定方法。
考研数学常见考点总结
考研数学常见考点总结一、线性代数线性代数是考研数学中的重要考点,涉及到向量、矩阵、行列式等内容。
以下是线性代数中常见的考点总结:1. 向量向量的基本概念、向量的线性组合与表示、向量的数量积、向量的向量积等。
2. 矩阵矩阵的基本概念、矩阵的运算(加法、乘法)、矩阵的转置与逆、矩阵的秩等。
3. 行列式行列式的定义、行列式的性质、行列式的计算方法(代数余子式、拉普拉斯定理等)、行列式的性质与应用。
4. 线性方程组线性方程组的解的存在唯一性、线性方程组解的性质、线性方程组的解的判定方法(增广矩阵、矩阵的秩等)、线性方程组解的性质与应用。
5. 特征值与特征向量矩阵的特征值与特征向量的定义、矩阵的对角化、特征值与特征向量的性质与应用。
二、概率论与数理统计概率论与数理统计是考研数学中的另一个重要考点,涉及到概率、随机变量、统计推断等内容。
以下是概率论与数理统计中常见的考点总结:1. 概率概率的基本概念、事件与概率、概率的运算(加法、乘法)、条件概率与独立性、随机事件的概率分布等。
2. 随机变量随机变量的基本概念、离散型随机变量与连续型随机变量、随机变量的分布函数、随机变量的数学期望与方差等。
3. 数理统计抽样与抽样分布、参数估计与假设检验、点估计与区间估计、最大似然估计与最小二乘估计、正态分布与标准正态分布等。
4. 统计推断参数估计问题、假设检验问题、方差分析与回归分析、非参数统计等。
三、高等数学高等数学是考研数学中的基础知识,它既是其他数学学科的基础,也是考研数学中的重要考点。
以下是高等数学中常见的考点总结:1. 极限与连续数列极限与函数极限、无穷小量与无穷大量、函数连续与间断点、函数在闭区间上的性质与应用等。
2. 导数与微分函数的导数与导函数、高阶导数与高阶导函数、隐函数与参数方程求导、微分的应用等。
3. 积分与不定积分定积分与不定积分的基本概念、牛顿-莱布尼茨公式、定积分的计算方法(换元积分法、分部积分法等)、定积分的性质与应用等。
考研线性代数知识点全面总结
《线性代数》复习提纲第一章、行列式1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。
(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半;<2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
~特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;◊行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。
3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1(。
定理:一个排列中任意两个元素对换,改变排列的奇偶性。
奇排列变为标准排列的对换次数为基数,偶排列为偶数。
n 阶行列式也可定义:n q q q na a a ⋯=∑21t211-D )(,t 为n q q q ⋯21的逆序数4.行列式性质:1、行列式与其转置行列式相等。
%2、互换行列式两行或两列,行列式变号。
若有两行(列)相等或成比例,则为行列式0。
3、行列式某行(列)乘数k,等于k 乘此行列式。
行列式某行(列)的公因子可提到外面。
4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。
5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。
6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。
(按行、列展开法则)}7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0.5.克拉默法则::若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解DD D Dx D D n =⋯==n 2211x ,x ,,。
考研数学线性代数每年必考的知识点
考研数学线性代数每年必考的知识点考研数学线性代数每年必考的知识点线性代数是考研数学中比较重要的一部分内容,考生要认真复习,尤其注意对重点知识的理解和应用。
店铺为大家精心准备了考研数学线性代数每年必考的难点,欢迎大家前来阅读。
考研数学线性代数每年必考的重点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。
行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组向量与线性方程组是整个线性代数部分的核心内容。
相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节。
向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。
复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。
三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。
其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。
四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。
考研数学拿高分的技巧1、认真思考数学问题的习惯思考对于数学的学习是最核心的,对做题更甚。
不坚持去思考,不仔细去联想,类比,总结只相当于背书,是学不到数学的本质的,想考高分是不可能的。
举一个例子:中值定理那块的证明题,一开始不会证,我就忍住不去看答案,自己去思考,有时候一晚上都在思考一个题。
这样思考,我会想到很多知识点并加以整合,会慢慢提炼出思路。
以后解这一类题就会顺畅很多。
考研的题肯定是自己没见过的,平常做题时不会就去看答案,考场上可没有现成的答案看啊。
考研数学线性代数必考的知识点
考研数学线性代数必考的知识点考研数学线性代数是考研数学中的重要一部分,是以线性代数为基础的高等数学课程。
线性代数在科学与工程中有着广泛的应用,而考研数学线性代数的知识点主要包括矩阵、行列式、线性方程组、特征值与特征向量、线性空间和线性变换等内容。
一、矩阵1.矩阵的基本运算:矩阵的加减法、数乘、乘法及其性质;2.矩阵的转置、对称与反对称矩阵、单位矩阵;3.矩阵的秩:元素型和行列型定义、秩的性质和计算方法;4.矩阵的逆:可逆矩阵与非奇异矩阵、矩阵的逆的存在性和计算方法;5.矩阵的秩公式和分块矩阵。
二、行列式1.行列式的定义:n阶行列式的定义、性质和计算方法;2.行列式的性质:行列式的性质和性质导出的定理;3.方阵的行列式的计算:按行(列)展开、对角线法则、拉普拉斯展开;4.计算商工差、计算行列式的特殊方法;5.行列式的应用:方阵可逆的判定、线性方程组的解的存在性与唯一性、向量线性相关与线性无关的判定。
三、线性方程组1.线性方程组的线性组合与线性相关性;2.齐次方程组与非齐次方程组的概念;3.齐次线性方程组的基础解系与通解;4.线性方程组的求解方法:初等变换法、高斯消元法、矩阵法;5.线性方程组的解的判别准则:齐次线性方程组有非零解的充分必要条件、非齐次线性方程组有解的充分必要条件。
四、特征值与特征向量1.特征值与特征向量的定义;2.特征值与特征向量的性质:特征值的性质、特征向量的性质;3.对角化与相似矩阵:矩阵的相似与相似矩阵的性质;4.对称矩阵的主轴定理和谱定理;5.特征值与特征向量的计算方法。
五、线性空间与线性变换1.线性空间的定义和性质;2.线性子空间的定义和性质;3.线性相关与线性无关性质的判定;4.线性空间的基与维数的概念;5.线性变换的定义和性质:线性变换的线性性质、线性变换的像与核。
以上就是考研数学线性代数必考的主要知识点。
掌握了这些知识点,可以帮助考生有效准备考研数学线性代数的复习和应对考试,为取得良好成绩打下坚实的基础。
考研数学一大纲详解线性代数部分重要知识点梳理
考研数学一大纲详解线性代数部分重要知识点梳理线性代数作为数学的一个重要分支,是考研数学一科目中不可或缺的一部分。
在考研备考的过程中,对线性代数的重要知识点进行详细梳理,对于提高考生的备考效果具有重要意义。
本文将详解考研数学一大纲中线性代数部分的重要知识点,并对其进行逐一讲解。
一、行列式及其性质行列式是线性代数中的基础知识,掌握行列式的性质对于解题至关重要。
行列式的性质包括:行列式的定义、行列式的性质、行列式的计算方法等。
行列式的定义是关于n阶行列式的,其中n表示行列式的阶数。
行列式的定义较为复杂,但我们只需熟记其定义即可。
行列式的性质包括:行列式相等的条件、行列式的值与其元素的关系等。
这些性质在解题过程中经常用到,熟悉这些性质不仅可以帮助我们更好地理解行列式的本质,还能够简化计算过程。
行列式的计算方法是解决行列式问题的基础。
行列式的计算采用展开法、按行(列)展开法等多种方法。
我们需要熟练掌握这些计算方法,并灵活运用于解答各类行列式题目。
二、矩阵及其运算矩阵是线性代数中的另一个重要概念,学习矩阵及其运算对于解题具有重要作用。
矩阵的概念包括:矩阵的定义、矩阵的运算等。
矩阵的定义是关于m行n列的矩阵的,其中m表示矩阵的行数,n表示矩阵的列数。
矩阵的定义较为简单,但需要我们掌握其基本概念和术语。
矩阵的运算包括:矩阵的加法、矩阵的乘法等。
矩阵的加法和乘法是两种基本的矩阵运算,我们需要熟练掌握其定义和运算法则,并能够应用到实际问题中。
三、向量及其运算向量是线性代数中的重要概念,其运算方法也是考研数学一大纲中的重点内容。
向量的概念包括:向量的定义、向量的运算等。
向量的定义是关于n维向量的,其中n表示向量的维数。
向量的定义较为简单,但需要我们理解其本质和特点。
向量的运算包括:向量的加法、向量的数乘、向量的内积和外积等。
掌握这些运算方法对于解题非常重要,需要注意运算规则和性质。
四、线性相关与线性无关线性相关与线性无关是线性代数中的一个重要概念,其在解决线性方程组和矩阵求逆等问题时经常用到。
考研数学 线性代数(高等代数)重点知识整理总结
考研线性代数(高等代数)重点知识总结一、行列式(一)行列式概念和性质1.(奇偶)排列、逆序数、对换逆序数:所有逆序的总数。
2、行列式定义:所有两个来自不同行不同列的元素乘积的代数和。
重点:二、三阶行列式的计算公式3.n 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和,121212(..)12(1)...n n nj j j ijj j nj nj j j a a a a τ=-∑.4.行列式的性质(主要用于行列式的化简和求值):(1)行列式行列互换,其值不变。
(转置行列式T D D =)(2)行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
(3)常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
(提公因式)推论:若行列式中两行(列)成比例,则行列式值为零;推论:行列式中某一行(列)元素全为零,行列式为零。
(4)行列式具有分行(列)可加性。
行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
(5)将行列式某一行(列)的k 倍加到另一行(列)上,值不变。
余子式ij M 、代数余子式ij ji ij M A +-=)1(。
(6)行列式依行(列)展开:余子式ij M 、代数余子式ij ji ij M A +-=)1(。
定理:①任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值;②行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0.(7)克莱姆法则:①非齐次线性方程组:当系数行列式0≠D ,有唯一解:,(12)j j D x j n D==⋯⋯其中、;②齐次线性方程组:当系数行列式0D ≠时,则只有零解。
逆否:若方程组存在非零解,则D 等于零。
③如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0。
④若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有0D =。
(完整版)线性代数知识点全归纳
1线性代数知识点1、行列式1.n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3.代数余子式和余子式的关系:(1)(1)i j i j ij ijij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;22、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)33、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)4⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式; 二项展开式:01111110()nn n n m n m mn n n n m m n mn n n n n n m a b C a C a b C a b C a b C b C a b-----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;511. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4.()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :6若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤; 向量组A 能由向量组B 线性表示,则()()r A r B ≤;向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆);9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,A 与B 的任何对应的列向量组有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩;10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,【考试中可以直接作为定理使用,而无需证明】 ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关;14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;715. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ;5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7.n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)8第一章 随机事件互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心; 必然事件随便用,选择先试不可能。
考研数学有哪些线性代数复习重点
考研数学有哪些线性代数复习重点考研数学有哪些线性代数复习重点考生们在进入考研数学的感想阶段时,有哪些线性代数是需要复我们去。
店铺为大家精心准备了考研数学线性代数复习难点,欢迎大家前来阅读。
考研数学线性代数复习要点第一章行列式考试内容:行列式的概念和基本性质,行列式按行(列)展开定理。
考试要求:1、了解行列式的概念,掌握行列式的性质。
2、会应用行列式的性质和行列式按行(列)展开定理计算行列式。
第二章矩阵考试内容:矩阵的概念,矩阵的线性运算,矩阵的乘法,方阵的幂,方阵乘积的行列式,矩阵的转置,逆矩阵的概念和性质,矩阵可逆的充分必要条件,伴随矩阵,矩阵的初等变换,初等矩阵,矩阵的秩,矩阵的等价分块矩阵及其运算。
考试要求:1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质。
2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。
3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。
4、了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。
5、了解分块矩阵及其运算。
新大纲变化:矩阵一章增加了一个知识点“分块矩阵及其运算”。
解析及应对策略:08年大纲增加了“分块矩阵及其运算”,从而达到了与数学一、数学三和数学四对矩阵要求相统一。
从考试内容和考试要求上看,该知识点的增加其实是对矩阵内容考察的更加完善,充分体现了研究生入学考试的严谨性及对学生的综合能力的考察。
这部分内容的增加,加大了对数学二同学矩阵方面的要求。
同学们在复习这部分内容的时候,结合分块矩阵的定义及分块矩阵的运算性质。
还要对矩阵的几种运算要熟练,比如:对分块矩阵求逆矩阵,分块矩阵的四则运算法则等,做到全面不遗漏。
第三章向量考试内容:向量的概念,向量的线性组合和线性表示,向量组的线性相关和线性无关,向量组的极大线性无关组,等价的向量组,向量组的秩,向量组的秩与矩阵的秩之间的关系,向量的内积,线性无关向量组的的正交规范化方法。
线性代数复习总结(重点精心整理)
线性代数复习总结大全第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij ji ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。
化为三角形行列式 ⑤上(下)三角形行列式: 行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1(非|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n nija k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
考研数学历年真题线性代数的考点总结
考研数学历年真题线性代数的考点总结线代部分对很多备考的学子来说,最深刻感觉就是,抽象、概念多、定理多、性质多、关系多。
为大家精心准备了考研数学历年真题线性代数的要点,欢迎大家前来阅读。
?线性代数章节总结第一章行列式本章的考试重点是行列式的计算,考查形式有两种:一是数值型行列式的计算,二是抽象型行列式的计算.另外数值型行列式的计算不会单独的考大题,考选择填空题较多,有时出现在大题当中的一问或者是在大题的处理问题需要计算行列式,题目难度不是很大。
主要方法是利用行列式的性质或者展开定理即可。
而抽象型行列式的计算主要:利用行列式的性质、利用矩阵乘法、利用特征值、直接利用公式、利用单位阵进展变形、利用相似关系。
06、08、10、12年、13年的填空题均是抽象型的行列式计算问题,14年选择考了一个数值型的矩阵行列式,15、16年的数一、三的填空题考查的是一个n行列式的计算,今年数一、数二、数三这块都没有涉及。
第二章矩阵本章的概念和运算较多,而且结论比较多,但是主要以填空题、选择题为主,另外也会结合其他章节的知识点考大题。
本章的重点较多,有矩阵的乘法、矩阵的秩、逆矩阵、伴随矩阵、初等变换以及初等矩阵等。
其中06、09、11、12年均考查的是初等变换与矩阵乘法之间的相互转化,10年考查的是矩阵的秩,08年考的那么是抽象矩阵求逆的问题,这几年考查的形式为小题,而13年的两道大题均考查到了本章的知识点,第一道题目涉及到矩阵的运算,第二道大题那么用到了矩阵的秩的相关性质。
14的第一道大题的第二问延续了13年第一道大题的思路,考查的仍然是矩阵乘法与线性方程组结合的知识,但是除了这些还涉及到了矩阵的分块。
16年只有数二了矩阵等价的判断确定参数。
第三章向量本章是线代里面的重点也是难点,抽象、概念与性质结论比较多。
重要的概念有向量的线性表出、向量组等价、线性相关与线性无关、极大线性无关组等。
复习的时候要注意构造和从不同角度理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学线性代数重点归纳
概率论与数理统计初步主要考查考生对研究随机现象规律性的基本概念、基本理论和基本方法的理解,以及运用概率统计方法分析和解决实际问题的能力。
随机事件和概率考查的主要内容有:(1)事件之间的关系与运算,以及利用它们进行概率计算;(2)概率的定义及性质,利用概率的性质计算一些事件的概率;(3)古典概型与几何概型;(4)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;(5)事件独立性的概念,利用独立性计算事件的概率;(6)独立重复试验,伯努利概型及有关事件概率的计算。
要求考生理解基本概念,会分析事件的结构,正确运用公式,掌握一些技巧,熟练地计算概率。
随机变量及概率分布考查的主要内容有:(1)利用分布函数、概率分布或概率密度的定义和性质进行计算;(2)掌握一些重要的随机变量的分布及性质,主要的有:(0-1)分布、二项分布、泊松分布、几何分布、超几何分布、均匀分布、指数分布和正态分布,会进行有关事件概率的计算;(3)会求随机变量的函数的分布。
(4)求两个随机变量的简单函数的分布,特别是两个独立随机变量的和的分布。
要求考生熟练掌握有关分布函数、边缘分布和条件分布的计算,掌握有关判断独立性的方法并进行有关的计算,会求两个随机变量函数的分布。
随机变量的数字特征考查的主要内容有:(1)数学期望、方差的定义、性质和计算;(2)常用随机变量的数学期望和方差;(3)计算一些随机变量函数的数学期望和方差;(4)协方差、相关系数和矩的定义、性质和计算;要求考生熟练掌握数学期望、方差的定义、性质和计算,掌握由给出的试验确定随机变量的分布,再计算有关的数字的特征的方法,会计算协方差、相关系数和矩,掌握判断两个随机变量不相关的方法。
大数定律和中心限定理考查的主要内容有:(1)切比雪夫不等式;(2)大数定律;(3)中心极限定理。
要求考生会用切比雪夫不等式证明有关不等式,会利用中心极限理进行有关事件概率的近似计算。
数理统计的基本概念考查的主要内容有:(1)样本均值、样本方差和样本矩的概念、性质及计算;(2)χ2分布、t分布和F分布的定义、性质及分位数;(3)推导某些统计量的(特别是正态总体的某些统计量)的分布及计算有关的概率。
要求考生熟练掌握样本均值、样本方差的性质和计算,会根据χ2分布、t分布和F分布的定义和性质推导有关正态总体某些统计的计量的分布。
参数估计考查的主要内容有:(1)求参数的矩估计、极大似然估计;(2)判断估计量的无偏性、有效性、一致性;(3)求正态总体参数的置信区间。
要求考生熟练地求得参数的矩估计、极大似然估计并判断无偏性,会求正态总体参数的置信区间。
假设检验考查的显著的主要内容有:(1)正态总体参数的显著性检验;(2)总体分布假设的χ2检验。
要求考生会进行正态总体参数的显著性检验和总体分布假设的χ2检验。
常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:(1)确定事件间的关系,进行事件的运算;(2)利用事件的关系进行概率计算;(3)利用概率的性质证明概率等式或计算概率;(4)有关古典概型、几何概型的概率计算;(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;(6)有关事件独立性的证明和计算概率;(7)有关独重复试验及伯努利概率型的计算;(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;(9)由给定的试验求随机变量的分布;(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;(11)求随机变量函数的分布(12)确定二维随机变量的分布;(13)利用二维均匀分布和正态分布计算概率;(14)求二维随机变量的边缘分布、条件分布;(15)判断随机变量的独立性和计算概率;(16)求两个独立随机变量函数的分布;(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;(18)求随机变量函数的数学期望;(19)求两个随机变量的协方差、相关系数并判断相关性;(20)求随机变量的矩和协方差矩阵;(21)利用切比雪夫不等式推证概率不等式;(22)利用中心极限定理进行概率的近似计算;(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;(24)推证某些统计量(特别是正态总体统计量)的分布;(25)计算统计量的概率;(26)求总体分布中未知参数的矩估计量和极大似然估计量;(27)判断估计量的无偏性、有效性和一致性;(28)求单个或两个正态总体参数的置信区间;(29)对单个或两个正态总体参数假设进行显著性检验;(30)利用χ2检验法对总体分布假设进行检验。
这一部分主要考查概率论与数理统计的基本概念、基本性质和基本理论,考查基本方法的应用。
对历年的考题进行分析,可以看出概率论与数理统计的试题,即使是填空题和选择题,只考单一知识点的试题很少,大多数试题是考查考生的理解能力和综合应用能力。
要求考生能灵活地运用所学的知识,建立起正确的概率模型,综合运用极限、连续函数、导数、极值、积分、广义积分以及级数等知识去解决问题。
在解答这部分考题时,考生易犯的错误有:(1)概念不清,弄不清事件之间的关系和事件的结构;(2)对试验分析错误,概率模型搞错;(3)计算概率的公式运用不当;(4)不能熟练地运用独立性去证明和计算;(5)不能熟练掌握和运用常用的概率分布及其数字特征;(6)不能正确应用有关的定义、公式和性质进行综合分析、运算和证明。
综合历年考生的答题情况,得知概率论与数理统计试题的得分率在0.3左右,区分度一般在0.40以上。
这表明试题既有一定的难度,又有较高的区分度。
概念多、定理多、符号多、运算规律多、内容相互纵横交错,知识前后紧密联系是线性代数课程的特点,故考生应充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法,并及时进行总结,抓联系,使学知识能融会贯通,举一反三,根据考试大纲的要求,这里再具体指出如下:
行列式的重点是计算,利用性质熟练准确的计算出行列式的值。
矩阵中除可逆阵、伴随阵、分块阵、初等阵等重要概念外,主要也是运算,其运算分两个层次,一是矩阵的符号运算,二是具体矩阵的数值运算。
例如在解矩阵方程中,首先进行矩阵的符号运算,将矩阵方程化简,然后再代入数值,算出具体的结果,矩阵的求逆(包括简单的分块阵)(或抽象的,或具体的,
或用定义,或是用公式A -1= 1 A*,或A用初等行变换),A和A*的关系,矩阵乘积的行列式,方阵的幂等也是常考的内容之一。
关于向量,证明(或判别)向量组的线性相关(无关),线性表出等问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。
向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。
用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。
在Rn中,基、坐标、基变换公式,坐标变换公式,过渡矩阵,线性无关向量组的标准正交化公式,应该概念清楚,计算熟练,当然在计算中列出关系式后,应先化简,后代入具体的数值进行计算。
行列式、矩阵、向量、方程组是线性代数的基本内容,它们不是孤立隔裂的,而是相互渗透,紧密联系的,例如∣A∣≠0〈===〉A是可逆阵〈= ==〉r(A)=n(满秩阵)〈===〉A的列(行)向量组线性无关〈===〉AX=0唯一零解〈===〉AX=b对任何b均有(唯一)解〈===〉A=P1 P2 …PN,其中PI(I=1,2,…,N)是初等阵〈===〉r(AB)=r(B)A初等行变换I〈===〉A的列(行)向量组是Rn的一个基〈===〉A可以是某两个基之间的过渡矩阵等等。
这种相互之间的联系综合命题创造了条件,故对考生而言,应该认真总结,开拓思路,善于分析,富于联想使得对综合的,有较多弯道的试题也能顺利地到达彼岸。
关于特征值、特征向量。
一是要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程∣λE-A ∣=0 及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用,二是有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。
实对称矩阵的相似对角化及正交变换相似于对角阵,反过来,可由A 的特征值,特征向量来确不定期A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2 (λ2≠λ1)对应的特征向量,从而确定出A .三是相似对角化以后的应用,在线性代数中至少可用来计算行列式及An.
将二次型表示成矩阵形式,用矩阵的方法研究二次型的问题主要有两个:一是化二次型为标准形,这主要是正交变换法(这和实对称阵正交相似对角阵是一个问题的两种提法),在没有其他要求的情况下,用配方法得到标准形可能更方便些;二是二次型的正定性问题,对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象的由给定矩阵的正定性,证明相关矩阵的正定性时,可利用标准形,规范形,特征值等到证明,这时应熟悉二次型正定有关的充分条件和必要条件。