惠州市2019-2020学年中考数学模拟质量跟踪监视试题
惠州市名校2020年中考数学监测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( ) A .平均数B .中位数C .众数D .方差2.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB ,AD =2,BD =6,则边AC 的长为( )A .2B .4C .6D .83.若数a ,b 在数轴上的位置如图示,则( )A .a+b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >04.如图,函数y =kx +b(k≠0)与y =m x (m≠0)的图象交于点A(2,3),B(-6,-1),则不等式kx +b >mx的解集为( )A .602x x <-<<或B .602x x -<或C .2x >D .6x <-5.如图,等边△ABC 的边长为1cm ,D 、E 分别AB 、AC 是上的点,将△ADE 沿直线DE 折叠,点A 落在点A′处,且点A′在△ABC 外部,则阴影部分的周长为( )cmA .1B .2C .3D .46.一辆慢车和一辆快车沿相同的路线从A 地到B 地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个7.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==8.第24 届冬奥会将于2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是()A.15B.25C.12D.359.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%10.如图,四边形ABCD内接于⊙O,F是CD上一点,且DF BC=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A .45°B .50°C .55°D .60°二、填空题(本题包括8个小题)11.若3,a ,4,5的众数是4,则这组数据的平均数是_____. 12.如果某数的一个平方根是﹣5,那么这个数是_____. 13.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是____.14.如图,矩形OABC 的边OA ,OC 分别在轴、轴上,点B 在第一象限,点D 在边BC 上,且∠AOD=30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,B′和B 分别对应),若AB=1,反比例函数(0)ky k x=≠的图象恰好经过点A′,B ,则的值为_________.15.如图,有一块边长为4的正方形塑料模板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .16.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要_____cm .17.如图,四边形ABCD 是菱形,☉O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE ,若∠D=78°,则∠EAC=________°.18.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=_____.三、解答题(本题包括8个小题)19.(6分)如图,一次函数y=kx+b 与反比例函数y=的图象相较于A (2,3),B (﹣3,n )两点.求一次函数与反比例函数的解析式;根据所给条件,请直接写出不等式kx+b >的解集;过点B 作BC ⊥x 轴,垂足为C ,求S △ABC .20.(6分)如图,矩形ABCD 中,E 是AD 的中点,延长CE ,BA 交于点F ,连接AC ,DF .求证:四边形ACDF 是平行四边形;当CF 平分∠BCD 时,写出BC 与CD 的数量关系,并说明理由.21.(6分)如图,在ABC ∆中,AB AC =,以AC 边为直径作⊙O 交BC 边于点D ,过点D 作DE AB ⊥于点E ,ED 、AC 的延长线交于点F .求证:EF是⊙O的切线;若,且,求⊙O的半径与线段的长.22.(8分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元求甲、乙型号手机每部进价为多少元?该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值23.(8分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m=;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?24.(10分)先化简,再求值:22+x21(-)21-1xx x x x÷-+,请你从﹣1≤x<3的范围内选取一个适当的整数作为x的值.25.(10分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.26.(12分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:摸球总次数10 20 30 60 90 120 180 240 330 450“和为8”出现的频数2 10 13 24 30 37 58 82 110 150“和为8”出现的频率0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;如果摸出的2个小球上数字之和为9的概率是13,那么x的值可以为7吗?为什么?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】【分析】总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.【详解】要想知道自己是否入选,老师只需公布第五名的成绩,即中位数. 故选B. 2.B 【解析】 【分析】证明△ADC ∽△ACB ,根据相似三角形的性质可推导得出AC 2=AD•AB ,由此即可解决问题. 【详解】∵∠A=∠A ,∠ADC=∠ACB , ∴△ADC ∽△ACB , ∴AC ADAB AC=, ∴AC 2=AD•AB=2×8=16, ∵AC>0, ∴AC=4, 故选B. 【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题. 3.D 【解析】 【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案. 【详解】由数轴可知:a <0<b ,a<-1,0<b<1, 所以,A.a+b<0,故原选项错误; B. ab <0,故原选项错误; C.a-b<0,故原选项错误; D. 0a b -->,正确. 故选D . 【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系. 4.B 【解析】 【分析】根据函数的图象和交点坐标即可求得结果.【详解】解:不等式kx+b>mx的解集为:-6<x<0或x>2,故选B.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用.5.C【解析】【分析】由题意得到DA′=DA,EA′=EA,经分析判断得到阴影部分的周长等于△ABC的周长即可解决问题.【详解】如图,由题意得:DA′=DA,EA′=EA,∴阴影部分的周长=DA′+EA′+DB+CE+BG+GF+CF=(DA+BD)+(BG+GF+CF)+(AE+CE)=AB+BC+AC=1+1+1=3(cm)故选C.【点睛】本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.6.B【解析】【分析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.7.A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.8.B【解析】【分析】先找出滑雪项目图案的张数,结合5 张形状、大小、质地均相同的卡片,再根据概率公式即可求解.【详解】∵有5 张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,∴从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是25.故选B.【点睛】本题考查了简单事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.9.D【解析】设第一季度的原产值为a ,则第二季度的产值为(1%)a x + ,第三季度的产值为2(1%)a x + ,则则第三季度的产值比第一季度的产值增长了2(1%)(2%)%a x ax x a+-=+故选D. 10.B 【解析】 【分析】先根据圆内接四边形的性质求出∠ADC 的度数,再由圆周角定理得出∠DCE 的度数,根据三角形外角的性质即可得出结论. 【详解】∵四边形ABCD 内接于⊙O ,∠ABC=105°, ∴∠ADC=180°﹣∠ABC=180°﹣105°=75°. ∵DF BC =,∠BAC=25°, ∴∠DCE=∠BAC=25°,∴∠E=∠ADC ﹣∠DCE=75°﹣25°=50°. 【点睛】本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.二、填空题(本题包括8个小题) 11.4 【解析】试题分析:先根据众数的定义求出a 的值,再根据平均数的定义列出算式,再进行计算即可. 试题解析:∵3,a ,4,5的众数是4, ∴a=4,∴这组数据的平均数是(3+4+4+5)÷4=4. 考点:1.算术平均数;2.众数. 12.25 【解析】 【分析】利用平方根定义即可求出这个数. 【详解】设这个数是x (x≥0),所以x =(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.13.m>-1【解析】【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:2133x y mx y-=+⎧⎨+=⎩①②,①+②得1x+1y=1m+4,则x+y=m+1,根据题意得m+1>0,解得m>﹣1.故答案是:m>﹣1.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.14【解析】【详解】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=12m,A′E=2m,∴A′(12m),∵反比例函数y=kx(k≠0)的图象恰好经过点A′,B,∴12m•3m=m,∴m=43,∴k=43.【点睛】本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键.15.1【解析】【详解】∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=1.16.1【解析】【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′=22+=1cm.86故答案为1.考点:平面展开-最短路径问题.17.1.【解析】【详解】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=1(180°-∠D)=51°,2又∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB-∠ACB=1°.故答案为:1°18.31-【解析】【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【详解】如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴2AB=2,BF=AF=2AB=1,2∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,22-3AD AF∴33-1,故答案为3-1.【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.三、解答题(本题包括8个小题)19.(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)1.【解析】【分析】(1)根据点A位于反比例函数的图象上,利用待定系数法求出反比例函数解析式,将点B坐标代入反比例函数解析式,求出n的值,进而求出一次函数解析式(2)根据点A和点B的坐标及图象特点,即可求出反比例函数值大于一次函数值时x的取值范围(3)由点A和点B的坐标求得三角形以BC 为底的高是10,从而求得三角形ABC 的面积【详解】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)由图象可知﹣3<x<0或x>2;(3)以BC为底,则BC边上的高为3+2=1,∴S △ABC=×2×1=1.20.(1)证明见解析;(2)BC=2CD ,理由见解析. 【解析】分析:(1)利用矩形的性质,即可判定△FAE ≌△CDE ,即可得到CD=FA ,再根据CD ∥AF ,即可得出四边形ACDF 是平行四边形;(2)先判定△CDE 是等腰直角三角形,可得CD=DE ,再根据E 是AD 的中点,可得AD=2CD ,依据AD=BC ,即可得到BC=2CD .详解:(1)∵四边形ABCD 是矩形, ∴AB ∥CD , ∴∠FAE=∠CDE , ∵E 是AD 的中点, ∴AE=DE , 又∵∠FEA=∠CED , ∴△FAE ≌△CDE , ∴CD=FA , 又∵CD ∥AF ,∴四边形ACDF 是平行四边形; (2)BC=2CD .证明:∵CF 平分∠BCD , ∴∠DCE=45°, ∵∠CDE=90°,∴△CDE 是等腰直角三角形, ∴CD=DE , ∵E 是AD 的中点, ∴AD=2CD , ∵AD=BC , ∴BC=2CD .点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.21.(1)证明参见解析;(2)半径长为154,AE =6. 【解析】 【分析】(1)已知点D 在圆上,要连半径证垂直,连结OD ,则OC OD =,所以ODC OCD ∠=∠,∵AB AC =,∴B ACD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .由DE AB ⊥得出ODEF ⊥,于是得出结论;(2)由35OD AE OF AF ==得到35OD AE OF AF ==,设3OD x =,则5OF x =.26AB AC OD x ===,358AF x x x =+=,362AE x =-,由363285x x -=,解得x 值,进而求出圆的半径及AE 长.【详解】解:(1)已知点D 在圆上,要连半径证垂直,如图2所示,连结OD ,∵AB AC =,∴B ACD ∠=∠.∵OC OD =,∴ODC OCD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .∵DE AB ⊥,∴OD EF ⊥.∴EF 是⊙O 的切线;(2)在Rt ODF ∆和Rt AEF ∆中,∵35OD AE OF AF ==,∴35OD AE OF AF ==. 设3OD x =,则5OF x =.∴26AB AC OD x ===,358AF x x x =+=.∵32EB =,∴362AE x =-.∴363285x x -=,解得x =54,则3x=154,AE=6×54-32=6,∴⊙O 的半径长为154,AE =6.【点睛】1.圆的切线的判定;2.锐角三角函数的应用.22. (1) 甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元;(2) 共有四种方案;(3) 当m =80时,w 始终等于8000,取值与a 无关 【解析】 【分析】(1)设甲种型号手机每部进价为x 元,乙种型号手机每部进价为y 元根据题意列方程组求出x 、y 的值即可;(2)设购进甲种型号手机a 部,这购进乙种型号手机(20-a)部,根据题意列不等式组求出a 的取值范围,根据a 为整数求出a 的值即可明确方案(3)利用利润=单个利润⨯数量,用a 表示出利润W ,当利润与a 无关时,(2)中的方案利润相同,求出m 值即可; 【详解】(1) 设甲种型号手机每部进价为x 元,乙种型号手机每部进价为y 元,22800324600x y x y +=⎧⎨+=⎩,解得1000800x y =⎧⎨=⎩, (2) 设购进甲种型号手机a 部,这购进乙种型号手机(20-a)部, 17400≤1000a +800(20-a)≤18000,解得7≤a≤10, ∵a 为自然数,∴有a 为7、8、9、10共四种方案,(3) 甲种型号手机每部利润为1000×40%=400,w =400a +(1280-800-m)(20-a)=(m -80)a +9600-20m , 当m =80时,w 始终等于8000,取值与a 无关. 【点睛】本题考查了列二元一次方程组解实际问题的运用,根据题意找出等量关系列出方程是解题关键. 23.(1)50,20;(2)12,23;见图;(3)大约有720人是A 型血. 【解析】【分析】(1)用AB 型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B 型的人数除以抽取的总人数即可求得m 的值;(2)先计算出O 型的人数,再计算出A 型人数,从而可补全上表中的数据;(3)用样本中A 型的人数除以50得到血型是A 型的概率,然后用3000乘以此概率可估计这3000人中是A 型血的人数.【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=1050×100=20, 故答案为50,20;(2)O 型献血的人数为46%×50=23(人), A 型献血的人数为50﹣10﹣5﹣23=12(人), 补全表格中的数据如下:故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A 型的概率=1265025=, 3000×625=720, 估计这3000人中大约有720人是A 型血.【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.24.1. 【解析】 【分析】根据分式的化简法则:先算括号里的,再算乘除,最后算加减.对不同分母的先通分,按同分母分式加减法计算,且要把复杂的因式分解因式,最后约分,化简完后再代入求值,但是不能代入-1,0,1,保证分式有意义. 【详解】解:2221()211x x x x x x +÷--+-=2(1)2(1)[](1)(1)x x x x x x x +--÷-- =2(1)1(1)(1)x x x x x x ++÷--=2(1)(1)(1)1x x x x x x +-⋅-+ =21x x - 当x=2时,原式21x x =-=2221-=1. 【点睛】本题考查分式的化简求值及分式成立的条件,掌握运算法则准确计算是本题的解题关键. 25.(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h ;(3)160000人; 【解析】 【分析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m 值.(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h 的人数” 的概率乘以全校总人数求解即可.【详解】(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.【点睛】本题主要考查数据的收集、处理以及统计图表.26.(1)出现“和为8”的概率是0.33;(2)x的值不能为7.【解析】【分析】(1)利用频率估计概率结合表格中数据得出答案即可;(2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与13进行比较,即可得出答案.【详解】解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33,故出现“和为8”的概率是0.33.(2)x的值不能为7.理由:假设x=7,则P(和为9)=16≠13,所以x的值不能为7.【点睛】此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.设a ,b 是常数,不等式10x a b+>的解集为15x <,则关于x 的不等式0bx a ->的解集是( )A .15x >B .15x <-C .15x >-D .15x <2.下列计算正确的是( ) A .(﹣2a )2=2a 2 B .a 6÷a 3=a 2 C .﹣2(a ﹣1)=2﹣2a D .a•a 2=a 23.如图,AB 为O 的直径,,C D 为O 上两点,若40BCD ∠︒=,则ABD ∠的大小为( ).A .60°B .50°C .40°D .20°4.如图,抛物线y=-x 2+mx 的对称轴为直线x=2,若关于x 的-元二次方程-x 2+mx-t=0 (t 为实数)在l<x<3的范围内有解,则t 的取值范围是( )A .-5<t≤4B .3<t≤4C .-5<t<3D .t>-55.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A .甲和乙B .乙和丙C .甲和丙D .只有丙6.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为( ).A.50°B.40°C.30°D.25°7.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则BDAD的值为()A.1 B.22C.2-1 D.2+18.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8 cm,圆柱的高BC=6 cm,圆锥的高CD=3 cm,则这个陀螺的表面积是()A.68π cm2B.74π cm2C.84π cm2D.100π cm29.下列二次根式中,最简二次根式的是()A 15B0.5C5D5010.在△ABC中,AB=AC=13,BC=24,则tanB等于()A.513B.512C.1213D.125二、填空题(本题包括8个小题)11.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg)12 10 8 合计/kg 小菲购买的数量/kg 2 2 2 6小琳购买的数量/kg 1 2 3 6从平均价格看,谁买得比较划算?()A.一样划算B.小菲划算C.小琳划算D.无法比较12.如图,点A是双曲线y=﹣9x在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=kx上运动,则k的值为_____.13.把一张长方形纸条按如图所示折叠后,若∠AOB′=70°,则∠B′OG=_____.14.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD 水平,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为____cm.15.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则S n 可表示为________.(用含n的代数式表示,其中n为正整数)16.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.17.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.18.在△ABC中,AB=13cm,AC=10cm,BC边上的高为11cm,则△ABC的面积为______cm1.三、解答题(本题包括8个小题)19.(6分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?20.(6分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.求每个月生产成本的下降率;请你预测4月份该公司的生产成本.21.(6分)我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?22.(8分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?23.(8分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.打折前甲、乙两种品牌粽子每盒分别为多少元?阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?24.(10分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式。
惠州市名校2020中考数学监测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9 2.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=3.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( )A.∠NOQ=42°B.∠NOP=132°C.∠PON比∠MOQ大D.∠MOQ与∠MOP互补4.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.455.某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A.19B.14C.16D.136.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A.4 B.3 C.2 D.17.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是()A.1 B.-6 C.2或-6 D.不同于以上答案8.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8 cm,圆柱的高BC=6 cm,圆锥的高CD=3 cm,则这个陀螺的表面积是()A.68π cm2B.74π cm2C.84π cm2D.100π cm29.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣91255,)B.(﹣12955,)C.(﹣161255,)D.(﹣121655,)10.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×105二、填空题(本题包括8个小题)11.计算:﹣1﹣2=_____.12.如图,是用火柴棒拼成的图形,则第n个图形需_____根火柴棒.13.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB 于G,连接EF,则线段EF的长为_____.14.在平面直角坐标系中,点A的坐标是(-1,2) .作点A关于x 轴的对称点,得到点A1,再将点A1向下平移4个单位,得到点A2,则点A2的坐标是_________.15.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为9m,那么这栋建筑物的高度为_____m.16.如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则AB的长为_____.17.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:成绩(分)60 70 80 90 100人数 4 8 12 11 5则该办学生成绩的众数和中位数分别是()A.70分,80分B.80分,80分C.90分,80分D.80分,90分18.分解因式: 22-+=_________.a b ab b三、解答题(本题包括8个小题)19.(6分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.采用树状图或列表法列出两次摸出小球出现的所有可能结果;求摸出的两个小球号码之和等于4的概率.20.(6分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).画出△ABC关于x轴对称的△A1B1C1;以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.21.(6分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:求y与x之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?22.(8分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.23.(8分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:本次接受调查的跳水运动员人数为,图①中m的值为;求统计的这组跳水运动员年龄数据的平均数、众数和中位数.24.(10分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.求证:AP=BQ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.25.(10分)列方程解应用题:为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?26.(12分)如图①,在正方形ABCD 的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M ,则图中ADE ≌DFC △,可知ED FC =,求得DMC ∠=______.如图②,在矩形()ABCD AB BC >的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M .()1求证:ED FC =. ()2若20ADE ∠=,求DMC ∠的度数.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.A 【解析】 【详解】 解:∵x ﹣2y=3,∴3﹣2x+4y=3﹣2(x ﹣2y )=3﹣2×3=﹣3; 故选A . 2.A 【解析】 【分析】已知AB ∥CD ∥EF ,根据平行线分线段成比例定理,对各项进行分析即可. 【详解】 ∵AB ∥CD ∥EF , ∴AD BCDF CE=. 故选A . 【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.3.C【解析】试题分析:如图所示:∠NOQ=138°,选项A错误;∠NOP=48°,选项B错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,选项C正确;由以上可得,∠MOQ与∠MOP不互补,选项D错误.故答案选C.考点:角的度量.4.B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.5.A【解析】【分析】作出树状图即可解题. 【详解】解:如下图所示一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是1 9 ,故选A.【点睛】本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.6.C【解析】【分析】根据基本作图的方法即可得到结论.【详解】解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧③是以A为圆心,大于12AB的长为半径所画的弧,错误;(4)弧④是以P为圆心,任意长为半径所画的弧,正确.故选C.【点睛】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.7.C【解析】解:∵点A为数轴上的表示-1的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-1-4=-6;②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为-1+4=1.故选C.点睛:注意数的大小变化和平移之间的规律:左减右加.与点A的距离为4个单位长度的点B有两个,一个向左,一个向右.8.C【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:圆锥的计算;几何体的表面积.9.A【解析】【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【详解】过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,则△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴设NO=1x,则NC1=4x,OC1=1,则(1x)2+(4x)2=9,解得:x=±35(负数舍去),则NO=95,NC1=125,故点C的对应点C1的坐标为:(-95,125).故选A.【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.10.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(本题包括8个小题)11.-3【解析】-1-2=-1+(-2)=-(1+2)=-3,故答案为-3.12.2n+1.【解析】【详解】解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;……由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.故答案为:2n+1.13.1【解析】在△AGF和△ACF中,{GAF CAF AF AF AFG AFC∠=∠=∠=∠,∴△AGF≌△ACF,∴AG=AC=4,GF=CF,则BG=AB−AG=6−4=2.又∵BE=CE,∴EF是△BCG的中位线,∴EF=12BG=1.故答案是:1.14.(-1, -6)【解析】【分析】直接利用关于x轴对称点的性质得出点A1坐标,再利用平移的性质得出答案.【详解】∵点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,∴A1(-1,-2),∵将点A1向下平移4个单位,得到点A2,∴点A2的坐标是:(-1,-6).故答案为:(-1, -6).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.15.1【解析】分析:根据同时同地的物高与影长成正比列式计算即可得解.详解:设这栋建筑物的高度为xm,由题意得,2=19x , 解得x=1,即这栋建筑物的高度为1m . 故答案为1.点睛:同时同地的物高与影长成正比,利用相似三角形的相似比,列出方程,通过解方程求出这栋高楼的高度,体现了方程的思想.16.4. 【解析】 【分析】由点A(1,1),可得OA 的长,点A 在第一象限的角平分线上,可得∠AOB=45°,,再根据弧长公式计算即可. 【详解】 ∵A(1,1), ∴=A 在第一象限的角平分线上,∵以点O 为旋转中心,将点A 逆时针旋转到点B 的位置, ∴∠AOB=45°,∴AB 的长为45180π=4,故答案为:4. 【点睛】本题考查坐标与图形变化——旋转,弧长公式,熟练掌握旋转的性质以及弧长公式是解题的关键.本题中求出∠AOB=45°也是解题的关键. 17.B . 【解析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中80出现12次,出现的次数最多,故这组数据的众数为80分;中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数).因此这组40个按大小排序的数据中,中位数是按从小到大排列后第20,21个数的平均数,而第20,21个数都在80分组,故这组数据的中位数为80分. 故选B .考点:1.众数;2.中位数.18.【解析】先提取公因式b,再利用完全平方公式进行二次分解.解答:解:a1b-1ab+b,=b(a1-1a+1),…(提取公因式)=b(a-1)1.…(完全平方公式)三、解答题(本题包括8个小题)19.(1)见解析;(2)1 3 .【解析】【分析】(1)画树状图列举出所有情况;(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.【详解】解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.【点睛】本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键. 20.(1)详见解析;(2)详见解析.【解析】【详解】试题分析:(1)直接利用关于x轴对称点的性质得出对应点位置,进而得出答案;(2)直接利用位似图形的性质得出对应点位置,进而得出答案;试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;考点:作图-位似变换;作图-轴对称变换21. (1)y =10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【解析】【分析】(1)由待定系数法即可得到函数的解析式;(2)根据销售量×每千克利润=总利润列出方程求解即可;(3)根据销售量×每千克利润=总利润列出函数解析式求解即可.【详解】(1)设y 与x 之间的函数关系式为:y =kx+b ,把(2,120)和(4,140)代入得,21204140k b k b +=⎧⎨+=⎩, 解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为:y =10x+100;(2)根据题意得,(60﹣40﹣x)(10x+100)=2090,解得:x =1或x =9,∵为了让顾客得到更大的实惠,∴x =9,答:这种干果每千克应降价9元;(3)该干果每千克降价x 元,商贸公司获得利润是w 元,根据题意得,w =(60﹣40﹣x)(10x+100)=﹣10x 2+100x+2000,∴w =﹣10(x ﹣5)2+2250,∵a=-100<,∴当x =5时,w 2250=最大故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【点睛】本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.22.(1)详见解析;(2).【解析】∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,∴∠EAD=∠AFB,∵DE⊥AF,∴∠AED=90°,在△ADE和△FAB中,∴△ADE≌△FAB(AAS),∴AE=BF=1∵BF=FC=1∴BC=AD=2故在Rt△ADE中,∠ADE=30°,DE=,∴的长==.23.(1)40人;1;(2)平均数是15;众数16;中位数15.【解析】【分析】(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【详解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1.(2)观察条形统计图,∵1341410151116121731540x ⨯+⨯+⨯+⨯+⨯==, ∴这组数据的平均数为15;∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有15+15=152, ∴这组数据的中位数为15.【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.24.(1)证明见解析;(2)①AQ ﹣AP=PQ ,②AQ ﹣BQ=PQ ,③DP ﹣AP=PQ ,④DP ﹣BQ=PQ.【解析】试题分析:(1)利用AAS 证明△AQB ≌△DPA ,可得AP=BQ ;(2)根据AQ ﹣AP=PQ 和全等三角形的对应边相等可写出4对线段.试题解析:(1)在正方形中ABCD 中,AD=BA ,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP ⊥AQ ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP ,∵AQ ⊥BE 于点Q ,DP ⊥AQ 于点P ,∴∠AQB=∠DPA=90°,∴△AQB ≌△DPA (AAS ),∴AP=BQ.(2)①AQ ﹣AP=PQ ,②AQ ﹣BQ=PQ ,③DP ﹣AP=PQ ,④DP ﹣BQ=PQ.考点:(1)正方形;(2)全等三角形的判定与性质.25.甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.【解析】【分析】设甲广告公司每天能制作x 个宣传栏,则乙广告公司每天能制作1.2x 个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可.【详解】解:设甲广告公司每天能制作x 个宣传栏,则乙广告公司每天能制作1.2x 个宣传栏.根据题意得: 解得:x=1.经检验:x=1是原方程的解且符合实际问题的意义.∴1.2x=1.2×1=2.答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.【点睛】此题考查了分式方程的应用,找出等量关系为两广告公司的工作时间的差为10天是解题的关键. 26.阅读发现:90°;(1)证明见解析;(2)100°【解析】【分析】阅读发现:只要证明15DFC DCF ADE AED ∠=∠=∠=∠=,即可证明.拓展应用:()1欲证明ED FC =,只要证明ADE ≌DFC △即可.()2根据DMC FDM DFC FDA ADE DFC ∠=∠+∠=∠+∠+∠即可计算.【详解】解:如图①中,四边形ABCD 是正方形,AD AB CD ∴==,90ADC ∠=, ADE ≌DFC △,DF CD AE AD ∴===,6090150FDC ∠=+=,15DFC DCF ADE AED ∴∠=∠=∠=∠=,601575FDE ∴∠=+=,90MFD FDM ∴∠+∠=,90FMD ∴∠=,故答案为90()1ABE 为等边三角形,60EAB ∴∠=,EA AB =. ADF 为等边三角形,60FDA ∴∠=,AD FD =.四边形ABCD 为矩形,90BAD ADC ∴∠=∠=,DC AB =.EA DC ∴=.150EAD EAB BAD ∠=∠+∠=,150CDF FDA ADC ∠=∠+∠=,EAD CDF ∴∠=∠.在EAD 和CDF 中,AE CD EAD FDC AD DF =⎧⎪∠=∠⎨⎪=⎩,EAD ∴≌CDF .ED FC ∴=;()2EAD ≌CDF ,20ADE DFC ∴∠=∠=,602020100DMC FDM DFC FDA ADE DFC ∴∠=∠+∠=∠+∠+∠=++=.【点睛】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣12.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.2 C.52D.253.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个5.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=kx在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤16 69()A .±3B .3C .9D .817.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38 C .40、42 D .42、40 8.如图,已知D 是ABC 中的边BC 上的一点,BAD C ∠=∠,ABC ∠的平分线交边AC 于E ,交AD 于F ,那么下列结论中错误的是( )A .△BAC ∽△BDAB .△BFA ∽△BEC C .△BDF ∽△BECD .△BDF ∽△BAE 9.12233499100++++++++的整数部分是( ) A .3 B .5 C .9 D .610.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( )A .310B .925C .920D .35二、填空题(本题包括8个小题) 11.如图,在边长为1正方形ABCD 中,点P 是边AD 上的动点,将△PAB 沿直线BP 翻折,点A 的对应点为点Q ,连接BQ 、DQ .则当BQ+DQ 的值最小时,tan ∠ABP =_____.12.已知点A(2,0),B(0,2),C(-1,m)在同一条直线上,则m 的值为___________.13.使得分式值242x x -+为零的x 的值是_________; 14.如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”.则半径为2的“等边扇形”的面积为 .15.某广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n (n>1)盆花,设这个花坛边上的花盆的总数为S ,请观察图中的规律:按上规律推断,S与n的关系是________________________________.16.分解因式a3﹣6a2+9a=_________________.17.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=kx(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.18.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则BE的长度为______.三、解答题(本题包括8个小题)19.(6分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.20.(6分)如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.21.(6分)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.求一次函数和反比例函数的解析式;求△AOB的面积;观察图象,直接写出不等式kx+b﹣mx>0的解集.22.(8分)程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?23.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.24.(10分)某通讯公司推出①,②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与费用y(元)之间的函数关系如图所示.有月租的收费方式是________(填“①”或“②”),月租费是________元;分别求出①,②两种收费方式中y与自变量x之间的函数表达式;请你根据用户通讯时间的多少,给出经济实惠的选择建议.25.(10分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.26.(12分)如图,△ABC中,CD是边AB上的高,且AD CD CD BD.求证:△ACD∽△CBD;求∠ACB的大小.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】试题分析:0.00129这个数用科学记数法可表示为1.29×10﹣1.故选C.考点:科学记数法—表示较小的数.2.C【解析】【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1.. ∴AD=a.∴12DE•AD=a.∴DE=1.当点F从D到B5∴5Rt△DBE中,()2222=521 BD DE--=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=5 2 .故选C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.3.C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A.不是轴对称图形,也不是中心对称图形.故错误;B.不是轴对称图形,也不是中心对称图形.故错误;C.是轴对称图形,也是中心对称图形.故正确;D.不是轴对称图形,是中心对称图形.故错误.故选C.【点睛】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.4.B【解析】【分析】根据抛物线的对称轴即可判定①;观察图象可得,当x=-3时,y<0,由此即可判定②;观察图象可得,当x=1时,y>0,由此即可判定③;观察图象可得,当x>2时,的值随值的增大而增大,即可判定④.【详解】由抛物线的对称轴为x=2可得=2,即4a+b=0,①正确;观察图象可得,当x=-3时,y<0,即9a-3b+c<0,所以,②错误;观察图象可得,当x=1时,y>0,即a+b+c>0,③正确;观察图象可得,当x>2时,的值随值的增大而增大,④错误.综上,正确的结论有2个.故选B.【点睛】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac <0时,抛物线与x轴没有交点.5.C【解析】试题解析:由于△ABC是直角三角形,所以当反比例函数kyx经过点A时k最小,进过点C时k最大,据此可得出结论.∵△ABC是直角三角形,∴当反比例函数kyx=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.6.C【解析】试题解析:∵3=∴3故选C.7.D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数. 8.C【解析】【分析】根据相似三角形的判定,采用排除法,逐项分析判断.【详解】∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故A正确.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正确.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正确.而不能证明△BDF∽△BEC,故C错误.故选C.【点睛】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应。
广东省惠州市2019-2020学年中考数学教学质量调研试卷含解析
广东省惠州市2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若一个三角形的两边长分别为5和7,则该三角形的周长可能是( )A .12B .14C .15D .252.下列一元二次方程中,有两个不相等实数根的是( )A .x 2+6x+9=0B .x 2=xC .x 2+3=2xD .(x ﹣1)2+1=03.股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为( )A .9.5×106B .9.5×107C .9.5×108D .9.5×1094. (3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )A .210B .41C .52D .51 5.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .∠ABD =∠EB .∠CBE =∠C C .AD ∥BC D .AD =BC 6.在4-,12-,1-,83-这四个数中,比2-小的数有( )个. A .1 B .2 C .3 D .47.小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了 25% ,小宇妈妈又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克.若设早上葡萄的价格是 x 元/千克,则可列方程( )A .()16.516.50.5x 125%x +=+B .()16.516.50.5x 1-25%x +=C .()16.516.5-0.5x 125%x =+D .()16.516.5-0.5x 1-25%x =8.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”.已知⊙O是以原点为圆心,半径为22圆,则⊙O的“整点直线”共有()条A.7 B.8 C.9 D.109.若()29-=1,则符合条件的m有()2mm-A.1个B.2个C.3个D.4个10.某种微生物半径约为0.00000637米,该数字用科学记数法可表示为()A.0.637×10﹣5B.6.37×10﹣6C.63.7×10﹣7D.6.37×10﹣711.等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是()A.9 cm B.12 cm C.9 cm或12 cm D.14 cm12.计算-3-1的结果是()A.2 B.-2 C.4 D.-4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:18-2=________.14.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为_____.15.如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD 中点,BP与半圆交于点Q,连结DQ.给出如下结论:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正确结论是_________.(填写序号)16.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.17.关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.18.如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,DE交AB于点F,若AB=AC,DB=BF,则AF与BF的比值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N 两点之间的距离.20.(6分)如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=12 OB.求证:AB是⊙O的切线;若∠ACD=45°,OC=2,求弦CD的长.21.(6分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.当每件的销售价为52元时,该纪念品每天的销售数量为件;当每件的销售价x为多少时,销售该纪念品每天获得的利润y 最大?并求出最大利润.22.(8分)如图,△ABC 中,∠C =90°,AC =BC ,∠ABC 的平分线BD 交AC 于点D ,DE ⊥AB 于点E .(1)依题意补全图形;(2)猜想AE 与CD 的数量关系,并证明.23.(8分)已知Rt OAB ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,如图1,连接BC .(1)填空:OBC ∠= ︒;(2)如图1,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3)如图2,点M ,N 同时从点O 出发,在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N 的运动速度为1单位/秒,设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?24.(10分)已知关于x 的一元二次方程()2()20(x m x m m ---=为常数). ()1求证:不论m 为何值,该方程总有两个不相等的实数根;()2若该方程一个根为5,求m 的值.25.(10分)下面是一位同学的一道作图题:已知线段a 、b 、c (如图),求作线段x ,使::a b c x =他的作法如下:(1)以点O 为端点画射线OM ,ON .(2)在OM 上依次截取OA a =,AB b =.(3)在ON 上截取OC c =.(4)联结AC ,过点B 作//BD AC ,交ON 于点D .所以:线段________就是所求的线段x .①试将结论补完整②这位同学作图的依据是________③如果4OA =,5AB =,AC π=u u u r u r ,试用向量πu r 表示向量DB uuu r .26.(12分)如图,直线l 切⊙O 于点A ,点P 为直线l 上一点,直线PO 交⊙O 于点C 、B ,点D 在线段AP 上,连接DB ,且AD =DB .(1)求证:DB 为⊙O 的切线;(2)若AD =1,PB =BO ,求弦AC 的长.27.(12分)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB ,现决定从小岛架一座与观光小道垂直的小桥PD ,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.1°,∠PBA=26.1.请帮助小张求出小桥PD 的长并确定小桥在小道上的位置.(以A ,B 为参照点,结果精确到0.1米)(参考数据:sin38.1°=0.62,cos38.1°=0.78,tan38.1°=0.80,sin26.1°=0.41,cos26.1°=0.89,tan26.1°=0.10)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】∴三角形的两边长分别为5和7,∴2<第三条边<12,∴5+7+2<三角形的周长<5+7+12,即14<三角形的周长<24,故选C.【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.2.B【解析】分析:根据一元二次方程根的判别式判断即可.详解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有两个相等实数根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有两个不相等实数根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程无实根;D、(x-1)2+1=0.(x-1)2=-1,则方程无实根;故选B.点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.3.B【解析】试题分析:15000000=1.5×2.故选B.考点:科学记数法—表示较大的数4.B【解析】【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n所以,第9行从左至右第5故选B【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.5.C【解析】根据旋转的性质得,∠ABD=∠CBE=60°, ∠E=∠C,则△ABD为等边三角形,即AD=AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.6.B【解析】【分析】比较这些负数的绝对值,绝对值大的反而小.【详解】在﹣4、﹣12、﹣1、﹣83这四个数中,比﹣2小的数是是﹣4和﹣83.故选B.【点睛】本题主要考查负数大小的比较,解题的关键时负数比较大小时,绝对值大的数反而小. 7.B【解析】分析:根据数量=钱数单价,可知第一次买了16.5x 千克,第二次买了()16.501250x -,根据第二次恰好比第一次多买了 0.5 千克列方程即可.详解:设早上葡萄的价格是 x 元/千克,由题意得,()16.516.50.501250x x +=-.故选B.点睛:本题考查了分式方程的实际应用,解题的关键是读懂题意,找出列方程所用到的等量关系. 8.D【解析】试题分析:根据圆的半径可知:在圆上的整数点为(2,2)、(2,-2),(-2,-2),(-2,2)这四个点,经过任意两点的“整点直线”有6条,经过其中的任意一点且圆相切的“整点直线”有4条,则合计共有10条. 9.C【解析】【分析】根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m 的等式,即可得出.【详解】Q ()29 2m m --=1∴m 2-9=0或m-2= ±1即m= ±3或m=3,m=1∴m 有3个值故答案选C.【点睛】本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.10.B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】0.00000637的小数点向右移动6位得到6.37所以0.00000637用科学记数法表示为6.37×10﹣6,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.B【解析】当腰长是2 cm时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5 cm时,因为5+5>2,符合三角形三边关系,此时周长是12 cm.故选B.12.D【解析】试题解析:-3-1=-3+(-1)=-(3+1)=-1.故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.22【解析】试题解析:原式3222 2.=-=故答案为2 2.14.1.【解析】【分析】根据立体图形画出它的主视图,再求出面积即可.【详解】主视图如图所示,∵主视图是由1个棱长均为1的正方体组成的几何体,∴主视图的面积为1×12=1.故答案为:1.【点睛】本题是简单组合体的三视图,主要考查了立体图的左视图,解本题的关键是画出它的左视图.15.①②④【解析】【分析】①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;②连接AQ,如图4,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到PQBQ的值;③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ的值;④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得32 DN PQAN BQ==,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cos∠ADQ的值.【详解】解:①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1.故①正确;②连接AQ,如图4.则有CP=12,22151()22+=.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求得5,则PQ=5535 255-=,∴32 PQBQ=.故②正确;③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求得QH=35,∴S△DPQ=12DP•QH=12×12×35=320.故③错误;④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得32 DN PQAN BQ==,则有3 12 DNDN=-,解得:DN=35.由DQ=1,得cos∠ADQ=35 DNDQ=.故④正确.综上所述:正确结论是①②④.故答案为:①②④.【点睛】本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用.16.32【解析】【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得.【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴AE=22=32,AD DE∴AB=32,故答案为32.【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.17.k≥﹣1【解析】分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.详解:∵关于x的一元二次方程x2+1x-k=0有实数根,∴△=12-1×1×(-k)=16+1k≥0,解得:k≥-1.故答案为k≥-1.点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.18.【解析】【分析】先利用旋转的性质得到BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,再利用等腰三角形的性质和三角形内角和定理证明∠ABD=∠A,则BD=AD,然后证明△BDC∽△ABC,则利用相似比得到BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,最后利用解方程求出AF与BF的比值.【详解】∵如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,∴BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,∵∠ABE=∠ADF,∴∠CBD=∠ADF,∵DB=BF,∴BF=BD=BC,而∠C=∠EDB,∴∠CBD=∠ABD,∴∠ABC=∠C=2∠ABD,∵∠BDC=∠A+∠ABD,∴∠ABD=∠A,∴BD=AD,∴CD=AF,∵AB=AC,∴∠ABC=∠C=∠BDC,∴△BDC∽△ABC,∴BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,整理得AF2+BF∙AF-BF2=0,∴AF=BF,即AF与BF的比值为.故答案是.【点睛】本题主要考查了旋转的性质、等腰三角形的性质、相似三角形的性质,熟练掌握这些知识点并灵活运用是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1.5千米【解析】【分析】先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可【详解】在△ABC与△AMN中,305549ACAB==,151.89AMAN==,∴AC AM AB AN=,∵∠A=∠A,∴△ABC∽△ANM,∴AC AMBC MN=,即30145MN=,解得MN=1.5(千米) ,因此,M、N两点之间的直线距离是1.5千米.【点睛】此题考查相似三角形的应用,解题关键在于掌握运算法则20.(1)见解析;(2)+【解析】【分析】(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB与⊙O相切;(2)作AE⊥CD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD.【详解】(1)直线AB是⊙O的切线,理由如下:连接OA.∵OC=BC,AC=12 OB,∴OC=BC=AC=OA,∴△ACO是等边三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切线.(2)作AE⊥CD于点E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,2;∵∠D=30°,∴2.【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)180;(2)每件销售价为55元时,获得最大利润;最大利润为2250元.【解析】分析:(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;(2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.详解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为180;(2)由题意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.点睛:此题主要考查了二次函数的应用,根据已知得出二次函数的最值是中考中考查重点,同学们应重点掌握.22.(1)见解析;(2)见解析.【解析】【分析】(1)根据题意画出图形即可;(2)利用等腰三角形的性质得∠A=45∘.则∠ADE=∠A=45°,所以AE=DE,再根据角平分线性质得CD=DE,从而得到AE=CD.【详解】解:(1)如图:(2)AE与CD的数量关系为AE=CD.证明:∵∠C=90°,AC=BC,∴∠A=45°.∵DE⊥AB,∴∠ADE=∠A=45°.∴AE=DE,∵BD平分∠ABC,∴CD=DE,∴AE=CD.【点睛】此题考查等腰三角形的性质,角平分线的性质,解题关键在于根据题意作辅助线.23.(1)1;(2)217;(3)x83=时,y有最大值,最大值833=.【解析】【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x83≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当83<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【详解】(1)由旋转性质可知:OB=OC,∠BOC=1°,∴△OBC是等边三角形,∴∠OBC=1°.故答案为1.(2)如图1中.∵OB=4,∠ABO=30°,∴OA12=OB=2,AB3=OA=23,∴S△AOC12=•OA•AB12=⨯2×2323=.∵△BOC是等边三角形,∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,∴AC2227AB BC=+=,∴OP243221727AOCSAC===V.(3)①当0<x83≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin1°32=x,∴S△OMN12=•OM•NE12=⨯1.5x32⨯x,∴y338=x2,∴x83=时,y有最大值,最大值833=.②当83<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin1°3=(8﹣1.5x),∴y12=⨯ON×MH338=-x2+23x.当x83=时,y取最大值,y833<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=3∴y12=•MN•OG=533x,当x=4时,y有最大值,最大值=3综上所述:y 有最大值,最大值为3. 【点睛】 本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题.24.(1)详见解析;(2)的值为3或1.【解析】【分析】(1)将原方程整理成一般形式,令0V >即可求解,(2)将x=1代入,求得m 的值,再重新解方程即可. 【详解】()1证明:原方程可化为()222220x m x m m -+++=,1a Q =,()22b m =-+,22c m m =+,()()2224[22]4240b ac m m m ∴=-=-+-+=>V ,∴不论m 为何值,该方程总有两个不相等的实数根. ()2解:将5x =代入原方程,得:()2(5)250m m ---=,解得:13m =,25m =.m ∴的值为3或1.【点睛】本题考查了参数对一元二次方程根的影响.中等难度.关键是将根据不同情况讨论参数的取值范围. 25.①CD ;②平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;③94DB π=-u u u r u r . 【解析】【分析】①根据作图依据平行线分线段成比例定理求解可得;②根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;③先证OAC OBD ∆∆∽得OA AC OB BD =,即94BD AC =,从而知999DB CA AC 444π==-=-u u u r u u u r u u u r u r . 【详解】①∵//BD AC ,∴OA :AB=OC :CD ,∵OA a =,AB b =,OC c =,::a b c x =,∴线段CD 就是所求的线段x ,故答案为:CD②这位同学作图的依据是:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;故答案为:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;③∵4OA =、5AB =,且//BD AC ,∴OAC OBD ∆∆∽, ∴OA AC OB BD =,即49AC BD=, ∴94BD AC =, ∴999444DB CA AC π==-=-u u u r u u r u u u r u r . 【点睛】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握平行线分线段成比例定理、相似三角形的判定及向量的计算.26.(1)见解析;(2)AC =1.【解析】【分析】(1)要证明DB 为⊙O 的切线,只要证明∠OBD =90即可.(2)根据已知及直角三角形的性质可以得到PD =2BD =2DA =2,再利用等角对等边可以得到AC =AP ,这样求得AP 的值就得出了AC 的长.【详解】(1)证明:连接OD ;∵PA 为⊙O 切线,∴∠OAD =90°;在△OAD 和△OBD 中,0A 0B DA DB DO DO =⎧⎪=⎨⎪=⎩,∴△OAD ≌△OBD ,∴∠OBD =∠OAD =90°,∴OB ⊥BD∴DB为⊙O的切线(2)解:在Rt△OAP中;∵PB=OB=OA,∴OP=2OA,∴∠OPA=10°,∴∠POA=60°=2∠C,∴PD=2BD=2DA=2,∴∠OPA=∠C=10°,∴AC=AP=1.【点睛】本题考查了切线的判定及性质,全等三全角形的判定等知识点的掌握情况.27.49.2米【解析】【分析】设PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的长度,继而也可确定小桥在小道上的位置.【详解】解:设PD=x米,∵PD⊥AB,∴∠ADP=∠BDP=90°.在Rt△PAD中,xtan PADAD∠=,∴x x5AD xtan38.50.804===︒.在Rt△PBD中,xtan PBDDB∠=,∴x xDB2xtan26.50.50===︒.又∵AB=80.0米,∴5x2x80.04+=,解得:x≈24.6,即PD≈24.6米.∴DB=2x=49.2米.答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.。
广东省惠州市2019-2020学年中考第二次质量检测数学试题含解析
广东省惠州市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形B.平行四边形C.矩形D.等边三角形2.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为()A.56×108B.5.6×108C.5.6×109D.0.56×10103.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC4.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°5.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A.1∶3 B.2∶3 C.3∶2 D.3∶37.已知一元二次方程2x6x c0-+=有一个根为2,则另一根为A.2 B.3 C.4 D.88.如图,有一些点组成形如四边形的图案,每条“边”(包括顶点)有n(n>1)个点.当n=2018时,这个图形总的点数S为()A.8064 B.8067 C.8068 D.80729.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入为2.8万D.前年年收入不止①②③三种农作物的收入10.关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6 B.这组数据的中位数是1C.这组数据的平均数是6 D.这组数据的方差是1011.已知一组数据2、x、8、1、1、2的众数是2,那么这组数据的中位数是()A.3.1;B.4;C.2;D.6.1.12.化简a1a11a+--的结果为()A .﹣1B .1C .a 1a 1+- D .a 11a+- 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.等腰△ABC 的底边BC=8cm ,腰长AB=5cm ,一动点P 在底边上从点B 开始向点C 以0.25cm/秒的速度运动,当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为_____秒.14.如果两圆的半径之比为32:,当这两圆内切时圆心距为3,那么当这两圆相交时,圆心距d 的取值范围是__________.15.分解因式a 3﹣6a 2+9a=_________________.16.在平面直角坐标系中,点A (2,3)绕原点O 逆时针旋转90°的对应点的坐标为_____.17.如图,在梯形ABCD 中,//,2AD BC BC AD =,E 、F 分别是边AD BC 、的中点,设AD a,AB b ==u u u r r u u u r r ,那么EF u u r 等于__________(结果用a b r r 、的线性组合表示).18.(﹣)﹣2﹣(3.14﹣π)0=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同.把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加.(1)请用列表或画树状图的方法求两数和为5的概率;(2)若甲与乙按上述方式做游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,才能使这个游戏对双方公平?20.(6分)先化简2221169x x x x x -⎛⎫-⋅ ⎪--+⎝⎭,再在1,2,3中选取一个适当的数代入求值. 21.(6分)如图,在等腰△ABC 中,AB=BC ,以AB 为直径的⊙O 与AC 相交于点D ,过点D 作DE ⊥BC 交AB 延长线于点E ,垂足为点F .(1)证明:DE是⊙O的切线;(2)若BE=4,∠E=30°,求由»BD、线段BE和线段DE所围成图形(阴影部分)的面积,(3)若⊙O的半径r=5,sinA=5,求线段EF的长.22.(8分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.23.(8分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.24.(10分)如图,在正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边上的动点,且AE=BF=CG=DH.(1)求证:△AEH≌△CGF;(2)在点E、F、G、H运动过程中,判断直线EG是否经过某一个定点,如果是,请证明你的结论;如果不是,请说明理由25.(10分)已知:如图,△MNQ 中,MQ≠NQ .(1)请你以MN 为一边,在MN 的同侧构造一个与△MNQ 全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图,在四边形ABCD 中,180ACB CAD ∠+∠=︒,∠B=∠D .求证:CD=AB .26.(12分)观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…第④个等式为 ;根据上面等式的规律,猜想第n 个等式(用含n 的式子表示,n 是正整数),并说明你猜想的等式正确性.27.(12分) 某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请你用直尺和圆规作出这个输水管道的圆形截面的圆心(保留作图痕迹);(2)若这个输水管道有水部分的水面宽AB =8 cm ,水面最深地方的高度为2 cm ,求这个圆形截面的半径.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】分析:根据中心对称图形和轴对称图形对各选项分析判断即可得解.详解:A. 正五边形,不是中心对称图形,是轴对称图形,故本选项错误.B. 平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.C. 矩形,既是中心对称图形又是轴对称图形,故本选项正确.D. 等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以提高正确率.2.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于56亿有10位,所以可以确定n=10﹣1=1.【详解】56亿=56×108=5.6×101,故选C.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.C【解析】观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EP⊥AC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.4.B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,5.D【解析】【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.6.A【解析】∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF与△ABC的面积之比=2 DEAC⎛⎫⎪⎝⎭,又∵△ABC为正三角形,∴∠B=∠C=∠A=60°∴△EFD是等边三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,FD⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt △DEC 中,DE=DC×sin ∠,EC=cos ∠C×DC=12DC , 又∵DC+BD=BC=AC=32DC ,∴232DC DE AC DC ==, ∴△DEF 与△ABC的面积之比等于:221:3DE AC ⎛⎫== ⎪⎝⎭⎝⎭故选A .点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边DE AC之比,进而得到面积比. 7.C【解析】试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6, 解得α=1. 考点:根与系数的关系.8.C【解析】分析:本题重点注意各个顶点同时在两条边上,计算点的个数时,不要把顶点重复计算了.详解:此题中要计算点的个数,可以类似周长的计算方法进行,但应注意各个顶点重复了一次. 如当n=2时,共有S 2=4×2﹣4=4;当n=3时,共有S 3=4×3﹣4,…,依此类推,即S n =4n ﹣4,当n=2018时,S 2018=4×2018﹣4=1. 故选C .点睛:本题考查了图形的变化类问题,关键是通过归纳与总结,得到其中的规律.9.C【解析】【详解】 A 、前年①的收入为60000×117360=19500,去年①的收入为80000×117360=26000,此选项错误; B 、前年③的收入所占比例为360135117360--×100%=30%,去年③的收入所占比例为360126117360--×100%=32.5%,此选项错误;C 、去年②的收入为80000×126360=28000=2.8(万元),此选项正确; D 、前年年收入即为①②③三种农作物的收入,此选项错误,故选C .【点睛】本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系. 10.A【解析】【分析】根据方差、算术平均数、中位数、众数的概念进行分析.【详解】数据由小到大排列为1,2,6,6,10, 它的平均数为15(1+2+6+6+10)=5, 数据的中位数为6,众数为6,数据的方差=15 [(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1. 故选A .考点:方差;算术平均数;中位数;众数.11.A【解析】∵数据组2、x 、8、1、1、2的众数是2,∴x=2,∴这组数据按从小到大排列为:2、2、2、1、1、8,∴这组数据的中位数是:(2+1)÷2=3.1.故选A.12.B【解析】【分析】先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.【详解】 解:a 1a 1a 11a 11a a 1a 1a 1-+=-==-----. 故选B .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.7秒或25秒.【解析】考点:勾股定理;等腰三角形的性质.专题:动点型;分类讨论.分析:根据等腰三角形三线合一性质可得到BD 的长,由勾股定理可求得AD 的长,再分两种情况进行分析:①PA ⊥AC ②PA ⊥AB ,从而可得到运动的时间. 解答:解:如图,作AD ⊥BC ,交BC 于点D , ∵BC=8cm ,∴BD=CD=BC=4cm ,∴AD==3,分两种情况:当点P 运动t 秒后有PA ⊥AC 时,∵AP 2=PD 2+AD 2=PC 2-AC 2,∴PD 2+AD 2=PC 2-AC 2,∴PD 2+32=(PD+4)2-52∴PD=2.25,∴BP=4-2.25=1.75=0.25t ,∴t=7秒,当点P 运动t 秒后有PA ⊥AB 时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t ,∴t=25秒,∴点P 运动的时间为7秒或25秒.点评:本题利用了等腰三角形的性质和勾股定理求解.14.315d <<.【解析】【分析】先根据比例式设两圆半径分别为32x x 、,根据内切时圆心距列出等式求出半径,然后利用相交时圆心距与半径的关系求解.【详解】解:设两圆半径分别为32x x 、,由题意,得3x-2x=3,解得3x =,则两圆半径分别为96,,所以当这两圆相交时,圆心距d 的取值范围是9696d ﹣<<,。
广东省惠州市2019-2020学年中考四诊数学试题含解析
广东省惠州市2019-2020学年中考四诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列说法正确的是( )A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形2.下列各数中,无理数是()A.0 B.227C.4D.π3.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.一组数据3、2、1、2、2的众数,中位数,方差分别是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.25.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A.110B.19C.16D.156.如果关于x的不等式组2030x ax b-≥⎧⎨-≤⎩的整数解仅有2x=、3x=,那么适合这个不等式组的整数a、b组成的有序数对(,)a b共有()A.3个B.4个C.5个D.6个7.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数6yx=的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A.25-B.121-C.15-D.124-8.直线y=3x+1不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图,在四边形ABCD 中,AD ∥BC ,∠ABC+∠DCB=90°,且BC=2AD ,分别以AB 、BC 、DC 为边向外作正方形,它们的面积分别为S 1、S 2、S 1.若S 2=48,S 1=9,则S 1的值为( )A .18B .12C .9D .110.如图,点A ,B 为定点,定直线l//AB ,P 是l 上一动点.点M ,N 分别为PA ,PB 的中点,对于下列各值:①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离;⑤∠APB 的大小.其中会随点P 的移动而变化的是( )A .②③B .②⑤C .①③④D .④⑤11.下列说法正确的是( )A .2a 2b 与–2b 2a 的和为0B .223a b 的系数是23,次数是4次 C .2x 2y –3y 2–1是3次3项式D 3x 2y 3与–3213x y 是同类项 12.如图是某个几何体的展开图,该几何体是( )A.三棱柱B.三棱锥C.圆柱D.圆锥二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一只蚂蚁从数轴上一点A出发,爬了7 个单位长度到了+1,则点A 所表示的数是_____ 14.抛物线y=﹣x2+4x﹣1的顶点坐标为.15.如图所示,在平面直角坐标系中,已知反比例函数y=kx(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=12,若将菱形向右平移,菱形的两个顶点B、C恰好同时落在反比例函数的图象上,则反比例函数的解析式是______________.16.已知关于x的一元二次方程20x mx n++=的两个实数根分别是x1=-2,x2=4,则+m n的值为________.17.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为__.18.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,在等腰△ABC 中,AB=AC,点D,E 分别为BC,AB 的中点,连接AD.在线段AD 上任取一点P,连接PB,PE.若BC=4,AD=6,设PD=x(当点P 与点 D 重合时,x 的值为0),PB+PE=y.小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x 与y 的几组值,如下表:x 0 1 2 3 4 5 6y 5.2 4.2 4.6 5.9 7.6 9.5说明:补全表格时,相关数值保留一位小数.(参考数据:2≈1.414,3≈1.732,5≈2.236)(2)建立平面直角坐标系(图2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)求函数y 的最小值(保留一位小数),此时点P 在图 1 中的什么位置.20.(6分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.(1)求证:CD∥AB;(2)填空:①当∠DAE=时,四边形ADFP是菱形;②当∠DAE=时,四边形BFDP是正方形.21.(6分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC 交AC的延长线于点E.求证:DE是⊙O的切线.求DE的长.22.(8分)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值范围.23.(8分)已知矩形ABCD,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD的外部(如图),将半圆O绕点A顺时针旋转α度(0°≤α≤180°)(1)半圆的直径落在对角线AC上时,如图所示,半圆与AB的交点为M,求AM的长;(2)半圆与直线CD相切时,切点为N,与线段AD的交点为P,如图所示,求劣弧AP的长;(3)在旋转过程中,半圆弧与直线CD只有一个交点时,设此交点与点C的距离为d,直接写出d的取值范围.24.(10分)在数学课上,老师提出如下问题:小楠同学的作法如下:。
广东省惠州市名校2019-2020学年中考数学模拟学业水平测试试题
广东省惠州市名校2019-2020学年中考数学模拟学业水平测试试题一、选择题1.如图,直线y x m =-+与()40y nx n n =+≠的交点的横坐标为2-,则关于x 的不等式40x m nx n -+>+>的整数解为( ).A .1-B .5-C .4-D .3-2.设点A (x 1,y 1)和B (x 2,y 2)是反比例函数y =图象上的两个点,当x 1<x 2<0时,y 1<y 2,则一次函数y =﹣2x+k 的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3.如图,在平行四边形ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论①∠DCF =12∠BCD ;②S △BEC =2S △CEF ;③∠DFE =3∠AEF ;④当∠AEF =54°时,则∠B =68°,中一定成立的是( )A.①③B.②③④C.①④D.①③④4.如图,60AOB ∠=o ,以点O 为圆心,以任意长为半径作弧交OA ,OB 于,C D 两点,分别以,C D 为圆心,以大于12CD 的长为半径作弧,两弧相交于点P ;以O 为端点作射线OP ,在射线OP 上截取线段6OM =,则M 点到OB 的距离为( )A.3 3 C.6 D.335.如果2221a a -+的值是( )A .6+aB .﹣6﹣aC .﹣aD .16.(2008•衢州)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确的是( )A .289(1﹣x )2="256"B .256(1﹣x )2=289C .289(1﹣2x )2="256"D .256(1﹣2x )2=2897.一元二次方程﹣x 2+2x =﹣1的两个实数根为α,β,则α+β+α•β的值为( )A .1B .﹣3C .3D .﹣18.如图,AB 是O e 的直径,点D 是半径OA 的中点,过点D 作CD ⊥AB ,交O e 于点C ,点E 为弧BC 的中点,连结ED 并延长ED 交O e 于点F ,连结AF 、BF ,则( )A .sin ∠AFE=12B .cos ∠BFE=12C .tan ∠EDB=3D .tan ∠BAF=39.用A ,B 两个机器人搬运化工原料,A 机器人比B 机器人每小时多搬运30kg ,A 机器人搬运900kg 所用时间与B 机器人搬运600kg 所用时间相等,设A 机器人每小时搬运xkg 化工原料,那么可列方程( )A.900x =6003x -B.9003x +=600xC.60030x +=900xD.9003x -=600x10.下列图形中,不是轴对称图形的是( )A .B .C .D .11.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (﹣1,1),B (0,﹣2),C (1,0),点P (0,2)绕点A 旋转180°得到点P 1,点P 1绕点B 旋转180°得到点P 2,点P 2绕点C 旋转180°得到点P 3,点P 3绕点A 旋转180°得到点P 4,…,按此作法进行下去,则点P 2019的坐标为( )A .(-2,0)B .04(,)C .(2,-4)D .(-2,-2)12.若关于x 的不等式组12x x k +≤⎧⎨≥⎩无解,则k 的值可以是( ) A .-1B .0C .1D .2二、填空题13.如图,将一副三角板叠在一起,使它们的直角顶点重合于O 点,且∠AOB =155°,则∠COD =_____.14.已知反比例函数y=k x(k≠0)的图象在第二、四象限,则k 的值可以是:____(写出一个满足条件的k 的值).15.(2016四川省甘孜州)如图,点P 1,P 2,P 3,P 4均在坐标轴上,且P 1P 2⊥P 2P 3,P 2P 3⊥P 3P 4,若点P 1,P 2的坐标分别为(0,﹣1),(﹣2,0),则点P 4的坐标为______________.16.分解因式:a 2﹣1+b 2﹣2ab =_____.17.分解因式:=______.18.如图,已知A (23,2)、B (23,1),将△AOB 绕着点O 逆时针旋转,使点A 旋转到点A′(-22,22)的位置,则图中阴影部分的面积为_____.三、解答题19.如图,等腰三角形ABC 的腰长为4,底为6,求它的顶角的度数(结果精确到1°)20.(本题满分9分)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,90B ∠=︒,30A ∠=︒,6BC cm =;图②中,90D ∠=︒,45E ∠=︒,4DE cm =.图③是刘卫同学所做的一个实验:他将DEF ∆的直角边DE 与ABC ∆的斜边AC 重合在一起,并将DEF ∆沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)在DEF ∆沿AC 方向移动的过程中,刘卫同学发现:F 、C 两点间的距离逐渐 ▲ .(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当DEF ∆移动至什么位置,即AD 的长为多少时,F 、C 的连线与AB 平行?问题②:当DEF ∆移动至什么位置,即AD 的长为多少时,以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形?问题③:在DEF ∆的移动过程中,是否存在某个位置,使得15FCD ∠=︒?如果存在,求出AD 的长度;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.21.已知,如图,BD 为⊙O 的直径,点A 、C 在⊙O 上并位于BD 的两侧,∠ABC =45°,连结CD 、OA 并延长交于点F ,过点C 作⊙O 的切线交BD 延长线于点E .(1)求证:∠F =∠ECF ;(2)当DF =6,tan ∠EBC =12,求AF 的值.22.已知等腰ABC ∆中,AB AC =,EDF ∠的顶点D 在线段BC 上,不与,B C 重合.(1)如图①,若,DE AC DF AB ∥∥且点D 在BC 中点时,四边形AEDF 是什么四边形并证明?(2)将EDF ∠绕点D 旋转至如图②所示位置,若,,B C EDF BD m CD n α∠=∠=∠===,设BDE ∆的面积为1S ;CDF ∆的面积为2S ,求12S S ⋅的值(用含有,,m n α的代数式表示).图① 图②23.如图1,是小明荡秋千的侧面示意图,秋千链长AB =5m (秋千踏板视作一个点),静止时秋千位于铅垂线BC 上,此时秋千踏板A 到地面的距离为0.5m .(1)当摆角为37°时,求秋千踏板A 与地面的距离AH ;(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)(2)如图2,当秋千踏板摆动到点D 时,点D 到BC 的距离DE =4m ;当他从D 处摆动到D'处时,恰好D'B ⊥DB ,求点D'到BC 的距离.24.解不等式组:()-32421152x xx x⎧-≥⎪⎨-+<⎪⎩并把其解集在数轴上表示出来.25.已知,Oe的半径为1;直线CD经过圆心O,交Oe于C、D两点,直径AB CD⊥,点M是直线CD上异于C D O、、的一个动点,直线AM交Oe于点N,点P是直线CD上另一点,且PM PN=.(Ⅰ)如图1,点M在Oe的内部,求证:PN是Oe的切线;(Ⅱ)如图2,点M在Oe的外部,且30AMO︒∠=,求OP的长.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D A A A D A A C A C B D13.2514.-2(答案不唯一)15.(8,0).16.(a﹣b+1)(a﹣b﹣1).17.x(x+2)(x﹣2).18.78π.三、解答题19.等腰三角形ABC的顶角是97°【解析】【分析】根据题意,作出合适的辅助线,然后利用等腰三角形的性质和锐角三角函数可以求得等腰三角形ABC的顶角的度数.【详解】作AD⊥BC于点D,如图所示,∵等腰三角形ABC的腰长为4,底为6,∴AB=4,BC=6,∴BD=3,∴sin ∠BAD =34BD AB =, ∴∠BAD≈48.6°,∴∠BAC =2∠BAD =97.2°≈97°,即等腰三角形ABC 的顶角是97°.【点睛】本题考查解直角三角形、等腰三角形的性质、锐角三角函数,解答本题的关键是明确题意,利用数形结合的思想解答.20.(1)变小(2)①12AD =-时,//FC AB ②当316x =时,以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形 ③不存在这样的位置,使得15FCD ∠=︒【解析】(1)变小(2)问题①:解:∵90B ∠=︒,30A ∠=︒,6BC cm =,∴12AC =.∵90FDE ∠=︒,45,4DEF DE ∠=︒=,∴4DF =.连结FC ,设//FC AB .∴30FCD A ∠=∠=︒,在Rt FDC ∆中,DC=4.∴AD AC DC =-=12-4.即12AD =-时,//FC AB问题②:解:设当AD x =,在Rt FDC ∆中,2222(12)16FC DC FD x =+=-+.(Ⅰ)当FC 为斜边时,由222AD BC FC +=得,2226(12)16x x +=-+,316x =. (Ⅱ)当AD 为斜边时,由222FC BC AD +=得,222(12)166x x -++=,4986x =>(不符合题意,舍去).(Ⅲ)当BC 为斜边时,由222AD FC BC +=得,222(12)166x x +-+=,212620x x -+=, ∆=144-248<0,∴方程无解.∴由(Ⅰ)、(Ⅱ)、(Ⅲ)得, 当316x =时,以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形. 问题③不存在这样的位置,使得15FCD ∠=︒.假设15FCD ∠=︒,由45FED ∠=︒,得30EFC ∠=︒.作EFC ∠的平分线,交AC 于P ,则15EFP CFP FCP ∠=∠=∠=︒,∴,60PF PC DFP DFE EFP =∠=∠+∠=︒.∴PD =,28PC PF FD ===.∴84312PC PD +=+>.∴不存在这样的位置,使得15FCD ∠=︒.21.(1)详见解析;(2)25.【解析】【分析】(1)连结OC ,根据切线的性质得到OC ⊥CE ,根据圆周角定理得到∠AOC =90°,计算即可证明;(2)DC =x ,根据正切的定义用x 表示出BC 、BD 、OC ,根据正切的定义列式计算即可.【详解】(1)证明:连结OC ,∵CE 切圆O 于C ,∴OC ⊥CE ,∴∠OCF+∠FCE =90°,∵∠ABC =45°,∴∠AOC =2∠ABC =90°,∴∠F+∠OCF =90°, ∴∠F =∠ECF ;(2)设DC =x ,∵OB =OC ,∴∠OBC =∠OCB ,∵BD 为圆O 的直径∴∠BCO+∠OCD =90°,∵∠ECD+∠OCD =90°,∴∠OBC =∠ECD , ∵∠F =∠ECD ,∴∠F =∠EBC ,在Rt △BCD 中,tan ∠EBC =12, 则BC =2DC =2x ,BD 5,∴OC =OA 5x , 在Rt △FOC 中,tanF =tan ∠EBC =12 ∴FC 5,即6+x 55x , 解得,x =4,∴OF =2OC =5∴AF =OF ﹣AO =【点睛】本题考查的是切线的性质、锐角三角函数的定义、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.22.(1)菱形;(2)2221sin 4n m α. 【解析】【分析】(1)根据菱形的判定方法进行证明即可;(2)首先证明△EBD ∽△DCF ,设BE=x ,CF=y ,可得xy=mn ,由S 1=12•mx•sinα,S 2=12nysinα,可得S 1•S 2=14(mn )2sin 2α; 【详解】(1)菱形,∵点D 为BC 的中点,且,DE AC DF AB ∥∥∴,DE DF 为三角形中位线, ∴11,,22DE AC DF AB ==∵,AB AC =∴DE=DF∵,DE AF DF AE P P ,∴AEDF 是平行四边形,∴AEDF 是菱形.(2)设BE=x ,CF=y .∵∠EDC=∠EDF+∠FDC=∠B+∠BEF ,∠MDN=∠B ,∴∠BED=∠FDC ,∵∠B=∠C ,∴△BED ∽△CDF , ∴BE BD CD CF=, ∴x m n y=, ∴xy mn = ∵S 1=12•BD•BE•sinα=12mxsinα,S 2=12CD•CF•sinα=12ysinα, ∴1211sin sin 22S S mx ny αα⋅=⋅=2221sin 4n m α 【点睛】 本题考查几何变换综合题、等边三角形的性质、等腰三角形的性质、相似三角形的判定和性质、三角形的面积公式.锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题.23.(1)AH =1.5m ;(2)点D'到BC 的距离D′F=3m .【解析】【分析】(1)作AD ⊥BC ,在Rt △ABD 中,根据三角函数得到BD ,再根据线段的和差关系得到CD ,根据矩形的性质可求AH ;(2)作D′F⊥BC ,在Rt △BDE 中,根据勾股定理得到BE ,再根据全等三角形的判定和性质解答即可.【详解】(1)作AD ⊥BC 于D ,在Rt △ABD 中,BD =AB•cos37°=5×0.8=4(m ),CD =A′B+A′C﹣BD =5+0.5﹣5×0.8=1.5(m ),在矩形ADCH 中,AH =CD =1.5(m );(2)作D′F⊥BC 于E ,在Rt △BDE 中,BE=22BD DE -=3(m ),∵∠BD′F+∠FBD′=90°=∠FBD′+∠DBE ,∴∠BD′F=∠DBE ,在△BD′F 与△DBE 中,BFD DEB BD F DBE BD DB '''⎧∠=∠⎪∠=∠⎨⎪=⎩,∴△BD′F≌△DBE ,∴点D'到BC 的距离:D′F=BE =3(m ).【点睛】本题考查解直角三角形的应用、全等三角形的应用,解题的关键是正确寻找全等三角形全等的条件,灵活运用所学知识解决问题,属于中考常考题型.24.−7<x ⩽1,见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解不等式x −3(x −2)⩾4,得:x ⩽1,解不等式52112x x -+< ,得:x>−7, 则不等式组的解集为−7<x ⩽1,将解集表示在数轴上如下:【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则.25.(Ⅰ)证明见解析;(Ⅱ)OP=233. 【解析】【分析】(Ⅰ)连接ON ,根据等边对等角即可证得∠1=∠2,∠PNM=∠4,然后根据直角三角形两锐角互余即可证得∠PNO=90°,即可得结论;(Ⅱ)连接ON ,由∠3=30°可得∠1=60°,即可证明△AON 是等边三角形,可得∠5=30°,根据等腰三角形的性质可得∠3=∠4=30°,进而可证明∠PNO=90°,利用∠3的余弦值求出OP 的长即可.【详解】(Ⅰ)如图,连接ON ,∵AB CD ⊥,∴1390∠∠+=︒.∵OA ON =,∴12∠∠=.∵P PM N =,∴4PNM ∠∠=.∵34∠∠=,∴290PNM ∠∠+=︒,即PN ON ⊥.又∵ON 是半径,点N 在O e 上,∴PN 是O e 的切线.(Ⅱ)解:如图,∵330∠=︒,∴160∠=︒,∵ON=OA ,∴AON V 是等边三角形.∴530∠=︒.∵PM PN =,∴4330∠∠==︒.∴∠OPN=60°,∴90PNO ∠=︒.∴123530ON OP cos cos ∠===︒.【点睛】本题考查了切线的判定与锐角三角函数定义,证明切线的常用方法是连接圆心和直线与圆的公共点,然后证明垂直.熟练掌握三角函数的定义是解题关键.。
广东省惠州市2019-2020学年第四次中考模拟考试数学试卷含解析
广东省惠州市2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.12-的相反数是()A.2-B.2 C.12-D.122.2cos 30°的值等于()A.1 B.2C.3D.23.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.3036101.5x x-=B.3030101.5x x-=C.3630101.5x x-=D.3036101.5x x+=4.一、单选题在反比例函数4yx=的图象中,阴影部分的面积不等于4的是()A. B.C.D.5.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个6.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.7.长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×1088.在如图的计算程序中,y与x之间的函数关系所对应的图象大致是()A.B.C.D.9.如图,在△ABC中,过点B作PB⊥BC于B,交AC于P,过点C作CQ⊥AB,交AB延长线于Q,则△ABC的高是()A.线段PB B.线段BC C.线段CQ D.线段AQ10.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()A.3,2 B.3,4 C.5,2 D.5,411.吉林市面积约为27100平方公里,将27100这个数用科学记数法表示为()A.27.1×102B.2.71×103C.2.71×104D.0.271×10512.去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%.设降价后房价为x,则去年二月份之前房价为()A.(1+40%)×30%x B.(1+40%)(1﹣30%)xC.x(140%)30%+⨯D.()()130%140%x+﹣二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在边长为6的菱形ABCD中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是___.(结果保留π)14.如图,和是分别沿着AB,AC边翻折形成的,若,则的度数是______度15.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.16.A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程____________.17.如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC 于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD 上运动时(不包括B、D两点),以下结论:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是2.其中正确的是________.(把你认为正确结论的序号都填上)18.如果抛物线y=ax2+5的顶点是它的最低点,那么a的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;分别写出B、C两点的对应点B′、C′的坐标;如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.20.(6分)已知x1﹣1x﹣1=1.求代数式(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)的值.21.(6分)如今,旅游度假成为了中国人庆祝传统春节的一项的“新年俗”,山西省旅发委发布的《2018年“春节”假日旅游市场总结分析报告》中称:山西春节旅游供需两旺,实现了“旅游接待”与“经济效益”的双丰收,请根据图表信息解决问题:(1)如图1所示,山西近五年春节假日接待海内外游客的数量逐年增加,2018年首次突破了“千万”大关,达到万人次,比2017年春节假日增加万人次.(2)2018年2月15日﹣20日期间,山西省35个重点景区每日接待游客数量如下:日期2月15日(除夕)2月16日(初一)2月17日(初二)2月18日(初三)2月19日(初四)2月20日(初五)日接待游客数量(万人次)7.56 82.83 119.51 84.38 103.2 151.55这组数据的中位数是万人次.(3)根据图2中的信息预估:2019年春节假日山西旅游总收入比2018年同期增长的百分率约为,理由是.(4)春节期间,小明在“青龙古镇第一届新春庙会”上购买了A,B,C,D四枚书签(除图案外完全相同).正面分别印有“剪纸艺术”、“国粹京剧”、“陶瓷艺术”、“皮影戏”的图案(如图3),他将书签背面朝上放在桌面上,从中随机挑选两枚送给好朋友,求送给好朋友的两枚书签中恰好有“剪纸艺术”的概率.22.(8分)(1)计算:()1201631(1)2384π-⎛⎫---+-⨯+ ⎪⎝⎭(2)先化简,再求值:2214()244x x xx x x x+---÷--+,其中x是不等式371x+>的负整数解.23.(8分)解方程组:113311x x yx x y⎧+=⎪+⎪⎨⎪-=⎪+⎩24.(10分)已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.25.(10分)某市旅游景区有A,B,C,D,E等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:(1)2018年春节期间,该市A,B,C,D,E这五个景点共接待游客万人,扇形统计图中E景点所对应的圆心角的度数是,并补全条形统计图.(2)甲,乙两个旅行团在A,B,D三个景点中随机选择一个,这两个旅行团选中同一景点的概率是.26.(12分)如图,方格纸中每个小正方形的边长都是1个单位长度,ABC∆在平面直角坐标系中的位置如图所示.。
广东省惠州市2019-2020学年第二次中考模拟考试数学试卷含解析
广东省惠州市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,线段AB 两个端点的坐标分别为A(4,4),B(6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 和D 的坐标分别为( )A .(2,2),(3,2)B .(2,4),(3,1)C .(2,2),(3,1)D .(3,1),(2,2) 2.若()292m m --=1,则符合条件的m 有( ) A .1个 B .2个 C .3个 D .4个3.如图,正方形ABCD 的边长为3cm ,动点P 从B 点出发以3cm/s 的速度沿着边BC ﹣CD ﹣DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发,以1cm/s 的速度沿着边BA 向A 点运动,到达A 点停止运动.设P 点运动时间为x (s ),△BPQ 的面积为y (cm 2),则y 关于x 的函数图象是( )A .B .C .D . 4.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a <﹣3C .a >﹣bD .a <﹣b5.下列运算结果为正数的是( )A .1+(–2)B .1–(–2)C .1×(–2)D .1÷(–2)6.下列运算正确的是( )A .()a b c a b c -+=-+B .()2211x x =++ C .()33a a -=D .235236a a a =⋅ 7.下列运算正确的是( )A .a 2•a 3=a 6B .a 3+a 2=a 5C .(a 2)4=a 8D .a 3﹣a 2=a8.下列计算结果正确的是( )A .329()a a -=B .236a a a ⋅=C .3332a a a +=D .0(cos 600.5)1︒-= 9.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x (单位:环).下列说法中正确的是( ) A .若这5次成绩的中位数为8,则x =8B .若这5次成绩的众数是8,则x =8C .若这5次成绩的方差为8,则x =8D .若这5次成绩的平均成绩是8,则x =810.81的算术平方根是( )A .9B .±9C .±3D .311.整数a 、b 在数轴上对应点的位置如图,实数c 在数轴上且满足a c b ≤≤,如果数轴上有一实数d ,始终满足0c d +≥,则实数d 应满足( ).A .d a ≤B .a d b ≤≤C .d b ≤D .d b ≥12.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为( )A .259×104B .25.9×105C .2.59×106D .0.259×107二、填空题:(本大题共6个小题,每小题4分,共24分.)13.下图是在正方形网格中按规律填成的阴影,根据此规律,则第n 个图中阴影部分小正方形的个数是 .14.如图,AB=AC ,AD ∥BC ,若∠BAC=80°,则∠DAC=__________.15.函数中,自变量x 的取值范围是_____.16.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.17.计算(7+3)(73)的结果等于_____.18.已知点A(a,y1)、B(b,y2)在反比例函数y=3x的图象上,如果a<b<0,那么y1与y2的大小关系是:y1__y2;三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA 表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y (千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值.20.(6分)如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y 轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.21.(6分)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.22.(8分)先化简,再求值:(1﹣11xx-+)÷22691x xx++-,其中x=1.23.(8分)M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?24.(10分)新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?25.(10分)如图,▱ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,求∠AEB的度数.26.(12分)如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.(1)在这个变化中,自变量、因变量分别是、;(2)当点P运动的路程x=4时,△ABP的面积为y=;(3)求AB的长和梯形ABCD的面积.27.(12分)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.第一批该款式T恤衫每件进价是多少元?老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出45时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】直接利用位似图形的性质得出对应点坐标乘以12得出即可.【详解】解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,∴端点的坐标为:(2,2),(3,1).故选C.【点睛】本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.2.C【解析】【分析】。
惠州市2019-2020学年中考数学模拟试卷
惠州市2019-2020学年中考数学模拟试卷一、选择题1.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是()A.2B.4C.8D.162.△ABC的三边AB,BC,CA的长分别为6cm,4cm,4cm,P为三边角平分线的交点,则△ABP,△BCP,△ACP的面积比等于()A.1:1:1 B.2:2:3 C.2:3:2 D.3:2:23.如图所示,在菱形ABCD中,∠BAD=70°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.75°B.70°C.60°D.55°4.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示.根据图象所提供的信息分析,下列说法正确的是()A.甲队开挖到30m时,用了2hB.乙队在0≤x≤6的时段,y与x之间的关系式y=5x+20C.当两队所挖长度之差为5m时,x为3和5D.x为4时,甲、乙两队所挖的河渠长度相等5.已知,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,延长AC到F,使得CF=AC,连接EF.若EF=4,则AB的长为()A.8B.C.4D.6.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列4个结论:①abc<0;②2a+b=0;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论的个数是()A.1B.2C.3D.47.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( ) A .中位数B .平均数C .众数D .方差8.在平面直角坐标内A ,B 两点满足:①点A ,B 都在函数()y f x =的图象上;②点A 、B 关于原点对称,则称A 和B 为函数()y f x =的一个“黄金点对”.则函数4(0)()1(0)x x f x x x ⎧+≤⎪=⎨->⎪⎩的“黄金点对”的个数为( ) A .0个 B .1个C .2个D .3个 9.对于函数y=-2(x-3)2,下列说法不正确的是( )A.开口向下B.对称轴是3x =C.最大值为0D.与y 轴不相交10.已知,二次函数()22y x k =++向左平移1个单位,再向下平移3个单位,得到二次函数()2+h 1y x =-,则h 和k 的值分别为( )A.3,-4B.1,-4C.1, 2D.3, 211.下列图形是由同样大小的三角形按一定规排列面成的.其中第①个图形有3个三角形,第②个图形有6个三角形,第③个图形有11个三角形,第④个图形有18个三角形,……按此规律,则第⑦个图形中三角形的个数为( )A .47B .49C .51D .5312.如图,正方形ABCD 中,AB =3,点E 是对角线AC 上的一点,连接DE ,过点E 作EF ⊥DE ,交AB 于点F ,连接DF 交AC 于点G ,下列结论:①DE =EF ;②∠ADF =∠AEF ;③DG 2=GE•GC;④若AF =1,则EG=54( )A .1B .2C .3D .4二、填空题13.同时掷两个质地均匀的六面体骰子,两个骰子向上一面点数相同的概率是____.14.已知P 1(1-a ,y 1),P 2(a -1,y 2)两点都在反比例函数y =-2x的图象上,则y 1与y 2的数量关系是____________.15.分解因式:x 3y ﹣4xy =_____.16.截止2018年底,中国互联网用户达8.29亿.数据8.29亿用科学记数法表示为_____________. 17.和平中学自行车停车棚顶部的剖面如图所示,已知AB =16m ,半径OA =10m ,高度CD 为____m .18.已知方程组2421x y x y +=⎧⎨+=-⎩,则x ﹣y 的值为_____.三、解答题19.(1)计算1012cos 451)|13-︒⎛⎫++- ⎪⎝⎭(2)解分式方程:177x x x---=2 20.已知a ,b 互为相反数,(1)计算:a+b ,a 2-b 2,a 3+b 3,a 4-b 4,……的值.(2)用数学式子写出(1)中的规律,并证明.21.如图,在矩形ABCD 中,E 是AD 上一点,PQ 垂直平分BE ,分别交AD 、BE 、BC 于点P 、O 、Q ,连接BP 、EQ .(1)求证:△BOQ ≌△EOP ; (2)求证:四边形BPEQ 是菱形;(3)若AB =6,F 为AB 的中点,OF+OB =9,求PQ 的长.22.某水果店经销一批柑橘,每斤进货价是3元.试销期间发现每天的销售量y (斤)与销售単价x (元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用800元.(2)如果每天获得1600元的利润,销售单价为多少元?(3)当销售价定为多少元时,每天的利润最大?最大利润是多少元?23.某医药研究所开发一种新的药物,据监测,如果成年人按规定的剂量服用,服药后2小时,每毫升血液中的含药量达到最大值,之后每毫升血液中的含药量逐渐衰减.若一次服药后每毫升血液中的含药量y (单位:微克)与服药后的时间t (单位:小时)之间近似满足某种函数关系,下表是y 与t 的几组对应值,其部分图象如图所示.(1)在所给平面直角坐标系中,继续描出上表中已列出数值所对应的点(t ,y ),并补全该函数的图象;(2)结合函数图象,解决下列问题:①某病人第一次服药后5小时,每毫升血液中的含药量约为_______微克;若每毫升血液中含药量不少于0.5微克时治疗疾病有效,则第一次服药后治疗该疾病有效的时间共持续约_______小时;②若某病人第一次服药后8小时进行第二次服药,第二次服药对血液中含药量的影响与第一次服药相同,则第二次服药后2小时,每毫升血液中的含药量约为_______微克.24.先化简,再求值:2221211a a a a a a +⎛⎫÷- ⎪-+-⎝⎭,其中a 是方程x 2+x =1的解. 25.已知:如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,过点D 作AE 的垂线交AE 于点G ,交AB 延长线于点F ,连接EF ,ED .(1)求证:EF ED =;(2)若60ABC ∠=︒,6AD =, 2CE =, 求EF 的长.【参考答案】*** 一、选择题13.1614.y 1+ y 2=015.xy(x+2)(x -2) 16.88.2910 17. 18. 三、解答题19.(1)5;(2) x =15 【解析】 【分析】(1)根据特殊角的三角函数值,负整数指数幂、零指数幂法则及绝对值的代数意义计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】(1)原式=2×2+3+1+1=5; (2)去分母得:x+1=2x ﹣14, 解得:x =15,经检验x =15是分式方程的解. 【点睛】本题考查了解分式方程及实数的运算,熟练掌握运算法则是解本题的关键.20.(1)a+b=0,a 2-b 2==0,a 3+b 3=0,a 4-b 4=0,……;(2)若a=-b ,a n +(-1)n+1b n =0成立,见解析. 【解析】 【分析】(1)用平方差公式计算a 2-b 2 、a 4-b 4,用降次的方法将a 3+b 3化为(a+b )(a 2-ab+b 2)的形式求解; (2)总结代数式的规律为a n+(-1)n+1b n=0,然后分n 为奇偶数讨论证明即可. 【详解】解:(1)∵a=-b , ∴a+b=0,a 2-b 2=(a+b )(a-b )=0, a 3+b 3=(a+b )(a 2-ab+b 2)=0,a 4-b 4=(a 2-b 2)(a 2+b 2)=(a+b )(a-b )(a 2+b 2)=0 …(2)通过上面的计算可得:a n +(-1)n+1b n =0 证明:①当n 为奇数时, a n +(-1)n+1b n =a n +b n ,∵由杨辉三角知a n+b n总可以表示为(a+b )乘以一个整式的积的形式, ∴a n +b n =0,②当n 为偶数时,设n=2m ,m 为整数, a n +(-1)n+1b n =a n -b n =a 2m -b 2m =(a m )2-(b m )2 =(a m -b m )(a m +b m )而(a m -b m )(a m +b m )也是最终总可以表示为(a+b )和一个整式的乘积, ∴若a=-b ,a n +(-1)n+1b n =0成立. 【点睛】本题考查了两个数的奇数次和偶数次差总可以表示为这两个数相加再乘以一个代数式的形式,这是一个规则,也是解答此题的关键所在.21.(1)见解析;(2)见解析;(3)PQ =152. 【解析】 【分析】(1)先根据线段垂直平分线的性质证明PB=PE ,由ASA 证明△BOQ ≌△EOP ;(2)由(1)得出PE=QB ,证出四边形ABGE 是平行四边形,再根据菱形的判定即可得出结论; (3)根据三角形中位线的性质可得AE+BE=2OF+2OB=18,设AE=x ,则BE=18-x ,在Rt △ABE 中,根据勾股定理可得62+x 2=(18-x )2,BE=10,得到OB=12BE=5,设PE=y ,则AP=8-y ,BP=PE=y ,在Rt △ABP 中,根据勾股定理可得62+(8-y )2=y 2,解得y=254,在Rt △BOP 中,根据勾股定理可得154=,由PQ=2PO 即可求解. 【详解】(1)证明:∵PQ 垂直平分BE , ∴PB =PE ,OB =OE , ∵四边形ABCD 是矩形, ∴AD ∥BC , ∴∠PEO =∠QBO , 在△BOQ 与△EOP 中,PEO B0OB 0EPOE QOB Q ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BOQ ≌△EOP (ASA ), (2)∵△BOQ ≌△EOP ∴PE =QB , 又∵AD ∥BC ,∴四边形BPEQ 是平行四边形, 又∵QB =QE ,∴四边形BPEQ 是菱形;(3)解:∵O ,F 分别为PQ ,AB 的中点, ∴AE+BE =2OF+2OB =18, 设AE =x ,则BE =18﹣x ,在Rt △ABE 中,62+x 2=(18﹣x )2, 解得x =8, BE =18﹣x =10, ∴OB =12BE =5, 设PE =y ,则AP =8﹣y ,BP =PE =y , 在Rt △ABP 中,62+(8﹣y )2=y 2,解得y =254,在Rt△BOP中,PO154 =,∴PQ=2PO=15. 2.【点睛】本题考查了菱形的判定与性质、矩形的性质,平行四边形的判定与性质、线段垂直平分线的性质、勾股定理等知识;本题综合性强,有一定难度.22.(1)y=﹣800x+5600;(2)如果每天获得160元的利润,销售单价为4元;(3)当销售单价定为5元时,每天的利润最大,最大利润是2400元.【解析】【分析】(1)设y=kx+b,将两组数据代入即可求解(2)设销售单价为x元,用销售量×每斤利润-其他各项费用=总利润即可得出(x﹣3)(﹣800x+5600)﹣800=1600,求解即可得到答案(3)由题意可得w=(x﹣3)(﹣800x+5600)﹣800,整理一下,在x范围内用二次函数的最值公式即可求解【详解】(1)设y=kx+b,将x=3.5,y=2800;x=5.5,y=1200代入,得3.52800 5.51200k bk b+=⎧⎨+=⎩,解得8005600kb=-⎧⎨=⎩,则y与x之间的函数关系式为y=﹣800x+5600;(2)由题意,得(x﹣3)(﹣800x+5600)﹣800=1600,整理,得x2﹣10x+24=0,解得x1=4,x2=6.∵3.5≤x≤5.5,∴x=4.答:如果每天获得1600元的利润,销售单价为4元;(3)由题意得:w=(x﹣3)(﹣800x+5600)﹣800=﹣800x2+8000x﹣17600=﹣800(x﹣5)2+2400,∵3.5≤x≤5.5,∴当x=5时,w有最大值为2400.故当销售单价定为5元时,每天的利润最大,最大利润是2400元.【点睛】此题主要考查二次函数的实际应用,熟练运用待定系数法是解题关键23.(1)详见解析;(2)①1.4,8;②4.25.【解析】【分析】(1)根据数据先描点,再连成光滑的曲线即可;(2)①根据曲线图和表格数据即可得到答案;②根据表格数据中服药2小时后和10小时后的数据相减,即可得出答案. 【详解】(1)根据数据先描点,再连成光滑的曲线,图像如图所示(2)①根据曲线图可以大致估算出某病人第一次服药后5小时,每毫升血液中的含药量约为是1.4微克,根据表格数据数据可知持续约为8小时;②因为第一次服药2小时后,每毫升血液中的含药量4微克,10小时后每毫升血液中的含药量0.25微克,则第二次服药后2小时,每毫升血液中的含药量约为4+0.25=4.25. 【点睛】本题考查表格数据和折线图,解题的关键是读懂题中所包含的数据. 24.2a a 1-,-1.【解析】 【分析】根据分式的减法和除法可以化简题目中的式子,然后根据a 是方程x 2+x =1的解,即可解答本题. 【详解】2221211a a a a a a +⎛⎫÷- ⎪-+-⎝⎭,=2(1)21(1)(1)a a a a a a a +-+÷--=2(1)(1)(1)1a a a a a a +-⋅-+=2a a 1-, ∵a 是方程x 2+x =1的解, ∴a 2+a =1, ∴a 2=1﹣a , ∴原式=11aa --=﹣1. 【点睛】本题考查分式的化简求值、一元二次方程的解,解答本题的关键是明确分式化简求值的方法.25.(1)详见解析;(2)EF =【解析】 【分析】(1)根据题意AB 平分BAD ∠可得90AGF AGD ∠=∠=︒,从而证明()FAG DAG ASA ∆≅∆即可解答(2)由(1)可知6AF AD ==,再根据四边形ABCD 是平行四边形可得642BF AF AB =-=-=,过点F 作FH EB ⊥延长线于点H ,再根据勾股定理即可解答【详解】(1)证明:AB 平分BAD ∠FAG DAG ∴∠=∠DG AE ⊥90AGF AGD ∴∠=∠=︒ 又AG AG =()FAG DAG ASA ∴∆≅∆GF GD ∴= 又DF AE ⊥ EF ED ∴=(2)FAG DAG ∆≅∆ 6AF AD ∴==四边形ABCD 是平行四边形 //AD BC ∴,6BC AD ==180********BAD ABC ∴∠=︒-∠=︒-︒=︒1602FAE BAD ∴∠=∠=︒60FAE B ∴∠=∠=︒ ABE ∴∆为等边三角形 624AB AE BE BC CE ∴===-=-= 642BF AF AB =-=-=过点F 作FH EB ⊥延长线于点H .在Rt BFH ∆中,60HBF ABC ∠=∠=︒30HFB ∴∠=︒112BH BF ∴==HF ==415EH BE BH =+=+=EF ===【点睛】此题考查三角形全等的判定与性质,勾股定理,平行四边形的性质,解题关键在于作好辅助线。
广东省惠州市2019-2020学年中考数学模拟试题(3)含解析
广东省惠州市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.﹣3的绝对值是( ) A .﹣3B .3C .-13D .132.下列各式计算正确的是( ) A .633-=B .1236⨯=C .3535+=D .1025÷=3.如图,在平面直角坐标系中,矩形ABOC 的两边在坐标轴上,OB =1,点A 在函数y =﹣2x(x <0)的图象上,将此矩形向右平移3个单位长度到A 1B 1O 1C 1的位置,此时点A 1在函数y =kx(x >0)的图象上,C 1O 1与此图象交于点P ,则点P 的纵坐标是( )A .53B .34C .43D .234.下列计算正确的是A .a 2·a 2=2a 4B .(-a 2)3=-a 6C .3a 2-6a 2=3a 2D .(a -2)2=a 2-45.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( ) A .x(x+1)=1035B .x(x-1)=1035C .12x(x+1)=1035 D .12x(x-1)=1035 6.下列运算正确的是( )A .a 2•a 3=a 6B .a 3+a 2=a 5C .(a 2)4=a 8D .a 3﹣a 2=a7.如图,在矩形ABCD 中,AB=2,AD=2,以点A 为圆心,AD 的长为半径的圆交BC 边于点E ,则图中阴影部分的面积为( )A .2213π--B .2212π-C .2222π-D .2214π-8.等腰三角形三边长分别为2a b 、、,且a b 、是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为( ) A .9B .10C .9或10D .8或109.已知x a =2,x b =3,则x 3a ﹣2b 等于( ) A .89B .﹣1C .17D .7210.若代数式23x -有意义,则实数x 的取值范围是( ) A .x=0B .x=3C .x≠0D .x≠311.如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx+c 的大致图象为( )A .B .C .D .12.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是( )A .23B .16C .13D .12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在△ABC 中,∠ABC <20°,三边长分别为a ,b ,c ,将△ABC 沿直线BA 翻折,得到△ABC 1;然后将△ABC 1沿直线BC 1翻折,得到△A 1BC 1;再将△A 1BC 1沿直线A 1B 翻折,得到△A 1BC 2;…,若翻折4次后,得到图形A 2BCAC 1A 1C 2的周长为a+c+5b ,则翻折11次后,所得图形的周长为_____________.(结果用含有a ,b ,c 的式子表示)14.如图所示,直线y=x+b 交x 轴A 点,交y 轴于B 点,交双曲线8(0)y x x=>于P 点,连OP ,则OP 2﹣OA 2=__.15.如图,在平面直角坐标系中,以坐标原点O为位似中心在y轴的左侧将△OAB缩小得到△OA′B′,若△OAB与△OA′B′的相似比为2:1,则点B(3,﹣2)的对应点B′的坐标为_____.16.如图,在菱形ABCD中,点E、F在对角线BD上,BE=DF=13BD,若四边形AECF为正方形,则tan∠ABE=_____.17.如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D=_____度.18.已知一次函数y=ax+b,且2a+b=1,则该一次函数图象必经过点_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?20.(6分)如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣1.求一次函数的解析式;求△AOB的面积;观察图象,直接写出y 1>y 1时x 的取值范围.21.(6分)为加快城乡对接,建设美丽乡村,某地区对A 、B 两地间的公路进行改建,如图,A ,B 两地之间有一座山.汽车原来从A 地到B 地需途经C 地沿折线ACB 行驶,现开通隧道后,汽车可直接沿直线AB 行驶,已知BC =80千米,∠A =45°,∠B =30°.开通隧道前,汽车从A 地到B 地要走多少千米?开通隧道后,汽车从A 地到B 地可以少走多少千米?(结果保留根号)22.(8分)解不等式组()()303129x x x -≥⎧⎨->+⎩.23.(8分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题: 成绩 频数 频率 优秀 45 b 良好 a 0.3 合格 105 0.35 不合格60c(1)该校初三学生共有多少人?求表中a ,b ,c 的值,并补全条形统计图.初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.24.(10分)先化简后求值:已知:x=3﹣2,求2284111[(1)()]442xx x x+--÷--的值.25.(10分)在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB,BC分别交于点M,N,求证:BM=CN.26.(12分)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF.求证:(1)AE=BF;(2)AE⊥BF.27.(12分)已知二次函数y=a(x+m)2的顶点坐标为(﹣1,0),且过点A(﹣2,﹣12).(1)求这个二次函数的解析式;(2)点B(2,﹣2)在这个函数图象上吗?(3)你能通过左,右平移函数图象,使它过点B吗?若能,请写出平移方案.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.2.B【解析】AB,∴本选项正确;C选项中,∵D≠故选B.3.C【解析】分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.详解:∵OB=1,AB⊥OB,点A在函数2yx=-(x<0)的图象上,∴当x=−1时,y=2,∴A(−1,2).∵此矩形向右平移3个单位长度到1111A B O C的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数kyx=(x>0)的图象上,∴k=4,∴反比例函数的解析式为4yx=,O1(3,0),∵C1O1⊥x轴,∴当x=3时,43y ,∴P4 (3,).3故选C.点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.4.B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得. 【详解】A. a2·a2=a4,故A选项错误;B. (-a2)3=-a6,正确;C. 3a2-6a2=-3a2,故C选项错误;D. (a-2)2=a2-4a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.5.B【解析】试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.∵全班有x名同学,∴每名同学要送出(x-1)张;又∵是互送照片,∴总共送的张数应该是x(x-1)=1.故选B考点:由实际问题抽象出一元二次方程.6.C【解析】【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘进行计算即可.【详解】A、a2•a3=a5,故原题计算错误;B、a3和a2不是同类项,不能合并,故原题计算错误;C、(a2)4=a8,故原题计算正确;D 、a 3和a 2不是同类项,不能合并,故原题计算错误; 故选:C . 【点睛】此题主要考查了幂的乘方、同底数幂的乘法,以及合并同类项,关键是掌握计算法则. 7.B 【解析】 【分析】先利用三角函数求出∠BAE=45°,则,∠DAE=45°,然后根据扇形面积公式,利用图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EAD 进行计算即可. 【详解】解:∵AE=AD=2,而,∴cos ∠BAE=AB AE =2,∴∠BAE=45°,∴,∠BEA=45°.∵AD ∥BC ,∴∠DAE=∠BEA=45°,∴图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EAD 12﹣2452360π⋅⋅1﹣2π. 故选B . 【点睛】本题考查了扇形面积的计算.阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积. 8.B 【解析】 【分析】 【详解】由题意可知,等腰三角形有两种情况:当a ,b 为腰时,a=b ,由一元二次方程根与系数的关系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;当2为腰时,a=2(或b=2),此时2+b=6(或a+2=6),解得b=4(a=4),这时三边为2,2,4,不符合三角形三边关系:两边之和大于第三边,两边之差小于第三边,故不合题意.所以n 只能为1. 故选B 9.A 【解析】 ∵x a =2,x b =3,∴x 3a−2b =(x a )3÷(x b )2=8÷9=89,故选A. 10.D 【解析】分析:根据分式有意义的条件进行求解即可. 详解:由题意得,x ﹣3≠0, 解得,x≠3, 故选D .点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零. 11.B 【解析】 【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】 ∵a <0,∴抛物线的开口方向向下, 故第三个选项错误; ∵c <0,∴抛物线与y 轴的交点为在y 轴的负半轴上, 故第一个选项错误; ∵a <0、b >0,对称轴为x=2ba->0, ∴对称轴在y 轴右侧, 故第四个选项错误. 故选B . 12.D 【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵共6个数,大于3的有3个, ∴P (大于3)=3162=. 故选D .点睛:本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.2a+12b 【解析】如图2,翻折4次时,左侧边长为c,如图2,翻折5次,左侧边长为a,所以翻折4次后,如图1,由折叠得:AC=A 1C =11A C =12A C =22A C b =,所以图形2112A BCAC AC 的周长为:a+c+5b,因为∠ABC <20°,所以()9120200360+⨯︒=︒<︒, 翻折9次后,所得图形的周长为: 2a+10b,故答案为: 2a+10b. 14.1 【解析】解:∵直线y=x+b 与双曲线8y x= (x>0)交于点P ,设P 点的坐标(x ,y ), ∴x ﹣y=﹣b ,xy=8,而直线y=x+b 与x 轴交于A 点, ∴OA=b .又∵OP 2=x 2+y 2,OA 2=b 2,∴OP 2﹣OA 2=x 2+y 2﹣b 2=(x ﹣y )2+2xy ﹣b 2=1. 故答案为1. 15.(-32,1) 【解析】 【分析】根据如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k 进行解答. 【详解】解:∵以原点O 为位似中心,相似比为:2:1,将△OAB 缩小为△OA′B′,点B (3,−2) 则点B (3,−2)的对应点B′的坐标为:(-32,1),故答案为(-32,1).【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.16.1 3【解析】【分析】利用正方形对角线相等且互相平分,得出EO=AO=12BE,进而得出答案.【详解】解:∵四边形AECF为正方形,∴EF与AC相等且互相平分,∴∠AOB=90°,AO=EO=FO,∵BE=DF=13 BD,∴BE=EF=FD,∴EO=AO=12 BE,∴tan∠ABE=AOBO=13.故答案为:1 3【点睛】此题主要考查了正方形的性质以及锐角三角函数关系,正确得出EO=AO=12BE是解题关键.17.1【解析】分析:连接OC,根据圆周角定理得到∠COD=2∠A,根据切线的性质计算即可.详解:连接OC,∵CD为⊙O的切线,∴OC⊥CD,∴∠D=90°-∠COD=1°,故答案为:1.点睛:本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.18.(2,1)【解析】∵一次函数y=ax+b,∴当x=2,y=2a+b,又2a+b=1,∴当x=2,y=1,即该图象一定经过点(2,1).故答案为(2,1).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)111,51;(2)11.【解析】【分析】(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为411m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.【详解】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:40040042x x-=解得:x=51,经检验x=51是原方程的解,则甲工程队每天能完成绿化的面积是51×2=111(m2),答:甲、乙两工程队每天能完成绿化的面积分别是111m2、51m2;(2)设应安排甲队工作y天,根据题意得:1.4y+180010050y-×1.25≤8,解得:y≥11,答:至少应安排甲队工作11天.20.(1)y1=﹣x+1,(1)6;(3)x<﹣1或0<x<4试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(1)将两条坐标轴作为△AOB的分割线,求得△AOB的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.试题解析:(1)设点A坐标为(﹣1,m),点B坐标为(n,﹣1)∵一次函数y1=kx+b(k≠0)的图象与反比例函数y1=﹣的图象交于A、B两点∴将A(﹣1,m)B(n,﹣1)代入反比例函数y1=﹣可得,m=4,n=4∴将A(﹣1,4)、B(4,﹣1)代入一次函数y1=kx+b,可得,解得∴一次函数的解析式为y1=﹣x+1;,(1)在一次函数y1=﹣x+1中,当x=0时,y=1,即N(0,1);当y=0时,x=1,即M(1,0)∴=×1×1+×1×1+×1×1=1+1+1=6;(3)根据图象可得,当y1>y1时,x的取值范围为:x<﹣1或0<x<4考点:1、一次函数,1、反比例函数,3、三角形的面积21.(1)开通隧道前,汽车从A地到B地要走2)千米;(2)汽车从A地到B地比原来少走的路程为23)]千米.【解析】【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多【详解】(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=CDBC,BC=80千米,∴CD=BC•sin30°=80×12=40(千米),AC=CD402sin45︒=(千米),AC+BC=80+1-8(千米),答:开通隧道前,汽车从A地到B地要走(80+1-8)千米;(2)∵cos30°=BDBC,BC=80(千米),∴BD=BC•cos30°=80×3=4032(千米),∵tan45°=CDAD,CD=40(千米),∴AD=CD40tan45︒=(千米),∴AB=AD+BD=40+403(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+1-8﹣40﹣403=40+40(23)-(千米).答:汽车从A地到B地比原来少走的路程为[40+40(23)-]千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.x<﹣1.【解析】分析:按照解一元一次不等式组的一般步骤解答即可.()()303129x x x -≥⎧⎪⎨->+⎪⎩①②, 由①得x ≤1,由②得x <﹣1,∴原不等式组的解集是x <﹣1.点睛:“熟练掌握一元一次不等式组的解法”是正确解答本题的关键.23.(1)300人(2)b=0.15,c=0.2;(3)16【解析】分析:(1)利用合格的人数除以该组频率进而得出该校初四学生总数;(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.详解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),答:该校初三学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15, c==0.2; 如图所示:(3)画树形图得:∵一共有12种情况,抽取到甲和乙的有2种,∴P (抽到甲和乙)==.点睛:此题主要考查了树状图法求概率以及条形统计图的应用,根据题意利用树状图得出所有情况是解题关键.24.343-先根据分式混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】解:原式=1﹣()()8x 2x 2+-•(2444x x x +-÷x 22x -)=1﹣()()8x 2x 2+-•()224x x -•2x 2x -=1﹣42x +=x 22x -+, 当x=3﹣2时,原式=322322-+﹣﹣=343﹣=343-. 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.25.证明见解析.【解析】试题分析:作EF BC ⊥于点F ,然后证明Rt AME V ≌Rt FNE V ,从而求出所AM FN =,所以BM 与CN 的长度相等.试题解析:在矩形ABCD 中,AD=2AB ,E 是AD 的中点,作EF ⊥BC 于点F ,则有AB=AE=EF=FC ,90,90AEM DEN FEN DEN ∠+∠=∠+∠=o o Q ,∴∠AEM=∠FEN ,在Rt △AME 和Rt △FNE 中,∵E 为AB 的中点,∴AB=CF ,∠AEM=∠FEN ,AE=EF ,∠MAE=∠NFE ,∴Rt △AME ≌Rt △FNE ,∴AM=FN ,∴MB=CN.(1)可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,所以相等,由此可以证明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以证明AE⊥BF【详解】解:(1)证明:在△AEO与△BFO中,∵Rt△OAB与Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;(2)延长AE交BF于D,交OB于C,则∠BCD=∠ACO由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.27.(1)y=﹣12(x+1)1;(1)点B(1,﹣1)不在这个函数的图象上;(3)抛物线向左平移1个单位或平移5个单位函数,即可过点B;【解析】【分析】(1)根据待定系数法即可得出二次函数的解析式;(1)代入B(1,-1)即可判断;(3)根据题意设平移后的解析式为y=-12(x+1+m)1,代入B的坐标,求得m的植即可.【详解】解:(1)∵二次函数y=a(x+m)1的顶点坐标为(﹣1,0),∴m=1,∴二次函数y=a(x+1)1,把点A(﹣1,﹣12)代入得a=﹣12,则抛物线的解析式为:y=﹣12(x+1)1.(1)把x=1代入y=﹣12(x+1)1得y=﹣92≠﹣1,所以,点B(1,﹣1)不在这个函数的图象上;(3)根据题意设平移后的解析式为y=﹣12(x+1+m)1,把B(1,﹣1)代入得﹣1=﹣12(1+1+m)1,解得m=﹣1或﹣5,所以抛物线向左平移1个单位或平移5个单位函数,即可过点B.【点睛】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的性质以及图象与几何变换.。
惠州市名校2019-2020学年中考数学监测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC 与△BDA相似,可以添加一个条件.下列添加的条件中错误的是( )A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD2.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确3.按如下方法,将△ABC的三边缩小的原来的12,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.44.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )A.30°B.45°C.50°D.75°5.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是()A .150°B .140°C .130°D .120°6.二次函数2y x =的对称轴是( )A .直线y 1=B .直线x 1=C .y 轴D .x 轴7.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是( )A .x x 10060100-=B .x x 10010060-=C .x x 10060100+=D .x x 10010060+= 8.等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数9.下列图形中,阴影部分面积最大的是A .B .C .D .10.3的倒数是( )A .3B .3-C .13D .13- 二、填空题(本题包括8个小题)11.如图所示,直线y=x+1(记为l 1)与直线y=mx+n(记为l 2)相交于点P(a,2),则关于x 的不等式x+1≥mx+n 的解集为__________.12.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.13.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.14.如图,AB是圆O的直径,AC是圆O的弦,AB=2,∠BAC=30°.在图中画出弦AD,使AD=1,则∠CAD 的度数为_____°.15.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为__________16.已知一个正六边形的边心距为3,则它的半径为______ .17.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为________.18.若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=_____.三、解答题(本题包括8个小题)19.(6分)如图,点D在O的直径AB的延长线上,点C在O上,且AC=CD,∠ACD=120°.求证:CD 是O的切线;若O的半径为2,求图中阴影部分的面积.20.(6分)海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.21.(6分)如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.22.(8分)某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处.已知AB⊥BD、CD⊥BD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计):请你设计一个测量这段古城墙高度的方案.要求:①面出示意图(不要求写画法);②写出方案,给出简要的计算过程:③给出的方案不能用到图②的方法.23.(8分)如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.求证:△ADE≌△BFE;若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.24.(10分)已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD ≌△CEB .(2)四边形ABCD 是平行四边形.25.(10分)如图,点是线段的中点,,.求证:.26.(12分)如图,男生楼在女生楼的左侧,两楼高度均为90m ,楼间距为AB ,冬至日正午,太阳光线与水平面所成的角为32.3,女生楼在男生楼墙面上的影高为CA ;春分日正午,太阳光线与水平面所成的角为55.7,女生楼在男生楼墙面上的影高为DA ,已知42CD m =.()1求楼间距AB ;()2若男生楼共30层,层高均为3m ,请通过计算说明多少层以下会受到挡光的影响?(参考数据:sin32.30.53≈,cos32.30.85≈,tan32.30.63≈,sin55.70.83≈,cos55.70.56≈,tan55.7 1.47)≈参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【详解】解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A选项正确;∵AD=DE,∴AD DE,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B选项正确;∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C选项正确;∵CD•AB=AC•BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是对应夹角,故D选项错误,故选:D.考点:1.圆周角定理2.相似三角形的判定2.D【解析】【分析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,N(﹣1,2),Q(2,7)为G2的两个临界点,易知一次函数y1=kx+1﹣2k(k≠0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故①正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k=0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k>0时,此时y1随x增大而增大,符合题意,故②正确;当k=2时,G1与G2平行正确,过点M作MP⊥NQ,则MN=3,由y2=2x+3,且MN∥x轴,可知,tan∠PNM =2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=,∴PM=.故③正确.综上,故选:D.【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.3.C【解析】【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的1,2∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.4.B【解析】试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.5.A【解析】【分析】直接根据圆周角定理即可得出结论.【详解】∵A、B、C是⊙O上的三点,∠B=75°,∴∠AOC=2∠B=150°.故选A.6.C【解析】【分析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.【详解】解:二次函数y=x2的对称轴为y轴.故选:C .【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).7.B【解析】解:设走路快的人要走x 步才能追上走路慢的人,根据题意得:10010060x x-=.故选B.点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.8.B【解析】【分析】根据一次函数的定义,可得答案.【详解】设等腰三角形的底角为y ,顶角为x ,由题意,得 x+2y=180,所以,y=﹣12x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系, 故选B .【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.9.C【解析】【分析】分别根据反比例函数系数k 的几何意义以及三角形面积求法以及梯形面积求法得出即可:【详解】A 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy=1.B 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy 3=.C 、如图,过点M 作MA ⊥x 轴于点A ,过点N 作NB ⊥x 轴于点B ,根据反比例函数系数k 的几何意义,S △OAM =S △OAM =13xy 22=,从而阴影部分面积和为梯形MABN 的面积:()113242+⨯=. D 、根据M ,N 点的坐标以及三角形面积求法得出,阴影部分面积为:11632⨯⨯=. 综上所述,阴影部分面积最大的是C .故选C .10.C【解析】根据倒数的定义可知.解:3的倒数是. 主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.二、填空题(本题包括8个小题)11.x≥1【解析】【详解】把y=2代入y=x+1,得x=1,∴点P的坐标为(1,2),根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n相应的函数值,因而不等式x+1≥mx+n的解集是:x≥1,故答案为x≥1.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.12.8【解析】【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).故答案为:8【点睛】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.13.﹣1【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+1k=0,解得k1=0,k2=﹣1,因为k≠0,所以k的值为﹣1.故答案为:﹣1.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.30或1.【解析】【分析】根据题意作图,由AB是圆O的直径,可得∠ADB=∠AD′B=1°,继而可求得∠DAB的度数,则可求得答案.【详解】解:如图,∵AB是圆O的直径,∴∠ADB=∠AD′B=1°,∵AD=AD′=1,AB=2,∴cos∠DAB=cosD′AB=1,2∴∠DAB=∠D′AB=60°,∵∠CAB=30°,∴∠CAD=30°,∠CAD′=1°.∴∠CAD的度数为:30°或1°.故答案为30或1.【点睛】本题考查圆周角定理;含30度角的直角三角形.15.75°【解析】【分析】先根据同旁内角互补,两直线平行得出AC∥DF,再根据两直线平行内错角相等得出∠2=∠A=45°,然后根据三角形内角与外角的关系可得∠1的度数.【详解】∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC∥DF,∴∠2=∠A=45°,∴∠1=∠2+∠D=45°+30°=75°.故答案为:75°.【点睛】本题考查了平行线的判定与性质,三角形外角的性质,求出∠2=∠A=45°是解题的关键. 16.2 【解析】试题分析:设正六边形的中心是O ,一边是AB ,过O 作OG ⊥AB 与G ,在直角△OAG 中,根据三角函数即可求得OA . 解:如图所示,在Rt △AOG 中3∠AOG=30°, ∴OA=OG÷cos 30°33; 故答案为2.点睛:本题主要考查正多边形和圆的关系. 解题的关键在于利用正多边形的半径、边心距构造直角三角形并利用解直角三角形的知识求解. 17.42【解析】试题分析:因为OC=OA ,所以∠ACO=22.5A ∠=︒,所以∠AOC=45°,又直径AB 垂直于弦CD ,4OC =,所以CE=22CD=2CE=2. 考点:1.解直角三角形、2.垂径定理. 18.1 【解析】 【分析】根据判别式的意义得到△=(﹣8)2﹣4m =0,然后解关于m 的方程即可. 【详解】△=(﹣8)2﹣4m =0, 解得m =1, 故答案为:1. 【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c =0(a≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 三、解答题(本题包括8个小题)19.(1)见解析(2)图中阴影部分的面积为23π. 【解析】 【分析】(1)连接OC .只需证明∠OCD =90°.根据等腰三角形的性质即可证明;(2)先根据直角三角形中30°的锐角所对的直角边是斜边的一半求出OD ,然后根据勾股定理求出CD ,则阴影部分的面积即为直角三角形OCD 的面积减去扇形COB 的面积. 【详解】(1)证明:连接OC .∵AC =CD ,∠ACD =120°, ∴∠A =∠D =30°. ∵OA =OC , ∴∠2=∠A =30°.∴∠OCD =∠ACD -∠2=90°, 即OC ⊥CD , ∴CD 是⊙O 的切线;(2)解:∠1=∠2+∠A =60°.∴S 扇形BOC =2602360π⨯=23π.在Rt △OCD 中,∠D =30°, ∴OD =2OC =4,∴CD 22OD OC -23 ∴S Rt △OCD =12OC×CD =12×2×233 ∴图中阴影部分的面积为:2323π. 20.有触礁危险,理由见解析. 【解析】试题分析:过点P 作PD ⊥AC 于D ,在Rt △PBD 和Rt △PAD 中,根据三角函数AD ,BD 就可以用PD 表示出来,根据AB=12海里,就得到一个关于PD 的方程,求得PD .从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险.试题解析:有触礁危险.理由:过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°. ∴BD=PD=x . 在Rt △PAD 中, ∵∠PAD=90°-60°=30° ∴AD=330xx tan =︒∵AD=AB+BD ∴3∴=63+131-() ∵63)<18∴渔船不改变航线继续向东航行,有触礁危险.【点睛】本题主要考查解直角三角形在实际问题中的应用,构造直角三角形是解题的前提和关键. 21.见解析 【解析】试题分析:根据等边三角形的性质得出AC=BC,∠B=∠ACB=60°,根据旋转的性质得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根据SAS 推出△BCD ≌△ACE,根据全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根据平行线的判定得出即可.试题解析:∵△ABC 是等边三角形, ∴AC=BC,∠B=∠ACB=60°,∵线段CD 绕点C 顺时针旋转60°得到CE, ∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE, ∴∠BCD=∠ACE, 在△BCD 与△ACE 中,BC ACBCD ACEDC EC=⎧⎪∠=∠⎨⎪=⎩,∴△BCD≌△ACE,∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE∥BC.22.(1)8m;(2)答案不唯一【解析】【分析】(1)根据入射角等于反射角可得∠APB=∠CPD ,由AB⊥BD、CD⊥BD 可得到∠ABP=∠CDP=90°,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.(2)设计成视角问题求古城墙的高度.【详解】(1)解:由题意,得∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴AB CDBP BP=,∴CD=1.2121.8⨯=8.答:该古城墙的高度为8m(2)解:答案不唯一,如:如图,在距这段古城墙底部am的E处,用高h(m)的测角仪DE测得这段古城墙顶端A的仰角为α.即可测量这段古城墙AB的高度,过点D作DC⊥AB于点C.在Rt△ACD中,∠ACD=90°,tanα=ACCD,∴AC=α tanα,∴AB=AC+BC=αtanα+h【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.23.(1)见解析;(1)见解析.【解析】【分析】(1)由全等三角形的判定定理AAS证得结论.(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.【详解】解:(1)证明:如图,∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF.∴∠1=∠1.∵点E是AB边的中点,∴AE=BE,∵在△ADE与△BFE中,12DEA FEBAE BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如图,连接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.24.证明见解析【解析】证明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.(2)由△AFD≌△CEB,容易证明AD=BC且AD∥BC,可根据一组对边平行且相等的四边形是平行四边形.25.详见解析【解析】【分析】利用证明即可解决问题.【详解】证明:∵是线段的中点∴∵∴在和中,∴≌∴【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形的全等的条件,属于中考常考题型.26.(1)AB 的长为50m ;(2)冬至日20层(包括20层)以下会受到挡光的影响,春分日6层(包括6层)以下会受到挡光的影响. 【解析】 【分析】()1如图,作CM PB ⊥于M ,DN PB ⊥于.N 则AB CM DN ==,设.AB CM DN xm ===想办法构建方程即可解决问题.()2求出AC ,AD ,分两种情形解决问题即可.【详解】解:()1如图,作CM PB ⊥于M ,DN PB ⊥于.N 则AB CM DN ==,设AB CM DN xm ===. 在Rt PCM 中,()tan32.30.63PM x x m =⋅=, 在Rt PDN 中,()tan55.7 1.47PN x x m =⋅=,42CD MN m ==, 1.470.6342x x ∴-=, 50x ∴=, AB ∴的长为50m .()2由()1可知:31.5PM m =,()904231.516.5AD m ∴=--=,9031.558.5AC =-=, 16.53 5.5÷=,58.5319.5÷=,∴冬至日20层(包括20层)以下会受到挡光的影响,春分日6层(包括6层)以下会受到挡光的影响.【点睛】考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.22.把不等式组2010xx-⎧⎨+<⎩的解集表示在数轴上,正确的是()A.B.C.D.3.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B 种饮料单价为x元/瓶,那么下面所列方程正确的是( )A.2(x-1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x-1)=134.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50人数 2 3 2 4 5 2 1 1则下列叙述正确的是()A.这些运动员成绩的众数是5B.这些运动员成绩的中位数是2.30C.这些运动员的平均成绩是2.25D.这些运动员成绩的方差是0.07255.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1B.O2C.O3D.O46.△ABC在正方形网格中的位置如图所示,则cosB的值为( )A .55B .255C .12D .27.如图,在△ABC 中,DE ∥BC 交AB 于D ,交AC 于E ,错误的结论是( ).A .AD AE DB EC = B .AB AC AD AE = C .AC EC AB DB = D .AD DE DB BC= 8.下列计算正确的是( )A .235+=B .a a a +=222C .(1)x y x xy +=+D .236()mn mn =9.-4的绝对值是( )A .4B .14C .-4D .14- 10.如图,二次函数y=ax 2+bx+c (a≠0)的图象经过点(1,2)且与x 轴交点的横坐标分别为x 1,x 2,其中﹣1<x 1<0,1<x 2<2,下列结论:4a+2b+c <0,2a+b <0,b 2+8a >4ac ,a <﹣1,其中结论正确的有( )A .1个B .2个C .3个D .4个二、填空题(本题包括8个小题)11.如图,四边形OABC 中,AB ∥OC ,边OA 在x 轴的正半轴上,OC 在y 轴的正半轴上,点B 在第一象限内,点D 为AB 的中点,CD 与OB 相交于点E ,若△BDE 、△OCE 的面积分别为1和9,反比例函数y=k x的图象经过点B ,则k=_______.122(2)-=__________13.分解因式:x 2﹣1=____.14.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.15.如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O过A、C两点,则图中阴影部分的面积之和为_____.16.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.17.某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.18.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.三、解答题(本题包括8个小题)19.(6分)某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.求出y与x之间的函数关系式;写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?20.(6分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.21.(6分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;以点O为位似中心,将△ABC缩小为原来的12,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.22.(8分)已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:△ACE∽△BDE;BE•DC=AB•DE.23.(8分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一块等腰直角三角板的直角顶点放在C处,CP=CQ=2,将三角板CPQ绕点C旋转(保持点P在△ABC内部),连接AP、BP、BQ.如图1求证:AP=BQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系.24.(10分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线.交BC于点E.求证:BE=EC填空:①若∠B=30°,3DE=______;②当∠B=______度时,以O,D,E,C为顶点的四边形是正方形.25.(10分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?26.(12分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本) 频数(人数) 频率5 a0.26 18 0.367 14 b8 8 0.16合计c 1(1)统计表中的a=________,b=________,c=________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】解不等式得到x≥12m+3,再列出关于m 的不等式求解. 【详解】 23m x -≤﹣1, m ﹣1x≤﹣6,﹣1x≤﹣m ﹣6, x≥12m+3, ∵关于x 的一元一次不等式23m x -≤﹣1的解集为x≥4, ∴12m+3=4,解得m=1. 故选D .考点:不等式的解集2.B【解析】【分析】首先解出各个不等式的解集,然后求出这些解集的公共部分即可.【详解】解:由x ﹣2≥0,得x≥2,由x+1<0,得x <﹣1,所以不等式组无解,故选B .【点睛】解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了. 3.A【解析】【分析】要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A 饮料的钱+买B 饮料的钱=总印数1元,明确了等量关系再列方程就不那么难了.【详解】设B 种饮料单价为x 元/瓶,则A 种饮料单价为(x-1)元/瓶,根据小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了1元,可得方程为:2(x-1)+3x=1.故选A.【点睛】列方程题的关键是找出题中存在的等量关系,此题的等量关系为买A中饮料的钱+买B中饮料的钱=一共花的钱1元.4.B【解析】【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.5.A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B 来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.6.A【解析】 【详解】 解:在直角△ABD 中,BD=2,AD=4,则AB=22222425BD AD +=+=,则cosB=5525BD AB ==. 故选A .7.D【解析】【分析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DE ∥BC ,可得△ADE ∽△ABC ,并可得:AD AE DB EC =,AB AC AD AE =,AC EC AB DB=,故A ,B ,C 正确;D 错误; 故选D .【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质.8.C【解析】解:A 、不是同类二次根式,不能合并,故A 错误;B .23a a a += ,故B 错误;C .1x y x xy +=+() ,正确; D .2326mn m n =(),故D 错误.故选C .9.A【解析】【分析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.) 【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.10.D【解析】由抛物线的开口向下知a<0,与y 轴的交点为在y 轴的正半轴上,得c>0,对称轴为x=2b a- <1,∵a<0,∴2a+b<0, 而抛物线与x 轴有两个交点,∴2b −4ac>0,当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2. ∵244ac b a- >2,∴4ac−2b <8a ,∴2b +8a>4ac , ∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a−b+c<0.由①,③得到2a+2c<2,由①,②得到2a−c<−4,4a−2c<−8,上面两个相加得到6a<−6,∴a<−1.故选D.点睛:本题考查了二次函数图象与系数的关系,二次函数2(0)y ax bx c a =++≠ 中,a 的符号由抛物线的开口方向决定;c 的符号由抛物线与y 轴交点的位置决定;b 的符号由对称轴位置与a 的符号决定;抛物线与x 轴的交点个数决定根的判别式的符号,注意二次函数图象上特殊点的特点.二、填空题(本题包括8个小题)11.16【解析】【分析】根据题意得S △BDE :S △OCE =1:9,故BD :OC=1:3,设D (a,b )则A(a,0),B(a,2b),得C(0,3b),由S △OCE =9得ab=8,故可得解.【详解】解:设D (a,b )则A(a,0),B(a,2b)∵S △BDE :S △OCE =1:9∴BD :OC=1:3∴C(0,3b) ∴△COE 高是OA 的34,。
广东省惠州市2019-2020学年中考一诊数学试题含解析
广东省惠州市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在ABCD Y 中,E 为边CD 上一点,将ADE V 沿AE 折叠至AD'E △处,'AD 与CE 交于点F ,若52B ∠=︒,20DAE ∠=︒,则'FED ∠的大小为( )A .20°B .30°C .36°D .40°2.将抛物线2y x =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )A .2(2)3y x =+-B .2(2)3y x =++C .2(2)3y x =-+D .2(2)3y x =--3.下列哪一个是假命题( )A .五边形外角和为360°B .切线垂直于经过切点的半径C .(3,﹣2)关于y 轴的对称点为(﹣3,2)D .抛物线y=x 2﹣4x+2017对称轴为直线x=24.下列四个实数中是无理数的是( )A .2.5B .C .πD .1.4145.二次函数y=ax 2+bx+c(a≠0)的图象如图,则反比例函数y=a x与一次函数y=bx ﹣c 在同一坐标系内的图象大致是( )A.B.C.D.6.下列运算正确的是()A.a2•a4=a8B.2a2+a2=3a4C.a6÷a2=a3D.(ab2)3=a3b67.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20 B.30,20 C.30,30 D.20,308.二次函数y=x2+bx–1的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2–2x–1–t=0(t为实数)在–1<x<4的范围内有实数解,则t的取值范围是A.t≥–2 B.–2≤t<7C.–2≤t<2D.2<t<79.如图,点M是正方形ABCD边CD上一点,连接MM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是()A.1313B.313C.23D.131310.一个数和它的倒数相等,则这个数是()A .1B .0C .±1D .±1和011.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =--12.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .203海里D .303海里二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若关于x 的一元二次方程kx 2+2(k+1)x+k -1=0有两个实数根,则k 的取值范围是 14.计算两个两位数的积,这两个数的十位上的数字相同,个位上的数字之和等于1.53×57=3021,38×32=1216,84×86=7224,71×79=2.(1)你发现上面每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的 ,请写出一个符合上述规律的算式 .(2)设其中一个数的十位数字为a ,个位数字为b ,请用含a ,b 的算式表示这个规律.15.如图,在正六边形ABCDEF 中,AC 于FB 相交于点G ,则AG GC值为_____.16.如图,以长为18的线段AB 为直径的⊙O 交△ABC 的边BC 于点D ,点E 在AC 上,直线DE 与⊙O 相切于点D .已知∠CDE=20°,则»AD 的长为_____.17.八位女生的体重(单位:kg )分别为36、42、38、40、42、35、45、38,则这八位女生的体重的中位数为_____kg .18.将直线y =x +b 沿y 轴向下平移3个单位长度,点A(-1,2)关于y 轴的对称点落在平移后的直线上,则b 的值为____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知Rt OAB ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,如图1,连接BC .(1)填空:OBC ∠= ︒; (2)如图1,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3)如图2,点M ,N 同时从点O 出发,在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N 的运动速度为1单位/秒,设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?20.(6分)计算:(3﹣2)0+(13)﹣1+4cos30°﹣|4﹣12| 21.(6分)解方程311(1)(2)x x x x -=--+. 22.(8分)如图,在Rt △ABC 中,∠C =90°,AC 5=,tanB 12=,半径为2的⊙C 分别交AC ,BC 于点D 、E ,得到DE 弧.(1)求证:AB 为⊙C 的切线.(2)求图中阴影部分的面积.23.(8分)如图,△ABC 中,点D 在边AB 上,满足∠ACD=∠ABC ,若AC=3,AD=1,求DB 的长.24.(10分)已知:二次函数2y ax bx =+满足下列条件:①抛物线y=ax 2+bx 与直线y=x 只有一个交点;②对于任意实数x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.(1)求二次函数y=ax2+bx的解析式;(2)若当-2≤x≤r(r≠0)时,恰有t≤y≤1.5r成立,求t和r的值.25.(10分)如图,已知▱ABCD.作∠B的平分线交AD于E点。
广东省惠州市2019-2020学年中考数学模拟试题含解析
广东省惠州市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知∠AOB=70°,OC 平分∠AOB ,DC ∥OB ,则∠C 为( )A .20°B .35°C .45°D .70°2.股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为( )A .9.5×106B .9.5×107C .9.5×108D .9.5×1093.给出下列各数式,①2?--() ②2-- ③2 2- ④22-() 计算结果为负数的有( ) A .1个 B .2个 C .3个 D .4个4.如图,DE 是线段AB 的中垂线,AE //BC ,AEB 120o ∠=,AB 8=,则点A 到BC 的距离是( )A .4B .43C .5D .6 5.已知18x x -=,则2216x x +-的值是( ) A .60 B .64 C .66 D .726.下列图案中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .7.如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是( )A .着B .沉C .应D .冷8.在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2D.9.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D.510.如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.3102B.3105C.105D.3511.如图由四个相同的小立方体组成的立体图像,它的主视图是().A.B.C.D.12.2cos 30°的值等于()A .1B .2C .3D .2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.14.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .15.如图,在半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为_____.16.如图,圆锥底面半径为r cm ,母线长为10cm ,其侧面展开图是圆心角为216°的扇形,则r 的值为 .17.如图,直线y =k 1x +b 与双曲线2k y=x交于A 、B 两点,其横坐标分别为1和5,则不等式k 1x <2k x +b 的解集是 ▲ .18.如图,将边长为3的正六边形铁丝框ABCDEF 变形为以点A 为圆心,AB 为半径的扇形(忽略铁丝的粗细).则所得扇形AFB (阴影部分)的面积为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知:C F 90o ∠∠==,AB DE =,CE BF =,求证:AC DF =.20.(6分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.21.(6分)文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积.证明:S矩形ABCD=S1+S2+S3=2,S4=,S5=,S6=+,S阴影=S1+S6=S1+S2+S3=.22.(8分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.23.(8分)如图①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.(1)求证:PD是⊙O的切线;(2)若AB=4,DA=DP ,试求弧BD 的长;(3)如图②,点M 是弧AB 的中点,连结DM ,交AB 于点N .若tanA=,求的值.24.(10分)已知,如图,在四边形ABCD 中,∠ADB=∠ACB ,延长AD 、BC 相交于点E .求证:△ACE ∽△BDE ;BE•DC=AB•DE .25.(10分)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+(),善于思考的小明进行了以下探索: 设(2a b 2m 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2mn 2+=++ ∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+ 请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若(2a b 3m 3++,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( +3)2; (3)若(233a m +=+,且ab m n 、、、均为正整数,求a 的值. 26.(12分)计算:(20113232-⎛⎫+- ⎪⎝⎭﹣3tan30°. 27.(12分)观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…第④个等式为 ;根据上面等式的规律,猜想第n 个等式(用含n 的式子表示,n 是正整数),并说明你猜想的等式正确性.。
★试卷3套汇总★惠州市名校2020年中考数学监测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,⊙O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC ,若∠A=60°,∠ADC=85°,则∠C 的度数是( )A .25°B .27.5°C .30°D .35°2.若点A (a ,b ),B (1a,c )都在反比例函数y =1x 的图象上,且﹣1<c <0,则一次函数y =(b ﹣c )x+ac 的大致图象是( )A .B .C .D .3.制作一块3m×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )A .360元B .720元C .1080元D .2160元4.函数228y x x m =--+的图象上有两点()11,A x y ,()22,B x y ,若122x x <<-,则( )A .12y y <B .12y y >C .12 y y =D .1y 、2y 的大小不确定5.关于x 的不等式组0312(1)x m x x -<⎧⎨->-⎩无解,那么m 的取值范围为( ) A .m≤-1B .m<-1C .-1<m≤0D .-1≤m<0 6.30cos ︒的值是() A 2B 3C .12 D 37.下列叙述,错误的是( )A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形8.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A.43B.42C.6 D.49.如图,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF的度数为()A.62°B.38°C.28°D.26°10.下列几何体中,主视图和左视图都是矩形的是()A.B.C.D.二、填空题(本题包括8个小题)11.如图,△ABC与△DEF位似,点O为位似中心,若AC=3DF,则OE:EB=_____.12.如图,已知一次函数y=ax+b和反比例函数kyx的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<kx的解集为__________13.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC 的周长为____.14.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.15.如图,在□ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动_____秒时,以点P、Q、E、F为顶点的四边形是平行四边形.16.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=▲°.17.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.18.肥皂泡的泡壁厚度大约是0.0007mm,0.0007mm用科学记数法表示为_______mm.三、解答题(本题包括8个小题)19.(6分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?20.(6分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.求证:DF是BF和CF的比例中项;在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.21.(6分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.22.(8分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:3,(斜坡的铅直高度与水平宽度的比),经过测量AB=10米,AE=15米,求点B到地面的距离;求这块宣传牌CD的高度.(测角器的高度忽略不计,结果保留根号)23.(8分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元求甲、乙型号手机每部进价为多少元?该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案 售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m 元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m 的值24.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x 元,则商场日销售量增加____件,每件商品,盈利______元(用含x 的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元? 25.(10分)已知AB 是O 上一点,4,60OC OAC =∠=︒.如图①,过点C 作O 的切线,与BA 的延长线交于点P ,求P ∠的大小及PA 的长;如图②,P 为AB 上一点,CP 延长线与O 交于点Q ,若AQ CQ =,求APC ∠的大小及PA 的长.26.(12分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y (℃)从加热开始计算的时间为x (min ).据了解,当该材料加热时,温度y 与时间x 成一次函数关系:停止加热进行操作时,温度y 与时间x 成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B 以及∠ODC 度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D .点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC 度数是解题关键. 2.D【解析】【分析】将(),A a b ,1,B c a ⎛⎫ ⎪⎝⎭代入1y x =,得1a b ⨯=,11c a ⨯=,然后分析b c -与ac 的正负,即可得到()y b c x ac =-+的大致图象.【详解】将(),A a b ,1,B c a ⎛⎫⎪⎝⎭代入1y x =,得1a b ⨯=,11c a ⨯=, 即1b a=,a c =. ∴2111c b c c c a c c--=-=-=. ∵10c -<<,∴201c <<,∴210c ->.即21c -与c 异号.∴0b c -<.又∵0ac >,故选D .【点睛】本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出b c -与ac 的正负是解答本题的关键.3.C【解析】【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m 2,∴长方形广告牌的成本是120÷6=20元/m 2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m 2,∴扩大后长方形广告牌的成本是54×20=1080元,故选C .【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.4.A【解析】【分析】根据x 1、x 1与对称轴的大小关系,判断y 1、y 1的大小关系.【详解】解:∵y=-1x 1-8x+m ,∴此函数的对称轴为:x=-b 2a =-()-82-2⨯=-1, ∵x 1<x 1<-1,两点都在对称轴左侧,a <0,∴对称轴左侧y 随x 的增大而增大,∴y 1<y 1.故选A .【点睛】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.5.A【解析】【分析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m 的不等式,就可以求出m 的取值范围了.【详解】()03121x m x x -<⎧⎪⎨->-⎪⎩①②, 解不等式①得:x<m ,解不等式②得:x>-1,由于原不等式组无解,所以m≤-1,故选A.【点睛】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.6.D【解析】【分析】根据特殊角三角函数值,可得答案.【详解】解:302cos ︒=, 故选:D .【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.7.D【解析】【分析】根据正方形的判定、平行四边形的判定、菱形的判定和矩形的判定定理对选项逐一进行分析,即可判断出答案.【详解】A. 对角线互相垂直且相等的平行四边形是正方形,正确,不符合题意;B. 对角线互相垂直平分的四边形是菱形,正确,不符合题意;C. 对角线互相平分的四边形是平行四边形,正确,不符合题意;D. 对角线相等的平行四边形是矩形,故D 选项错误,符合题意,故选D.【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定和矩形的判定等,熟练掌握相关判定定理是解答此类问题的关键.8.B【解析】【分析】由已知条件可得ABC DAC ~,可得出AC BC DC AC =,可求出AC 的长. 【详解】解:由题意得:∠B=∠DAC ,∠ACB=∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC=8,得DC=4,代入可得AC=故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.9.C【解析】分析:主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.详解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故选C.点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键.10.C【解析】【分析】主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.【详解】A. 主视图为圆形,左视图为圆,故选项错误;B. 主视图为三角形,左视图为三角形,故选项错误;C. 主视图为矩形,左视图为矩形,故选项正确;D. 主视图为矩形,左视图为圆形,故选项错误.故答案选:C.【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.二、填空题(本题包括8个小题)11.1:2【解析】【分析】△ABC与△DEF是位似三角形,则DF∥AC,EF∥BC,先证明△OAC∽△ODF,利用相似比求得AC=3DF,所以可求OE:OB=DF:AC=1:3,据此可得答案.【详解】解:∵△ABC与△DEF是位似三角形,∴DF∥AC,EF∥BC∴△OAC∽△ODF,OE:OB=OF:OC∴OF:OC=DF:AC∵AC=3DF∴OE:OB=DF:AC=1:3,则OE:EB=1:2故答案为:1:2【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,位似图形的对应顶点的连线平行或共线.12.﹣2<x<0或x>1【解析】【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【详解】观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<k的解集是﹣2<x<0或x>1.x【点睛】本题主要考查一次函数图象与反比例函数图象,数形结合思想是关键.13.3【解析】试题分析:因为等腰△ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.考点:3.等腰三角形的性质;3.垂直平分线的性质.14.8【解析】【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).故答案为:8【点睛】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.15.3或1【解析】【分析】由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=12BC=12AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.16.1.【解析】试题分析:∵四边形OABC为平行四边形,∴∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.∵四边形ABCD是圆的内接四边形,∴∠D+∠B=180°.又∠D=12∠AOC,∴3∠D=180°,解得∠D=1°.∴∠OAB=∠OCB=180°-∠B=1°.∴∠OAD+∠OCD=31°-(∠D+∠B+∠OAB+∠OCB)=31°-(1°+120°+1°+1°)=1°.故答案为1°.考点:①平行四边形的性质;②圆内接四边形的性质.17.23-2.【解析】【分析】延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.【详解】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵AC=6,CF=1,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=12AF=1,∴22AF FM3,∵FP=FC=1,∴3,∴点P到边AB距离的最小值是3.故答案为3-1.【点睛】本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P 的位置.18.7×10-1.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0007=7×10-1.故答案为:7×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题(本题包括8个小题)19.(1)y=﹣20x+1600;(2)当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)超市每天至少销售粽子440盒.【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P 与x 的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x 的取值范围,再根据(1)中所求得的销售量y (盒)与每盒售价x (元)之间的函数关系式即可求解.试题解析:(1)由题意得,y =70020(45)x --=201600x -+;(2)P=(40)(201600)x x --+=220240064000x x -+-=220(60)8000x --+,∵x≥45,a=﹣20<0,∴当x=60时,P 最大值=8000元,即当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)由题意,得220(60)8000x --+=6000,解得150x =,270x =,∵抛物线P=220(60)8000x --+的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x≤58,∴50≤x≤58,∵在201600y x =-+中,20k =-<0,∴y 随x 的增大而减小,∴当x=58时,y 最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.考点:二次函数的应用.20.证明见解析【解析】试题分析:(1)根据已知求得∠BDF=∠BCD ,再根据∠BFD=∠DFC ,证明△BFD ∽△DFC ,从而得BF :DF=DF :FC ,进行变形即得;(2)由已知证明△AEG∽△ADC,得到∠AEG=∠ADC=90°,从而得EG∥BC,继而得EG BF ED DF=,由(1)可得BF DFDF CF=,从而得EG DFED CF=,问题得证.试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中点,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴AE AGAD AC=,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴EG BFED DF=,由(1)知△DFD∽△DFC,∴BF DFDF CF=,∴EG DFED CF=,∴EG·CF=ED·DF.21.(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.【解析】【分析】(1)先把B点坐标代入代入y=mx,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;(2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC+S△BOC 进行计算;(3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.【详解】解:∵B (2,﹣4)在反比例函数y =m x 的图象上, ∴m =2×(﹣4)=﹣8,∴反比例函数解析式为:y =﹣8x , 把A (﹣4,n )代入y =﹣8x, 得﹣4n =﹣8,解得n =2,则A 点坐标为(﹣4,2).把A (﹣4,2),B (2,﹣4)分别代入y =kx+b ,得4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩, ∴一次函数的解析式为y =﹣x ﹣2;(2)∵y =﹣x ﹣2,∴当﹣x ﹣2=0时,x =﹣2,∴点C 的坐标为:(﹣2,0),△AOB 的面积=△AOC 的面积+△COB 的面积 =12×2×2+12×2×4 =6;(3)由图象可知,当﹣4<x <0或x >2时,一次函数的值小于反比例函数的值.【点睛】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.22.(1)2;(2)宣传牌CD 高(20﹣m .【解析】试题分析:(1)在Rt △ABH 中,由tan ∠BAH=BHAH 3.得到∠BAH=30°,于是得到结果BH=ABsin ∠BAH=1sin30°=1×12=2;(2)在Rt △ABH 中,AH=AB .cos ∠BAH=1.cos30°在Rt △ADE 中,tan ∠DAE=DE AE ,即tan60°=15DE ,得到,如图,过点B 作BF ⊥CE ,垂足为F ,求出,于是得到DF=DE ﹣EF=DE﹣2.在Rt △BCF 中,∠C=90°﹣∠CBF=90°﹣42°=42°,求得∠C=∠CBF=42°,得出+12,即可求得结果.试题解析:解:(1)在Rt △ABH 中,∵tan ∠BAH=BH AH =i=3=33,∴∠BAH=30°,∴BH=ABsin ∠BAH=1sin30°=1×12=2. 答:点B 距水平面AE 的高度BH 是2米; (2)在Rt △ABH 中,AH=AB .cos ∠BAH=1.cos30°=23.在Rt △ADE 中,tan ∠DAE=DE AE ,即tan60°=15DE ,∴DE=123,如图,过点B 作BF ⊥CE ,垂足为F ,∴BF=AH+AE=23+12,DF=DE ﹣EF=DE ﹣BH=123﹣2.在Rt △BCF 中,∠C=90°﹣∠CBF=90°﹣42°=42°,∴∠C=∠CBF=42°,∴CF=BF=23+12,∴CD=CF ﹣DF=23+12﹣(123﹣2)=20﹣13(米).答:广告牌CD 的高度约为(20﹣13)米.23. (1) 甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元;(2) 共有四种方案;(3) 当m =80时,w 始终等于8000,取值与a 无关【解析】【分析】(1)设甲种型号手机每部进价为x 元,乙种型号手机每部进价为y 元根据题意列方程组求出x 、y 的值即可;(2)设购进甲种型号手机a 部,这购进乙种型号手机(20-a)部,根据题意列不等式组求出a 的取值范围,根据a 为整数求出a 的值即可明确方案(3)利用利润=单个利润⨯数量,用a 表示出利润W ,当利润与a 无关时,(2)中的方案利润相同,求出m 值即可;【详解】(1) 设甲种型号手机每部进价为x 元,乙种型号手机每部进价为y 元,22800324600x y x y +=⎧⎨+=⎩,解得1000800x y =⎧⎨=⎩, (2) 设购进甲种型号手机a 部,这购进乙种型号手机(20-a)部,17400≤1000a +800(20-a)≤18000,解得7≤a≤10,∵a 为自然数,∴有a 为7、8、9、10共四种方案,(3) 甲种型号手机每部利润为1000×40%=400,w =400a +(1280-800-m)(20-a)=(m -80)a +9600-20m ,当m =80时,w 始终等于8000,取值与a 无关.【点睛】本题考查了列二元一次方程组解实际问题的运用,根据题意找出等量关系列出方程是解题关键. 24.(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x ;50﹣x .(3)每件商品降价1元时,商场日盈利可达到2000元.【解析】【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x 元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润×销售数量”即可列出关于x 的一元二次方程,解之即可得出x 的值,再根据尽快减少库存即可确定x 的值.【详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x 元,则商场日销售量增加2x 件,每件商品,盈利(50-x )元.故答案为2x ;50-x .(3)根据题意,得:(50-x )×(30+2x )=2000,整理,得:x 2-35x+10=0,解得:x 1=10,x 2=1,∵商城要尽快减少库存,∴x=1.答:每件商品降价1元时,商场日盈利可达到2000元.【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).25.(Ⅰ)30P ∠=︒,PA =4;(Ⅱ)45APC ∠=︒,2PA +=【解析】【分析】(Ⅰ)易得△OAC 是等边三角形即∠AOC=60°,又由PC 是○O 的切线故PC ⊥OC ,即∠OCP=90°可得∠P 的度数,由OC=4可得PA 的长度(Ⅱ)由(Ⅰ)知△OAC是等边三角形,易得∠APC=45°;过点C作CD⊥AB于点D,易得AD=12AO=12CO,在Rt△DOC中易得CD的长,即可求解【详解】解:(Ⅰ)∵AB是○O的直径,∴OA是○O的半径.∵∠OAC=60°,OA=OC,∴△OAC是等边三角形.∴∠AOC=60°.∵PC是○O的切线,OC为○O的半径,∴PC⊥OC,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC是等边三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.∵AQ=CQ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°. ∴∠APC=∠AQC+∠QAO=45°.如图②,过点C作CD⊥AB于点D.∵△OAC是等边三角形,CD⊥AB于点D,∴∠DCO=30°,AD=12AO=12CO=2.∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=23∴PD=CD=23∴AP=AD+DP=2+23【点睛】此题主要考查圆的综合应用26.(1);(2)20分钟.【解析】【详解】(1)材料加热时,设y=ax+15(a≠0),由题意得60=5a+15,解得a=9,则材料加热时,y与x的函数关系式为y=9x+15(0≤x≤5).停止加热时,设y=(k≠0),由题意得60=,解得k=300,则停止加热进行操作时y与x的函数关系式为y=(x≥5);(2)把y=15代入y=,得x=20,因此从开始加热到停止操作,共经历了20分钟.答:从开始加热到停止操作,共经历了20分钟.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.2.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A.B.C.D.3.方程(m–2)x2+3mx+1=0是关于x的一元二次方程,则()A.m≠±2B.m=2 C.m=–2 D.m≠24.4-的相反数是()A.4 B.4-C.14-D.145.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是()A.56 B.58 C.63 D.726.点P (1,﹣2)关于y 轴对称的点的坐标是( )A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1)7.平面直角坐标系内一点()2, 3P -关于原点对称点的坐标是( )A .()3,2-B .()2,3C .()2,3--D .()2,3-8.抛物线y=ax 2﹣4ax+4a ﹣1与x 轴交于A ,B 两点,C (x 1,m )和D (x 2,n )也是抛物线上的点,且x 1<2<x 2,x 1+x 2<4,则下列判断正确的是( )A .m <nB .m≤nC .m >nD .m ≥n 9.一次函数满足,且随的增大而减小,则此函数的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限 10.如图,能判定EB ∥AC 的条件是( )A .∠C=∠ABEB .∠A=∠EBDC .∠A=∠ABED .∠C=∠ABC二、填空题(本题包括8个小题) 11.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.12.如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、y 轴上,连接OB ,将纸片OABC 沿OB 折叠,使点A 落在点A′的位置,若OB =5,tan ∠BOC =12,则点A′的坐标为_____.13.因式分解:2312x -=____________.14.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.15.如图,已知△ABC中,AB=AC=5,BC=8,将△ABC沿射线BC方向平移m个单位得到△DEF,顶点A,B,C分别与D,E,F对应,若以A,D,E为顶点的三角形是等腰三角形,且AE为腰,则m的值是______.16.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.17.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD水平,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为____cm.18.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.三、解答题(本题包括8个小题)19.(6分)如图,在△ABC中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止.求证:△ABE≌△ACD;若AB=BE,求∠DAE的度数;拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.20.(6分)已知△ABC在平面直角坐标系中的位置如图所示.分别写出图中点A和点C的坐标;画出△ABC 绕点C按顺时针方向旋转90°后的△A′B′C′;求点A旋转到点A′所经过的路线长(结果保留π).21.(6分)2018年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元. 22.(8分)绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x (单位:万元)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
惠州市2019-2020学年中考数学模拟质量跟踪监视试题一、选择题1.下列说法正确的是( )A .负数没有倒数B .﹣1的倒数是﹣1C .任何有理数都有倒数D .正数的倒数比自身小2.一个几何体由一些小正方体摆成,其主视图与左视图如左图所示.其俯视图不可能是( )A. B. C. D.3.已知二次函数y =ax 2+bx+c (a≠0),过(1,y 1)、(2,y 2).下列结论:①若y 1>0时,则a+b+c >0; ②若a =2b 时,则y 1<y 2;③若y 1<0,y 2>0,且a+b <0,则a >0.其中正确的结论个数为( )A .0个B .1个C .2个D .3个4.如图,四边形ABCD 是边长为1的正方形,E ,F 为BD 所在直线上的两点,若EAF=135°,则下列结论正确的是( )A .DE=1B .tan ∠AFO=13C .AF=2D .四边形AFCE 的面积为945.下列说法中:7和8之间;②六边形的内角和是外角和的2倍;③2的相反数是﹣2;④若a >b ,则a ﹣b >0.它的逆命题是真命题;⑤一个角是126°43',则它的补角是53°17';正确的有( )A .1个B .2个C .3个D .4个6.如图,已知AB=A 1B ,A 1C=A 1A 2,A 2D=A 2A 3,A 3E=A 3A 4,若∠B=20°,则∠A=_____,4A ∠=______.( )A .80°,40°B .80°,30°C .80°,20°D .80°,10°7.一个公园有,,A B C 三个入口和,D E 二个出口,小明进入公园游玩,从“A 口进D 口出”的概率为( )A .12B .13C .15D .168.已知:如图,四边形AOBC 是矩形,以O 为坐标原点,OB 、OA 分别在x 轴、y 轴上,点A 的坐标为(0,3),∠OAB=60°,以AB 为轴对折后,C 点落在D 点处,则D 点的坐标为( )A 32- )B .(32-)C .(32,D .(3,9.已知一次函数y =kx ﹣1和反比例函数y =k x,则这两个函数在同一平面直角坐标系中的图象可能是( )A .B .C .D .10.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是( )已知:如图,在ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE //BC ,DF//AC ,求证:ADE ∽DBF .证明:①又DF//AC ,DE //BC ②,A BDF ∠∠∴=③,ADE B ∠∠∴=④,ADE ∴∽DBF .A.③②④①B.②④①③C.③①④②D.②③④① 11.如图,在半径为6的⊙O 中,正方形AGDH 与正六边形ABCDEF 都内接于⊙O ,则图中阴影部分的面积为( )A.27﹣B.54﹣C.D.54 12.下列条件中,能判定四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边平行,一组对角相等C.一组对边平行,一组邻角互补D.一组对边相等,一组邻角相等二、填空题13.函数y=132x的自变量x的取值范围是_____.14.在平面直角坐标系中,已知A、B、C、D四点的坐标依次为(0,0)、(6,2)、(8,8)、(2,6),若一次函数y=mx-6m+2(m≠0)的图像将四边形ABCD的面积分成1:3两部分,则m的值为___________.15.如图,BD平分∠ABC,DE∥BC,∠2=35°,则∠1=_____.16.如图,直线L1∥L2,AB⊥CD,∠1=34°,那么∠2的度数是___度.17.如果分式有意义,那么x的取值范围是_____.18.如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,∠APO=30°.先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30°得到线段PC,连接BC.若点A的坐标为(﹣1,0),则线段BC的长为_____.三、解答题19.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接AD、CD、OC.填空①当∠OAC的度数为时,四边形AOCD为菱形;②当OA=AE=2时,四边形ACDE的面积为.20.如图,四边形ABCD内接于⊙O,点O在AB上,BC=CD,过点C作⊙O的切线,分别交AB,AD的延长线于点E,F.(1)求证:AF⊥EF;(2)若cosA=45,BE=1,求AD的长.21.抛物线y=ax2﹣2x+b的顶点为A(m,n),过点A的直线y=kx﹣1与抛物线的另一交点为B(p,q).(1)当a=b=1时,求k的值;(2)若b=m,当﹣3≤a<1时,求p的取值范围.22.随着信息技术的迅猛发展,人们购物的支付方式更加多样、便捷,为调查大学生购物支付方式,某大学一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为(2)将条形统计图补充完整;(3)若该大学有10000名学生,请你估计购物选择用支付宝支付方式的学生约有多少人?23.某公司以每件60元的价格购进一批环保产品,经试销发现,如果以每件80元的价格销售那么可售出40万件.销售单价每降低1元,销售量就增加1万件.现超市决定降销售,设销售单价为x元时,销售量为y万件.(1)求y与x之间的函数关系式;(2)设该公司销售这种环保产品,能获得利润w万元,当销售单价为多少元时,公司可获得最大利润?最大利润是多少万元?(3)若物价部门规定规定获利不得高于进价的30%,若该公司为了获取500万元的利润,该产品每件应降价多少元?24.定义:若一个三角形一条边上的高长为这条边长的一半,则称该三角形为这条边上的“半高”三角形,这条高称为这条边上的“半高”,如图,△ABC是BC边上的“半高”三角形.点P在边AB上,PQ ∥BC交AC于点Q,PM⊥BC于点M,QN⊥BC于点N,连接MQ.(1)请证明△APQ为PQ边上的“半高”三角形.(2)请探究BM,PM,CN之间的等量关系,并说明理由;(3)若△ABC的面积等于16,求MQ的最小值25.4cos60°+(﹣1)2019﹣|﹣3+2|【参考答案】***一、选择题13.x≠3 214.-5或1 5 -15.70°.16.17.x≠318.2三、解答题19.(1)证明见解析;(2)①30°;②【解析】【分析】(1)由垂径定理,切线的性质可得FO⊥AC,OD⊥DE,可得AC∥DE;(2)①连接CD,AD,OC,由题意可证△ADO是等边三角形,由等边三角形的性质可得DF=OF,AF=FC,且AC⊥OD,可证四边形AOCD为菱形;②由题意可证△AFO∽△ODE,可得21222AO OF AFOE OD DE====+,即OD=2OF,DE=2AF=AC,可证四边形ACDE是平行四边形,由勾股定理可求DE的长,即可求四边形ACDE的面积.【详解】(1)∵F为弦AC的中点,∴AF=CF,且OF过圆心O∴FO⊥AC,∵DE是⊙O切线∴OD⊥DE∴DE∥AC(2)①当∠OAC=30°时,四边形AOCD是菱形,理由如下:如图,连接CD,AD,OC,∵∠OAC=30°,OF⊥AC∴∠AOF=60°∵AO=DO,∠AOF=60°∴△ADO是等边三角形又∵AF⊥DO∴DF=FO,且AF=CF,∴四边形AOCD是平行四边形又∵AO=CO∴四边形AOCD是菱形②如图,连接CD,∵AC∥DE∴△AFO∽△EDO∴21222 AO OF AFOE OD DE====+∴OD=2OF,DE=2AF∵AC=2AF∴DE=AC,且DE∥AC∴四边形ACDE是平行四边形∵OA=AE=OD=2∴OF=DF=1,OE=4∵在Rt△ODE中,DE=∴S四边形ACDE=DE×DF1==故答案为:【点睛】本题是圆的综合题,考查了圆的有关知识,菱形的判定,等边三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理,熟练运用这些性质进行推理是本题的关键.20.(1)略;(2)325.【解析】【分析】(1)连接AC,OC,如图,先证明OC∥AF,再根据切线的性质得OC⊥EF,从而得到AF⊥EF;(2)先利用OC∥AF得到∠COE=∠DAB,在Rt△OCE中,设OC=r,利用余弦的定义得到415rr=+,解得r=4,连接BD,如图,根据圆周角定理得到∠ADB=90°,然后根据余弦的定义可计算出AD的长.【详解】解:(1)连接AC,OC,如图,∵CD=BC,∴CD BC=,∴∠1=∠2,∵OA=OC,∴∠2=∠OCA,∴∠1=∠OCA,∴OC∥AF,∵EF为切线,∴OC⊥EF,∴AF⊥EF;(2)∵OC∥AF,∴∠COE=∠DAB,在Rt△OCE中,设OC=r,∵cos∠COE=cos∠DAB=45OCOE=,即415rr=+,解得r=4,连接BD,如图,∵AB为直径,∴∠ADB=90°,在Rt△ADB中,cos∠DAB=45 ADAB=,∴AD=45×8=325.【点睛】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理和解直角三角形.21.(1)1;(2)p≤23或p >2. 【解析】【分析】 (1)将a =b =1代入抛物线的解析式确定直线经过的点A 的坐标,从而确定k 的值;(2)表示出直线的解析式:y =ax ﹣1,然后根据当﹣3≤a<0和当0<a <1时利用反比例函数的性质确定P 的取值范围即可.【详解】(1)当a =b =1时,抛物线y =x 2﹣2x+1的顶点为A(1,0),直线y =kx ﹣1过点A(1,0),k =1(2)∵y =ax 2﹣2x+b 的顶点为A(m ,n),∴m =1.a∵b =m ,∴抛物线y =ax 2﹣2x+1.a ∴顶点为(1a,0), ∵直线y =kx ﹣1过顶点为(1a ,0), ∴k a﹣1=0,k =a . 从而直线的解析式为:y =ax ﹣1ax 2﹣2x+1a=a x ﹣1 21(2)0a ax a x a +-++= x 1=1a ,x 2=1+1a. ∵B 与A 是不同的两点 ∴p =1+1a. 对于﹣3≤a<1, ①当﹣3≤a<0时,利用反比例函数性质得:112,33p a -剟 ②当0<a <1时,利用反比例函数性质得:1a >1,p >2 综上所述,p≤23或p >2. 【点睛】本题考查了二次函数的性质及函数图象上的点的坐标特征的知识,解题的关键是得到p 与a 的关系,难度不大.22.(1)200,81°;(2)补充完整的条形统计图如图所示;见解析;(3)购物选择用支付宝支付方式的学生约有2250人.【解析】【分析】(1)根据支付宝、现金、其他的人数和所占的百分比可以求得本次调查的人数,并求出示“支付宝”支付的扇形圆心角的度数;(2)根据(1)中的结果可以求得使用微信和银行卡的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得购物选择用支付宝支付方式的学生约有多少人.【详解】(1)本次调查的人数为:(45+50+15)÷(1﹣15%﹣30%)=200,表示“支付宝”支付的扇形圆心角的度数为:360°×45200=81°,故答案为:200,81°;(2)使用微信的人数为:200×30%=60,使用银行卡的人数为:200×15%=30,补充完整的条形统计图如图所示;(3)10000×45200=2250(人),答:购物选择用支付宝支付方式的学生约有2250人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)y=﹣x+120;(2)当销售单价为80元时,公司可获得最大利润,最大利润是800万元;(3)该产品每件应降价10元.【解析】【分析】(1)根据题意得,y=40+(80﹣x),即y=﹣x+120;(2)根据题意得,w=(x﹣60)(﹣x+120),然后化简利用二次函数性质得到最大值;(3)当w=500时,列出方程解出x,注意要判断取舍【详解】解:(1)根据题意得,y=40+(80﹣x),即y=﹣x+120;(2)根据题意得,w=(x﹣60)(﹣x+120),即w=﹣x2+180x﹣7200=﹣(x﹣90)2+900,由题意可知x≤80,∵a=﹣1<0,∴x<90时,w随x增大而增大,∴当x=80时,w由最大值,此时,w=﹣(80﹣90)2+900=800,答:当销售单价为80元时,公司可获得最大利润,最大利润是800万元;(3)当w=500时,可得方程﹣(x﹣90)2+900=500,解得:x1=70,x2=110,∵110>60(1+30%),∴x2=110(不合题意,舍去),这时,80﹣70=10,答:该产品每件应降价10元.【点睛】本题考查一元二次方程及二次函数的应用,理解题意是本题关键,第三问要注意对一元二次方程的解进行取舍24.(1)见解析;(2)2PM=BM+CN,理由见解析;(3.【解析】【分析】(1)根据平行相似,证明△APQ∽△ABC,利用相似三角形对应边的比等于对应高的比:PQ AKBC AR=,由“半高”三角形的定义可结论;(2)证明四边形PMNQ是矩形,得PQ=MN,PM=KR,代入AR=12BC,可得结论;(3)先根据△ABC的面积等于16,计算BC和AR的长,设MN=x,则BM+CN=8﹣x,PM=QN=12(8﹣x),根据勾股定理表示MQ,配方可得最小值.【详解】(1)证明:如图,过A作AR⊥BC于R,交PQ于K,∵△ABC是BC边上的“半高”三角形,∴AR=12 BC,∵PQ∥BC,∴△APQ∽△ABC,∴PQ AK BC AR=,∴AK AR1 PQ BC2==,∴AK=12 PQ,∴△APQ为PQ边上的“半高”三角形.(2)解:2PM=BM+CN,理由是:∵PM⊥BC,QN⊥BC,∴∠PMN=∠MNQ=∠MPQ=90°,∴四边形PMNQ是矩形,∴PQ=MN,PM=KR,∵AK=12PQ,AR=12BC,∴AK+RK=12(BM+MN+CN),1 2PQ+PM=12BM+12MN+12CN,∴2PM=BM+CN;(3)解:∵△ABC 的面积等于16, ∴12BC AR ⋅=16, ∵AR =12BC , 1122BC BC ⋅⋅=16, BC =8,AR =4,设MN =x ,则BM+CN =8﹣x ,PM =QN =12(8﹣x ),∵MQ ==∴当x =85时,MQ 有最小值是5.【点睛】本题是三角形的综合题,考查的是新定义:“半高”三角形,涉及到相似三角形的性质和判定、三角形面积、勾股定理及新定义的理解和运用等知识,解决问题的关键是作辅助线解决问题.25.0【解析】【分析】本题涉及绝对值、特殊角的三角函数值2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】 解:原式=4×12﹣1﹣|﹣1|=2﹣1﹣1=0. 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.。